2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
71 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
72 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
73 static struct lock_class_key rcu_exp_class
[RCU_NUM_LVLS
];
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
100 .gp_state = RCU_GP_IDLE, \
101 .gpnum = 0UL - 300UL, \
102 .completed = 0UL - 300UL, \
103 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
104 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
105 .orphan_donetail = &sname##_state.orphan_donelist, \
106 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
107 .name = RCU_STATE_NAME(sname), \
111 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
112 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
114 static struct rcu_state
*const rcu_state_p
;
115 static struct rcu_data __percpu
*const rcu_data_p
;
116 LIST_HEAD(rcu_struct_flavors
);
118 /* Dump rcu_node combining tree at boot to verify correct setup. */
119 static bool dump_tree
;
120 module_param(dump_tree
, bool, 0444);
121 /* Control rcu_node-tree auto-balancing at boot time. */
122 static bool rcu_fanout_exact
;
123 module_param(rcu_fanout_exact
, bool, 0444);
124 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
125 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
126 module_param(rcu_fanout_leaf
, int, 0444);
127 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
128 /* Number of rcu_nodes at specified level. */
129 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
130 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
133 * The rcu_scheduler_active variable transitions from zero to one just
134 * before the first task is spawned. So when this variable is zero, RCU
135 * can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_sched() to a simple barrier(). When this variable
137 * is one, RCU must actually do all the hard work required to detect real
138 * grace periods. This variable is also used to suppress boot-time false
139 * positives from lockdep-RCU error checking.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
159 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
163 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
164 struct rcu_data
*rdp
, bool wake
);
166 /* rcuc/rcub kthread realtime priority */
167 #ifdef CONFIG_RCU_KTHREAD_PRIO
168 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 module_param(kthread_prio
, int, 0644);
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
178 module_param(gp_preinit_delay
, int, 0644);
179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180 static const int gp_preinit_delay
;
181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
185 module_param(gp_init_delay
, int, 0644);
186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187 static const int gp_init_delay
;
188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
192 module_param(gp_cleanup_delay
, int, 0644);
193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 static const int gp_cleanup_delay
;
195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
217 unsigned long rcutorture_testseq
;
218 unsigned long rcutorture_vernum
;
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
226 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
228 return READ_ONCE(rnp
->qsmaskinitnext
);
232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
236 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
238 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
242 * Note a quiescent state. Because we do not need to know
243 * how many quiescent states passed, just if there was at least
244 * one since the start of the grace period, this just sets a flag.
245 * The caller must have disabled preemption.
247 void rcu_sched_qs(void)
251 if (__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
)) {
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data
.gpnum
),
255 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
256 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
258 local_irq_save(flags
);
259 if (__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
)) {
260 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
261 rcu_report_exp_rdp(&rcu_sched_state
,
262 this_cpu_ptr(&rcu_sched_data
),
265 local_irq_restore(flags
);
271 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
272 trace_rcu_grace_period(TPS("rcu_bh"),
273 __this_cpu_read(rcu_bh_data
.gpnum
),
275 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
279 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
281 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
282 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
283 .dynticks
= ATOMIC_INIT(1),
284 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
285 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
286 .dynticks_idle
= ATOMIC_INIT(1),
287 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
290 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
291 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
294 * Let the RCU core know that this CPU has gone through the scheduler,
295 * which is a quiescent state. This is called when the need for a
296 * quiescent state is urgent, so we burn an atomic operation and full
297 * memory barriers to let the RCU core know about it, regardless of what
298 * this CPU might (or might not) do in the near future.
300 * We inform the RCU core by emulating a zero-duration dyntick-idle
301 * period, which we in turn do by incrementing the ->dynticks counter
304 static void rcu_momentary_dyntick_idle(void)
307 struct rcu_data
*rdp
;
308 struct rcu_dynticks
*rdtp
;
310 struct rcu_state
*rsp
;
312 local_irq_save(flags
);
315 * Yes, we can lose flag-setting operations. This is OK, because
316 * the flag will be set again after some delay.
