dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / futex.c
bloba26d217c99fe77b0e523f4d3d46244cc77749dbe
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
69 #include <asm/futex.h>
71 #include "locking/rtmutex_common.h"
74 * READ this before attempting to hack on futexes!
76 * Basic futex operation and ordering guarantees
77 * =============================================
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
126 * waiters++; (a)
127 * mb(); (A) <-- paired with -.
129 * lock(hash_bucket(futex)); |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
136 * `-------> mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
150 * This yields the following case (where X:=waiters, Y:=futex):
152 * X = Y = 0
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
187 * Priority Inheritance state:
189 struct futex_pi_state {
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
194 struct list_head list;
197 * The PI object:
199 struct rt_mutex pi_mutex;
201 struct task_struct *owner;
202 atomic_t refcount;
204 union futex_key key;
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
229 struct futex_q {
230 struct plist_node list;
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
272 * Fault injections for futexes.
274 #ifdef CONFIG_FAIL_FUTEX
276 static struct {
277 struct fault_attr attr;
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
285 static int __init setup_fail_futex(char *str)
287 return setup_fault_attr(&fail_futex.attr, str);
289 __setup("fail_futex=", setup_fail_futex);
291 static bool should_fail_futex(bool fshared)
293 if (fail_futex.ignore_private && !fshared)
294 return false;
296 return should_fail(&fail_futex.attr, 1);
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301 static int __init fail_futex_debugfs(void)
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
317 return 0;
320 late_initcall(fail_futex_debugfs);
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
324 #else
325 static inline bool should_fail_futex(bool fshared)
327 return false;
329 #endif /* CONFIG_FAIL_FUTEX */
331 static inline void futex_get_mm(union futex_key *key)
333 atomic_inc(&key->private.mm->mm_count);
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as full barrier (B), see the ordering comment above.
339 smp_mb__after_atomic();
343 * Reflects a new waiter being added to the waitqueue.
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
347 #ifdef CONFIG_SMP
348 atomic_inc(&hb->waiters);
350 * Full barrier (A), see the ordering comment above.
352 smp_mb__after_atomic();
353 #endif
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
362 #ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364 #endif
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
369 #ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
371 #else
372 return 1;
373 #endif
377 * We hash on the keys returned from get_futex_key (see below).
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
381 u32 hash = jhash2((u32*)&key->both.word,
382 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 key->both.offset);
384 return &futex_queues[hash & (futex_hashsize - 1)];
388 * Return 1 if two futex_keys are equal, 0 otherwise.
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
392 return (key1 && key2
393 && key1->both.word == key2->both.word
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
403 static void get_futex_key_refs(union futex_key *key)
405 if (!key->both.ptr)
406 return;
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
410 ihold(key->shared.inode); /* implies MB (B) */
411 break;
412 case FUT_OFF_MMSHARED:
413 futex_get_mm(key); /* implies MB (B) */
414 break;
415 default:
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
421 smp_mb(); /* explicit MB (B) */
426 * Drop a reference to the resource addressed by a key.
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
431 static void drop_futex_key_refs(union futex_key *key)
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
436 return;
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 iput(key->shared.inode);
442 break;
443 case FUT_OFF_MMSHARED:
444 mmdrop(key->private.mm);
445 break;
450 * get_futex_key() - Get parameters which are the keys for a futex
451 * @uaddr: virtual address of the futex
452 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453 * @key: address where result is stored.
454 * @rw: mapping needs to be read/write (values: VERIFY_READ,
455 * VERIFY_WRITE)
457 * Return: a negative error code or 0
459 * The key words are stored in *key on success.
461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462 * offset_within_page). For private mappings, it's (uaddr, current->mm).
463 * We can usually work out the index without swapping in the page.
465 * lock_page() might sleep, the caller should not hold a spinlock.
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
470 unsigned long address = (unsigned long)uaddr;
471 struct mm_struct *mm = current->mm;
472 struct page *page, *page_head;
473 struct address_space *mapping;
474 int err, ro = 0;
477 * The futex address must be "naturally" aligned.
479 key->both.offset = address % PAGE_SIZE;
480 if (unlikely((address % sizeof(u32)) != 0))
481 return -EINVAL;
482 address -= key->both.offset;
484 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
485 return -EFAULT;
487 if (unlikely(should_fail_futex(fshared)))
488 return -EFAULT;
491 * PROCESS_PRIVATE futexes are fast.
492 * As the mm cannot disappear under us and the 'key' only needs
493 * virtual address, we dont even have to find the underlying vma.
494 * Note : We do have to check 'uaddr' is a valid user address,
495 * but access_ok() should be faster than find_vma()
497 if (!fshared) {
498 key->private.mm = mm;
499 key->private.address = address;
500 get_futex_key_refs(key); /* implies MB (B) */
501 return 0;
504 again:
505 /* Ignore any VERIFY_READ mapping (futex common case) */
506 if (unlikely(should_fail_futex(fshared)))
507 return -EFAULT;
509 err = get_user_pages_fast(address, 1, 1, &page);
511 * If write access is not required (eg. FUTEX_WAIT), try
512 * and get read-only access.
514 if (err == -EFAULT && rw == VERIFY_READ) {
515 err = get_user_pages_fast(address, 1, 0, &page);
516 ro = 1;
518 if (err < 0)
519 return err;
520 else
521 err = 0;
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 page_head = page;
525 if (unlikely(PageTail(page))) {
526 put_page(page);
527 /* serialize against __split_huge_page_splitting() */
528 local_irq_disable();
529 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
530 page_head = compound_head(page);
532 * page_head is valid pointer but we must pin
533 * it before taking the PG_lock and/or
534 * PG_compound_lock. The moment we re-enable
535 * irqs __split_huge_page_splitting() can
536 * return and the head page can be freed from
537 * under us. We can't take the PG_lock and/or
538 * PG_compound_lock on a page that could be
539 * freed from under us.
541 if (page != page_head) {
542 get_page(page_head);
543 put_page(page);
545 local_irq_enable();
546 } else {
547 local_irq_enable();
548 goto again;
551 #else
552 page_head = compound_head(page);
553 if (page != page_head) {
554 get_page(page_head);
555 put_page(page);
557 #endif
560 * The treatment of mapping from this point on is critical. The page
561 * lock protects many things but in this context the page lock
562 * stabilizes mapping, prevents inode freeing in the shared
563 * file-backed region case and guards against movement to swap cache.
565 * Strictly speaking the page lock is not needed in all cases being
566 * considered here and page lock forces unnecessarily serialization
567 * From this point on, mapping will be re-verified if necessary and
568 * page lock will be acquired only if it is unavoidable
571 mapping = READ_ONCE(page_head->mapping);
574 * If page_head->mapping is NULL, then it cannot be a PageAnon
575 * page; but it might be the ZERO_PAGE or in the gate area or
576 * in a special mapping (all cases which we are happy to fail);
577 * or it may have been a good file page when get_user_pages_fast
578 * found it, but truncated or holepunched or subjected to
579 * invalidate_complete_page2 before we got the page lock (also
580 * cases which we are happy to fail). And we hold a reference,
581 * so refcount care in invalidate_complete_page's remove_mapping
582 * prevents drop_caches from setting mapping to NULL beneath us.
584 * The case we do have to guard against is when memory pressure made
585 * shmem_writepage move it from filecache to swapcache beneath us:
586 * an unlikely race, but we do need to retry for page_head->mapping.
588 if (unlikely(!mapping)) {
589 int shmem_swizzled;
592 * Page lock is required to identify which special case above
593 * applies. If this is really a shmem page then the page lock
594 * will prevent unexpected transitions.
596 lock_page(page);
597 shmem_swizzled = PageSwapCache(page) || page->mapping;
598 unlock_page(page_head);
599 put_page(page_head);
601 if (shmem_swizzled)
602 goto again;
604 return -EFAULT;
608 * Private mappings are handled in a simple way.
610 * If the futex key is stored on an anonymous page, then the associated
611 * object is the mm which is implicitly pinned by the calling process.
613 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
614 * it's a read-only handle, it's expected that futexes attach to
615 * the object not the particular process.
617 if (PageAnon(page_head)) {
619 * A RO anonymous page will never change and thus doesn't make
620 * sense for futex operations.
622 if (unlikely(should_fail_futex(fshared)) || ro) {
623 err = -EFAULT;
624 goto out;
627 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
628 key->private.mm = mm;
629 key->private.address = address;
631 get_futex_key_refs(key); /* implies smp_mb(); (B) */
633 } else {
634 struct inode *inode;
637 * The associated futex object in this case is the inode and
638 * the page->mapping must be traversed. Ordinarily this should
639 * be stabilised under page lock but it's not strictly
640 * necessary in this case as we just want to pin the inode, not
641 * update the radix tree or anything like that.
643 * The RCU read lock is taken as the inode is finally freed
644 * under RCU. If the mapping still matches expectations then the
645 * mapping->host can be safely accessed as being a valid inode.
647 rcu_read_lock();
649 if (READ_ONCE(page_head->mapping) != mapping) {
650 rcu_read_unlock();
651 put_page(page_head);
653 goto again;
656 inode = READ_ONCE(mapping->host);
657 if (!inode) {
658 rcu_read_unlock();
659 put_page(page_head);
661 goto again;
665 * Take a reference unless it is about to be freed. Previously
666 * this reference was taken by ihold under the page lock
667 * pinning the inode in place so i_lock was unnecessary. The
668 * only way for this check to fail is if the inode was
669 * truncated in parallel which is almost certainly an
670 * application bug. In such a case, just retry.
672 * We are not calling into get_futex_key_refs() in file-backed
673 * cases, therefore a successful atomic_inc return below will
674 * guarantee that get_futex_key() will still imply smp_mb(); (B).
676 if (!atomic_inc_not_zero(&inode->i_count)) {
677 rcu_read_unlock();
678 put_page(page_head);
680 goto again;
683 /* Should be impossible but lets be paranoid for now */
684 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
685 err = -EFAULT;
686 rcu_read_unlock();
687 iput(inode);
689 goto out;
692 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
693 key->shared.inode = inode;
694 key->shared.pgoff = basepage_index(page);
695 rcu_read_unlock();
698 out:
699 put_page(page_head);
700 return err;
703 static inline void put_futex_key(union futex_key *key)
705 drop_futex_key_refs(key);
709 * fault_in_user_writeable() - Fault in user address and verify RW access
710 * @uaddr: pointer to faulting user space address
712 * Slow path to fixup the fault we just took in the atomic write
713 * access to @uaddr.
