2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
41 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
44 * Allocate and initialise an xfs_inode.
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
61 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
62 kmem_zone_free(xfs_inode_zone
, ip
);
66 XFS_STATS_INC(mp
, vn_active
);
67 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
68 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
69 ASSERT(!xfs_isiflocked(ip
));
70 ASSERT(ip
->i_ino
== 0);
72 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
74 /* initialise the xfs inode */
77 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
79 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
81 ip
->i_delayed_blks
= 0;
82 memset(&ip
->i_d
, 0, sizeof(xfs_icdinode_t
));
88 xfs_inode_free_callback(
89 struct rcu_head
*head
)
91 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
92 struct xfs_inode
*ip
= XFS_I(inode
);
94 kmem_zone_free(xfs_inode_zone
, ip
);
101 switch (ip
->i_d
.di_mode
& S_IFMT
) {
105 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
110 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
113 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
114 xfs_inode_item_destroy(ip
);
119 * Because we use RCU freeing we need to ensure the inode always
120 * appears to be reclaimed with an invalid inode number when in the
121 * free state. The ip->i_flags_lock provides the barrier against lookup
124 spin_lock(&ip
->i_flags_lock
);
125 ip
->i_flags
= XFS_IRECLAIM
;
127 spin_unlock(&ip
->i_flags_lock
);
129 /* asserts to verify all state is correct here */
130 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
131 ASSERT(!xfs_isiflocked(ip
));
132 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
134 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
138 * Check the validity of the inode we just found it the cache
142 struct xfs_perag
*pag
,
143 struct xfs_inode
*ip
,
146 int lock_flags
) __releases(RCU
)
148 struct inode
*inode
= VFS_I(ip
);
149 struct xfs_mount
*mp
= ip
->i_mount
;
153 * check for re-use of an inode within an RCU grace period due to the
154 * radix tree nodes not being updated yet. We monitor for this by
155 * setting the inode number to zero before freeing the inode structure.
156 * If the inode has been reallocated and set up, then the inode number
157 * will not match, so check for that, too.
159 spin_lock(&ip
->i_flags_lock
);
160 if (ip
->i_ino
!= ino
) {
161 trace_xfs_iget_skip(ip
);
162 XFS_STATS_INC(mp
, xs_ig_frecycle
);
169 * If we are racing with another cache hit that is currently
170 * instantiating this inode or currently recycling it out of
171 * reclaimabe state, wait for the initialisation to complete
174 * XXX(hch): eventually we should do something equivalent to
175 * wait_on_inode to wait for these flags to be cleared
176 * instead of polling for it.
178 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
179 trace_xfs_iget_skip(ip
);
180 XFS_STATS_INC(mp
, xs_ig_frecycle
);
186 * If lookup is racing with unlink return an error immediately.
188 if (ip
->i_d
.di_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
194 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 * Need to carefully get it back into useable state.
197 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
198 trace_xfs_iget_reclaim(ip
);
201 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 * from stomping over us while we recycle the inode. We can't
203 * clear the radix tree reclaimable tag yet as it requires
204 * pag_ici_lock to be held exclusive.
206 ip
->i_flags
|= XFS_IRECLAIM
;
208 spin_unlock(&ip
->i_flags_lock
);
211 error
= inode_init_always(mp
->m_super
, inode
);
215 * Re-initializing the inode failed, and we are in deep
216 * trouble. Try to re-add it to the reclaim list.
