dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / audit.c
blobbdf0cf463815e2fc14a3db69e630934b5dc20937
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
58 #include <linux/audit.h>
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
70 #include "audit.h"
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled = AUDIT_OFF;
83 u32 audit_ever_enabled = !!AUDIT_OFF;
85 EXPORT_SYMBOL_GPL(audit_enabled);
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default = AUDIT_OFF;
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
98 int audit_pid;
99 static __u32 audit_nlk_portid;
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_overflow = 0;
114 /* The identity of the user shutting down the audit system. */
115 kuid_t audit_sig_uid = INVALID_UID;
116 pid_t audit_sig_pid = -1;
117 u32 audit_sig_sid = 0;
119 /* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
126 static atomic_t audit_lost = ATOMIC_INIT(0);
128 /* The netlink socket. */
129 static struct sock *audit_sock;
130 static int audit_net_id;
132 /* Hash for inode-based rules */
133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135 /* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138 static DEFINE_SPINLOCK(audit_freelist_lock);
139 static int audit_freelist_count;
140 static LIST_HEAD(audit_freelist);
142 static struct sk_buff_head audit_skb_queue;
143 /* queue of skbs to send to auditd when/if it comes back */
144 static struct sk_buff_head audit_skb_hold_queue;
145 static struct task_struct *kauditd_task;
146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
154 static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
160 /* Serialize requests from userspace. */
161 DEFINE_MUTEX(audit_cmd_mutex);
163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166 #define AUDIT_BUFSIZ 1024
168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170 #define AUDIT_MAXFREE (2*NR_CPUS)
172 /* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177 struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
184 struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
198 void audit_panic(const char *message)
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
215 static inline int audit_rate_check(void)
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
225 if (!audit_rate_limit) return 1;
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
239 spin_unlock_irqrestore(&lock, flags);
241 return retval;
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
252 void audit_log_lost(const char *message)
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
260 atomic_inc(&audit_lost);
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
271 spin_unlock_irqrestore(&lock, flags);
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
284 static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
287 struct audit_buffer *ab;
288 int rc = 0;
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
329 static int audit_set_rate_limit(u32 limit)
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
334 static int audit_set_backlog_limit(u32 limit)
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
339 static int audit_set_backlog_wait_time(u32 timeout)
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
345 static int audit_set_enabled(u32 state)
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
355 return rc;
358 static int audit_set_failure(u32 state)
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
365 return audit_do_config_change("audit_failure", &audit_failure, state);
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
377 static void audit_hold_skb(struct sk_buff *skb)
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
391 static void audit_printk_skb(struct sk_buff *skb)
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
403 audit_hold_skb(skb);
406 static void kauditd_send_skb(struct sk_buff *skb)
408 int err;
409 int attempts = 0;
410 #define AUDITD_RETRIES 5
412 restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
477 * flush_hold_queue - empty the hold queue if auditd appears
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
491 static void flush_hold_queue(void)
493 struct sk_buff *skb;
495 if (!audit_default || !audit_pid)
496 return;
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
511 if (skb)
512 consume_skb(skb);
515 static int kauditd_thread(void *dummy)
517 set_freezable();
518 while (!kthread_should_stop()) {
519 struct sk_buff *skb;
521 flush_hold_queue();
523 skb = skb_dequeue(&audit_skb_queue);
525 if (skb) {
526 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
537 return 0;
540 int audit_send_list(void *_dest)
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
554 put_net(net);
555 kfree(dest);
557 return 0;
560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
580 out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
585 static int audit_send_reply_thread(void *arg)
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
624 if (!reply)
625 return;
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639 out:
640 kfree(reply);
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
649 int err = 0;
651 /* Only support initial user namespace for now. */
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