318 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
319 raw_cpu_write(rcu_sched_qs_mask
, 0);
321 /* Find the flavor that needs a quiescent state. */
322 for_each_rcu_flavor(rsp
) {
323 rdp
= raw_cpu_ptr(rsp
->rda
);
324 if (!(resched_mask
& rsp
->flavor_mask
))
326 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
327 if (READ_ONCE(rdp
->mynode
->completed
) !=
328 READ_ONCE(rdp
->cond_resched_completed
))
332 * Pretend to be momentarily idle for the quiescent state.
333 * This allows the grace-period kthread to record the
334 * quiescent state, with no need for this CPU to do anything
337 rdtp
= this_cpu_ptr(&rcu_dynticks
);
338 smp_mb__before_atomic(); /* Earlier stuff before QS. */
339 atomic_add(2, &rdtp
->dynticks
); /* QS. */
340 smp_mb__after_atomic(); /* Later stuff after QS. */
343 local_irq_restore(flags
);
347 * Note a context switch. This is a quiescent state for RCU-sched,
348 * and requires special handling for preemptible RCU.
349 * The caller must have disabled preemption.
351 void rcu_note_context_switch(void)
353 barrier(); /* Avoid RCU read-side critical sections leaking down. */
354 trace_rcu_utilization(TPS("Start context switch"));
356 rcu_preempt_note_context_switch();
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
358 rcu_momentary_dyntick_idle();
359 trace_rcu_utilization(TPS("End context switch"));
360 barrier(); /* Avoid RCU read-side critical sections leaking up. */
362 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
365 * Register a quiescent state for all RCU flavors. If there is an
366 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
367 * dyntick-idle quiescent state visible to other CPUs (but only for those
368 * RCU flavors in desperate need of a quiescent state, which will normally
369 * be none of them). Either way, do a lightweight quiescent state for
372 * The barrier() calls are redundant in the common case when this is
373 * called externally, but just in case this is called from within this
377 void rcu_all_qs(void)
379 barrier(); /* Avoid RCU read-side critical sections leaking down. */
380 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
381 rcu_momentary_dyntick_idle();
382 this_cpu_inc(rcu_qs_ctr
);
383 barrier(); /* Avoid RCU read-side critical sections leaking up. */
385 EXPORT_SYMBOL_GPL(rcu_all_qs
);
387 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
388 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
389 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
391 module_param(blimit
, long, 0444);
392 module_param(qhimark
, long, 0444);
393 module_param(qlowmark
, long, 0444);
395 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
396 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
398 module_param(jiffies_till_first_fqs
, ulong
, 0644);
399 module_param(jiffies_till_next_fqs
, ulong
, 0644);
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
405 static ulong jiffies_till_sched_qs
= HZ
/ 20;
406 module_param(jiffies_till_sched_qs
, ulong
, 0644);
408 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
409 struct rcu_data
*rdp
);
410 static void force_qs_rnp(struct rcu_state
*rsp
,
411 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
412 unsigned long *maxj
),
413 bool *isidle
, unsigned long *maxj
);
414 static void force_quiescent_state(struct rcu_state
*rsp
);
415 static int rcu_pending(void);
418 * Return the number of RCU batches started thus far for debug & stats.
420 unsigned long rcu_batches_started(void)
422 return rcu_state_p
->gpnum
;
424 EXPORT_SYMBOL_GPL(rcu_batches_started
);
427 * Return the number of RCU-sched batches started thus far for debug & stats.
429 unsigned long rcu_batches_started_sched(void)
431 return rcu_sched_state
.gpnum
;
433 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
436 * Return the number of RCU BH batches started thus far for debug & stats.
438 unsigned long rcu_batches_started_bh(void)
440 return rcu_bh_state
.gpnum
;
442 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
445 * Return the number of RCU batches completed thus far for debug & stats.
