2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
23 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
25 unsigned long data
, text
, lib
, swap
, ptes
, pmds
;
26 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
29 * Note: to minimize their overhead, mm maintains hiwater_vm and
30 * hiwater_rss only when about to *lower* total_vm or rss. Any
31 * collector of these hiwater stats must therefore get total_vm
32 * and rss too, which will usually be the higher. Barriers? not
33 * worth the effort, such snapshots can always be inconsistent.
35 hiwater_vm
= total_vm
= mm
->total_vm
;
36 if (hiwater_vm
< mm
->hiwater_vm
)
37 hiwater_vm
= mm
->hiwater_vm
;
38 hiwater_rss
= total_rss
= get_mm_rss(mm
);
39 if (hiwater_rss
< mm
->hiwater_rss
)
40 hiwater_rss
= mm
->hiwater_rss
;
42 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
43 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
44 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
45 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
46 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
47 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
62 hiwater_vm
<< (PAGE_SHIFT
-10),
63 total_vm
<< (PAGE_SHIFT
-10),
64 mm
->locked_vm
<< (PAGE_SHIFT
-10),
65 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
66 hiwater_rss
<< (PAGE_SHIFT
-10),
67 total_rss
<< (PAGE_SHIFT
-10),
68 data
<< (PAGE_SHIFT
-10),
69 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
72 swap
<< (PAGE_SHIFT
-10));
73 hugetlb_report_usage(m
, mm
);
76 unsigned long task_vsize(struct mm_struct
*mm
)
78 return PAGE_SIZE
* mm
->total_vm
;
81 unsigned long task_statm(struct mm_struct
*mm
,
82 unsigned long *shared
, unsigned long *text
,
83 unsigned long *data
, unsigned long *resident
)
85 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
86 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
88 *data
= mm
->total_vm
- mm
->shared_vm
;
89 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
95 * Save get_task_policy() for show_numa_map().
97 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
99 struct task_struct
*task
= priv
->task
;
102 priv
->task_mempolicy
= get_task_policy(task
);
103 mpol_get(priv
->task_mempolicy
);
106 static void release_task_mempolicy(struct proc_maps_private
*priv
)
108 mpol_put(priv
->task_mempolicy
);
111 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
114 static void release_task_mempolicy(struct proc_maps_private
*priv
)
119 static void vma_stop(struct proc_maps_private
*priv
)
121 struct mm_struct
*mm
= priv
->mm
;
123 release_task_mempolicy(priv
);
124 up_read(&mm
->mmap_sem
);
128 static struct vm_area_struct
*
129 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
131 if (vma
== priv
->tail_vma
)
133 return vma
->vm_next
?: priv
->tail_vma
;
136 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
138 if (m
->count
< m
->size
) /* vma is copied successfully */
139 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_start
: -1UL;
142 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
144 struct proc_maps_private
*priv
= m
->private;
145 unsigned long last_addr
= m
->version
;
146 struct mm_struct
*mm
;
147 struct vm_area_struct
*vma
;
148 unsigned int pos
= *ppos
;
150 /* See m_cache_vma(). Zero at the start or after lseek. */
151 if (last_addr
== -1UL)
154 priv
->task
= get_proc_task(priv
->inode
);
156 return ERR_PTR(-ESRCH
);
159 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
162 down_read(&mm
->mmap_sem
);
163 hold_task_mempolicy(priv
);
164 priv
->tail_vma
= get_gate_vma(mm
);
167 vma
= find_vma(mm
, last_addr
);
168 if (vma
&& (vma
= m_next_vma(priv
, vma
)))
173 if (pos
< mm
->map_count
) {
174 for (vma
= mm
->mmap
; pos
; pos
--) {
175 m
->version
= vma
->vm_start
;
181 /* we do not bother to update m->version in this case */
182 if (pos
== mm
->map_count
&& priv
->tail_vma
)
183 return priv
->tail_vma
;
189 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
191 struct proc_maps_private
*priv
= m
->private;
192 struct vm_area_struct
*next
;
195 next
= m_next_vma(priv
, v
);
201 static void m_stop(struct seq_file
*m
, void *v
)
203 struct proc_maps_private
*priv
= m
->private;
205 if (!IS_ERR_OR_NULL(v
))
208 put_task_struct(priv
->task
);
213 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
214 const struct seq_operations
*ops
, int psize
)
216 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
222 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
223 if (IS_ERR(priv
->mm
)) {
224 int err
= PTR_ERR(priv
->mm
);
226 seq_release_private(inode
, file
);
233 static int proc_map_release(struct inode
*inode
, struct file
*file
)
235 struct seq_file
*seq
= file
->private_data
;
236 struct proc_maps_private
*priv
= seq
->private;
241 return seq_release_private(inode
, file
);
244 static int do_maps_open(struct inode
*inode
, struct file
*file
,
245 const struct seq_operations
*ops
)
247 return proc_maps_open(inode
, file
, ops
,
248 sizeof(struct proc_maps_private
));
252 * Indicate if the VMA is a stack for the given task; for
253 * /proc/PID/maps that is the stack of the main task.