700 return err;
703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
721 int is_audit_feature_set(int i)
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
727 static int audit_get_feature(struct sk_buff *skb)
729 u32 seq;
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
735 return 0;
738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
741 struct audit_buffer *ab;
743 if (audit_enabled == AUDIT_OFF)
744 return;
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 if (!ab)
748 return;
749 audit_log_task_info(ab, current);
750 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
751 audit_feature_names[which], !!old_feature, !!new_feature,
752 !!old_lock, !!new_lock, res);
753 audit_log_end(ab);
756 static int audit_set_feature(struct sk_buff *skb)
758 struct audit_features *uaf;
759 int i;
761 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
762 uaf = nlmsg_data(nlmsg_hdr(skb));
764 /* if there is ever a version 2 we should handle that here */
766 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
767 u32 feature = AUDIT_FEATURE_TO_MASK(i);
768 u32 old_feature, new_feature, old_lock, new_lock;
770 /* if we are not changing this feature, move along */
771 if (!(feature & uaf->mask))
772 continue;
774 old_feature = af.features & feature;
775 new_feature = uaf->features & feature;
776 new_lock = (uaf->lock | af.lock) & feature;
777 old_lock = af.lock & feature;
779 /* are we changing a locked feature? */
780 if (old_lock && (new_feature != old_feature)) {
781 audit_log_feature_change(i, old_feature, new_feature,
782 old_lock, new_lock, 0);
783 return -EPERM;
786 /* nothing invalid, do the changes */
787 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
788 u32 feature = AUDIT_FEATURE_TO_MASK(i);
789 u32 old_feature, new_feature, old_lock, new_lock;
791 /* if we are not changing this feature, move along */
792 if (!(feature & uaf->mask))
793 continue;
795 old_feature = af.features & feature;
796 new_feature = uaf->features & feature;
797 old_lock = af.lock & feature;
798 new_lock = (uaf->lock | af.lock) & feature;
800 if (new_feature != old_feature)
801 audit_log_feature_change(i, old_feature, new_feature,
802 old_lock, new_lock, 1);
804 if (new_feature)
805 af.features |= feature;
806 else
807 af.features &= ~feature;
808 af.lock |= new_lock;
811 return 0;
814 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
816 u32 seq;
817 void *data;
818 int err;
819 struct audit_buffer *ab;
820 u16 msg_type = nlh->nlmsg_type;
821 struct audit_sig_info *sig_data;
822 char *ctx = NULL;
823 u32 len;
825 err = audit_netlink_ok(skb, msg_type);
826 if (err)
827 return err;
829 /* As soon as there's any sign of userspace auditd,
830 * start kauditd to talk to it */
831 if (!kauditd_task) {
832 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
833 if (IS_ERR(kauditd_task)) {
834 err = PTR_ERR(kauditd_task);
835 kauditd_task = NULL;
836 return err;
839 seq = nlh->nlmsg_seq;
840 data = nlmsg_data(nlh);
842 switch (msg_type) {
843 case AUDIT_GET: {
844 struct audit_status s;
845 memset(&s, 0, sizeof(s));
846 s.enabled = audit_enabled;
847 s.failure = audit_failure;
848 s.pid = audit_pid;
849 s.rate_limit = audit_rate_limit;
850 s.backlog_limit = audit_backlog_limit;
851 s.lost = atomic_read(&audit_lost);
852 s.backlog = skb_queue_len(&audit_skb_queue);
853 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
854 s.backlog_wait_time = audit_backlog_wait_time_master;
855 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
856 break;
858 case AUDIT_SET: {
859 struct audit_status s;
860 memset(&s, 0, sizeof(s));
861 /* guard against past and future API changes */
862 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
863 if (s.mask & AUDIT_STATUS_ENABLED) {
864 err = audit_set_enabled(s.enabled);
865 if (err < 0)
866 return err;
868 if (s.mask & AUDIT_STATUS_FAILURE) {
869 err = audit_set_failure(s.failure);
870 if (err < 0)
871 return err;
873 if (s.mask & AUDIT_STATUS_PID) {
874 int new_pid = s.pid;
876 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
877 return -EACCES;
878 if (audit_enabled != AUDIT_OFF)
879 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
880 audit_pid = new_pid;
881 audit_nlk_portid = NETLINK_CB(skb).portid;
882 audit_sock = skb->sk;
884 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
885 err = audit_set_rate_limit(s.rate_limit);
886 if (err < 0)
887 return err;
889 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
890 err = audit_set_backlog_limit(s.backlog_limit);
891 if (err < 0)
892 return err;
894 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
895 if (sizeof(s) > (size_t)nlh->nlmsg_len)
896 return -EINVAL;
897 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
898 return -EINVAL;
899 err = audit_set_backlog_wait_time(s.backlog_wait_time);
900 if (err < 0)
901 return err;
903 break;
905 case AUDIT_GET_FEATURE:
906 err = audit_get_feature(skb);
907 if (err)
908 return err;
909 break;
910 case AUDIT_SET_FEATURE:
911 err = audit_set_feature(skb);
912 if (err)
913 return err;
914 break;
915 case AUDIT_USER:
916 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
917 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
918 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