715 * We have no generic implementation of a non-destructive write to the
716 * user address. We know that we faulted in the atomic pagefault
717 * disabled section so we can as well avoid the #PF overhead by
718 * calling get_user_pages() right away.
720 static int fault_in_user_writeable(u32 __user *uaddr)
722 struct mm_struct *mm = current->mm;
723 int ret;
725 down_read(&mm->mmap_sem);
726 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
727 FAULT_FLAG_WRITE);
728 up_read(&mm->mmap_sem);
730 return ret < 0 ? ret : 0;
734 * futex_top_waiter() - Return the highest priority waiter on a futex
735 * @hb: the hash bucket the futex_q's reside in
736 * @key: the futex key (to distinguish it from other futex futex_q's)
738 * Must be called with the hb lock held.
740 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
741 union futex_key *key)
743 struct futex_q *this;
745 plist_for_each_entry(this, &hb->chain, list) {
746 if (match_futex(&this->key, key))
747 return this;
749 return NULL;
752 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
753 u32 uval, u32 newval)
755 int ret;
757 pagefault_disable();
758 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
759 pagefault_enable();
761 return ret;
764 static int get_futex_value_locked(u32 *dest, u32 __user *from)
766 int ret;
768 pagefault_disable();
769 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
770 pagefault_enable();
772 return ret ? -EFAULT : 0;
777 * PI code:
779 static int refill_pi_state_cache(void)
781 struct futex_pi_state *pi_state;
783 if (likely(current->pi_state_cache))
784 return 0;
786 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
788 if (!pi_state)
789 return -ENOMEM;
791 INIT_LIST_HEAD(&pi_state->list);
792 /* pi_mutex gets initialized later */
793 pi_state->owner = NULL;
794 atomic_set(&pi_state->refcount, 1);
795 pi_state->key = FUTEX_KEY_INIT;
797 current->pi_state_cache = pi_state;
799 return 0;
802 static struct futex_pi_state * alloc_pi_state(void)
804 struct futex_pi_state *pi_state = current->pi_state_cache;
806 WARN_ON(!pi_state);
807 current->pi_state_cache = NULL;
809 return pi_state;
813 * Must be called with the hb lock held.
815 static void free_pi_state(struct futex_pi_state *pi_state)
817 if (!pi_state)
818 return;
820 if (!atomic_dec_and_test(&pi_state->refcount))
821 return;
824 * If pi_state->owner is NULL, the owner is most probably dying
825 * and has cleaned up the pi_state already
827 if (pi_state->owner) {
828 raw_spin_lock_irq(&pi_state->owner->pi_lock);
829 list_del_init(&pi_state->list);
830 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
832 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
835 if (current->pi_state_cache)
836 kfree(pi_state);
837 else {
839 * pi_state->list is already empty.
840 * clear pi_state->owner.
841 * refcount is at 0 - put it back to 1.
843 pi_state->owner = NULL;
844 atomic_set(&pi_state->refcount, 1);
845 current->pi_state_cache = pi_state;
850 * Look up the task based on what TID userspace gave us.
851 * We dont trust it.
853 static struct task_struct * futex_find_get_task(pid_t pid)
855 struct task_struct *p;
857 rcu_read_lock();
858 p = find_task_by_vpid(pid);
859 if (p)
860 get_task_struct(p);
862 rcu_read_unlock();
864 return p;
868 * This task is holding PI mutexes at exit time => bad.
869 * Kernel cleans up PI-state, but userspace is likely hosed.
870 * (Robust-futex cleanup is separate and might save the day for userspace.)
872 void exit_pi_state_list(struct task_struct *curr)
874 struct list_head *next, *head = &curr->pi_state_list;
875 struct futex_pi_state *pi_state;
876 struct futex_hash_bucket *hb;
877 union futex_key key = FUTEX_KEY_INIT;
879 if (!futex_cmpxchg_enabled)
880 return;
882 * We are a ZOMBIE and nobody can enqueue itself on
883 * pi_state_list anymore, but we have to be careful
884 * versus waiters unqueueing themselves:
886 raw_spin_lock_irq(&curr->pi_lock);
887 while (!list_empty(head)) {
889 next = head->next;
890 pi_state = list_entry(next, struct futex_pi_state, list);
891 key = pi_state->key;
892 hb = hash_futex(&key);
893 raw_spin_unlock_irq(&curr->pi_lock);
895 spin_lock(&hb->lock);
897 raw_spin_lock_irq(&curr->pi_lock);
899 * We dropped the pi-lock, so re-check whether this
900 * task still owns the PI-state:
902 if (head->next != next) {
903 spin_unlock(&hb->lock);
904 continue;
907 WARN_ON(pi_state->owner != curr);
908 WARN_ON(list_empty(&pi_state->list));
909 list_del_init(&pi_state->list);
910 pi_state->owner = NULL;
911 raw_spin_unlock_irq(&curr->pi_lock);
913 rt_mutex_unlock(&pi_state->pi_mutex);
915 spin_unlock(&hb->lock);
917 raw_spin_lock_irq(&curr->pi_lock);
919 raw_spin_unlock_irq(&curr->pi_lock);
923 * We need to check the following states:
925 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
927 * [1] NULL | --- | --- | 0 | 0/1 | Valid
928 * [2] NULL | --- | --- | >0 | 0/1 | Valid
930 * [3] Found | NULL | -- | Any | 0/1 | Invalid
932 * [4] Found | Found | NULL | 0 | 1 | Valid
933 * [5] Found | Found | NULL | >0 | 1 | Invalid
935 * [6] Found | Found | task | 0 | 1 | Valid
937 * [7] Found | Found | NULL | Any | 0 | Invalid
939 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
940 * [9] Found | Found | task | 0 | 0 | Invalid
941 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
943 * [1] Indicates that the kernel can acquire the futex atomically. We
944 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
946 * [2] Valid, if TID does not belong to a kernel thread. If no matching
947 * thread is found then it indicates that the owner TID has died.
949 * [3] Invalid. The waiter is queued on a non PI futex
951 * [4] Valid state after exit_robust_list(), which sets the user space
952 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
954 * [5] The user space value got manipulated between exit_robust_list()
955 * and exit_pi_state_list()
957 * [6] Valid state after exit_pi_state_list() which sets the new owner in
958 * the pi_state but cannot access the user space value.
960 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
962 * [8] Owner and user space value match
964 * [9] There is no transient state which sets the user space TID to 0
965 * except exit_robust_list(), but this is indicated by the
966 * FUTEX_OWNER_DIED bit. See [4]
968 * [10] There is no transient state which leaves owner and user space
969 * TID out of sync.
973 * Validate that the existing waiter has a pi_state and sanity check
974 * the pi_state against the user space value. If correct, attach to
975 * it.
977 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
978 struct futex_pi_state **ps)
980 pid_t pid = uval & FUTEX_TID_MASK;
983 * Userspace might have messed up non-PI and PI futexes [3]
985 if (unlikely(!pi_state))
986 return -EINVAL;
988 WARN_ON(!atomic_read(&pi_state->refcount));
991 * Handle the owner died case:
993 if (uval & FUTEX_OWNER_DIED) {
995 * exit_pi_state_list sets owner to NULL and wakes the
996 * topmost waiter. The task which acquires the
997 * pi_state->rt_mutex will fixup owner.
999 if (!pi_state->owner) {
1001 * No pi state owner, but the user space TID
1002 * is not 0. Inconsistent state. [5]
1004 if (pid)
1005 return -EINVAL;
1007 * Take a ref on the state and return success. [4]
1009 goto out_state;
1013 * If TID is 0, then either the dying owner has not
1014 * yet executed exit_pi_state_list() or some waiter
1015 * acquired the rtmutex in the pi state, but did not
1016 * yet fixup the TID in user space.
1018 * Take a ref on the state and return success. [6]
1020 if (!pid)
1021 goto out_state;
1022 } else {
1024 * If the owner died bit is not set, then the pi_state
1025 * must have an owner. [7]
1027 if (!pi_state->owner)
1028 return -EINVAL;
1032 * Bail out if user space manipulated the futex value. If pi
1033 * state exists then the owner TID must be the same as the
1034 * user space TID. [9/10]
1036 if (pid != task_pid_vnr(pi_state->owner))
1037 return -EINVAL;
1038 out_state:
1039 atomic_inc(&pi_state->refcount);
1040 *ps = pi_state;
1041 return 0;
1045 * Lookup the task for the TID provided from user space and attach to
1046 * it after doing proper sanity checks.
1048 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1049 struct futex_pi_state **ps)
1051 pid_t pid = uval & FUTEX_TID_MASK;
1052 struct futex_pi_state *pi_state;
1053 struct task_struct *p;
1056 * We are the first waiter - try to look up the real owner and attach
1057 * the new pi_state to it, but bail out when TID = 0 [1]
1059 if (!pid)
1060 return -ESRCH;
1061 p = futex_find_get_task(pid);
1062 if (!p)
1063 return -ESRCH;
1065 if (unlikely(p->flags & PF_KTHREAD)) {
1066 put_task_struct(p);
1067 return -EPERM;
1071 * We need to look at the task state flags to figure out,
1072 * whether the task is exiting. To protect against the do_exit
1073 * change of the task flags, we do this protected by
1074 * p->pi_lock:
1076 raw_spin_lock_irq(&p->pi_lock);
1077 if (unlikely(p->flags & PF_EXITING)) {
1079 * The task is on the way out. When PF_EXITPIDONE is
1080 * set, we know that the task has finished the
1081 * cleanup:
1083 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1085 raw_spin_unlock_irq(&p->pi_lock);
1086 put_task_struct(p);
1087 return ret;
1091 * No existing pi state. First waiter. [2]
1093 pi_state = alloc_pi_state();
1096 * Initialize the pi_mutex in locked state and make @p
1097 * the owner of it:
1099 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1101 /* Store the key for possible exit cleanups: */
1102 pi_state->key = *key;
1104 WARN_ON(!list_empty(&pi_state->list));
1105 list_add(&pi_state->list, &p->pi_state_list);
1106 pi_state->owner = p;
1107 raw_spin_unlock_irq(&p->pi_lock);
1109 put_task_struct(p);
1111 *ps = pi_state;
1113 return 0;
1116 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1117 union futex_key *key, struct futex_pi_state **ps)
1119 struct futex_q *match = futex_top_waiter(hb, key);
1122 * If there is a waiter on that futex, validate it and
1123 * attach to the pi_state when the validation succeeds.