255 static int is_stack(struct proc_maps_private
*priv
,
256 struct vm_area_struct
*vma
)
259 * We make no effort to guess what a given thread considers to be
260 * its "stack". It's not even well-defined for programs written
263 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
264 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
268 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
270 struct mm_struct
*mm
= vma
->vm_mm
;
271 struct file
*file
= vma
->vm_file
;
272 struct proc_maps_private
*priv
= m
->private;
273 vm_flags_t flags
= vma
->vm_flags
;
274 unsigned long ino
= 0;
275 unsigned long long pgoff
= 0;
276 unsigned long start
, end
;
278 const char *name
= NULL
;
281 struct inode
*inode
= file_inode(vma
->vm_file
);
282 dev
= inode
->i_sb
->s_dev
;
284 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
287 /* We don't show the stack guard page in /proc/maps */
288 start
= vma
->vm_start
;
291 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
292 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
295 flags
& VM_READ
? 'r' : '-',
296 flags
& VM_WRITE
? 'w' : '-',
297 flags
& VM_EXEC
? 'x' : '-',
298 flags
& VM_MAYSHARE
? 's' : 'p',
300 MAJOR(dev
), MINOR(dev
), ino
);
303 * Print the dentry name for named mappings, and a
304 * special [heap] marker for the heap:
308 seq_file_path(m
, file
, "\n");
312 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
313 name
= vma
->vm_ops
->name(vma
);
318 name
= arch_vma_name(vma
);
325 if (vma
->vm_start
<= mm
->brk
&&
326 vma
->vm_end
>= mm
->start_brk
) {
331 if (is_stack(priv
, vma
))
343 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
345 show_map_vma(m
, v
, is_pid
);
350 static int show_pid_map(struct seq_file
*m
, void *v
)
352 return show_map(m
, v
, 1);
355 static int show_tid_map(struct seq_file
*m
, void *v
)
357 return show_map(m
, v
, 0);
360 static const struct seq_operations proc_pid_maps_op
= {
367 static const struct seq_operations proc_tid_maps_op
= {
374 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
376 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
379 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
381 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
384 const struct file_operations proc_pid_maps_operations
= {
385 .open
= pid_maps_open
,
388 .release
= proc_map_release
,
391 const struct file_operations proc_tid_maps_operations
= {
392 .open
= tid_maps_open
,
395 .release
= proc_map_release
,
399 * Proportional Set Size(PSS): my share of RSS.
401 * PSS of a process is the count of pages it has in memory, where each
402 * page is divided by the number of processes sharing it. So if a
403 * process has 1000 pages all to itself, and 1000 shared with one other
404 * process, its PSS will be 1500.
406 * To keep (accumulated) division errors low, we adopt a 64bit
407 * fixed-point pss counter to minimize division errors. So (pss >>
408 * PSS_SHIFT) would be the real byte count.
410 * A shift of 12 before division means (assuming 4K page size):
411 * - 1M 3-user-pages add up to 8KB errors;
412 * - supports mapcount up to 2^24, or 16M;
413 * - supports PSS up to 2^52 bytes, or 4PB.
