dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / cgroup.c
blob4cb94b678e9fa81e125b7183cc9fa2c8f22843cd
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 static DEFINE_SPINLOCK(release_agent_path_lock);
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
125 static struct workqueue_struct *cgroup_destroy_wq;
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
145 #undef SUBSYS
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
160 #undef SUBSYS
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
166 #undef SUBSYS
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
180 static bool cgrp_dfl_root_visible;
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185 /* The list of hierarchy roots */
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
200 static u64 css_serial_nr_next = 1;
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 static bool cgroup_ssid_enabled(int ssid)
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 static bool cgroup_on_dfl(const struct cgroup *cgrp)
300 return cgrp->root == &cgrp_dfl_root;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
307 int ret;
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
319 void *ret;
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
327 static void cgroup_idr_remove(struct idr *idr, int id)
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
334 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
336 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
338 if (parent_css)
339 return container_of(parent_css, struct cgroup, self);
340 return NULL;
344 * cgroup_css - obtain a cgroup's css for the specified subsystem
345 * @cgrp: the cgroup of interest
346 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
348 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
349 * function must be called either under cgroup_mutex or rcu_read_lock() and
350 * the caller is responsible for pinning the returned css if it wants to
351 * keep accessing it outside the said locks. This function may return
352 * %NULL if @cgrp doesn't have @subsys_id enabled.
354 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
355 struct cgroup_subsys *ss)
357 if (ss)
358 return rcu_dereference_check(cgrp->subsys[ss->id],
359 lockdep_is_held(&cgroup_mutex));
360 else
361 return &cgrp->self;
365 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
366 * @cgrp: the cgroup of interest
367 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
369 * Similar to cgroup_css() but returns the effective css, which is defined
370 * as the matching css of the nearest ancestor including self which has @ss
371 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
372 * function is guaranteed to return non-NULL css.
374 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
375 struct cgroup_subsys *ss)
377 lockdep_assert_held(&cgroup_mutex);
379 if (!ss)
380 return &cgrp->self;
382 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
383 return NULL;
386 * This function is used while updating css associations and thus
387 * can't test the csses directly. Use ->child_subsys_mask.
389 while (cgroup_parent(cgrp) &&
390 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
391 cgrp = cgroup_parent(cgrp);
393 return cgroup_css(cgrp, ss);
397 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest
401 * Find and get the effective css of @cgrp for @ss. The effective css is
402 * defined as the matching css of the nearest ancestor including self which
403 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
404 * the root css is returned, so this function always returns a valid css.
405 * The returned css must be put using css_put().
407 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
410 struct cgroup_subsys_state *css;
412 rcu_read_lock();
414 do {
415 css = cgroup_css(cgrp, ss);
417 if (css && css_tryget_online(css))
418 goto out_unlock;
419 cgrp = cgroup_parent(cgrp);
420 } while (cgrp);
422 css = init_css_set.subsys[ss->id];
423 css_get(css);
424 out_unlock:
425 rcu_read_unlock();
426 return css;
429 /* convenient tests for these bits */
430 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
432 return !(cgrp->self.flags & CSS_ONLINE);
435 static void cgroup_get(struct cgroup *cgrp)
437 WARN_ON_ONCE(cgroup_is_dead(cgrp));
438 css_get(&cgrp->self);
441 static bool cgroup_tryget(struct cgroup *cgrp)
443 return css_tryget(&cgrp->self);
446 static void cgroup_put(struct cgroup *cgrp)
448 css_put(&cgrp->self);
451 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
453 struct cgroup *cgrp = of->kn->parent->priv;
454 struct cftype *cft = of_cft(of);
457 * This is open and unprotected implementation of cgroup_css().
458 * seq_css() is only called from a kernfs file operation which has
459 * an active reference on the file. Because all the subsystem
460 * files are drained before a css is disassociated with a cgroup,
461 * the matching css from the cgroup's subsys table is guaranteed to
462 * be and stay valid until the enclosing operation is complete.
464 if (cft->ss)
465 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
466 else
467 return &cgrp->self;
469 EXPORT_SYMBOL_GPL(of_css);
472 * cgroup_is_descendant - test ancestry
473 * @cgrp: the cgroup to be tested
474 * @ancestor: possible ancestor of @cgrp
476 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
477 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
478 * and @ancestor are accessible.
480 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
482 while (cgrp) {
483 if (cgrp == ancestor)
484 return true;
485 cgrp = cgroup_parent(cgrp);
487 return false;
490 static int notify_on_release(const struct cgroup *cgrp)
492 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
496 * for_each_css - iterate all css's of a cgroup
497 * @css: the iteration cursor
498 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
499 * @cgrp: the target cgroup to iterate css's of
501 * Should be called under cgroup_[tree_]mutex.
503 #define for_each_css(css, ssid, cgrp) \
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
505 if (!((css) = rcu_dereference_check( \
506 (cgrp)->subsys[(ssid)], \
507 lockdep_is_held(&cgroup_mutex)))) { } \
508 else
511 * for_each_e_css - iterate all effective css's of a cgroup
512 * @css: the iteration cursor
513 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
514 * @cgrp: the target cgroup to iterate css's of
516 * Should be called under cgroup_[tree_]mutex.
518 #define for_each_e_css(css, ssid, cgrp) \
519 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
520 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
522 else
525 * for_each_subsys - iterate all enabled cgroup subsystems
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
529 #define for_each_subsys(ss, ssid) \
530 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
531 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
534 * for_each_subsys_which - filter for_each_subsys with a bitmask
535 * @ss: the iteration cursor
536 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
537 * @ss_maskp: a pointer to the bitmask
539 * The block will only run for cases where the ssid-th bit (1 << ssid) of
540 * mask is set to 1.
542 #define for_each_subsys_which(ss, ssid, ss_maskp) \
543 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
544 (ssid) = 0; \
545 else \
546 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
547 if (((ss) = cgroup_subsys[ssid]) && false) \
548 break; \
549 else
551 /* iterate across the hierarchies */
552 #define for_each_root(root) \
553 list_for_each_entry((root), &cgroup_roots, root_list)
555 /* iterate over child cgrps, lock should be held throughout iteration */
556 #define cgroup_for_each_live_child(child, cgrp) \
557 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
558 if (({ lockdep_assert_held(&cgroup_mutex); \
559 cgroup_is_dead(child); })) \
561 else
563 static void cgroup_release_agent(struct work_struct *work);
564 static void check_for_release(struct cgroup *cgrp);
567 * A cgroup can be associated with multiple css_sets as different tasks may
568 * belong to different cgroups on different hierarchies. In the other
569 * direction, a css_set is naturally associated with multiple cgroups.
570 * This M:N relationship is represented by the following link structure
571 * which exists for each association and allows traversing the associations
572 * from both sides.
574 struct cgrp_cset_link {
575 /* the cgroup and css_set this link associates */
576 struct cgroup *cgrp;
577 struct css_set *cset;
579 /* list of cgrp_cset_links anchored at cgrp->cset_links */
580 struct list_head cset_link;
582 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
583 struct list_head cgrp_link;
587 * The default css_set - used by init and its children prior to any
588 * hierarchies being mounted. It contains a pointer to the root state
589 * for each subsystem. Also used to anchor the list of css_sets. Not
590 * reference-counted, to improve performance when child cgroups
591 * haven't been created.
593 struct css_set init_css_set = {
594 .refcount = ATOMIC_INIT(1),
595 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
596 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
597 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
598 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
599 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
600 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
603 static int css_set_count = 1; /* 1 for init_css_set */
606 * css_set_populated - does a css_set contain any tasks?
607 * @cset: target css_set
609 static bool css_set_populated(struct css_set *cset)
611 lockdep_assert_held(&css_set_lock);
613 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
617 * cgroup_update_populated - updated populated count of a cgroup
618 * @cgrp: the target cgroup
619 * @populated: inc or dec populated count
621 * One of the css_sets associated with @cgrp is either getting its first
622 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
623 * count is propagated towards root so that a given cgroup's populated_cnt
624 * is zero iff the cgroup and all its descendants don't contain any tasks.
626 * @cgrp's interface file "cgroup.populated" is zero if
627 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
628 * changes from or to zero, userland is notified that the content of the
629 * interface file has changed. This can be used to detect when @cgrp and
630 * its descendants become populated or empty.
632 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
634 lockdep_assert_held(&css_set_lock);
636 do {
637 bool trigger;
639 if (populated)
640 trigger = !cgrp->populated_cnt++;
641 else
642 trigger = !--cgrp->populated_cnt;
644 if (!trigger)
645 break;
647 check_for_release(cgrp);
648 cgroup_file_notify(&cgrp->events_file);
650 cgrp = cgroup_parent(cgrp);
651 } while (cgrp);
655 * css_set_update_populated - update populated state of a css_set
656 * @cset: target css_set
657 * @populated: whether @cset is populated or depopulated
659 * @cset is either getting the first task or losing the last. Update the
660 * ->populated_cnt of all associated cgroups accordingly.
662 static void css_set_update_populated(struct css_set *cset, bool populated)
664 struct cgrp_cset_link *link;
666 lockdep_assert_held(&css_set_lock);
668 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
669 cgroup_update_populated(link->cgrp, populated);
673 * css_set_move_task - move a task from one css_set to another
674 * @task: task being moved
675 * @from_cset: css_set @task currently belongs to (may be NULL)
676 * @to_cset: new css_set @task is being moved to (may be NULL)
677 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
679 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
680 * css_set, @from_cset can be NULL. If @task is being disassociated
681 * instead of moved, @to_cset can be NULL.
683 * This function automatically handles populated_cnt updates and
684 * css_task_iter adjustments but the caller is responsible for managing
685 * @from_cset and @to_cset's reference counts.
687 static void css_set_move_task(struct task_struct *task,
688 struct css_set *from_cset, struct css_set *to_cset,
689 bool use_mg_tasks)
691 lockdep_assert_held(&css_set_lock);
693 if (from_cset) {
694 struct css_task_iter *it, *pos;
696 WARN_ON_ONCE(list_empty(&task->cg_list));
699 * @task is leaving, advance task iterators which are
700 * pointing to it so that they can resume at the next
701 * position. Advancing an iterator might remove it from
702 * the list, use safe walk. See css_task_iter_advance*()
703 * for details.
705 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
706 iters_node)
707 if (it->task_pos == &task->cg_list)
708 css_task_iter_advance(it);
710 list_del_init(&task->cg_list);
711 if (!css_set_populated(from_cset))
712 css_set_update_populated(from_cset, false);
713 } else {
714 WARN_ON_ONCE(!list_empty(&task->cg_list));
717 if (to_cset) {
719 * We are synchronized through cgroup_threadgroup_rwsem
720 * against PF_EXITING setting such that we can't race
721 * against cgroup_exit() changing the css_set to
722 * init_css_set and dropping the old one.
724 WARN_ON_ONCE(task->flags & PF_EXITING);
726 if (!css_set_populated(to_cset))
727 css_set_update_populated(to_cset, true);
728 rcu_assign_pointer(task->cgroups, to_cset);
729 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
730 &to_cset->tasks);
735 * hash table for cgroup groups. This improves the performance to find
736 * an existing css_set. This hash doesn't (currently) take into
737 * account cgroups in empty hierarchies.
739 #define CSS_SET_HASH_BITS 7
740 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
742 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
744 unsigned long key = 0UL;
745 struct cgroup_subsys *ss;
746 int i;
748 for_each_subsys(ss, i)
749 key += (unsigned long)css[i];
750 key = (key >> 16) ^ key;
752 return key;
755 static void put_css_set_locked(struct css_set *cset)
757 struct cgrp_cset_link *link, *tmp_link;
758 struct cgroup_subsys *ss;
759 int ssid;
761 lockdep_assert_held(&css_set_lock);
763 if (!atomic_dec_and_test(&cset->refcount))
764 return;
766 /* This css_set is dead. unlink it and release cgroup and css refs */
767 for_each_subsys(ss, ssid) {
768 list_del(&cset->e_cset_node[ssid]);
769 css_put(cset->subsys[ssid]);
771 hash_del(&cset->hlist);
772 css_set_count--;
774 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
775 list_del(&link->cset_link);
776 list_del(&link->cgrp_link);
777 if (cgroup_parent(link->cgrp))
778 cgroup_put(link->cgrp);
779 kfree(link);
782 kfree_rcu(cset, rcu_head);
785 static void put_css_set(struct css_set *cset)
788 * Ensure that the refcount doesn't hit zero while any readers
789 * can see it. Similar to atomic_dec_and_lock(), but for an
790 * rwlock
792 if (atomic_add_unless(&cset->refcount, -1, 1))
793 return;
795 spin_lock_bh(&css_set_lock);
796 put_css_set_locked(cset);
797 spin_unlock_bh(&css_set_lock);
801 * refcounted get/put for css_set objects
803 static inline void get_css_set(struct css_set *cset)
805 atomic_inc(&cset->refcount);
809 * compare_css_sets - helper function for find_existing_css_set().
810 * @cset: candidate css_set being tested
811 * @old_cset: existing css_set for a task
812 * @new_cgrp: cgroup that's being entered by the task
813 * @template: desired set of css pointers in css_set (pre-calculated)
815 * Returns true if "cset" matches "old_cset" except for the hierarchy
816 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
818 static bool compare_css_sets(struct css_set *cset,
819 struct css_set *old_cset,
820 struct cgroup *new_cgrp,
821 struct cgroup_subsys_state *template[])
823 struct list_head *l1, *l2;
826 * On the default hierarchy, there can be csets which are
827 * associated with the same set of cgroups but different csses.
828 * Let's first ensure that csses match.
830 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
831 return false;
834 * Compare cgroup pointers in order to distinguish between
835 * different cgroups in hierarchies. As different cgroups may
836 * share the same effective css, this comparison is always
837 * necessary.
839 l1 = &cset->cgrp_links;
840 l2 = &old_cset->cgrp_links;
841 while (1) {
842 struct cgrp_cset_link *link1, *link2;
843 struct cgroup *cgrp1, *cgrp2;
845 l1 = l1->next;
846 l2 = l2->next;
847 /* See if we reached the end - both lists are equal length. */
848 if (l1 == &cset->cgrp_links) {
849 BUG_ON(l2 != &old_cset->cgrp_links);
850 break;
851 } else {
852 BUG_ON(l2 == &old_cset->cgrp_links);
854 /* Locate the cgroups associated with these links. */
855 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
856 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
857 cgrp1 = link1->cgrp;
858 cgrp2 = link2->cgrp;
859 /* Hierarchies should be linked in the same order. */
860 BUG_ON(cgrp1->root != cgrp2->root);
863 * If this hierarchy is the hierarchy of the cgroup
864 * that's changing, then we need to check that this
865 * css_set points to the new cgroup; if it's any other
866 * hierarchy, then this css_set should point to the
867 * same cgroup as the old css_set.
869 if (cgrp1->root == new_cgrp->root) {
870 if (cgrp1 != new_cgrp)
871 return false;
872 } else {
873 if (cgrp1 != cgrp2)
874 return false;
877 return true;
881 * find_existing_css_set - init css array and find the matching css_set
882 * @old_cset: the css_set that we're using before the cgroup transition
883 * @cgrp: the cgroup that we're moving into
884 * @template: out param for the new set of csses, should be clear on entry
886 static struct css_set *find_existing_css_set(struct css_set *old_cset,
887 struct cgroup *cgrp,
888 struct cgroup_subsys_state *template[])
890 struct cgroup_root *root = cgrp->root;
891 struct cgroup_subsys *ss;
892 struct css_set *cset;
893 unsigned long key;
894 int i;
897 * Build the set of subsystem state objects that we want to see in the
898 * new css_set. while subsystems can change globally, the entries here
899 * won't change, so no need for locking.
901 for_each_subsys(ss, i) {
902 if (root->subsys_mask & (1UL << i)) {
904 * @ss is in this hierarchy, so we want the
905 * effective css from @cgrp.
907 template[i] = cgroup_e_css(cgrp, ss);
908 } else {
910 * @ss is not in this hierarchy, so we don't want
911 * to change the css.
913 template[i] = old_cset->subsys[i];
917 key = css_set_hash(template);
918 hash_for_each_possible(css_set_table, cset, hlist, key) {
919 if (!compare_css_sets(cset, old_cset, cgrp, template))
920 continue;
922 /* This css_set matches what we need */
923 return cset;
926 /* No existing cgroup group matched */
927 return NULL;
930 static void free_cgrp_cset_links(struct list_head *links_to_free)
932 struct cgrp_cset_link *link, *tmp_link;
934 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
935 list_del(&link->cset_link);
936 kfree(link);
941 * allocate_cgrp_cset_links - allocate cgrp_cset_links
942 * @count: the number of links to allocate
943 * @tmp_links: list_head the allocated links are put on
945 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
946 * through ->cset_link. Returns 0 on success or -errno.
948 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
950 struct cgrp_cset_link *link;
951 int i;
953 INIT_LIST_HEAD(tmp_links);
955 for (i = 0; i < count; i++) {
956 link = kzalloc(sizeof(*link), GFP_KERNEL);
957 if (!link) {
958 free_cgrp_cset_links(tmp_links);
959 return -ENOMEM;
961 list_add(&link->cset_link, tmp_links);
963 return 0;
967 * link_css_set - a helper function to link a css_set to a cgroup
968 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
969 * @cset: the css_set to be linked
970 * @cgrp: the destination cgroup
972 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
973 struct cgroup *cgrp)
975 struct cgrp_cset_link *link;
977 BUG_ON(list_empty(tmp_links));
979 if (cgroup_on_dfl(cgrp))
980 cset->dfl_cgrp = cgrp;
982 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
983 link->cset = cset;
984 link->cgrp = cgrp;
987 * Always add links to the tail of the lists so that the lists are
988 * in choronological order.
990 list_move_tail(&link->cset_link, &cgrp->cset_links);
991 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
993 if (cgroup_parent(cgrp))
994 cgroup_get(cgrp);
998 * find_css_set - return a new css_set with one cgroup updated
999 * @old_cset: the baseline css_set
1000 * @cgrp: the cgroup to be updated
1002 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1003 * substituted into the appropriate hierarchy.
