dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / fork.c
blobdd2f79ac0771ac29970a0936c4e1e2ff0670050e
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/kaiser.h>
62 #include <linux/delayacct.h>
63 #include <linux/taskstats_kern.h>
64 #include <linux/random.h>
65 #include <linux/tty.h>
66 #include <linux/blkdev.h>
67 #include <linux/fs_struct.h>
68 #include <linux/magic.h>
69 #include <linux/perf_event.h>
70 #include <linux/posix-timers.h>
71 #include <linux/user-return-notifier.h>
72 #include <linux/oom.h>
73 #include <linux/khugepaged.h>
74 #include <linux/signalfd.h>
75 #include <linux/uprobes.h>
76 #include <linux/aio.h>
77 #include <linux/compiler.h>
78 #include <linux/sysctl.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
108 int max_threads; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
124 int cpu;
125 int total = 0;
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
130 return total;
133 void __weak arch_release_task_struct(struct task_struct *tsk)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
140 static inline struct task_struct *alloc_task_struct_node(int node)
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
145 static inline void free_task_struct(struct task_struct *tsk)
147 kmem_cache_free(task_struct_cachep, tsk);
149 #endif
151 void __weak arch_release_thread_info(struct thread_info *ti)
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
165 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
168 return page ? page_address(page) : NULL;
171 static inline void free_thread_info(struct thread_info *ti)
173 kaiser_unmap_thread_stack(ti);
174 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
176 # else
177 static struct kmem_cache *thread_info_cache;
179 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
180 int node)
182 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
185 static void free_thread_info(struct thread_info *ti)
187 kmem_cache_free(thread_info_cache, ti);
190 void thread_info_cache_init(void)
192 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
193 THREAD_SIZE, 0, NULL);
194 BUG_ON(thread_info_cache == NULL);
196 # endif
197 #endif
199 /* SLAB cache for signal_struct structures (tsk->signal) */
200 static struct kmem_cache *signal_cachep;
202 /* SLAB cache for sighand_struct structures (tsk->sighand) */
203 struct kmem_cache *sighand_cachep;
205 /* SLAB cache for files_struct structures (tsk->files) */
206 struct kmem_cache *files_cachep;
208 /* SLAB cache for fs_struct structures (tsk->fs) */
209 struct kmem_cache *fs_cachep;
211 /* SLAB cache for vm_area_struct structures */
212 struct kmem_cache *vm_area_cachep;
214 /* SLAB cache for mm_struct structures (tsk->mm) */
215 static struct kmem_cache *mm_cachep;
217 static void account_kernel_stack(struct thread_info *ti, int account)
219 struct zone *zone = page_zone(virt_to_page(ti));
221 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
224 void free_task(struct task_struct *tsk)
226 account_kernel_stack(tsk->stack, -1);
227 arch_release_thread_info(tsk->stack);
228 free_thread_info(tsk->stack);
229 rt_mutex_debug_task_free(tsk);
230 ftrace_graph_exit_task(tsk);
231 put_seccomp_filter(tsk);
232 arch_release_task_struct(tsk);
233 free_task_struct(tsk);
235 EXPORT_SYMBOL(free_task);
237 static inline void free_signal_struct(struct signal_struct *sig)
239 taskstats_tgid_free(sig);
240 sched_autogroup_exit(sig);
241 kmem_cache_free(signal_cachep, sig);
244 static inline void put_signal_struct(struct signal_struct *sig)
246 if (atomic_dec_and_test(&sig->sigcnt))
247 free_signal_struct(sig);
250 void __put_task_struct(struct task_struct *tsk)
252 WARN_ON(!tsk->exit_state);
253 WARN_ON(atomic_read(&tsk->usage));
254 WARN_ON(tsk == current);
256 cgroup_free(tsk);
257 task_numa_free(tsk);
258 security_task_free(tsk);
259 exit_creds(tsk);
260 delayacct_tsk_free(tsk);
261 put_signal_struct(tsk->signal);
263 if (!profile_handoff_task(tsk))
264 free_task(tsk);
266 EXPORT_SYMBOL_GPL(__put_task_struct);
268 void __init __weak arch_task_cache_init(void) { }
271 * set_max_threads
273 static void set_max_threads(unsigned int max_threads_suggested)
275 u64 threads;
278 * The number of threads shall be limited such that the thread
279 * structures may only consume a small part of the available memory.
281 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
282 threads = MAX_THREADS;
283 else
284 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
285 (u64) THREAD_SIZE * 8UL);
287 if (threads > max_threads_suggested)
288 threads = max_threads_suggested;
290 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
293 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
294 /* Initialized by the architecture: */
295 int arch_task_struct_size __read_mostly;
296 #endif
298 void __init fork_init(void)
300 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
301 #ifndef ARCH_MIN_TASKALIGN
302 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
303 #endif
304 /* create a slab on which task_structs can be allocated */
305 task_struct_cachep =
306 kmem_cache_create("task_struct", arch_task_struct_size,
307 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
308 #endif
310 /* do the arch specific task caches init */
311 arch_task_cache_init();
313 set_max_threads(MAX_THREADS);
315 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
316 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
317 init_task.signal->rlim[RLIMIT_SIGPENDING] =
318 init_task.signal->rlim[RLIMIT_NPROC];
321 int __weak arch_dup_task_struct(struct task_struct *dst,
322 struct task_struct *src)
324 *dst = *src;
325 return 0;
328 void set_task_stack_end_magic(struct task_struct *tsk)
330 unsigned long *stackend;
332 stackend = end_of_stack(tsk);
333 *stackend = STACK_END_MAGIC; /* for overflow detection */
336 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
338 struct task_struct *tsk;
339 struct thread_info *ti;
340 int err;
342 if (node == NUMA_NO_NODE)
343 node = tsk_fork_get_node(orig);
344 tsk = alloc_task_struct_node(node);
345 if (!tsk)
346 return NULL;
348 ti = alloc_thread_info_node(tsk, node);
349 if (!ti)
350 goto free_tsk;
352 err = arch_dup_task_struct(tsk, orig);
353 if (err)
354 goto free_ti;
356 tsk->stack = ti;
358 err = kaiser_map_thread_stack(tsk->stack);
359 if (err)
360 goto free_ti;
361 #ifdef CONFIG_SECCOMP
363 * We must handle setting up seccomp filters once we're under
364 * the sighand lock in case orig has changed between now and
365 * then. Until then, filter must be NULL to avoid messing up
366 * the usage counts on the error path calling free_task.
