4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
32 #include <asm/uaccess.h>
34 #include "delegation.h"
42 #define NFSDBG_FACILITY NFSDBG_FILE
44 static const struct vm_operations_struct nfs_file_vm_ops
;
46 /* Hack for future NFS swap support */
48 # define IS_SWAPFILE(inode) (0)
51 int nfs_check_flags(int flags
)
53 if ((flags
& (O_APPEND
| O_DIRECT
)) == (O_APPEND
| O_DIRECT
))
58 EXPORT_SYMBOL_GPL(nfs_check_flags
);
64 nfs_file_open(struct inode
*inode
, struct file
*filp
)
68 dprintk("NFS: open file(%pD2)\n", filp
);
70 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
71 res
= nfs_check_flags(filp
->f_flags
);
75 res
= nfs_open(inode
, filp
);
80 nfs_file_release(struct inode
*inode
, struct file
*filp
)
82 dprintk("NFS: release(%pD2)\n", filp
);
84 nfs_inc_stats(inode
, NFSIOS_VFSRELEASE
);
85 nfs_file_clear_open_context(filp
);
88 EXPORT_SYMBOL_GPL(nfs_file_release
);
91 * nfs_revalidate_size - Revalidate the file size
92 * @inode - pointer to inode struct
93 * @file - pointer to struct file
95 * Revalidates the file length. This is basically a wrapper around
96 * nfs_revalidate_inode() that takes into account the fact that we may
97 * have cached writes (in which case we don't care about the server's
98 * idea of what the file length is), or O_DIRECT (in which case we
99 * shouldn't trust the cache).
101 static int nfs_revalidate_file_size(struct inode
*inode
, struct file
*filp
)
103 struct nfs_server
*server
= NFS_SERVER(inode
);
104 struct nfs_inode
*nfsi
= NFS_I(inode
);
106 if (nfs_have_delegated_attributes(inode
))
109 if (filp
->f_flags
& O_DIRECT
)
111 if (nfsi
->cache_validity
& NFS_INO_REVAL_PAGECACHE
)
113 if (nfs_attribute_timeout(inode
))
118 return __nfs_revalidate_inode(server
, inode
);
121 loff_t
nfs_file_llseek(struct file
*filp
, loff_t offset
, int whence
)
123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 filp
, offset
, whence
);
127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 * the cached file length
130 if (whence
!= SEEK_SET
&& whence
!= SEEK_CUR
) {
131 struct inode
*inode
= filp
->f_mapping
->host
;
133 int retval
= nfs_revalidate_file_size(inode
, filp
);
135 return (loff_t
)retval
;
138 return generic_file_llseek(filp
, offset
, whence
);
140 EXPORT_SYMBOL_GPL(nfs_file_llseek
);
143 * Flush all dirty pages, and check for write errors.
146 nfs_file_flush(struct file
*file
, fl_owner_t id
)
148 struct inode
*inode
= file_inode(file
);
150 dprintk("NFS: flush(%pD2)\n", file
);
152 nfs_inc_stats(inode
, NFSIOS_VFSFLUSH
);
153 if ((file
->f_mode
& FMODE_WRITE
) == 0)
156 /* Flush writes to the server and return any errors */
157 return vfs_fsync(file
, 0);
161 nfs_file_read(struct kiocb
*iocb
, struct iov_iter
*to
)
163 struct inode
*inode
= file_inode(iocb
->ki_filp
);
166 if (iocb
->ki_flags
& IOCB_DIRECT
)
167 return nfs_file_direct_read(iocb
, to
, iocb
->ki_pos
);
169 dprintk("NFS: read(%pD2, %zu@%lu)\n",
171 iov_iter_count(to
), (unsigned long) iocb
->ki_pos
);
173 result
= nfs_revalidate_mapping_protected(inode
, iocb
->ki_filp
->f_mapping
);
175 result
= generic_file_read_iter(iocb
, to
);
177 nfs_add_stats(inode
, NFSIOS_NORMALREADBYTES
, result
);
181 EXPORT_SYMBOL_GPL(nfs_file_read
);
184 nfs_file_splice_read(struct file
*filp
, loff_t
*ppos
,
185 struct pipe_inode_info
*pipe
, size_t count
,
188 struct inode
*inode
= file_inode(filp
);
191 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
192 filp
, (unsigned long) count
, (unsigned long long) *ppos
);
194 res
= nfs_revalidate_mapping_protected(inode
, filp
->f_mapping
);
196 res
= generic_file_splice_read(filp
, ppos
, pipe
, count
, flags
);
198 nfs_add_stats(inode
, NFSIOS_NORMALREADBYTES
, res
);
202 EXPORT_SYMBOL_GPL(nfs_file_splice_read
);
205 nfs_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
207 struct inode
*inode
= file_inode(file
);
210 dprintk("NFS: mmap(%pD2)\n", file
);
212 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
213 * so we call that before revalidating the mapping
215 status
= generic_file_mmap(file
, vma
);
217 vma
->vm_ops
= &nfs_file_vm_ops
;
218 status
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
222 EXPORT_SYMBOL_GPL(nfs_file_mmap
);
225 * Flush any dirty pages for this process, and check for write errors.