919 return 0;
921 err = audit_filter_user(msg_type);
922 if (err == 1) { /* match or error */
923 err = 0;
924 if (msg_type == AUDIT_USER_TTY) {
925 err = tty_audit_push_current();
926 if (err)
927 break;
929 mutex_unlock(&audit_cmd_mutex);
930 audit_log_common_recv_msg(&ab, msg_type);
931 if (msg_type != AUDIT_USER_TTY)
932 audit_log_format(ab, " msg='%.*s'",
933 AUDIT_MESSAGE_TEXT_MAX,
934 (char *)data);
935 else {
936 int size;
938 audit_log_format(ab, " data=");
939 size = nlmsg_len(nlh);
940 if (size > 0 &&
941 ((unsigned char *)data)[size - 1] == '\0')
942 size--;
943 audit_log_n_untrustedstring(ab, data, size);
945 audit_set_portid(ab, NETLINK_CB(skb).portid);
946 audit_log_end(ab);
947 mutex_lock(&audit_cmd_mutex);
949 break;
950 case AUDIT_ADD_RULE:
951 case AUDIT_DEL_RULE:
952 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
953 return -EINVAL;
954 if (audit_enabled == AUDIT_LOCKED) {
955 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
956 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
957 audit_log_end(ab);
958 return -EPERM;
960 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
961 seq, data, nlmsg_len(nlh));
962 break;
963 case AUDIT_LIST_RULES:
964 err = audit_list_rules_send(skb, seq);
965 break;
966 case AUDIT_TRIM:
967 audit_trim_trees();
968 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
969 audit_log_format(ab, " op=trim res=1");
970 audit_log_end(ab);
971 break;
972 case AUDIT_MAKE_EQUIV: {
973 void *bufp = data;
974 u32 sizes[2];
975 size_t msglen = nlmsg_len(nlh);
976 char *old, *new;
978 err = -EINVAL;
979 if (msglen < 2 * sizeof(u32))
980 break;
981 memcpy(sizes, bufp, 2 * sizeof(u32));
982 bufp += 2 * sizeof(u32);
983 msglen -= 2 * sizeof(u32);
984 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
985 if (IS_ERR(old)) {
986 err = PTR_ERR(old);
987 break;
989 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
990 if (IS_ERR(new)) {
991 err = PTR_ERR(new);
992 kfree(old);
993 break;
995 /* OK, here comes... */
996 err = audit_tag_tree(old, new);
998 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1000 audit_log_format(ab, " op=make_equiv old=");
1001 audit_log_untrustedstring(ab, old);
1002 audit_log_format(ab, " new=");
1003 audit_log_untrustedstring(ab, new);
1004 audit_log_format(ab, " res=%d", !err);
1005 audit_log_end(ab);
1006 kfree(old);
1007 kfree(new);
1008 break;
1010 case AUDIT_SIGNAL_INFO:
1011 len = 0;
1012 if (audit_sig_sid) {
1013 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1014 if (err)
1015 return err;
1017 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1018 if (!sig_data) {
1019 if (audit_sig_sid)
1020 security_release_secctx(ctx, len);
1021 return -ENOMEM;
1023 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1024 sig_data->pid = audit_sig_pid;
1025 if (audit_sig_sid) {
1026 memcpy(sig_data->ctx, ctx, len);
1027 security_release_secctx(ctx, len);
1029 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1030 sig_data, sizeof(*sig_data) + len);
1031 kfree(sig_data);
1032 break;
1033 case AUDIT_TTY_GET: {
1034 struct audit_tty_status s;
1035 struct task_struct *tsk = current;
1037 spin_lock(&tsk->sighand->siglock);
1038 s.enabled = tsk->signal->audit_tty;
1039 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1040 spin_unlock(&tsk->sighand->siglock);
1042 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1043 break;
1045 case AUDIT_TTY_SET: {
1046 struct audit_tty_status s, old;
1047 struct task_struct *tsk = current;
1048 struct audit_buffer *ab;
1050 memset(&s, 0, sizeof(s));
1051 /* guard against past and future API changes */
1052 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1053 /* check if new data is valid */
1054 if ((s.enabled != 0 && s.enabled != 1) ||
1055 (s.log_passwd != 0 && s.log_passwd != 1))
1056 err = -EINVAL;
1058 spin_lock(&tsk->sighand->siglock);
1059 old.enabled = tsk->signal->audit_tty;
1060 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1061 if (!err) {
1062 tsk->signal->audit_tty = s.enabled;
1063 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1065 spin_unlock(&tsk->sighand->siglock);
1067 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1068 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1069 " old-log_passwd=%d new-log_passwd=%d res=%d",
1070 old.enabled, s.enabled, old.log_passwd,
1071 s.log_passwd, !err);
1072 audit_log_end(ab);
1073 break;
1075 default:
1076 err = -EINVAL;
1077 break;
1080 return err < 0 ? err : 0;
1084 * Get message from skb. Each message is processed by audit_receive_msg.
1085 * Malformed skbs with wrong length are discarded silently.
1087 static void audit_receive_skb(struct sk_buff *skb)
1089 struct nlmsghdr *nlh;
1091 * len MUST be signed for nlmsg_next to be able to dec it below 0
1092 * if the nlmsg_len was not aligned
1094 int len;
1095 int err;
1097 nlh = nlmsg_hdr(skb);
1098 len = skb->len;
1100 while (nlmsg_ok(nlh, len)) {
1101 err = audit_receive_msg(skb, nlh);
1102 /* if err or if this message says it wants a response */
1103 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1104 netlink_ack(skb, nlh, err);
1106 nlh = nlmsg_next(nlh, &len);
1110 /* Receive messages from netlink socket. */
1111 static void audit_receive(struct sk_buff *skb)