368 tsk->seccomp.filter = NULL;
369 #endif
371 setup_thread_stack(tsk, orig);
372 clear_user_return_notifier(tsk);
373 clear_tsk_need_resched(tsk);
374 set_task_stack_end_magic(tsk);
376 #ifdef CONFIG_CC_STACKPROTECTOR
377 tsk->stack_canary = get_random_long();
378 #endif
381 * One for us, one for whoever does the "release_task()" (usually
382 * parent)
384 atomic_set(&tsk->usage, 2);
385 #ifdef CONFIG_BLK_DEV_IO_TRACE
386 tsk->btrace_seq = 0;
387 #endif
388 tsk->splice_pipe = NULL;
389 tsk->task_frag.page = NULL;
390 tsk->wake_q.next = NULL;
392 account_kernel_stack(ti, 1);
394 return tsk;
396 free_ti:
397 free_thread_info(ti);
398 free_tsk:
399 free_task_struct(tsk);
400 return NULL;
403 #ifdef CONFIG_MMU
404 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
406 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
407 struct rb_node **rb_link, *rb_parent;
408 int retval;
409 unsigned long charge;
411 uprobe_start_dup_mmap();
412 down_write(&oldmm->mmap_sem);
413 flush_cache_dup_mm(oldmm);
414 uprobe_dup_mmap(oldmm, mm);
416 * Not linked in yet - no deadlock potential:
418 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
420 /* No ordering required: file already has been exposed. */
421 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
423 mm->total_vm = oldmm->total_vm;
424 mm->shared_vm = oldmm->shared_vm;
425 mm->exec_vm = oldmm->exec_vm;
426 mm->stack_vm = oldmm->stack_vm;
428 rb_link = &mm->mm_rb.rb_node;
429 rb_parent = NULL;
430 pprev = &mm->mmap;
431 retval = ksm_fork(mm, oldmm);
432 if (retval)
433 goto out;
434 retval = khugepaged_fork(mm, oldmm);
435 if (retval)
436 goto out;
438 prev = NULL;
439 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
440 struct file *file;
442 if (mpnt->vm_flags & VM_DONTCOPY) {
443 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
444 -vma_pages(mpnt));
445 continue;
447 charge = 0;
448 if (mpnt->vm_flags & VM_ACCOUNT) {
449 unsigned long len = vma_pages(mpnt);
451 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
452 goto fail_nomem;
453 charge = len;
455 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
456 if (!tmp)
457 goto fail_nomem;
458 *tmp = *mpnt;
459 INIT_LIST_HEAD(&tmp->anon_vma_chain);
460 retval = vma_dup_policy(mpnt, tmp);
461 if (retval)
462 goto fail_nomem_policy;
463 tmp->vm_mm = mm;
464 if (anon_vma_fork(tmp, mpnt))
465 goto fail_nomem_anon_vma_fork;
466 tmp->vm_flags &=
467 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
468 tmp->vm_next = tmp->vm_prev = NULL;
469 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
470 file = tmp->vm_file;
471 if (file) {
472 struct inode *inode = file_inode(file);
473 struct address_space *mapping = file->f_mapping;
475 get_file(file);
476 if (tmp->vm_flags & VM_DENYWRITE)
477 atomic_dec(&inode->i_writecount);
478 i_mmap_lock_write(mapping);
479 if (tmp->vm_flags & VM_SHARED)
480 atomic_inc(&mapping->i_mmap_writable);
481 flush_dcache_mmap_lock(mapping);
482 /* insert tmp into the share list, just after mpnt */
483 vma_interval_tree_insert_after(tmp, mpnt,
484 &mapping->i_mmap);
485 flush_dcache_mmap_unlock(mapping);
486 i_mmap_unlock_write(mapping);
490 * Clear hugetlb-related page reserves for children. This only
491 * affects MAP_PRIVATE mappings. Faults generated by the child
492 * are not guaranteed to succeed, even if read-only
494 if (is_vm_hugetlb_page(tmp))
495 reset_vma_resv_huge_pages(tmp);
498 * Link in the new vma and copy the page table entries.
500 *pprev = tmp;
501 pprev = &tmp->vm_next;
502 tmp->vm_prev = prev;
503 prev = tmp;
505 __vma_link_rb(mm, tmp, rb_link, rb_parent);
506 rb_link = &tmp->vm_rb.rb_right;
507 rb_parent = &tmp->vm_rb;
509 mm->map_count++;
510 retval = copy_page_range(mm, oldmm, mpnt);
512 if (tmp->vm_ops && tmp->vm_ops->open)
513 tmp->vm_ops->open(tmp);
515 if (retval)
516 goto out;
518 /* a new mm has just been created */
519 arch_dup_mmap(oldmm, mm);
520 retval = 0;
521 out:
522 up_write(&mm->mmap_sem);
523 flush_tlb_mm(oldmm);
524 up_write(&oldmm->mmap_sem);
525 uprobe_end_dup_mmap();
526 return retval;
527 fail_nomem_anon_vma_fork:
528 mpol_put(vma_policy(tmp));
529 fail_nomem_policy:
530 kmem_cache_free(vm_area_cachep, tmp);
531 fail_nomem:
532 retval = -ENOMEM;
533 vm_unacct_memory(charge);
534 goto out;
537 static inline int mm_alloc_pgd(struct mm_struct *mm)
539 mm->pgd = pgd_alloc(mm);
540 if (unlikely(!mm->pgd))
541 return -ENOMEM;
542 return 0;
545 static inline void mm_free_pgd(struct mm_struct *mm)
547 pgd_free(mm, mm->pgd);
549 #else
550 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
552 down_write(&oldmm->mmap_sem);
553 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
554 up_write(&oldmm->mmap_sem);
555 return 0;
557 #define mm_alloc_pgd(mm) (0)
558 #define mm_free_pgd(mm)
559 #endif /* CONFIG_MMU */
561 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
563 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
564 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
566 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
568 static int __init coredump_filter_setup(char *s)
570 default_dump_filter =
571 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
572 MMF_DUMP_FILTER_MASK;
573 return 1;
576 __setup("coredump_filter=", coredump_filter_setup);
578 #include <linux/init_task.h>
580 static void mm_init_aio(struct mm_struct *mm)
582 #ifdef CONFIG_AIO
583 spin_lock_init(&mm->ioctx_lock);
584 mm->ioctx_table = NULL;
585 #endif
588 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
590 #ifdef CONFIG_MEMCG
591 mm->owner = p;
592 #endif
595 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
596 struct user_namespace *user_ns)
598 mm->mmap = NULL;
599 mm->mm_rb = RB_ROOT;
600 mm->vmacache_seqnum = 0;
601 atomic_set(&mm->mm_users, 1);
602 atomic_set(&mm->mm_count, 1);
603 init_rwsem(&mm->mmap_sem);
604 INIT_LIST_HEAD(&mm->mmlist);
605 mm->core_state = NULL;
606 atomic_long_set(&mm->nr_ptes, 0);
607 mm_nr_pmds_init(mm);
608 mm->map_count = 0;
609 mm->locked_vm = 0;
610 mm->pinned_vm = 0;
611 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
612 spin_lock_init(&mm->page_table_lock);
613 mm_init_cpumask(mm);
614 mm_init_aio(mm);
615 mm_init_owner(mm, p);
616 mmu_notifier_mm_init(mm);
617 clear_tlb_flush_pending(mm);
618 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
619 mm->pmd_huge_pte = NULL;
620 #endif
622 if (current->mm) {
623 mm->flags = current->mm->flags & MMF_INIT_MASK;
624 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
625 } else {
626 mm->flags = default_dump_filter;
627 mm->def_flags = 0;
630 if (mm_alloc_pgd(mm))
631 goto fail_nopgd;
633 if (init_new_context(p, mm))
634 goto fail_nocontext;
636 mm->user_ns = get_user_ns(user_ns);
637 return mm;
639 fail_nocontext:
640 mm_free_pgd(mm);
641 fail_nopgd:
642 free_mm(mm);
643 return NULL;
646 static void check_mm(struct mm_struct *mm)
648 int i;
650 for (i = 0; i < NR_MM_COUNTERS; i++) {
651 long x = atomic_long_read(&mm->rss_stat.count[i]);
653 if (unlikely(x))
654 printk(KERN_ALERT "BUG: Bad rss-counter state "
655 "mm:%p idx:%d val:%ld\n", mm, i, x);
658 if (atomic_long_read(&mm->nr_ptes))
659 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
660 atomic_long_read(&mm->nr_ptes));
661 if (mm_nr_pmds(mm))
662 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
663 mm_nr_pmds(mm));
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
671 * Allocate and initialize an mm_struct.