226 * The return status from this call provides a reliable indication of
227 * whether any write errors occurred for this process.
229 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
230 * disk, but it retrieves and clears ctx->error after synching, despite
231 * the two being set at the same time in nfs_context_set_write_error().
232 * This is because the former is used to notify the _next_ call to
233 * nfs_file_write() that a write error occurred, and hence cause it to
234 * fall back to doing a synchronous write.
237 nfs_file_fsync_commit(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
239 struct nfs_open_context
*ctx
= nfs_file_open_context(file
);
240 struct inode
*inode
= file_inode(file
);
241 int have_error
, do_resend
, status
;
244 dprintk("NFS: fsync file(%pD2) datasync %d\n", file
, datasync
);
246 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
247 do_resend
= test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES
, &ctx
->flags
);
248 have_error
= test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE
, &ctx
->flags
);
249 status
= nfs_commit_inode(inode
, FLUSH_SYNC
);
250 have_error
|= test_bit(NFS_CONTEXT_ERROR_WRITE
, &ctx
->flags
);
252 ret
= xchg(&ctx
->error
, 0);
260 do_resend
|= test_bit(NFS_CONTEXT_RESEND_WRITES
, &ctx
->flags
);
266 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit
);
269 nfs_file_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
272 struct inode
*inode
= file_inode(file
);
274 trace_nfs_fsync_enter(inode
);
276 nfs_inode_dio_wait(inode
);
278 ret
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
281 mutex_lock(&inode
->i_mutex
);
282 ret
= nfs_file_fsync_commit(file
, start
, end
, datasync
);
283 mutex_unlock(&inode
->i_mutex
);
285 * If nfs_file_fsync_commit detected a server reboot, then
286 * resend all dirty pages that might have been covered by
287 * the NFS_CONTEXT_RESEND_WRITES flag
291 } while (ret
== -EAGAIN
);
293 trace_nfs_fsync_exit(inode
, ret
);
298 * Decide whether a read/modify/write cycle may be more efficient
299 * then a modify/write/read cycle when writing to a page in the
302 * The modify/write/read cycle may occur if a page is read before
303 * being completely filled by the writer. In this situation, the
304 * page must be completely written to stable storage on the server
305 * before it can be refilled by reading in the page from the server.
306 * This can lead to expensive, small, FILE_SYNC mode writes being
309 * It may be more efficient to read the page first if the file is
310 * open for reading in addition to writing, the page is not marked
311 * as Uptodate, it is not dirty or waiting to be committed,
312 * indicating that it was previously allocated and then modified,
313 * that there were valid bytes of data in that range of the file,
314 * and that the new data won't completely replace the old data in
315 * that range of the file.
317 static int nfs_want_read_modify_write(struct file
*file
, struct page
*page
,
318 loff_t pos
, unsigned len
)
320 unsigned int pglen
= nfs_page_length(page
);
321 unsigned int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
322 unsigned int end
= offset
+ len
;
324 if (pnfs_ld_read_whole_page(file
->f_mapping
->host
)) {
325 if (!PageUptodate(page
))
330 if ((file
->f_mode
& FMODE_READ
) && /* open for read? */
331 !PageUptodate(page
) && /* Uptodate? */
332 !PagePrivate(page
) && /* i/o request already? */
333 pglen
&& /* valid bytes of file? */
334 (end
< pglen
|| offset
)) /* replace all valid bytes? */
340 * This does the "real" work of the write. We must allocate and lock the
341 * page to be sent back to the generic routine, which then copies the
342 * data from user space.