1005 static struct css_set *find_css_set(struct css_set *old_cset,
1006 struct cgroup *cgrp)
1008 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1009 struct css_set *cset;
1010 struct list_head tmp_links;
1011 struct cgrp_cset_link *link;
1012 struct cgroup_subsys *ss;
1013 unsigned long key;
1014 int ssid;
1016 lockdep_assert_held(&cgroup_mutex);
1018 /* First see if we already have a cgroup group that matches
1019 * the desired set */
1020 spin_lock_bh(&css_set_lock);
1021 cset = find_existing_css_set(old_cset, cgrp, template);
1022 if (cset)
1023 get_css_set(cset);
1024 spin_unlock_bh(&css_set_lock);
1026 if (cset)
1027 return cset;
1029 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1030 if (!cset)
1031 return NULL;
1033 /* Allocate all the cgrp_cset_link objects that we'll need */
1034 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1035 kfree(cset);
1036 return NULL;
1039 atomic_set(&cset->refcount, 1);
1040 INIT_LIST_HEAD(&cset->cgrp_links);
1041 INIT_LIST_HEAD(&cset->tasks);
1042 INIT_LIST_HEAD(&cset->mg_tasks);
1043 INIT_LIST_HEAD(&cset->mg_preload_node);
1044 INIT_LIST_HEAD(&cset->mg_node);
1045 INIT_LIST_HEAD(&cset->task_iters);
1046 INIT_HLIST_NODE(&cset->hlist);
1048 /* Copy the set of subsystem state objects generated in
1049 * find_existing_css_set() */
1050 memcpy(cset->subsys, template, sizeof(cset->subsys));
1052 spin_lock_bh(&css_set_lock);
1053 /* Add reference counts and links from the new css_set. */
1054 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1055 struct cgroup *c = link->cgrp;
1057 if (c->root == cgrp->root)
1058 c = cgrp;
1059 link_css_set(&tmp_links, cset, c);
1062 BUG_ON(!list_empty(&tmp_links));
1064 css_set_count++;
1066 /* Add @cset to the hash table */
1067 key = css_set_hash(cset->subsys);
1068 hash_add(css_set_table, &cset->hlist, key);
1070 for_each_subsys(ss, ssid) {
1071 struct cgroup_subsys_state *css = cset->subsys[ssid];
1073 list_add_tail(&cset->e_cset_node[ssid],
1074 &css->cgroup->e_csets[ssid]);
1075 css_get(css);
1078 spin_unlock_bh(&css_set_lock);
1080 return cset;
1083 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1085 struct cgroup *root_cgrp = kf_root->kn->priv;
1087 return root_cgrp->root;
1090 static int cgroup_init_root_id(struct cgroup_root *root)
1092 int id;
1094 lockdep_assert_held(&cgroup_mutex);
1096 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1097 if (id < 0)
1098 return id;
1100 root->hierarchy_id = id;
1101 return 0;
1104 static void cgroup_exit_root_id(struct cgroup_root *root)
1106 lockdep_assert_held(&cgroup_mutex);
1108 if (root->hierarchy_id) {
1109 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1110 root->hierarchy_id = 0;
1114 static void cgroup_free_root(struct cgroup_root *root)
1116 if (root) {
1117 /* hierarchy ID should already have been released */
1118 WARN_ON_ONCE(root->hierarchy_id);
1120 idr_destroy(&root->cgroup_idr);
1121 kfree(root);
1125 static void cgroup_destroy_root(struct cgroup_root *root)
1127 struct cgroup *cgrp = &root->cgrp;
1128 struct cgrp_cset_link *link, *tmp_link;
1130 mutex_lock(&cgroup_mutex);
1132 BUG_ON(atomic_read(&root->nr_cgrps));
1133 BUG_ON(!list_empty(&cgrp->self.children));
1135 /* Rebind all subsystems back to the default hierarchy */
1136 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1139 * Release all the links from cset_links to this hierarchy's
1140 * root cgroup
1142 spin_lock_bh(&css_set_lock);
1144 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1145 list_del(&link->cset_link);
1146 list_del(&link->cgrp_link);
1147 kfree(link);
1150 spin_unlock_bh(&css_set_lock);
1152 if (!list_empty(&root->root_list)) {
1153 list_del(&root->root_list);
1154 cgroup_root_count--;
1157 cgroup_exit_root_id(root);
1159 mutex_unlock(&cgroup_mutex);
1161 kernfs_destroy_root(root->kf_root);
1162 cgroup_free_root(root);
1165 /* look up cgroup associated with given css_set on the specified hierarchy */
1166 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1167 struct cgroup_root *root)
1169 struct cgroup *res = NULL;
1171 lockdep_assert_held(&cgroup_mutex);
1172 lockdep_assert_held(&css_set_lock);
1174 if (cset == &init_css_set) {
1175 res = &root->cgrp;
1176 } else {
1177 struct cgrp_cset_link *link;
1179 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1180 struct cgroup *c = link->cgrp;
1182 if (c->root == root) {
1183 res = c;
1184 break;
1189 BUG_ON(!res);
1190 return res;
1194 * Return the cgroup for "task" from the given hierarchy. Must be
1195 * called with cgroup_mutex and css_set_lock held.
1197 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1198 struct cgroup_root *root)
1201 * No need to lock the task - since we hold cgroup_mutex the
1202 * task can't change groups, so the only thing that can happen
1203 * is that it exits and its css is set back to init_css_set.
1205 return cset_cgroup_from_root(task_css_set(task), root);
1209 * A task must hold cgroup_mutex to modify cgroups.
1211 * Any task can increment and decrement the count field without lock.
1212 * So in general, code holding cgroup_mutex can't rely on the count
1213 * field not changing. However, if the count goes to zero, then only
1214 * cgroup_attach_task() can increment it again. Because a count of zero
1215 * means that no tasks are currently attached, therefore there is no
1216 * way a task attached to that cgroup can fork (the other way to
1217 * increment the count). So code holding cgroup_mutex can safely
1218 * assume that if the count is zero, it will stay zero. Similarly, if
1219 * a task holds cgroup_mutex on a cgroup with zero count, it
1220 * knows that the cgroup won't be removed, as cgroup_rmdir()
1221 * needs that mutex.
1223 * A cgroup can only be deleted if both its 'count' of using tasks
1224 * is zero, and its list of 'children' cgroups is empty. Since all
1225 * tasks in the system use _some_ cgroup, and since there is always at
1226 * least one task in the system (init, pid == 1), therefore, root cgroup
1227 * always has either children cgroups and/or using tasks. So we don't
1228 * need a special hack to ensure that root cgroup cannot be deleted.
1230 * P.S. One more locking exception. RCU is used to guard the
1231 * update of a tasks cgroup pointer by cgroup_attach_task()
1234 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1235 static const struct file_operations proc_cgroupstats_operations;
1237 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1238 char *buf)
1240 struct cgroup_subsys *ss = cft->ss;
1242 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1243 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1244 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1245 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1246 cft->name);
1247 else
1248 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1249 return buf;
1253 * cgroup_file_mode - deduce file mode of a control file
1254 * @cft: the control file in question
1256 * S_IRUGO for read, S_IWUSR for write.
1258 static umode_t cgroup_file_mode(const struct cftype *cft)
1260 umode_t mode = 0;
1262 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1263 mode |= S_IRUGO;
1265 if (cft->write_u64 || cft->write_s64 || cft->write) {
1266 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1267 mode |= S_IWUGO;
1268 else
1269 mode |= S_IWUSR;
1272 return mode;
1276 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1277 * @cgrp: the target cgroup
1278 * @subtree_control: the new subtree_control mask to consider
1280 * On the default hierarchy, a subsystem may request other subsystems to be
1281 * enabled together through its ->depends_on mask. In such cases, more
1282 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1284 * This function calculates which subsystems need to be enabled if
1285 * @subtree_control is to be applied to @cgrp. The returned mask is always
1286 * a superset of @subtree_control and follows the usual hierarchy rules.
1288 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1289 unsigned long subtree_control)
1291 struct cgroup *parent = cgroup_parent(cgrp);
1292 unsigned long cur_ss_mask = subtree_control;
1293 struct cgroup_subsys *ss;
1294 int ssid;
1296 lockdep_assert_held(&cgroup_mutex);
1298 if (!cgroup_on_dfl(cgrp))
1299 return cur_ss_mask;
1301 while (true) {
1302 unsigned long new_ss_mask = cur_ss_mask;
1304 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1305 new_ss_mask |= ss->depends_on;
1308 * Mask out subsystems which aren't available. This can
1309 * happen only if some depended-upon subsystems were bound
1310 * to non-default hierarchies.
1312 if (parent)
1313 new_ss_mask &= parent->child_subsys_mask;
1314 else
1315 new_ss_mask &= cgrp->root->subsys_mask;
1317 if (new_ss_mask == cur_ss_mask)
1318 break;
1319 cur_ss_mask = new_ss_mask;
1322 return cur_ss_mask;
1326 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1327 * @cgrp: the target cgroup
1329 * Update @cgrp->child_subsys_mask according to the current
1330 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1332 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1334 cgrp->child_subsys_mask =
1335 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1339 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1340 * @kn: the kernfs_node being serviced
1342 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1343 * the method finishes if locking succeeded. Note that once this function
1344 * returns the cgroup returned by cgroup_kn_lock_live() may become
1345 * inaccessible any time. If the caller intends to continue to access the
1346 * cgroup, it should pin it before invoking this function.
1348 static void cgroup_kn_unlock(struct kernfs_node *kn)
1350 struct cgroup *cgrp;
1352 if (kernfs_type(kn) == KERNFS_DIR)
1353 cgrp = kn->priv;
1354 else
1355 cgrp = kn->parent->priv;
1357 mutex_unlock(&cgroup_mutex);
1359 kernfs_unbreak_active_protection(kn);
1360 cgroup_put(cgrp);
1364 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1365 * @kn: the kernfs_node being serviced
1367 * This helper is to be used by a cgroup kernfs method currently servicing
1368 * @kn. It breaks the active protection, performs cgroup locking and
1369 * verifies that the associated cgroup is alive. Returns the cgroup if
1370 * alive; otherwise, %NULL. A successful return should be undone by a
1371 * matching cgroup_kn_unlock() invocation.
1373 * Any cgroup kernfs method implementation which requires locking the
1374 * associated cgroup should use this helper. It avoids nesting cgroup
1375 * locking under kernfs active protection and allows all kernfs operations
1376 * including self-removal.
1378 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1380 struct cgroup *cgrp;
1382 if (kernfs_type(kn) == KERNFS_DIR)
1383 cgrp = kn->priv;
1384 else
1385 cgrp = kn->parent->priv;
1388 * We're gonna grab cgroup_mutex which nests outside kernfs
1389 * active_ref. cgroup liveliness check alone provides enough
1390 * protection against removal. Ensure @cgrp stays accessible and
1391 * break the active_ref protection.
1393 if (!cgroup_tryget(cgrp))
1394 return NULL;
1395 kernfs_break_active_protection(kn);
1397 mutex_lock(&cgroup_mutex);
1399 if (!cgroup_is_dead(cgrp))
1400 return cgrp;
1402 cgroup_kn_unlock(kn);
1403 return NULL;
1406 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1408 char name[CGROUP_FILE_NAME_MAX];
1410 lockdep_assert_held(&cgroup_mutex);
1412 if (cft->file_offset) {
1413 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1414 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1416 spin_lock_irq(&cgroup_file_kn_lock);
1417 cfile->kn = NULL;
1418 spin_unlock_irq(&cgroup_file_kn_lock);
1421 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1425 * css_clear_dir - remove subsys files in a cgroup directory
1426 * @css: taget css
1427 * @cgrp_override: specify if target cgroup is different from css->cgroup
1429 static void css_clear_dir(struct cgroup_subsys_state *css,
1430 struct cgroup *cgrp_override)
1432 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1433 struct cftype *cfts;
1435 list_for_each_entry(cfts, &css->ss->cfts, node)
1436 cgroup_addrm_files(css, cgrp, cfts, false);
1440 * css_populate_dir - create subsys files in a cgroup directory
1441 * @css: target css
1442 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1444 * On failure, no file is added.
1446 static int css_populate_dir(struct cgroup_subsys_state *css,
1447 struct cgroup *cgrp_override)
1449 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1450 struct cftype *cfts, *failed_cfts;
1451 int ret;
1453 if (!css->ss) {
1454 if (cgroup_on_dfl(cgrp))
1455 cfts = cgroup_dfl_base_files;
1456 else
1457 cfts = cgroup_legacy_base_files;
1459 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1462 list_for_each_entry(cfts, &css->ss->cfts, node) {
1463 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1464 if (ret < 0) {
1465 failed_cfts = cfts;
1466 goto err;
1469 return 0;
1470 err:
1471 list_for_each_entry(cfts, &css->ss->cfts, node) {
1472 if (cfts == failed_cfts)
1473 break;
1474 cgroup_addrm_files(css, cgrp, cfts, false);
1476 return ret;
1479 static int rebind_subsystems(struct cgroup_root *dst_root,
1480 unsigned long ss_mask)
1482 struct cgroup *dcgrp = &dst_root->cgrp;
1483 struct cgroup_subsys *ss;
1484 unsigned long tmp_ss_mask;
1485 int ssid, i, ret;
1487 lockdep_assert_held(&cgroup_mutex);
1489 for_each_subsys_which(ss, ssid, &ss_mask) {
1490 /* if @ss has non-root csses attached to it, can't move */
1491 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1492 return -EBUSY;
1494 /* can't move between two non-dummy roots either */
1495 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1496 return -EBUSY;
1499 /* skip creating root files on dfl_root for inhibited subsystems */
1500 tmp_ss_mask = ss_mask;
1501 if (dst_root == &cgrp_dfl_root)
1502 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1504 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1505 struct cgroup *scgrp = &ss->root->cgrp;
1506 int tssid;
1508 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1509 if (!ret)
1510 continue;
1513 * Rebinding back to the default root is not allowed to
1514 * fail. Using both default and non-default roots should
1515 * be rare. Moving subsystems back and forth even more so.
1516 * Just warn about it and continue.
1518 if (dst_root == &cgrp_dfl_root) {
1519 if (cgrp_dfl_root_visible) {
1520 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1521 ret, ss_mask);
1522 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1524 continue;
1527 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1528 if (tssid == ssid)
1529 break;
1530 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1532 return ret;
1536 * Nothing can fail from this point on. Remove files for the
1537 * removed subsystems and rebind each subsystem.
1539 for_each_subsys_which(ss, ssid, &ss_mask) {
1540 struct cgroup_root *src_root = ss->root;
1541 struct cgroup *scgrp = &src_root->cgrp;
1542 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1543 struct css_set *cset;
1545 WARN_ON(!css || cgroup_css(dcgrp, ss));
1547 css_clear_dir(css, NULL);
1549 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1550 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1551 ss->root = dst_root;
1552 css->cgroup = dcgrp;
1554 spin_lock_bh(&css_set_lock);
1555 hash_for_each(css_set_table, i, cset, hlist)
1556 list_move_tail(&cset->e_cset_node[ss->id],
1557 &dcgrp->e_csets[ss->id]);
1558 spin_unlock_bh(&css_set_lock);
1560 src_root->subsys_mask &= ~(1 << ssid);
1561 scgrp->subtree_control &= ~(1 << ssid);
1562 cgroup_refresh_child_subsys_mask(scgrp);
1564 /* default hierarchy doesn't enable controllers by default */
1565 dst_root->subsys_mask |= 1 << ssid;
1566 if (dst_root == &cgrp_dfl_root) {
1567 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1568 } else {
1569 dcgrp->subtree_control |= 1 << ssid;
1570 cgroup_refresh_child_subsys_mask(dcgrp);
1571 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1574 if (ss->bind)
1575 ss->bind(css);
1578 kernfs_activate(dcgrp->kn);
1579 return 0;
1582 static int cgroup_show_options(struct seq_file *seq,
1583 struct kernfs_root *kf_root)
1585 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1586 struct cgroup_subsys *ss;
1587 int ssid;
1589 if (root != &cgrp_dfl_root)
1590 for_each_subsys(ss, ssid)
1591 if (root->subsys_mask & (1 << ssid))
1592 seq_show_option(seq, ss->legacy_name, NULL);
1593 if (root->flags & CGRP_ROOT_NOPREFIX)
1594 seq_puts(seq, ",noprefix");
1595 if (root->flags & CGRP_ROOT_XATTR)
1596 seq_puts(seq, ",xattr");
1598 spin_lock(&release_agent_path_lock);
1599 if (strlen(root->release_agent_path))
1600 seq_show_option(seq, "release_agent",
1601 root->release_agent_path);
1602 spin_unlock(&release_agent_path_lock);
1604 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1605 seq_puts(seq, ",clone_children");
1606 if (strlen(root->name))
1607 seq_show_option(seq, "name", root->name);
1608 return 0;
1611 struct cgroup_sb_opts {
1612 unsigned long subsys_mask;
1613 unsigned int flags;
1614 char *release_agent;
1615 bool cpuset_clone_children;
1616 char *name;
1617 /* User explicitly requested empty subsystem */
1618 bool none;
1621 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1623 char *token, *o = data;
1624 bool all_ss = false, one_ss = false;
1625 unsigned long mask = -1UL;
1626 struct cgroup_subsys *ss;
1627 int nr_opts = 0;
1628 int i;
1630 #ifdef CONFIG_CPUSETS
1631 mask = ~(1U << cpuset_cgrp_id);
1632 #endif
1634 memset(opts, 0, sizeof(*opts));
1636 while ((token = strsep(&o, ",")) != NULL) {
1637 nr_opts++;
1639 if (!*token)
1640 return -EINVAL;
1641 if (!strcmp(token, "none")) {
1642 /* Explicitly have no subsystems */
1643 opts->none = true;
1644 continue;
1646 if (!strcmp(token, "all")) {
1647 /* Mutually exclusive option 'all' + subsystem name */
1648 if (one_ss)
1649 return -EINVAL;
1650 all_ss = true;
1651 continue;
1653 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1654 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1655 continue;
1657 if (!strcmp(token, "noprefix")) {
1658 opts->flags |= CGRP_ROOT_NOPREFIX;
1659 continue;
1661 if (!strcmp(token, "clone_children")) {
1662 opts->cpuset_clone_children = true;
1663 continue;
1665 if (!strcmp(token, "xattr")) {
1666 opts->flags |= CGRP_ROOT_XATTR;
1667 continue;
1669 if (!strncmp(token, "release_agent=", 14)) {
1670 /* Specifying two release agents is forbidden */
1671 if (opts->release_agent)
1672 return -EINVAL;
1673 opts->release_agent =
1674 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1675 if (!opts->release_agent)
1676 return -ENOMEM;
1677 continue;
1679 if (!strncmp(token, "name=", 5)) {
1680 const char *name = token + 5;
1681 /* Can't specify an empty name */
1682 if (!strlen(name))
1683 return -EINVAL;
1684 /* Must match [\w.-]+ */
1685 for (i = 0; i < strlen(name); i++) {
1686 char c = name[i];
1687 if (isalnum(c))
1688 continue;
1689 if ((c == '.') || (c == '-') || (c == '_'))
1690 continue;
1691 return -EINVAL;
1693 /* Specifying two names is forbidden */
1694 if (opts->name)
1695 return -EINVAL;
1696 opts->name = kstrndup(name,
1697 MAX_CGROUP_ROOT_NAMELEN - 1,
1698 GFP_KERNEL);
1699 if (!opts->name)
1700 return -ENOMEM;
1702 continue;
1705 for_each_subsys(ss, i) {
1706 if (strcmp(token, ss->legacy_name))
1707 continue;
1708 if (!cgroup_ssid_enabled(i))
1709 continue;
1711 /* Mutually exclusive option 'all' + subsystem name */
1712 if (all_ss)
1713 return -EINVAL;
1714 opts->subsys_mask |= (1 << i);
1715 one_ss = true;
1717 break;
1719 if (i == CGROUP_SUBSYS_COUNT)
1720 return -ENOENT;
1723 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1724 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1725 if (nr_opts != 1) {
1726 pr_err("sane_behavior: no other mount options allowed\n");
1727 return -EINVAL;
1729 return 0;
1733 * If the 'all' option was specified select all the subsystems,
1734 * otherwise if 'none', 'name=' and a subsystem name options were
1735 * not specified, let's default to 'all'
1737 if (all_ss || (!one_ss && !opts->none && !opts->name))
1738 for_each_subsys(ss, i)
1739 if (cgroup_ssid_enabled(i))
1740 opts->subsys_mask |= (1 << i);
1743 * We either have to specify by name or by subsystems. (So all
1744 * empty hierarchies must have a name).
1746 if (!opts->subsys_mask && !opts->name)
1747 return -EINVAL;
1750 * Option noprefix was introduced just for backward compatibility
1751 * with the old cpuset, so we allow noprefix only if mounting just
1752 * the cpuset subsystem.