673 struct mm_struct *mm_alloc(void)
675 struct mm_struct *mm;
677 mm = allocate_mm();
678 if (!mm)
679 return NULL;
681 memset(mm, 0, sizeof(*mm));
682 return mm_init(mm, current, current_user_ns());
686 * Called when the last reference to the mm
687 * is dropped: either by a lazy thread or by
688 * mmput. Free the page directory and the mm.
690 void __mmdrop(struct mm_struct *mm)
692 BUG_ON(mm == &init_mm);
693 mm_free_pgd(mm);
694 destroy_context(mm);
695 mmu_notifier_mm_destroy(mm);
696 check_mm(mm);
697 put_user_ns(mm->user_ns);
698 free_mm(mm);
700 EXPORT_SYMBOL_GPL(__mmdrop);
703 * Decrement the use count and release all resources for an mm.
705 void mmput(struct mm_struct *mm)
707 might_sleep();
709 if (atomic_dec_and_test(&mm->mm_users)) {
710 uprobe_clear_state(mm);
711 exit_aio(mm);
712 ksm_exit(mm);
713 khugepaged_exit(mm); /* must run before exit_mmap */
714 exit_mmap(mm);
715 set_mm_exe_file(mm, NULL);
716 if (!list_empty(&mm->mmlist)) {
717 spin_lock(&mmlist_lock);
718 list_del(&mm->mmlist);
719 spin_unlock(&mmlist_lock);
721 if (mm->binfmt)
722 module_put(mm->binfmt->module);
723 mmdrop(mm);
726 EXPORT_SYMBOL_GPL(mmput);
729 * set_mm_exe_file - change a reference to the mm's executable file
731 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
733 * Main users are mmput() and sys_execve(). Callers prevent concurrent
734 * invocations: in mmput() nobody alive left, in execve task is single
735 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
736 * mm->exe_file, but does so without using set_mm_exe_file() in order
737 * to do avoid the need for any locks.
739 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
741 struct file *old_exe_file;
744 * It is safe to dereference the exe_file without RCU as
745 * this function is only called if nobody else can access
746 * this mm -- see comment above for justification.
748 old_exe_file = rcu_dereference_raw(mm->exe_file);
750 if (new_exe_file)
751 get_file(new_exe_file);
752 rcu_assign_pointer(mm->exe_file, new_exe_file);
753 if (old_exe_file)
754 fput(old_exe_file);
758 * get_mm_exe_file - acquire a reference to the mm's executable file
760 * Returns %NULL if mm has no associated executable file.
761 * User must release file via fput().
763 struct file *get_mm_exe_file(struct mm_struct *mm)
765 struct file *exe_file;
767 rcu_read_lock();
768 exe_file = rcu_dereference(mm->exe_file);
769 if (exe_file && !get_file_rcu(exe_file))
770 exe_file = NULL;
771 rcu_read_unlock();
772 return exe_file;
774 EXPORT_SYMBOL(get_mm_exe_file);
777 * get_task_exe_file - acquire a reference to the task's executable file
779 * Returns %NULL if task's mm (if any) has no associated executable file or
780 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
781 * User must release file via fput().
783 struct file *get_task_exe_file(struct task_struct *task)
785 struct file *exe_file = NULL;
786 struct mm_struct *mm;
788 task_lock(task);
789 mm = task->mm;
790 if (mm) {
791 if (!(task->flags & PF_KTHREAD))
792 exe_file = get_mm_exe_file(mm);
794 task_unlock(task);
795 return exe_file;
797 EXPORT_SYMBOL(get_task_exe_file);
800 * get_task_mm - acquire a reference to the task's mm
802 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
803 * this kernel workthread has transiently adopted a user mm with use_mm,
804 * to do its AIO) is not set and if so returns a reference to it, after
805 * bumping up the use count. User must release the mm via mmput()
806 * after use. Typically used by /proc and ptrace.
808 struct mm_struct *get_task_mm(struct task_struct *task)
810 struct mm_struct *mm;
812 task_lock(task);
813 mm = task->mm;
814 if (mm) {
815 if (task->flags & PF_KTHREAD)
816 mm = NULL;
817 else
818 atomic_inc(&mm->mm_users);
820 task_unlock(task);
821 return mm;
823 EXPORT_SYMBOL_GPL(get_task_mm);
825 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
827 struct mm_struct *mm;
828 int err;
830 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
831 if (err)
832 return ERR_PTR(err);
834 mm = get_task_mm(task);
835 if (mm && mm != current->mm &&
836 !ptrace_may_access(task, mode)) {
837 mmput(mm);
838 mm = ERR_PTR(-EACCES);
840 mutex_unlock(&task->signal->cred_guard_mutex);
842 return mm;
845 static void complete_vfork_done(struct task_struct *tsk)
847 struct completion *vfork;
849 task_lock(tsk);
850 vfork = tsk->vfork_done;
851 if (likely(vfork)) {
852 tsk->vfork_done = NULL;
853 complete(vfork);
855 task_unlock(tsk);
858 static int wait_for_vfork_done(struct task_struct *child,
859 struct completion *vfork)
861 int killed;
863 freezer_do_not_count();
864 killed = wait_for_completion_killable(vfork);
865 freezer_count();
867 if (killed) {
868 task_lock(child);
869 child->vfork_done = NULL;
870 task_unlock(child);
873 put_task_struct(child);
874 return killed;
877 /* Please note the differences between mmput and mm_release.
878 * mmput is called whenever we stop holding onto a mm_struct,
879 * error success whatever.
881 * mm_release is called after a mm_struct has been removed
882 * from the current process.
884 * This difference is important for error handling, when we
885 * only half set up a mm_struct for a new process and need to restore
886 * the old one. Because we mmput the new mm_struct before
887 * restoring the old one. . .
888 * Eric Biederman 10 January 1998
890 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
892 /* Get rid of any futexes when releasing the mm */
893 #ifdef CONFIG_FUTEX
894 if (unlikely(tsk->robust_list)) {
895 exit_robust_list(tsk);
896 tsk->robust_list = NULL;
898 #ifdef CONFIG_COMPAT
899 if (unlikely(tsk->compat_robust_list)) {
900 compat_exit_robust_list(tsk);
901 tsk->compat_robust_list = NULL;
903 #endif
904 if (unlikely(!list_empty(&tsk->pi_state_list)))
905 exit_pi_state_list(tsk);
906 #endif
908 uprobe_free_utask(tsk);
910 /* Get rid of any cached register state */
911 deactivate_mm(tsk, mm);
914 * Signal userspace if we're not exiting with a core dump
915 * because we want to leave the value intact for debugging
916 * purposes.