1125 if (match)
1126 return attach_to_pi_state(uval, match->pi_state, ps);
1129 * We are the first waiter - try to look up the owner based on
1130 * @uval and attach to it.
1132 return attach_to_pi_owner(uval, key, ps);
1135 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1137 u32 uninitialized_var(curval);
1139 if (unlikely(should_fail_futex(true)))
1140 return -EFAULT;
1142 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1143 return -EFAULT;
1145 /*If user space value changed, let the caller retry */
1146 return curval != uval ? -EAGAIN : 0;
1150 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1151 * @uaddr: the pi futex user address
1152 * @hb: the pi futex hash bucket
1153 * @key: the futex key associated with uaddr and hb
1154 * @ps: the pi_state pointer where we store the result of the
1155 * lookup
1156 * @task: the task to perform the atomic lock work for. This will
1157 * be "current" except in the case of requeue pi.
1158 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1160 * Return:
1161 * 0 - ready to wait;
1162 * 1 - acquired the lock;
1163 * <0 - error
1165 * The hb->lock and futex_key refs shall be held by the caller.
1167 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1168 union futex_key *key,
1169 struct futex_pi_state **ps,
1170 struct task_struct *task, int set_waiters)
1172 u32 uval, newval, vpid = task_pid_vnr(task);
1173 struct futex_q *match;
1174 int ret;
1177 * Read the user space value first so we can validate a few
1178 * things before proceeding further.
1180 if (get_futex_value_locked(&uval, uaddr))
1181 return -EFAULT;
1183 if (unlikely(should_fail_futex(true)))
1184 return -EFAULT;
1187 * Detect deadlocks.
1189 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1190 return -EDEADLK;
1192 if ((unlikely(should_fail_futex(true))))
1193 return -EDEADLK;
1196 * Lookup existing state first. If it exists, try to attach to
1197 * its pi_state.
1199 match = futex_top_waiter(hb, key);
1200 if (match)
1201 return attach_to_pi_state(uval, match->pi_state, ps);
1204 * No waiter and user TID is 0. We are here because the
1205 * waiters or the owner died bit is set or called from
1206 * requeue_cmp_pi or for whatever reason something took the
1207 * syscall.
1209 if (!(uval & FUTEX_TID_MASK)) {
1211 * We take over the futex. No other waiters and the user space
1212 * TID is 0. We preserve the owner died bit.
1214 newval = uval & FUTEX_OWNER_DIED;
1215 newval |= vpid;
1217 /* The futex requeue_pi code can enforce the waiters bit */
1218 if (set_waiters)
1219 newval |= FUTEX_WAITERS;
1221 ret = lock_pi_update_atomic(uaddr, uval, newval);
1222 /* If the take over worked, return 1 */
1223 return ret < 0 ? ret : 1;
1227 * First waiter. Set the waiters bit before attaching ourself to
1228 * the owner. If owner tries to unlock, it will be forced into
1229 * the kernel and blocked on hb->lock.
1231 newval = uval | FUTEX_WAITERS;
1232 ret = lock_pi_update_atomic(uaddr, uval, newval);
1233 if (ret)
1234 return ret;
1236 * If the update of the user space value succeeded, we try to
1237 * attach to the owner. If that fails, no harm done, we only
1238 * set the FUTEX_WAITERS bit in the user space variable.
1240 return attach_to_pi_owner(uval, key, ps);
1244 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1245 * @q: The futex_q to unqueue
1247 * The q->lock_ptr must not be NULL and must be held by the caller.
1249 static void __unqueue_futex(struct futex_q *q)
1251 struct futex_hash_bucket *hb;
1253 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1254 || WARN_ON(plist_node_empty(&q->list)))
1255 return;
1257 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1258 plist_del(&q->list, &hb->chain);
1259 hb_waiters_dec(hb);
1263 * The hash bucket lock must be held when this is called.
1264 * Afterwards, the futex_q must not be accessed. Callers
1265 * must ensure to later call wake_up_q() for the actual
1266 * wakeups to occur.
1268 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1270 struct task_struct *p = q->task;
1272 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1273 return;
1276 * Queue the task for later wakeup for after we've released
1277 * the hb->lock. wake_q_add() grabs reference to p.
1279 wake_q_add(wake_q, p);
1280 __unqueue_futex(q);
1282 * The waiting task can free the futex_q as soon as
1283 * q->lock_ptr = NULL is written, without taking any locks. A
1284 * memory barrier is required here to prevent the following
1285 * store to lock_ptr from getting ahead of the plist_del.
1287 smp_wmb();
1288 q->lock_ptr = NULL;
1291 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1292 struct futex_hash_bucket *hb)
1294 struct task_struct *new_owner;
1295 struct futex_pi_state *pi_state = this->pi_state;
1296 u32 uninitialized_var(curval), newval;
1297 WAKE_Q(wake_q);
1298 bool deboost;
1299 int ret = 0;
1301 if (!pi_state)
1302 return -EINVAL;
1305 * If current does not own the pi_state then the futex is
1306 * inconsistent and user space fiddled with the futex value.
1308 if (pi_state->owner != current)
1309 return -EINVAL;
1311 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1312 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1315 * It is possible that the next waiter (the one that brought
1316 * this owner to the kernel) timed out and is no longer
1317 * waiting on the lock.
1319 if (!new_owner)
1320 new_owner = this->task;
1323 * We pass it to the next owner. The WAITERS bit is always
1324 * kept enabled while there is PI state around. We cleanup the
1325 * owner died bit, because we are the owner.
1327 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1329 if (unlikely(should_fail_futex(true)))
1330 ret = -EFAULT;
1332 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1333 ret = -EFAULT;
1334 } else if (curval != uval) {
1336 * If a unconditional UNLOCK_PI operation (user space did not
1337 * try the TID->0 transition) raced with a waiter setting the
1338 * FUTEX_WAITERS flag between get_user() and locking the hash
1339 * bucket lock, retry the operation.
1341 if ((FUTEX_TID_MASK & curval) == uval)
1342 ret = -EAGAIN;
1343 else
1344 ret = -EINVAL;
1346 if (ret) {
1347 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1348 return ret;
1351 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1352 WARN_ON(list_empty(&pi_state->list));
1353 list_del_init(&pi_state->list);
1354 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1356 raw_spin_lock_irq(&new_owner->pi_lock);
1357 WARN_ON(!list_empty(&pi_state->list));
1358 list_add(&pi_state->list, &new_owner->pi_state_list);
1359 pi_state->owner = new_owner;
1360 raw_spin_unlock_irq(&new_owner->pi_lock);
1362 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1364 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1367 * First unlock HB so the waiter does not spin on it once he got woken
1368 * up. Second wake up the waiter before the priority is adjusted. If we
1369 * deboost first (and lose our higher priority), then the task might get
1370 * scheduled away before the wake up can take place.
1372 spin_unlock(&hb->lock);
1373 wake_up_q(&wake_q);
1374 if (deboost)
1375 rt_mutex_adjust_prio(current);
1377 return 0;
1381 * Express the locking dependencies for lockdep:
1383 static inline void
1384 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1386 if (hb1 <= hb2) {
1387 spin_lock(&hb1->lock);
1388 if (hb1 < hb2)
1389 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1390 } else { /* hb1 > hb2 */
1391 spin_lock(&hb2->lock);
1392 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1396 static inline void
1397 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1399 spin_unlock(&hb1->lock);
1400 if (hb1 != hb2)
1401 spin_unlock(&hb2->lock);
1405 * Wake up waiters matching bitset queued on this futex (uaddr).