1113 mutex_lock(&audit_cmd_mutex);
1114 audit_receive_skb(skb);
1115 mutex_unlock(&audit_cmd_mutex);
1118 /* Run custom bind function on netlink socket group connect or bind requests. */
1119 static int audit_bind(struct net *net, int group)
1121 if (!capable(CAP_AUDIT_READ))
1122 return -EPERM;
1124 return 0;
1127 static int __net_init audit_net_init(struct net *net)
1129 struct netlink_kernel_cfg cfg = {
1130 .input = audit_receive,
1131 .bind = audit_bind,
1132 .flags = NL_CFG_F_NONROOT_RECV,
1133 .groups = AUDIT_NLGRP_MAX,
1136 struct audit_net *aunet = net_generic(net, audit_net_id);
1138 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1139 if (aunet->nlsk == NULL) {
1140 audit_panic("cannot initialize netlink socket in namespace");
1141 return -ENOMEM;
1143 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1144 return 0;
1147 static void __net_exit audit_net_exit(struct net *net)
1149 struct audit_net *aunet = net_generic(net, audit_net_id);
1150 struct sock *sock = aunet->nlsk;
1151 if (sock == audit_sock) {
1152 audit_pid = 0;
1153 audit_sock = NULL;
1156 RCU_INIT_POINTER(aunet->nlsk, NULL);
1157 synchronize_net();
1158 netlink_kernel_release(sock);
1161 static struct pernet_operations audit_net_ops __net_initdata = {
1162 .init = audit_net_init,
1163 .exit = audit_net_exit,
1164 .id = &audit_net_id,
1165 .size = sizeof(struct audit_net),
1168 /* Initialize audit support at boot time. */
1169 static int __init audit_init(void)
1171 int i;
1173 if (audit_initialized == AUDIT_DISABLED)
1174 return 0;
1176 pr_info("initializing netlink subsys (%s)\n",
1177 audit_default ? "enabled" : "disabled");
1178 register_pernet_subsys(&audit_net_ops);
1180 skb_queue_head_init(&audit_skb_queue);
1181 skb_queue_head_init(&audit_skb_hold_queue);
1182 audit_initialized = AUDIT_INITIALIZED;
1184 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1186 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1187 INIT_LIST_HEAD(&audit_inode_hash[i]);
1189 return 0;
1191 __initcall(audit_init);
1193 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1194 static int __init audit_enable(char *str)
1196 audit_default = !!simple_strtol(str, NULL, 0);
1197 if (!audit_default)
1198 audit_initialized = AUDIT_DISABLED;
1199 audit_enabled = audit_default;
1200 audit_ever_enabled = !!audit_enabled;
1202 pr_info("%s\n", audit_default ?
1203 "enabled (after initialization)" : "disabled (until reboot)");
1205 return 1;
1207 __setup("audit=", audit_enable);
1209 /* Process kernel command-line parameter at boot time.
1210 * audit_backlog_limit=<n> */
1211 static int __init audit_backlog_limit_set(char *str)
1213 u32 audit_backlog_limit_arg;
1215 pr_info("audit_backlog_limit: ");
1216 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1217 pr_cont("using default of %u, unable to parse %s\n",
1218 audit_backlog_limit, str);
1219 return 1;
1222 audit_backlog_limit = audit_backlog_limit_arg;
1223 pr_cont("%d\n", audit_backlog_limit);
1225 return 1;
1227 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1229 static void audit_buffer_free(struct audit_buffer *ab)
1231 unsigned long flags;
1233 if (!ab)
1234 return;
1236 if (ab->skb)
1237 kfree_skb(ab->skb);
1239 spin_lock_irqsave(&audit_freelist_lock, flags);
1240 if (audit_freelist_count > AUDIT_MAXFREE)
1241 kfree(ab);
1242 else {
1243 audit_freelist_count++;
1244 list_add(&ab->list, &audit_freelist);
1246 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1249 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1250 gfp_t gfp_mask, int type)
1252 unsigned long flags;
1253 struct audit_buffer *ab = NULL;
1254 struct nlmsghdr *nlh;
1256 spin_lock_irqsave(&audit_freelist_lock, flags);
1257 if (!list_empty(&audit_freelist)) {
1258 ab = list_entry(audit_freelist.next,
1259 struct audit_buffer, list);
1260 list_del(&ab->list);
1261 --audit_freelist_count;
1263 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1265 if (!ab) {
1266 ab = kmalloc(sizeof(*ab), gfp_mask);
1267 if (!ab)
1268 goto err;
1271 ab->ctx = ctx;
1272 ab->gfp_mask = gfp_mask;
1274 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1275 if (!ab->skb)
1276 goto err;
1278 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1279 if (!nlh)
1280 goto out_kfree_skb;
1282 return ab;
1284 out_kfree_skb:
1285 kfree_skb(ab->skb);
1286 ab->skb = NULL;
1287 err:
1288 audit_buffer_free(ab);
1289 return NULL;
1293 * audit_serial - compute a serial number for the audit record
1295 * Compute a serial number for the audit record. Audit records are
1296 * written to user-space as soon as they are generated, so a complete
1297 * audit record may be written in several pieces. The timestamp of the
1298 * record and this serial number are used by the user-space tools to
1299 * determine which pieces belong to the same audit record. The
1300 * (timestamp,serial) tuple is unique for each syscall and is live from
1301 * syscall entry to syscall exit.
1303 * NOTE: Another possibility is to store the formatted records off the
1304 * audit context (for those records that have a context), and emit them
1305 * all at syscall exit. However, this could delay the reporting of
1306 * significant errors until syscall exit (or never, if the system
1307 * halts).
