4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/kaiser.h>
62 #include <linux/delayacct.h>
63 #include <linux/taskstats_kern.h>
64 #include <linux/random.h>
65 #include <linux/tty.h>
66 #include <linux/blkdev.h>
67 #include <linux/fs_struct.h>
68 #include <linux/magic.h>
69 #include <linux/perf_event.h>
70 #include <linux/posix-timers.h>
71 #include <linux/user-return-notifier.h>
72 #include <linux/oom.h>
73 #include <linux/khugepaged.h>
74 #include <linux/signalfd.h>
75 #include <linux/uprobes.h>
76 #include <linux/aio.h>
77 #include <linux/compiler.h>
78 #include <linux/sysctl.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks
; /* Handle normal Linux uptimes. */
106 int nr_threads
; /* The idle threads do not count.. */
108 int max_threads
; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
112 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock
);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
127 for_each_possible_cpu(cpu
)
128 total
+= per_cpu(process_counts
, cpu
);
133 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache
*task_struct_cachep
;
140 static inline struct task_struct
*alloc_task_struct_node(int node
)
142 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
145 static inline void free_task_struct(struct task_struct
*tsk
)
147 kmem_cache_free(task_struct_cachep
, tsk
);
151 void __weak
arch_release_thread_info(struct thread_info
*ti
)
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
165 struct page
*page
= alloc_kmem_pages_node(node
, THREADINFO_GFP
,
168 return page
? page_address(page
) : NULL
;
171 static inline void free_thread_info(struct thread_info
*ti
)
173 kaiser_unmap_thread_stack(ti
);
174 free_kmem_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
177 static struct kmem_cache
*thread_info_cache
;
179 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
182 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
185 static void free_thread_info(struct thread_info
*ti
)
187 kmem_cache_free(thread_info_cache
, ti
);
190 void thread_info_cache_init(void)
192 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
193 THREAD_SIZE
, 0, NULL
);
194 BUG_ON(thread_info_cache
== NULL
);
199 /* SLAB cache for signal_struct structures (tsk->signal) */
200 static struct kmem_cache
*signal_cachep
;
202 /* SLAB cache for sighand_struct structures (tsk->sighand) */
203 struct kmem_cache
*sighand_cachep
;
205 /* SLAB cache for files_struct structures (tsk->files) */
206 struct kmem_cache
*files_cachep
;
208 /* SLAB cache for fs_struct structures (tsk->fs) */
209 struct kmem_cache
*fs_cachep
;
211 /* SLAB cache for vm_area_struct structures */
212 struct kmem_cache
*vm_area_cachep
;
214 /* SLAB cache for mm_struct structures (tsk->mm) */
215 static struct kmem_cache
*mm_cachep
;
217 static void account_kernel_stack(struct thread_info
*ti
, int account
)
219 struct zone
*zone
= page_zone(virt_to_page(ti
));
221 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
224 void free_task(struct task_struct
*tsk
)
226 account_kernel_stack(tsk
->stack
, -1);
227 arch_release_thread_info(tsk
->stack
);
228 free_thread_info(tsk
->stack
);
229 rt_mutex_debug_task_free(tsk
);
230 ftrace_graph_exit_task(tsk
);
231 put_seccomp_filter(tsk
);
232 arch_release_task_struct(tsk
);
233 free_task_struct(tsk
);
235 EXPORT_SYMBOL(free_task
);
237 static inline void free_signal_struct(struct signal_struct
*sig
)
239 taskstats_tgid_free(sig
);
240 sched_autogroup_exit(sig
);
241 kmem_cache_free(signal_cachep
, sig
);
244 static inline void put_signal_struct(struct signal_struct
*sig
)
246 if (atomic_dec_and_test(&sig
->sigcnt
))
247 free_signal_struct(sig
);
250 void __put_task_struct(struct task_struct
*tsk
)
252 WARN_ON(!tsk
->exit_state
);
253 WARN_ON(atomic_read(&tsk
->usage
));
254 WARN_ON(tsk
== current
);
258 security_task_free(tsk
);
260 delayacct_tsk_free(tsk
);
261 put_signal_struct(tsk
->signal
);
263 if (!profile_handoff_task(tsk
))
266 EXPORT_SYMBOL_GPL(__put_task_struct
);
268 void __init __weak
arch_task_cache_init(void) { }
273 static void set_max_threads(unsigned int max_threads_suggested
)
278 * The number of threads shall be limited such that the thread
279 * structures may only consume a small part of the available memory.
281 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
282 threads
= MAX_THREADS
;
284 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
285 (u64
) THREAD_SIZE
* 8UL);
287 if (threads
> max_threads_suggested
)
288 threads
= max_threads_suggested
;
290 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
293 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
294 /* Initialized by the architecture: */
295 int arch_task_struct_size __read_mostly
;
298 void __init
fork_init(void)
300 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
301 #ifndef ARCH_MIN_TASKALIGN
302 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
304 /* create a slab on which task_structs can be allocated */
306 kmem_cache_create("task_struct", arch_task_struct_size
,
307 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
310 /* do the arch specific task caches init */
311 arch_task_cache_init();
313 set_max_threads(MAX_THREADS
);
315 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
316 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
317 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
318 init_task
.signal
->rlim
[RLIMIT_NPROC
];
321 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
322 struct task_struct
*src
)
328 void set_task_stack_end_magic(struct task_struct
*tsk
)
330 unsigned long *stackend
;
332 stackend
= end_of_stack(tsk
);
333 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
336 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
338 struct task_struct
*tsk
;
339 struct thread_info
*ti
;
342 if (node
== NUMA_NO_NODE
)
343 node
= tsk_fork_get_node(orig
);
344 tsk
= alloc_task_struct_node(node
);
348 ti
= alloc_thread_info_node(tsk
, node
);
352 err
= arch_dup_task_struct(tsk
, orig
);
358 err
= kaiser_map_thread_stack(tsk
->stack
);
361 #ifdef CONFIG_SECCOMP
363 * We must handle setting up seccomp filters once we're under
364 * the sighand lock in case orig has changed between now and
365 * then. Until then, filter must be NULL to avoid messing up
366 * the usage counts on the error path calling free_task.