219 spin_lock(&ip
->i_flags_lock
);
220 wake
= !!__xfs_iflags_test(ip
, XFS_INEW
);
221 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
223 wake_up_bit(&ip
->i_flags
, __XFS_INEW_BIT
);
224 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
225 trace_xfs_iget_reclaim_fail(ip
);
229 spin_lock(&pag
->pag_ici_lock
);
230 spin_lock(&ip
->i_flags_lock
);
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
237 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
238 ip
->i_flags
|= XFS_INEW
;
239 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
240 inode
->i_state
= I_NEW
;
242 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
243 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
245 spin_unlock(&ip
->i_flags_lock
);
246 spin_unlock(&pag
->pag_ici_lock
);
248 /* If the VFS inode is being torn down, pause and try again. */
250 trace_xfs_iget_skip(ip
);
255 /* We've got a live one. */
256 spin_unlock(&ip
->i_flags_lock
);
258 trace_xfs_iget_hit(ip
);
262 xfs_ilock(ip
, lock_flags
);
264 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
265 XFS_STATS_INC(mp
, xs_ig_found
);
270 spin_unlock(&ip
->i_flags_lock
);
278 struct xfs_mount
*mp
,
279 struct xfs_perag
*pag
,
282 struct xfs_inode
**ipp
,
286 struct xfs_inode
*ip
;
288 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
291 ip
= xfs_inode_alloc(mp
, ino
);
295 error
= xfs_iread(mp
, tp
, ip
, flags
);
299 trace_xfs_iget_miss(ip
);
301 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
312 if (radix_tree_preload(GFP_NOFS
)) {
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
322 if (!xfs_ilock_nowait(ip
, lock_flags
))
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
336 if (flags
& XFS_IGET_DONTCACHE
)
337 iflags
|= XFS_IDONTCACHE
;
341 xfs_iflags_set(ip
, iflags
);
343 /* insert the new inode */
344 spin_lock(&pag
->pag_ici_lock
);
345 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
346 if (unlikely(error
)) {
347 WARN_ON(error
!= -EEXIST
);
348 XFS_STATS_INC(mp
, xs_ig_dup
);
350 goto out_preload_end
;
352 spin_unlock(&pag
->pag_ici_lock
);
353 radix_tree_preload_end();
359 spin_unlock(&pag
->pag_ici_lock
);
360 radix_tree_preload_end();
362 xfs_iunlock(ip
, lock_flags
);
364 __destroy_inode(VFS_I(ip
));
371 struct xfs_inode
*ip
)
373 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_INEW_BIT
);
374 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_INEW_BIT
);
377 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
378 if (!xfs_iflags_test(ip
, XFS_INEW
))
382 finish_wait(wq
, &wait
.wait
);
386 * Look up an inode by number in the given file system.
387 * The inode is looked up in the cache held in each AG.
388 * If the inode is found in the cache, initialise the vfs inode
391 * If it is not in core, read it in from the file system's device,
392 * add it to the cache and initialise the vfs inode.
394 * The inode is locked according to the value of the lock_flags parameter.
395 * This flag parameter indicates how and if the inode's IO lock and inode lock
398 * mp -- the mount point structure for the current file system. It points
399 * to the inode hash table.
400 * tp -- a pointer to the current transaction if there is one. This is
401 * simply passed through to the xfs_iread() call.
402 * ino -- the number of the inode desired. This is the unique identifier
403 * within the file system for the inode being requested.
404 * lock_flags -- flags indicating how to lock the inode. See the comment
405 * for xfs_ilock() for a list of valid values.
422 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
423 * doesn't get freed while it's being referenced during a
424 * radix tree traversal here. It assumes this function
425 * aqcuires only the ILOCK (and therefore it has no need to
426 * involve the IOLOCK in this synchronization).
428 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
430 /* reject inode numbers outside existing AGs */
431 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
434 XFS_STATS_INC(mp
, xs_ig_attempts
);
436 /* get the perag structure and ensure that it's inode capable */
437 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
438 agino
= XFS_INO_TO_AGINO(mp
, ino
);
443 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
446 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
448 goto out_error_or_again
;
451 XFS_STATS_INC(mp
, xs_ig_missed
);
453 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
456 goto out_error_or_again
;
463 * If we have a real type for an on-disk inode, we can setup the inode
464 * now. If it's a new inode being created, xfs_ialloc will handle it.