918 if (tsk->clear_child_tid) {
919 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
920 atomic_read(&mm->mm_users) > 1) {
922 * We don't check the error code - if userspace has
923 * not set up a proper pointer then tough luck.
925 put_user(0, tsk->clear_child_tid);
926 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
927 1, NULL, NULL, 0);
929 tsk->clear_child_tid = NULL;
933 * All done, finally we can wake up parent and return this mm to him.
934 * Also kthread_stop() uses this completion for synchronization.
936 if (tsk->vfork_done)
937 complete_vfork_done(tsk);
941 * Allocate a new mm structure and copy contents from the
942 * mm structure of the passed in task structure.
944 static struct mm_struct *dup_mm(struct task_struct *tsk)
946 struct mm_struct *mm, *oldmm = current->mm;
947 int err;
949 mm = allocate_mm();
950 if (!mm)
951 goto fail_nomem;
953 memcpy(mm, oldmm, sizeof(*mm));
955 if (!mm_init(mm, tsk, mm->user_ns))
956 goto fail_nomem;
958 err = dup_mmap(mm, oldmm);
959 if (err)
960 goto free_pt;
962 mm->hiwater_rss = get_mm_rss(mm);
963 mm->hiwater_vm = mm->total_vm;
965 if (mm->binfmt && !try_module_get(mm->binfmt->module))
966 goto free_pt;
968 return mm;
970 free_pt:
971 /* don't put binfmt in mmput, we haven't got module yet */
972 mm->binfmt = NULL;
973 mmput(mm);
975 fail_nomem:
976 return NULL;
979 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
981 struct mm_struct *mm, *oldmm;
982 int retval;
984 tsk->min_flt = tsk->maj_flt = 0;
985 tsk->nvcsw = tsk->nivcsw = 0;
986 #ifdef CONFIG_DETECT_HUNG_TASK
987 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
988 #endif
990 tsk->mm = NULL;
991 tsk->active_mm = NULL;
994 * Are we cloning a kernel thread?
996 * We need to steal a active VM for that..
998 oldmm = current->mm;
999 if (!oldmm)
1000 return 0;
1002 /* initialize the new vmacache entries */
1003 vmacache_flush(tsk);
1005 if (clone_flags & CLONE_VM) {
1006 atomic_inc(&oldmm->mm_users);
1007 mm = oldmm;
1008 goto good_mm;
1011 retval = -ENOMEM;
1012 mm = dup_mm(tsk);
1013 if (!mm)
1014 goto fail_nomem;
1016 good_mm:
1017 tsk->mm = mm;
1018 tsk->active_mm = mm;
1019 return 0;
1021 fail_nomem:
1022 return retval;
1025 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1027 struct fs_struct *fs = current->fs;
1028 if (clone_flags & CLONE_FS) {
1029 /* tsk->fs is already what we want */
1030 spin_lock(&fs->lock);
1031 if (fs->in_exec) {
1032 spin_unlock(&fs->lock);
1033 return -EAGAIN;
1035 fs->users++;
1036 spin_unlock(&fs->lock);
1037 return 0;
1039 tsk->fs = copy_fs_struct(fs);
1040 if (!tsk->fs)
1041 return -ENOMEM;
1042 return 0;
1045 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1047 struct files_struct *oldf, *newf;
1048 int error = 0;
1051 * A background process may not have any files ...
1053 oldf = current->files;
1054 if (!oldf)
1055 goto out;
1057 if (clone_flags & CLONE_FILES) {
1058 atomic_inc(&oldf->count);
1059 goto out;
1062 newf = dup_fd(oldf, &error);
1063 if (!newf)
1064 goto out;
1066 tsk->files = newf;
1067 error = 0;
1068 out:
1069 return error;
1072 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1074 #ifdef CONFIG_BLOCK
1075 struct io_context *ioc = current->io_context;
1076 struct io_context *new_ioc;
1078 if (!ioc)
1079 return 0;
1081 * Share io context with parent, if CLONE_IO is set
1083 if (clone_flags & CLONE_IO) {
1084 ioc_task_link(ioc);
1085 tsk->io_context = ioc;
1086 } else if (ioprio_valid(ioc->ioprio)) {
1087 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1088 if (unlikely(!new_ioc))
1089 return -ENOMEM;
1091 new_ioc->ioprio = ioc->ioprio;
1092 put_io_context(new_ioc);
1094 #endif
1095 return 0;
1098 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1100 struct sighand_struct *sig;
1102 if (clone_flags & CLONE_SIGHAND) {
1103 atomic_inc(&current->sighand->count);
1104 return 0;
1106 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1107 rcu_assign_pointer(tsk->sighand, sig);
1108 if (!sig)
1109 return -ENOMEM;
1111 atomic_set(&sig->count, 1);
1112 spin_lock_irq(&current->sighand->siglock);
1113 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1114 spin_unlock_irq(&current->sighand->siglock);
1115 return 0;
1118 void __cleanup_sighand(struct sighand_struct *sighand)
1120 if (atomic_dec_and_test(&sighand->count)) {
1121 signalfd_cleanup(sighand);
1123 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1124 * without an RCU grace period, see __lock_task_sighand().
1126 kmem_cache_free(sighand_cachep, sighand);
1131 * Initialize POSIX timer handling for a thread group.
1133 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1135 unsigned long cpu_limit;
1137 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1138 if (cpu_limit != RLIM_INFINITY) {
1139 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1140 sig->cputimer.running = true;
1143 /* The timer lists. */
1144 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1145 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1146 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1149 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1151 struct signal_struct *sig;
1153 if (clone_flags & CLONE_THREAD)
1154 return 0;
1156 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1157 tsk->signal = sig;
1158 if (!sig)
1159 return -ENOMEM;
1161 sig->nr_threads = 1;
1162 atomic_set(&sig->live, 1);
1163 atomic_set(&sig->sigcnt, 1);
1165 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1166 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1167 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1169 init_waitqueue_head(&sig->wait_chldexit);
1170 sig->curr_target = tsk;
1171 init_sigpending(&sig->shared_pending);
1172 INIT_LIST_HEAD(&sig->posix_timers);
1173 seqlock_init(&sig->stats_lock);
1174 prev_cputime_init(&sig->prev_cputime);
1176 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 sig->real_timer.function = it_real_fn;
1179 task_lock(current->group_leader);
1180 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1181 task_unlock(current->group_leader);
1183 posix_cpu_timers_init_group(sig);
1185 tty_audit_fork(sig);
1186 sched_autogroup_fork(sig);
1188 sig->oom_score_adj = current->signal->oom_score_adj;
1189 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1191 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1192 current->signal->is_child_subreaper;
1194 mutex_init(&sig->cred_guard_mutex);
1196 return 0;
1199 static void copy_seccomp(struct task_struct *p)
1201 #ifdef CONFIG_SECCOMP
1203 * Must be called with sighand->lock held, which is common to
1204 * all threads in the group. Holding cred_guard_mutex is not
1205 * needed because this new task is not yet running and cannot
1206 * be racing exec.