368 tsk
->seccomp
.filter
= NULL
;
371 setup_thread_stack(tsk
, orig
);
372 clear_user_return_notifier(tsk
);
373 clear_tsk_need_resched(tsk
);
374 set_task_stack_end_magic(tsk
);
376 #ifdef CONFIG_CC_STACKPROTECTOR
377 tsk
->stack_canary
= get_random_long();
381 * One for us, one for whoever does the "release_task()" (usually
384 atomic_set(&tsk
->usage
, 2);
385 #ifdef CONFIG_BLK_DEV_IO_TRACE
388 tsk
->splice_pipe
= NULL
;
389 tsk
->task_frag
.page
= NULL
;
390 tsk
->wake_q
.next
= NULL
;
392 account_kernel_stack(ti
, 1);
397 free_thread_info(ti
);
399 free_task_struct(tsk
);
404 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
406 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
407 struct rb_node
**rb_link
, *rb_parent
;
409 unsigned long charge
;
411 uprobe_start_dup_mmap();
412 down_write(&oldmm
->mmap_sem
);
413 flush_cache_dup_mm(oldmm
);
414 uprobe_dup_mmap(oldmm
, mm
);
416 * Not linked in yet - no deadlock potential:
418 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
420 /* No ordering required: file already has been exposed. */
421 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
423 mm
->total_vm
= oldmm
->total_vm
;
424 mm
->shared_vm
= oldmm
->shared_vm
;
425 mm
->exec_vm
= oldmm
->exec_vm
;
426 mm
->stack_vm
= oldmm
->stack_vm
;
428 rb_link
= &mm
->mm_rb
.rb_node
;
431 retval
= ksm_fork(mm
, oldmm
);
434 retval
= khugepaged_fork(mm
, oldmm
);
439 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
442 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
443 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
448 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
449 unsigned long len
= vma_pages(mpnt
);
451 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
455 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
459 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
460 retval
= vma_dup_policy(mpnt
, tmp
);
462 goto fail_nomem_policy
;
464 if (anon_vma_fork(tmp
, mpnt
))
465 goto fail_nomem_anon_vma_fork
;
467 ~(VM_LOCKED
|VM_LOCKONFAULT
|VM_UFFD_MISSING
|VM_UFFD_WP
);
468 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
469 tmp
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
472 struct inode
*inode
= file_inode(file
);
473 struct address_space
*mapping
= file
->f_mapping
;
476 if (tmp
->vm_flags
& VM_DENYWRITE
)
477 atomic_dec(&inode
->i_writecount
);
478 i_mmap_lock_write(mapping
);
479 if (tmp
->vm_flags
& VM_SHARED
)
480 atomic_inc(&mapping
->i_mmap_writable
);
481 flush_dcache_mmap_lock(mapping
);
482 /* insert tmp into the share list, just after mpnt */
483 vma_interval_tree_insert_after(tmp
, mpnt
,
485 flush_dcache_mmap_unlock(mapping
);
486 i_mmap_unlock_write(mapping
);
490 * Clear hugetlb-related page reserves for children. This only
491 * affects MAP_PRIVATE mappings. Faults generated by the child
492 * are not guaranteed to succeed, even if read-only
494 if (is_vm_hugetlb_page(tmp
))
495 reset_vma_resv_huge_pages(tmp
);
498 * Link in the new vma and copy the page table entries.
501 pprev
= &tmp
->vm_next
;
505 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
506 rb_link
= &tmp
->vm_rb
.rb_right
;
507 rb_parent
= &tmp
->vm_rb
;
510 retval
= copy_page_range(mm
, oldmm
, mpnt
);
512 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
513 tmp
->vm_ops
->open(tmp
);
518 /* a new mm has just been created */
519 arch_dup_mmap(oldmm
, mm
);
522 up_write(&mm
->mmap_sem
);
524 up_write(&oldmm
->mmap_sem
);
525 uprobe_end_dup_mmap();
527 fail_nomem_anon_vma_fork
:
528 mpol_put(vma_policy(tmp
));
530 kmem_cache_free(vm_area_cachep
, tmp
);
533 vm_unacct_memory(charge
);
537 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
539 mm
->pgd
= pgd_alloc(mm
);
540 if (unlikely(!mm
->pgd
))
545 static inline void mm_free_pgd(struct mm_struct
*mm
)
547 pgd_free(mm
, mm
->pgd
);
550 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
552 down_write(&oldmm
->mmap_sem
);
553 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
554 up_write(&oldmm
->mmap_sem
);
557 #define mm_alloc_pgd(mm) (0)
558 #define mm_free_pgd(mm)
559 #endif /* CONFIG_MMU */
561 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
563 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
564 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
566 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
568 static int __init
coredump_filter_setup(char *s
)
570 default_dump_filter
=
571 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
572 MMF_DUMP_FILTER_MASK
;
576 __setup("coredump_filter=", coredump_filter_setup
);
578 #include <linux/init_task.h>
580 static void mm_init_aio(struct mm_struct
*mm
)
583 spin_lock_init(&mm
->ioctx_lock
);
584 mm
->ioctx_table
= NULL
;
588 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
595 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
596 struct user_namespace
*user_ns
)
600 mm
->vmacache_seqnum
= 0;
601 atomic_set(&mm
->mm_users
, 1);
602 atomic_set(&mm
->mm_count
, 1);
603 init_rwsem(&mm
->mmap_sem
);
604 INIT_LIST_HEAD(&mm
->mmlist
);
605 mm
->core_state
= NULL
;
606 atomic_long_set(&mm
->nr_ptes
, 0);
611 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
612 spin_lock_init(&mm
->page_table_lock
);
615 mm_init_owner(mm
, p
);
616 mmu_notifier_mm_init(mm
);
617 clear_tlb_flush_pending(mm
);
618 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
619 mm
->pmd_huge_pte
= NULL
;
623 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
624 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
626 mm
->flags
= default_dump_filter
;
630 if (mm_alloc_pgd(mm
))
633 if (init_new_context(p
, mm
))
636 mm
->user_ns
= get_user_ns(user_ns
);
646 static void check_mm(struct mm_struct
*mm
)
650 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
651 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
654 printk(KERN_ALERT
"BUG: Bad rss-counter state "
655 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
658 if (atomic_long_read(&mm
->nr_ptes
))
659 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
660 atomic_long_read(&mm
->nr_ptes
));
662 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
671 * Allocate and initialize an mm_struct.