417 #ifdef CONFIG_PROC_PAGE_MONITOR
418 struct mem_size_stats
{
419 unsigned long resident
;
420 unsigned long shared_clean
;
421 unsigned long shared_dirty
;
422 unsigned long private_clean
;
423 unsigned long private_dirty
;
424 unsigned long referenced
;
425 unsigned long anonymous
;
426 unsigned long anonymous_thp
;
428 unsigned long shared_hugetlb
;
429 unsigned long private_hugetlb
;
434 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
435 unsigned long size
, bool young
, bool dirty
)
440 mss
->anonymous
+= size
;
442 mss
->resident
+= size
;
443 /* Accumulate the size in pages that have been accessed. */
444 if (young
|| page_is_young(page
) || PageReferenced(page
))
445 mss
->referenced
+= size
;
446 mapcount
= page_mapcount(page
);
450 if (dirty
|| PageDirty(page
))
451 mss
->shared_dirty
+= size
;
453 mss
->shared_clean
+= size
;
454 pss_delta
= (u64
)size
<< PSS_SHIFT
;
455 do_div(pss_delta
, mapcount
);
456 mss
->pss
+= pss_delta
;
458 if (dirty
|| PageDirty(page
))
459 mss
->private_dirty
+= size
;
461 mss
->private_clean
+= size
;
462 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
466 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
467 struct mm_walk
*walk
)
469 struct mem_size_stats
*mss
= walk
->private;
470 struct vm_area_struct
*vma
= walk
->vma
;
471 struct page
*page
= NULL
;
473 if (pte_present(*pte
)) {
474 page
= vm_normal_page(vma
, addr
, *pte
);
475 } else if (is_swap_pte(*pte
)) {
476 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
478 if (!non_swap_entry(swpent
)) {
481 mss
->swap
+= PAGE_SIZE
;
482 mapcount
= swp_swapcount(swpent
);
484 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
486 do_div(pss_delta
, mapcount
);
487 mss
->swap_pss
+= pss_delta
;
489 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
491 } else if (is_migration_entry(swpent
))
492 page
= migration_entry_to_page(swpent
);
497 smaps_account(mss
, page
, PAGE_SIZE
, pte_young(*pte
), pte_dirty(*pte
));
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
501 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
502 struct mm_walk
*walk
)
504 struct mem_size_stats
*mss
= walk
->private;
505 struct vm_area_struct
*vma
= walk
->vma
;
508 /* FOLL_DUMP will return -EFAULT on huge zero page */
509 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
510 if (IS_ERR_OR_NULL(page
))
512 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
513 smaps_account(mss
, page
, HPAGE_PMD_SIZE
,
514 pmd_young(*pmd
), pmd_dirty(*pmd
));
517 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
518 struct mm_walk
*walk
)
523 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
524 struct mm_walk
*walk
)
526 struct vm_area_struct
*vma
= walk
->vma
;
530 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
531 smaps_pmd_entry(pmd
, addr
, walk
);
536 if (pmd_trans_unstable(pmd
))
539 * The mmap_sem held all the way back in m_start() is what
540 * keeps khugepaged out of here and from collapsing things
543 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
544 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
545 smaps_pte_entry(pte
, addr
, walk
);
546 pte_unmap_unlock(pte
- 1, ptl
);
551 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
554 * Don't forget to update Documentation/ on changes.
556 static const char mnemonics
[BITS_PER_LONG
][2] = {
558 * In case if we meet a flag we don't know about.
560 [0 ... (BITS_PER_LONG
-1)] = "??",
562 [ilog2(VM_READ
)] = "rd",
563 [ilog2(VM_WRITE
)] = "wr",
564 [ilog2(VM_EXEC
)] = "ex",
565 [ilog2(VM_SHARED
)] = "sh",
566 [ilog2(VM_MAYREAD
)] = "mr",
567 [ilog2(VM_MAYWRITE
)] = "mw",
568 [ilog2(VM_MAYEXEC
)] = "me",
569 [ilog2(VM_MAYSHARE
)] = "ms",
570 [ilog2(VM_GROWSDOWN
)] = "gd",
571 [ilog2(VM_PFNMAP
)] = "pf",
572 [ilog2(VM_DENYWRITE
)] = "dw",
573 #ifdef CONFIG_X86_INTEL_MPX
574 [ilog2(VM_MPX
)] = "mp",
576 [ilog2(VM_LOCKED
)] = "lo",
577 [ilog2(VM_IO
)] = "io",
578 [ilog2(VM_SEQ_READ
)] = "sr",
579 [ilog2(VM_RAND_READ
)] = "rr",
580 [ilog2(VM_DONTCOPY
)] = "dc",
581 [ilog2(VM_DONTEXPAND
)] = "de",
