dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / fs / xfs / xfs_icache.c
blobadbc1f59969a5f8562d7204d0056002775eac79b
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 struct xfs_perag *pag, struct xfs_inode *ip);
44 * Allocate and initialise an xfs_inode.
46 struct xfs_inode *
47 xfs_inode_alloc(
48 struct xfs_mount *mp,
49 xfs_ino_t ino)
51 struct xfs_inode *ip;
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (!ip)
60 return NULL;
61 if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 kmem_zone_free(xfs_inode_zone, ip);
63 return NULL;
66 XFS_STATS_INC(mp, vn_active);
67 ASSERT(atomic_read(&ip->i_pincount) == 0);
68 ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
74 /* initialise the xfs inode */
75 ip->i_ino = ino;
76 ip->i_mount = mp;
77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 ip->i_afp = NULL;
79 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 ip->i_flags = 0;
81 ip->i_delayed_blks = 0;
82 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
84 return ip;
87 STATIC void
88 xfs_inode_free_callback(
89 struct rcu_head *head)
91 struct inode *inode = container_of(head, struct inode, i_rcu);
92 struct xfs_inode *ip = XFS_I(inode);
94 kmem_zone_free(xfs_inode_zone, ip);
97 void
98 xfs_inode_free(
99 struct xfs_inode *ip)
101 switch (ip->i_d.di_mode & S_IFMT) {
102 case S_IFREG:
103 case S_IFDIR:
104 case S_IFLNK:
105 xfs_idestroy_fork(ip, XFS_DATA_FORK);
106 break;
109 if (ip->i_afp)
110 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
112 if (ip->i_itemp) {
113 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
114 xfs_inode_item_destroy(ip);
115 ip->i_itemp = NULL;
119 * Because we use RCU freeing we need to ensure the inode always
120 * appears to be reclaimed with an invalid inode number when in the
121 * free state. The ip->i_flags_lock provides the barrier against lookup
122 * races.
124 spin_lock(&ip->i_flags_lock);
125 ip->i_flags = XFS_IRECLAIM;
126 ip->i_ino = 0;
127 spin_unlock(&ip->i_flags_lock);
129 /* asserts to verify all state is correct here */
130 ASSERT(atomic_read(&ip->i_pincount) == 0);
131 ASSERT(!xfs_isiflocked(ip));
132 XFS_STATS_DEC(ip->i_mount, vn_active);
134 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138 * Check the validity of the inode we just found it the cache
140 static int
141 xfs_iget_cache_hit(
142 struct xfs_perag *pag,
143 struct xfs_inode *ip,
144 xfs_ino_t ino,
145 int flags,
146 int lock_flags) __releases(RCU)
148 struct inode *inode = VFS_I(ip);
149 struct xfs_mount *mp = ip->i_mount;
150 int error;
153 * check for re-use of an inode within an RCU grace period due to the
154 * radix tree nodes not being updated yet. We monitor for this by
155 * setting the inode number to zero before freeing the inode structure.
156 * If the inode has been reallocated and set up, then the inode number
157 * will not match, so check for that, too.
159 spin_lock(&ip->i_flags_lock);
160 if (ip->i_ino != ino) {
161 trace_xfs_iget_skip(ip);
162 XFS_STATS_INC(mp, xs_ig_frecycle);
163 error = -EAGAIN;
164 goto out_error;
169 * If we are racing with another cache hit that is currently
170 * instantiating this inode or currently recycling it out of
171 * reclaimabe state, wait for the initialisation to complete
172 * before continuing.
174 * XXX(hch): eventually we should do something equivalent to
175 * wait_on_inode to wait for these flags to be cleared
176 * instead of polling for it.
178 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
179 trace_xfs_iget_skip(ip);
180 XFS_STATS_INC(mp, xs_ig_frecycle);
181 error = -EAGAIN;
182 goto out_error;
186 * If lookup is racing with unlink return an error immediately.
188 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
189 error = -ENOENT;
190 goto out_error;
194 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 * Need to carefully get it back into useable state.
197 if (ip->i_flags & XFS_IRECLAIMABLE) {
198 trace_xfs_iget_reclaim(ip);
201 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 * from stomping over us while we recycle the inode. We can't
203 * clear the radix tree reclaimable tag yet as it requires
204 * pag_ici_lock to be held exclusive.
206 ip->i_flags |= XFS_IRECLAIM;
208 spin_unlock(&ip->i_flags_lock);
209 rcu_read_unlock();
211 error = inode_init_always(mp->m_super, inode);
212 if (error) {
213 bool wake;
215 * Re-initializing the inode failed, and we are in deep
216 * trouble. Try to re-add it to the reclaim list.