673 struct mm_struct
*mm_alloc(void)
675 struct mm_struct
*mm
;
681 memset(mm
, 0, sizeof(*mm
));
682 return mm_init(mm
, current
, current_user_ns());
686 * Called when the last reference to the mm
687 * is dropped: either by a lazy thread or by
688 * mmput. Free the page directory and the mm.
690 void __mmdrop(struct mm_struct
*mm
)
692 BUG_ON(mm
== &init_mm
);
695 mmu_notifier_mm_destroy(mm
);
697 put_user_ns(mm
->user_ns
);
700 EXPORT_SYMBOL_GPL(__mmdrop
);
703 * Decrement the use count and release all resources for an mm.
705 void mmput(struct mm_struct
*mm
)
709 if (atomic_dec_and_test(&mm
->mm_users
)) {
710 uprobe_clear_state(mm
);
713 khugepaged_exit(mm
); /* must run before exit_mmap */
715 set_mm_exe_file(mm
, NULL
);
716 if (!list_empty(&mm
->mmlist
)) {
717 spin_lock(&mmlist_lock
);
718 list_del(&mm
->mmlist
);
719 spin_unlock(&mmlist_lock
);
722 module_put(mm
->binfmt
->module
);
726 EXPORT_SYMBOL_GPL(mmput
);
729 * set_mm_exe_file - change a reference to the mm's executable file
731 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
733 * Main users are mmput() and sys_execve(). Callers prevent concurrent
734 * invocations: in mmput() nobody alive left, in execve task is single
735 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
736 * mm->exe_file, but does so without using set_mm_exe_file() in order
737 * to do avoid the need for any locks.
739 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
741 struct file
*old_exe_file
;
744 * It is safe to dereference the exe_file without RCU as
745 * this function is only called if nobody else can access
746 * this mm -- see comment above for justification.
748 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
751 get_file(new_exe_file
);
752 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
758 * get_mm_exe_file - acquire a reference to the mm's executable file
760 * Returns %NULL if mm has no associated executable file.
761 * User must release file via fput().
763 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
765 struct file
*exe_file
;
768 exe_file
= rcu_dereference(mm
->exe_file
);
769 if (exe_file
&& !get_file_rcu(exe_file
))
774 EXPORT_SYMBOL(get_mm_exe_file
);
777 * get_task_exe_file - acquire a reference to the task's executable file
779 * Returns %NULL if task's mm (if any) has no associated executable file or
780 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
781 * User must release file via fput().
783 struct file
*get_task_exe_file(struct task_struct
*task
)
785 struct file
*exe_file
= NULL
;
786 struct mm_struct
*mm
;
791 if (!(task
->flags
& PF_KTHREAD
))
792 exe_file
= get_mm_exe_file(mm
);
797 EXPORT_SYMBOL(get_task_exe_file
);
800 * get_task_mm - acquire a reference to the task's mm
802 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
803 * this kernel workthread has transiently adopted a user mm with use_mm,
804 * to do its AIO) is not set and if so returns a reference to it, after
805 * bumping up the use count. User must release the mm via mmput()
806 * after use. Typically used by /proc and ptrace.
808 struct mm_struct
*get_task_mm(struct task_struct
*task
)
810 struct mm_struct
*mm
;
815 if (task
->flags
& PF_KTHREAD
)
818 atomic_inc(&mm
->mm_users
);
823 EXPORT_SYMBOL_GPL(get_task_mm
);
825 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
827 struct mm_struct
*mm
;
830 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
834 mm
= get_task_mm(task
);
835 if (mm
&& mm
!= current
->mm
&&
836 !ptrace_may_access(task
, mode
)) {
838 mm
= ERR_PTR(-EACCES
);
840 mutex_unlock(&task
->signal
->cred_guard_mutex
);
845 static void complete_vfork_done(struct task_struct
*tsk
)
847 struct completion
*vfork
;
850 vfork
= tsk
->vfork_done
;
852 tsk
->vfork_done
= NULL
;
858 static int wait_for_vfork_done(struct task_struct
*child
,
859 struct completion
*vfork
)
863 freezer_do_not_count();
864 killed
= wait_for_completion_killable(vfork
);
869 child
->vfork_done
= NULL
;
873 put_task_struct(child
);
877 /* Please note the differences between mmput and mm_release.
878 * mmput is called whenever we stop holding onto a mm_struct,
879 * error success whatever.
881 * mm_release is called after a mm_struct has been removed
882 * from the current process.
884 * This difference is important for error handling, when we
885 * only half set up a mm_struct for a new process and need to restore
886 * the old one. Because we mmput the new mm_struct before
887 * restoring the old one. . .
888 * Eric Biederman 10 January 1998
890 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
892 /* Get rid of any futexes when releasing the mm */
894 if (unlikely(tsk
->robust_list
)) {
895 exit_robust_list(tsk
);
896 tsk
->robust_list
= NULL
;
899 if (unlikely(tsk
->compat_robust_list
)) {
900 compat_exit_robust_list(tsk
);
901 tsk
->compat_robust_list
= NULL
;
904 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
905 exit_pi_state_list(tsk
);
908 uprobe_free_utask(tsk
);
910 /* Get rid of any cached register state */
911 deactivate_mm(tsk
, mm
);
914 * Signal userspace if we're not exiting with a core dump
915 * because we want to leave the value intact for debugging
918 if (tsk
->clear_child_tid
) {
919 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
920 atomic_read(&mm
->mm_users
) > 1) {
922 * We don't check the error code - if userspace has
923 * not set up a proper pointer then tough luck.