1407 static int
1408 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1410 struct futex_hash_bucket *hb;
1411 struct futex_q *this, *next;
1412 union futex_key key = FUTEX_KEY_INIT;
1413 int ret;
1414 WAKE_Q(wake_q);
1416 if (!bitset)
1417 return -EINVAL;
1419 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1420 if (unlikely(ret != 0))
1421 goto out;
1423 hb = hash_futex(&key);
1425 /* Make sure we really have tasks to wakeup */
1426 if (!hb_waiters_pending(hb))
1427 goto out_put_key;
1429 spin_lock(&hb->lock);
1431 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1432 if (match_futex (&this->key, &key)) {
1433 if (this->pi_state || this->rt_waiter) {
1434 ret = -EINVAL;
1435 break;
1438 /* Check if one of the bits is set in both bitsets */
1439 if (!(this->bitset & bitset))
1440 continue;
1442 mark_wake_futex(&wake_q, this);
1443 if (++ret >= nr_wake)
1444 break;
1448 spin_unlock(&hb->lock);
1449 wake_up_q(&wake_q);
1450 out_put_key:
1451 put_futex_key(&key);
1452 out:
1453 return ret;
1456 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1458 unsigned int op = (encoded_op & 0x70000000) >> 28;
1459 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1460 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1461 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1462 int oldval, ret;
1464 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1465 if (oparg < 0 || oparg > 31)
1466 return -EINVAL;
1467 oparg = 1 << oparg;
1470 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1471 return -EFAULT;
1473 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1474 if (ret)
1475 return ret;
1477 switch (cmp) {
1478 case FUTEX_OP_CMP_EQ:
1479 return oldval == cmparg;
1480 case FUTEX_OP_CMP_NE:
1481 return oldval != cmparg;
1482 case FUTEX_OP_CMP_LT:
1483 return oldval < cmparg;
1484 case FUTEX_OP_CMP_GE:
1485 return oldval >= cmparg;
1486 case FUTEX_OP_CMP_LE:
1487 return oldval <= cmparg;
1488 case FUTEX_OP_CMP_GT:
1489 return oldval > cmparg;
1490 default:
1491 return -ENOSYS;
1496 * Wake up all waiters hashed on the physical page that is mapped
1497 * to this virtual address:
1499 static int
1500 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1501 int nr_wake, int nr_wake2, int op)
1503 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1504 struct futex_hash_bucket *hb1, *hb2;
1505 struct futex_q *this, *next;
1506 int ret, op_ret;
1507 WAKE_Q(wake_q);
1509 retry:
1510 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1511 if (unlikely(ret != 0))
1512 goto out;
1513 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1514 if (unlikely(ret != 0))
1515 goto out_put_key1;
1517 hb1 = hash_futex(&key1);
1518 hb2 = hash_futex(&key2);
1520 retry_private:
1521 double_lock_hb(hb1, hb2);
1522 op_ret = futex_atomic_op_inuser(op, uaddr2);
1523 if (unlikely(op_ret < 0)) {
1525 double_unlock_hb(hb1, hb2);
1527 #ifndef CONFIG_MMU
1529 * we don't get EFAULT from MMU faults if we don't have an MMU,
1530 * but we might get them from range checking
1532 ret = op_ret;
1533 goto out_put_keys;
1534 #endif
1536 if (unlikely(op_ret != -EFAULT)) {
1537 ret = op_ret;
1538 goto out_put_keys;
1541 ret = fault_in_user_writeable(uaddr2);
1542 if (ret)
1543 goto out_put_keys;
1545 if (!(flags & FLAGS_SHARED))
1546 goto retry_private;
1548 put_futex_key(&key2);
1549 put_futex_key(&key1);
1550 goto retry;
1553 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1554 if (match_futex (&this->key, &key1)) {
1555 if (this->pi_state || this->rt_waiter) {
1556 ret = -EINVAL;
1557 goto out_unlock;
1559 mark_wake_futex(&wake_q, this);
1560 if (++ret >= nr_wake)
1561 break;
1565 if (op_ret > 0) {
1566 op_ret = 0;
1567 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1568 if (match_futex (&this->key, &key2)) {
1569 if (this->pi_state || this->rt_waiter) {
1570 ret = -EINVAL;
1571 goto out_unlock;
1573 mark_wake_futex(&wake_q, this);
1574 if (++op_ret >= nr_wake2)
1575 break;
1578 ret += op_ret;
1581 out_unlock:
1582 double_unlock_hb(hb1, hb2);
1583 wake_up_q(&wake_q);
1584 out_put_keys:
1585 put_futex_key(&key2);
1586 out_put_key1:
1587 put_futex_key(&key1);
1588 out:
1589 return ret;
1593 * requeue_futex() - Requeue a futex_q from one hb to another
1594 * @q: the futex_q to requeue
1595 * @hb1: the source hash_bucket
1596 * @hb2: the target hash_bucket
1597 * @key2: the new key for the requeued futex_q
1599 static inline
1600 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1601 struct futex_hash_bucket *hb2, union futex_key *key2)
1605 * If key1 and key2 hash to the same bucket, no need to
1606 * requeue.
1608 if (likely(&hb1->chain != &hb2->chain)) {
1609 plist_del(&q->list, &hb1->chain);
1610 hb_waiters_dec(hb1);
1611 hb_waiters_inc(hb2);
1612 plist_add(&q->list, &hb2->chain);
1613 q->lock_ptr = &hb2->lock;
1615 get_futex_key_refs(key2);
1616 q->key = *key2;
1620 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1621 * @q: the futex_q
1622 * @key: the key of the requeue target futex
1623 * @hb: the hash_bucket of the requeue target futex
1625 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1626 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1627 * to the requeue target futex so the waiter can detect the wakeup on the right
1628 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1629 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1630 * to protect access to the pi_state to fixup the owner later. Must be called
1631 * with both q->lock_ptr and hb->lock held.
1633 static inline
1634 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1635 struct futex_hash_bucket *hb)
1637 get_futex_key_refs(key);
1638 q->key = *key;
1640 __unqueue_futex(q);
1642 WARN_ON(!q->rt_waiter);
1643 q->rt_waiter = NULL;
1645 q->lock_ptr = &hb->lock;
1647 wake_up_state(q->task, TASK_NORMAL);
1651 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1652 * @pifutex: the user address of the to futex
1653 * @hb1: the from futex hash bucket, must be locked by the caller
1654 * @hb2: the to futex hash bucket, must be locked by the caller
1655 * @key1: the from futex key
1656 * @key2: the to futex key
1657 * @ps: address to store the pi_state pointer
1658 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1660 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1661 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1662 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1663 * hb1 and hb2 must be held by the caller.
1665 * Return:
1666 * 0 - failed to acquire the lock atomically;
1667 * >0 - acquired the lock, return value is vpid of the top_waiter
1668 * <0 - error
1670 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1671 struct futex_hash_bucket *hb1,
1672 struct futex_hash_bucket *hb2,
1673 union futex_key *key1, union futex_key *key2,
1674 struct futex_pi_state **ps, int set_waiters)
1676 struct futex_q *top_waiter = NULL;
1677 u32 curval;
1678 int ret, vpid;
1680 if (get_futex_value_locked(&curval, pifutex))
1681 return -EFAULT;
1683 if (unlikely(should_fail_futex(true)))
1684 return -EFAULT;
1687 * Find the top_waiter and determine if there are additional waiters.
1688 * If the caller intends to requeue more than 1 waiter to pifutex,
1689 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1690 * as we have means to handle the possible fault. If not, don't set
1691 * the bit unecessarily as it will force the subsequent unlock to enter
1692 * the kernel.
1694 top_waiter = futex_top_waiter(hb1, key1);
1696 /* There are no waiters, nothing for us to do. */
1697 if (!top_waiter)
1698 return 0;
1700 /* Ensure we requeue to the expected futex. */
1701 if (!match_futex(top_waiter->requeue_pi_key, key2))
1702 return -EINVAL;
1705 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1706 * the contended case or if set_waiters is 1. The pi_state is returned
1707 * in ps in contended cases.
1709 vpid = task_pid_vnr(top_waiter->task);
1710 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1711 set_waiters);
1712 if (ret == 1) {
1713 requeue_pi_wake_futex(top_waiter, key2, hb2);
1714 return vpid;
1716 return ret;
1720 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1721 * @uaddr1: source futex user address
1722 * @flags: futex flags (FLAGS_SHARED, etc.)
1723 * @uaddr2: target futex user address
1724 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1725 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1726 * @cmpval: @uaddr1 expected value (or %NULL)
1727 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1728 * pi futex (pi to pi requeue is not supported)
1730 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1731 * uaddr2 atomically on behalf of the top waiter.
1733 * Return:
1734 * >=0 - on success, the number of tasks requeued or woken;
1735 * <0 - on error
1737 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1738 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1739 u32 *cmpval, int requeue_pi)
1741 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1742 int drop_count = 0, task_count = 0, ret;
1743 struct futex_pi_state *pi_state = NULL;
1744 struct futex_hash_bucket *hb1, *hb2;
1745 struct futex_q *this, *next;
1746 WAKE_Q(wake_q);
1748 if (nr_wake < 0 || nr_requeue < 0)
1749 return -EINVAL;
1751 if (requeue_pi) {
1753 * Requeue PI only works on two distinct uaddrs. This
1754 * check is only valid for private futexes. See below.
1756 if (uaddr1 == uaddr2)
1757 return -EINVAL;
1760 * requeue_pi requires a pi_state, try to allocate it now
1761 * without any locks in case it fails.
1763 if (refill_pi_state_cache())
1764 return -ENOMEM;
1766 * requeue_pi must wake as many tasks as it can, up to nr_wake
1767 * + nr_requeue, since it acquires the rt_mutex prior to
1768 * returning to userspace, so as to not leave the rt_mutex with
1769 * waiters and no owner. However, second and third wake-ups
1770 * cannot be predicted as they involve race conditions with the
1771 * first wake and a fault while looking up the pi_state. Both
1772 * pthread_cond_signal() and pthread_cond_broadcast() should
1773 * use nr_wake=1.
1775 if (nr_wake != 1)
1776 return -EINVAL;
1779 retry:
1780 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1781 if (unlikely(ret != 0))
1782 goto out;
1783 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1784 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1785 if (unlikely(ret != 0))
1786 goto out_put_key1;
1789 * The check above which compares uaddrs is not sufficient for
1790 * shared futexes. We need to compare the keys:
1792 if (requeue_pi && match_futex(&key1, &key2)) {
1793 ret = -EINVAL;
1794 goto out_put_keys;
1797 hb1 = hash_futex(&key1);
1798 hb2 = hash_futex(&key2);
1800 retry_private:
1801 hb_waiters_inc(hb2);
1802 double_lock_hb(hb1, hb2);
1804 if (likely(cmpval != NULL)) {
1805 u32 curval;
1807 ret = get_futex_value_locked(&curval, uaddr1);
1809 if (unlikely(ret)) {
1810 double_unlock_hb(hb1, hb2);
1811 hb_waiters_dec(hb2);
1813 ret = get_user(curval, uaddr1);
1814 if (ret)
1815 goto out_put_keys;
1817 if (!(flags & FLAGS_SHARED))
1818 goto retry_private;
1820 put_futex_key(&key2);
1821 put_futex_key(&key1);
1822 goto retry;
1824 if (curval != *cmpval) {
1825 ret = -EAGAIN;
1826 goto out_unlock;
1830 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1832 * Attempt to acquire uaddr2 and wake the top waiter. If we
1833 * intend to requeue waiters, force setting the FUTEX_WAITERS
1834 * bit. We force this here where we are able to easily handle
1835 * faults rather in the requeue loop below.
1837 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1838 &key2, &pi_state, nr_requeue);
1841 * At this point the top_waiter has either taken uaddr2 or is
1842 * waiting on it. If the former, then the pi_state will not
1843 * exist yet, look it up one more time to ensure we have a
1844 * reference to it. If the lock was taken, ret contains the
1845 * vpid of the top waiter task.