447 unsigned long rcu_batches_completed(void)
449 return rcu_state_p
->completed
;
451 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
454 * Return the number of RCU-sched batches completed thus far for debug & stats.
456 unsigned long rcu_batches_completed_sched(void)
458 return rcu_sched_state
.completed
;
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
463 * Return the number of RCU BH batches completed thus far for debug & stats.
465 unsigned long rcu_batches_completed_bh(void)
467 return rcu_bh_state
.completed
;
469 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
472 * Force a quiescent state.
474 void rcu_force_quiescent_state(void)
476 force_quiescent_state(rcu_state_p
);
478 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
481 * Force a quiescent state for RCU BH.
483 void rcu_bh_force_quiescent_state(void)
485 force_quiescent_state(&rcu_bh_state
);
487 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
490 * Force a quiescent state for RCU-sched.
492 void rcu_sched_force_quiescent_state(void)
494 force_quiescent_state(&rcu_sched_state
);
496 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
499 * Show the state of the grace-period kthreads.
501 void show_rcu_gp_kthreads(void)
503 struct rcu_state
*rsp
;
505 for_each_rcu_flavor(rsp
) {
506 pr_info("%s: wait state: %d ->state: %#lx\n",
507 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
508 /* sched_show_task(rsp->gp_kthread); */
511 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
514 * Record the number of times rcutorture tests have been initiated and
515 * terminated. This information allows the debugfs tracing stats to be
516 * correlated to the rcutorture messages, even when the rcutorture module
517 * is being repeatedly loaded and unloaded. In other words, we cannot
518 * store this state in rcutorture itself.
520 void rcutorture_record_test_transition(void)
522 rcutorture_testseq
++;
523 rcutorture_vernum
= 0;
525 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
528 * Send along grace-period-related data for rcutorture diagnostics.
530 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
531 unsigned long *gpnum
, unsigned long *completed
)
533 struct rcu_state
*rsp
= NULL
;
542 case RCU_SCHED_FLAVOR
:
543 rsp
= &rcu_sched_state
;
549 *flags
= READ_ONCE(rsp
->gp_flags
);
550 *gpnum
= READ_ONCE(rsp
->gpnum
);
551 *completed
= READ_ONCE(rsp
->completed
);
558 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
561 * Record the number of writer passes through the current rcutorture test.
562 * This is also used to correlate debugfs tracing stats with the rcutorture
565 void rcutorture_record_progress(unsigned long vernum
)
569 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
572 * Does the CPU have callbacks ready to be invoked?
575 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
577 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
578 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
582 * Return the root node of the specified rcu_state structure.
584 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
586 return &rsp
->node
[0];
590 * Is there any need for future grace periods?
591 * Interrupts must be disabled. If the caller does not hold the root
592 * rnp_node structure's ->lock, the results are advisory only.
594 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
596 struct rcu_node
*rnp
= rcu_get_root(rsp
);
597 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
598 int *fp
= &rnp
->need_future_gp
[idx
];
600 return READ_ONCE(*fp
);
604 * Does the current CPU require a not-yet-started grace period?
605 * The caller must have disabled interrupts to prevent races with
606 * normal callback registry.
609 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
613 if (rcu_gp_in_progress(rsp
))
614 return 0; /* No, a grace period is already in progress. */
615 if (rcu_future_needs_gp(rsp
))
616 return 1; /* Yes, a no-CBs CPU needs one. */
617 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
618 return 0; /* No, this is a no-CBs (or offline) CPU. */
619 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
620 return 1; /* Yes, this CPU has newly registered callbacks. */
621 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
622 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
623 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
624 rdp
->nxtcompleted
[i
]))
625 return 1; /* Yes, CBs for future grace period. */
626 return 0; /* No grace period needed. */
630 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
632 * If the new value of the ->dynticks_nesting counter now is zero,
633 * we really have entered idle, and must do the appropriate accounting.
634 * The caller must have disabled interrupts.