1309 unsigned int audit_serial(void)
1311 static atomic_t serial = ATOMIC_INIT(0);
1313 return atomic_add_return(1, &serial);
1316 static inline void audit_get_stamp(struct audit_context *ctx,
1317 struct timespec *t, unsigned int *serial)
1319 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1320 *t = CURRENT_TIME;
1321 *serial = audit_serial();
1326 * Wait for auditd to drain the queue a little
1328 static long wait_for_auditd(long sleep_time)
1330 DECLARE_WAITQUEUE(wait, current);
1331 set_current_state(TASK_UNINTERRUPTIBLE);
1332 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1334 if (audit_backlog_limit &&
1335 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1336 sleep_time = schedule_timeout(sleep_time);
1338 __set_current_state(TASK_RUNNING);
1339 remove_wait_queue(&audit_backlog_wait, &wait);
1341 return sleep_time;
1345 * audit_log_start - obtain an audit buffer
1346 * @ctx: audit_context (may be NULL)
1347 * @gfp_mask: type of allocation
1348 * @type: audit message type
1350 * Returns audit_buffer pointer on success or NULL on error.
1352 * Obtain an audit buffer. This routine does locking to obtain the
1353 * audit buffer, but then no locking is required for calls to
1354 * audit_log_*format. If the task (ctx) is a task that is currently in a
1355 * syscall, then the syscall is marked as auditable and an audit record
1356 * will be written at syscall exit. If there is no associated task, then
1357 * task context (ctx) should be NULL.
1359 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1360 int type)
1362 struct audit_buffer *ab = NULL;
1363 struct timespec t;
1364 unsigned int uninitialized_var(serial);
1365 int reserve = 5; /* Allow atomic callers to go up to five
1366 entries over the normal backlog limit */
1367 unsigned long timeout_start = jiffies;
1369 if (audit_initialized != AUDIT_INITIALIZED)
1370 return NULL;
1372 if (unlikely(audit_filter_type(type)))
1373 return NULL;
1375 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1376 if (audit_pid && audit_pid == current->pid)
1377 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1378 else
1379 reserve = 0;
1382 while (audit_backlog_limit
1383 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1384 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1385 long sleep_time;
1387 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1388 if (sleep_time > 0) {
1389 sleep_time = wait_for_auditd(sleep_time);
1390 if (sleep_time > 0)
1391 continue;
1394 if (audit_rate_check() && printk_ratelimit())
1395 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1396 skb_queue_len(&audit_skb_queue),
1397 audit_backlog_limit);
1398 audit_log_lost("backlog limit exceeded");
1399 audit_backlog_wait_time = audit_backlog_wait_overflow;
1400 wake_up(&audit_backlog_wait);
1401 return NULL;
1404 if (!reserve)
1405 audit_backlog_wait_time = audit_backlog_wait_time_master;
1407 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1408 if (!ab) {
1409 audit_log_lost("out of memory in audit_log_start");
1410 return NULL;
1413 audit_get_stamp(ab->ctx, &t, &serial);
1415 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1416 t.tv_sec, t.tv_nsec/1000000, serial);
1417 return ab;
1421 * audit_expand - expand skb in the audit buffer
1422 * @ab: audit_buffer
1423 * @extra: space to add at tail of the skb
1425 * Returns 0 (no space) on failed expansion, or available space if
1426 * successful.
1428 static inline int audit_expand(struct audit_buffer *ab, int extra)
1430 struct sk_buff *skb = ab->skb;
1431 int oldtail = skb_tailroom(skb);
1432 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1433 int newtail = skb_tailroom(skb);
1435 if (ret < 0) {
1436 audit_log_lost("out of memory in audit_expand");
1437 return 0;
1440 skb->truesize += newtail - oldtail;
1441 return newtail;
1445 * Format an audit message into the audit buffer. If there isn't enough
1446 * room in the audit buffer, more room will be allocated and vsnprint
1447 * will be called a second time. Currently, we assume that a printk
1448 * can't format message larger than 1024 bytes, so we don't either.
1450 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1451 va_list args)
1453 int len, avail;
1454 struct sk_buff *skb;
1455 va_list args2;
1457 if (!ab)
1458 return;
1460 BUG_ON(!ab->skb);
1461 skb = ab->skb;
1462 avail = skb_tailroom(skb);
1463 if (avail == 0) {
1464 avail = audit_expand(ab, AUDIT_BUFSIZ);
1465 if (!avail)
1466 goto out;
1468 va_copy(args2, args);
1469 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1470 if (len >= avail) {
1471 /* The printk buffer is 1024 bytes long, so if we get
1472 * here and AUDIT_BUFSIZ is at least 1024, then we can
1473 * log everything that printk could have logged. */
1474 avail = audit_expand(ab,
1475 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1476 if (!avail)
1477 goto out_va_end;
1478 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1480 if (len > 0)
1481 skb_put(skb, len);
1482 out_va_end:
1483 va_end(args2);
1484 out:
1485 return;
1489 * audit_log_format - format a message into the audit buffer.
1490 * @ab: audit_buffer
1491 * @fmt: format string
1492 * @...: optional parameters matching @fmt string
1494 * All the work is done in audit_log_vformat.
1496 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1498 va_list args;
1500 if (!ab)
1501 return;
1502 va_start(args, fmt);
1503 audit_log_vformat(ab, fmt, args);
1504 va_end(args);
1508 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1509 * @ab: the audit_buffer
1510 * @buf: buffer to convert to hex
1511 * @len: length of @buf to be converted
1513 * No return value; failure to expand is silently ignored.
1515 * This function will take the passed buf and convert it into a string of
1516 * ascii hex digits. The new string is placed onto the skb.