344 * If the writer ends up delaying the write, the writer needs to
345 * increment the page use counts until he is done with the page.
347 static int nfs_write_begin(struct file
*file
, struct address_space
*mapping
,
348 loff_t pos
, unsigned len
, unsigned flags
,
349 struct page
**pagep
, void **fsdata
)
352 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
356 dfprintk(PAGECACHE
, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
357 file
, mapping
->host
->i_ino
, len
, (long long) pos
);
361 * Prevent starvation issues if someone is doing a consistency
364 ret
= wait_on_bit_action(&NFS_I(mapping
->host
)->flags
, NFS_INO_FLUSHING
,
365 nfs_wait_bit_killable
, TASK_KILLABLE
);
369 * Wait for O_DIRECT to complete
371 nfs_inode_dio_wait(mapping
->host
);
373 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
378 ret
= nfs_flush_incompatible(file
, page
);
381 page_cache_release(page
);
382 } else if (!once_thru
&&
383 nfs_want_read_modify_write(file
, page
, pos
, len
)) {
385 ret
= nfs_readpage(file
, page
);
386 page_cache_release(page
);
393 static int nfs_write_end(struct file
*file
, struct address_space
*mapping
,
394 loff_t pos
, unsigned len
, unsigned copied
,
395 struct page
*page
, void *fsdata
)
397 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
398 struct nfs_open_context
*ctx
= nfs_file_open_context(file
);
401 dfprintk(PAGECACHE
, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
402 file
, mapping
->host
->i_ino
, len
, (long long) pos
);
405 * Zero any uninitialised parts of the page, and then mark the page
406 * as up to date if it turns out that we're extending the file.
408 if (!PageUptodate(page
)) {
409 unsigned pglen
= nfs_page_length(page
);
410 unsigned end
= offset
+ copied
;
413 zero_user_segments(page
, 0, offset
,
414 end
, PAGE_CACHE_SIZE
);
415 SetPageUptodate(page
);
416 } else if (end
>= pglen
) {
417 zero_user_segment(page
, end
, PAGE_CACHE_SIZE
);
419 SetPageUptodate(page
);
421 zero_user_segment(page
, pglen
, PAGE_CACHE_SIZE
);
424 status
= nfs_updatepage(file
, page
, offset
, copied
);
427 page_cache_release(page
);
431 NFS_I(mapping
->host
)->write_io
+= copied
;
433 if (nfs_ctx_key_to_expire(ctx
)) {
434 status
= nfs_wb_all(mapping
->host
);
443 * Partially or wholly invalidate a page
444 * - Release the private state associated with a page if undergoing complete
446 * - Called if either PG_private or PG_fscache is set on the page
447 * - Caller holds page lock
449 static void nfs_invalidate_page(struct page
*page
, unsigned int offset
,
452 dfprintk(PAGECACHE
, "NFS: invalidate_page(%p, %u, %u)\n",
453 page
, offset
, length
);
455 if (offset
!= 0 || length
< PAGE_CACHE_SIZE
)
457 /* Cancel any unstarted writes on this page */
458 nfs_wb_page_cancel(page_file_mapping(page
)->host
, page
);
460 nfs_fscache_invalidate_page(page
, page
->mapping
->host
);
464 * Attempt to release the private state associated with a page
465 * - Called if either PG_private or PG_fscache is set on the page
466 * - Caller holds page lock
467 * - Return true (may release page) or false (may not)
469 static int nfs_release_page(struct page
*page
, gfp_t gfp
)
471 struct address_space
*mapping
= page
->mapping
;
473 dfprintk(PAGECACHE
, "NFS: release_page(%p)\n", page
);
475 /* Always try to initiate a 'commit' if relevant, but only
476 * wait for it if the caller allows blocking. Even then,
477 * only wait 1 second and only if the 'bdi' is not congested.
478 * Waiting indefinitely can cause deadlocks when the NFS
479 * server is on this machine, when a new TCP connection is
480 * needed and in other rare cases. There is no particular
481 * need to wait extensively here. A short wait has the
482 * benefit that someone else can worry about the freezer.