1754 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1755 return -EINVAL;
1757 /* Can't specify "none" and some subsystems */
1758 if (opts->subsys_mask && opts->none)
1759 return -EINVAL;
1761 return 0;
1764 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1766 int ret = 0;
1767 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1768 struct cgroup_sb_opts opts;
1769 unsigned long added_mask, removed_mask;
1771 if (root == &cgrp_dfl_root) {
1772 pr_err("remount is not allowed\n");
1773 return -EINVAL;
1776 mutex_lock(&cgroup_mutex);
1778 /* See what subsystems are wanted */
1779 ret = parse_cgroupfs_options(data, &opts);
1780 if (ret)
1781 goto out_unlock;
1783 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1784 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1785 task_tgid_nr(current), current->comm);
1787 added_mask = opts.subsys_mask & ~root->subsys_mask;
1788 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1790 /* Don't allow flags or name to change at remount */
1791 if ((opts.flags ^ root->flags) ||
1792 (opts.name && strcmp(opts.name, root->name))) {
1793 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1794 opts.flags, opts.name ?: "", root->flags, root->name);
1795 ret = -EINVAL;
1796 goto out_unlock;
1799 /* remounting is not allowed for populated hierarchies */
1800 if (!list_empty(&root->cgrp.self.children)) {
1801 ret = -EBUSY;
1802 goto out_unlock;
1805 ret = rebind_subsystems(root, added_mask);
1806 if (ret)
1807 goto out_unlock;
1809 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1811 if (opts.release_agent) {
1812 spin_lock(&release_agent_path_lock);
1813 strcpy(root->release_agent_path, opts.release_agent);
1814 spin_unlock(&release_agent_path_lock);
1816 out_unlock:
1817 kfree(opts.release_agent);
1818 kfree(opts.name);
1819 mutex_unlock(&cgroup_mutex);
1820 return ret;
1824 * To reduce the fork() overhead for systems that are not actually using
1825 * their cgroups capability, we don't maintain the lists running through
1826 * each css_set to its tasks until we see the list actually used - in other
1827 * words after the first mount.
1829 static bool use_task_css_set_links __read_mostly;
1831 static void cgroup_enable_task_cg_lists(void)
1833 struct task_struct *p, *g;
1835 spin_lock_bh(&css_set_lock);
1837 if (use_task_css_set_links)
1838 goto out_unlock;
1840 use_task_css_set_links = true;
1843 * We need tasklist_lock because RCU is not safe against
1844 * while_each_thread(). Besides, a forking task that has passed
1845 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1846 * is not guaranteed to have its child immediately visible in the
1847 * tasklist if we walk through it with RCU.
1849 read_lock(&tasklist_lock);
1850 do_each_thread(g, p) {
1851 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1852 task_css_set(p) != &init_css_set);
1855 * We should check if the process is exiting, otherwise
1856 * it will race with cgroup_exit() in that the list
1857 * entry won't be deleted though the process has exited.
1858 * Do it while holding siglock so that we don't end up
1859 * racing against cgroup_exit().
1861 spin_lock_irq(&p->sighand->siglock);
1862 if (!(p->flags & PF_EXITING)) {
1863 struct css_set *cset = task_css_set(p);
1865 if (!css_set_populated(cset))
1866 css_set_update_populated(cset, true);
1867 list_add_tail(&p->cg_list, &cset->tasks);
1868 get_css_set(cset);
1870 spin_unlock_irq(&p->sighand->siglock);
1871 } while_each_thread(g, p);
1872 read_unlock(&tasklist_lock);
1873 out_unlock:
1874 spin_unlock_bh(&css_set_lock);
1877 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1879 struct cgroup_subsys *ss;
1880 int ssid;
1882 INIT_LIST_HEAD(&cgrp->self.sibling);
1883 INIT_LIST_HEAD(&cgrp->self.children);
1884 INIT_LIST_HEAD(&cgrp->cset_links);
1885 INIT_LIST_HEAD(&cgrp->pidlists);
1886 mutex_init(&cgrp->pidlist_mutex);
1887 cgrp->self.cgroup = cgrp;
1888 cgrp->self.flags |= CSS_ONLINE;
1890 for_each_subsys(ss, ssid)
1891 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1893 init_waitqueue_head(&cgrp->offline_waitq);
1894 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1897 static void init_cgroup_root(struct cgroup_root *root,
1898 struct cgroup_sb_opts *opts)
1900 struct cgroup *cgrp = &root->cgrp;
1902 INIT_LIST_HEAD(&root->root_list);
1903 atomic_set(&root->nr_cgrps, 1);
1904 cgrp->root = root;
1905 init_cgroup_housekeeping(cgrp);
1906 idr_init(&root->cgroup_idr);
1908 root->flags = opts->flags;
1909 if (opts->release_agent)
1910 strcpy(root->release_agent_path, opts->release_agent);
1911 if (opts->name)
1912 strcpy(root->name, opts->name);
1913 if (opts->cpuset_clone_children)
1914 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1917 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1919 LIST_HEAD(tmp_links);
1920 struct cgroup *root_cgrp = &root->cgrp;
1921 struct css_set *cset;
1922 int i, ret;
1924 lockdep_assert_held(&cgroup_mutex);
1926 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1927 if (ret < 0)
1928 goto out;
1929 root_cgrp->id = ret;
1931 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1932 GFP_KERNEL);
1933 if (ret)
1934 goto out;
1937 * We're accessing css_set_count without locking css_set_lock here,
1938 * but that's OK - it can only be increased by someone holding
1939 * cgroup_lock, and that's us. The worst that can happen is that we
1940 * have some link structures left over
1942 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1943 if (ret)
1944 goto cancel_ref;
1946 ret = cgroup_init_root_id(root);
1947 if (ret)
1948 goto cancel_ref;
1950 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1951 KERNFS_ROOT_CREATE_DEACTIVATED,
1952 root_cgrp);
1953 if (IS_ERR(root->kf_root)) {
1954 ret = PTR_ERR(root->kf_root);
1955 goto exit_root_id;
1957 root_cgrp->kn = root->kf_root->kn;
1959 ret = css_populate_dir(&root_cgrp->self, NULL);
1960 if (ret)
1961 goto destroy_root;
1963 ret = rebind_subsystems(root, ss_mask);
1964 if (ret)
1965 goto destroy_root;
1968 * There must be no failure case after here, since rebinding takes
1969 * care of subsystems' refcounts, which are explicitly dropped in
1970 * the failure exit path.
1972 list_add(&root->root_list, &cgroup_roots);
1973 cgroup_root_count++;
1976 * Link the root cgroup in this hierarchy into all the css_set
1977 * objects.
1979 spin_lock_bh(&css_set_lock);
1980 hash_for_each(css_set_table, i, cset, hlist) {
1981 link_css_set(&tmp_links, cset, root_cgrp);
1982 if (css_set_populated(cset))
1983 cgroup_update_populated(root_cgrp, true);
1985 spin_unlock_bh(&css_set_lock);
1987 BUG_ON(!list_empty(&root_cgrp->self.children));
1988 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1990 kernfs_activate(root_cgrp->kn);
1991 ret = 0;
1992 goto out;
1994 destroy_root:
1995 kernfs_destroy_root(root->kf_root);
1996 root->kf_root = NULL;
1997 exit_root_id:
1998 cgroup_exit_root_id(root);
1999 cancel_ref:
2000 percpu_ref_exit(&root_cgrp->self.refcnt);
2001 out:
2002 free_cgrp_cset_links(&tmp_links);
2003 return ret;
2006 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2007 int flags, const char *unused_dev_name,
2008 void *data)
2010 struct super_block *pinned_sb = NULL;
2011 struct cgroup_subsys *ss;
2012 struct cgroup_root *root;
2013 struct cgroup_sb_opts opts;
2014 struct dentry *dentry;
2015 int ret;
2016 int i;
2017 bool new_sb;
2020 * The first time anyone tries to mount a cgroup, enable the list
2021 * linking each css_set to its tasks and fix up all existing tasks.
2023 if (!use_task_css_set_links)
2024 cgroup_enable_task_cg_lists();
2026 mutex_lock(&cgroup_mutex);
2028 /* First find the desired set of subsystems */
2029 ret = parse_cgroupfs_options(data, &opts);
2030 if (ret)
2031 goto out_unlock;
2033 /* look for a matching existing root */
2034 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2035 cgrp_dfl_root_visible = true;
2036 root = &cgrp_dfl_root;
2037 cgroup_get(&root->cgrp);
2038 ret = 0;
2039 goto out_unlock;
2043 * Destruction of cgroup root is asynchronous, so subsystems may
2044 * still be dying after the previous unmount. Let's drain the
2045 * dying subsystems. We just need to ensure that the ones
2046 * unmounted previously finish dying and don't care about new ones
2047 * starting. Testing ref liveliness is good enough.
2049 for_each_subsys(ss, i) {
2050 if (!(opts.subsys_mask & (1 << i)) ||
2051 ss->root == &cgrp_dfl_root)
2052 continue;
2054 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2055 mutex_unlock(&cgroup_mutex);
2056 msleep(10);
2057 ret = restart_syscall();
2058 goto out_free;
2060 cgroup_put(&ss->root->cgrp);
2063 for_each_root(root) {
2064 bool name_match = false;
2066 if (root == &cgrp_dfl_root)
2067 continue;
2070 * If we asked for a name then it must match. Also, if
2071 * name matches but sybsys_mask doesn't, we should fail.
2072 * Remember whether name matched.
2074 if (opts.name) {
2075 if (strcmp(opts.name, root->name))
2076 continue;
2077 name_match = true;
2081 * If we asked for subsystems (or explicitly for no
2082 * subsystems) then they must match.
2084 if ((opts.subsys_mask || opts.none) &&
2085 (opts.subsys_mask != root->subsys_mask)) {
2086 if (!name_match)
2087 continue;
2088 ret = -EBUSY;
2089 goto out_unlock;
2092 if (root->flags ^ opts.flags)
2093 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2096 * We want to reuse @root whose lifetime is governed by its
2097 * ->cgrp. Let's check whether @root is alive and keep it
2098 * that way. As cgroup_kill_sb() can happen anytime, we
2099 * want to block it by pinning the sb so that @root doesn't
2100 * get killed before mount is complete.
2102 * With the sb pinned, tryget_live can reliably indicate
2103 * whether @root can be reused. If it's being killed,
2104 * drain it. We can use wait_queue for the wait but this
2105 * path is super cold. Let's just sleep a bit and retry.
2107 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2108 if (IS_ERR(pinned_sb) ||
2109 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2110 mutex_unlock(&cgroup_mutex);
2111 if (!IS_ERR_OR_NULL(pinned_sb))
2112 deactivate_super(pinned_sb);
2113 msleep(10);
2114 ret = restart_syscall();
2115 goto out_free;
2118 ret = 0;
2119 goto out_unlock;
2123 * No such thing, create a new one. name= matching without subsys
2124 * specification is allowed for already existing hierarchies but we
2125 * can't create new one without subsys specification.
2127 if (!opts.subsys_mask && !opts.none) {
2128 ret = -EINVAL;
2129 goto out_unlock;
2132 root = kzalloc(sizeof(*root), GFP_KERNEL);
2133 if (!root) {
2134 ret = -ENOMEM;
2135 goto out_unlock;
2138 init_cgroup_root(root, &opts);
2140 ret = cgroup_setup_root(root, opts.subsys_mask);
2141 if (ret)
2142 cgroup_free_root(root);
2144 out_unlock:
2145 mutex_unlock(&cgroup_mutex);
2146 out_free:
2147 kfree(opts.release_agent);
2148 kfree(opts.name);
2150 if (ret)
2151 return ERR_PTR(ret);
2153 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2154 CGROUP_SUPER_MAGIC, &new_sb);
2155 if (IS_ERR(dentry) || !new_sb)
2156 cgroup_put(&root->cgrp);
2159 * If @pinned_sb, we're reusing an existing root and holding an
2160 * extra ref on its sb. Mount is complete. Put the extra ref.
2162 if (pinned_sb) {
2163 WARN_ON(new_sb);
2164 deactivate_super(pinned_sb);
2167 return dentry;
2170 static void cgroup_kill_sb(struct super_block *sb)
2172 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2173 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2176 * If @root doesn't have any mounts or children, start killing it.
2177 * This prevents new mounts by disabling percpu_ref_tryget_live().
2178 * cgroup_mount() may wait for @root's release.
2180 * And don't kill the default root.
2182 if (!list_empty(&root->cgrp.self.children) ||
2183 root == &cgrp_dfl_root)
2184 cgroup_put(&root->cgrp);
2185 else
2186 percpu_ref_kill(&root->cgrp.self.refcnt);
2188 kernfs_kill_sb(sb);
2191 static struct file_system_type cgroup_fs_type = {
2192 .name = "cgroup",
2193 .mount = cgroup_mount,
2194 .kill_sb = cgroup_kill_sb,
2198 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2199 * @task: target task
2200 * @buf: the buffer to write the path into
2201 * @buflen: the length of the buffer
2203 * Determine @task's cgroup on the first (the one with the lowest non-zero
2204 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2205 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2206 * cgroup controller callbacks.
2208 * Return value is the same as kernfs_path().
2210 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2212 struct cgroup_root *root;
2213 struct cgroup *cgrp;
2214 int hierarchy_id = 1;
2215 char *path = NULL;
2217 mutex_lock(&cgroup_mutex);
2218 spin_lock_bh(&css_set_lock);
2220 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2222 if (root) {
2223 cgrp = task_cgroup_from_root(task, root);
2224 path = cgroup_path(cgrp, buf, buflen);
2225 } else {
2226 /* if no hierarchy exists, everyone is in "/" */
2227 if (strlcpy(buf, "/", buflen) < buflen)
2228 path = buf;
2231 spin_unlock_bh(&css_set_lock);
2232 mutex_unlock(&cgroup_mutex);
2233 return path;
2235 EXPORT_SYMBOL_GPL(task_cgroup_path);
2237 /* used to track tasks and other necessary states during migration */
2238 struct cgroup_taskset {
2239 /* the src and dst cset list running through cset->mg_node */
2240 struct list_head src_csets;
2241 struct list_head dst_csets;
2243 /* the subsys currently being processed */
2244 int ssid;
2247 * Fields for cgroup_taskset_*() iteration.
2249 * Before migration is committed, the target migration tasks are on
2250 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2251 * the csets on ->dst_csets. ->csets point to either ->src_csets
2252 * or ->dst_csets depending on whether migration is committed.
2254 * ->cur_csets and ->cur_task point to the current task position
2255 * during iteration.
2257 struct list_head *csets;
2258 struct css_set *cur_cset;
2259 struct task_struct *cur_task;
2262 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2263 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2264 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2265 .csets = &tset.src_csets, \
2269 * cgroup_taskset_add - try to add a migration target task to a taskset
2270 * @task: target task
2271 * @tset: target taskset
2273 * Add @task, which is a migration target, to @tset. This function becomes
2274 * noop if @task doesn't need to be migrated. @task's css_set should have
2275 * been added as a migration source and @task->cg_list will be moved from
2276 * the css_set's tasks list to mg_tasks one.
2278 static void cgroup_taskset_add(struct task_struct *task,
2279 struct cgroup_taskset *tset)
2281 struct css_set *cset;
2283 lockdep_assert_held(&css_set_lock);
2285 /* @task either already exited or can't exit until the end */
2286 if (task->flags & PF_EXITING)
2287 return;
2289 /* leave @task alone if post_fork() hasn't linked it yet */
2290 if (list_empty(&task->cg_list))
2291 return;
2293 cset = task_css_set(task);
2294 if (!cset->mg_src_cgrp)
2295 return;
2297 list_move_tail(&task->cg_list, &cset->mg_tasks);
2298 if (list_empty(&cset->mg_node))
2299 list_add_tail(&cset->mg_node, &tset->src_csets);
2300 if (list_empty(&cset->mg_dst_cset->mg_node))
2301 list_move_tail(&cset->mg_dst_cset->mg_node,
2302 &tset->dst_csets);
2306 * cgroup_taskset_first - reset taskset and return the first task
2307 * @tset: taskset of interest
2308 * @dst_cssp: output variable for the destination css
2310 * @tset iteration is initialized and the first task is returned.
2312 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2313 struct cgroup_subsys_state **dst_cssp)
2315 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2316 tset->cur_task = NULL;
2318 return cgroup_taskset_next(tset, dst_cssp);
2322 * cgroup_taskset_next - iterate to the next task in taskset
2323 * @tset: taskset of interest
2324 * @dst_cssp: output variable for the destination css
2326 * Return the next task in @tset. Iteration must have been initialized
2327 * with cgroup_taskset_first().
2329 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2330 struct cgroup_subsys_state **dst_cssp)
2332 struct css_set *cset = tset->cur_cset;
2333 struct task_struct *task = tset->cur_task;
2335 while (&cset->mg_node != tset->csets) {
2336 if (!task)
2337 task = list_first_entry(&cset->mg_tasks,
2338 struct task_struct, cg_list);
2339 else
2340 task = list_next_entry(task, cg_list);
2342 if (&task->cg_list != &cset->mg_tasks) {
2343 tset->cur_cset = cset;
2344 tset->cur_task = task;
2347 * This function may be called both before and
2348 * after cgroup_taskset_migrate(). The two cases
2349 * can be distinguished by looking at whether @cset
2350 * has its ->mg_dst_cset set.
2352 if (cset->mg_dst_cset)
2353 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2354 else
2355 *dst_cssp = cset->subsys[tset->ssid];
2357 return task;
2360 cset = list_next_entry(cset, mg_node);
2361 task = NULL;
2364 return NULL;
2368 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2369 * @tset: taget taskset
2370 * @dst_cgrp: destination cgroup
2372 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2373 * ->can_attach callbacks fails and guarantees that either all or none of
2374 * the tasks in @tset are migrated. @tset is consumed regardless of
2375 * success.
2377 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2378 struct cgroup *dst_cgrp)
2380 struct cgroup_subsys_state *css, *failed_css = NULL;
2381 struct task_struct *task, *tmp_task;
2382 struct css_set *cset, *tmp_cset;
2383 int i, ret;
2385 /* methods shouldn't be called if no task is actually migrating */
2386 if (list_empty(&tset->src_csets))
2387 return 0;
2389 /* check that we can legitimately attach to the cgroup */
2390 for_each_e_css(css, i, dst_cgrp) {
2391 if (css->ss->can_attach) {
2392 tset->ssid = i;
2393 ret = css->ss->can_attach(tset);
2394 if (ret) {
2395 failed_css = css;
2396 goto out_cancel_attach;
2402 * Now that we're guaranteed success, proceed to move all tasks to
2403 * the new cgroup. There are no failure cases after here, so this
2404 * is the commit point.
2406 spin_lock_bh(&css_set_lock);
2407 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2408 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2409 struct css_set *from_cset = task_css_set(task);
2410 struct css_set *to_cset = cset->mg_dst_cset;
2412 get_css_set(to_cset);
2413 css_set_move_task(task, from_cset, to_cset, true);
2414 put_css_set_locked(from_cset);
2417 spin_unlock_bh(&css_set_lock);
2420 * Migration is committed, all target tasks are now on dst_csets.
2421 * Nothing is sensitive to fork() after this point. Notify
2422 * controllers that migration is complete.