1208 assert_spin_locked(&current->sighand->siglock);
1210 /* Ref-count the new filter user, and assign it. */
1211 get_seccomp_filter(current);
1212 p->seccomp = current->seccomp;
1215 * Explicitly enable no_new_privs here in case it got set
1216 * between the task_struct being duplicated and holding the
1217 * sighand lock. The seccomp state and nnp must be in sync.
1219 if (task_no_new_privs(current))
1220 task_set_no_new_privs(p);
1223 * If the parent gained a seccomp mode after copying thread
1224 * flags and between before we held the sighand lock, we have
1225 * to manually enable the seccomp thread flag here.
1227 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1228 set_tsk_thread_flag(p, TIF_SECCOMP);
1229 #endif
1232 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1234 current->clear_child_tid = tidptr;
1236 return task_pid_vnr(current);
1239 static void rt_mutex_init_task(struct task_struct *p)
1241 raw_spin_lock_init(&p->pi_lock);
1242 #ifdef CONFIG_RT_MUTEXES
1243 p->pi_waiters = RB_ROOT;
1244 p->pi_waiters_leftmost = NULL;
1245 p->pi_blocked_on = NULL;
1246 #endif
1250 * Initialize POSIX timer handling for a single task.
1252 static void posix_cpu_timers_init(struct task_struct *tsk)
1254 tsk->cputime_expires.prof_exp = 0;
1255 tsk->cputime_expires.virt_exp = 0;
1256 tsk->cputime_expires.sched_exp = 0;
1257 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1258 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1259 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1262 static inline void
1263 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1265 task->pids[type].pid = pid;
1269 * This creates a new process as a copy of the old one,
1270 * but does not actually start it yet.
1272 * It copies the registers, and all the appropriate
1273 * parts of the process environment (as per the clone
1274 * flags). The actual kick-off is left to the caller.
1276 static struct task_struct *copy_process(unsigned long clone_flags,
1277 unsigned long stack_start,
1278 unsigned long stack_size,
1279 int __user *child_tidptr,
1280 struct pid *pid,
1281 int trace,
1282 unsigned long tls,
1283 int node)
1285 int retval;
1286 struct task_struct *p;
1287 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1289 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1290 return ERR_PTR(-EINVAL);
1292 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1293 return ERR_PTR(-EINVAL);
1296 * Thread groups must share signals as well, and detached threads
1297 * can only be started up within the thread group.
1299 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1300 return ERR_PTR(-EINVAL);
1303 * Shared signal handlers imply shared VM. By way of the above,
1304 * thread groups also imply shared VM. Blocking this case allows
1305 * for various simplifications in other code.
1307 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1308 return ERR_PTR(-EINVAL);
1311 * Siblings of global init remain as zombies on exit since they are
1312 * not reaped by their parent (swapper). To solve this and to avoid
1313 * multi-rooted process trees, prevent global and container-inits
1314 * from creating siblings.
1316 if ((clone_flags & CLONE_PARENT) &&
1317 current->signal->flags & SIGNAL_UNKILLABLE)
1318 return ERR_PTR(-EINVAL);
1321 * If the new process will be in a different pid or user namespace
1322 * do not allow it to share a thread group with the forking task.
1324 if (clone_flags & CLONE_THREAD) {
1325 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1326 (task_active_pid_ns(current) !=
1327 current->nsproxy->pid_ns_for_children))
1328 return ERR_PTR(-EINVAL);
1331 retval = security_task_create(clone_flags);
1332 if (retval)
1333 goto fork_out;
1335 retval = -ENOMEM;
1336 p = dup_task_struct(current, node);
1337 if (!p)
1338 goto fork_out;
1341 * This _must_ happen before we call free_task(), i.e. before we jump
1342 * to any of the bad_fork_* labels. This is to avoid freeing
1343 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1344 * kernel threads (PF_KTHREAD).
1346 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1348 * Clear TID on mm_release()?
1350 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1352 ftrace_graph_init_task(p);
1354 rt_mutex_init_task(p);
1356 #ifdef CONFIG_PROVE_LOCKING
1357 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1358 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1359 #endif
1360 retval = -EAGAIN;
1361 if (atomic_read(&p->real_cred->user->processes) >=
1362 task_rlimit(p, RLIMIT_NPROC)) {
1363 if (p->real_cred->user != INIT_USER &&
1364 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1365 goto bad_fork_free;
1367 current->flags &= ~PF_NPROC_EXCEEDED;
1369 retval = copy_creds(p, clone_flags);
1370 if (retval < 0)
1371 goto bad_fork_free;
1374 * If multiple threads are within copy_process(), then this check
1375 * triggers too late. This doesn't hurt, the check is only there
1376 * to stop root fork bombs.
1378 retval = -EAGAIN;
1379 if (nr_threads >= max_threads)
1380 goto bad_fork_cleanup_count;
1382 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1383 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1384 p->flags |= PF_FORKNOEXEC;
1385 INIT_LIST_HEAD(&p->children);
1386 INIT_LIST_HEAD(&p->sibling);
1387 rcu_copy_process(p);
1388 p->vfork_done = NULL;
1389 spin_lock_init(&p->alloc_lock);
1391 init_sigpending(&p->pending);
1393 p->utime = p->stime = p->gtime = 0;
1394 p->utimescaled = p->stimescaled = 0;
1395 prev_cputime_init(&p->prev_cputime);
1397 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1398 seqlock_init(&p->vtime_seqlock);
1399 p->vtime_snap = 0;
1400 p->vtime_snap_whence = VTIME_SLEEPING;
1401 #endif
1403 #if defined(SPLIT_RSS_COUNTING)
1404 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1405 #endif