1518 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1519 size_t len)
1521 int i, avail, new_len;
1522 unsigned char *ptr;
1523 struct sk_buff *skb;
1525 if (!ab)
1526 return;
1528 BUG_ON(!ab->skb);
1529 skb = ab->skb;
1530 avail = skb_tailroom(skb);
1531 new_len = len<<1;
1532 if (new_len >= avail) {
1533 /* Round the buffer request up to the next multiple */
1534 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1535 avail = audit_expand(ab, new_len);
1536 if (!avail)
1537 return;
1540 ptr = skb_tail_pointer(skb);
1541 for (i = 0; i < len; i++)
1542 ptr = hex_byte_pack_upper(ptr, buf[i]);
1543 *ptr = 0;
1544 skb_put(skb, len << 1); /* new string is twice the old string */
1548 * Format a string of no more than slen characters into the audit buffer,
1549 * enclosed in quote marks.
1551 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1552 size_t slen)
1554 int avail, new_len;
1555 unsigned char *ptr;
1556 struct sk_buff *skb;
1558 if (!ab)
1559 return;
1561 BUG_ON(!ab->skb);
1562 skb = ab->skb;
1563 avail = skb_tailroom(skb);
1564 new_len = slen + 3; /* enclosing quotes + null terminator */
1565 if (new_len > avail) {
1566 avail = audit_expand(ab, new_len);
1567 if (!avail)
1568 return;
1570 ptr = skb_tail_pointer(skb);
1571 *ptr++ = '"';
1572 memcpy(ptr, string, slen);
1573 ptr += slen;
1574 *ptr++ = '"';
1575 *ptr = 0;
1576 skb_put(skb, slen + 2); /* don't include null terminator */
1580 * audit_string_contains_control - does a string need to be logged in hex
1581 * @string: string to be checked
1582 * @len: max length of the string to check
1584 bool audit_string_contains_control(const char *string, size_t len)
1586 const unsigned char *p;
1587 for (p = string; p < (const unsigned char *)string + len; p++) {
1588 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1589 return true;
1591 return false;
1595 * audit_log_n_untrustedstring - log a string that may contain random characters
1596 * @ab: audit_buffer
1597 * @len: length of string (not including trailing null)
1598 * @string: string to be logged
1600 * This code will escape a string that is passed to it if the string
1601 * contains a control character, unprintable character, double quote mark,
1602 * or a space. Unescaped strings will start and end with a double quote mark.
1603 * Strings that are escaped are printed in hex (2 digits per char).
1605 * The caller specifies the number of characters in the string to log, which may
1606 * or may not be the entire string.
1608 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1609 size_t len)
1611 if (audit_string_contains_control(string, len))
1612 audit_log_n_hex(ab, string, len);
1613 else
1614 audit_log_n_string(ab, string, len);
1618 * audit_log_untrustedstring - log a string that may contain random characters
1619 * @ab: audit_buffer
1620 * @string: string to be logged
1622 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1623 * determine string length.
1625 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1627 audit_log_n_untrustedstring(ab, string, strlen(string));
1630 /* This is a helper-function to print the escaped d_path */
1631 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1632 const struct path *path)
1634 char *p, *pathname;
1636 if (prefix)
1637 audit_log_format(ab, "%s", prefix);
1639 /* We will allow 11 spaces for ' (deleted)' to be appended */
1640 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1641 if (!pathname) {
1642 audit_log_string(ab, "<no_memory>");
1643 return;
1645 p = d_path(path, pathname, PATH_MAX+11);
1646 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1647 /* FIXME: can we save some information here? */
1648 audit_log_string(ab, "<too_long>");
1649 } else
1650 audit_log_untrustedstring(ab, p);
1651 kfree(pathname);
1654 void audit_log_session_info(struct audit_buffer *ab)
1656 unsigned int sessionid = audit_get_sessionid(current);
1657 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1659 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1662 void audit_log_key(struct audit_buffer *ab, char *key)
1664 audit_log_format(ab, " key=");
1665 if (key)
1666 audit_log_untrustedstring(ab, key);
1667 else
1668 audit_log_format(ab, "(null)");
1671 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1673 int i;
1675 audit_log_format(ab, " %s=", prefix);
1676 CAP_FOR_EACH_U32(i) {
1677 audit_log_format(ab, "%08x",
1678 cap->cap[CAP_LAST_U32 - i]);
1682 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1684 kernel_cap_t *perm = &name->fcap.permitted;
1685 kernel_cap_t *inh = &name->fcap.inheritable;
1686 int log = 0;
1688 if (!cap_isclear(*perm)) {
1689 audit_log_cap(ab, "cap_fp", perm);
1690 log = 1;
1692 if (!cap_isclear(*inh)) {
1693 audit_log_cap(ab, "cap_fi", inh);
1694 log = 1;
1697 if (log)