636 static void rcu_eqs_enter_common(long long oldval
, bool user
)
638 struct rcu_state
*rsp
;
639 struct rcu_data
*rdp
;
640 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
642 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
643 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
644 !user
&& !is_idle_task(current
)) {
645 struct task_struct
*idle __maybe_unused
=
646 idle_task(smp_processor_id());
648 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
649 ftrace_dump(DUMP_ORIG
);
650 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
651 current
->pid
, current
->comm
,
652 idle
->pid
, idle
->comm
); /* must be idle task! */
654 for_each_rcu_flavor(rsp
) {
655 rdp
= this_cpu_ptr(rsp
->rda
);
656 do_nocb_deferred_wakeup(rdp
);
658 rcu_prepare_for_idle();
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic(); /* See above. */
661 atomic_inc(&rdtp
->dynticks
);
662 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
663 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
664 atomic_read(&rdtp
->dynticks
) & 0x1);
665 rcu_dynticks_task_enter();
668 * It is illegal to enter an extended quiescent state while
669 * in an RCU read-side critical section.
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
672 "Illegal idle entry in RCU read-side critical section.");
673 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
674 "Illegal idle entry in RCU-bh read-side critical section.");
675 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
676 "Illegal idle entry in RCU-sched read-side critical section.");
680 * Enter an RCU extended quiescent state, which can be either the
681 * idle loop or adaptive-tickless usermode execution.
683 static void rcu_eqs_enter(bool user
)
686 struct rcu_dynticks
*rdtp
;
688 rdtp
= this_cpu_ptr(&rcu_dynticks
);
689 oldval
= rdtp
->dynticks_nesting
;
690 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
691 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
692 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
693 rdtp
->dynticks_nesting
= 0;
694 rcu_eqs_enter_common(oldval
, user
);
696 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
701 * rcu_idle_enter - inform RCU that current CPU is entering idle
703 * Enter idle mode, in other words, -leave- the mode in which RCU
704 * read-side critical sections can occur. (Though RCU read-side
705 * critical sections can occur in irq handlers in idle, a possibility
706 * handled by irq_enter() and irq_exit().)
708 * We crowbar the ->dynticks_nesting field to zero to allow for
709 * the possibility of usermode upcalls having messed up our count
710 * of interrupt nesting level during the prior busy period.
712 void rcu_idle_enter(void)
716 local_irq_save(flags
);
717 rcu_eqs_enter(false);
718 rcu_sysidle_enter(0);
719 local_irq_restore(flags
);
721 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
723 #ifdef CONFIG_NO_HZ_FULL
725 * rcu_user_enter - inform RCU that we are resuming userspace.
727 * Enter RCU idle mode right before resuming userspace. No use of RCU
728 * is permitted between this call and rcu_user_exit(). This way the
729 * CPU doesn't need to maintain the tick for RCU maintenance purposes
730 * when the CPU runs in userspace.
732 void rcu_user_enter(void)
736 #endif /* CONFIG_NO_HZ_FULL */
739 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
741 * Exit from an interrupt handler, which might possibly result in entering
742 * idle mode, in other words, leaving the mode in which read-side critical
743 * sections can occur.
745 * This code assumes that the idle loop never does anything that might
746 * result in unbalanced calls to irq_enter() and irq_exit(). If your
747 * architecture violates this assumption, RCU will give you what you
748 * deserve, good and hard. But very infrequently and irreproducibly.
750 * Use things like work queues to work around this limitation.
752 * You have been warned.
754 void rcu_irq_exit(void)
758 struct rcu_dynticks
*rdtp
;
760 local_irq_save(flags
);
761 rdtp
= this_cpu_ptr(&rcu_dynticks
);
763 /* Page faults can happen in NMI handlers, so check... */
764 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
767 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
768 oldval
= rdtp
->dynticks_nesting
;
769 rdtp
->dynticks_nesting
--;
770 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
771 rdtp
->dynticks_nesting
< 0);
772 if (rdtp
->dynticks_nesting
)
773 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
775 rcu_eqs_enter_common(oldval
, true);
776 rcu_sysidle_enter(1);
777 local_irq_restore(flags
);
781 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
783 * If the new value of the ->dynticks_nesting counter was previously zero,
784 * we really have exited idle, and must do the appropriate accounting.