485 struct nfs_server
*nfss
= NFS_SERVER(mapping
->host
);
486 nfs_commit_inode(mapping
->host
, 0);
487 if (gfpflags_allow_blocking(gfp
) &&
488 !bdi_write_congested(&nfss
->backing_dev_info
)) {
489 wait_on_page_bit_killable_timeout(page
, PG_private
,
491 if (PagePrivate(page
))
492 set_bdi_congested(&nfss
->backing_dev_info
,
496 /* If PagePrivate() is set, then the page is not freeable */
497 if (PagePrivate(page
))
499 return nfs_fscache_release_page(page
, gfp
);
502 static void nfs_check_dirty_writeback(struct page
*page
,
503 bool *dirty
, bool *writeback
)
505 struct nfs_inode
*nfsi
;
506 struct address_space
*mapping
= page_file_mapping(page
);
508 if (!mapping
|| PageSwapCache(page
))
512 * Check if an unstable page is currently being committed and
513 * if so, have the VM treat it as if the page is under writeback
514 * so it will not block due to pages that will shortly be freeable.
516 nfsi
= NFS_I(mapping
->host
);
517 if (test_bit(NFS_INO_COMMIT
, &nfsi
->flags
)) {
523 * If PagePrivate() is set, then the page is not freeable and as the
524 * inode is not being committed, it's not going to be cleaned in the
525 * near future so treat it as dirty
527 if (PagePrivate(page
))
532 * Attempt to clear the private state associated with a page when an error
533 * occurs that requires the cached contents of an inode to be written back or
535 * - Called if either PG_private or fscache is set on the page
536 * - Caller holds page lock
537 * - Return 0 if successful, -error otherwise
539 static int nfs_launder_page(struct page
*page
)
541 struct inode
*inode
= page_file_mapping(page
)->host
;
542 struct nfs_inode
*nfsi
= NFS_I(inode
);
544 dfprintk(PAGECACHE
, "NFS: launder_page(%ld, %llu)\n",
545 inode
->i_ino
, (long long)page_offset(page
));
547 nfs_fscache_wait_on_page_write(nfsi
, page
);
548 return nfs_wb_page(inode
, page
);
551 static int nfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
554 struct rpc_clnt
*clnt
= NFS_CLIENT(file
->f_mapping
->host
);
558 return rpc_clnt_swap_activate(clnt
);
561 static void nfs_swap_deactivate(struct file
*file
)
563 struct rpc_clnt
*clnt
= NFS_CLIENT(file
->f_mapping
->host
);
565 rpc_clnt_swap_deactivate(clnt
);
568 const struct address_space_operations nfs_file_aops
= {
569 .readpage
= nfs_readpage
,
570 .readpages
= nfs_readpages
,
571 .set_page_dirty
= __set_page_dirty_nobuffers
,
572 .writepage
= nfs_writepage
,
573 .writepages
= nfs_writepages
,
574 .write_begin
= nfs_write_begin
,
575 .write_end
= nfs_write_end
,
576 .invalidatepage
= nfs_invalidate_page
,
577 .releasepage
= nfs_release_page
,
578 .direct_IO
= nfs_direct_IO
,
579 .migratepage
= nfs_migrate_page
,
580 .launder_page
= nfs_launder_page
,
581 .is_dirty_writeback
= nfs_check_dirty_writeback
,
582 .error_remove_page
= generic_error_remove_page
,
583 .swap_activate
= nfs_swap_activate
,
584 .swap_deactivate
= nfs_swap_deactivate
,
588 * Notification that a PTE pointing to an NFS page is about to be made
589 * writable, implying that someone is about to modify the page through a
590 * shared-writable mapping
592 static int nfs_vm_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
594 struct page
*page
= vmf
->page
;
595 struct file
*filp
= vma
->vm_file
;
596 struct inode
*inode
= file_inode(filp
);
598 int ret
= VM_FAULT_NOPAGE
;
599 struct address_space