1407 p->default_timer_slack_ns = current->timer_slack_ns;
1409 task_io_accounting_init(&p->ioac);
1410 acct_clear_integrals(p);
1412 posix_cpu_timers_init(p);
1414 p->start_time = ktime_get_ns();
1415 p->real_start_time = ktime_get_boot_ns();
1416 p->io_context = NULL;
1417 p->audit_context = NULL;
1418 cgroup_fork(p);
1419 #ifdef CONFIG_NUMA
1420 p->mempolicy = mpol_dup(p->mempolicy);
1421 if (IS_ERR(p->mempolicy)) {
1422 retval = PTR_ERR(p->mempolicy);
1423 p->mempolicy = NULL;
1424 goto bad_fork_cleanup_threadgroup_lock;
1426 #endif
1427 #ifdef CONFIG_CPUSETS
1428 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1429 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1430 seqcount_init(&p->mems_allowed_seq);
1431 #endif
1432 #ifdef CONFIG_TRACE_IRQFLAGS
1433 p->irq_events = 0;
1434 p->hardirqs_enabled = 0;
1435 p->hardirq_enable_ip = 0;
1436 p->hardirq_enable_event = 0;
1437 p->hardirq_disable_ip = _THIS_IP_;
1438 p->hardirq_disable_event = 0;
1439 p->softirqs_enabled = 1;
1440 p->softirq_enable_ip = _THIS_IP_;
1441 p->softirq_enable_event = 0;
1442 p->softirq_disable_ip = 0;
1443 p->softirq_disable_event = 0;
1444 p->hardirq_context = 0;
1445 p->softirq_context = 0;
1446 #endif
1448 p->pagefault_disabled = 0;
1450 #ifdef CONFIG_LOCKDEP
1451 p->lockdep_depth = 0; /* no locks held yet */
1452 p->curr_chain_key = 0;
1453 p->lockdep_recursion = 0;
1454 #endif
1456 #ifdef CONFIG_DEBUG_MUTEXES
1457 p->blocked_on = NULL; /* not blocked yet */
1458 #endif
1459 #ifdef CONFIG_BCACHE
1460 p->sequential_io = 0;
1461 p->sequential_io_avg = 0;
1462 #endif
1464 /* Perform scheduler related setup. Assign this task to a CPU. */
1465 retval = sched_fork(clone_flags, p);
1466 if (retval)
1467 goto bad_fork_cleanup_policy;
1469 retval = perf_event_init_task(p);
1470 if (retval)
1471 goto bad_fork_cleanup_policy;
1472 retval = audit_alloc(p);
1473 if (retval)
1474 goto bad_fork_cleanup_perf;
1475 /* copy all the process information */
1476 shm_init_task(p);
1477 retval = copy_semundo(clone_flags, p);
1478 if (retval)
1479 goto bad_fork_cleanup_audit;
1480 retval = copy_files(clone_flags, p);
1481 if (retval)
1482 goto bad_fork_cleanup_semundo;
1483 retval = copy_fs(clone_flags, p);
1484 if (retval)
1485 goto bad_fork_cleanup_files;
1486 retval = copy_sighand(clone_flags, p);
1487 if (retval)
1488 goto bad_fork_cleanup_fs;
1489 retval = copy_signal(clone_flags, p);
1490 if (retval)
1491 goto bad_fork_cleanup_sighand;
1492 retval = copy_mm(clone_flags, p);
1493 if (retval)
1494 goto bad_fork_cleanup_signal;
1495 retval = copy_namespaces(clone_flags, p);
1496 if (retval)
1497 goto bad_fork_cleanup_mm;
1498 retval = copy_io(clone_flags, p);
1499 if (retval)
1500 goto bad_fork_cleanup_namespaces;
1501 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1502 if (retval)
1503 goto bad_fork_cleanup_io;
1505 if (pid != &init_struct_pid) {
1506 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1507 if (IS_ERR(pid)) {
1508 retval = PTR_ERR(pid);
1509 goto bad_fork_cleanup_io;
1513 #ifdef CONFIG_BLOCK
1514 p->plug = NULL;
1515 #endif
1516 #ifdef CONFIG_FUTEX
1517 p->robust_list = NULL;
1518 #ifdef CONFIG_COMPAT
1519 p->compat_robust_list = NULL;
1520 #endif
1521 INIT_LIST_HEAD(&p->pi_state_list);
1522 p->pi_state_cache = NULL;
1523 #endif
1525 * sigaltstack should be cleared when sharing the same VM
1527 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1528 p->sas_ss_sp = p->sas_ss_size = 0;
1531 * Syscall tracing and stepping should be turned off in the
1532 * child regardless of CLONE_PTRACE.
1534 user_disable_single_step(p);
1535 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1536 #ifdef TIF_SYSCALL_EMU
1537 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1538 #endif
1539 clear_all_latency_tracing(p);
1541 /* ok, now we should be set up.. */
1542 p->pid = pid_nr(pid);
1543 if (clone_flags & CLONE_THREAD) {
1544 p->exit_signal = -1;
1545 p->group_leader = current->group_leader;
1546 p->tgid = current->tgid;
1547 } else {
1548 if (clone_flags & CLONE_PARENT)
1549 p->exit_signal = current->group_leader->exit_signal;
1550 else
1551 p->exit_signal = (clone_flags & CSIGNAL);
1552 p->group_leader = p;
1553 p->tgid = p->pid;
1556 p->nr_dirtied = 0;
1557 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1558 p->dirty_paused_when = 0;
1560 p->pdeath_signal = 0;
1561 INIT_LIST_HEAD(&p->thread_group);
1562 p->task_works = NULL;
1564 threadgroup_change_begin(current);
1566 * Ensure that the cgroup subsystem policies allow the new process to be
1567 * forked. It should be noted the the new process's css_set can be changed
1568 * between here and cgroup_post_fork() if an organisation operation is in
1569 * progress.
1571 retval = cgroup_can_fork(p, cgrp_ss_priv);
1572 if (retval)
1573 goto bad_fork_free_pid;
1576 * Make it visible to the rest of the system, but dont wake it up yet.
1577 * Need tasklist lock for parent etc handling!
1579 write_lock_irq(&tasklist_lock);
1581 /* CLONE_PARENT re-uses the old parent */
1582 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1583 p->real_parent = current->real_parent;
1584 p->parent_exec_id = current->parent_exec_id;
1585 } else {
1586 p->real_parent = current;
1587 p->parent_exec_id = current->self_exec_id;
1590 spin_lock(&current->sighand->siglock);
1593 * Copy seccomp details explicitly here, in case they were changed
1594 * before holding sighand lock.
1596 copy_seccomp(p);
1599 * Process group and session signals need to be delivered to just the
1600 * parent before the fork or both the parent and the child after the
1601 * fork. Restart if a signal comes in before we add the new process to
1602 * it's process group.
1603 * A fatal signal pending means that current will exit, so the new
1604 * thread can't slip out of an OOM kill (or normal SIGKILL).