218 rcu_read_lock();
219 spin_lock(&ip->i_flags_lock);
220 wake = !!__xfs_iflags_test(ip, XFS_INEW);
221 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
222 if (wake)
223 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = -EAGAIN;
252 goto out_error;
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(mp, xs_ig_found);
267 return 0;
269 out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
276 static int
277 xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return -ENOMEM;
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
299 trace_xfs_iget_miss(ip);
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = -ENOENT;
303 goto out_destroy;
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = -EAGAIN;
314 goto out_destroy;
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
338 ip->i_udquot = NULL;
339 ip->i_gdquot = NULL;
340 ip->i_pdquot = NULL;
341 xfs_iflags_set(ip, iflags);
343 /* insert the new inode */
344 spin_lock(&pag->pag_ici_lock);
345 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
346 if (unlikely(error)) {
347 WARN_ON(error != -EEXIST);
348 XFS_STATS_INC(mp, xs_ig_dup);
349 error = -EAGAIN;
350 goto out_preload_end;
352 spin_unlock(&pag->pag_ici_lock);
353 radix_tree_preload_end();
355 *ipp = ip;
356 return 0;
358 out_preload_end:
359 spin_unlock(&pag->pag_ici_lock);
360 radix_tree_preload_end();
361 if (lock_flags)
362 xfs_iunlock(ip, lock_flags);
363 out_destroy:
364 __destroy_inode(VFS_I(ip));
365 xfs_inode_free(ip);
366 return error;
369 static void
370 xfs_inew_wait(
371 struct xfs_inode *ip)
373 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
374 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
376 do {
377 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
378 if (!xfs_iflags_test(ip, XFS_INEW))
379 break;
380 schedule();
381 } while (true);
382 finish_wait(wq, &wait.wait);
386 * Look up an inode by number in the given file system.
387 * The inode is looked up in the cache held in each AG.
388 * If the inode is found in the cache, initialise the vfs inode
389 * if necessary.
391 * If it is not in core, read it in from the file system's device,
392 * add it to the cache and initialise the vfs inode.
394 * The inode is locked according to the value of the lock_flags parameter.
395 * This flag parameter indicates how and if the inode's IO lock and inode lock
396 * should be taken.
398 * mp -- the mount point structure for the current file system. It points
399 * to the inode hash table.
400 * tp -- a pointer to the current transaction if there is one. This is
401 * simply passed through to the xfs_iread() call.
402 * ino -- the number of the inode desired. This is the unique identifier
403 * within the file system for the inode being requested.
404 * lock_flags -- flags indicating how to lock the inode. See the comment
405 * for xfs_ilock() for a list of valid values.
408 xfs_iget(
409 xfs_mount_t *mp,
410 xfs_trans_t *tp,
411 xfs_ino_t ino,
412 uint flags,
413 uint lock_flags,
414 xfs_inode_t **ipp)
416 xfs_inode_t *ip;
417 int error;
418 xfs_perag_t *pag;
419 xfs_agino_t agino;
422 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
423 * doesn't get freed while it's being referenced during a
424 * radix tree traversal here. It assumes this function
425 * aqcuires only the ILOCK (and therefore it has no need to
426 * involve the IOLOCK in this synchronization).
428 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
430 /* reject inode numbers outside existing AGs */
431 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
432 return -EINVAL;
434 XFS_STATS_INC(mp, xs_ig_attempts);
436 /* get the perag structure and ensure that it's inode capable */
437 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
438 agino = XFS_INO_TO_AGINO(mp, ino);
440 again:
441 error = 0;
442 rcu_read_lock();
443 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
445 if (ip) {
446 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
447 if (error)
448 goto out_error_or_again;
449 } else {
450 rcu_read_unlock();
451 XFS_STATS_INC(mp, xs_ig_missed);
453 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
454 flags, lock_flags);
455 if (error)
456 goto out_error_or_again;
458 xfs_perag_put(pag);
460 *ipp = ip;
463 * If we have a real type for an on-disk inode, we can setup the inode
464 * now. If it's a new inode being created, xfs_ialloc will handle it.
466 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
467 xfs_setup_existing_inode(ip);
468 return 0;
470 out_error_or_again:
471 if (error == -EAGAIN) {
472 delay(1);
473 goto again;
475 xfs_perag_put(pag);
476 return error;
480 * The inode lookup is done in batches to keep the amount of lock traffic and
481 * radix tree lookups to a minimum. The batch size is a trade off between
482 * lookup reduction and stack usage. This is in the reclaim path, so we can't
483 * be too greedy.