*mapping
;
601 dfprintk(PAGECACHE
, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
602 filp
, filp
->f_mapping
->host
->i_ino
,
603 (long long)page_offset(page
));
605 /* make sure the cache has finished storing the page */
606 nfs_fscache_wait_on_page_write(NFS_I(inode
), page
);
608 wait_on_bit_action(&NFS_I(inode
)->flags
, NFS_INO_INVALIDATING
,
609 nfs_wait_bit_killable
, TASK_KILLABLE
);
612 mapping
= page_file_mapping(page
);
613 if (mapping
!= inode
->i_mapping
)
616 wait_on_page_writeback(page
);
618 pagelen
= nfs_page_length(page
);
622 ret
= VM_FAULT_LOCKED
;
623 if (nfs_flush_incompatible(filp
, page
) == 0 &&
624 nfs_updatepage(filp
, page
, 0, pagelen
) == 0)
627 ret
= VM_FAULT_SIGBUS
;
634 static const struct vm_operations_struct nfs_file_vm_ops
= {
635 .fault
= filemap_fault
,
636 .map_pages
= filemap_map_pages
,
637 .page_mkwrite
= nfs_vm_page_mkwrite
,
640 static int nfs_need_check_write(struct file
*filp
, struct inode
*inode
)
642 struct nfs_open_context
*ctx
;
644 ctx
= nfs_file_open_context(filp
);
645 if (test_bit(NFS_CONTEXT_ERROR_WRITE
, &ctx
->flags
) ||
646 nfs_ctx_key_to_expire(ctx
))
651 ssize_t
nfs_file_write(struct kiocb
*iocb
, struct iov_iter
*from
)
653 struct file
*file
= iocb
->ki_filp
;
654 struct inode
*inode
= file_inode(file
);
655 unsigned long written
= 0;
657 size_t count
= iov_iter_count(from
);
659 result
= nfs_key_timeout_notify(file
, inode
);
663 if (iocb
->ki_flags
& IOCB_DIRECT
) {
664 result
= generic_write_checks(iocb
, from
);
667 return nfs_file_direct_write(iocb
, from
);
670 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
671 file
, count
, (long long) iocb
->ki_pos
);
674 if (IS_SWAPFILE(inode
))
677 * O_APPEND implies that we must revalidate the file length.
679 if (iocb
->ki_flags
& IOCB_APPEND
) {
680 result
= nfs_revalidate_file_size(inode
, file
);
689 result
= generic_file_write_iter(iocb
, from
);
693 /* Return error values */
694 if (result
>= 0 && nfs_need_check_write(file
, inode
)) {
695 int err
= vfs_fsync(file
, 0);
700 nfs_add_stats(inode
, NFSIOS_NORMALWRITTENBYTES
, written
);
705 printk(KERN_INFO
"NFS: attempt to write to active swap file!\n");
708 EXPORT_SYMBOL_GPL(nfs_file_write
);
711 do_getlk(struct file
*filp
, int cmd
, struct file_lock
*fl
, int is_local
)
713 struct inode
*inode
= filp
->f_mapping
->host
;
715 unsigned int saved_type
= fl
->fl_type
;
717 /* Try local locking first */
718 posix_test_lock(filp
, fl
);
719 if (fl
->fl_type
!= F_UNLCK
) {
720 /* found a conflict */
723 fl
->fl_type
= saved_type
;
725 if (NFS_PROTO(inode
)->have_delegation(inode
, FMODE_READ
))
731 status
= NFS_PROTO(inode
)->lock(filp
, cmd
, fl
);
735 fl
->fl_type
= F_UNLCK
;
739 static int do_vfs_lock(struct file
*file
, struct file_lock
*fl
)
741 return locks_lock_file_wait(file
, fl
);
745 do_unlk(struct file
*filp
, int cmd
, struct file_lock
*fl
, int is_local
)
747 struct inode
*inode
= filp
->f_mapping
->host
;
748 struct nfs_lock_context
*l_ctx
;
752 * Flush all pending writes before doing anything
757 l_ctx
= nfs_get_lock_context(nfs_file_open_context(filp
));
758 if (!IS_ERR(l_ctx
)) {
759 status
= nfs_iocounter_wait(&l_ctx
->io_count
);
760 nfs_put_lock_context(l_ctx
);
765 /* NOTE: special case
766 * If we're signalled while cleaning up locks on process exit, we
767 * still need to complete the unlock.