1606 recalc_sigpending();
1607 if (signal_pending(current)) {
1608 retval = -ERESTARTNOINTR;
1609 goto bad_fork_cancel_cgroup;
1611 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1612 retval = -ENOMEM;
1613 goto bad_fork_cancel_cgroup;
1616 if (likely(p->pid)) {
1617 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1619 init_task_pid(p, PIDTYPE_PID, pid);
1620 if (thread_group_leader(p)) {
1621 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1622 init_task_pid(p, PIDTYPE_SID, task_session(current));
1624 if (is_child_reaper(pid)) {
1625 ns_of_pid(pid)->child_reaper = p;
1626 p->signal->flags |= SIGNAL_UNKILLABLE;
1629 p->signal->leader_pid = pid;
1630 p->signal->tty = tty_kref_get(current->signal->tty);
1631 list_add_tail(&p->sibling, &p->real_parent->children);
1632 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1633 attach_pid(p, PIDTYPE_PGID);
1634 attach_pid(p, PIDTYPE_SID);
1635 __this_cpu_inc(process_counts);
1636 } else {
1637 current->signal->nr_threads++;
1638 atomic_inc(&current->signal->live);
1639 atomic_inc(&current->signal->sigcnt);
1640 list_add_tail_rcu(&p->thread_group,
1641 &p->group_leader->thread_group);
1642 list_add_tail_rcu(&p->thread_node,
1643 &p->signal->thread_head);
1645 attach_pid(p, PIDTYPE_PID);
1646 nr_threads++;
1649 total_forks++;
1650 spin_unlock(&current->sighand->siglock);
1651 syscall_tracepoint_update(p);
1652 write_unlock_irq(&tasklist_lock);
1654 proc_fork_connector(p);
1655 cgroup_post_fork(p, cgrp_ss_priv);
1656 threadgroup_change_end(current);
1657 perf_event_fork(p);
1659 trace_task_newtask(p, clone_flags);
1660 uprobe_copy_process(p, clone_flags);
1662 return p;
1664 bad_fork_cancel_cgroup:
1665 spin_unlock(&current->sighand->siglock);
1666 write_unlock_irq(&tasklist_lock);
1667 cgroup_cancel_fork(p, cgrp_ss_priv);
1668 bad_fork_free_pid:
1669 threadgroup_change_end(current);
1670 if (pid != &init_struct_pid)
1671 free_pid(pid);
1672 bad_fork_cleanup_io:
1673 if (p->io_context)
1674 exit_io_context(p);
1675 bad_fork_cleanup_namespaces:
1676 exit_task_namespaces(p);
1677 bad_fork_cleanup_mm:
1678 if (p->mm)
1679 mmput(p->mm);
1680 bad_fork_cleanup_signal:
1681 if (!(clone_flags & CLONE_THREAD))
1682 free_signal_struct(p->signal);
1683 bad_fork_cleanup_sighand:
1684 __cleanup_sighand(p->sighand);
1685 bad_fork_cleanup_fs:
1686 exit_fs(p); /* blocking */
1687 bad_fork_cleanup_files:
1688 exit_files(p); /* blocking */
1689 bad_fork_cleanup_semundo:
1690 exit_sem(p);
1691 bad_fork_cleanup_audit:
1692 audit_free(p);
1693 bad_fork_cleanup_perf:
1694 perf_event_free_task(p);
1695 bad_fork_cleanup_policy:
1696 #ifdef CONFIG_NUMA
1697 mpol_put(p->mempolicy);
1698 bad_fork_cleanup_threadgroup_lock:
1699 #endif
1700 delayacct_tsk_free(p);
1701 bad_fork_cleanup_count:
1702 atomic_dec(&p->cred->user->processes);
1703 exit_creds(p);
1704 bad_fork_free:
1705 free_task(p);
1706 fork_out:
1707 return ERR_PTR(retval);
1710 static inline void init_idle_pids(struct pid_link *links)
1712 enum pid_type type;
1714 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1715 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1716 links[type].pid = &init_struct_pid;
1720 struct task_struct *fork_idle(int cpu)
1722 struct task_struct *task;
1723 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1724 cpu_to_node(cpu));
1725 if (!IS_ERR(task)) {
1726 init_idle_pids(task->pids);
1727 init_idle(task, cpu);
1730 return task;
1734 * Ok, this is the main fork-routine.
1736 * It copies the process, and if successful kick-starts
1737 * it and waits for it to finish using the VM if required.
1739 long _do_fork(unsigned long clone_flags,
1740 unsigned long stack_start,
1741 unsigned long stack_size,
1742 int __user *parent_tidptr,
1743 int __user *child_tidptr,
1744 unsigned long tls)
1746 struct task_struct *p;
1747 int trace = 0;
1748 long nr;
1751 * Determine whether and which event to report to ptracer. When
1752 * called from kernel_thread or CLONE_UNTRACED is explicitly
1753 * requested, no event is reported; otherwise, report if the event
1754 * for the type of forking is enabled.
1756 if (!(clone_flags & CLONE_UNTRACED)) {
1757 if (clone_flags & CLONE_VFORK)
1758 trace = PTRACE_EVENT_VFORK;
1759 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1760 trace = PTRACE_EVENT_CLONE;
1761 else
1762 trace = PTRACE_EVENT_FORK;
1764 if (likely(!ptrace_event_enabled(current, trace)))
1765 trace = 0;
1768 p = copy_process(clone_flags, stack_start, stack_size,
1769 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1771 * Do this prior waking up the new thread - the thread pointer
1772 * might get invalid after that point, if the thread exits quickly.
1774 if (!IS_ERR(p)) {
1775 struct completion vfork;
1776 struct pid *pid;
1778 trace_sched_process_fork(current, p);
1780 pid = get_task_pid(p, PIDTYPE_PID);
1781 nr = pid_vnr(pid);
1783 if (clone_flags & CLONE_PARENT_SETTID)
1784 put_user(nr, parent_tidptr);
1786 if (clone_flags & CLONE_VFORK) {
1787 p->vfork_done = &vfork;
1788 init_completion(&vfork);
1789 get_task_struct(p);
1792 wake_up_new_task(p);
1794 /* forking complete and child started to run, tell ptracer */
1795 if (unlikely(trace))
1796 ptrace_event_pid(trace, pid);
1798 if (clone_flags & CLONE_VFORK) {
1799 if (!wait_for_vfork_done(p, &vfork))
1800 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1803 put_pid(pid);
1804 } else {
1805 nr = PTR_ERR(p);
1807 return nr;
1810 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1811 /* For compatibility with architectures that call do_fork directly rather than
1812 * using the syscall entry points below. */
1813 long do_fork(unsigned long clone_flags,
1814 unsigned long stack_start,
1815 unsigned long stack_size,
1816 int __user *parent_tidptr,
1817 int __user *child_tidptr)
1819 return _do_fork(clone_flags, stack_start, stack_size,
1820 parent_tidptr, child_tidptr, 0);
1822 #endif
1825 * Create a kernel thread.
1827 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1829 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1830 (unsigned long)arg, NULL, NULL, 0);
1833 #ifdef __ARCH_WANT_SYS_FORK
1834 SYSCALL_DEFINE0(fork)
1836 #ifdef CONFIG_MMU
1837 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1838 #else
1839 /* can not support in nommu mode */
1840 return -EINVAL;
1841 #endif
1843 #endif
1845 #ifdef __ARCH_WANT_SYS_VFORK
1846 SYSCALL_DEFINE0(vfork)
1848 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1849 0, NULL, NULL, 0);
1851 #endif
1853 #ifdef __ARCH_WANT_SYS_CLONE
1854 #ifdef CONFIG_CLONE_BACKWARDS
1855 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1856 int __user *, parent_tidptr,
1857 unsigned long, tls,
1858 int __user *, child_tidptr)
1859 #elif defined(CONFIG_CLONE_BACKWARDS2)
1860 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1861 int __user *, parent_tidptr,
1862 int __user *, child_tidptr,
1863 unsigned long, tls)
1864 #elif defined(CONFIG_CLONE_BACKWARDS3)
1865 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1866 int, stack_size,
1867 int __user *, parent_tidptr,
1868 int __user *, child_tidptr,
1869 unsigned long, tls)
1870 #else
1871 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1872 int __user *, parent_tidptr,
1873 int __user *, child_tidptr,
1874 unsigned long, tls)
1875 #endif
1877 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1879 #endif
1881 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1882 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1883 #endif
1885 static void sighand_ctor(void *data)
1887 struct sighand_struct *sighand = data;
1889 spin_lock_init(&sighand->siglock);
1890 init_waitqueue_head(&sighand->signalfd_wqh);
1893 void __init proc_caches_init(void)
1895 sighand_cachep = kmem_cache_create("sighand_cache",
1896 sizeof(struct sighand_struct), 0,
1897 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1898 SLAB_NOTRACK, sighand_ctor);
1899 signal_cachep = kmem_cache_create("signal_cache",
1900 sizeof(struct signal_struct), 0,
1901 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1902 files_cachep = kmem_cache_create("files_cache",
1903 sizeof(struct files_struct), 0,
1904 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1905 fs_cachep = kmem_cache_create("fs_cache",
1906 sizeof(struct fs_struct), 0,
1907 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1909 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1910 * whole struct cpumask for the OFFSTACK case. We could change
1911 * this to *only* allocate as much of it as required by the
1912 * maximum number of CPU's we can ever have. The cpumask_allocation
1913 * is at the end of the structure, exactly for that reason.