485 #define XFS_LOOKUP_BATCH 32
487 STATIC int
488 xfs_inode_ag_walk_grab(
489 struct xfs_inode *ip,
490 int flags)
492 struct inode *inode = VFS_I(ip);
493 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
495 ASSERT(rcu_read_lock_held());
498 * check for stale RCU freed inode
500 * If the inode has been reallocated, it doesn't matter if it's not in
501 * the AG we are walking - we are walking for writeback, so if it
502 * passes all the "valid inode" checks and is dirty, then we'll write
503 * it back anyway. If it has been reallocated and still being
504 * initialised, the XFS_INEW check below will catch it.
506 spin_lock(&ip->i_flags_lock);
507 if (!ip->i_ino)
508 goto out_unlock_noent;
510 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
511 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
512 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
513 goto out_unlock_noent;
514 spin_unlock(&ip->i_flags_lock);
516 /* nothing to sync during shutdown */
517 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
518 return -EFSCORRUPTED;
520 /* If we can't grab the inode, it must on it's way to reclaim. */
521 if (!igrab(inode))
522 return -ENOENT;
524 /* inode is valid */
525 return 0;
527 out_unlock_noent:
528 spin_unlock(&ip->i_flags_lock);
529 return -ENOENT;
532 STATIC int
533 xfs_inode_ag_walk(
534 struct xfs_mount *mp,
535 struct xfs_perag *pag,
536 int (*execute)(struct xfs_inode *ip, int flags,
537 void *args),
538 int flags,
539 void *args,
540 int tag,
541 int iter_flags)
543 uint32_t first_index;
544 int last_error = 0;
545 int skipped;
546 int done;
547 int nr_found;
549 restart:
550 done = 0;
551 skipped = 0;
552 first_index = 0;
553 nr_found = 0;
554 do {
555 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
556 int error = 0;
557 int i;
559 rcu_read_lock();
561 if (tag == -1)
562 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
563 (void **)batch, first_index,
564 XFS_LOOKUP_BATCH);
565 else
566 nr_found = radix_tree_gang_lookup_tag(
567 &pag->pag_ici_root,
568 (void **) batch, first_index,
569 XFS_LOOKUP_BATCH, tag);
571 if (!nr_found) {
572 rcu_read_unlock();
573 break;
577 * Grab the inodes before we drop the lock. if we found
578 * nothing, nr == 0 and the loop will be skipped.
580 for (i = 0; i < nr_found; i++) {
581 struct xfs_inode *ip = batch[i];
583 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
584 batch[i] = NULL;
587 * Update the index for the next lookup. Catch
588 * overflows into the next AG range which can occur if
589 * we have inodes in the last block of the AG and we
590 * are currently pointing to the last inode.
592 * Because we may see inodes that are from the wrong AG
593 * due to RCU freeing and reallocation, only update the
594 * index if it lies in this AG. It was a race that lead
595 * us to see this inode, so another lookup from the
596 * same index will not find it again.