582 [ilog2(VM_ACCOUNT
)] = "ac",
583 [ilog2(VM_NORESERVE
)] = "nr",
584 [ilog2(VM_HUGETLB
)] = "ht",
585 [ilog2(VM_ARCH_1
)] = "ar",
586 [ilog2(VM_DONTDUMP
)] = "dd",
587 #ifdef CONFIG_MEM_SOFT_DIRTY
588 [ilog2(VM_SOFTDIRTY
)] = "sd",
590 [ilog2(VM_MIXEDMAP
)] = "mm",
591 [ilog2(VM_HUGEPAGE
)] = "hg",
592 [ilog2(VM_NOHUGEPAGE
)] = "nh",
593 [ilog2(VM_MERGEABLE
)] = "mg",
594 [ilog2(VM_UFFD_MISSING
)]= "um",
595 [ilog2(VM_UFFD_WP
)] = "uw",
599 seq_puts(m
, "VmFlags: ");
600 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
601 if (vma
->vm_flags
& (1UL << i
)) {
602 seq_printf(m
, "%c%c ",
603 mnemonics
[i
][0], mnemonics
[i
][1]);
609 #ifdef CONFIG_HUGETLB_PAGE
610 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
611 unsigned long addr
, unsigned long end
,
612 struct mm_walk
*walk
)
614 struct mem_size_stats
*mss
= walk
->private;
615 struct vm_area_struct
*vma
= walk
->vma
;
616 struct page
*page
= NULL
;
618 if (pte_present(*pte
)) {
619 page
= vm_normal_page(vma
, addr
, *pte
);
620 } else if (is_swap_pte(*pte
)) {
621 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
623 if (is_migration_entry(swpent
))
624 page
= migration_entry_to_page(swpent
);
627 int mapcount
= page_mapcount(page
);
630 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
632 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
636 #endif /* HUGETLB_PAGE */
638 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
640 struct vm_area_struct
*vma
= v
;
641 struct mem_size_stats mss
;
642 struct mm_walk smaps_walk
= {
643 .pmd_entry
= smaps_pte_range
,
644 #ifdef CONFIG_HUGETLB_PAGE
645 .hugetlb_entry
= smaps_hugetlb_range
,
651 memset(&mss
, 0, sizeof mss
);
652 /* mmap_sem is held in m_start */
653 walk_page_vma(vma
, &smaps_walk
);
655 show_map_vma(m
, vma
, is_pid
);
661 "Shared_Clean: %8lu kB\n"
662 "Shared_Dirty: %8lu kB\n"
663 "Private_Clean: %8lu kB\n"
664 "Private_Dirty: %8lu kB\n"
665 "Referenced: %8lu kB\n"
666 "Anonymous: %8lu kB\n"
667 "AnonHugePages: %8lu kB\n"
668 "Shared_Hugetlb: %8lu kB\n"
669 "Private_Hugetlb: %7lu kB\n"
672 "KernelPageSize: %8lu kB\n"
673 "MMUPageSize: %8lu kB\n"
675 (vma
->vm_end
- vma
->vm_start
) >> 10,
677 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
678 mss
.shared_clean
>> 10,
679 mss
.shared_dirty
>> 10,
680 mss
.private_clean
>> 10,
681 mss
.private_dirty
>> 10,
682 mss
.referenced
>> 10,
684 mss
.anonymous_thp
>> 10,
685 mss
.shared_hugetlb
>> 10,
686 mss
.private_hugetlb
>> 10,
688 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
689 vma_kernel_pagesize(vma
) >> 10,
690 vma_mmu_pagesize(vma
) >> 10,
691 (vma
->vm_flags
& VM_LOCKED
) ?
692 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
694 show_smap_vma_flags(m
, vma
);
699 static int show_pid_smap(struct seq_file
*m
, void *v
)
701 return show_smap(m
, v
, 1);
704 static int show_tid_smap(struct seq_file
*m
, void *v
)
706 return show_smap(m
, v
, 0);
709 static const struct seq_operations proc_pid_smaps_op
= {
713 .show
= show_pid_smap
716 static const struct seq_operations proc_tid_smaps_op
= {
720 .show
= show_tid_smap
723 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
725 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
728 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
730 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
733 const struct file_operations proc_pid_smaps_operations
= {
734 .open
= pid_smaps_open
,
737 .release
= proc_map_release
,
740 const struct file_operations proc_tid_smaps_operations
= {
741 .open
= tid_smaps_open
,
744 .release
= proc_map_release
,
747 enum clear_refs_types
{
751 CLEAR_REFS_SOFT_DIRTY
,
752 CLEAR_REFS_MM_HIWATER_RSS
,
756 struct clear_refs_private
{
757 enum clear_refs_types type
;
760 #ifdef CONFIG_MEM_SOFT_DIRTY
761 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
762 unsigned long addr
, pte_t
*pte
)
765 * The soft-dirty tracker uses #PF-s to catch writes
766 * to pages, so write-protect the pte as well. See the
767 * Documentation/vm/soft-dirty.txt for full description
768 * of how soft-dirty works.