925 put_user(0, tsk
->clear_child_tid
);
926 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
929 tsk
->clear_child_tid
= NULL
;
933 * All done, finally we can wake up parent and return this mm to him.
934 * Also kthread_stop() uses this completion for synchronization.
937 complete_vfork_done(tsk
);
941 * Allocate a new mm structure and copy contents from the
942 * mm structure of the passed in task structure.
944 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
946 struct mm_struct
*mm
, *oldmm
= current
->mm
;
953 memcpy(mm
, oldmm
, sizeof(*mm
));
955 if (!mm_init(mm
, tsk
, mm
->user_ns
))
958 err
= dup_mmap(mm
, oldmm
);
962 mm
->hiwater_rss
= get_mm_rss(mm
);
963 mm
->hiwater_vm
= mm
->total_vm
;
965 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
971 /* don't put binfmt in mmput, we haven't got module yet */
979 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
981 struct mm_struct
*mm
, *oldmm
;
984 tsk
->min_flt
= tsk
->maj_flt
= 0;
985 tsk
->nvcsw
= tsk
->nivcsw
= 0;
986 #ifdef CONFIG_DETECT_HUNG_TASK
987 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
991 tsk
->active_mm
= NULL
;
994 * Are we cloning a kernel thread?
996 * We need to steal a active VM for that..
1002 /* initialize the new vmacache entries */
1003 vmacache_flush(tsk
);
1005 if (clone_flags
& CLONE_VM
) {
1006 atomic_inc(&oldmm
->mm_users
);
1018 tsk
->active_mm
= mm
;
1025 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1027 struct fs_struct
*fs
= current
->fs
;
1028 if (clone_flags
& CLONE_FS
) {
1029 /* tsk->fs is already what we want */
1030 spin_lock(&fs
->lock
);
1032 spin_unlock(&fs
->lock
);
1036 spin_unlock(&fs
->lock
);
1039 tsk
->fs
= copy_fs_struct(fs
);
1045 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1047 struct files_struct
*oldf
, *newf
;
1051 * A background process may not have any files ...
1053 oldf
= current
->files
;
1057 if (clone_flags
& CLONE_FILES
) {
1058 atomic_inc(&oldf
->count
);
1062 newf
= dup_fd(oldf
, &error
);
1072 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1075 struct io_context
*ioc
= current
->io_context
;
1076 struct io_context
*new_ioc
;
1081 * Share io context with parent, if CLONE_IO is set
1083 if (clone_flags
& CLONE_IO
) {
1085 tsk
->io_context
= ioc
;
1086 } else if (ioprio_valid(ioc
->ioprio
)) {
1087 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1088 if (unlikely(!new_ioc
))
1091 new_ioc
->ioprio
= ioc
->ioprio
;
1092 put_io_context(new_ioc
);
1098 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1100 struct sighand_struct
*sig
;
1102 if (clone_flags
& CLONE_SIGHAND
) {
1103 atomic_inc(¤t
->sighand
->count
);
1106 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1107 rcu_assign_pointer(tsk
->sighand
, sig
);
1111 atomic_set(&sig
->count
, 1);
1112 spin_lock_irq(¤t
->sighand
->siglock
);
1113 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1114 spin_unlock_irq(¤t
->sighand
->siglock
);
1118 void __cleanup_sighand(struct sighand_struct
*sighand
)
1120 if (atomic_dec_and_test(&sighand
->count
)) {
1121 signalfd_cleanup(sighand
);
1123 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1124 * without an RCU grace period, see __lock_task_sighand().
1126 kmem_cache_free(sighand_cachep
, sighand
);
1131 * Initialize POSIX timer handling for a thread group.
1133 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1135 unsigned long cpu_limit
;
1137 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1138 if (cpu_limit
!= RLIM_INFINITY
) {
1139 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1140 sig
->cputimer
.running
= true;
1143 /* The timer lists. */
1144 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1145 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1146 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1149 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1151 struct signal_struct
*sig
;
1153 if (clone_flags
& CLONE_THREAD
)
1156 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1161 sig
->nr_threads
= 1;
1162 atomic_set(&sig
->live
, 1);
1163 atomic_set(&sig
->sigcnt
, 1);
1165 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1166 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1167 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1169 init_waitqueue_head(&sig
->wait_chldexit
);
1170 sig
->curr_target
= tsk
;
1171 init_sigpending(&sig
->shared_pending
);
1172 INIT_LIST_HEAD(&sig
->posix_timers
);
1173 seqlock_init(&sig
->stats_lock
);
1174 prev_cputime_init(&sig
->prev_cputime
);
1176 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1177 sig
->real_timer
.function
= it_real_fn
;
1179 task_lock(current
->group_leader
);
1180 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1181 task_unlock(current
->group_leader
);
1183 posix_cpu_timers_init_group(sig
);
1185 tty_audit_fork(sig
);
1186 sched_autogroup_fork(sig
);
1188 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1189 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1191 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1192 current
->signal
->is_child_subreaper
;
1194 mutex_init(&sig
->cred_guard_mutex
);
1199 static void copy_seccomp(struct task_struct
*p
)
1201 #ifdef CONFIG_SECCOMP
1203 * Must be called with sighand->lock held, which is common to
1204 * all threads in the group. Holding cred_guard_mutex is not
1205 * needed because this new task is not yet running and cannot
1208 assert_spin_locked(¤t
->sighand
->siglock
);
1210 /* Ref-count the new filter user, and assign it. */
1211 get_seccomp_filter(current
);
1212 p
->seccomp
= current
->seccomp
;
1215 * Explicitly enable no_new_privs here in case it got set
1216 * between the task_struct being duplicated and holding the
1217 * sighand lock. The seccomp state and nnp must be in sync.
1219 if (task_no_new_privs(current
))
1220 task_set_no_new_privs(p
);
1223 * If the parent gained a seccomp mode after copying thread
1224 * flags and between before we held the sighand lock, we have
1225 * to manually enable the seccomp thread flag here.