770 * Use local locking if mounted with "-onolock" or with appropriate
774 status
= NFS_PROTO(inode
)->lock(filp
, cmd
, fl
);
776 status
= do_vfs_lock(filp
, fl
);
781 is_time_granular(struct timespec
*ts
) {
782 return ((ts
->tv_sec
== 0) && (ts
->tv_nsec
<= 1000));
786 do_setlk(struct file
*filp
, int cmd
, struct file_lock
*fl
, int is_local
)
788 struct inode
*inode
= filp
->f_mapping
->host
;
792 * Flush all pending writes before doing anything
795 status
= nfs_sync_mapping(filp
->f_mapping
);
800 * Use local locking if mounted with "-onolock" or with appropriate
804 status
= NFS_PROTO(inode
)->lock(filp
, cmd
, fl
);
806 status
= do_vfs_lock(filp
, fl
);
811 * Revalidate the cache if the server has time stamps granular
812 * enough to detect subsecond changes. Otherwise, clear the
813 * cache to prevent missing any changes.
815 * This makes locking act as a cache coherency point.
817 nfs_sync_mapping(filp
->f_mapping
);
818 if (!NFS_PROTO(inode
)->have_delegation(inode
, FMODE_READ
)) {
819 if (is_time_granular(&NFS_SERVER(inode
)->time_delta
))
820 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
822 nfs_zap_caches(inode
);
829 * Lock a (portion of) a file
831 int nfs_lock(struct file
*filp
, int cmd
, struct file_lock
*fl
)
833 struct inode
*inode
= filp
->f_mapping
->host
;
837 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
838 filp
, fl
->fl_type
, fl
->fl_flags
,
839 (long long)fl
->fl_start
, (long long)fl
->fl_end
);
841 nfs_inc_stats(inode
, NFSIOS_VFSLOCK
);
843 /* No mandatory locks over NFS */
844 if (__mandatory_lock(inode
) && fl
->fl_type
!= F_UNLCK
)
847 if (NFS_SERVER(inode
)->flags
& NFS_MOUNT_LOCAL_FCNTL
)
850 if (NFS_PROTO(inode
)->lock_check_bounds
!= NULL
) {
851 ret
= NFS_PROTO(inode
)->lock_check_bounds(fl
);
857 ret
= do_getlk(filp
, cmd
, fl
, is_local
);
858 else if (fl
->fl_type
== F_UNLCK
)
859 ret
= do_unlk(filp
, cmd
, fl
, is_local
);
861 ret
= do_setlk(filp
, cmd
, fl
, is_local
);
865 EXPORT_SYMBOL_GPL(nfs_lock
);
868 * Lock a (portion of) a file
870 int nfs_flock(struct file
*filp
, int cmd
, struct file_lock
*fl
)
872 struct inode
*inode
= filp
->f_mapping
->host
;
875 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
876 filp
, fl
->fl_type
, fl
->fl_flags
);
878 if (!(fl
->fl_flags
& FL_FLOCK
))
882 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
883 * any standard. In principle we might be able to support LOCK_MAND
884 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
885 * NFS code is not set up for it.
887 if (fl
->fl_type
& LOCK_MAND
)
890 if (NFS_SERVER(inode
)->flags
& NFS_MOUNT_LOCAL_FLOCK
)
893 /* We're simulating flock() locks using posix locks on the server */
894 if (fl
->fl_type
== F_UNLCK
)
895 return do_unlk(filp
, cmd
, fl
, is_local
);
896 return do_setlk(filp
, cmd
, fl
, is_local
);
898 EXPORT_SYMBOL_GPL(nfs_flock
);
900 const struct file_operations nfs_file_operations
= {
901 .llseek
= nfs_file_llseek
,
902 .read_iter
= nfs_file_read
,
903 .write_iter
= nfs_file_write
,
904 .mmap
= nfs_file_mmap
,
905 .open
= nfs_file_open
,
906 .flush
= nfs_file_flush
,
907 .release
= nfs_file_release
,
908 .fsync
= nfs_file_fsync
,
911 .splice_read
= nfs_file_splice_read
,
912 .splice_write
= iter_file_splice_write
,
913 .check_flags
= nfs_check_flags
,
914 .setlease
= simple_nosetlease
,
916 EXPORT_SYMBOL_GPL(nfs_file_operations
);