785 * The caller must have disabled interrupts.
787 static void rcu_eqs_exit_common(long long oldval
, int user
)
789 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
791 rcu_dynticks_task_exit();
792 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
793 atomic_inc(&rdtp
->dynticks
);
794 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
795 smp_mb__after_atomic(); /* See above. */
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
797 !(atomic_read(&rdtp
->dynticks
) & 0x1));
798 rcu_cleanup_after_idle();
799 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
800 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
801 !user
&& !is_idle_task(current
)) {
802 struct task_struct
*idle __maybe_unused
=
803 idle_task(smp_processor_id());
805 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
806 oldval
, rdtp
->dynticks_nesting
);
807 ftrace_dump(DUMP_ORIG
);
808 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
809 current
->pid
, current
->comm
,
810 idle
->pid
, idle
->comm
); /* must be idle task! */
815 * Exit an RCU extended quiescent state, which can be either the
816 * idle loop or adaptive-tickless usermode execution.
818 static void rcu_eqs_exit(bool user
)
820 struct rcu_dynticks
*rdtp
;
823 rdtp
= this_cpu_ptr(&rcu_dynticks
);
824 oldval
= rdtp
->dynticks_nesting
;
825 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
826 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
827 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
829 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
830 rcu_eqs_exit_common(oldval
, user
);
835 * rcu_idle_exit - inform RCU that current CPU is leaving idle
837 * Exit idle mode, in other words, -enter- the mode in which RCU
838 * read-side critical sections can occur.
840 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
841 * allow for the possibility of usermode upcalls messing up our count
842 * of interrupt nesting level during the busy period that is just
845 void rcu_idle_exit(void)
849 local_irq_save(flags
);
852 local_irq_restore(flags
);
854 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
856 #ifdef CONFIG_NO_HZ_FULL
858 * rcu_user_exit - inform RCU that we are exiting userspace.
860 * Exit RCU idle mode while entering the kernel because it can
861 * run a RCU read side critical section anytime.
863 void rcu_user_exit(void)
867 #endif /* CONFIG_NO_HZ_FULL */
870 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
872 * Enter an interrupt handler, which might possibly result in exiting
873 * idle mode, in other words, entering the mode in which read-side critical
874 * sections can occur.
876 * Note that the Linux kernel is fully capable of entering an interrupt
877 * handler that it never exits, for example when doing upcalls to
878 * user mode! This code assumes that the idle loop never does upcalls to
879 * user mode. If your architecture does do upcalls from the idle loop (or
880 * does anything else that results in unbalanced calls to the irq_enter()
881 * and irq_exit() functions), RCU will give you what you deserve, good
882 * and hard. But very infrequently and irreproducibly.
884 * Use things like work queues to work around this limitation.
886 * You have been warned.
888 void rcu_irq_enter(void)
891 struct rcu_dynticks
*rdtp
;
894 local_irq_save(flags
);
895 rdtp
= this_cpu_ptr(&rcu_dynticks
);
897 /* Page faults can happen in NMI handlers, so check... */
898 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
901 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
902 oldval
= rdtp
->dynticks_nesting
;
903 rdtp
->dynticks_nesting
++;
904 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
905 rdtp
->dynticks_nesting
== 0);
907 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
909 rcu_eqs_exit_common(oldval
, true);
911 local_irq_restore(flags
);
915 * rcu_nmi_enter - inform RCU of entry to NMI context
917 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
918 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
919 * that the CPU is active. This implementation permits nested NMIs, as
920 * long as the nesting level does not overflow an int. (You will probably
921 * run out of stack space first.)