1227 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1228 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1232 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1234 current
->clear_child_tid
= tidptr
;
1236 return task_pid_vnr(current
);
1239 static void rt_mutex_init_task(struct task_struct
*p
)
1241 raw_spin_lock_init(&p
->pi_lock
);
1242 #ifdef CONFIG_RT_MUTEXES
1243 p
->pi_waiters
= RB_ROOT
;
1244 p
->pi_waiters_leftmost
= NULL
;
1245 p
->pi_blocked_on
= NULL
;
1250 * Initialize POSIX timer handling for a single task.
1252 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1254 tsk
->cputime_expires
.prof_exp
= 0;
1255 tsk
->cputime_expires
.virt_exp
= 0;
1256 tsk
->cputime_expires
.sched_exp
= 0;
1257 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1258 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1259 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1263 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1265 task
->pids
[type
].pid
= pid
;
1269 * This creates a new process as a copy of the old one,
1270 * but does not actually start it yet.
1272 * It copies the registers, and all the appropriate
1273 * parts of the process environment (as per the clone
1274 * flags). The actual kick-off is left to the caller.
1276 static struct task_struct
*copy_process(unsigned long clone_flags
,
1277 unsigned long stack_start
,
1278 unsigned long stack_size
,
1279 int __user
*child_tidptr
,
1286 struct task_struct
*p
;
1287 void *cgrp_ss_priv
[CGROUP_CANFORK_COUNT
] = {};
1289 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1290 return ERR_PTR(-EINVAL
);
1292 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1293 return ERR_PTR(-EINVAL
);
1296 * Thread groups must share signals as well, and detached threads
1297 * can only be started up within the thread group.
1299 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1300 return ERR_PTR(-EINVAL
);
1303 * Shared signal handlers imply shared VM. By way of the above,
1304 * thread groups also imply shared VM. Blocking this case allows
1305 * for various simplifications in other code.
1307 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1308 return ERR_PTR(-EINVAL
);
1311 * Siblings of global init remain as zombies on exit since they are
1312 * not reaped by their parent (swapper). To solve this and to avoid
1313 * multi-rooted process trees, prevent global and container-inits
1314 * from creating siblings.
1316 if ((clone_flags
& CLONE_PARENT
) &&
1317 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1318 return ERR_PTR(-EINVAL
);
1321 * If the new process will be in a different pid or user namespace
1322 * do not allow it to share a thread group with the forking task.
1324 if (clone_flags
& CLONE_THREAD
) {
1325 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1326 (task_active_pid_ns(current
) !=
1327 current
->nsproxy
->pid_ns_for_children
))
1328 return ERR_PTR(-EINVAL
);
1331 retval
= security_task_create(clone_flags
);
1336 p
= dup_task_struct(current
, node
);
1341 * This _must_ happen before we call free_task(), i.e. before we jump
1342 * to any of the bad_fork_* labels. This is to avoid freeing
1343 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1344 * kernel threads (PF_KTHREAD).
1346 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1348 * Clear TID on mm_release()?
1350 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1352 ftrace_graph_init_task(p
);
1354 rt_mutex_init_task(p
);
1356 #ifdef CONFIG_PROVE_LOCKING
1357 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1358 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1361 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1362 task_rlimit(p
, RLIMIT_NPROC
)) {
1363 if (p
->real_cred
->user
!= INIT_USER
&&
1364 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1367 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1369 retval
= copy_creds(p
, clone_flags
);
1374 * If multiple threads are within copy_process(), then this check
1375 * triggers too late. This doesn't hurt, the check is only there
1376 * to stop root fork bombs.
1379 if (nr_threads
>= max_threads
)
1380 goto bad_fork_cleanup_count
;
1382 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1383 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1384 p
->flags
|= PF_FORKNOEXEC
;
1385 INIT_LIST_HEAD(&p
->children
);
1386 INIT_LIST_HEAD(&p
->sibling
);
1387 rcu_copy_process(p
);
1388 p
->vfork_done
= NULL
;
1389 spin_lock_init(&p
->alloc_lock
);
1391 init_sigpending(&p
->pending
);
1393 p
->utime
= p
->stime
= p
->gtime
= 0;
1394 p
->utimescaled
= p
->stimescaled
= 0;
1395 prev_cputime_init(&p
->prev_cputime
);
1397 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1398 seqlock_init(&p
->vtime_seqlock
);
1400 p
->vtime_snap_whence
= VTIME_SLEEPING
;
1403 #if defined(SPLIT_RSS_COUNTING)
1404 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1407 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1409 task_io_accounting_init(&p
->ioac
);
1410 acct_clear_integrals(p
);
1412 posix_cpu_timers_init(p
);
1414 p
->start_time
= ktime_get_ns();
1415 p