772 if (pte_present(ptent
)) {
773 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
774 ptent
= pte_wrprotect(ptent
);
775 ptent
= pte_clear_soft_dirty(ptent
);
776 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
777 } else if (is_swap_pte(ptent
)) {
778 ptent
= pte_swp_clear_soft_dirty(ptent
);
779 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
783 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
784 unsigned long addr
, pte_t
*pte
)
789 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
790 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
791 unsigned long addr
, pmd_t
*pmdp
)
795 /* See comment in change_huge_pmd() */
796 pmdp_invalidate(vma
, addr
, pmdp
);
797 if (pmd_dirty(*pmdp
))
798 pmd
= pmd_mkdirty(pmd
);
799 if (pmd_young(*pmdp
))
800 pmd
= pmd_mkyoung(pmd
);
802 pmd
= pmd_wrprotect(pmd
);
803 pmd
= pmd_clear_soft_dirty(pmd
);
805 if (vma
->vm_flags
& VM_SOFTDIRTY
)
806 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
808 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
811 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
812 unsigned long addr
, pmd_t
*pmdp
)
817 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
818 unsigned long end
, struct mm_walk
*walk
)
820 struct clear_refs_private
*cp
= walk
->private;
821 struct vm_area_struct
*vma
= walk
->vma
;
826 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
827 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
828 clear_soft_dirty_pmd(vma
, addr
, pmd
);
832 page
= pmd_page(*pmd
);
834 /* Clear accessed and referenced bits. */
835 pmdp_test_and_clear_young(vma
, addr
, pmd
);
836 test_and_clear_page_young(page
);
837 ClearPageReferenced(page
);
843 if (pmd_trans_unstable(pmd
))
846 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
847 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
850 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
851 clear_soft_dirty(vma
, addr
, pte
);
855 if (!pte_present(ptent
))
858 page
= vm_normal_page(vma
, addr
, ptent
);
862 /* Clear accessed and referenced bits. */
863 ptep_test_and_clear_young(vma
, addr
, pte
);
864 test_and_clear_page_young(page
);
865 ClearPageReferenced(page
);
867 pte_unmap_unlock(pte
- 1, ptl
);
872 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
873 struct mm_walk
*walk
)
875 struct clear_refs_private
*cp
= walk
->private;
876 struct vm_area_struct
*vma
= walk
->vma
;
878 if (vma
->vm_flags
& VM_PFNMAP
)
882 * Writing 1 to /proc/pid/clear_refs affects all pages.
883 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
884 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
885 * Writing 4 to /proc/pid/clear_refs affects all pages.
887 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
889 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
894 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
895 size_t count
, loff_t
*ppos
)
897 struct task_struct
*task
;
898 char buffer
[PROC_NUMBUF
];
899 struct mm_struct
*mm
;
900 struct vm_area_struct
*vma
;
901 enum clear_refs_types type
;
905 memset(buffer
, 0, sizeof(buffer
));
906 if (count
> sizeof(buffer
) - 1)
907 count
= sizeof(buffer
) - 1;
908 if (copy_from_user(buffer
, buf
, count
))
910 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
913 type
= (enum clear_refs_types
)itype
;
914 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
917 task
= get_proc_task(file_inode(file
));
920 mm
= get_task_mm(task
);
922 struct clear_refs_private cp
= {
925 struct mm_walk clear_refs_walk
= {
926 .pmd_entry
= clear_refs_pte_range
,
927 .test_walk
= clear_refs_test_walk
,
932 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
934 * Writing 5 to /proc/pid/clear_refs resets the peak
935 * resident set size to this mm's current rss value.