923 void rcu_nmi_enter(void)
925 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
928 /* Complain about underflow. */
929 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
932 * If idle from RCU viewpoint, atomically increment ->dynticks
933 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
934 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
935 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
936 * to be in the outermost NMI handler that interrupted an RCU-idle
937 * period (observation due to Andy Lutomirski).
939 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
940 smp_mb__before_atomic(); /* Force delay from prior write. */
941 atomic_inc(&rdtp
->dynticks
);
942 /* atomic_inc() before later RCU read-side crit sects */
943 smp_mb__after_atomic(); /* See above. */
944 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
947 rdtp
->dynticks_nmi_nesting
+= incby
;
952 * rcu_nmi_exit - inform RCU of exit from NMI context
954 * If we are returning from the outermost NMI handler that interrupted an
955 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
956 * to let the RCU grace-period handling know that the CPU is back to
959 void rcu_nmi_exit(void)
961 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
964 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
965 * (We are exiting an NMI handler, so RCU better be paying attention
968 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
969 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
972 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
973 * leave it in non-RCU-idle state.
975 if (rdtp
->dynticks_nmi_nesting
!= 1) {
976 rdtp
->dynticks_nmi_nesting
-= 2;
980 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
981 rdtp
->dynticks_nmi_nesting
= 0;
982 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983 smp_mb__before_atomic(); /* See above. */
984 atomic_inc(&rdtp
->dynticks
);
985 smp_mb__after_atomic(); /* Force delay to next write. */
986 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
990 * __rcu_is_watching - are RCU read-side critical sections safe?
992 * Return true if RCU is watching the running CPU, which means that
993 * this CPU can safely enter RCU read-side critical sections. Unlike
994 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
995 * least disabled preemption.
997 bool notrace
__rcu_is_watching(void)
999 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1003 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1005 * If the current CPU is in its idle loop and is neither in an interrupt
1006 * or NMI handler, return true.
1008 bool notrace
rcu_is_watching(void)
1012 preempt_disable_notrace();
1013 ret
= __rcu_is_watching();
1014 preempt_enable_notrace();
1017 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1022 * Is the current CPU online? Disable preemption to avoid false positives
1023 * that could otherwise happen due to the current CPU number being sampled,
1024 * this task being preempted, its old CPU being taken offline, resuming
1025 * on some other CPU, then determining that its old CPU is now offline.
1026 * It is OK to use RCU on an offline processor during initial boot, hence
1027 * the check for rcu_scheduler_fully_active. Note also that it is OK
1028 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1029 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1030 * offline to continue to use RCU for one jiffy after marking itself
1031 * offline in the cpu_online_mask. This leniency is necessary given the
1032 * non-atomic nature of the online and offline processing, for example,
1033 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1036 * This is also why RCU internally marks CPUs online during the
1037 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1039 * Disable checking if in an NMI handler because we cannot safely report
1040 * errors from NMI handlers anyway.
1042 bool rcu_lockdep_current_cpu_online(void)
1044 struct rcu_data
*rdp
;
1045 struct rcu_node
*rnp
;
1051 rdp
= this_cpu_ptr(&rcu_sched_data
);
1053 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1054 !rcu_scheduler_fully_active
;
1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1063 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1065 * If the current CPU is idle or running at a first-level (not nested)
1066 * interrupt from idle, return true. The caller must have at least
1067 * disabled preemption.
1069 static int rcu_is_cpu_rrupt_from_idle(void)
1071 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1075 * Snapshot the specified CPU's dynticks counter so that we can later
1076 * credit them with an implicit quiescent state. Return 1 if this CPU
1077 * is in dynticks idle mode, which is an extended quiescent state.
1079 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1080 bool *isidle
, unsigned long *maxj
)
1082 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1083 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1084 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1085 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1088 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1089 rdp
->mynode
->gpnum
))
1090 WRITE_ONCE(rdp
->gpwrap
, true);
1096 * Return true if the specified CPU has passed through a quiescent
1097 * state by virtue of being in or having passed through an dynticks
1098 * idle state since the last call to dyntick_save_progress_counter()
1099 * for this same CPU, or by virtue of having been offline.