466 if (xfs_iflags_test(ip
, XFS_INEW
) && ip
->i_d
.di_mode
!= 0)
467 xfs_setup_existing_inode(ip
);
471 if (error
== -EAGAIN
) {
480 * The inode lookup is done in batches to keep the amount of lock traffic and
481 * radix tree lookups to a minimum. The batch size is a trade off between
482 * lookup reduction and stack usage. This is in the reclaim path, so we can't
485 #define XFS_LOOKUP_BATCH 32
488 xfs_inode_ag_walk_grab(
489 struct xfs_inode
*ip
,
492 struct inode
*inode
= VFS_I(ip
);
493 bool newinos
= !!(flags
& XFS_AGITER_INEW_WAIT
);
495 ASSERT(rcu_read_lock_held());
498 * check for stale RCU freed inode
500 * If the inode has been reallocated, it doesn't matter if it's not in
501 * the AG we are walking - we are walking for writeback, so if it
502 * passes all the "valid inode" checks and is dirty, then we'll write
503 * it back anyway. If it has been reallocated and still being
504 * initialised, the XFS_INEW check below will catch it.
506 spin_lock(&ip
->i_flags_lock
);
508 goto out_unlock_noent
;
510 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
511 if ((!newinos
&& __xfs_iflags_test(ip
, XFS_INEW
)) ||
512 __xfs_iflags_test(ip
, XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
513 goto out_unlock_noent
;
514 spin_unlock(&ip
->i_flags_lock
);
516 /* nothing to sync during shutdown */
517 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
518 return -EFSCORRUPTED
;
520 /* If we can't grab the inode, it must on it's way to reclaim. */
528 spin_unlock(&ip
->i_flags_lock
);
534 struct xfs_mount
*mp
,
535 struct xfs_perag
*pag
,
536 int (*execute
)(struct xfs_inode
*ip
, int flags
,
543 uint32_t first_index
;
555 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
562 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
563 (void **)batch
, first_index
,
566 nr_found
= radix_tree_gang_lookup_tag(
568 (void **) batch
, first_index
,
569 XFS_LOOKUP_BATCH
, tag
);
577 * Grab the inodes before we drop the lock. if we found
578 * nothing, nr == 0 and the loop will be skipped.
580 for (i
= 0; i
< nr_found
; i
++) {
581 struct xfs_inode
*ip
= batch
[i
];
583 if (done
|| xfs_inode_ag_walk_grab(ip
, iter_flags
))
587 * Update the index for the next lookup. Catch
588 * overflows into the next AG range which can occur if
589 * we have inodes in the last block of the AG and we
590 * are currently pointing to the last inode.
592 * Because we may see inodes that are from the wrong AG
593 * due to RCU freeing and reallocation, only update the
594 * index if it lies in this AG. It was a race that lead
595 * us to see this inode, so another lookup from the
596 * same index will not find it again.
598 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
600 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
601 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
605 /* unlock now we've grabbed the inodes. */
608 for (i
= 0; i
< nr_found
; i
++) {
611 if ((iter_flags
& XFS_AGITER_INEW_WAIT
) &&
612 xfs_iflags_test(batch
[i
], XFS_INEW
))
613 xfs_inew_wait(batch
[i
]);
614 error
= execute(batch
[i
], flags
, args
);
616 if (error
== -EAGAIN
) {
620 if (error
&& last_error
!= -EFSCORRUPTED
)
624 /* bail out if the filesystem is corrupted. */
625 if (error
== -EFSCORRUPTED
)
630 } while (nr_found
&& !done
);
640 * Background scanning to trim post-EOF preallocated space. This is queued
641 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
645 struct xfs_mount
*mp
)
648 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
649 queue_delayed_work(mp
->m_eofblocks_workqueue
,
650 &mp
->m_eofblocks_work
,
651 msecs_to_jiffies(xfs_eofb_secs
* 1000));
656 xfs_eofblocks_worker(
657 struct work_struct
*work
)
659 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
660 struct xfs_mount
, m_eofblocks_work
);
661 xfs_icache_free_eofblocks(mp
, NULL
);
662 xfs_queue_eofblocks(mp
);
666 xfs_inode_ag_iterator_flags(
667 struct xfs_mount
*mp
,
668 int (*execute
)(struct xfs_inode
*ip
, int flags
,
674 struct xfs_perag
*pag
;
680 while ((pag
= xfs_perag_get(mp
, ag
))) {
681 ag
= pag
->pag_agno
+ 1;
682 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1,
687 if (error
== -EFSCORRUPTED
)
695 xfs_inode_ag_iterator(
696 struct xfs_mount
*mp
,
697 int (*execute
)(struct xfs_inode
*ip
, int flags
,
702 return xfs_inode_ag_iterator_flags(mp
, execute
, flags
, args
, 0);
706 xfs_inode_ag_iterator_tag(
707 struct xfs_mount
*mp
,
708 int (*execute
)(struct xfs_inode
*ip
, int flags
,
714 struct xfs_perag
*pag
;
720 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
721 ag
= pag
->pag_agno
+ 1;
722 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
,
727 if (error
== -EFSCORRUPTED
)
735 * Queue a new inode reclaim pass if there are reclaimable inodes and there
736 * isn't a reclaim pass already in progress. By default it runs every 5s based
737 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
738 * tunable, but that can be done if this method proves to be ineffective or too
742 xfs_reclaim_work_queue(
743 struct xfs_mount
*mp
)
747 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
748 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
749 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
755 * This is a fast pass over the inode cache to try to get reclaim moving on as
756 * many inodes as possible in a short period of time. It kicks itself every few
757 * seconds, as well as being kicked by the inode cache shrinker when memory
758 * goes low. It scans as quickly as possible avoiding locked inodes or those
759 * already being flushed, and once done schedules a future pass.