1847 if (ret > 0) {
1848 WARN_ON(pi_state);
1849 drop_count++;
1850 task_count++;
1852 * If we acquired the lock, then the user
1853 * space value of uaddr2 should be vpid. It
1854 * cannot be changed by the top waiter as it
1855 * is blocked on hb2 lock if it tries to do
1856 * so. If something fiddled with it behind our
1857 * back the pi state lookup might unearth
1858 * it. So we rather use the known value than
1859 * rereading and handing potential crap to
1860 * lookup_pi_state.
1862 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1865 switch (ret) {
1866 case 0:
1867 break;
1868 case -EFAULT:
1869 free_pi_state(pi_state);
1870 pi_state = NULL;
1871 double_unlock_hb(hb1, hb2);
1872 hb_waiters_dec(hb2);
1873 put_futex_key(&key2);
1874 put_futex_key(&key1);
1875 ret = fault_in_user_writeable(uaddr2);
1876 if (!ret)
1877 goto retry;
1878 goto out;
1879 case -EAGAIN:
1881 * Two reasons for this:
1882 * - Owner is exiting and we just wait for the
1883 * exit to complete.
1884 * - The user space value changed.
1886 free_pi_state(pi_state);
1887 pi_state = NULL;
1888 double_unlock_hb(hb1, hb2);
1889 hb_waiters_dec(hb2);
1890 put_futex_key(&key2);
1891 put_futex_key(&key1);
1892 cond_resched();
1893 goto retry;
1894 default:
1895 goto out_unlock;
1899 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1900 if (task_count - nr_wake >= nr_requeue)
1901 break;
1903 if (!match_futex(&this->key, &key1))
1904 continue;
1907 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1908 * be paired with each other and no other futex ops.
1910 * We should never be requeueing a futex_q with a pi_state,
1911 * which is awaiting a futex_unlock_pi().
1913 if ((requeue_pi && !this->rt_waiter) ||
1914 (!requeue_pi && this->rt_waiter) ||
1915 this->pi_state) {
1916 ret = -EINVAL;
1917 break;
1921 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1922 * lock, we already woke the top_waiter. If not, it will be
1923 * woken by futex_unlock_pi().
1925 if (++task_count <= nr_wake && !requeue_pi) {
1926 mark_wake_futex(&wake_q, this);
1927 continue;
1930 /* Ensure we requeue to the expected futex for requeue_pi. */
1931 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1932 ret = -EINVAL;
1933 break;
1937 * Requeue nr_requeue waiters and possibly one more in the case
1938 * of requeue_pi if we couldn't acquire the lock atomically.
1940 if (requeue_pi) {
1941 /* Prepare the waiter to take the rt_mutex. */
1942 atomic_inc(&pi_state->refcount);
1943 this->pi_state = pi_state;
1944 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1945 this->rt_waiter,
1946 this->task);
1947 if (ret == 1) {
1948 /* We got the lock. */
1949 requeue_pi_wake_futex(this, &key2, hb2);
1950 drop_count++;
1951 continue;
1952 } else if (ret) {
1953 /* -EDEADLK */
1954 this->pi_state = NULL;
1955 free_pi_state(pi_state);
1956 goto out_unlock;
1959 requeue_futex(this, hb1, hb2, &key2);
1960 drop_count++;
1963 out_unlock:
1964 free_pi_state(pi_state);
1965 double_unlock_hb(hb1, hb2);
1966 wake_up_q(&wake_q);
1967 hb_waiters_dec(hb2);
1970 * drop_futex_key_refs() must be called outside the spinlocks. During
1971 * the requeue we moved futex_q's from the hash bucket at key1 to the
1972 * one at key2 and updated their key pointer. We no longer need to
1973 * hold the references to key1.
1975 while (--drop_count >= 0)
1976 drop_futex_key_refs(&key1);
1978 out_put_keys:
1979 put_futex_key(&key2);
1980 out_put_key1:
1981 put_futex_key(&key1);
1982 out:
1983 return ret ? ret : task_count;
1986 /* The key must be already stored in q->key. */
1987 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1988 __acquires(&hb->lock)
1990 struct futex_hash_bucket *hb;
1992 hb = hash_futex(&q->key);
1995 * Increment the counter before taking the lock so that
1996 * a potential waker won't miss a to-be-slept task that is
1997 * waiting for the spinlock. This is safe as all queue_lock()
1998 * users end up calling queue_me(). Similarly, for housekeeping,
1999 * decrement the counter at queue_unlock() when some error has
2000 * occurred and we don't end up adding the task to the list.
2002 hb_waiters_inc(hb);
2004 q->lock_ptr = &hb->lock;
2006 spin_lock(&hb->lock); /* implies MB (A) */
2007 return hb;
2010 static inline void
2011 queue_unlock(struct futex_hash_bucket *hb)
2012 __releases(&hb->lock)
2014 spin_unlock(&hb->lock);
2015 hb_waiters_dec(hb);
2019 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2020 * @q: The futex_q to enqueue
2021 * @hb: The destination hash bucket
2023 * The hb->lock must be held by the caller, and is released here. A call to
2024 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2025 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2026 * or nothing if the unqueue is done as part of the wake process and the unqueue
2027 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2028 * an example).
2030 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2031 __releases(&hb->lock)
2033 int prio;
2036 * The priority used to register this element is
2037 * - either the real thread-priority for the real-time threads
2038 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2039 * - or MAX_RT_PRIO for non-RT threads.
2040 * Thus, all RT-threads are woken first in priority order, and
2041 * the others are woken last, in FIFO order.
2043 prio = min(current->normal_prio, MAX_RT_PRIO);
2045 plist_node_init(&q->list, prio);
2046 plist_add(&q->list, &hb->chain);
2047 q->task = current;
2048 spin_unlock(&hb->lock);
2052 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2053 * @q: The futex_q to unqueue
2055 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2056 * be paired with exactly one earlier call to queue_me().
2058 * Return:
2059 * 1 - if the futex_q was still queued (and we removed unqueued it);
2060 * 0 - if the futex_q was already removed by the waking thread
2062 static int unqueue_me(struct futex_q *q)
2064 spinlock_t *lock_ptr;
2065 int ret = 0;
2067 /* In the common case we don't take the spinlock, which is nice. */
2068 retry:
2070 * q->lock_ptr can change between this read and the following spin_lock.
2071 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2072 * optimizing lock_ptr out of the logic below.
2074 lock_ptr = READ_ONCE(q->lock_ptr);
2075 if (lock_ptr != NULL) {
2076 spin_lock(lock_ptr);
2078 * q->lock_ptr can change between reading it and
2079 * spin_lock(), causing us to take the wrong lock. This
2080 * corrects the race condition.
2082 * Reasoning goes like this: if we have the wrong lock,
2083 * q->lock_ptr must have changed (maybe several times)
2084 * between reading it and the spin_lock(). It can
2085 * change again after the spin_lock() but only if it was
2086 * already changed before the spin_lock(). It cannot,
2087 * however, change back to the original value. Therefore
2088 * we can detect whether we acquired the correct lock.
2090 if (unlikely(lock_ptr != q->lock_ptr)) {
2091 spin_unlock(lock_ptr);
2092 goto retry;
2094 __unqueue_futex(q);
2096 BUG_ON(q->pi_state);
2098 spin_unlock(lock_ptr);
2099 ret = 1;
2102 drop_futex_key_refs(&q->key);
2103 return ret;
2107 * PI futexes can not be requeued and must remove themself from the
2108 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2109 * and dropped here.
2111 static void unqueue_me_pi(struct futex_q *q)
2112 __releases(q->lock_ptr)
2114 __unqueue_futex(q);
2116 BUG_ON(!q->pi_state);
2117 free_pi_state(q->pi_state);
2118 q->pi_state = NULL;
2120 spin_unlock(q->lock_ptr);
2124 * Fixup the pi_state owner with the new owner.
2126 * Must be called with hash bucket lock held and mm->sem held for non
2127 * private futexes.
2129 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2130 struct task_struct *newowner)
2132 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2133 struct futex_pi_state *pi_state = q->pi_state;
2134 struct task_struct *oldowner = pi_state->owner;
2135 u32 uval, uninitialized_var(curval), newval;
2136 int ret;
2138 /* Owner died? */
2139 if (!pi_state->owner)
2140 newtid |= FUTEX_OWNER_DIED;
2143 * We are here either because we stole the rtmutex from the
2144 * previous highest priority waiter or we are the highest priority
2145 * waiter but failed to get the rtmutex the first time.
2146 * We have to replace the newowner TID in the user space variable.
2147 * This must be atomic as we have to preserve the owner died bit here.
2149 * Note: We write the user space value _before_ changing the pi_state
2150 * because we can fault here. Imagine swapped out pages or a fork
2151 * that marked all the anonymous memory readonly for cow.
2153 * Modifying pi_state _before_ the user space value would
2154 * leave the pi_state in an inconsistent state when we fault
2155 * here, because we need to drop the hash bucket lock to
2156 * handle the fault. This might be observed in the PID check
2157 * in lookup_pi_state.
2159 retry:
2160 if (get_futex_value_locked(&uval, uaddr))
2161 goto handle_fault;
2163 while (1) {
2164 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2166 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2167 goto handle_fault;
2168 if (curval == uval)
2169 break;
2170 uval = curval;
2174 * We fixed up user space. Now we need to fix the pi_state
2175 * itself.
2177 if (pi_state->owner != NULL) {
2178 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2179 WARN_ON(list_empty(&pi_state->list));
2180 list_del_init(&pi_state->list);
2181 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2184 pi_state->owner = newowner;
2186 raw_spin_lock_irq(&newowner->pi_lock);
2187 WARN_ON(!list_empty(&pi_state->list));
2188 list_add(&pi_state->list, &newowner->pi_state_list);
2189 raw_spin_unlock_irq(&newowner->pi_lock);
2190 return 0;
2193 * To handle the page fault we need to drop the hash bucket
2194 * lock here. That gives the other task (either the highest priority
2195 * waiter itself or the task which stole the rtmutex) the
2196 * chance to try the fixup of the pi_state. So once we are
2197 * back from handling the fault we need to check the pi_state
2198 * after reacquiring the hash bucket lock and before trying to
2199 * do another fixup. When the fixup has been done already we
2200 * simply return.