1101 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1102 bool *isidle
, unsigned long *maxj
)
1108 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1109 snap
= (unsigned int)rdp
->dynticks_snap
;
1112 * If the CPU passed through or entered a dynticks idle phase with
1113 * no active irq/NMI handlers, then we can safely pretend that the CPU
1114 * already acknowledged the request to pass through a quiescent
1115 * state. Either way, that CPU cannot possibly be in an RCU
1116 * read-side critical section that started before the beginning
1117 * of the current RCU grace period.
1119 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1120 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1121 rdp
->dynticks_fqs
++;
1126 * Check for the CPU being offline, but only if the grace period
1127 * is old enough. We don't need to worry about the CPU changing
1128 * state: If we see it offline even once, it has been through a
1131 * The reason for insisting that the grace period be at least
1132 * one jiffy old is that CPUs that are not quite online and that
1133 * have just gone offline can still execute RCU read-side critical
1136 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1137 return 0; /* Grace period is not old enough. */
1139 if (cpu_is_offline(rdp
->cpu
)) {
1140 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1146 * A CPU running for an extended time within the kernel can
1147 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1148 * even context-switching back and forth between a pair of
1149 * in-kernel CPU-bound tasks cannot advance grace periods.
1150 * So if the grace period is old enough, make the CPU pay attention.
1151 * Note that the unsynchronized assignments to the per-CPU
1152 * rcu_sched_qs_mask variable are safe. Yes, setting of
1153 * bits can be lost, but they will be set again on the next
1154 * force-quiescent-state pass. So lost bit sets do not result
1155 * in incorrect behavior, merely in a grace period lasting
1156 * a few jiffies longer than it might otherwise. Because
1157 * there are at most four threads involved, and because the
1158 * updates are only once every few jiffies, the probability of
1159 * lossage (and thus of slight grace-period extension) is
1162 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1163 * is set too high, we override with half of the RCU CPU stall
1166 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1167 if (ULONG_CMP_GE(jiffies
,
1168 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1169 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1170 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1171 WRITE_ONCE(rdp
->cond_resched_completed
,
1172 READ_ONCE(rdp
->mynode
->completed
));
1173 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1175 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1176 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1177 rdp
->rsp
->jiffies_resched
+= 5; /* Enable beating. */
1178 } else if (ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1179 /* Time to beat on that CPU again! */
1180 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1181 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1188 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1190 unsigned long j
= jiffies
;
1194 smp_wmb(); /* Record start time before stall time. */
1195 j1
= rcu_jiffies_till_stall_check();
1196 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1197 rsp
->jiffies_resched
= j
+ j1
/ 2;
1198 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1202 * Complain about starvation of grace-period kthread.
1204 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1210 gpa
= READ_ONCE(rsp
->gp_activity
);
1211 if (j
- gpa
> 2 * HZ
)
1212 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1214 rsp
->gpnum
, rsp
->completed
,
1215 rsp
->gp_flags
, rsp
->gp_state
,
1216 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: 0);
1220 * Dump stacks of all tasks running on stalled CPUs.
1222 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1225 unsigned long flags
;
1226 struct rcu_node
*rnp
;
1228 rcu_for_each_leaf_node(rsp
, rnp
) {
1229 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1230 if (rnp
->qsmask
!= 0) {
1231 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1232 if (rnp
->qsmask
& (1UL << cpu
))
1233 dump_cpu_task(rnp
->grplo
+ cpu
);
1235 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1239 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1243 unsigned long flags
;
1247 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1250 /* Only let one CPU complain about others per time interval. */
1252 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1253 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1254 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1255 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1258 WRITE_ONCE(rsp
->jiffies_stall
,
1259 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1260 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1263 * OK, time to rat on our buddy...
1264 * See Documentation/RCU/stallwarn.txt for info on how to debug
1265 * RCU CPU stall warnings.