598 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
599 continue;
600 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
601 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
602 done = 1;
605 /* unlock now we've grabbed the inodes. */
606 rcu_read_unlock();
608 for (i = 0; i < nr_found; i++) {
609 if (!batch[i])
610 continue;
611 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
612 xfs_iflags_test(batch[i], XFS_INEW))
613 xfs_inew_wait(batch[i]);
614 error = execute(batch[i], flags, args);
615 IRELE(batch[i]);
616 if (error == -EAGAIN) {
617 skipped++;
618 continue;
620 if (error && last_error != -EFSCORRUPTED)
621 last_error = error;
624 /* bail out if the filesystem is corrupted. */
625 if (error == -EFSCORRUPTED)
626 break;
628 cond_resched();
630 } while (nr_found && !done);
632 if (skipped) {
633 delay(1);
634 goto restart;
636 return last_error;
640 * Background scanning to trim post-EOF preallocated space. This is queued
641 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
643 STATIC void
644 xfs_queue_eofblocks(
645 struct xfs_mount *mp)
647 rcu_read_lock();
648 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
649 queue_delayed_work(mp->m_eofblocks_workqueue,
650 &mp->m_eofblocks_work,
651 msecs_to_jiffies(xfs_eofb_secs * 1000));
652 rcu_read_unlock();
655 void
656 xfs_eofblocks_worker(
657 struct work_struct *work)
659 struct xfs_mount *mp = container_of(to_delayed_work(work),
660 struct xfs_mount, m_eofblocks_work);
661 xfs_icache_free_eofblocks(mp, NULL);
662 xfs_queue_eofblocks(mp);
666 xfs_inode_ag_iterator_flags(
667 struct xfs_mount *mp,
668 int (*execute)(struct xfs_inode *ip, int flags,
669 void *args),
670 int flags,
671 void *args,
672 int iter_flags)
674 struct xfs_perag *pag;
675 int error = 0;
676 int last_error = 0;
677 xfs_agnumber_t ag;
679 ag = 0;
680 while ((pag = xfs_perag_get(mp, ag))) {
681 ag = pag->pag_agno + 1;
682 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
683 iter_flags);
684 xfs_perag_put(pag);
685 if (error) {
686 last_error = error;
687 if (error == -EFSCORRUPTED)
688 break;
691 return last_error;
695 xfs_inode_ag_iterator(
696 struct xfs_mount *mp,
697 int (*execute)(struct xfs_inode *ip, int flags,
698 void *args),
699 int flags,
700 void *args)
702 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
706 xfs_inode_ag_iterator_tag(
707 struct xfs_mount *mp,
708 int (*execute)(struct xfs_inode *ip, int flags,
709 void *args),
710 int flags,
711 void *args,
712 int tag)
714 struct xfs_perag *pag;
715 int error = 0;
716 int last_error = 0;
717 xfs_agnumber_t ag;
719 ag = 0;
720 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
721 ag = pag->pag_agno + 1;
722 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
724 xfs_perag_put(pag);
725 if (error) {
726 last_error = error;
727 if (error == -EFSCORRUPTED)
728 break;
731 return last_error;
735 * Queue a new inode reclaim pass if there are reclaimable inodes and there
736 * isn't a reclaim pass already in progress. By default it runs every 5s based
737 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
738 * tunable, but that can be done if this method proves to be ineffective or too
739 * aggressive.
741 static void
742 xfs_reclaim_work_queue(
743 struct xfs_mount *mp)
746 rcu_read_lock();
747 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
748 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
749 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
751 rcu_read_unlock();
755 * This is a fast pass over the inode cache to try to get reclaim moving on as
756 * many inodes as possible in a short period of time. It kicks itself every few
757 * seconds, as well as being kicked by the inode cache shrinker when memory
758 * goes low. It scans as quickly as possible avoiding locked inodes or those
759 * already being flushed, and once done schedules a future pass.
761 void
762 xfs_reclaim_worker(
763 struct work_struct *work)
765 struct xfs_mount *mp = container_of(to_delayed_work(work),
766 struct xfs_mount, m_reclaim_work);
768 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
769 xfs_reclaim_work_queue(mp);
772 static void
773 __xfs_inode_set_reclaim_tag(
774 struct xfs_perag *pag,
775 struct xfs_inode *ip)
777 radix_tree_tag_set(&pag->pag_ici_root,
778 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
779 XFS_ICI_RECLAIM_TAG);
781 if (!pag->pag_ici_reclaimable) {
782 /* propagate the reclaim tag up into the perag radix tree */
783 spin_lock(&ip->i_mount->m_perag_lock);
784 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
785 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
786 XFS_ICI_RECLAIM_TAG);
787 spin_unlock(&ip->i_mount->m_perag_lock);
789 /* schedule periodic background inode reclaim */
790 xfs_reclaim_work_queue(ip->i_mount);
792 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
793 -1, _RET_IP_);
795 pag->pag_ici_reclaimable++;
799 * We set the inode flag atomically with the radix tree tag.
800 * Once we get tag lookups on the radix tree, this inode flag
801 * can go away.