2202 handle_fault:
2203 spin_unlock(q->lock_ptr);
2205 ret = fault_in_user_writeable(uaddr);
2207 spin_lock(q->lock_ptr);
2210 * Check if someone else fixed it for us:
2212 if (pi_state->owner != oldowner)
2213 return 0;
2215 if (ret)
2216 return ret;
2218 goto retry;
2221 static long futex_wait_restart(struct restart_block *restart);
2224 * fixup_owner() - Post lock pi_state and corner case management
2225 * @uaddr: user address of the futex
2226 * @q: futex_q (contains pi_state and access to the rt_mutex)
2227 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2229 * After attempting to lock an rt_mutex, this function is called to cleanup
2230 * the pi_state owner as well as handle race conditions that may allow us to
2231 * acquire the lock. Must be called with the hb lock held.
2233 * Return:
2234 * 1 - success, lock taken;
2235 * 0 - success, lock not taken;
2236 * <0 - on error (-EFAULT)
2238 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2240 struct task_struct *owner;
2241 int ret = 0;
2243 if (locked) {
2245 * Got the lock. We might not be the anticipated owner if we
2246 * did a lock-steal - fix up the PI-state in that case:
2248 if (q->pi_state->owner != current)
2249 ret = fixup_pi_state_owner(uaddr, q, current);
2250 goto out;
2254 * Catch the rare case, where the lock was released when we were on the
2255 * way back before we locked the hash bucket.
2257 if (q->pi_state->owner == current) {
2259 * Try to get the rt_mutex now. This might fail as some other
2260 * task acquired the rt_mutex after we removed ourself from the
2261 * rt_mutex waiters list.
2263 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2264 locked = 1;
2265 goto out;
2269 * pi_state is incorrect, some other task did a lock steal and
2270 * we returned due to timeout or signal without taking the
2271 * rt_mutex. Too late.
2273 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2274 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2275 if (!owner)
2276 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2277 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2278 ret = fixup_pi_state_owner(uaddr, q, owner);
2279 goto out;
2283 * Paranoia check. If we did not take the lock, then we should not be
2284 * the owner of the rt_mutex.
2286 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2287 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2288 "pi-state %p\n", ret,
2289 q->pi_state->pi_mutex.owner,
2290 q->pi_state->owner);
2292 out:
2293 return ret ? ret : locked;
2297 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2298 * @hb: the futex hash bucket, must be locked by the caller
2299 * @q: the futex_q to queue up on
2300 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2302 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2303 struct hrtimer_sleeper *timeout)
2306 * The task state is guaranteed to be set before another task can
2307 * wake it. set_current_state() is implemented using smp_store_mb() and
2308 * queue_me() calls spin_unlock() upon completion, both serializing
2309 * access to the hash list and forcing another memory barrier.
2311 set_current_state(TASK_INTERRUPTIBLE);
2312 queue_me(q, hb);
2314 /* Arm the timer */
2315 if (timeout)
2316 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2319 * If we have been removed from the hash list, then another task
2320 * has tried to wake us, and we can skip the call to schedule().
2322 if (likely(!plist_node_empty(&q->list))) {
2324 * If the timer has already expired, current will already be
2325 * flagged for rescheduling. Only call schedule if there
2326 * is no timeout, or if it has yet to expire.
2328 if (!timeout || timeout->task)
2329 freezable_schedule();
2331 __set_current_state(TASK_RUNNING);
2335 * futex_wait_setup() - Prepare to wait on a futex
2336 * @uaddr: the futex userspace address
2337 * @val: the expected value
2338 * @flags: futex flags (FLAGS_SHARED, etc.)
2339 * @q: the associated futex_q
2340 * @hb: storage for hash_bucket pointer to be returned to caller
2342 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2343 * compare it with the expected value. Handle atomic faults internally.
2344 * Return with the hb lock held and a q.key reference on success, and unlocked
2345 * with no q.key reference on failure.
2347 * Return:
2348 * 0 - uaddr contains val and hb has been locked;
2349 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2351 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2352 struct futex_q *q, struct futex_hash_bucket **hb)
2354 u32 uval;
2355 int ret;
2358 * Access the page AFTER the hash-bucket is locked.
2359 * Order is important:
2361 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2362 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2364 * The basic logical guarantee of a futex is that it blocks ONLY
2365 * if cond(var) is known to be true at the time of blocking, for
2366 * any cond. If we locked the hash-bucket after testing *uaddr, that
2367 * would open a race condition where we could block indefinitely with
2368 * cond(var) false, which would violate the guarantee.
2370 * On the other hand, we insert q and release the hash-bucket only
2371 * after testing *uaddr. This guarantees that futex_wait() will NOT
2372 * absorb a wakeup if *uaddr does not match the desired values
2373 * while the syscall executes.
2375 retry:
2376 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2377 if (unlikely(ret != 0))
2378 return ret;
2380 retry_private:
2381 *hb = queue_lock(q);
2383 ret = get_futex_value_locked(&uval, uaddr);
2385 if (ret) {
2386 queue_unlock(*hb);
2388 ret = get_user(uval, uaddr);
2389 if (ret)
2390 goto out;
2392 if (!(flags & FLAGS_SHARED))
2393 goto retry_private;
2395 put_futex_key(&q->key);
2396 goto retry;
2399 if (uval != val) {
2400 queue_unlock(*hb);
2401 ret = -EWOULDBLOCK;
2404 out:
2405 if (ret)
2406 put_futex_key(&q->key);
2407 return ret;
2410 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2411 ktime_t *abs_time, u32 bitset)
2413 struct hrtimer_sleeper timeout, *to = NULL;
2414 struct restart_block *restart;
2415 struct futex_hash_bucket *hb;
2416 struct futex_q q = futex_q_init;
2417 int ret;
2419 if (!bitset)
2420 return -EINVAL;
2421 q.bitset = bitset;
2423 if (abs_time) {
2424 to = &timeout;
2426 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2427 CLOCK_REALTIME : CLOCK_MONOTONIC,
2428 HRTIMER_MODE_ABS);
2429 hrtimer_init_sleeper(to, current);
2430 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2431 current->timer_slack_ns);
2434 retry:
2436 * Prepare to wait on uaddr. On success, holds hb lock and increments
2437 * q.key refs.
2439 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2440 if (ret)
2441 goto out;
2443 /* queue_me and wait for wakeup, timeout, or a signal. */
2444 futex_wait_queue_me(hb, &q, to);
2446 /* If we were woken (and unqueued), we succeeded, whatever. */
2447 ret = 0;
2448 /* unqueue_me() drops q.key ref */
2449 if (!unqueue_me(&q))
2450 goto out;
2451 ret = -ETIMEDOUT;
2452 if (to && !to->task)
2453 goto out;
2456 * We expect signal_pending(current), but we might be the
2457 * victim of a spurious wakeup as well.
2459 if (!signal_pending(current))
2460 goto retry;
2462 ret = -ERESTARTSYS;
2463 if (!abs_time)
2464 goto out;
2466 restart = &current->restart_block;
2467 restart->fn = futex_wait_restart;
2468 restart->futex.uaddr = uaddr;
2469 restart->futex.val = val;
2470 restart->futex.time = abs_time->tv64;
2471 restart->futex.bitset = bitset;
2472 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2474 ret = -ERESTART_RESTARTBLOCK;
2476 out:
2477 if (to) {
2478 hrtimer_cancel(&to->timer);
2479 destroy_hrtimer_on_stack(&to->timer);
2481 return ret;
2485 static long futex_wait_restart(struct restart_block *restart)
2487 u32 __user *uaddr = restart->futex.uaddr;
2488 ktime_t t, *tp = NULL;
2490 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2491 t.tv64 = restart->futex.time;
2492 tp = &t;
2494 restart->fn = do_no_restart_syscall;
2496 return (long)futex_wait(uaddr, restart->futex.flags,
2497 restart->futex.val, tp, restart->futex.bitset);
2502 * Userspace tried a 0 -> TID atomic transition of the futex value
2503 * and failed. The kernel side here does the whole locking operation:
2504 * if there are waiters then it will block as a consequence of relying
2505 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2506 * a 0 value of the futex too.).
2508 * Also serves as futex trylock_pi()'ing, and due semantics.
2510 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2511 ktime_t *time, int trylock)
2513 struct hrtimer_sleeper timeout, *to = NULL;
2514 struct futex_hash_bucket *hb;
2515 struct futex_q q = futex_q_init;
2516 int res, ret;
2518 if (refill_pi_state_cache())
2519 return -ENOMEM;
2521 if (time) {
2522 to = &timeout;
2523 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2524 HRTIMER_MODE_ABS);
2525 hrtimer_init_sleeper(to, current);
2526 hrtimer_set_expires(&to->timer, *time);
2529 retry:
2530 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2531 if (unlikely(ret != 0))
2532 goto out;
2534 retry_private:
2535 hb = queue_lock(&q);
2537 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2538 if (unlikely(ret)) {
2540 * Atomic work succeeded and we got the lock,
2541 * or failed. Either way, we do _not_ block.
2543 switch (ret) {
2544 case 1:
2545 /* We got the lock. */
2546 ret = 0;
2547 goto out_unlock_put_key;
2548 case -EFAULT:
2549 goto uaddr_faulted;
2550 case -EAGAIN:
2552 * Two reasons for this:
2553 * - Task is exiting and we just wait for the
2554 * exit to complete.
2555 * - The user space value changed.
2557 queue_unlock(hb);
2558 put_futex_key(&q.key);
2559 cond_resched();
2560 goto retry;
2561 default:
2562 goto out_unlock_put_key;
2567 * Only actually queue now that the atomic ops are done:
2569 queue_me(&q, hb);
2571 WARN_ON(!q.pi_state);
2573 * Block on the PI mutex:
2575 if (!trylock) {
2576 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2577 } else {
2578 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2579 /* Fixup the trylock return value: */
2580 ret = ret ? 0 : -EWOULDBLOCK;
2583 spin_lock(q.lock_ptr);
2585 * Fixup the pi_state owner and possibly acquire the lock if we
2586 * haven't already.
2588 res = fixup_owner(uaddr, &q, !ret);
2590 * If fixup_owner() returned an error, proprogate that. If it acquired
2591 * the lock, clear our -ETIMEDOUT or -EINTR.