2424 tset->csets = &tset->dst_csets;
2426 for_each_e_css(css, i, dst_cgrp) {
2427 if (css->ss->attach) {
2428 tset->ssid = i;
2429 css->ss->attach(tset);
2433 ret = 0;
2434 goto out_release_tset;
2436 out_cancel_attach:
2437 for_each_e_css(css, i, dst_cgrp) {
2438 if (css == failed_css)
2439 break;
2440 if (css->ss->cancel_attach) {
2441 tset->ssid = i;
2442 css->ss->cancel_attach(tset);
2445 out_release_tset:
2446 spin_lock_bh(&css_set_lock);
2447 list_splice_init(&tset->dst_csets, &tset->src_csets);
2448 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2449 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2450 list_del_init(&cset->mg_node);
2452 spin_unlock_bh(&css_set_lock);
2453 return ret;
2457 * cgroup_migrate_finish - cleanup after attach
2458 * @preloaded_csets: list of preloaded css_sets
2460 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2461 * those functions for details.
2463 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2465 struct css_set *cset, *tmp_cset;
2467 lockdep_assert_held(&cgroup_mutex);
2469 spin_lock_bh(&css_set_lock);
2470 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2471 cset->mg_src_cgrp = NULL;
2472 cset->mg_dst_cset = NULL;
2473 list_del_init(&cset->mg_preload_node);
2474 put_css_set_locked(cset);
2476 spin_unlock_bh(&css_set_lock);
2480 * cgroup_migrate_add_src - add a migration source css_set
2481 * @src_cset: the source css_set to add
2482 * @dst_cgrp: the destination cgroup
2483 * @preloaded_csets: list of preloaded css_sets
2485 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2486 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2487 * up by cgroup_migrate_finish().
2489 * This function may be called without holding cgroup_threadgroup_rwsem
2490 * even if the target is a process. Threads may be created and destroyed
2491 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2492 * into play and the preloaded css_sets are guaranteed to cover all
2493 * migrations.
2495 static void cgroup_migrate_add_src(struct css_set *src_cset,
2496 struct cgroup *dst_cgrp,
2497 struct list_head *preloaded_csets)
2499 struct cgroup *src_cgrp;
2501 lockdep_assert_held(&cgroup_mutex);
2502 lockdep_assert_held(&css_set_lock);
2505 * If ->dead, @src_set is associated with one or more dead cgroups
2506 * and doesn't contain any migratable tasks. Ignore it early so
2507 * that the rest of migration path doesn't get confused by it.
2509 if (src_cset->dead)
2510 return;
2512 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2514 if (!list_empty(&src_cset->mg_preload_node))
2515 return;
2517 WARN_ON(src_cset->mg_src_cgrp);
2518 WARN_ON(!list_empty(&src_cset->mg_tasks));
2519 WARN_ON(!list_empty(&src_cset->mg_node));
2521 src_cset->mg_src_cgrp = src_cgrp;
2522 get_css_set(src_cset);
2523 list_add(&src_cset->mg_preload_node, preloaded_csets);
2527 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2528 * @dst_cgrp: the destination cgroup (may be %NULL)
2529 * @preloaded_csets: list of preloaded source css_sets
2531 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2532 * have been preloaded to @preloaded_csets. This function looks up and
2533 * pins all destination css_sets, links each to its source, and append them
2534 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2535 * source css_set is assumed to be its cgroup on the default hierarchy.
2537 * This function must be called after cgroup_migrate_add_src() has been
2538 * called on each migration source css_set. After migration is performed
2539 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2540 * @preloaded_csets.
2542 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2543 struct list_head *preloaded_csets)
2545 LIST_HEAD(csets);
2546 struct css_set *src_cset, *tmp_cset;
2548 lockdep_assert_held(&cgroup_mutex);
2551 * Except for the root, child_subsys_mask must be zero for a cgroup
2552 * with tasks so that child cgroups don't compete against tasks.
2554 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2555 dst_cgrp->child_subsys_mask)
2556 return -EBUSY;
2558 /* look up the dst cset for each src cset and link it to src */
2559 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2560 struct css_set *dst_cset;
2562 dst_cset = find_css_set(src_cset,
2563 dst_cgrp ?: src_cset->dfl_cgrp);
2564 if (!dst_cset)
2565 goto err;
2567 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2570 * If src cset equals dst, it's noop. Drop the src.
2571 * cgroup_migrate() will skip the cset too. Note that we
2572 * can't handle src == dst as some nodes are used by both.
2574 if (src_cset == dst_cset) {
2575 src_cset->mg_src_cgrp = NULL;
2576 list_del_init(&src_cset->mg_preload_node);
2577 put_css_set(src_cset);
2578 put_css_set(dst_cset);
2579 continue;
2582 src_cset->mg_dst_cset = dst_cset;
2584 if (list_empty(&dst_cset->mg_preload_node))
2585 list_add(&dst_cset->mg_preload_node, &csets);
2586 else
2587 put_css_set(dst_cset);
2590 list_splice_tail(&csets, preloaded_csets);
2591 return 0;
2592 err:
2593 cgroup_migrate_finish(&csets);
2594 return -ENOMEM;
2598 * cgroup_migrate - migrate a process or task to a cgroup
2599 * @leader: the leader of the process or the task to migrate
2600 * @threadgroup: whether @leader points to the whole process or a single task
2601 * @cgrp: the destination cgroup
2603 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2604 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2605 * caller is also responsible for invoking cgroup_migrate_add_src() and
2606 * cgroup_migrate_prepare_dst() on the targets before invoking this
2607 * function and following up with cgroup_migrate_finish().
2609 * As long as a controller's ->can_attach() doesn't fail, this function is
2610 * guaranteed to succeed. This means that, excluding ->can_attach()
2611 * failure, when migrating multiple targets, the success or failure can be
2612 * decided for all targets by invoking group_migrate_prepare_dst() before
2613 * actually starting migrating.
2615 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2616 struct cgroup *cgrp)
2618 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2619 struct task_struct *task;
2622 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2623 * already PF_EXITING could be freed from underneath us unless we
2624 * take an rcu_read_lock.
2626 spin_lock_bh(&css_set_lock);
2627 rcu_read_lock();
2628 task = leader;
2629 do {
2630 cgroup_taskset_add(task, &tset);
2631 if (!threadgroup)
2632 break;
2633 } while_each_thread(leader, task);
2634 rcu_read_unlock();
2635 spin_unlock_bh(&css_set_lock);
2637 return cgroup_taskset_migrate(&tset, cgrp);
2641 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2642 * @dst_cgrp: the cgroup to attach to
2643 * @leader: the task or the leader of the threadgroup to be attached
2644 * @threadgroup: attach the whole threadgroup?
2646 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2648 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2649 struct task_struct *leader, bool threadgroup)
2651 LIST_HEAD(preloaded_csets);
2652 struct task_struct *task;
2653 int ret;
2655 /* look up all src csets */
2656 spin_lock_bh(&css_set_lock);
2657 rcu_read_lock();
2658 task = leader;
2659 do {
2660 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2661 &preloaded_csets);
2662 if (!threadgroup)
2663 break;
2664 } while_each_thread(leader, task);
2665 rcu_read_unlock();
2666 spin_unlock_bh(&css_set_lock);
2668 /* prepare dst csets and commit */
2669 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2670 if (!ret)
2671 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2673 cgroup_migrate_finish(&preloaded_csets);
2674 return ret;
2677 static int cgroup_procs_write_permission(struct task_struct *task,
2678 struct cgroup *dst_cgrp,
2679 struct kernfs_open_file *of)
2681 const struct cred *cred = current_cred();
2682 const struct cred *tcred = get_task_cred(task);
2683 int ret = 0;
2686 * even if we're attaching all tasks in the thread group, we only
2687 * need to check permissions on one of them.
2689 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2690 !uid_eq(cred->euid, tcred->uid) &&
2691 !uid_eq(cred->euid, tcred->suid))
2692 ret = -EACCES;
2694 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2695 struct super_block *sb = of->file->f_path.dentry->d_sb;
2696 struct cgroup *cgrp;
2697 struct inode *inode;
2699 spin_lock_bh(&css_set_lock);
2700 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2701 spin_unlock_bh(&css_set_lock);
2703 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2704 cgrp = cgroup_parent(cgrp);
2706 ret = -ENOMEM;
2707 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2708 if (inode) {
2709 ret = inode_permission(inode, MAY_WRITE);
2710 iput(inode);
2714 put_cred(tcred);
2715 return ret;
2719 * Find the task_struct of the task to attach by vpid and pass it along to the
2720 * function to attach either it or all tasks in its threadgroup. Will lock
2721 * cgroup_mutex and threadgroup.
2723 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2724 size_t nbytes, loff_t off, bool threadgroup)
2726 struct task_struct *tsk;
2727 struct cgroup_subsys *ss;
2728 struct cgroup *cgrp;
2729 pid_t pid;
2730 int ssid, ret;
2732 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2733 return -EINVAL;
2735 cgrp = cgroup_kn_lock_live(of->kn);
2736 if (!cgrp)
2737 return -ENODEV;
2739 percpu_down_write(&cgroup_threadgroup_rwsem);
2740 rcu_read_lock();
2741 if (pid) {
2742 tsk = find_task_by_vpid(pid);
2743 if (!tsk) {
2744 ret = -ESRCH;
2745 goto out_unlock_rcu;
2747 } else {
2748 tsk = current;
2751 if (threadgroup)
2752 tsk = tsk->group_leader;
2755 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2756 * If userland migrates such a kthread to a non-root cgroup, it can
2757 * become trapped in a cpuset, or RT kthread may be born in a
2758 * cgroup with no rt_runtime allocated. Just say no.
2760 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2761 ret = -EINVAL;
2762 goto out_unlock_rcu;
2765 get_task_struct(tsk);
2766 rcu_read_unlock();
2768 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2769 if (!ret)
2770 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2772 put_task_struct(tsk);
2773 goto out_unlock_threadgroup;
2775 out_unlock_rcu:
2776 rcu_read_unlock();
2777 out_unlock_threadgroup:
2778 percpu_up_write(&cgroup_threadgroup_rwsem);
2779 for_each_subsys(ss, ssid)
2780 if (ss->post_attach)
2781 ss->post_attach();
2782 cgroup_kn_unlock(of->kn);
2783 return ret ?: nbytes;
2787 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2788 * @from: attach to all cgroups of a given task
2789 * @tsk: the task to be attached
2791 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2793 struct cgroup_root *root;
2794 int retval = 0;
2796 mutex_lock(&cgroup_mutex);
2797 for_each_root(root) {
2798 struct cgroup *from_cgrp;
2800 if (root == &cgrp_dfl_root)
2801 continue;
2803 spin_lock_bh(&css_set_lock);
2804 from_cgrp = task_cgroup_from_root(from, root);
2805 spin_unlock_bh(&css_set_lock);
2807 retval = cgroup_attach_task(from_cgrp, tsk, false);
2808 if (retval)
2809 break;
2811 mutex_unlock(&cgroup_mutex);
2813 return retval;
2815 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2817 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2818 char *buf, size_t nbytes, loff_t off)
2820 return __cgroup_procs_write(of, buf, nbytes, off, false);
2823 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2824 char *buf, size_t nbytes, loff_t off)
2826 return __cgroup_procs_write(of, buf, nbytes, off, true);
2829 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2830 char *buf, size_t nbytes, loff_t off)
2832 struct cgroup *cgrp;
2834 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2836 cgrp = cgroup_kn_lock_live(of->kn);
2837 if (!cgrp)
2838 return -ENODEV;
2839 spin_lock(&release_agent_path_lock);
2840 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2841 sizeof(cgrp->root->release_agent_path));
2842 spin_unlock(&release_agent_path_lock);
2843 cgroup_kn_unlock(of->kn);
2844 return nbytes;
2847 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2849 struct cgroup *cgrp = seq_css(seq)->cgroup;
2851 spin_lock(&release_agent_path_lock);
2852 seq_puts(seq, cgrp->root->release_agent_path);
2853 spin_unlock(&release_agent_path_lock);
2854 seq_putc(seq, '\n');
2855 return 0;
2858 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2860 seq_puts(seq, "0\n");
2861 return 0;
2864 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2866 struct cgroup_subsys *ss;
2867 bool printed = false;
2868 int ssid;
2870 for_each_subsys_which(ss, ssid, &ss_mask) {
2871 if (printed)
2872 seq_putc(seq, ' ');
2873 seq_printf(seq, "%s", ss->name);
2874 printed = true;
2876 if (printed)
2877 seq_putc(seq, '\n');
2880 /* show controllers which are currently attached to the default hierarchy */
2881 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2883 struct cgroup *cgrp = seq_css(seq)->cgroup;
2885 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2886 ~cgrp_dfl_root_inhibit_ss_mask);
2887 return 0;
2890 /* show controllers which are enabled from the parent */
2891 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2893 struct cgroup *cgrp = seq_css(seq)->cgroup;
2895 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2896 return 0;
2899 /* show controllers which are enabled for a given cgroup's children */
2900 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2902 struct cgroup *cgrp = seq_css(seq)->cgroup;
2904 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2905 return 0;
2909 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2910 * @cgrp: root of the subtree to update csses for
2912 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2913 * css associations need to be updated accordingly. This function looks up
2914 * all css_sets which are attached to the subtree, creates the matching
2915 * updated css_sets and migrates the tasks to the new ones.
2917 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2919 LIST_HEAD(preloaded_csets);
2920 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2921 struct cgroup_subsys_state *css;
2922 struct css_set *src_cset;
2923 int ret;
2925 lockdep_assert_held(&cgroup_mutex);
2927 percpu_down_write(&cgroup_threadgroup_rwsem);
2929 /* look up all csses currently attached to @cgrp's subtree */
2930 spin_lock_bh(&css_set_lock);
2931 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2932 struct cgrp_cset_link *link;
2934 /* self is not affected by child_subsys_mask change */
2935 if (css->cgroup == cgrp)
2936 continue;
2938 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2939 cgroup_migrate_add_src(link->cset, cgrp,
2940 &preloaded_csets);
2942 spin_unlock_bh(&css_set_lock);
2944 /* NULL dst indicates self on default hierarchy */
2945 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2946 if (ret)
2947 goto out_finish;
2949 spin_lock_bh(&css_set_lock);
2950 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2951 struct task_struct *task, *ntask;
2953 /* src_csets precede dst_csets, break on the first dst_cset */
2954 if (!src_cset->mg_src_cgrp)
2955 break;
2957 /* all tasks in src_csets need to be migrated */
2958 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2959 cgroup_taskset_add(task, &tset);
2961 spin_unlock_bh(&css_set_lock);
2963 ret = cgroup_taskset_migrate(&tset, cgrp);
2964 out_finish:
2965 cgroup_migrate_finish(&preloaded_csets);
2966 percpu_up_write(&cgroup_threadgroup_rwsem);
2967 return ret;
2970 /* change the enabled child controllers for a cgroup in the default hierarchy */
2971 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2972 char *buf, size_t nbytes,
2973 loff_t off)
2975 unsigned long enable = 0, disable = 0;
2976 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2977 struct cgroup *cgrp, *child;
2978 struct cgroup_subsys *ss;
2979 char *tok;
2980 int ssid, ret;
2983 * Parse input - space separated list of subsystem names prefixed
2984 * with either + or -.
2986 buf = strstrip(buf);
2987 while ((tok = strsep(&buf, " "))) {
2988 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2990 if (tok[0] == '\0')
2991 continue;
2992 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2993 if (!cgroup_ssid_enabled(ssid) ||
2994 strcmp(tok + 1, ss->name))
2995 continue;
2997 if (*tok == '+') {
2998 enable |= 1 << ssid;
2999 disable &= ~(1 << ssid);
3000 } else if (*tok == '-') {
3001 disable |= 1 << ssid;
3002 enable &= ~(1 << ssid);
3003 } else {
3004 return -EINVAL;
3006 break;
3008 if (ssid == CGROUP_SUBSYS_COUNT)
3009 return -EINVAL;
3012 cgrp = cgroup_kn_lock_live(of->kn);
3013 if (!cgrp)
3014 return -ENODEV;
3016 for_each_subsys(ss, ssid) {
3017 if (enable & (1 << ssid)) {
3018 if (cgrp->subtree_control & (1 << ssid)) {
3019 enable &= ~(1 << ssid);
3020 continue;
3023 /* unavailable or not enabled on the parent? */
3024 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3025 (cgroup_parent(cgrp) &&
3026 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3027 ret = -ENOENT;
3028 goto out_unlock;
3030 } else if (disable & (1 << ssid)) {
3031 if (!(cgrp->subtree_control & (1 << ssid))) {
3032 disable &= ~(1 << ssid);
3033 continue;
3036 /* a child has it enabled? */
3037 cgroup_for_each_live_child(child, cgrp) {
3038 if (child->subtree_control & (1 << ssid)) {
3039 ret = -EBUSY;
3040 goto out_unlock;
3046 if (!enable && !disable) {
3047 ret = 0;
3048 goto out_unlock;
3052 * Except for the root, subtree_control must be zero for a cgroup
3053 * with tasks so that child cgroups don't compete against tasks.
3055 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3056 ret = -EBUSY;
3057 goto out_unlock;
3061 * Update subsys masks and calculate what needs to be done. More
3062 * subsystems than specified may need to be enabled or disabled
3063 * depending on subsystem dependencies.
3065 old_sc = cgrp->subtree_control;
3066 old_ss = cgrp->child_subsys_mask;
3067 new_sc = (old_sc | enable) & ~disable;
3068 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3070 css_enable = ~old_ss & new_ss;
3071 css_disable = old_ss & ~new_ss;
3072 enable |= css_enable;
3073 disable |= css_disable;
3076 * Because css offlining is asynchronous, userland might try to
3077 * re-enable the same controller while the previous instance is
3078 * still around. In such cases, wait till it's gone using
3079 * offline_waitq.
3081 for_each_subsys_which(ss, ssid, &css_enable) {
3082 cgroup_for_each_live_child(child, cgrp) {
3083 DEFINE_WAIT(wait);
3085 if (!cgroup_css(child, ss))
3086 continue;
3088 cgroup_get(child);
3089 prepare_to_wait(&child->offline_waitq, &wait,
3090 TASK_UNINTERRUPTIBLE);
3091 cgroup_kn_unlock(of->kn);
3092 schedule();
3093 finish_wait(&child->offline_waitq, &wait);
3094 cgroup_put(child);
3096 return restart_syscall();
3100 cgrp->subtree_control = new_sc;
3101 cgrp->child_subsys_mask = new_ss;
3104 * Create new csses or make the existing ones visible. A css is
3105 * created invisible if it's being implicitly enabled through
3106 * dependency. An invisible css is made visible when the userland
3107 * explicitly enables it.
3109 for_each_subsys(ss, ssid) {
3110 if (!(enable & (1 << ssid)))
3111 continue;
3113 cgroup_for_each_live_child(child, cgrp) {
3114 if (css_enable & (1 << ssid))
3115 ret = create_css(child, ss,
3116 cgrp->subtree_control & (1 << ssid));
3117 else
3118 ret = css_populate_dir(cgroup_css(child, ss),
3119 NULL);
3120 if (ret)
3121 goto err_undo_css;
3126 * At this point, cgroup_e_css() results reflect the new csses
3127 * making the following cgroup_update_dfl_csses() properly update
3128 * css associations of all tasks in the subtree.
3130 ret = cgroup_update_dfl_csses(cgrp);
3131 if (ret)
3132 goto err_undo_css;
3135 * All tasks are migrated out of disabled csses. Kill or hide
3136 * them. A css is hidden when the userland requests it to be
3137 * disabled while other subsystems are still depending on it. The
3138 * css must not actively control resources and be in the vanilla
3139 * state if it's made visible again later. Controllers which may
3140 * be depended upon should provide ->css_reset() for this purpose.