803 void
804 xfs_inode_set_reclaim_tag(
805 xfs_inode_t *ip)
807 struct xfs_mount *mp = ip->i_mount;
808 struct xfs_perag *pag;
810 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
811 spin_lock(&pag->pag_ici_lock);
812 spin_lock(&ip->i_flags_lock);
813 __xfs_inode_set_reclaim_tag(pag, ip);
814 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
815 spin_unlock(&ip->i_flags_lock);
816 spin_unlock(&pag->pag_ici_lock);
817 xfs_perag_put(pag);
820 STATIC void
821 __xfs_inode_clear_reclaim(
822 xfs_perag_t *pag,
823 xfs_inode_t *ip)
825 pag->pag_ici_reclaimable--;
826 if (!pag->pag_ici_reclaimable) {
827 /* clear the reclaim tag from the perag radix tree */
828 spin_lock(&ip->i_mount->m_perag_lock);
829 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
830 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
831 XFS_ICI_RECLAIM_TAG);
832 spin_unlock(&ip->i_mount->m_perag_lock);
833 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
834 -1, _RET_IP_);
838 STATIC void
839 __xfs_inode_clear_reclaim_tag(
840 xfs_mount_t *mp,
841 xfs_perag_t *pag,
842 xfs_inode_t *ip)
844 radix_tree_tag_clear(&pag->pag_ici_root,
845 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
846 __xfs_inode_clear_reclaim(pag, ip);
850 * Grab the inode for reclaim exclusively.
851 * Return 0 if we grabbed it, non-zero otherwise.
853 STATIC int
854 xfs_reclaim_inode_grab(
855 struct xfs_inode *ip,
856 int flags)
858 ASSERT(rcu_read_lock_held());
860 /* quick check for stale RCU freed inode */
861 if (!ip->i_ino)
862 return 1;
865 * If we are asked for non-blocking operation, do unlocked checks to
866 * see if the inode already is being flushed or in reclaim to avoid
867 * lock traffic.
869 if ((flags & SYNC_TRYLOCK) &&
870 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
871 return 1;
874 * The radix tree lock here protects a thread in xfs_iget from racing
875 * with us starting reclaim on the inode. Once we have the
876 * XFS_IRECLAIM flag set it will not touch us.
878 * Due to RCU lookup, we may find inodes that have been freed and only
879 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
880 * aren't candidates for reclaim at all, so we must check the
881 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
883 spin_lock(&ip->i_flags_lock);
884 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
885 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
886 /* not a reclaim candidate. */
887 spin_unlock(&ip->i_flags_lock);
888 return 1;
890 __xfs_iflags_set(ip, XFS_IRECLAIM);
891 spin_unlock(&ip->i_flags_lock);
892 return 0;
896 * Inodes in different states need to be treated differently. The following
897 * table lists the inode states and the reclaim actions necessary:
899 * inode state iflush ret required action
900 * --------------- ---------- ---------------
901 * bad - reclaim
902 * shutdown EIO unpin and reclaim
903 * clean, unpinned 0 reclaim
904 * stale, unpinned 0 reclaim
905 * clean, pinned(*) 0 requeue
906 * stale, pinned EAGAIN requeue
907 * dirty, async - requeue
908 * dirty, sync 0 reclaim
910 * (*) dgc: I don't think the clean, pinned state is possible but it gets
911 * handled anyway given the order of checks implemented.
913 * Also, because we get the flush lock first, we know that any inode that has
914 * been flushed delwri has had the flush completed by the time we check that
915 * the inode is clean.
917 * Note that because the inode is flushed delayed write by AIL pushing, the
918 * flush lock may already be held here and waiting on it can result in very
919 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
920 * the caller should push the AIL first before trying to reclaim inodes to
921 * minimise the amount of time spent waiting. For background relaim, we only
922 * bother to reclaim clean inodes anyway.
924 * Hence the order of actions after gaining the locks should be:
925 * bad => reclaim
926 * shutdown => unpin and reclaim
927 * pinned, async => requeue
928 * pinned, sync => unpin
929 * stale => reclaim
930 * clean => reclaim
931 * dirty, async => requeue
932 * dirty, sync => flush, wait and reclaim
934 STATIC int
935 xfs_reclaim_inode(
936 struct xfs_inode *ip,
937 struct xfs_perag *pag,
938 int sync_mode)
940 struct xfs_buf *bp = NULL;
941 int error;
943 restart:
944 error = 0;
945 xfs_ilock(ip, XFS_ILOCK_EXCL);
946 if (!xfs_iflock_nowait(ip)) {
947 if (!(sync_mode & SYNC_WAIT))
948 goto out;
949 xfs_iflock(ip);
952 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
953 xfs_iunpin_wait(ip);
954 xfs_iflush_abort(ip, false);
955 goto reclaim;
957 if (xfs_ipincount(ip)) {
958 if (!(sync_mode & SYNC_WAIT))
959 goto out_ifunlock;
960 xfs_iunpin_wait(ip);
962 if (xfs_iflags_test(ip, XFS_ISTALE))
963 goto reclaim;
964 if (xfs_inode_clean(ip))
965 goto reclaim;
968 * Never flush out dirty data during non-blocking reclaim, as it would
969 * just contend with AIL pushing trying to do the same job.