->real_start_time
= ktime_get_boot_ns();
1416 p
->io_context
= NULL
;
1417 p
->audit_context
= NULL
;
1420 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1421 if (IS_ERR(p
->mempolicy
)) {
1422 retval
= PTR_ERR(p
->mempolicy
);
1423 p
->mempolicy
= NULL
;
1424 goto bad_fork_cleanup_threadgroup_lock
;
1427 #ifdef CONFIG_CPUSETS
1428 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1429 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1430 seqcount_init(&p
->mems_allowed_seq
);
1432 #ifdef CONFIG_TRACE_IRQFLAGS
1434 p
->hardirqs_enabled
= 0;
1435 p
->hardirq_enable_ip
= 0;
1436 p
->hardirq_enable_event
= 0;
1437 p
->hardirq_disable_ip
= _THIS_IP_
;
1438 p
->hardirq_disable_event
= 0;
1439 p
->softirqs_enabled
= 1;
1440 p
->softirq_enable_ip
= _THIS_IP_
;
1441 p
->softirq_enable_event
= 0;
1442 p
->softirq_disable_ip
= 0;
1443 p
->softirq_disable_event
= 0;
1444 p
->hardirq_context
= 0;
1445 p
->softirq_context
= 0;
1448 p
->pagefault_disabled
= 0;
1450 #ifdef CONFIG_LOCKDEP
1451 p
->lockdep_depth
= 0; /* no locks held yet */
1452 p
->curr_chain_key
= 0;
1453 p
->lockdep_recursion
= 0;
1456 #ifdef CONFIG_DEBUG_MUTEXES
1457 p
->blocked_on
= NULL
; /* not blocked yet */
1459 #ifdef CONFIG_BCACHE
1460 p
->sequential_io
= 0;
1461 p
->sequential_io_avg
= 0;
1464 /* Perform scheduler related setup. Assign this task to a CPU. */
1465 retval
= sched_fork(clone_flags
, p
);
1467 goto bad_fork_cleanup_policy
;
1469 retval
= perf_event_init_task(p
);
1471 goto bad_fork_cleanup_policy
;
1472 retval
= audit_alloc(p
);
1474 goto bad_fork_cleanup_perf
;
1475 /* copy all the process information */
1477 retval
= copy_semundo(clone_flags
, p
);
1479 goto bad_fork_cleanup_audit
;
1480 retval
= copy_files(clone_flags
, p
);
1482 goto bad_fork_cleanup_semundo
;
1483 retval
= copy_fs(clone_flags
, p
);
1485 goto bad_fork_cleanup_files
;
1486 retval
= copy_sighand(clone_flags
, p
);
1488 goto bad_fork_cleanup_fs
;
1489 retval
= copy_signal(clone_flags
, p
);
1491 goto bad_fork_cleanup_sighand
;
1492 retval
= copy_mm(clone_flags
, p
);
1494 goto bad_fork_cleanup_signal
;
1495 retval
= copy_namespaces(clone_flags
, p
);
1497 goto bad_fork_cleanup_mm
;
1498 retval
= copy_io(clone_flags
, p
);
1500 goto bad_fork_cleanup_namespaces
;
1501 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1503 goto bad_fork_cleanup_io
;
1505 if (pid
!= &init_struct_pid
) {
1506 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1508 retval
= PTR_ERR(pid
);
1509 goto bad_fork_cleanup_io
;
1517 p
->robust_list
= NULL
;
1518 #ifdef CONFIG_COMPAT
1519 p
->compat_robust_list
= NULL
;
1521 INIT_LIST_HEAD(&p
->pi_state_list
);
1522 p
->pi_state_cache
= NULL
;
1525 * sigaltstack should be cleared when sharing the same VM
1527 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1528 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1531 * Syscall tracing and stepping should be turned off in the
1532 * child regardless of CLONE_PTRACE.
1534 user_disable_single_step(p
);
1535 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1536 #ifdef TIF_SYSCALL_EMU
1537 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1539 clear_all_latency_tracing(p
);
1541 /* ok, now we should be set up.. */
1542 p
->pid
= pid_nr(pid
);
1543 if (clone_flags
& CLONE_THREAD
) {
1544 p
->exit_signal
= -1;
1545 p
->group_leader
= current
->group_leader
;
1546 p
->tgid
= current
->tgid
;
1548 if (clone_flags
& CLONE_PARENT
)
1549 p
->exit_signal
= current
->group_leader
->exit_signal
;
1551 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1552 p
->group_leader
= p
;
1557 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1558 p
->dirty_paused_when
= 0;
1560 p
->pdeath_signal
= 0;
1561 INIT_LIST_HEAD(&p
->thread_group
);
1562 p
->task_works
= NULL
;
1564 threadgroup_change_begin(current
);
1566 * Ensure that the cgroup subsystem policies allow the new process to be
1567 * forked. It should be noted the the new process's css_set can be changed
1568 * between here and cgroup_post_fork() if an organisation operation is in
1571 retval
= cgroup_can_fork(p
, cgrp_ss_priv
);
1573 goto bad_fork_free_pid
;
1576 * Make it visible to the rest of the system, but dont wake it up yet.
1577 * Need tasklist lock for parent etc handling!
1579 write_lock_irq(&tasklist_lock
);
1581 /* CLONE_PARENT re-uses the old parent */
1582 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1583 p
->real_parent
= current
->real_parent
;
1584 p
->parent_exec_id
= current
->parent_exec_id
;
1586 p
->real_parent
= current
;
1587 p
->parent_exec_id
= current
->self_exec_id
;
1590 spin_lock(¤t
->sighand
->siglock
);
1593 * Copy seccomp details explicitly here, in case they were changed
1594 * before holding sighand lock.
1599 * Process group and session signals need to be delivered to just the
1600 * parent before the fork or both the parent and the child after the
1601 * fork. Restart if a signal comes in before we add the new process to
1602 * it's process group.
1603 * A fatal signal pending means that current will exit, so the new
1604 * thread can't slip out of an OOM kill (or normal SIGKILL).