3142 for_each_subsys(ss, ssid) {
3143 if (!(disable & (1 << ssid)))
3144 continue;
3146 cgroup_for_each_live_child(child, cgrp) {
3147 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3149 if (css_disable & (1 << ssid)) {
3150 kill_css(css);
3151 } else {
3152 css_clear_dir(css, NULL);
3153 if (ss->css_reset)
3154 ss->css_reset(css);
3160 * The effective csses of all the descendants (excluding @cgrp) may
3161 * have changed. Subsystems can optionally subscribe to this event
3162 * by implementing ->css_e_css_changed() which is invoked if any of
3163 * the effective csses seen from the css's cgroup may have changed.
3165 for_each_subsys(ss, ssid) {
3166 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3167 struct cgroup_subsys_state *css;
3169 if (!ss->css_e_css_changed || !this_css)
3170 continue;
3172 css_for_each_descendant_pre(css, this_css)
3173 if (css != this_css)
3174 ss->css_e_css_changed(css);
3177 kernfs_activate(cgrp->kn);
3178 ret = 0;
3179 out_unlock:
3180 cgroup_kn_unlock(of->kn);
3181 return ret ?: nbytes;
3183 err_undo_css:
3184 cgrp->subtree_control = old_sc;
3185 cgrp->child_subsys_mask = old_ss;
3187 for_each_subsys(ss, ssid) {
3188 if (!(enable & (1 << ssid)))
3189 continue;
3191 cgroup_for_each_live_child(child, cgrp) {
3192 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3194 if (!css)
3195 continue;
3197 if (css_enable & (1 << ssid))
3198 kill_css(css);
3199 else
3200 css_clear_dir(css, NULL);
3203 goto out_unlock;
3206 static int cgroup_events_show(struct seq_file *seq, void *v)
3208 seq_printf(seq, "populated %d\n",
3209 cgroup_is_populated(seq_css(seq)->cgroup));
3210 return 0;
3213 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3214 size_t nbytes, loff_t off)
3216 struct cgroup *cgrp = of->kn->parent->priv;
3217 struct cftype *cft = of->kn->priv;
3218 struct cgroup_subsys_state *css;
3219 int ret;
3221 if (cft->write)
3222 return cft->write(of, buf, nbytes, off);
3225 * kernfs guarantees that a file isn't deleted with operations in
3226 * flight, which means that the matching css is and stays alive and
3227 * doesn't need to be pinned. The RCU locking is not necessary
3228 * either. It's just for the convenience of using cgroup_css().
3230 rcu_read_lock();
3231 css = cgroup_css(cgrp, cft->ss);
3232 rcu_read_unlock();
3234 if (cft->write_u64) {
3235 unsigned long long v;
3236 ret = kstrtoull(buf, 0, &v);
3237 if (!ret)
3238 ret = cft->write_u64(css, cft, v);
3239 } else if (cft->write_s64) {
3240 long long v;
3241 ret = kstrtoll(buf, 0, &v);
3242 if (!ret)
3243 ret = cft->write_s64(css, cft, v);
3244 } else {
3245 ret = -EINVAL;
3248 return ret ?: nbytes;
3251 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3253 return seq_cft(seq)->seq_start(seq, ppos);
3256 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3258 return seq_cft(seq)->seq_next(seq, v, ppos);
3261 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3263 seq_cft(seq)->seq_stop(seq, v);
3266 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3268 struct cftype *cft = seq_cft(m);
3269 struct cgroup_subsys_state *css = seq_css(m);
3271 if (cft->seq_show)
3272 return cft->seq_show(m, arg);
3274 if (cft->read_u64)
3275 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3276 else if (cft->read_s64)
3277 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3278 else
3279 return -EINVAL;
3280 return 0;
3283 static struct kernfs_ops cgroup_kf_single_ops = {
3284 .atomic_write_len = PAGE_SIZE,
3285 .write = cgroup_file_write,
3286 .seq_show = cgroup_seqfile_show,
3289 static struct kernfs_ops cgroup_kf_ops = {
3290 .atomic_write_len = PAGE_SIZE,
3291 .write = cgroup_file_write,
3292 .seq_start = cgroup_seqfile_start,
3293 .seq_next = cgroup_seqfile_next,
3294 .seq_stop = cgroup_seqfile_stop,
3295 .seq_show = cgroup_seqfile_show,
3299 * cgroup_rename - Only allow simple rename of directories in place.
3301 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3302 const char *new_name_str)
3304 struct cgroup *cgrp = kn->priv;
3305 int ret;
3307 if (kernfs_type(kn) != KERNFS_DIR)
3308 return -ENOTDIR;
3309 if (kn->parent != new_parent)
3310 return -EIO;
3313 * This isn't a proper migration and its usefulness is very
3314 * limited. Disallow on the default hierarchy.
3316 if (cgroup_on_dfl(cgrp))
3317 return -EPERM;
3320 * We're gonna grab cgroup_mutex which nests outside kernfs
3321 * active_ref. kernfs_rename() doesn't require active_ref
3322 * protection. Break them before grabbing cgroup_mutex.
3324 kernfs_break_active_protection(new_parent);
3325 kernfs_break_active_protection(kn);
3327 mutex_lock(&cgroup_mutex);
3329 ret = kernfs_rename(kn, new_parent, new_name_str);
3331 mutex_unlock(&cgroup_mutex);
3333 kernfs_unbreak_active_protection(kn);
3334 kernfs_unbreak_active_protection(new_parent);
3335 return ret;
3338 /* set uid and gid of cgroup dirs and files to that of the creator */
3339 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3341 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3342 .ia_uid = current_fsuid(),
3343 .ia_gid = current_fsgid(), };
3345 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3346 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3347 return 0;
3349 return kernfs_setattr(kn, &iattr);
3352 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3353 struct cftype *cft)
3355 char name[CGROUP_FILE_NAME_MAX];
3356 struct kernfs_node *kn;
3357 struct lock_class_key *key = NULL;
3358 int ret;
3360 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3361 key = &cft->lockdep_key;
3362 #endif
3363 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3364 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3365 NULL, key);
3366 if (IS_ERR(kn))
3367 return PTR_ERR(kn);
3369 ret = cgroup_kn_set_ugid(kn);
3370 if (ret) {
3371 kernfs_remove(kn);
3372 return ret;
3375 if (cft->file_offset) {
3376 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3378 spin_lock_irq(&cgroup_file_kn_lock);
3379 cfile->kn = kn;
3380 spin_unlock_irq(&cgroup_file_kn_lock);
3383 return 0;
3387 * cgroup_addrm_files - add or remove files to a cgroup directory
3388 * @css: the target css
3389 * @cgrp: the target cgroup (usually css->cgroup)
3390 * @cfts: array of cftypes to be added
3391 * @is_add: whether to add or remove
3393 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3394 * For removals, this function never fails.
3396 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3397 struct cgroup *cgrp, struct cftype cfts[],
3398 bool is_add)
3400 struct cftype *cft, *cft_end = NULL;
3401 int ret;
3403 lockdep_assert_held(&cgroup_mutex);
3405 restart:
3406 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3407 /* does cft->flags tell us to skip this file on @cgrp? */
3408 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3409 continue;
3410 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3411 continue;
3412 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3413 continue;
3414 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3415 continue;
3417 if (is_add) {
3418 ret = cgroup_add_file(css, cgrp, cft);
3419 if (ret) {
3420 pr_warn("%s: failed to add %s, err=%d\n",
3421 __func__, cft->name, ret);
3422 cft_end = cft;
3423 is_add = false;
3424 goto restart;
3426 } else {
3427 cgroup_rm_file(cgrp, cft);
3430 return 0;
3433 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3435 LIST_HEAD(pending);
3436 struct cgroup_subsys *ss = cfts[0].ss;
3437 struct cgroup *root = &ss->root->cgrp;
3438 struct cgroup_subsys_state *css;
3439 int ret = 0;
3441 lockdep_assert_held(&cgroup_mutex);
3443 /* add/rm files for all cgroups created before */
3444 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3445 struct cgroup *cgrp = css->cgroup;
3447 if (cgroup_is_dead(cgrp))
3448 continue;
3450 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3451 if (ret)
3452 break;
3455 if (is_add && !ret)
3456 kernfs_activate(root->kn);
3457 return ret;
3460 static void cgroup_exit_cftypes(struct cftype *cfts)
3462 struct cftype *cft;
3464 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3465 /* free copy for custom atomic_write_len, see init_cftypes() */
3466 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3467 kfree(cft->kf_ops);
3468 cft->kf_ops = NULL;
3469 cft->ss = NULL;
3471 /* revert flags set by cgroup core while adding @cfts */
3472 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3476 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3478 struct cftype *cft;
3480 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3481 struct kernfs_ops *kf_ops;
3483 WARN_ON(cft->ss || cft->kf_ops);
3485 if (cft->seq_start)
3486 kf_ops = &cgroup_kf_ops;
3487 else
3488 kf_ops = &cgroup_kf_single_ops;
3491 * Ugh... if @cft wants a custom max_write_len, we need to
3492 * make a copy of kf_ops to set its atomic_write_len.
3494 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3495 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3496 if (!kf_ops) {
3497 cgroup_exit_cftypes(cfts);
3498 return -ENOMEM;
3500 kf_ops->atomic_write_len = cft->max_write_len;
3503 cft->kf_ops = kf_ops;
3504 cft->ss = ss;
3507 return 0;
3510 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3512 lockdep_assert_held(&cgroup_mutex);
3514 if (!cfts || !cfts[0].ss)
3515 return -ENOENT;
3517 list_del(&cfts->node);
3518 cgroup_apply_cftypes(cfts, false);
3519 cgroup_exit_cftypes(cfts);
3520 return 0;
3524 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3525 * @cfts: zero-length name terminated array of cftypes
3527 * Unregister @cfts. Files described by @cfts are removed from all
3528 * existing cgroups and all future cgroups won't have them either. This
3529 * function can be called anytime whether @cfts' subsys is attached or not.
3531 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3532 * registered.
3534 int cgroup_rm_cftypes(struct cftype *cfts)
3536 int ret;
3538 mutex_lock(&cgroup_mutex);
3539 ret = cgroup_rm_cftypes_locked(cfts);
3540 mutex_unlock(&cgroup_mutex);
3541 return ret;
3545 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3546 * @ss: target cgroup subsystem
3547 * @cfts: zero-length name terminated array of cftypes
3549 * Register @cfts to @ss. Files described by @cfts are created for all
3550 * existing cgroups to which @ss is attached and all future cgroups will
3551 * have them too. This function can be called anytime whether @ss is
3552 * attached or not.
3554 * Returns 0 on successful registration, -errno on failure. Note that this
3555 * function currently returns 0 as long as @cfts registration is successful
3556 * even if some file creation attempts on existing cgroups fail.
3558 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3560 int ret;
3562 if (!cgroup_ssid_enabled(ss->id))
3563 return 0;
3565 if (!cfts || cfts[0].name[0] == '\0')
3566 return 0;
3568 ret = cgroup_init_cftypes(ss, cfts);
3569 if (ret)
3570 return ret;
3572 mutex_lock(&cgroup_mutex);
3574 list_add_tail(&cfts->node, &ss->cfts);
3575 ret = cgroup_apply_cftypes(cfts, true);
3576 if (ret)
3577 cgroup_rm_cftypes_locked(cfts);
3579 mutex_unlock(&cgroup_mutex);
3580 return ret;
3584 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3585 * @ss: target cgroup subsystem
3586 * @cfts: zero-length name terminated array of cftypes
3588 * Similar to cgroup_add_cftypes() but the added files are only used for
3589 * the default hierarchy.
3591 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3593 struct cftype *cft;
3595 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3596 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3597 return cgroup_add_cftypes(ss, cfts);
3601 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3602 * @ss: target cgroup subsystem
3603 * @cfts: zero-length name terminated array of cftypes
3605 * Similar to cgroup_add_cftypes() but the added files are only used for
3606 * the legacy hierarchies.
3608 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3610 struct cftype *cft;
3612 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3613 cft->flags |= __CFTYPE_NOT_ON_DFL;
3614 return cgroup_add_cftypes(ss, cfts);
3618 * cgroup_file_notify - generate a file modified event for a cgroup_file
3619 * @cfile: target cgroup_file
3621 * @cfile must have been obtained by setting cftype->file_offset.
3623 void cgroup_file_notify(struct cgroup_file *cfile)
3625 unsigned long flags;
3627 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3628 if (cfile->kn)
3629 kernfs_notify(cfile->kn);
3630 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3634 * cgroup_task_count - count the number of tasks in a cgroup.
3635 * @cgrp: the cgroup in question
3637 * Return the number of tasks in the cgroup.
3639 static int cgroup_task_count(const struct cgroup *cgrp)
3641 int count = 0;
3642 struct cgrp_cset_link *link;
3644 spin_lock_bh(&css_set_lock);
3645 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3646 count += atomic_read(&link->cset->refcount);
3647 spin_unlock_bh(&css_set_lock);
3648 return count;
3652 * css_next_child - find the next child of a given css
3653 * @pos: the current position (%NULL to initiate traversal)
3654 * @parent: css whose children to walk
3656 * This function returns the next child of @parent and should be called
3657 * under either cgroup_mutex or RCU read lock. The only requirement is
3658 * that @parent and @pos are accessible. The next sibling is guaranteed to
3659 * be returned regardless of their states.
3661 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3662 * css which finished ->css_online() is guaranteed to be visible in the
3663 * future iterations and will stay visible until the last reference is put.
3664 * A css which hasn't finished ->css_online() or already finished
3665 * ->css_offline() may show up during traversal. It's each subsystem's
3666 * responsibility to synchronize against on/offlining.
3668 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3669 struct cgroup_subsys_state *parent)
3671 struct cgroup_subsys_state *next;
3673 cgroup_assert_mutex_or_rcu_locked();
3676 * @pos could already have been unlinked from the sibling list.
3677 * Once a cgroup is removed, its ->sibling.next is no longer
3678 * updated when its next sibling changes. CSS_RELEASED is set when
3679 * @pos is taken off list, at which time its next pointer is valid,
3680 * and, as releases are serialized, the one pointed to by the next
3681 * pointer is guaranteed to not have started release yet. This
3682 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3683 * critical section, the one pointed to by its next pointer is
3684 * guaranteed to not have finished its RCU grace period even if we
3685 * have dropped rcu_read_lock() inbetween iterations.
3687 * If @pos has CSS_RELEASED set, its next pointer can't be
3688 * dereferenced; however, as each css is given a monotonically
3689 * increasing unique serial number and always appended to the
3690 * sibling list, the next one can be found by walking the parent's
3691 * children until the first css with higher serial number than
3692 * @pos's. While this path can be slower, it happens iff iteration
3693 * races against release and the race window is very small.
3695 if (!pos) {
3696 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3697 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3698 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3699 } else {
3700 list_for_each_entry_rcu(next, &parent->children, sibling)
3701 if (next->serial_nr > pos->serial_nr)
3702 break;
3706 * @next, if not pointing to the head, can be dereferenced and is
3707 * the next sibling.
3709 if (&next->sibling != &parent->children)
3710 return next;
3711 return NULL;
3715 * css_next_descendant_pre - find the next descendant for pre-order walk
3716 * @pos: the current position (%NULL to initiate traversal)
3717 * @root: css whose descendants to walk
3719 * To be used by css_for_each_descendant_pre(). Find the next descendant
3720 * to visit for pre-order traversal of @root's descendants. @root is
3721 * included in the iteration and the first node to be visited.
3723 * While this function requires cgroup_mutex or RCU read locking, it
3724 * doesn't require the whole traversal to be contained in a single critical
3725 * section. This function will return the correct next descendant as long
3726 * as both @pos and @root are accessible and @pos is a descendant of @root.
3728 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3729 * css which finished ->css_online() is guaranteed to be visible in the
3730 * future iterations and will stay visible until the last reference is put.
3731 * A css which hasn't finished ->css_online() or already finished
3732 * ->css_offline() may show up during traversal. It's each subsystem's
3733 * responsibility to synchronize against on/offlining.
3735 struct cgroup_subsys_state *
3736 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3737 struct cgroup_subsys_state *root)
3739 struct cgroup_subsys_state *next;
3741 cgroup_assert_mutex_or_rcu_locked();
3743 /* if first iteration, visit @root */
3744 if (!pos)
3745 return root;
3747 /* visit the first child if exists */
3748 next = css_next_child(NULL, pos);
3749 if (next)
3750 return next;
3752 /* no child, visit my or the closest ancestor's next sibling */
3753 while (pos != root) {
3754 next = css_next_child(pos, pos->parent);
3755 if (next)
3756 return next;
3757 pos = pos->parent;
3760 return NULL;
3764 * css_rightmost_descendant - return the rightmost descendant of a css
3765 * @pos: css of interest
3767 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3768 * is returned. This can be used during pre-order traversal to skip
3769 * subtree of @pos.
3771 * While this function requires cgroup_mutex or RCU read locking, it
3772 * doesn't require the whole traversal to be contained in a single critical
3773 * section. This function will return the correct rightmost descendant as
3774 * long as @pos is accessible.
3776 struct cgroup_subsys_state *
3777 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3779 struct cgroup_subsys_state *last, *tmp;
3781 cgroup_assert_mutex_or_rcu_locked();
3783 do {
3784 last = pos;
3785 /* ->prev isn't RCU safe, walk ->next till the end */
3786 pos = NULL;
3787 css_for_each_child(tmp, last)
3788 pos = tmp;
3789 } while (pos);
3791 return last;
3794 static struct cgroup_subsys_state *
3795 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3797 struct cgroup_subsys_state *last;
3799 do {
3800 last = pos;
3801 pos = css_next_child(NULL, pos);
3802 } while (pos);
3804 return last;
3808 * css_next_descendant_post - find the next descendant for post-order walk
3809 * @pos: the current position (%NULL to initiate traversal)
3810 * @root: css whose descendants to walk
3812 * To be used by css_for_each_descendant_post(). Find the next descendant
3813 * to visit for post-order traversal of @root's descendants. @root is
3814 * included in the iteration and the last node to be visited.
3816 * While this function requires cgroup_mutex or RCU read locking, it
3817 * doesn't require the whole traversal to be contained in a single critical
3818 * section. This function will return the correct next descendant as long
3819 * as both @pos and @cgroup are accessible and @pos is a descendant of
3820 * @cgroup.
3822 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3823 * css which finished ->css_online() is guaranteed to be visible in the
3824 * future iterations and will stay visible until the last reference is put.
3825 * A css which hasn't finished ->css_online() or already finished
3826 * ->css_offline() may show up during traversal. It's each subsystem's
3827 * responsibility to synchronize against on/offlining.
3829 struct cgroup_subsys_state *
3830 css_next_descendant_post(struct cgroup_subsys_state *pos,
3831 struct cgroup_subsys_state *root)
3833 struct cgroup_subsys_state *next;
3835 cgroup_assert_mutex_or_rcu_locked();
3837 /* if first iteration, visit leftmost descendant which may be @root */
3838 if (!pos)
3839 return css_leftmost_descendant(root);
3841 /* if we visited @root, we're done */
3842 if (pos == root)
3843 return NULL;
3845 /* if there's an unvisited sibling, visit its leftmost descendant */
3846 next = css_next_child(pos, pos->parent);
3847 if (next)
3848 return css_leftmost_descendant(next);
3850 /* no sibling left, visit parent */
3851 return pos->parent;
3855 * css_has_online_children - does a css have online children
3856 * @css: the target css
3858 * Returns %true if @css has any online children; otherwise, %false. This
3859 * function can be called from any context but the caller is responsible
3860 * for synchronizing against on/offlining as necessary.