763 struct work_struct
*work
)
765 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
766 struct xfs_mount
, m_reclaim_work
);
768 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
769 xfs_reclaim_work_queue(mp
);
773 __xfs_inode_set_reclaim_tag(
774 struct xfs_perag
*pag
,
775 struct xfs_inode
*ip
)
777 radix_tree_tag_set(&pag
->pag_ici_root
,
778 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
779 XFS_ICI_RECLAIM_TAG
);
781 if (!pag
->pag_ici_reclaimable
) {
782 /* propagate the reclaim tag up into the perag radix tree */
783 spin_lock(&ip
->i_mount
->m_perag_lock
);
784 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
785 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
786 XFS_ICI_RECLAIM_TAG
);
787 spin_unlock(&ip
->i_mount
->m_perag_lock
);
789 /* schedule periodic background inode reclaim */
790 xfs_reclaim_work_queue(ip
->i_mount
);
792 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
795 pag
->pag_ici_reclaimable
++;
799 * We set the inode flag atomically with the radix tree tag.
800 * Once we get tag lookups on the radix tree, this inode flag
804 xfs_inode_set_reclaim_tag(
807 struct xfs_mount
*mp
= ip
->i_mount
;
808 struct xfs_perag
*pag
;
810 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
811 spin_lock(&pag
->pag_ici_lock
);
812 spin_lock(&ip
->i_flags_lock
);
813 __xfs_inode_set_reclaim_tag(pag
, ip
);
814 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
815 spin_unlock(&ip
->i_flags_lock
);
816 spin_unlock(&pag
->pag_ici_lock
);
821 __xfs_inode_clear_reclaim(
825 pag
->pag_ici_reclaimable
--;
826 if (!pag
->pag_ici_reclaimable
) {
827 /* clear the reclaim tag from the perag radix tree */
828 spin_lock(&ip
->i_mount
->m_perag_lock
);
829 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
830 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
831 XFS_ICI_RECLAIM_TAG
);
832 spin_unlock(&ip
->i_mount
->m_perag_lock
);
833 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
839 __xfs_inode_clear_reclaim_tag(
844 radix_tree_tag_clear(&pag
->pag_ici_root
,
845 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
846 __xfs_inode_clear_reclaim(pag
, ip
);
850 * Grab the inode for reclaim exclusively.
851 * Return 0 if we grabbed it, non-zero otherwise.
854 xfs_reclaim_inode_grab(
855 struct xfs_inode
*ip
,
858 ASSERT(rcu_read_lock_held());
860 /* quick check for stale RCU freed inode */
865 * If we are asked for non-blocking operation, do unlocked checks to
866 * see if the inode already is being flushed or in reclaim to avoid
869 if ((flags
& SYNC_TRYLOCK
) &&
870 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
874 * The radix tree lock here protects a thread in xfs_iget from racing
875 * with us starting reclaim on the inode. Once we have the
876 * XFS_IRECLAIM flag set it will not touch us.