2593 if (res)
2594 ret = (res < 0) ? res : 0;
2597 * If fixup_owner() faulted and was unable to handle the fault, unlock
2598 * it and return the fault to userspace.
2600 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2601 rt_mutex_unlock(&q.pi_state->pi_mutex);
2603 /* Unqueue and drop the lock */
2604 unqueue_me_pi(&q);
2606 goto out_put_key;
2608 out_unlock_put_key:
2609 queue_unlock(hb);
2611 out_put_key:
2612 put_futex_key(&q.key);
2613 out:
2614 if (to)
2615 destroy_hrtimer_on_stack(&to->timer);
2616 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2618 uaddr_faulted:
2619 queue_unlock(hb);
2621 ret = fault_in_user_writeable(uaddr);
2622 if (ret)
2623 goto out_put_key;
2625 if (!(flags & FLAGS_SHARED))
2626 goto retry_private;
2628 put_futex_key(&q.key);
2629 goto retry;
2633 * Userspace attempted a TID -> 0 atomic transition, and failed.
2634 * This is the in-kernel slowpath: we look up the PI state (if any),
2635 * and do the rt-mutex unlock.
2637 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2639 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2640 union futex_key key = FUTEX_KEY_INIT;
2641 struct futex_hash_bucket *hb;
2642 struct futex_q *match;
2643 int ret;
2645 retry:
2646 if (get_user(uval, uaddr))
2647 return -EFAULT;
2649 * We release only a lock we actually own:
2651 if ((uval & FUTEX_TID_MASK) != vpid)
2652 return -EPERM;
2654 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2655 if (ret)
2656 return ret;
2658 hb = hash_futex(&key);
2659 spin_lock(&hb->lock);
2662 * Check waiters first. We do not trust user space values at
2663 * all and we at least want to know if user space fiddled
2664 * with the futex value instead of blindly unlocking.
2666 match = futex_top_waiter(hb, &key);
2667 if (match) {
2668 ret = wake_futex_pi(uaddr, uval, match, hb);
2670 * In case of success wake_futex_pi dropped the hash
2671 * bucket lock.
2673 if (!ret)
2674 goto out_putkey;
2676 * The atomic access to the futex value generated a
2677 * pagefault, so retry the user-access and the wakeup:
2679 if (ret == -EFAULT)
2680 goto pi_faulted;
2682 * A unconditional UNLOCK_PI op raced against a waiter
2683 * setting the FUTEX_WAITERS bit. Try again.
2685 if (ret == -EAGAIN) {
2686 spin_unlock(&hb->lock);
2687 put_futex_key(&key);
2688 goto retry;
2691 * wake_futex_pi has detected invalid state. Tell user
2692 * space.
2694 goto out_unlock;
2698 * We have no kernel internal state, i.e. no waiters in the
2699 * kernel. Waiters which are about to queue themselves are stuck
2700 * on hb->lock. So we can safely ignore them. We do neither
2701 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2702 * owner.
2704 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2705 goto pi_faulted;
2708 * If uval has changed, let user space handle it.
2710 ret = (curval == uval) ? 0 : -EAGAIN;
2712 out_unlock:
2713 spin_unlock(&hb->lock);
2714 out_putkey:
2715 put_futex_key(&key);
2716 return ret;
2718 pi_faulted:
2719 spin_unlock(&hb->lock);
2720 put_futex_key(&key);
2722 ret = fault_in_user_writeable(uaddr);
2723 if (!ret)
2724 goto retry;
2726 return ret;
2730 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2731 * @hb: the hash_bucket futex_q was original enqueued on
2732 * @q: the futex_q woken while waiting to be requeued
2733 * @key2: the futex_key of the requeue target futex
2734 * @timeout: the timeout associated with the wait (NULL if none)
2736 * Detect if the task was woken on the initial futex as opposed to the requeue
2737 * target futex. If so, determine if it was a timeout or a signal that caused
2738 * the wakeup and return the appropriate error code to the caller. Must be
2739 * called with the hb lock held.
2741 * Return:
2742 * 0 = no early wakeup detected;
2743 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2745 static inline
2746 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2747 struct futex_q *q, union futex_key *key2,
2748 struct hrtimer_sleeper *timeout)
2750 int ret = 0;
2753 * With the hb lock held, we avoid races while we process the wakeup.
2754 * We only need to hold hb (and not hb2) to ensure atomicity as the
2755 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2756 * It can't be requeued from uaddr2 to something else since we don't
2757 * support a PI aware source futex for requeue.
2759 if (!match_futex(&q->key, key2)) {
2760 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2762 * We were woken prior to requeue by a timeout or a signal.
2763 * Unqueue the futex_q and determine which it was.
2765 plist_del(&q->list, &hb->chain);
2766 hb_waiters_dec(hb);
2768 /* Handle spurious wakeups gracefully */
2769 ret = -EWOULDBLOCK;
2770 if (timeout && !timeout->task)
2771 ret = -ETIMEDOUT;
2772 else if (signal_pending(current))
2773 ret = -ERESTARTNOINTR;
2775 return ret;
2779 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2780 * @uaddr: the futex we initially wait on (non-pi)
2781 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2782 * the same type, no requeueing from private to shared, etc.
2783 * @val: the expected value of uaddr
2784 * @abs_time: absolute timeout
2785 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2786 * @uaddr2: the pi futex we will take prior to returning to user-space
2788 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2789 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2790 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2791 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2792 * without one, the pi logic would not know which task to boost/deboost, if
2793 * there was a need to.
2795 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2796 * via the following--
2797 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2798 * 2) wakeup on uaddr2 after a requeue
2799 * 3) signal
2800 * 4) timeout
2802 * If 3, cleanup and return -ERESTARTNOINTR.
2804 * If 2, we may then block on trying to take the rt_mutex and return via:
2805 * 5) successful lock
2806 * 6) signal
2807 * 7) timeout
2808 * 8) other lock acquisition failure
2810 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2812 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2814 * Return:
2815 * 0 - On success;
2816 * <0 - On error
2818 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2819 u32 val, ktime_t *abs_time, u32 bitset,
2820 u32 __user *uaddr2)
2822 struct hrtimer_sleeper timeout, *to = NULL;
2823 struct rt_mutex_waiter rt_waiter;
2824 struct futex_hash_bucket *hb;
2825 union futex_key key2 = FUTEX_KEY_INIT;
2826 struct futex_q q = futex_q_init;
2827 int res, ret;
2829 if (uaddr == uaddr2)
2830 return -EINVAL;
2832 if (!bitset)
2833 return -EINVAL;
2835 if (abs_time) {
2836 to = &timeout;
2837 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2838 CLOCK_REALTIME : CLOCK_MONOTONIC,
2839 HRTIMER_MODE_ABS);
2840 hrtimer_init_sleeper(to, current);
2841 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2842 current->timer_slack_ns);
2846 * The waiter is allocated on our stack, manipulated by the requeue
2847 * code while we sleep on uaddr.
2849 debug_rt_mutex_init_waiter(&rt_waiter);
2850 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2851 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2852 rt_waiter.task = NULL;
2854 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2855 if (unlikely(ret != 0))
2856 goto out;
2858 q.bitset = bitset;
2859 q.rt_waiter = &rt_waiter;
2860 q.requeue_pi_key = &key2;
2863 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2864 * count.
2866 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2867 if (ret)
2868 goto out_key2;
2871 * The check above which compares uaddrs is not sufficient for
2872 * shared futexes. We need to compare the keys:
2874 if (match_futex(&q.key, &key2)) {
2875 queue_unlock(hb);
2876 ret = -EINVAL;
2877 goto out_put_keys;
2880 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2881 futex_wait_queue_me(hb, &q, to);
2883 spin_lock(&hb->lock);
2884 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2885 spin_unlock(&hb->lock);
2886 if (ret)
2887 goto out_put_keys;
2890 * In order for us to be here, we know our q.key == key2, and since
2891 * we took the hb->lock above, we also know that futex_requeue() has
2892 * completed and we no longer have to concern ourselves with a wakeup
2893 * race with the atomic proxy lock acquisition by the requeue code. The
2894 * futex_requeue dropped our key1 reference and incremented our key2
2895 * reference count.
2898 /* Check if the requeue code acquired the second futex for us. */
2899 if (!q.rt_waiter) {
2901 * Got the lock. We might not be the anticipated owner if we
2902 * did a lock-steal - fix up the PI-state in that case.
2904 if (q.pi_state && (q.pi_state->owner != current)) {
2905 spin_lock(q.lock_ptr);
2906 ret = fixup_pi_state_owner(uaddr2, &q, current);
2907 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2908 rt_mutex_unlock(&q.pi_state->pi_mutex);
2910 * Drop the reference to the pi state which
2911 * the requeue_pi() code acquired for us.
2913 free_pi_state(q.pi_state);
2914 spin_unlock(q.lock_ptr);
2916 } else {
2917 struct rt_mutex *pi_mutex;
2920 * We have been woken up by futex_unlock_pi(), a timeout, or a
2921 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2922 * the pi_state.
2924 WARN_ON(!q.pi_state);
2925 pi_mutex = &q.pi_state->pi_mutex;
2926 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2927 debug_rt_mutex_free_waiter(&rt_waiter);
2929 spin_lock(q.lock_ptr);
2931 * Fixup the pi_state owner and possibly acquire the lock if we
2932 * haven't already.
2934 res = fixup_owner(uaddr2, &q, !ret);
2936 * If fixup_owner() returned an error, proprogate that. If it
2937 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2939 if (res)
2940 ret = (res < 0) ? res : 0;
2943 * If fixup_pi_state_owner() faulted and was unable to handle
2944 * the fault, unlock the rt_mutex and return the fault to
2945 * userspace.
2947 if (ret && rt_mutex_owner(pi_mutex) == current)
2948 rt_mutex_unlock(pi_mutex);
2950 /* Unqueue and drop the lock. */
2951 unqueue_me_pi(&q);
2954 if (ret == -EINTR) {
2956 * We've already been requeued, but cannot restart by calling
2957 * futex_lock_pi() directly. We could restart this syscall, but
2958 * it would detect that the user space "val" changed and return
2959 * -EWOULDBLOCK. Save the overhead of the restart and return
2960 * -EWOULDBLOCK directly.