1606 recalc_sigpending();
1607 if (signal_pending(current
)) {
1608 retval
= -ERESTARTNOINTR
;
1609 goto bad_fork_cancel_cgroup
;
1611 if (unlikely(!(ns_of_pid(pid
)->nr_hashed
& PIDNS_HASH_ADDING
))) {
1613 goto bad_fork_cancel_cgroup
;
1616 if (likely(p
->pid
)) {
1617 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1619 init_task_pid(p
, PIDTYPE_PID
, pid
);
1620 if (thread_group_leader(p
)) {
1621 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1622 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1624 if (is_child_reaper(pid
)) {
1625 ns_of_pid(pid
)->child_reaper
= p
;
1626 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1629 p
->signal
->leader_pid
= pid
;
1630 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1631 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1632 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1633 attach_pid(p
, PIDTYPE_PGID
);
1634 attach_pid(p
, PIDTYPE_SID
);
1635 __this_cpu_inc(process_counts
);
1637 current
->signal
->nr_threads
++;
1638 atomic_inc(¤t
->signal
->live
);
1639 atomic_inc(¤t
->signal
->sigcnt
);
1640 list_add_tail_rcu(&p
->thread_group
,
1641 &p
->group_leader
->thread_group
);
1642 list_add_tail_rcu(&p
->thread_node
,
1643 &p
->signal
->thread_head
);
1645 attach_pid(p
, PIDTYPE_PID
);
1650 spin_unlock(¤t
->sighand
->siglock
);
1651 syscall_tracepoint_update(p
);
1652 write_unlock_irq(&tasklist_lock
);
1654 proc_fork_connector(p
);
1655 cgroup_post_fork(p
, cgrp_ss_priv
);
1656 threadgroup_change_end(current
);
1659 trace_task_newtask(p
, clone_flags
);
1660 uprobe_copy_process(p
, clone_flags
);
1664 bad_fork_cancel_cgroup
:
1665 spin_unlock(¤t
->sighand
->siglock
);
1666 write_unlock_irq(&tasklist_lock
);
1667 cgroup_cancel_fork(p
, cgrp_ss_priv
);
1669 threadgroup_change_end(current
);
1670 if (pid
!= &init_struct_pid
)
1672 bad_fork_cleanup_io
:
1675 bad_fork_cleanup_namespaces
:
1676 exit_task_namespaces(p
);
1677 bad_fork_cleanup_mm
:
1680 bad_fork_cleanup_signal
:
1681 if (!(clone_flags
& CLONE_THREAD
))
1682 free_signal_struct(p
->signal
);
1683 bad_fork_cleanup_sighand
:
1684 __cleanup_sighand(p
->sighand
);
1685 bad_fork_cleanup_fs
:
1686 exit_fs(p
); /* blocking */
1687 bad_fork_cleanup_files
:
1688 exit_files(p
); /* blocking */
1689 bad_fork_cleanup_semundo
:
1691 bad_fork_cleanup_audit
:
1693 bad_fork_cleanup_perf
:
1694 perf_event_free_task(p
);
1695 bad_fork_cleanup_policy
:
1697 mpol_put(p
->mempolicy
);
1698 bad_fork_cleanup_threadgroup_lock
:
1700 delayacct_tsk_free(p
);
1701 bad_fork_cleanup_count
:
1702 atomic_dec(&p
->cred
->user
->processes
);
1707 return ERR_PTR(retval
);
1710 static inline void init_idle_pids(struct pid_link
*links
)
1714 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1715 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1716 links
[type
].pid
= &init_struct_pid
;
1720 struct task_struct
*fork_idle(int cpu
)
1722 struct task_struct
*task
;
1723 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
1725 if (!IS_ERR(task
)) {
1726 init_idle_pids(task
->pids
);
1727 init_idle(task
, cpu
);
1734 * Ok, this is the main fork-routine.
1736 * It copies the process, and if successful kick-starts
1737 * it and waits for it to finish using the VM if required.
1739 long _do_fork(unsigned long clone_flags
,
1740 unsigned long stack_start
,
1741 unsigned long stack_size
,
1742 int __user
*parent_tidptr
,
1743 int __user
*child_tidptr
,
1746 struct task_struct
*p
;
1751 * Determine whether and which event to report to ptracer. When
1752 * called from kernel_thread or CLONE_UNTRACED is explicitly
1753 * requested, no event is reported; otherwise, report if the event
1754 * for the type of forking is enabled.
1756 if (!(clone_flags
& CLONE_UNTRACED
)) {
1757 if (clone_flags
& CLONE_VFORK
)
1758 trace
= PTRACE_EVENT_VFORK
;
1759 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1760 trace
= PTRACE_EVENT_CLONE
;
1762 trace
= PTRACE_EVENT_FORK
;
1764 if (likely(!ptrace_event_enabled(current
, trace
)))
1768 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1769 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
1771 * Do this prior waking up the new thread - the thread pointer
1772 * might get invalid after that point, if the thread exits quickly.
1775 struct completion vfork
;
1778 trace_sched_process_fork(current
, p
);
1780 pid
= get_task_pid(p
, PIDTYPE_PID
);
1783 if (clone_flags
& CLONE_PARENT_SETTID
)
1784 put_user(nr
, parent_tidptr
);
1786 if (clone_flags
& CLONE_VFORK
) {
1787 p
->vfork_done
= &vfork
;
1788 init_completion(&vfork
);
1792 wake_up_new_task(p
);
1794 /* forking complete and child started to run, tell ptracer */
1795 if (unlikely(trace
))
1796 ptrace_event_pid(trace
, pid
);
1798 if (clone_flags
& CLONE_VFORK
) {
1799 if (!wait_for_vfork_done(p
, &vfork
))
1800 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1810 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1811 /* For compatibility with architectures that call do_fork directly rather than
1812 * using the syscall entry points below. */
1813 long do_fork(unsigned long clone_flags
,
1814 unsigned long stack_start
,
1815 unsigned long stack_size
,
1816 int __user
*parent_tidptr
,
1817 int __user
*child_tidptr
)
1819 return _do_fork(clone_flags
, stack_start
, stack_size
,
1820 parent_tidptr
, child_tidptr
, 0);
1825 * Create a kernel thread.