878 * Due to RCU lookup, we may find inodes that have been freed and only
879 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
880 * aren't candidates for reclaim at all, so we must check the
881 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
883 spin_lock(&ip
->i_flags_lock
);
884 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
885 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
886 /* not a reclaim candidate. */
887 spin_unlock(&ip
->i_flags_lock
);
890 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
891 spin_unlock(&ip
->i_flags_lock
);
896 * Inodes in different states need to be treated differently. The following
897 * table lists the inode states and the reclaim actions necessary:
899 * inode state iflush ret required action
900 * --------------- ---------- ---------------
902 * shutdown EIO unpin and reclaim
903 * clean, unpinned 0 reclaim
904 * stale, unpinned 0 reclaim
905 * clean, pinned(*) 0 requeue
906 * stale, pinned EAGAIN requeue
907 * dirty, async - requeue
908 * dirty, sync 0 reclaim
910 * (*) dgc: I don't think the clean, pinned state is possible but it gets
911 * handled anyway given the order of checks implemented.
913 * Also, because we get the flush lock first, we know that any inode that has
914 * been flushed delwri has had the flush completed by the time we check that
915 * the inode is clean.
917 * Note that because the inode is flushed delayed write by AIL pushing, the
918 * flush lock may already be held here and waiting on it can result in very
919 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
920 * the caller should push the AIL first before trying to reclaim inodes to
921 * minimise the amount of time spent waiting. For background relaim, we only
922 * bother to reclaim clean inodes anyway.
924 * Hence the order of actions after gaining the locks should be:
926 * shutdown => unpin and reclaim
927 * pinned, async => requeue
928 * pinned, sync => unpin
931 * dirty, async => requeue
932 * dirty, sync => flush, wait and reclaim
936 struct xfs_inode
*ip
,
937 struct xfs_perag
*pag
,
940 struct xfs_buf
*bp
= NULL
;
945 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
946 if (!xfs_iflock_nowait(ip
)) {
947 if (!(sync_mode
& SYNC_WAIT
))
952 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
954 xfs_iflush_abort(ip
, false);
957 if (xfs_ipincount(ip
)) {
958 if (!(sync_mode
& SYNC_WAIT
))
962 if (xfs_iflags_test(ip
, XFS_ISTALE
))
964 if (xfs_inode_clean(ip
))
968 * Never flush out dirty data during non-blocking reclaim, as it would
969 * just contend with AIL pushing trying to do the same job.
971 if (!(sync_mode
& SYNC_WAIT
))
975 * Now we have an inode that needs flushing.
977 * Note that xfs_iflush will never block on the inode buffer lock, as
978 * xfs_ifree_cluster() can lock the inode buffer before it locks the
979 * ip->i_lock, and we are doing the exact opposite here. As a result,
980 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
981 * result in an ABBA deadlock with xfs_ifree_cluster().
983 * As xfs_ifree_cluser() must gather all inodes that are active in the
984 * cache to mark them stale, if we hit this case we don't actually want
985 * to do IO here - we want the inode marked stale so we can simply
986 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
987 * inode, back off and try again. Hopefully the next pass through will
988 * see the stale flag set on the inode.
990 error
= xfs_iflush(ip
, &bp
);
991 if (error
== -EAGAIN
) {
992 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
993 /* backoff longer than in xfs_ifree_cluster */
999 error
= xfs_bwrite(bp
);
1006 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1008 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1010 * Remove the inode from the per-AG radix tree.
1012 * Because radix_tree_delete won't complain even if the item was never
1013 * added to the tree assert that it's been there before to catch
1014 * problems with the inode life time early on.
1016 spin_lock(&pag
->pag_ici_lock
);
1017 if (!radix_tree_delete(&pag
->pag_ici_root
,
1018 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
1020 __xfs_inode_clear_reclaim(pag
, ip
);
1021 spin_unlock(&pag
->pag_ici_lock
);
1024 * Here we do an (almost) spurious inode lock in order to coordinate
1025 * with inode cache radix tree lookups. This is because the lookup
1026 * can reference the inodes in the cache without taking references.
1028 * We make that OK here by ensuring that we wait until the inode is
1029 * unlocked after the lookup before we go ahead and free it.