971 if (!(sync_mode & SYNC_WAIT))
972 goto out_ifunlock;
975 * Now we have an inode that needs flushing.
977 * Note that xfs_iflush will never block on the inode buffer lock, as
978 * xfs_ifree_cluster() can lock the inode buffer before it locks the
979 * ip->i_lock, and we are doing the exact opposite here. As a result,
980 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
981 * result in an ABBA deadlock with xfs_ifree_cluster().
983 * As xfs_ifree_cluser() must gather all inodes that are active in the
984 * cache to mark them stale, if we hit this case we don't actually want
985 * to do IO here - we want the inode marked stale so we can simply
986 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
987 * inode, back off and try again. Hopefully the next pass through will
988 * see the stale flag set on the inode.
990 error = xfs_iflush(ip, &bp);
991 if (error == -EAGAIN) {
992 xfs_iunlock(ip, XFS_ILOCK_EXCL);
993 /* backoff longer than in xfs_ifree_cluster */
994 delay(2);
995 goto restart;
998 if (!error) {
999 error = xfs_bwrite(bp);
1000 xfs_buf_relse(bp);
1003 xfs_iflock(ip);
1004 reclaim:
1005 xfs_ifunlock(ip);
1006 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1008 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1010 * Remove the inode from the per-AG radix tree.
1012 * Because radix_tree_delete won't complain even if the item was never
1013 * added to the tree assert that it's been there before to catch
1014 * problems with the inode life time early on.
1016 spin_lock(&pag->pag_ici_lock);
1017 if (!radix_tree_delete(&pag->pag_ici_root,
1018 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1019 ASSERT(0);
1020 __xfs_inode_clear_reclaim(pag, ip);
1021 spin_unlock(&pag->pag_ici_lock);
1024 * Here we do an (almost) spurious inode lock in order to coordinate
1025 * with inode cache radix tree lookups. This is because the lookup
1026 * can reference the inodes in the cache without taking references.
1028 * We make that OK here by ensuring that we wait until the inode is
1029 * unlocked after the lookup before we go ahead and free it.
1031 xfs_ilock(ip, XFS_ILOCK_EXCL);
1032 xfs_qm_dqdetach(ip);
1033 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1035 xfs_inode_free(ip);
1036 return error;
1038 out_ifunlock:
1039 xfs_ifunlock(ip);
1040 out:
1041 xfs_iflags_clear(ip, XFS_IRECLAIM);
1042 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1044 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1045 * a short while. However, this just burns CPU time scanning the tree
1046 * waiting for IO to complete and the reclaim work never goes back to
1047 * the idle state. Instead, return 0 to let the next scheduled
1048 * background reclaim attempt to reclaim the inode again.
1050 return 0;
1054 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1055 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1056 * then a shut down during filesystem unmount reclaim walk leak all the
1057 * unreclaimed inodes.
1059 STATIC int
1060 xfs_reclaim_inodes_ag(
1061 struct xfs_mount *mp,
1062 int flags,
1063 int *nr_to_scan)
1065 struct xfs_perag *pag;
1066 int error = 0;
1067 int last_error = 0;
1068 xfs_agnumber_t ag;
1069 int trylock = flags & SYNC_TRYLOCK;
1070 int skipped;
1072 restart:
1073 ag = 0;
1074 skipped = 0;
1075 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1076 unsigned long first_index = 0;
1077 int done = 0;
1078 int nr_found = 0;
1080 ag = pag->pag_agno + 1;
1082 if (trylock) {
1083 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1084 skipped++;
1085 xfs_perag_put(pag);
1086 continue;
1088 first_index = pag->pag_ici_reclaim_cursor;
1089 } else
1090 mutex_lock(&pag->pag_ici_reclaim_lock);
1092 do {
1093 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1094 int i;
1096 rcu_read_lock();
1097 nr_found = radix_tree_gang_lookup_tag(
1098 &pag->pag_ici_root,
1099 (void **)batch, first_index,
1100 XFS_LOOKUP_BATCH,
1101 XFS_ICI_RECLAIM_TAG);
1102 if (!nr_found) {
1103 done = 1;
1104 rcu_read_unlock();
1105 break;
1109 * Grab the inodes before we drop the lock. if we found
1110 * nothing, nr == 0 and the loop will be skipped.