1698 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1699 name->fcap.fE, name->fcap_ver);
1702 static inline int audit_copy_fcaps(struct audit_names *name,
1703 const struct dentry *dentry)
1705 struct cpu_vfs_cap_data caps;
1706 int rc;
1708 if (!dentry)
1709 return 0;
1711 rc = get_vfs_caps_from_disk(dentry, &caps);
1712 if (rc)
1713 return rc;
1715 name->fcap.permitted = caps.permitted;
1716 name->fcap.inheritable = caps.inheritable;
1717 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1718 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1719 VFS_CAP_REVISION_SHIFT;
1721 return 0;
1724 /* Copy inode data into an audit_names. */
1725 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1726 const struct inode *inode)
1728 name->ino = inode->i_ino;
1729 name->dev = inode->i_sb->s_dev;
1730 name->mode = inode->i_mode;
1731 name->uid = inode->i_uid;
1732 name->gid = inode->i_gid;
1733 name->rdev = inode->i_rdev;
1734 security_inode_getsecid(inode, &name->osid);
1735 audit_copy_fcaps(name, dentry);
1739 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1740 * @context: audit_context for the task
1741 * @n: audit_names structure with reportable details
1742 * @path: optional path to report instead of audit_names->name
1743 * @record_num: record number to report when handling a list of names
1744 * @call_panic: optional pointer to int that will be updated if secid fails
1746 void audit_log_name(struct audit_context *context, struct audit_names *n,
1747 struct path *path, int record_num, int *call_panic)
1749 struct audit_buffer *ab;
1750 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1751 if (!ab)
1752 return;
1754 audit_log_format(ab, "item=%d", record_num);
1756 if (path)
1757 audit_log_d_path(ab, " name=", path);
1758 else if (n->name) {
1759 switch (n->name_len) {
1760 case AUDIT_NAME_FULL:
1761 /* log the full path */
1762 audit_log_format(ab, " name=");
1763 audit_log_untrustedstring(ab, n->name->name);
1764 break;
1765 case 0:
1766 /* name was specified as a relative path and the
1767 * directory component is the cwd */
1768 audit_log_d_path(ab, " name=", &context->pwd);
1769 break;
1770 default:
1771 /* log the name's directory component */
1772 audit_log_format(ab, " name=");
1773 audit_log_n_untrustedstring(ab, n->name->name,
1774 n->name_len);
1776 } else
1777 audit_log_format(ab, " name=(null)");
1779 if (n->ino != AUDIT_INO_UNSET)
1780 audit_log_format(ab, " inode=%lu"
1781 " dev=%02x:%02x mode=%#ho"
1782 " ouid=%u ogid=%u rdev=%02x:%02x",
1783 n->ino,
1784 MAJOR(n->dev),
1785 MINOR(n->dev),
1786 n->mode,
1787 from_kuid(&init_user_ns, n->uid),
1788 from_kgid(&init_user_ns, n->gid),
1789 MAJOR(n->rdev),
1790 MINOR(n->rdev));
1791 if (n->osid != 0) {
1792 char *ctx = NULL;
1793 u32 len;
1794 if (security_secid_to_secctx(
1795 n->osid, &ctx, &len)) {
1796 audit_log_format(ab, " osid=%u", n->osid);
1797 if (call_panic)
1798 *call_panic = 2;
1799 } else {
1800 audit_log_format(ab, " obj=%s", ctx);
1801 security_release_secctx(ctx, len);
1805 /* log the audit_names record type */
1806 audit_log_format(ab, " nametype=");
1807 switch(n->type) {
1808 case AUDIT_TYPE_NORMAL:
1809 audit_log_format(ab, "NORMAL");
1810 break;
1811 case AUDIT_TYPE_PARENT:
1812 audit_log_format(ab, "PARENT");
1813 break;
1814 case AUDIT_TYPE_CHILD_DELETE:
1815 audit_log_format(ab, "DELETE");
1816 break;
1817 case AUDIT_TYPE_CHILD_CREATE:
1818 audit_log_format(ab, "CREATE");
1819 break;
1820 default:
1821 audit_log_format(ab, "UNKNOWN");
1822 break;
1825 audit_log_fcaps(ab, n);
1826 audit_log_end(ab);
1829 int audit_log_task_context(struct audit_buffer *ab)
1831 char *ctx = NULL;
1832 unsigned len;
1833 int error;
1834 u32 sid;
1836 security_task_getsecid(current, &sid);
1837 if (!sid)
1838 return 0;
1840 error = security_secid_to_secctx(sid, &ctx, &len);
1841 if (error) {
1842 if (error != -EINVAL)
1843 goto error_path;
1844 return 0;
1847 audit_log_format(ab, " subj=%s", ctx);
1848 security_release_secctx(ctx, len);
1849 return 0;
1851 error_path:
1852 audit_panic("error in audit_log_task_context");
1853 return error;
1855 EXPORT_SYMBOL(audit_log_task_context);
1857 void audit_log_d_path_exe(struct audit_buffer *ab,
1858 struct mm_struct *mm)
1860 struct file *exe_file;
1862 if (!mm)
1863 goto out_null;
1865 exe_file = get_mm_exe_file(mm);
1866 if (!exe_file)
1867 goto out_null;
1869 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1870 fput(exe_file);
1871 return;
1872 out_null:
1873 audit_log_format(ab, " exe=(null)");
1876 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1878 const struct cred *cred;
1879 char comm[sizeof(tsk->comm)];
1880 struct tty_struct *tty;
1882 if (!ab)
1883 return;
1885 /* tsk == current */
1886 cred = current_cred();
1887 tty = audit_get_tty(tsk);
1888 audit_log_format(ab,