1031 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1032 xfs_qm_dqdetach(ip
);
1033 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1041 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1042 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1044 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1045 * a short while. However, this just burns CPU time scanning the tree
1046 * waiting for IO to complete and the reclaim work never goes back to
1047 * the idle state. Instead, return 0 to let the next scheduled
1048 * background reclaim attempt to reclaim the inode again.
1054 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1055 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1056 * then a shut down during filesystem unmount reclaim walk leak all the
1057 * unreclaimed inodes.
1060 xfs_reclaim_inodes_ag(
1061 struct xfs_mount
*mp
,
1065 struct xfs_perag
*pag
;
1069 int trylock
= flags
& SYNC_TRYLOCK
;
1075 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1076 unsigned long first_index
= 0;
1080 ag
= pag
->pag_agno
+ 1;
1083 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1088 first_index
= pag
->pag_ici_reclaim_cursor
;
1090 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1093 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1097 nr_found
= radix_tree_gang_lookup_tag(
1099 (void **)batch
, first_index
,
1101 XFS_ICI_RECLAIM_TAG
);
1109 * Grab the inodes before we drop the lock. if we found
1110 * nothing, nr == 0 and the loop will be skipped.
1112 for (i
= 0; i
< nr_found
; i
++) {
1113 struct xfs_inode
*ip
= batch
[i
];
1115 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1119 * Update the index for the next lookup. Catch
1120 * overflows into the next AG range which can
1121 * occur if we have inodes in the last block of
1122 * the AG and we are currently pointing to the
1125 * Because we may see inodes that are from the
1126 * wrong AG due to RCU freeing and
1127 * reallocation, only update the index if it
1128 * lies in this AG. It was a race that lead us
1129 * to see this inode, so another lookup from
1130 * the same index will not find it again.
1132 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1135 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1136 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1140 /* unlock now we've grabbed the inodes. */
1143 for (i
= 0; i
< nr_found
; i
++) {
1146 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1147 if (error
&& last_error
!= -EFSCORRUPTED
)
1151 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1155 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1157 if (trylock
&& !done
)
1158 pag
->pag_ici_reclaim_cursor
= first_index
;
1160 pag
->pag_ici_reclaim_cursor
= 0;
1161 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1166 * if we skipped any AG, and we still have scan count remaining, do
1167 * another pass this time using blocking reclaim semantics (i.e
1168 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1169 * ensure that when we get more reclaimers than AGs we block rather
1170 * than spin trying to execute reclaim.
1172 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1184 int nr_to_scan
= INT_MAX
;
1186 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1190 * Scan a certain number of inodes for reclaim.
1192 * When called we make sure that there is a background (fast) inode reclaim in
1193 * progress, while we will throttle the speed of reclaim via doing synchronous
1194 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1195 * them to be cleaned, which we hope will not be very long due to the
1196 * background walker having already kicked the IO off on those dirty inodes.
1199 xfs_reclaim_inodes_nr(
1200 struct xfs_mount
*mp
,
1203 /* kick background reclaimer and push the AIL */
1204 xfs_reclaim_work_queue(mp
);
1205 xfs_ail_push_all(mp
->m_ail
);
1207 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1211 * Return the number of reclaimable inodes in the filesystem for
1212 * the shrinker to determine how much to reclaim.
1215 xfs_reclaim_inodes_count(
1216 struct xfs_mount
*mp
)
1218 struct xfs_perag
*pag
;
1219 xfs_agnumber_t ag
= 0;
1220 int reclaimable
= 0;
1222 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1223 ag
= pag
->pag_agno
+ 1;
1224 reclaimable
+= pag
->pag_ici_reclaimable
;
1232 struct xfs_inode
*ip
,
1233 struct xfs_eofblocks
*eofb
)
1235 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1236 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1239 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1240 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1243 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1244 xfs_get_projid(ip
) != eofb
->eof_prid
)
1251 * A union-based inode filtering algorithm. Process the inode if any of the
1252 * criteria match. This is for global/internal scans only.