1827 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1829 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1830 (unsigned long)arg
, NULL
, NULL
, 0);
1833 #ifdef __ARCH_WANT_SYS_FORK
1834 SYSCALL_DEFINE0(fork
)
1837 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
1839 /* can not support in nommu mode */
1845 #ifdef __ARCH_WANT_SYS_VFORK
1846 SYSCALL_DEFINE0(vfork
)
1848 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1853 #ifdef __ARCH_WANT_SYS_CLONE
1854 #ifdef CONFIG_CLONE_BACKWARDS
1855 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1856 int __user
*, parent_tidptr
,
1858 int __user
*, child_tidptr
)
1859 #elif defined(CONFIG_CLONE_BACKWARDS2)
1860 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1861 int __user
*, parent_tidptr
,
1862 int __user
*, child_tidptr
,
1864 #elif defined(CONFIG_CLONE_BACKWARDS3)
1865 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1867 int __user
*, parent_tidptr
,
1868 int __user
*, child_tidptr
,
1871 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1872 int __user
*, parent_tidptr
,
1873 int __user
*, child_tidptr
,
1877 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
1881 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1882 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1885 static void sighand_ctor(void *data
)
1887 struct sighand_struct
*sighand
= data
;
1889 spin_lock_init(&sighand
->siglock
);
1890 init_waitqueue_head(&sighand
->signalfd_wqh
);
1893 void __init
proc_caches_init(void)
1895 sighand_cachep
= kmem_cache_create("sighand_cache",
1896 sizeof(struct sighand_struct
), 0,
1897 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1898 SLAB_NOTRACK
, sighand_ctor
);
1899 signal_cachep
= kmem_cache_create("signal_cache",
1900 sizeof(struct signal_struct
), 0,
1901 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1902 files_cachep
= kmem_cache_create("files_cache",
1903 sizeof(struct files_struct
), 0,
1904 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1905 fs_cachep
= kmem_cache_create("fs_cache",
1906 sizeof(struct fs_struct
), 0,
1907 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1909 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1910 * whole struct cpumask for the OFFSTACK case. We could change
1911 * this to *only* allocate as much of it as required by the
1912 * maximum number of CPU's we can ever have. The cpumask_allocation
1913 * is at the end of the structure, exactly for that reason.
1915 mm_cachep
= kmem_cache_create("mm_struct",
1916 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1917 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1918 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1920 nsproxy_cache_init();
1924 * Check constraints on flags passed to the unshare system call.
1926 static int check_unshare_flags(unsigned long unshare_flags
)
1928 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1929 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1930 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1931 CLONE_NEWUSER
|CLONE_NEWPID
))
1934 * Not implemented, but pretend it works if there is nothing
1935 * to unshare. Note that unsharing the address space or the
1936 * signal handlers also need to unshare the signal queues (aka
1939 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1940 if (!thread_group_empty(current
))
1943 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
1944 if (atomic_read(¤t
->sighand
->count
) > 1)
1947 if (unshare_flags
& CLONE_VM
) {
1948 if (!current_is_single_threaded())
1956 * Unshare the filesystem structure if it is being shared
1958 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1960 struct fs_struct
*fs
= current
->fs
;
1962 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1965 /* don't need lock here; in the worst case we'll do useless copy */
1969 *new_fsp
= copy_fs_struct(fs
);
1977 * Unshare file descriptor table if it is being shared
1979 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1981 struct files_struct
*fd
= current
->files
;
1984 if ((unshare_flags
& CLONE_FILES
) &&
1985 (fd
&& atomic_read(&fd
->count
) > 1)) {
1986 *new_fdp
= dup_fd(fd
, &error
);
1995 * unshare allows a process to 'unshare' part of the process
1996 * context which was originally shared using clone. copy_*
1997 * functions used by do_fork() cannot be used here directly
1998 * because they modify an inactive task_struct that is being
1999 * constructed. Here we are modifying the current, active,
2002 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2004 struct fs_struct
*fs
, *new_fs
= NULL
;
2005 struct files_struct
*fd
, *new_fd
= NULL
;
2006 struct cred
*new_cred
= NULL
;
2007 struct nsproxy
*new_nsproxy
= NULL
;
2012 * If unsharing a user namespace must also unshare the thread group
2013 * and unshare the filesystem root and working directories.
2015 if (unshare_flags
& CLONE_NEWUSER
)
2016 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2018 * If unsharing vm, must also unshare signal handlers.
2020 if (unshare_flags
& CLONE_VM
)
2021 unshare_flags
|= CLONE_SIGHAND
;
2023 * If unsharing a signal handlers, must also unshare the signal queues.
2025 if (unshare_flags
& CLONE_SIGHAND
)
2026 unshare_flags
|= CLONE_THREAD
;
2028 * If unsharing namespace, must also unshare filesystem information.
2030 if (unshare_flags
& CLONE_NEWNS
)
2031 unshare_flags
|= CLONE_FS
;
2033 err
= check_unshare_flags(unshare_flags
);
2035 goto bad_unshare_out
;
2037 * CLONE_NEWIPC must also detach from the undolist: after switching
2038 * to a new ipc namespace, the semaphore arrays from the old
2039 * namespace are unreachable.
2041 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2043 err
= unshare_fs(unshare_flags
, &new_fs
);
2045 goto bad_unshare_out
;
2046 err
= unshare_fd(unshare_flags
, &new_fd
);
2048 goto bad_unshare_cleanup_fs
;
2049 err
= unshare_userns(unshare_flags
, &new_cred
);
2051 goto bad_unshare_cleanup_fd
;
2052 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2055 goto bad_unshare_cleanup_cred
;
2057 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2060 * CLONE_SYSVSEM is equivalent to sys_exit().
2064 if (unshare_flags
& CLONE_NEWIPC
) {
2065 /* Orphan segments in old ns (see sem above). */
2067 shm_init_task(current
);
2071 switch_task_namespaces(current
, new_nsproxy
);
2077 spin_lock(&fs
->lock
);
2078 current
->fs
= new_fs
;
2083 spin_unlock(&fs
->lock
);
2087 fd
= current
->files
;
2088 current
->files
= new_fd
;
2092 task_unlock(current
);
2095 /* Install the new user namespace */
2096 commit_creds(new_cred
);
2101 bad_unshare_cleanup_cred
:
2104 bad_unshare_cleanup_fd
:
2106 put_files_struct(new_fd
);
2108 bad_unshare_cleanup_fs
:
2110 free_fs_struct(new_fs
);
2117 * Helper to unshare the files of the current task.
2118 * We don't want to expose copy_files internals to
2119 * the exec layer of the kernel.
2122 int unshare_files(struct files_struct
**displaced
)
2124 struct task_struct
*task
= current
;
2125 struct files_struct
*copy
= NULL
;
2128 error
= unshare_fd(CLONE_FILES
, ©
);
2129 if (error
|| !copy
) {
2133 *displaced
= task
->files
;
2140 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2141 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2145 int threads
= max_threads
;
2146 int min
= MIN_THREADS
;
2147 int max
= MAX_THREADS
;
2154 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2158 set_max_threads(threads
);