1889 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1890 " euid=%u suid=%u fsuid=%u"
1891 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1892 task_ppid_nr(tsk),
1893 task_pid_nr(tsk),
1894 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1895 from_kuid(&init_user_ns, cred->uid),
1896 from_kgid(&init_user_ns, cred->gid),
1897 from_kuid(&init_user_ns, cred->euid),
1898 from_kuid(&init_user_ns, cred->suid),
1899 from_kuid(&init_user_ns, cred->fsuid),
1900 from_kgid(&init_user_ns, cred->egid),
1901 from_kgid(&init_user_ns, cred->sgid),
1902 from_kgid(&init_user_ns, cred->fsgid),
1903 tty ? tty_name(tty) : "(none)",
1904 audit_get_sessionid(tsk));
1905 audit_put_tty(tty);
1906 audit_log_format(ab, " comm=");
1907 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1908 audit_log_d_path_exe(ab, tsk->mm);
1909 audit_log_task_context(ab);
1911 EXPORT_SYMBOL(audit_log_task_info);
1914 * audit_log_link_denied - report a link restriction denial
1915 * @operation: specific link operation
1916 * @link: the path that triggered the restriction
1918 void audit_log_link_denied(const char *operation, struct path *link)
1920 struct audit_buffer *ab;
1921 struct audit_names *name;
1923 name = kzalloc(sizeof(*name), GFP_NOFS);
1924 if (!name)
1925 return;
1927 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1928 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1929 AUDIT_ANOM_LINK);
1930 if (!ab)
1931 goto out;
1932 audit_log_format(ab, "op=%s", operation);
1933 audit_log_task_info(ab, current);
1934 audit_log_format(ab, " res=0");
1935 audit_log_end(ab);
1937 /* Generate AUDIT_PATH record with object. */
1938 name->type = AUDIT_TYPE_NORMAL;
1939 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1940 audit_log_name(current->audit_context, name, link, 0, NULL);
1941 out:
1942 kfree(name);
1946 * audit_log_end - end one audit record
1947 * @ab: the audit_buffer
1949 * netlink_unicast() cannot be called inside an irq context because it blocks
1950 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1951 * on a queue and a tasklet is scheduled to remove them from the queue outside
1952 * the irq context. May be called in any context.
1954 void audit_log_end(struct audit_buffer *ab)
1956 if (!ab)
1957 return;
1958 if (!audit_rate_check()) {
1959 audit_log_lost("rate limit exceeded");
1960 } else {
1961 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1963 nlh->nlmsg_len = ab->skb->len;
1964 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1967 * The original kaudit unicast socket sends up messages with
1968 * nlmsg_len set to the payload length rather than the entire
1969 * message length. This breaks the standard set by netlink.
1970 * The existing auditd daemon assumes this breakage. Fixing
1971 * this would require co-ordinating a change in the established
1972 * protocol between the kaudit kernel subsystem and the auditd
1973 * userspace code.
1975 nlh->nlmsg_len -= NLMSG_HDRLEN;
1977 if (audit_pid) {
1978 skb_queue_tail(&audit_skb_queue, ab->skb);
1979 wake_up_interruptible(&kauditd_wait);
1980 } else {
1981 audit_printk_skb(ab->skb);
1983 ab->skb = NULL;
1985 audit_buffer_free(ab);
1989 * audit_log - Log an audit record
1990 * @ctx: audit context
1991 * @gfp_mask: type of allocation
1992 * @type: audit message type
1993 * @fmt: format string to use
1994 * @...: variable parameters matching the format string
1996 * This is a convenience function that calls audit_log_start,
1997 * audit_log_vformat, and audit_log_end. It may be called
1998 * in any context.
2000 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2001 const char *fmt, ...)
2003 struct audit_buffer *ab;
2004 va_list args;
2006 ab = audit_log_start(ctx, gfp_mask, type);
2007 if (ab) {
2008 va_start(args, fmt);
2009 audit_log_vformat(ab, fmt, args);
2010 va_end(args);
2011 audit_log_end(ab);
2015 #ifdef CONFIG_SECURITY
2017 * audit_log_secctx - Converts and logs SELinux context
2018 * @ab: audit_buffer
2019 * @secid: security number
2021 * This is a helper function that calls security_secid_to_secctx to convert
2022 * secid to secctx and then adds the (converted) SELinux context to the audit
2023 * log by calling audit_log_format, thus also preventing leak of internal secid
2024 * to userspace. If secid cannot be converted audit_panic is called.
2026 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2028 u32 len;
2029 char *secctx;
2031 if (security_secid_to_secctx(secid, &secctx, &len)) {
2032 audit_panic("Cannot convert secid to context");
2033 } else {
2034 audit_log_format(ab, " obj=%s", secctx);
2035 security_release_secctx(secctx, len);
2038 EXPORT_SYMBOL(audit_log_secctx);
2039 #endif
2041 EXPORT_SYMBOL(audit_log_start);
2042 EXPORT_SYMBOL(audit_log_end);
2043 EXPORT_SYMBOL(audit_log_format);
2044 EXPORT_SYMBOL(audit_log);