3862 bool css_has_online_children(struct cgroup_subsys_state *css)
3864 struct cgroup_subsys_state *child;
3865 bool ret = false;
3867 rcu_read_lock();
3868 css_for_each_child(child, css) {
3869 if (child->flags & CSS_ONLINE) {
3870 ret = true;
3871 break;
3874 rcu_read_unlock();
3875 return ret;
3879 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3880 * @it: the iterator to advance
3882 * Advance @it to the next css_set to walk.
3884 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3886 struct list_head *l = it->cset_pos;
3887 struct cgrp_cset_link *link;
3888 struct css_set *cset;
3890 lockdep_assert_held(&css_set_lock);
3892 /* Advance to the next non-empty css_set */
3893 do {
3894 l = l->next;
3895 if (l == it->cset_head) {
3896 it->cset_pos = NULL;
3897 it->task_pos = NULL;
3898 return;
3901 if (it->ss) {
3902 cset = container_of(l, struct css_set,
3903 e_cset_node[it->ss->id]);
3904 } else {
3905 link = list_entry(l, struct cgrp_cset_link, cset_link);
3906 cset = link->cset;
3908 } while (!css_set_populated(cset));
3910 it->cset_pos = l;
3912 if (!list_empty(&cset->tasks))
3913 it->task_pos = cset->tasks.next;
3914 else
3915 it->task_pos = cset->mg_tasks.next;
3917 it->tasks_head = &cset->tasks;
3918 it->mg_tasks_head = &cset->mg_tasks;
3921 * We don't keep css_sets locked across iteration steps and thus
3922 * need to take steps to ensure that iteration can be resumed after
3923 * the lock is re-acquired. Iteration is performed at two levels -
3924 * css_sets and tasks in them.
3926 * Once created, a css_set never leaves its cgroup lists, so a
3927 * pinned css_set is guaranteed to stay put and we can resume
3928 * iteration afterwards.
3930 * Tasks may leave @cset across iteration steps. This is resolved
3931 * by registering each iterator with the css_set currently being
3932 * walked and making css_set_move_task() advance iterators whose
3933 * next task is leaving.
3935 if (it->cur_cset) {
3936 list_del(&it->iters_node);
3937 put_css_set_locked(it->cur_cset);
3939 get_css_set(cset);
3940 it->cur_cset = cset;
3941 list_add(&it->iters_node, &cset->task_iters);
3944 static void css_task_iter_advance(struct css_task_iter *it)
3946 struct list_head *l = it->task_pos;
3948 lockdep_assert_held(&css_set_lock);
3949 WARN_ON_ONCE(!l);
3952 * Advance iterator to find next entry. cset->tasks is consumed
3953 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3954 * next cset.
3956 l = l->next;
3958 if (l == it->tasks_head)
3959 l = it->mg_tasks_head->next;
3961 if (l == it->mg_tasks_head)
3962 css_task_iter_advance_css_set(it);
3963 else
3964 it->task_pos = l;
3968 * css_task_iter_start - initiate task iteration
3969 * @css: the css to walk tasks of
3970 * @it: the task iterator to use
3972 * Initiate iteration through the tasks of @css. The caller can call
3973 * css_task_iter_next() to walk through the tasks until the function
3974 * returns NULL. On completion of iteration, css_task_iter_end() must be
3975 * called.
3977 void css_task_iter_start(struct cgroup_subsys_state *css,
3978 struct css_task_iter *it)
3980 /* no one should try to iterate before mounting cgroups */
3981 WARN_ON_ONCE(!use_task_css_set_links);
3983 memset(it, 0, sizeof(*it));
3985 spin_lock_bh(&css_set_lock);
3987 it->ss = css->ss;
3989 if (it->ss)
3990 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3991 else
3992 it->cset_pos = &css->cgroup->cset_links;
3994 it->cset_head = it->cset_pos;
3996 css_task_iter_advance_css_set(it);
3998 spin_unlock_bh(&css_set_lock);
4002 * css_task_iter_next - return the next task for the iterator
4003 * @it: the task iterator being iterated
4005 * The "next" function for task iteration. @it should have been
4006 * initialized via css_task_iter_start(). Returns NULL when the iteration
4007 * reaches the end.
4009 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4011 if (it->cur_task) {
4012 put_task_struct(it->cur_task);
4013 it->cur_task = NULL;
4016 spin_lock_bh(&css_set_lock);
4018 if (it->task_pos) {
4019 it->cur_task = list_entry(it->task_pos, struct task_struct,
4020 cg_list);
4021 get_task_struct(it->cur_task);
4022 css_task_iter_advance(it);
4025 spin_unlock_bh(&css_set_lock);
4027 return it->cur_task;
4031 * css_task_iter_end - finish task iteration
4032 * @it: the task iterator to finish
4034 * Finish task iteration started by css_task_iter_start().
4036 void css_task_iter_end(struct css_task_iter *it)
4038 if (it->cur_cset) {
4039 spin_lock_bh(&css_set_lock);
4040 list_del(&it->iters_node);
4041 put_css_set_locked(it->cur_cset);
4042 spin_unlock_bh(&css_set_lock);
4045 if (it->cur_task)
4046 put_task_struct(it->cur_task);
4050 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4051 * @to: cgroup to which the tasks will be moved
4052 * @from: cgroup in which the tasks currently reside
4054 * Locking rules between cgroup_post_fork() and the migration path
4055 * guarantee that, if a task is forking while being migrated, the new child
4056 * is guaranteed to be either visible in the source cgroup after the
4057 * parent's migration is complete or put into the target cgroup. No task
4058 * can slip out of migration through forking.
4060 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4062 LIST_HEAD(preloaded_csets);
4063 struct cgrp_cset_link *link;
4064 struct css_task_iter it;
4065 struct task_struct *task;
4066 int ret;
4068 mutex_lock(&cgroup_mutex);
4070 /* all tasks in @from are being moved, all csets are source */
4071 spin_lock_bh(&css_set_lock);
4072 list_for_each_entry(link, &from->cset_links, cset_link)
4073 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4074 spin_unlock_bh(&css_set_lock);
4076 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4077 if (ret)
4078 goto out_err;
4081 * Migrate tasks one-by-one until @form is empty. This fails iff
4082 * ->can_attach() fails.
4084 do {
4085 css_task_iter_start(&from->self, &it);
4086 task = css_task_iter_next(&it);
4087 if (task)
4088 get_task_struct(task);
4089 css_task_iter_end(&it);
4091 if (task) {
4092 ret = cgroup_migrate(task, false, to);
4093 put_task_struct(task);
4095 } while (task && !ret);
4096 out_err:
4097 cgroup_migrate_finish(&preloaded_csets);
4098 mutex_unlock(&cgroup_mutex);
4099 return ret;
4103 * Stuff for reading the 'tasks'/'procs' files.
4105 * Reading this file can return large amounts of data if a cgroup has
4106 * *lots* of attached tasks. So it may need several calls to read(),
4107 * but we cannot guarantee that the information we produce is correct
4108 * unless we produce it entirely atomically.
4112 /* which pidlist file are we talking about? */
4113 enum cgroup_filetype {
4114 CGROUP_FILE_PROCS,
4115 CGROUP_FILE_TASKS,
4119 * A pidlist is a list of pids that virtually represents the contents of one
4120 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4121 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4122 * to the cgroup.
4124 struct cgroup_pidlist {
4126 * used to find which pidlist is wanted. doesn't change as long as
4127 * this particular list stays in the list.
4129 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4130 /* array of xids */
4131 pid_t *list;
4132 /* how many elements the above list has */
4133 int length;
4134 /* each of these stored in a list by its cgroup */
4135 struct list_head links;
4136 /* pointer to the cgroup we belong to, for list removal purposes */
4137 struct cgroup *owner;
4138 /* for delayed destruction */
4139 struct delayed_work destroy_dwork;
4143 * The following two functions "fix" the issue where there are more pids
4144 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4145 * TODO: replace with a kernel-wide solution to this problem
4147 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4148 static void *pidlist_allocate(int count)
4150 if (PIDLIST_TOO_LARGE(count))
4151 return vmalloc(count * sizeof(pid_t));
4152 else
4153 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4156 static void pidlist_free(void *p)
4158 kvfree(p);
4162 * Used to destroy all pidlists lingering waiting for destroy timer. None
4163 * should be left afterwards.
4165 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4167 struct cgroup_pidlist *l, *tmp_l;
4169 mutex_lock(&cgrp->pidlist_mutex);
4170 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4171 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4172 mutex_unlock(&cgrp->pidlist_mutex);
4174 flush_workqueue(cgroup_pidlist_destroy_wq);
4175 BUG_ON(!list_empty(&cgrp->pidlists));
4178 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4180 struct delayed_work *dwork = to_delayed_work(work);
4181 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4182 destroy_dwork);
4183 struct cgroup_pidlist *tofree = NULL;
4185 mutex_lock(&l->owner->pidlist_mutex);
4188 * Destroy iff we didn't get queued again. The state won't change
4189 * as destroy_dwork can only be queued while locked.
4191 if (!delayed_work_pending(dwork)) {
4192 list_del(&l->links);
4193 pidlist_free(l->list);
4194 put_pid_ns(l->key.ns);
4195 tofree = l;
4198 mutex_unlock(&l->owner->pidlist_mutex);
4199 kfree(tofree);
4203 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4204 * Returns the number of unique elements.
4206 static int pidlist_uniq(pid_t *list, int length)
4208 int src, dest = 1;
4211 * we presume the 0th element is unique, so i starts at 1. trivial
4212 * edge cases first; no work needs to be done for either
4214 if (length == 0 || length == 1)
4215 return length;
4216 /* src and dest walk down the list; dest counts unique elements */
4217 for (src = 1; src < length; src++) {
4218 /* find next unique element */
4219 while (list[src] == list[src-1]) {
4220 src++;
4221 if (src == length)
4222 goto after;
4224 /* dest always points to where the next unique element goes */
4225 list[dest] = list[src];
4226 dest++;
4228 after:
4229 return dest;
4233 * The two pid files - task and cgroup.procs - guaranteed that the result
4234 * is sorted, which forced this whole pidlist fiasco. As pid order is
4235 * different per namespace, each namespace needs differently sorted list,
4236 * making it impossible to use, for example, single rbtree of member tasks
4237 * sorted by task pointer. As pidlists can be fairly large, allocating one
4238 * per open file is dangerous, so cgroup had to implement shared pool of
4239 * pidlists keyed by cgroup and namespace.
4241 * All this extra complexity was caused by the original implementation
4242 * committing to an entirely unnecessary property. In the long term, we
4243 * want to do away with it. Explicitly scramble sort order if on the
4244 * default hierarchy so that no such expectation exists in the new
4245 * interface.
4247 * Scrambling is done by swapping every two consecutive bits, which is
4248 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4250 static pid_t pid_fry(pid_t pid)
4252 unsigned a = pid & 0x55555555;
4253 unsigned b = pid & 0xAAAAAAAA;
4255 return (a << 1) | (b >> 1);
4258 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4260 if (cgroup_on_dfl(cgrp))
4261 return pid_fry(pid);
4262 else
4263 return pid;
4266 static int cmppid(const void *a, const void *b)
4268 return *(pid_t *)a - *(pid_t *)b;
4271 static int fried_cmppid(const void *a, const void *b)
4273 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4276 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4277 enum cgroup_filetype type)
4279 struct cgroup_pidlist *l;
4280 /* don't need task_nsproxy() if we're looking at ourself */
4281 struct pid_namespace *ns = task_active_pid_ns(current);
4283 lockdep_assert_held(&cgrp->pidlist_mutex);
4285 list_for_each_entry(l, &cgrp->pidlists, links)
4286 if (l->key.type == type && l->key.ns == ns)
4287 return l;
4288 return NULL;
4292 * find the appropriate pidlist for our purpose (given procs vs tasks)
4293 * returns with the lock on that pidlist already held, and takes care
4294 * of the use count, or returns NULL with no locks held if we're out of
4295 * memory.
4297 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4298 enum cgroup_filetype type)
4300 struct cgroup_pidlist *l;
4302 lockdep_assert_held(&cgrp->pidlist_mutex);
4304 l = cgroup_pidlist_find(cgrp, type);
4305 if (l)
4306 return l;
4308 /* entry not found; create a new one */
4309 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4310 if (!l)
4311 return l;
4313 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4314 l->key.type = type;
4315 /* don't need task_nsproxy() if we're looking at ourself */
4316 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4317 l->owner = cgrp;
4318 list_add(&l->links, &cgrp->pidlists);
4319 return l;
4323 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4325 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4326 struct cgroup_pidlist **lp)
4328 pid_t *array;
4329 int length;
4330 int pid, n = 0; /* used for populating the array */
4331 struct css_task_iter it;
4332 struct task_struct *tsk;
4333 struct cgroup_pidlist *l;
4335 lockdep_assert_held(&cgrp->pidlist_mutex);
4338 * If cgroup gets more users after we read count, we won't have
4339 * enough space - tough. This race is indistinguishable to the
4340 * caller from the case that the additional cgroup users didn't
4341 * show up until sometime later on.
4343 length = cgroup_task_count(cgrp);
4344 array = pidlist_allocate(length);
4345 if (!array)
4346 return -ENOMEM;
4347 /* now, populate the array */
4348 css_task_iter_start(&cgrp->self, &it);
4349 while ((tsk = css_task_iter_next(&it))) {
4350 if (unlikely(n == length))
4351 break;
4352 /* get tgid or pid for procs or tasks file respectively */
4353 if (type == CGROUP_FILE_PROCS)
4354 pid = task_tgid_vnr(tsk);
4355 else
4356 pid = task_pid_vnr(tsk);
4357 if (pid > 0) /* make sure to only use valid results */
4358 array[n++] = pid;
4360 css_task_iter_end(&it);
4361 length = n;
4362 /* now sort & (if procs) strip out duplicates */
4363 if (cgroup_on_dfl(cgrp))
4364 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4365 else
4366 sort(array, length, sizeof(pid_t), cmppid, NULL);
4367 if (type == CGROUP_FILE_PROCS)
4368 length = pidlist_uniq(array, length);
4370 l = cgroup_pidlist_find_create(cgrp, type);
4371 if (!l) {
4372 pidlist_free(array);
4373 return -ENOMEM;
4376 /* store array, freeing old if necessary */
4377 pidlist_free(l->list);
4378 l->list = array;
4379 l->length = length;
4380 *lp = l;
4381 return 0;
4385 * cgroupstats_build - build and fill cgroupstats
4386 * @stats: cgroupstats to fill information into
4387 * @dentry: A dentry entry belonging to the cgroup for which stats have
4388 * been requested.
4390 * Build and fill cgroupstats so that taskstats can export it to user
4391 * space.
4393 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4395 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4396 struct cgroup *cgrp;
4397 struct css_task_iter it;
4398 struct task_struct *tsk;
4400 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4401 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4402 kernfs_type(kn) != KERNFS_DIR)
4403 return -EINVAL;
4405 mutex_lock(&cgroup_mutex);
4408 * We aren't being called from kernfs and there's no guarantee on
4409 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4410 * @kn->priv is RCU safe. Let's do the RCU dancing.
4412 rcu_read_lock();
4413 cgrp = rcu_dereference(kn->priv);
4414 if (!cgrp || cgroup_is_dead(cgrp)) {
4415 rcu_read_unlock();
4416 mutex_unlock(&cgroup_mutex);
4417 return -ENOENT;
4419 rcu_read_unlock();
4421 css_task_iter_start(&cgrp->self, &it);
4422 while ((tsk = css_task_iter_next(&it))) {
4423 switch (tsk->state) {
4424 case TASK_RUNNING:
4425 stats->nr_running++;
4426 break;
4427 case TASK_INTERRUPTIBLE:
4428 stats->nr_sleeping++;
4429 break;
4430 case TASK_UNINTERRUPTIBLE:
4431 stats->nr_uninterruptible++;
4432 break;
4433 case TASK_STOPPED:
4434 stats->nr_stopped++;
4435 break;
4436 default:
4437 if (delayacct_is_task_waiting_on_io(tsk))
4438 stats->nr_io_wait++;
4439 break;
4442 css_task_iter_end(&it);
4444 mutex_unlock(&cgroup_mutex);
4445 return 0;
4450 * seq_file methods for the tasks/procs files. The seq_file position is the
4451 * next pid to display; the seq_file iterator is a pointer to the pid
4452 * in the cgroup->l->list array.
4455 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4458 * Initially we receive a position value that corresponds to
4459 * one more than the last pid shown (or 0 on the first call or
4460 * after a seek to the start). Use a binary-search to find the
4461 * next pid to display, if any
4463 struct kernfs_open_file *of = s->private;
4464 struct cgroup *cgrp = seq_css(s)->cgroup;
4465 struct cgroup_pidlist *l;
4466 enum cgroup_filetype type = seq_cft(s)->private;
4467 int index = 0, pid = *pos;
4468 int *iter, ret;
4470 mutex_lock(&cgrp->pidlist_mutex);
4473 * !NULL @of->priv indicates that this isn't the first start()
4474 * after open. If the matching pidlist is around, we can use that.
4475 * Look for it. Note that @of->priv can't be used directly. It
4476 * could already have been destroyed.
4478 if (of->priv)
4479 of->priv = cgroup_pidlist_find(cgrp, type);
4482 * Either this is the first start() after open or the matching
4483 * pidlist has been destroyed inbetween. Create a new one.