937 down_write(&mm
->mmap_sem
);
938 reset_mm_hiwater_rss(mm
);
939 up_write(&mm
->mmap_sem
);
943 down_read(&mm
->mmap_sem
);
944 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
945 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
946 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
948 up_read(&mm
->mmap_sem
);
949 down_write(&mm
->mmap_sem
);
950 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
951 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
952 vma_set_page_prot(vma
);
954 downgrade_write(&mm
->mmap_sem
);
957 mmu_notifier_invalidate_range_start(mm
, 0, -1);
959 walk_page_range(0, ~0UL, &clear_refs_walk
);
960 if (type
== CLEAR_REFS_SOFT_DIRTY
)
961 mmu_notifier_invalidate_range_end(mm
, 0, -1);
963 up_read(&mm
->mmap_sem
);
967 put_task_struct(task
);
972 const struct file_operations proc_clear_refs_operations
= {
973 .write
= clear_refs_write
,
974 .llseek
= noop_llseek
,
982 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
983 pagemap_entry_t
*buffer
;
987 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
988 #define PAGEMAP_WALK_MASK (PMD_MASK)
990 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
991 #define PM_PFRAME_BITS 55
992 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
993 #define PM_SOFT_DIRTY BIT_ULL(55)
994 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
995 #define PM_FILE BIT_ULL(61)
996 #define PM_SWAP BIT_ULL(62)
997 #define PM_PRESENT BIT_ULL(63)
999 #define PM_END_OF_BUFFER 1
1001 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1003 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1006 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1007 struct pagemapread
*pm
)
1009 pm
->buffer
[pm
->pos
++] = *pme
;
1010 if (pm
->pos
>= pm
->len
)
1011 return PM_END_OF_BUFFER
;
1015 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1016 struct mm_walk
*walk
)
1018 struct pagemapread
*pm
= walk
->private;
1019 unsigned long addr
= start
;
1022 while (addr
< end
) {
1023 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1024 pagemap_entry_t pme
= make_pme(0, 0);
1025 /* End of address space hole, which we mark as non-present. */
1026 unsigned long hole_end
;
1029 hole_end
= min(end
, vma
->vm_start
);
1033 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1034 err
= add_to_pagemap(addr
, &pme
, pm
);
1042 /* Addresses in the VMA. */
1043 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1044 pme
= make_pme(0, PM_SOFT_DIRTY
);
1045 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1046 err
= add_to_pagemap(addr
, &pme
, pm
);
1055 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1056 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1058 u64 frame
= 0, flags
= 0;
1059 struct page
*page
= NULL
;
1061 if (pte_present(pte
)) {
1063 frame
= pte_pfn(pte
);
1064 flags
|= PM_PRESENT
;
1065 page
= vm_normal_page(vma
, addr
, pte
);
1066 if (pte_soft_dirty(pte
))
1067 flags
|= PM_SOFT_DIRTY
;
1068 } else if (is_swap_pte(pte
)) {
1070 if (pte_swp_soft_dirty(pte
))
1071 flags
|= PM_SOFT_DIRTY
;
1072 entry
= pte_to_swp_entry(pte
);
1073 frame
= swp_type(entry
) |
1074 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1076 if (is_migration_entry(entry
))
1077 page
= migration_entry_to_page(entry
);
1080 if (page
&& !PageAnon(page
))
1082 if (page
&& page_mapcount(page
) == 1)
1083 flags
|= PM_MMAP_EXCLUSIVE
;
1084 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1085 flags
|= PM_SOFT_DIRTY
;
1087 return make_pme(frame
, flags
);
1090 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1091 struct mm_walk
*walk
)
1093 struct vm_area_struct
*vma
= walk
->vma
;
1094 struct pagemapread
*pm
= walk
->private;
1096 pte_t
*pte
, *orig_pte
;
1099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1100 if (pmd_trans_huge_lock(pmdp
, vma
, &ptl
) == 1) {
1101 u64 flags
= 0, frame
= 0;
1104 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1105 flags
|= PM_SOFT_DIRTY
;
1108 * Currently pmd for thp is always present because thp
1109 * can not be swapped-out, migrated, or HWPOISONed
1110 * (split in such cases instead.)
1111 * This if-check is just to prepare for future implementation.
1113 if (pmd_present(pmd
)) {
1114 struct page
*page
= pmd_page(pmd
);
1116 if (page_mapcount(page
) == 1)
1117 flags
|= PM_MMAP_EXCLUSIVE
;
1119 flags
|= PM_PRESENT
;
1121 frame
= pmd_pfn(pmd
) +
1122 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1125 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1126 pagemap_entry_t pme
= make_pme(frame
, flags
);
1128 err
= add_to_pagemap(addr
, &pme
, pm
);
1131 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1138 if (pmd_trans_unstable(pmdp
))
1140 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1143 * We can assume that @vma always points to a valid one and @end never
1144 * goes beyond vma->vm_end.