2962 ret = -EWOULDBLOCK;
2965 out_put_keys:
2966 put_futex_key(&q.key);
2967 out_key2:
2968 put_futex_key(&key2);
2970 out:
2971 if (to) {
2972 hrtimer_cancel(&to->timer);
2973 destroy_hrtimer_on_stack(&to->timer);
2975 return ret;
2979 * Support for robust futexes: the kernel cleans up held futexes at
2980 * thread exit time.
2982 * Implementation: user-space maintains a per-thread list of locks it
2983 * is holding. Upon do_exit(), the kernel carefully walks this list,
2984 * and marks all locks that are owned by this thread with the
2985 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2986 * always manipulated with the lock held, so the list is private and
2987 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2988 * field, to allow the kernel to clean up if the thread dies after
2989 * acquiring the lock, but just before it could have added itself to
2990 * the list. There can only be one such pending lock.
2994 * sys_set_robust_list() - Set the robust-futex list head of a task
2995 * @head: pointer to the list-head
2996 * @len: length of the list-head, as userspace expects
2998 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2999 size_t, len)
3001 if (!futex_cmpxchg_enabled)
3002 return -ENOSYS;
3004 * The kernel knows only one size for now:
3006 if (unlikely(len != sizeof(*head)))
3007 return -EINVAL;
3009 current->robust_list = head;
3011 return 0;
3015 * sys_get_robust_list() - Get the robust-futex list head of a task
3016 * @pid: pid of the process [zero for current task]
3017 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3018 * @len_ptr: pointer to a length field, the kernel fills in the header size
3020 SYSCALL_DEFINE3(get_robust_list, int, pid,
3021 struct robust_list_head __user * __user *, head_ptr,
3022 size_t __user *, len_ptr)
3024 struct robust_list_head __user *head;
3025 unsigned long ret;
3026 struct task_struct *p;
3028 if (!futex_cmpxchg_enabled)
3029 return -ENOSYS;
3031 rcu_read_lock();
3033 ret = -ESRCH;
3034 if (!pid)
3035 p = current;
3036 else {
3037 p = find_task_by_vpid(pid);
3038 if (!p)
3039 goto err_unlock;
3042 ret = -EPERM;
3043 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3044 goto err_unlock;
3046 head = p->robust_list;
3047 rcu_read_unlock();
3049 if (put_user(sizeof(*head), len_ptr))
3050 return -EFAULT;
3051 return put_user(head, head_ptr);
3053 err_unlock:
3054 rcu_read_unlock();
3056 return ret;
3060 * Process a futex-list entry, check whether it's owned by the
3061 * dying task, and do notification if so:
3063 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3065 u32 uval, uninitialized_var(nval), mval;
3067 retry:
3068 if (get_user(uval, uaddr))
3069 return -1;
3071 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3073 * Ok, this dying thread is truly holding a futex
3074 * of interest. Set the OWNER_DIED bit atomically
3075 * via cmpxchg, and if the value had FUTEX_WAITERS
3076 * set, wake up a waiter (if any). (We have to do a
3077 * futex_wake() even if OWNER_DIED is already set -
3078 * to handle the rare but possible case of recursive
3079 * thread-death.) The rest of the cleanup is done in
3080 * userspace.
3082 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3084 * We are not holding a lock here, but we want to have
3085 * the pagefault_disable/enable() protection because
3086 * we want to handle the fault gracefully. If the
3087 * access fails we try to fault in the futex with R/W
3088 * verification via get_user_pages. get_user() above
3089 * does not guarantee R/W access. If that fails we
3090 * give up and leave the futex locked.
3092 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3093 if (fault_in_user_writeable(uaddr))
3094 return -1;
3095 goto retry;
3097 if (nval != uval)
3098 goto retry;
3101 * Wake robust non-PI futexes here. The wakeup of
3102 * PI futexes happens in exit_pi_state():
3104 if (!pi && (uval & FUTEX_WAITERS))
3105 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3107 return 0;
3111 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3113 static inline int fetch_robust_entry(struct robust_list __user **entry,
3114 struct robust_list __user * __user *head,
3115 unsigned int *pi)
3117 unsigned long uentry;
3119 if (get_user(uentry, (unsigned long __user *)head))
3120 return -EFAULT;
3122 *entry = (void __user *)(uentry & ~1UL);
3123 *pi = uentry & 1;
3125 return 0;
3129 * Walk curr->robust_list (very carefully, it's a userspace list!)
3130 * and mark any locks found there dead, and notify any waiters.
3132 * We silently return on any sign of list-walking problem.
3134 void exit_robust_list(struct task_struct *curr)
3136 struct robust_list_head __user *head = curr->robust_list;
3137 struct robust_list __user *entry, *next_entry, *pending;
3138 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3139 unsigned int uninitialized_var(next_pi);
3140 unsigned long futex_offset;
3141 int rc;
3143 if (!futex_cmpxchg_enabled)
3144 return;
3147 * Fetch the list head (which was registered earlier, via
3148 * sys_set_robust_list()):
3150 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3151 return;
3153 * Fetch the relative futex offset:
3155 if (get_user(futex_offset, &head->futex_offset))
3156 return;
3158 * Fetch any possibly pending lock-add first, and handle it
3159 * if it exists:
3161 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3162 return;
3164 next_entry = NULL; /* avoid warning with gcc */
3165 while (entry != &head->list) {
3167 * Fetch the next entry in the list before calling
3168 * handle_futex_death:
3170 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3172 * A pending lock might already be on the list, so
3173 * don't process it twice:
3175 if (entry != pending)
3176 if (handle_futex_death((void __user *)entry + futex_offset,
3177 curr, pi))
3178 return;
3179 if (rc)
3180 return;
3181 entry = next_entry;
3182 pi = next_pi;
3184 * Avoid excessively long or circular lists:
3186 if (!--limit)
3187 break;
3189 cond_resched();
3192 if (pending)
3193 handle_futex_death((void __user *)pending + futex_offset,
3194 curr, pip);
3197 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3198 u32 __user *uaddr2, u32 val2, u32 val3)
3200 int cmd = op & FUTEX_CMD_MASK;
3201 unsigned int flags = 0;
3203 if (!(op & FUTEX_PRIVATE_FLAG))
3204 flags |= FLAGS_SHARED;
3206 if (op & FUTEX_CLOCK_REALTIME) {
3207 flags |= FLAGS_CLOCKRT;
3208 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3209 return -ENOSYS;
3212 switch (cmd) {
3213 case FUTEX_LOCK_PI:
3214 case FUTEX_UNLOCK_PI:
3215 case FUTEX_TRYLOCK_PI:
3216 case FUTEX_WAIT_REQUEUE_PI:
3217 case FUTEX_CMP_REQUEUE_PI:
3218 if (!futex_cmpxchg_enabled)
3219 return -ENOSYS;
3222 switch (cmd) {
3223 case FUTEX_WAIT:
3224 val3 = FUTEX_BITSET_MATCH_ANY;
3225 case FUTEX_WAIT_BITSET:
3226 return futex_wait(uaddr, flags, val, timeout, val3);
3227 case FUTEX_WAKE:
3228 val3 = FUTEX_BITSET_MATCH_ANY;
3229 case FUTEX_WAKE_BITSET:
3230 return futex_wake(uaddr, flags, val, val3);
3231 case FUTEX_REQUEUE:
3232 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3233 case FUTEX_CMP_REQUEUE:
3234 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3235 case FUTEX_WAKE_OP:
3236 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3237 case FUTEX_LOCK_PI:
3238 return futex_lock_pi(uaddr, flags, timeout, 0);
3239 case FUTEX_UNLOCK_PI:
3240 return futex_unlock_pi(uaddr, flags);
3241 case FUTEX_TRYLOCK_PI:
3242 return futex_lock_pi(uaddr, flags, NULL, 1);
3243 case FUTEX_WAIT_REQUEUE_PI:
3244 val3 = FUTEX_BITSET_MATCH_ANY;
3245 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3246 uaddr2);
3247 case FUTEX_CMP_REQUEUE_PI:
3248 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3250 return -ENOSYS;
3254 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3255 struct timespec __user *, utime, u32 __user *, uaddr2,
3256 u32, val3)
3258 struct timespec ts;
3259 ktime_t t, *tp = NULL;
3260 u32 val2 = 0;
3261 int cmd = op & FUTEX_CMD_MASK;
3263 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3264 cmd == FUTEX_WAIT_BITSET ||
3265 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3266 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3267 return -EFAULT;
3268 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3269 return -EFAULT;
3270 if (!timespec_valid(&ts))
3271 return -EINVAL;
3273 t = timespec_to_ktime(ts);
3274 if (cmd == FUTEX_WAIT)
3275 t = ktime_add_safe(ktime_get(), t);
3276 tp = &t;
3279 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3280 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3282 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3283 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3284 val2 = (u32) (unsigned long) utime;
3286 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3289 static void __init futex_detect_cmpxchg(void)
3291 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3292 u32 curval;
3295 * This will fail and we want it. Some arch implementations do
3296 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3297 * functionality. We want to know that before we call in any
3298 * of the complex code paths. Also we want to prevent
3299 * registration of robust lists in that case. NULL is
3300 * guaranteed to fault and we get -EFAULT on functional
3301 * implementation, the non-functional ones will return
3302 * -ENOSYS.
3304 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3305 futex_cmpxchg_enabled = 1;
3306 #endif
3309 static int __init futex_init(void)
3311 unsigned int futex_shift;
3312 unsigned long i;
3314 #if CONFIG_BASE_SMALL
3315 futex_hashsize = 16;
3316 #else
3317 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3318 #endif
3320 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3321 futex_hashsize, 0,
3322 futex_hashsize < 256 ? HASH_SMALL : 0,
3323 &futex_shift, NULL,
3324 futex_hashsize, futex_hashsize);
3325 futex_hashsize = 1UL << futex_shift;
3327 futex_detect_cmpxchg();
3329 for (i = 0; i < futex_hashsize; i++) {
3330 atomic_set(&futex_queues[i].waiters, 0);
3331 plist_head_init(&futex_queues[i].chain);
3332 spin_lock_init(&futex_queues[i].lock);
3335 return 0;
3337 core_initcall(futex_init);