4485 if (!of->priv) {
4486 ret = pidlist_array_load(cgrp, type,
4487 (struct cgroup_pidlist **)&of->priv);
4488 if (ret)
4489 return ERR_PTR(ret);
4491 l = of->priv;
4493 if (pid) {
4494 int end = l->length;
4496 while (index < end) {
4497 int mid = (index + end) / 2;
4498 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4499 index = mid;
4500 break;
4501 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4502 index = mid + 1;
4503 else
4504 end = mid;
4507 /* If we're off the end of the array, we're done */
4508 if (index >= l->length)
4509 return NULL;
4510 /* Update the abstract position to be the actual pid that we found */
4511 iter = l->list + index;
4512 *pos = cgroup_pid_fry(cgrp, *iter);
4513 return iter;
4516 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4518 struct kernfs_open_file *of = s->private;
4519 struct cgroup_pidlist *l = of->priv;
4521 if (l)
4522 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4523 CGROUP_PIDLIST_DESTROY_DELAY);
4524 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4527 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4529 struct kernfs_open_file *of = s->private;
4530 struct cgroup_pidlist *l = of->priv;
4531 pid_t *p = v;
4532 pid_t *end = l->list + l->length;
4534 * Advance to the next pid in the array. If this goes off the
4535 * end, we're done
4537 p++;
4538 if (p >= end) {
4539 return NULL;
4540 } else {
4541 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4542 return p;
4546 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4548 seq_printf(s, "%d\n", *(int *)v);
4550 return 0;
4553 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4554 struct cftype *cft)
4556 return notify_on_release(css->cgroup);
4559 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4560 struct cftype *cft, u64 val)
4562 if (val)
4563 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4564 else
4565 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4566 return 0;
4569 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4570 struct cftype *cft)
4572 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4575 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4576 struct cftype *cft, u64 val)
4578 if (val)
4579 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4580 else
4581 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4582 return 0;
4585 /* cgroup core interface files for the default hierarchy */
4586 static struct cftype cgroup_dfl_base_files[] = {
4588 .name = "cgroup.procs",
4589 .file_offset = offsetof(struct cgroup, procs_file),
4590 .seq_start = cgroup_pidlist_start,
4591 .seq_next = cgroup_pidlist_next,
4592 .seq_stop = cgroup_pidlist_stop,
4593 .seq_show = cgroup_pidlist_show,
4594 .private = CGROUP_FILE_PROCS,
4595 .write = cgroup_procs_write,
4598 .name = "cgroup.controllers",
4599 .flags = CFTYPE_ONLY_ON_ROOT,
4600 .seq_show = cgroup_root_controllers_show,
4603 .name = "cgroup.controllers",
4604 .flags = CFTYPE_NOT_ON_ROOT,
4605 .seq_show = cgroup_controllers_show,
4608 .name = "cgroup.subtree_control",
4609 .seq_show = cgroup_subtree_control_show,
4610 .write = cgroup_subtree_control_write,
4613 .name = "cgroup.events",
4614 .flags = CFTYPE_NOT_ON_ROOT,
4615 .file_offset = offsetof(struct cgroup, events_file),
4616 .seq_show = cgroup_events_show,
4618 { } /* terminate */
4621 /* cgroup core interface files for the legacy hierarchies */
4622 static struct cftype cgroup_legacy_base_files[] = {
4624 .name = "cgroup.procs",
4625 .seq_start = cgroup_pidlist_start,
4626 .seq_next = cgroup_pidlist_next,
4627 .seq_stop = cgroup_pidlist_stop,
4628 .seq_show = cgroup_pidlist_show,
4629 .private = CGROUP_FILE_PROCS,
4630 .write = cgroup_procs_write,
4633 .name = "cgroup.clone_children",
4634 .read_u64 = cgroup_clone_children_read,
4635 .write_u64 = cgroup_clone_children_write,
4638 .name = "cgroup.sane_behavior",
4639 .flags = CFTYPE_ONLY_ON_ROOT,
4640 .seq_show = cgroup_sane_behavior_show,
4643 .name = "tasks",
4644 .seq_start = cgroup_pidlist_start,
4645 .seq_next = cgroup_pidlist_next,
4646 .seq_stop = cgroup_pidlist_stop,
4647 .seq_show = cgroup_pidlist_show,
4648 .private = CGROUP_FILE_TASKS,
4649 .write = cgroup_tasks_write,
4652 .name = "notify_on_release",
4653 .read_u64 = cgroup_read_notify_on_release,
4654 .write_u64 = cgroup_write_notify_on_release,
4657 .name = "release_agent",
4658 .flags = CFTYPE_ONLY_ON_ROOT,
4659 .seq_show = cgroup_release_agent_show,
4660 .write = cgroup_release_agent_write,
4661 .max_write_len = PATH_MAX - 1,
4663 { } /* terminate */
4667 * css destruction is four-stage process.
4669 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4670 * Implemented in kill_css().
4672 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4673 * and thus css_tryget_online() is guaranteed to fail, the css can be
4674 * offlined by invoking offline_css(). After offlining, the base ref is
4675 * put. Implemented in css_killed_work_fn().
4677 * 3. When the percpu_ref reaches zero, the only possible remaining
4678 * accessors are inside RCU read sections. css_release() schedules the
4679 * RCU callback.
4681 * 4. After the grace period, the css can be freed. Implemented in
4682 * css_free_work_fn().
4684 * It is actually hairier because both step 2 and 4 require process context
4685 * and thus involve punting to css->destroy_work adding two additional
4686 * steps to the already complex sequence.
4688 static void css_free_work_fn(struct work_struct *work)
4690 struct cgroup_subsys_state *css =
4691 container_of(work, struct cgroup_subsys_state, destroy_work);
4692 struct cgroup_subsys *ss = css->ss;
4693 struct cgroup *cgrp = css->cgroup;
4695 percpu_ref_exit(&css->refcnt);
4697 if (ss) {
4698 /* css free path */
4699 struct cgroup_subsys_state *parent = css->parent;
4700 int id = css->id;
4702 ss->css_free(css);
4703 cgroup_idr_remove(&ss->css_idr, id);
4704 cgroup_put(cgrp);
4706 if (parent)
4707 css_put(parent);
4708 } else {
4709 /* cgroup free path */
4710 atomic_dec(&cgrp->root->nr_cgrps);
4711 cgroup_pidlist_destroy_all(cgrp);
4712 cancel_work_sync(&cgrp->release_agent_work);
4714 if (cgroup_parent(cgrp)) {
4716 * We get a ref to the parent, and put the ref when
4717 * this cgroup is being freed, so it's guaranteed
4718 * that the parent won't be destroyed before its
4719 * children.
4721 cgroup_put(cgroup_parent(cgrp));
4722 kernfs_put(cgrp->kn);
4723 kfree(cgrp);
4724 } else {
4726 * This is root cgroup's refcnt reaching zero,
4727 * which indicates that the root should be
4728 * released.
4730 cgroup_destroy_root(cgrp->root);
4735 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4737 struct cgroup_subsys_state *css =
4738 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4740 INIT_WORK(&css->destroy_work, css_free_work_fn);
4741 queue_work(cgroup_destroy_wq, &css->destroy_work);
4744 static void css_release_work_fn(struct work_struct *work)
4746 struct cgroup_subsys_state *css =
4747 container_of(work, struct cgroup_subsys_state, destroy_work);
4748 struct cgroup_subsys *ss = css->ss;
4749 struct cgroup *cgrp = css->cgroup;
4751 mutex_lock(&cgroup_mutex);
4753 css->flags |= CSS_RELEASED;
4754 list_del_rcu(&css->sibling);
4756 if (ss) {
4757 /* css release path */
4758 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4759 if (ss->css_released)
4760 ss->css_released(css);
4761 } else {
4762 /* cgroup release path */
4763 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4764 cgrp->id = -1;
4767 * There are two control paths which try to determine
4768 * cgroup from dentry without going through kernfs -
4769 * cgroupstats_build() and css_tryget_online_from_dir().
4770 * Those are supported by RCU protecting clearing of
4771 * cgrp->kn->priv backpointer.
4773 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4776 mutex_unlock(&cgroup_mutex);
4778 call_rcu(&css->rcu_head, css_free_rcu_fn);
4781 static void css_release(struct percpu_ref *ref)
4783 struct cgroup_subsys_state *css =
4784 container_of(ref, struct cgroup_subsys_state, refcnt);
4786 INIT_WORK(&css->destroy_work, css_release_work_fn);
4787 queue_work(cgroup_destroy_wq, &css->destroy_work);
4790 static void init_and_link_css(struct cgroup_subsys_state *css,
4791 struct cgroup_subsys *ss, struct cgroup *cgrp)
4793 lockdep_assert_held(&cgroup_mutex);
4795 cgroup_get(cgrp);
4797 memset(css, 0, sizeof(*css));
4798 css->cgroup = cgrp;
4799 css->ss = ss;
4800 css->id = -1;
4801 INIT_LIST_HEAD(&css->sibling);
4802 INIT_LIST_HEAD(&css->children);
4803 css->serial_nr = css_serial_nr_next++;
4804 atomic_set(&css->online_cnt, 0);
4806 if (cgroup_parent(cgrp)) {
4807 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4808 css_get(css->parent);
4811 BUG_ON(cgroup_css(cgrp, ss));
4814 /* invoke ->css_online() on a new CSS and mark it online if successful */
4815 static int online_css(struct cgroup_subsys_state *css)
4817 struct cgroup_subsys *ss = css->ss;
4818 int ret = 0;
4820 lockdep_assert_held(&cgroup_mutex);
4822 if (ss->css_online)
4823 ret = ss->css_online(css);
4824 if (!ret) {
4825 css->flags |= CSS_ONLINE;
4826 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4828 atomic_inc(&css->online_cnt);
4829 if (css->parent)
4830 atomic_inc(&css->parent->online_cnt);
4832 return ret;
4835 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4836 static void offline_css(struct cgroup_subsys_state *css)
4838 struct cgroup_subsys *ss = css->ss;
4840 lockdep_assert_held(&cgroup_mutex);
4842 if (!(css->flags & CSS_ONLINE))
4843 return;
4845 if (ss->css_offline)
4846 ss->css_offline(css);
4848 css->flags &= ~CSS_ONLINE;
4849 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4851 wake_up_all(&css->cgroup->offline_waitq);
4855 * create_css - create a cgroup_subsys_state
4856 * @cgrp: the cgroup new css will be associated with
4857 * @ss: the subsys of new css
4858 * @visible: whether to create control knobs for the new css or not
4860 * Create a new css associated with @cgrp - @ss pair. On success, the new
4861 * css is online and installed in @cgrp with all interface files created if
4862 * @visible. Returns 0 on success, -errno on failure.
4864 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4865 bool visible)
4867 struct cgroup *parent = cgroup_parent(cgrp);
4868 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4869 struct cgroup_subsys_state *css;
4870 int err;
4872 lockdep_assert_held(&cgroup_mutex);
4874 css = ss->css_alloc(parent_css);
4875 if (IS_ERR(css))
4876 return PTR_ERR(css);
4878 init_and_link_css(css, ss, cgrp);
4880 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4881 if (err)
4882 goto err_free_css;
4884 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4885 if (err < 0)
4886 goto err_free_percpu_ref;
4887 css->id = err;
4889 if (visible) {
4890 err = css_populate_dir(css, NULL);
4891 if (err)
4892 goto err_free_id;
4895 /* @css is ready to be brought online now, make it visible */
4896 list_add_tail_rcu(&css->sibling, &parent_css->children);
4897 cgroup_idr_replace(&ss->css_idr, css, css->id);
4899 err = online_css(css);
4900 if (err)
4901 goto err_list_del;
4903 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4904 cgroup_parent(parent)) {
4905 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4906 current->comm, current->pid, ss->name);
4907 if (!strcmp(ss->name, "memory"))
4908 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4909 ss->warned_broken_hierarchy = true;
4912 return 0;
4914 err_list_del:
4915 list_del_rcu(&css->sibling);
4916 css_clear_dir(css, NULL);
4917 err_free_id:
4918 cgroup_idr_remove(&ss->css_idr, css->id);
4919 err_free_percpu_ref:
4920 percpu_ref_exit(&css->refcnt);
4921 err_free_css:
4922 call_rcu(&css->rcu_head, css_free_rcu_fn);
4923 return err;
4926 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4927 umode_t mode)
4929 struct cgroup *parent, *cgrp;
4930 struct cgroup_root *root;
4931 struct cgroup_subsys *ss;
4932 struct kernfs_node *kn;
4933 int ssid, ret;
4935 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4937 if (strchr(name, '\n'))
4938 return -EINVAL;
4940 parent = cgroup_kn_lock_live(parent_kn);
4941 if (!parent)
4942 return -ENODEV;
4943 root = parent->root;
4945 /* allocate the cgroup and its ID, 0 is reserved for the root */
4946 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4947 if (!cgrp) {
4948 ret = -ENOMEM;
4949 goto out_unlock;
4952 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4953 if (ret)
4954 goto out_free_cgrp;
4957 * Temporarily set the pointer to NULL, so idr_find() won't return
4958 * a half-baked cgroup.
4960 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4961 if (cgrp->id < 0) {
4962 ret = -ENOMEM;
4963 goto out_cancel_ref;
4966 init_cgroup_housekeeping(cgrp);
4968 cgrp->self.parent = &parent->self;
4969 cgrp->root = root;
4971 if (notify_on_release(parent))
4972 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4974 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4975 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4977 /* create the directory */
4978 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4979 if (IS_ERR(kn)) {
4980 ret = PTR_ERR(kn);
4981 goto out_free_id;
4983 cgrp->kn = kn;
4986 * This extra ref will be put in cgroup_free_fn() and guarantees
4987 * that @cgrp->kn is always accessible.
4989 kernfs_get(kn);
4991 cgrp->self.serial_nr = css_serial_nr_next++;
4993 /* allocation complete, commit to creation */
4994 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4995 atomic_inc(&root->nr_cgrps);
4996 cgroup_get(parent);
4999 * @cgrp is now fully operational. If something fails after this
5000 * point, it'll be released via the normal destruction path.
5002 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5004 ret = cgroup_kn_set_ugid(kn);
5005 if (ret)
5006 goto out_destroy;
5008 ret = css_populate_dir(&cgrp->self, NULL);
5009 if (ret)
5010 goto out_destroy;
5012 /* let's create and online css's */
5013 for_each_subsys(ss, ssid) {
5014 if (parent->child_subsys_mask & (1 << ssid)) {
5015 ret = create_css(cgrp, ss,
5016 parent->subtree_control & (1 << ssid));
5017 if (ret)
5018 goto out_destroy;
5023 * On the default hierarchy, a child doesn't automatically inherit
5024 * subtree_control from the parent. Each is configured manually.
5026 if (!cgroup_on_dfl(cgrp)) {
5027 cgrp->subtree_control = parent->subtree_control;
5028 cgroup_refresh_child_subsys_mask(cgrp);
5031 kernfs_activate(kn);
5033 ret = 0;
5034 goto out_unlock;
5036 out_free_id:
5037 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5038 out_cancel_ref:
5039 percpu_ref_exit(&cgrp->self.refcnt);
5040 out_free_cgrp:
5041 kfree(cgrp);
5042 out_unlock:
5043 cgroup_kn_unlock(parent_kn);
5044 return ret;
5046 out_destroy:
5047 cgroup_destroy_locked(cgrp);
5048 goto out_unlock;
5052 * This is called when the refcnt of a css is confirmed to be killed.
5053 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5054 * initate destruction and put the css ref from kill_css().
5056 static void css_killed_work_fn(struct work_struct *work)
5058 struct cgroup_subsys_state *css =
5059 container_of(work, struct cgroup_subsys_state, destroy_work);
5061 mutex_lock(&cgroup_mutex);
5063 do {
5064 offline_css(css);
5065 css_put(css);
5066 /* @css can't go away while we're holding cgroup_mutex */
5067 css = css->parent;
5068 } while (css && atomic_dec_and_test(&css->online_cnt));
5070 mutex_unlock(&cgroup_mutex);
5073 /* css kill confirmation processing requires process context, bounce */
5074 static void css_killed_ref_fn(struct percpu_ref *ref)
5076 struct cgroup_subsys_state *css =
5077 container_of(ref, struct cgroup_subsys_state, refcnt);
5079 if (atomic_dec_and_test(&css->online_cnt)) {
5080 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5081 queue_work(cgroup_destroy_wq, &css->destroy_work);
5086 * kill_css - destroy a css
5087 * @css: css to destroy
5089 * This function initiates destruction of @css by removing cgroup interface
5090 * files and putting its base reference. ->css_offline() will be invoked
5091 * asynchronously once css_tryget_online() is guaranteed to fail and when
5092 * the reference count reaches zero, @css will be released.
5094 static void kill_css(struct cgroup_subsys_state *css)
5096 lockdep_assert_held(&cgroup_mutex);
5099 * This must happen before css is disassociated with its cgroup.
5100 * See seq_css() for details.
5102 css_clear_dir(css, NULL);
5105 * Killing would put the base ref, but we need to keep it alive
5106 * until after ->css_offline().
5108 css_get(css);
5111 * cgroup core guarantees that, by the time ->css_offline() is
5112 * invoked, no new css reference will be given out via
5113 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5114 * proceed to offlining css's because percpu_ref_kill() doesn't
5115 * guarantee that the ref is seen as killed on all CPUs on return.
5117 * Use percpu_ref_kill_and_confirm() to get notifications as each
5118 * css is confirmed to be seen as killed on all CPUs.
5120 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5124 * cgroup_destroy_locked - the first stage of cgroup destruction
5125 * @cgrp: cgroup to be destroyed
5127 * css's make use of percpu refcnts whose killing latency shouldn't be
5128 * exposed to userland and are RCU protected. Also, cgroup core needs to
5129 * guarantee that css_tryget_online() won't succeed by the time
5130 * ->css_offline() is invoked. To satisfy all the requirements,
5131 * destruction is implemented in the following two steps.
5133 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5134 * userland visible parts and start killing the percpu refcnts of
5135 * css's. Set up so that the next stage will be kicked off once all
5136 * the percpu refcnts are confirmed to be killed.
5138 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5139 * rest of destruction. Once all cgroup references are gone, the
5140 * cgroup is RCU-freed.
5142 * This function implements s1. After this step, @cgrp is gone as far as
5143 * the userland is concerned and a new cgroup with the same name may be
5144 * created. As cgroup doesn't care about the names internally, this
5145 * doesn't cause any problem.
5147 static int cgroup_destroy_locked(struct cgroup *cgrp)
5148 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5150 struct cgroup_subsys_state *css;
5151 struct cgrp_cset_link *link;
5152 int ssid;
5154 lockdep_assert_held(&cgroup_mutex);
5157 * Only migration can raise populated from zero and we're already
5158 * holding cgroup_mutex.
5160 if (cgroup_is_populated(cgrp))
5161 return -EBUSY;
5164 * Make sure there's no live children. We can't test emptiness of
5165 * ->self.children as dead children linger on it while being
5166 * drained; otherwise, "rmdir parent/child parent" may fail.
5168 if (css_has_online_children(&cgrp->self))
5169 return -EBUSY;
5172 * Mark @cgrp and the associated csets dead. The former prevents
5173 * further task migration and child creation by disabling
5174 * cgroup_lock_live_group(). The latter makes the csets ignored by
5175 * the migration path.
5177 cgrp->self.flags &= ~CSS_ONLINE;
5179 spin_lock_bh(&css_set_lock);
5180 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5181 link->cset->dead = true;
5182 spin_unlock_bh(&css_set_lock);
5184 /* initiate massacre of all css's */
5185 for_each_css(css, ssid, cgrp)
5186 kill_css(css);
5189 * Remove @cgrp directory along with the base files. @cgrp has an
5190 * extra ref on its kn.
5192 kernfs_remove(cgrp->kn);
5194 check_for_release(cgroup_parent(cgrp));
5196 /* put the base reference */
5197 percpu_ref_kill(&cgrp->self.refcnt);
5199 return 0;
5202 static int cgroup_rmdir(struct kernfs_node *kn)
5204 struct cgroup *cgrp;
5205 int ret = 0;
5207 cgrp = cgroup_kn_lock_live(kn);
5208 if (!cgrp)
5209 return 0;
5211 ret = cgroup_destroy_locked(cgrp);
5213 cgroup_kn_unlock(kn);
5214 return ret;
5217 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5218 .remount_fs = cgroup_remount,
5219 .show_options = cgroup_show_options,
5220 .mkdir = cgroup_mkdir,
5221 .rmdir = cgroup_rmdir,
5222 .rename = cgroup_rename,
5225 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5227 struct cgroup_subsys_state *css;
5229 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5231 mutex_lock(&cgroup_mutex);
5233 idr_init(&ss->css_idr);
5234 INIT_LIST_HEAD(&ss->cfts);
5236 /* Create the root cgroup state for this subsystem */
5237 ss->root = &cgrp_dfl_root;
5238 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5239 /* We don't handle early failures gracefully */
5240 BUG_ON(IS_ERR(css));
5241 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5244 * Root csses are never destroyed and we can't initialize
5245 * percpu_ref during early init. Disable refcnting.