1146 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1147 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1148 pagemap_entry_t pme
;
1150 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1151 err
= add_to_pagemap(addr
, &pme
, pm
);
1155 pte_unmap_unlock(orig_pte
, ptl
);
1162 #ifdef CONFIG_HUGETLB_PAGE
1163 /* This function walks within one hugetlb entry in the single call */
1164 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1165 unsigned long addr
, unsigned long end
,
1166 struct mm_walk
*walk
)
1168 struct pagemapread
*pm
= walk
->private;
1169 struct vm_area_struct
*vma
= walk
->vma
;
1170 u64 flags
= 0, frame
= 0;
1174 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1175 flags
|= PM_SOFT_DIRTY
;
1177 pte
= huge_ptep_get(ptep
);
1178 if (pte_present(pte
)) {
1179 struct page
*page
= pte_page(pte
);
1181 if (!PageAnon(page
))
1184 if (page_mapcount(page
) == 1)
1185 flags
|= PM_MMAP_EXCLUSIVE
;
1187 flags
|= PM_PRESENT
;
1189 frame
= pte_pfn(pte
) +
1190 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1193 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1194 pagemap_entry_t pme
= make_pme(frame
, flags
);
1196 err
= add_to_pagemap(addr
, &pme
, pm
);
1199 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1207 #endif /* HUGETLB_PAGE */
1210 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1212 * For each page in the address space, this file contains one 64-bit entry
1213 * consisting of the following:
1215 * Bits 0-54 page frame number (PFN) if present
1216 * Bits 0-4 swap type if swapped
1217 * Bits 5-54 swap offset if swapped
1218 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1219 * Bit 56 page exclusively mapped
1221 * Bit 61 page is file-page or shared-anon
1222 * Bit 62 page swapped
1223 * Bit 63 page present
1225 * If the page is not present but in swap, then the PFN contains an
1226 * encoding of the swap file number and the page's offset into the
1227 * swap. Unmapped pages return a null PFN. This allows determining
1228 * precisely which pages are mapped (or in swap) and comparing mapped
1229 * pages between processes.
1231 * Efficient users of this interface will use /proc/pid/maps to
1232 * determine which areas of memory are actually mapped and llseek to
1233 * skip over unmapped regions.
1235 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1236 size_t count
, loff_t
*ppos
)
1238 struct mm_struct
*mm
= file
->private_data
;
1239 struct pagemapread pm
;
1240 struct mm_walk pagemap_walk
= {};
1242 unsigned long svpfn
;
1243 unsigned long start_vaddr
;
1244 unsigned long end_vaddr
;
1245 int ret
= 0, copied
= 0;
1247 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
1251 /* file position must be aligned */
1252 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1259 /* do not disclose physical addresses: attack vector */
1260 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1262 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1263 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1268 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1269 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1273 pagemap_walk
.mm
= mm
;
1274 pagemap_walk
.private = &pm
;
1277 svpfn
= src
/ PM_ENTRY_BYTES
;
1278 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1279 end_vaddr
= mm
->task_size
;
1281 /* watch out for wraparound */
1282 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1283 start_vaddr
= end_vaddr
;
1286 * The odds are that this will stop walking way
1287 * before end_vaddr, because the length of the
1288 * user buffer is tracked in "pm", and the walk
1289 * will stop when we hit the end of the buffer.
1292 while (count
&& (start_vaddr
< end_vaddr
)) {
1297 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1299 if (end
< start_vaddr
|| end
> end_vaddr
)
1301 down_read(&mm
->mmap_sem
);
1302 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1303 up_read(&mm
->mmap_sem
);
1306 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1307 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1316 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1327 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1329 struct mm_struct
*mm
;
1331 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1334 file
->private_data
= mm
;
1338 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1340 struct mm_struct
*mm
= file
->private_data
;
1347 const struct file_operations proc_pagemap_operations
= {
1348 .llseek
= mem_lseek
, /* borrow this */
1349 .read
= pagemap_read
,
1350 .open
= pagemap_open
,
1351 .release
= pagemap_release
,
1353 #endif /* CONFIG_PROC_PAGE_MONITOR */
1358 unsigned long pages
;
1360 unsigned long active
;
1361 unsigned long writeback
;
1362 unsigned long mapcount_max
;
1363 unsigned long dirty
;
1364 unsigned long swapcache
;
1365 unsigned long node
[MAX_NUMNODES
];
1368 struct numa_maps_private
{
1369 struct proc_maps_private proc_maps
;
1370 struct numa_maps md
;
1373 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1374 unsigned long nr_pages
)
1376 int count
= page_mapcount(page
);
1378 md
->pages
+= nr_pages
;
1379 if (pte_dirty
|| PageDirty(page
))
1380 md
->dirty
+= nr_pages