1915 mm_cachep = kmem_cache_create("mm_struct",
1916 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1917 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1918 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1919 mmap_init();
1920 nsproxy_cache_init();
1924 * Check constraints on flags passed to the unshare system call.
1926 static int check_unshare_flags(unsigned long unshare_flags)
1928 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1929 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1930 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1931 CLONE_NEWUSER|CLONE_NEWPID))
1932 return -EINVAL;
1934 * Not implemented, but pretend it works if there is nothing
1935 * to unshare. Note that unsharing the address space or the
1936 * signal handlers also need to unshare the signal queues (aka
1937 * CLONE_THREAD).
1939 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1940 if (!thread_group_empty(current))
1941 return -EINVAL;
1943 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1944 if (atomic_read(&current->sighand->count) > 1)
1945 return -EINVAL;
1947 if (unshare_flags & CLONE_VM) {
1948 if (!current_is_single_threaded())
1949 return -EINVAL;
1952 return 0;
1956 * Unshare the filesystem structure if it is being shared
1958 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1960 struct fs_struct *fs = current->fs;
1962 if (!(unshare_flags & CLONE_FS) || !fs)
1963 return 0;
1965 /* don't need lock here; in the worst case we'll do useless copy */
1966 if (fs->users == 1)
1967 return 0;
1969 *new_fsp = copy_fs_struct(fs);
1970 if (!*new_fsp)
1971 return -ENOMEM;
1973 return 0;
1977 * Unshare file descriptor table if it is being shared
1979 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1981 struct files_struct *fd = current->files;
1982 int error = 0;
1984 if ((unshare_flags & CLONE_FILES) &&
1985 (fd && atomic_read(&fd->count) > 1)) {
1986 *new_fdp = dup_fd(fd, &error);
1987 if (!*new_fdp)
1988 return error;
1991 return 0;
1995 * unshare allows a process to 'unshare' part of the process
1996 * context which was originally shared using clone. copy_*
1997 * functions used by do_fork() cannot be used here directly
1998 * because they modify an inactive task_struct that is being
1999 * constructed. Here we are modifying the current, active,
2000 * task_struct.
2002 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2004 struct fs_struct *fs, *new_fs = NULL;
2005 struct files_struct *fd, *new_fd = NULL;
2006 struct cred *new_cred = NULL;
2007 struct nsproxy *new_nsproxy = NULL;
2008 int do_sysvsem = 0;
2009 int err;
2012 * If unsharing a user namespace must also unshare the thread group
2013 * and unshare the filesystem root and working directories.
2015 if (unshare_flags & CLONE_NEWUSER)
2016 unshare_flags |= CLONE_THREAD | CLONE_FS;
2018 * If unsharing vm, must also unshare signal handlers.
2020 if (unshare_flags & CLONE_VM)
2021 unshare_flags |= CLONE_SIGHAND;
2023 * If unsharing a signal handlers, must also unshare the signal queues.
2025 if (unshare_flags & CLONE_SIGHAND)
2026 unshare_flags |= CLONE_THREAD;
2028 * If unsharing namespace, must also unshare filesystem information.
2030 if (unshare_flags & CLONE_NEWNS)
2031 unshare_flags |= CLONE_FS;
2033 err = check_unshare_flags(unshare_flags);
2034 if (err)
2035 goto bad_unshare_out;
2037 * CLONE_NEWIPC must also detach from the undolist: after switching
2038 * to a new ipc namespace, the semaphore arrays from the old
2039 * namespace are unreachable.
2041 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2042 do_sysvsem = 1;
2043 err = unshare_fs(unshare_flags, &new_fs);
2044 if (err)
2045 goto bad_unshare_out;
2046 err = unshare_fd(unshare_flags, &new_fd);
2047 if (err)
2048 goto bad_unshare_cleanup_fs;
2049 err = unshare_userns(unshare_flags, &new_cred);
2050 if (err)
2051 goto bad_unshare_cleanup_fd;
2052 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2053 new_cred, new_fs);
2054 if (err)
2055 goto bad_unshare_cleanup_cred;
2057 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2058 if (do_sysvsem) {
2060 * CLONE_SYSVSEM is equivalent to sys_exit().
2062 exit_sem(current);
2064 if (unshare_flags & CLONE_NEWIPC) {
2065 /* Orphan segments in old ns (see sem above). */
2066 exit_shm(current);
2067 shm_init_task(current);
2070 if (new_nsproxy)
2071 switch_task_namespaces(current, new_nsproxy);
2073 task_lock(current);
2075 if (new_fs) {
2076 fs = current->fs;
2077 spin_lock(&fs->lock);
2078 current->fs = new_fs;
2079 if (--fs->users)
2080 new_fs = NULL;
2081 else
2082 new_fs = fs;
2083 spin_unlock(&fs->lock);
2086 if (new_fd) {
2087 fd = current->files;
2088 current->files = new_fd;
2089 new_fd = fd;
2092 task_unlock(current);
2094 if (new_cred) {
2095 /* Install the new user namespace */
2096 commit_creds(new_cred);
2097 new_cred = NULL;
2101 bad_unshare_cleanup_cred:
2102 if (new_cred)
2103 put_cred(new_cred);
2104 bad_unshare_cleanup_fd:
2105 if (new_fd)
2106 put_files_struct(new_fd);
2108 bad_unshare_cleanup_fs:
2109 if (new_fs)
2110 free_fs_struct(new_fs);
2112 bad_unshare_out:
2113 return err;
2117 * Helper to unshare the files of the current task.
2118 * We don't want to expose copy_files internals to
2119 * the exec layer of the kernel.
2122 int unshare_files(struct files_struct **displaced)
2124 struct task_struct *task = current;
2125 struct files_struct *copy = NULL;
2126 int error;
2128 error = unshare_fd(CLONE_FILES, &copy);
2129 if (error || !copy) {
2130 *displaced = NULL;
2131 return error;
2133 *displaced = task->files;
2134 task_lock(task);
2135 task->files = copy;
2136 task_unlock(task);
2137 return 0;
2140 int sysctl_max_threads(struct ctl_table *table, int write,
2141 void __user *buffer, size_t *lenp, loff_t *ppos)
2143 struct ctl_table t;
2144 int ret;
2145 int threads = max_threads;
2146 int min = MIN_THREADS;
2147 int max = MAX_THREADS;
2149 t = *table;
2150 t.data = &threads;
2151 t.extra1 = &min;
2152 t.extra2 = &max;
2154 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2155 if (ret || !write)
2156 return ret;
2158 set_max_threads(threads);
2160 return 0;