1112 for (i = 0; i < nr_found; i++) {
1113 struct xfs_inode *ip = batch[i];
1115 if (done || xfs_reclaim_inode_grab(ip, flags))
1116 batch[i] = NULL;
1119 * Update the index for the next lookup. Catch
1120 * overflows into the next AG range which can
1121 * occur if we have inodes in the last block of
1122 * the AG and we are currently pointing to the
1123 * last inode.
1125 * Because we may see inodes that are from the
1126 * wrong AG due to RCU freeing and
1127 * reallocation, only update the index if it
1128 * lies in this AG. It was a race that lead us
1129 * to see this inode, so another lookup from
1130 * the same index will not find it again.
1132 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1133 pag->pag_agno)
1134 continue;
1135 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1136 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1137 done = 1;
1140 /* unlock now we've grabbed the inodes. */
1141 rcu_read_unlock();
1143 for (i = 0; i < nr_found; i++) {
1144 if (!batch[i])
1145 continue;
1146 error = xfs_reclaim_inode(batch[i], pag, flags);
1147 if (error && last_error != -EFSCORRUPTED)
1148 last_error = error;
1151 *nr_to_scan -= XFS_LOOKUP_BATCH;
1153 cond_resched();
1155 } while (nr_found && !done && *nr_to_scan > 0);
1157 if (trylock && !done)
1158 pag->pag_ici_reclaim_cursor = first_index;
1159 else
1160 pag->pag_ici_reclaim_cursor = 0;
1161 mutex_unlock(&pag->pag_ici_reclaim_lock);
1162 xfs_perag_put(pag);
1166 * if we skipped any AG, and we still have scan count remaining, do
1167 * another pass this time using blocking reclaim semantics (i.e
1168 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1169 * ensure that when we get more reclaimers than AGs we block rather
1170 * than spin trying to execute reclaim.
1172 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1173 trylock = 0;
1174 goto restart;
1176 return last_error;
1180 xfs_reclaim_inodes(
1181 xfs_mount_t *mp,
1182 int mode)
1184 int nr_to_scan = INT_MAX;
1186 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1190 * Scan a certain number of inodes for reclaim.
1192 * When called we make sure that there is a background (fast) inode reclaim in
1193 * progress, while we will throttle the speed of reclaim via doing synchronous
1194 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1195 * them to be cleaned, which we hope will not be very long due to the
1196 * background walker having already kicked the IO off on those dirty inodes.
1198 long
1199 xfs_reclaim_inodes_nr(
1200 struct xfs_mount *mp,
1201 int nr_to_scan)
1203 /* kick background reclaimer and push the AIL */
1204 xfs_reclaim_work_queue(mp);
1205 xfs_ail_push_all(mp->m_ail);
1207 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1211 * Return the number of reclaimable inodes in the filesystem for
1212 * the shrinker to determine how much to reclaim.
1215 xfs_reclaim_inodes_count(
1216 struct xfs_mount *mp)
1218 struct xfs_perag *pag;
1219 xfs_agnumber_t ag = 0;
1220 int reclaimable = 0;
1222 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1223 ag = pag->pag_agno + 1;
1224 reclaimable += pag->pag_ici_reclaimable;
1225 xfs_perag_put(pag);
1227 return reclaimable;
1230 STATIC int
1231 xfs_inode_match_id(
1232 struct xfs_inode *ip,
1233 struct xfs_eofblocks *eofb)
1235 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1236 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1237 return 0;
1239 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1240 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1241 return 0;
1243 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1244 xfs_get_projid(ip) != eofb->eof_prid)
1245 return 0;
1247 return 1;
1251 * A union-based inode filtering algorithm. Process the inode if any of the
1252 * criteria match. This is for global/internal scans only.
1254 STATIC int
1255 xfs_inode_match_id_union(
1256 struct xfs_inode *ip,
1257 struct xfs_eofblocks *eofb)
1259 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1260 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1261 return 1;
1263 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1264 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1265 return 1;
1267 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1268 xfs_get_projid(ip) == eofb->eof_prid)
1269 return 1;
1271 return 0;
1274 STATIC int
1275 xfs_inode_free_eofblocks(
1276 struct xfs_inode *ip,
1277 int flags,
1278 void *args)
1280 int ret;
1281 struct xfs_eofblocks *eofb = args;
1282 bool need_iolock = true;
1283 int match;
1285 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1287 if (!xfs_can_free_eofblocks(ip, false)) {
1288 /* inode could be preallocated or append-only */
1289 trace_xfs_inode_free_eofblocks_invalid(ip);
1290 xfs_inode_clear_eofblocks_tag(ip);
1291 return 0;
1295 * If the mapping is dirty the operation can block and wait for some
1296 * time. Unless we are waiting, skip it.