;
1382 if (PageSwapCache(page
))
1383 md
->swapcache
+= nr_pages
;
1385 if (PageActive(page
) || PageUnevictable(page
))
1386 md
->active
+= nr_pages
;
1388 if (PageWriteback(page
))
1389 md
->writeback
+= nr_pages
;
1392 md
->anon
+= nr_pages
;
1394 if (count
> md
->mapcount_max
)
1395 md
->mapcount_max
= count
;
1397 md
->node
[page_to_nid(page
)] += nr_pages
;
1400 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1406 if (!pte_present(pte
))
1409 page
= vm_normal_page(vma
, addr
, pte
);
1413 if (PageReserved(page
))
1416 nid
= page_to_nid(page
);
1417 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1424 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1425 struct vm_area_struct
*vma
,
1431 if (!pmd_present(pmd
))
1434 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1438 if (PageReserved(page
))
1441 nid
= page_to_nid(page
);
1442 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1449 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1450 unsigned long end
, struct mm_walk
*walk
)
1452 struct numa_maps
*md
= walk
->private;
1453 struct vm_area_struct
*vma
= walk
->vma
;
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1462 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1464 gather_stats(page
, md
, pmd_dirty(*pmd
),
1465 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1470 if (pmd_trans_unstable(pmd
))
1473 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1475 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1478 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1480 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1481 pte_unmap_unlock(orig_pte
, ptl
);
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1486 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1488 pte_t huge_pte
= huge_ptep_get(pte
);
1489 struct numa_maps
*md
;
1492 if (!pte_present(huge_pte
))
1495 page
= pte_page(huge_pte
);
1500 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1505 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1506 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1513 * Display pages allocated per node and memory policy via /proc.
1515 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1517 struct numa_maps_private
*numa_priv
= m
->private;
1518 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1519 struct vm_area_struct
*vma
= v
;
1520 struct numa_maps
*md
= &numa_priv
->md
;
1521 struct file
*file
= vma
->vm_file
;
1522 struct mm_struct
*mm
= vma
->vm_mm
;
1523 struct mm_walk walk
= {
1524 .hugetlb_entry
= gather_hugetlb_stats
,
1525 .pmd_entry
= gather_pte_stats
,
1529 struct mempolicy
*pol
;
1536 /* Ensure we start with an empty set of numa_maps statistics. */
1537 memset(md
, 0, sizeof(*md
));
1539 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1541 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1544 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1547 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1550 seq_puts(m
, " file=");
1551 seq_file_path(m
, file
, "\n\t= ");
1552 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1553 seq_puts(m
, " heap");
1554 } else if (is_stack(proc_priv
, vma
)) {
1555 seq_puts(m
, " stack");
1558 if (is_vm_hugetlb_page(vma
))
1559 seq_puts(m
, " huge");
1561 /* mmap_sem is held by m_start */
1562 walk_page_vma(vma
, &walk
);
1568 seq_printf(m
, " anon=%lu", md
->anon
);
1571 seq_printf(m
, " dirty=%lu", md
->dirty
);
1573 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1574 seq_printf(m
, " mapped=%lu", md
->pages
);
1576 if (md
->mapcount_max
> 1)
1577 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1580 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1582 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1583 seq_printf(m
, " active=%lu", md
->active
);
1586 seq_printf(m
, " writeback=%lu", md
->writeback
);
1588 for_each_node_state(nid
, N_MEMORY
)
1590 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1592 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1595 m_cache_vma(m
, vma
);
1599 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1601 return show_numa_map(m
, v
, 1);
1604 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1606 return show_numa_map(m
, v
, 0);
1609 static const struct seq_operations proc_pid_numa_maps_op
= {
1613 .show
= show_pid_numa_map
,
1616 static const struct seq_operations proc_tid_numa_maps_op
= {
1620 .show
= show_tid_numa_map
,
1623 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1624 const struct seq_operations
*ops
)
1626 return proc_maps_open(inode
, file
, ops
,
1627 sizeof(struct numa_maps_private
));
1630 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1632 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1635 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1637 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1640 const struct file_operations proc_pid_numa_maps_operations
= {
1641 .open
= pid_numa_maps_open
,
1643 .llseek
= seq_lseek
,
1644 .release
= proc_map_release
,
1647 const struct file_operations proc_tid_numa_maps_operations
= {
1648 .open
= tid_numa_maps_open
,
1650 .llseek
= seq_lseek
,
1651 .release
= proc_map_release
,
1653 #endif /* CONFIG_NUMA */