1255 xfs_inode_match_id_union(
1256 struct xfs_inode
*ip
,
1257 struct xfs_eofblocks
*eofb
)
1259 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1260 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1263 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1264 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1267 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1268 xfs_get_projid(ip
) == eofb
->eof_prid
)
1275 xfs_inode_free_eofblocks(
1276 struct xfs_inode
*ip
,
1281 struct xfs_eofblocks
*eofb
= args
;
1282 bool need_iolock
= true;
1285 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1287 if (!xfs_can_free_eofblocks(ip
, false)) {
1288 /* inode could be preallocated or append-only */
1289 trace_xfs_inode_free_eofblocks_invalid(ip
);
1290 xfs_inode_clear_eofblocks_tag(ip
);
1295 * If the mapping is dirty the operation can block and wait for some
1296 * time. Unless we are waiting, skip it.
1298 if (!(flags
& SYNC_WAIT
) &&
1299 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1303 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1304 match
= xfs_inode_match_id_union(ip
, eofb
);
1306 match
= xfs_inode_match_id(ip
, eofb
);
1310 /* skip the inode if the file size is too small */
1311 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1312 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1316 * A scan owner implies we already hold the iolock. Skip it in
1317 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1318 * the possibility of EAGAIN being returned.
1320 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1321 need_iolock
= false;
1324 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1326 /* don't revisit the inode if we're not waiting */
1327 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1334 xfs_icache_free_eofblocks(
1335 struct xfs_mount
*mp
,
1336 struct xfs_eofblocks
*eofb
)
1338 int flags
= SYNC_TRYLOCK
;
1340 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1343 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1344 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1348 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1349 * multiple quotas, we don't know exactly which quota caused an allocation
1350 * failure. We make a best effort by including each quota under low free space
1351 * conditions (less than 1% free space) in the scan.
1354 xfs_inode_free_quota_eofblocks(
1355 struct xfs_inode
*ip
)
1358 struct xfs_eofblocks eofb
= {0};
1359 struct xfs_dquot
*dq
;
1361 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1364 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1365 * can repeatedly trylock on the inode we're currently processing. We
1366 * run a sync scan to increase effectiveness and use the union filter to
1367 * cover all applicable quotas in a single scan.
1369 eofb
.eof_scan_owner
= ip
->i_ino
;
1370 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1372 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1373 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1374 if (dq
&& xfs_dquot_lowsp(dq
)) {
1375 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1376 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1381 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1382 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1383 if (dq
&& xfs_dquot_lowsp(dq
)) {
1384 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1385 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1391 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
1397 xfs_inode_set_eofblocks_tag(
1400 struct xfs_mount
*mp
= ip
->i_mount
;
1401 struct xfs_perag
*pag
;
1404 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1405 spin_lock(&pag
->pag_ici_lock
);
1406 trace_xfs_inode_set_eofblocks_tag(ip
);
1408 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1409 XFS_ICI_EOFBLOCKS_TAG
);
1410 radix_tree_tag_set(&pag
->pag_ici_root
,
1411 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1412 XFS_ICI_EOFBLOCKS_TAG
);
1414 /* propagate the eofblocks tag up into the perag radix tree */
1415 spin_lock(&ip
->i_mount
->m_perag_lock
);
1416 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1417 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1418 XFS_ICI_EOFBLOCKS_TAG
);
1419 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1421 /* kick off background trimming */
1422 xfs_queue_eofblocks(ip
->i_mount
);
1424 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1428 spin_unlock(&pag
->pag_ici_lock
);
1433 xfs_inode_clear_eofblocks_tag(
1436 struct xfs_mount
*mp
= ip
->i_mount
;
1437 struct xfs_perag
*pag
;
1439 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1440 spin_lock(&pag
->pag_ici_lock
);
1441 trace_xfs_inode_clear_eofblocks_tag(ip
);
1443 radix_tree_tag_clear(&pag
->pag_ici_root
,
1444 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1445 XFS_ICI_EOFBLOCKS_TAG
);
1446 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1447 /* clear the eofblocks tag from the perag radix tree */
1448 spin_lock(&ip
->i_mount
->m_perag_lock
);
1449 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1450 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1451 XFS_ICI_EOFBLOCKS_TAG
);
1452 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1453 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1457 spin_unlock(&pag
->pag_ici_lock
);