1298 if (!(flags & SYNC_WAIT) &&
1299 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1300 return 0;
1302 if (eofb) {
1303 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1304 match = xfs_inode_match_id_union(ip, eofb);
1305 else
1306 match = xfs_inode_match_id(ip, eofb);
1307 if (!match)
1308 return 0;
1310 /* skip the inode if the file size is too small */
1311 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1312 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1313 return 0;
1316 * A scan owner implies we already hold the iolock. Skip it in
1317 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1318 * the possibility of EAGAIN being returned.
1320 if (eofb->eof_scan_owner == ip->i_ino)
1321 need_iolock = false;
1324 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1326 /* don't revisit the inode if we're not waiting */
1327 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1328 ret = 0;
1330 return ret;
1334 xfs_icache_free_eofblocks(
1335 struct xfs_mount *mp,
1336 struct xfs_eofblocks *eofb)
1338 int flags = SYNC_TRYLOCK;
1340 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1341 flags = SYNC_WAIT;
1343 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1344 eofb, XFS_ICI_EOFBLOCKS_TAG);
1348 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1349 * multiple quotas, we don't know exactly which quota caused an allocation
1350 * failure. We make a best effort by including each quota under low free space
1351 * conditions (less than 1% free space) in the scan.
1354 xfs_inode_free_quota_eofblocks(
1355 struct xfs_inode *ip)
1357 int scan = 0;
1358 struct xfs_eofblocks eofb = {0};
1359 struct xfs_dquot *dq;
1361 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1365 * can repeatedly trylock on the inode we're currently processing. We
1366 * run a sync scan to increase effectiveness and use the union filter to
1367 * cover all applicable quotas in a single scan.
1369 eofb.eof_scan_owner = ip->i_ino;
1370 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1372 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1373 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1374 if (dq && xfs_dquot_lowsp(dq)) {
1375 eofb.eof_uid = VFS_I(ip)->i_uid;
1376 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1377 scan = 1;
1381 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1382 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1383 if (dq && xfs_dquot_lowsp(dq)) {
1384 eofb.eof_gid = VFS_I(ip)->i_gid;
1385 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1386 scan = 1;
1390 if (scan)
1391 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1393 return scan;
1396 void
1397 xfs_inode_set_eofblocks_tag(
1398 xfs_inode_t *ip)
1400 struct xfs_mount *mp = ip->i_mount;
1401 struct xfs_perag *pag;
1402 int tagged;
1404 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1405 spin_lock(&pag->pag_ici_lock);
1406 trace_xfs_inode_set_eofblocks_tag(ip);
1408 tagged = radix_tree_tagged(&pag->pag_ici_root,
1409 XFS_ICI_EOFBLOCKS_TAG);
1410 radix_tree_tag_set(&pag->pag_ici_root,
1411 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1412 XFS_ICI_EOFBLOCKS_TAG);
1413 if (!tagged) {
1414 /* propagate the eofblocks tag up into the perag radix tree */
1415 spin_lock(&ip->i_mount->m_perag_lock);
1416 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1417 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1418 XFS_ICI_EOFBLOCKS_TAG);
1419 spin_unlock(&ip->i_mount->m_perag_lock);
1421 /* kick off background trimming */
1422 xfs_queue_eofblocks(ip->i_mount);
1424 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1425 -1, _RET_IP_);
1428 spin_unlock(&pag->pag_ici_lock);
1429 xfs_perag_put(pag);
1432 void
1433 xfs_inode_clear_eofblocks_tag(
1434 xfs_inode_t *ip)
1436 struct xfs_mount *mp = ip->i_mount;
1437 struct xfs_perag *pag;
1439 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1440 spin_lock(&pag->pag_ici_lock);
1441 trace_xfs_inode_clear_eofblocks_tag(ip);
1443 radix_tree_tag_clear(&pag->pag_ici_root,
1444 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1445 XFS_ICI_EOFBLOCKS_TAG);
1446 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1447 /* clear the eofblocks tag from the perag radix tree */
1448 spin_lock(&ip->i_mount->m_perag_lock);
1449 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1450 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1451 XFS_ICI_EOFBLOCKS_TAG);
1452 spin_unlock(&ip->i_mount->m_perag_lock);
1453 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1454 -1, _RET_IP_);
1457 spin_unlock(&pag->pag_ici_lock);
1458 xfs_perag_put(pag);