5247 css->flags |= CSS_NO_REF;
5249 if (early) {
5250 /* allocation can't be done safely during early init */
5251 css->id = 1;
5252 } else {
5253 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5254 BUG_ON(css->id < 0);
5257 /* Update the init_css_set to contain a subsys
5258 * pointer to this state - since the subsystem is
5259 * newly registered, all tasks and hence the
5260 * init_css_set is in the subsystem's root cgroup. */
5261 init_css_set.subsys[ss->id] = css;
5263 have_fork_callback |= (bool)ss->fork << ss->id;
5264 have_exit_callback |= (bool)ss->exit << ss->id;
5265 have_free_callback |= (bool)ss->free << ss->id;
5266 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5268 /* At system boot, before all subsystems have been
5269 * registered, no tasks have been forked, so we don't
5270 * need to invoke fork callbacks here. */
5271 BUG_ON(!list_empty(&init_task.tasks));
5273 BUG_ON(online_css(css));
5275 mutex_unlock(&cgroup_mutex);
5279 * cgroup_init_early - cgroup initialization at system boot
5281 * Initialize cgroups at system boot, and initialize any
5282 * subsystems that request early init.
5284 int __init cgroup_init_early(void)
5286 static struct cgroup_sb_opts __initdata opts;
5287 struct cgroup_subsys *ss;
5288 int i;
5290 init_cgroup_root(&cgrp_dfl_root, &opts);
5291 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5293 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5295 for_each_subsys(ss, i) {
5296 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5297 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5298 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5299 ss->id, ss->name);
5300 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5301 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5303 ss->id = i;
5304 ss->name = cgroup_subsys_name[i];
5305 if (!ss->legacy_name)
5306 ss->legacy_name = cgroup_subsys_name[i];
5308 if (ss->early_init)
5309 cgroup_init_subsys(ss, true);
5311 return 0;
5314 static unsigned long cgroup_disable_mask __initdata;
5317 * cgroup_init - cgroup initialization
5319 * Register cgroup filesystem and /proc file, and initialize
5320 * any subsystems that didn't request early init.
5322 int __init cgroup_init(void)
5324 struct cgroup_subsys *ss;
5325 unsigned long key;
5326 int ssid;
5328 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5329 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5330 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5332 mutex_lock(&cgroup_mutex);
5334 /* Add init_css_set to the hash table */
5335 key = css_set_hash(init_css_set.subsys);
5336 hash_add(css_set_table, &init_css_set.hlist, key);
5338 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5340 mutex_unlock(&cgroup_mutex);
5342 for_each_subsys(ss, ssid) {
5343 if (ss->early_init) {
5344 struct cgroup_subsys_state *css =
5345 init_css_set.subsys[ss->id];
5347 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5348 GFP_KERNEL);
5349 BUG_ON(css->id < 0);
5350 } else {
5351 cgroup_init_subsys(ss, false);
5354 list_add_tail(&init_css_set.e_cset_node[ssid],
5355 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5358 * Setting dfl_root subsys_mask needs to consider the
5359 * disabled flag and cftype registration needs kmalloc,
5360 * both of which aren't available during early_init.
5362 if (cgroup_disable_mask & (1 << ssid)) {
5363 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5364 printk(KERN_INFO "Disabling %s control group subsystem\n",
5365 ss->name);
5366 continue;
5369 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5371 if (!ss->dfl_cftypes)
5372 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5374 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5375 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5376 } else {
5377 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5378 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5381 if (ss->bind)
5382 ss->bind(init_css_set.subsys[ssid]);
5385 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5386 WARN_ON(register_filesystem(&cgroup_fs_type));
5387 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5389 return 0;
5392 static int __init cgroup_wq_init(void)
5395 * There isn't much point in executing destruction path in
5396 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5397 * Use 1 for @max_active.
5399 * We would prefer to do this in cgroup_init() above, but that
5400 * is called before init_workqueues(): so leave this until after.
5402 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5403 BUG_ON(!cgroup_destroy_wq);
5406 * Used to destroy pidlists and separate to serve as flush domain.
5407 * Cap @max_active to 1 too.
5409 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5410 0, 1);
5411 BUG_ON(!cgroup_pidlist_destroy_wq);
5413 return 0;
5415 core_initcall(cgroup_wq_init);
5418 * proc_cgroup_show()
5419 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5420 * - Used for /proc/<pid>/cgroup.
5422 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5423 struct pid *pid, struct task_struct *tsk)
5425 char *buf, *path;
5426 int retval;
5427 struct cgroup_root *root;
5429 retval = -ENOMEM;
5430 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5431 if (!buf)
5432 goto out;
5434 mutex_lock(&cgroup_mutex);
5435 spin_lock_bh(&css_set_lock);
5437 for_each_root(root) {
5438 struct cgroup_subsys *ss;
5439 struct cgroup *cgrp;
5440 int ssid, count = 0;
5442 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5443 continue;
5445 seq_printf(m, "%d:", root->hierarchy_id);
5446 if (root != &cgrp_dfl_root)
5447 for_each_subsys(ss, ssid)
5448 if (root->subsys_mask & (1 << ssid))
5449 seq_printf(m, "%s%s", count++ ? "," : "",
5450 ss->legacy_name);
5451 if (strlen(root->name))
5452 seq_printf(m, "%sname=%s", count ? "," : "",
5453 root->name);
5454 seq_putc(m, ':');
5456 cgrp = task_cgroup_from_root(tsk, root);
5459 * On traditional hierarchies, all zombie tasks show up as
5460 * belonging to the root cgroup. On the default hierarchy,
5461 * while a zombie doesn't show up in "cgroup.procs" and
5462 * thus can't be migrated, its /proc/PID/cgroup keeps
5463 * reporting the cgroup it belonged to before exiting. If
5464 * the cgroup is removed before the zombie is reaped,
5465 * " (deleted)" is appended to the cgroup path.
5467 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5468 path = cgroup_path(cgrp, buf, PATH_MAX);
5469 if (!path) {
5470 retval = -ENAMETOOLONG;
5471 goto out_unlock;
5473 } else {
5474 path = "/";
5477 seq_puts(m, path);
5479 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5480 seq_puts(m, " (deleted)\n");
5481 else
5482 seq_putc(m, '\n');
5485 retval = 0;
5486 out_unlock:
5487 spin_unlock_bh(&css_set_lock);
5488 mutex_unlock(&cgroup_mutex);
5489 kfree(buf);
5490 out:
5491 return retval;
5494 /* Display information about each subsystem and each hierarchy */
5495 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5497 struct cgroup_subsys *ss;
5498 int i;
5500 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5502 * ideally we don't want subsystems moving around while we do this.
5503 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5504 * subsys/hierarchy state.
5506 mutex_lock(&cgroup_mutex);
5508 for_each_subsys(ss, i)
5509 seq_printf(m, "%s\t%d\t%d\t%d\n",
5510 ss->legacy_name, ss->root->hierarchy_id,
5511 atomic_read(&ss->root->nr_cgrps),
5512 cgroup_ssid_enabled(i));
5514 mutex_unlock(&cgroup_mutex);
5515 return 0;
5518 static int cgroupstats_open(struct inode *inode, struct file *file)
5520 return single_open(file, proc_cgroupstats_show, NULL);
5523 static const struct file_operations proc_cgroupstats_operations = {
5524 .open = cgroupstats_open,
5525 .read = seq_read,
5526 .llseek = seq_lseek,
5527 .release = single_release,
5530 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5532 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5533 return &ss_priv[i - CGROUP_CANFORK_START];
5534 return NULL;
5537 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5539 void **private = subsys_canfork_priv_p(ss_priv, i);
5540 return private ? *private : NULL;
5544 * cgroup_fork - initialize cgroup related fields during copy_process()
5545 * @child: pointer to task_struct of forking parent process.
5547 * A task is associated with the init_css_set until cgroup_post_fork()
5548 * attaches it to the parent's css_set. Empty cg_list indicates that
5549 * @child isn't holding reference to its css_set.
5551 void cgroup_fork(struct task_struct *child)
5553 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5554 INIT_LIST_HEAD(&child->cg_list);
5558 * cgroup_can_fork - called on a new task before the process is exposed
5559 * @child: the task in question.
5561 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5562 * returns an error, the fork aborts with that error code. This allows for
5563 * a cgroup subsystem to conditionally allow or deny new forks.
5565 int cgroup_can_fork(struct task_struct *child,
5566 void *ss_priv[CGROUP_CANFORK_COUNT])
5568 struct cgroup_subsys *ss;
5569 int i, j, ret;
5571 for_each_subsys_which(ss, i, &have_canfork_callback) {
5572 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5573 if (ret)
5574 goto out_revert;
5577 return 0;
5579 out_revert:
5580 for_each_subsys(ss, j) {
5581 if (j >= i)
5582 break;
5583 if (ss->cancel_fork)
5584 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5587 return ret;
5591 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5592 * @child: the task in question
5594 * This calls the cancel_fork() callbacks if a fork failed *after*
5595 * cgroup_can_fork() succeded.
5597 void cgroup_cancel_fork(struct task_struct *child,
5598 void *ss_priv[CGROUP_CANFORK_COUNT])
5600 struct cgroup_subsys *ss;
5601 int i;
5603 for_each_subsys(ss, i)
5604 if (ss->cancel_fork)
5605 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5609 * cgroup_post_fork - called on a new task after adding it to the task list
5610 * @child: the task in question
5612 * Adds the task to the list running through its css_set if necessary and
5613 * call the subsystem fork() callbacks. Has to be after the task is
5614 * visible on the task list in case we race with the first call to
5615 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5616 * list.
5618 void cgroup_post_fork(struct task_struct *child,
5619 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5621 struct cgroup_subsys *ss;
5622 int i;
5625 * This may race against cgroup_enable_task_cg_lists(). As that
5626 * function sets use_task_css_set_links before grabbing
5627 * tasklist_lock and we just went through tasklist_lock to add
5628 * @child, it's guaranteed that either we see the set
5629 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5630 * @child during its iteration.
5632 * If we won the race, @child is associated with %current's
5633 * css_set. Grabbing css_set_lock guarantees both that the
5634 * association is stable, and, on completion of the parent's
5635 * migration, @child is visible in the source of migration or
5636 * already in the destination cgroup. This guarantee is necessary
5637 * when implementing operations which need to migrate all tasks of
5638 * a cgroup to another.
5640 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5641 * will remain in init_css_set. This is safe because all tasks are
5642 * in the init_css_set before cg_links is enabled and there's no
5643 * operation which transfers all tasks out of init_css_set.
5645 if (use_task_css_set_links) {
5646 struct css_set *cset;
5648 spin_lock_bh(&css_set_lock);
5649 cset = task_css_set(current);
5650 if (list_empty(&child->cg_list)) {
5651 get_css_set(cset);
5652 css_set_move_task(child, NULL, cset, false);
5654 spin_unlock_bh(&css_set_lock);
5658 * Call ss->fork(). This must happen after @child is linked on
5659 * css_set; otherwise, @child might change state between ->fork()
5660 * and addition to css_set.
5662 for_each_subsys_which(ss, i, &have_fork_callback)
5663 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5667 * cgroup_exit - detach cgroup from exiting task
5668 * @tsk: pointer to task_struct of exiting process
5670 * Description: Detach cgroup from @tsk and release it.
5672 * Note that cgroups marked notify_on_release force every task in
5673 * them to take the global cgroup_mutex mutex when exiting.
5674 * This could impact scaling on very large systems. Be reluctant to
5675 * use notify_on_release cgroups where very high task exit scaling
5676 * is required on large systems.
5678 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5679 * call cgroup_exit() while the task is still competent to handle
5680 * notify_on_release(), then leave the task attached to the root cgroup in
5681 * each hierarchy for the remainder of its exit. No need to bother with
5682 * init_css_set refcnting. init_css_set never goes away and we can't race
5683 * with migration path - PF_EXITING is visible to migration path.
5685 void cgroup_exit(struct task_struct *tsk)
5687 struct cgroup_subsys *ss;
5688 struct css_set *cset;
5689 int i;
5692 * Unlink from @tsk from its css_set. As migration path can't race
5693 * with us, we can check css_set and cg_list without synchronization.
5695 cset = task_css_set(tsk);
5697 if (!list_empty(&tsk->cg_list)) {
5698 spin_lock_bh(&css_set_lock);
5699 css_set_move_task(tsk, cset, NULL, false);
5700 spin_unlock_bh(&css_set_lock);
5701 } else {
5702 get_css_set(cset);
5705 /* see cgroup_post_fork() for details */
5706 for_each_subsys_which(ss, i, &have_exit_callback)
5707 ss->exit(tsk);
5710 void cgroup_free(struct task_struct *task)
5712 struct css_set *cset = task_css_set(task);
5713 struct cgroup_subsys *ss;
5714 int ssid;
5716 for_each_subsys_which(ss, ssid, &have_free_callback)
5717 ss->free(task);
5719 put_css_set(cset);
5722 static void check_for_release(struct cgroup *cgrp)
5724 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5725 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5726 schedule_work(&cgrp->release_agent_work);
5730 * Notify userspace when a cgroup is released, by running the
5731 * configured release agent with the name of the cgroup (path
5732 * relative to the root of cgroup file system) as the argument.
5734 * Most likely, this user command will try to rmdir this cgroup.
5736 * This races with the possibility that some other task will be
5737 * attached to this cgroup before it is removed, or that some other
5738 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5739 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5740 * unused, and this cgroup will be reprieved from its death sentence,
5741 * to continue to serve a useful existence. Next time it's released,
5742 * we will get notified again, if it still has 'notify_on_release' set.
5744 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5745 * means only wait until the task is successfully execve()'d. The
5746 * separate release agent task is forked by call_usermodehelper(),
5747 * then control in this thread returns here, without waiting for the
5748 * release agent task. We don't bother to wait because the caller of
5749 * this routine has no use for the exit status of the release agent
5750 * task, so no sense holding our caller up for that.
5752 static void cgroup_release_agent(struct work_struct *work)
5754 struct cgroup *cgrp =
5755 container_of(work, struct cgroup, release_agent_work);
5756 char *pathbuf = NULL, *agentbuf = NULL, *path;
5757 char *argv[3], *envp[3];
5759 mutex_lock(&cgroup_mutex);
5761 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5762 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5763 if (!pathbuf || !agentbuf)
5764 goto out;
5766 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5767 if (!path)
5768 goto out;
5770 argv[0] = agentbuf;
5771 argv[1] = path;
5772 argv[2] = NULL;
5774 /* minimal command environment */
5775 envp[0] = "HOME=/";
5776 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5777 envp[2] = NULL;
5779 mutex_unlock(&cgroup_mutex);
5780 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5781 goto out_free;
5782 out:
5783 mutex_unlock(&cgroup_mutex);
5784 out_free:
5785 kfree(agentbuf);
5786 kfree(pathbuf);
5789 static int __init cgroup_disable(char *str)
5791 struct cgroup_subsys *ss;
5792 char *token;
5793 int i;
5795 while ((token = strsep(&str, ",")) != NULL) {
5796 if (!*token)
5797 continue;
5799 for_each_subsys(ss, i) {
5800 if (strcmp(token, ss->name) &&
5801 strcmp(token, ss->legacy_name))
5802 continue;
5803 cgroup_disable_mask |= 1 << i;
5806 return 1;
5808 __setup("cgroup_disable=", cgroup_disable);
5811 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5812 * @dentry: directory dentry of interest
5813 * @ss: subsystem of interest
5815 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5816 * to get the corresponding css and return it. If such css doesn't exist
5817 * or can't be pinned, an ERR_PTR value is returned.
5819 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5820 struct cgroup_subsys *ss)
5822 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5823 struct cgroup_subsys_state *css = NULL;
5824 struct cgroup *cgrp;
5826 /* is @dentry a cgroup dir? */
5827 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5828 kernfs_type(kn) != KERNFS_DIR)
5829 return ERR_PTR(-EBADF);
5831 rcu_read_lock();
5834 * This path doesn't originate from kernfs and @kn could already
5835 * have been or be removed at any point. @kn->priv is RCU
5836 * protected for this access. See css_release_work_fn() for details.
5838 cgrp = rcu_dereference(kn->priv);
5839 if (cgrp)
5840 css = cgroup_css(cgrp, ss);
5842 if (!css || !css_tryget_online(css))
5843 css = ERR_PTR(-ENOENT);
5845 rcu_read_unlock();
5846 return css;
5850 * css_from_id - lookup css by id
5851 * @id: the cgroup id
5852 * @ss: cgroup subsys to be looked into
5854 * Returns the css if there's valid one with @id, otherwise returns NULL.
5855 * Should be called under rcu_read_lock().
5857 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5859 WARN_ON_ONCE(!rcu_read_lock_held());
5860 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5863 #ifdef CONFIG_CGROUP_DEBUG
5864 static struct cgroup_subsys_state *
5865 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5867 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5869 if (!css)
5870 return ERR_PTR(-ENOMEM);
5872 return css;
5875 static void debug_css_free(struct cgroup_subsys_state *css)
5877 kfree(css);
5880 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5881 struct cftype *cft)
5883 return cgroup_task_count(css->cgroup);
5886 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5887 struct cftype *cft)
5889 return (u64)(unsigned long)current->cgroups;
5892 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5893 struct cftype *cft)
5895 u64 count;
5897 rcu_read_lock();
5898 count = atomic_read(&task_css_set(current)->refcount);
5899 rcu_read_unlock();
5900 return count;
5903 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5905 struct cgrp_cset_link *link;
5906 struct css_set *cset;
5907 char *name_buf;
5909 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5910 if (!name_buf)
5911 return -ENOMEM;
5913 spin_lock_bh(&css_set_lock);
5914 rcu_read_lock();
5915 cset = rcu_dereference(current->cgroups);
5916 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5917 struct cgroup *c = link->cgrp;
5919 cgroup_name(c, name_buf, NAME_MAX + 1);
5920 seq_printf(seq, "Root %d group %s\n",
5921 c->root->hierarchy_id, name_buf);
5923 rcu_read_unlock();
5924 spin_unlock_bh(&css_set_lock);
5925 kfree(name_buf);
5926 return 0;
5929 #define MAX_TASKS_SHOWN_PER_CSS 25
5930 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5932 struct cgroup_subsys_state *css = seq_css(seq);
5933 struct cgrp_cset_link *link;
5935 spin_lock_bh(&css_set_lock);
5936 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5937 struct css_set *cset = link->cset;
5938 struct task_struct *task;
5939 int count = 0;
5941 seq_printf(seq, "css_set %p\n", cset);
5943 list_for_each_entry(task, &cset->tasks, cg_list) {
5944 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5945 goto overflow;
5946 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5949 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5950 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5951 goto overflow;
5952 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5954 continue;
5955 overflow:
5956 seq_puts(seq, " ...\n");
5958 spin_unlock_bh(&css_set_lock);
5959 return 0;
5962 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5964 return (!cgroup_is_populated(css->cgroup) &&
5965 !css_has_online_children(&css->cgroup->self));
5968 static struct cftype debug_files[] = {
5970 .name = "taskcount",
5971 .read_u64 = debug_taskcount_read,
5975 .name = "current_css_set",
5976 .read_u64 = current_css_set_read,
5980 .name = "current_css_set_refcount",
5981 .read_u64 = current_css_set_refcount_read,
5985 .name = "current_css_set_cg_links",
5986 .seq_show = current_css_set_cg_links_read,
5990 .name = "cgroup_css_links",
5991 .seq_show = cgroup_css_links_read,
5995 .name = "releasable",
5996 .read_u64 = releasable_read,
5999 { } /* terminate */
6002 struct cgroup_subsys debug_cgrp_subsys = {
6003 .css_alloc = debug_css_alloc,
6004 .css_free = debug_css_free,
6005 .legacy_cftypes = debug_files,
6007 #endif /* CONFIG_CGROUP_DEBUG */