1267 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1269 print_cpu_stall_info_begin();
1270 rcu_for_each_leaf_node(rsp
, rnp
) {
1271 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1272 ndetected
+= rcu_print_task_stall(rnp
);
1273 if (rnp
->qsmask
!= 0) {
1274 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1275 if (rnp
->qsmask
& (1UL << cpu
)) {
1276 print_cpu_stall_info(rsp
,
1281 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1284 print_cpu_stall_info_end();
1285 for_each_possible_cpu(cpu
)
1286 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1287 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1288 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1289 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1291 rcu_dump_cpu_stacks(rsp
);
1293 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1294 READ_ONCE(rsp
->completed
) == gpnum
) {
1295 pr_err("INFO: Stall ended before state dump start\n");
1298 gpa
= READ_ONCE(rsp
->gp_activity
);
1299 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1300 rsp
->name
, j
- gpa
, j
, gpa
,
1301 jiffies_till_next_fqs
,
1302 rcu_get_root(rsp
)->qsmask
);
1303 /* In this case, the current CPU might be at fault. */
1304 sched_show_task(current
);
1308 /* Complain about tasks blocking the grace period. */
1309 rcu_print_detail_task_stall(rsp
);
1311 rcu_check_gp_kthread_starvation(rsp
);
1313 force_quiescent_state(rsp
); /* Kick them all. */
1316 static void print_cpu_stall(struct rcu_state
*rsp
)
1319 unsigned long flags
;
1320 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1324 * OK, time to rat on ourselves...
1325 * See Documentation/RCU/stallwarn.txt for info on how to debug
1326 * RCU CPU stall warnings.
1328 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1329 print_cpu_stall_info_begin();
1330 print_cpu_stall_info(rsp
, smp_processor_id());
1331 print_cpu_stall_info_end();
1332 for_each_possible_cpu(cpu
)
1333 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1334 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1335 jiffies
- rsp
->gp_start
,
1336 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1338 rcu_check_gp_kthread_starvation(rsp
);
1340 rcu_dump_cpu_stacks(rsp
);
1342 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1343 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1344 WRITE_ONCE(rsp
->jiffies_stall
,
1345 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1346 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1349 * Attempt to revive the RCU machinery by forcing a context switch.
1351 * A context switch would normally allow the RCU state machine to make
1352 * progress and it could be we're stuck in kernel space without context
1353 * switches for an entirely unreasonable amount of time.
1355 resched_cpu(smp_processor_id());
1358 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1360 unsigned long completed
;
1361 unsigned long gpnum
;
1365 struct rcu_node
*rnp
;
1367 if (rcu_cpu_stall_suppress
|| !rcu_gp_in_progress(rsp
))
1372 * Lots of memory barriers to reject false positives.
1374 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1375 * then rsp->gp_start, and finally rsp->completed. These values
1376 * are updated in the opposite order with memory barriers (or
1377 * equivalent) during grace-period initialization and cleanup.
1378 * Now, a false positive can occur if we get an new value of
1379 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1380 * the memory barriers, the only way that this can happen is if one
1381 * grace period ends and another starts between these two fetches.
1382 * Detect this by comparing rsp->completed with the previous fetch
1385 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1386 * and rsp->gp_start suffice to forestall false positives.
1388 gpnum
= READ_ONCE(rsp
->gpnum
);
1389 smp_rmb(); /* Pick up ->gpnum first... */
1390 js
= READ_ONCE(rsp
->jiffies_stall
);
1391 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1392 gps
= READ_ONCE(rsp
->gp_start
);
1393 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1394 completed
= READ_ONCE(rsp
->completed
);
1395 if (ULONG_CMP_GE(completed
, gpnum
) ||
1396 ULONG_CMP_LT(j
, js
) ||
1397 ULONG_CMP_GE(gps
, js
))
1398 return; /* No stall or GP completed since entering function. */
1400 if (rcu_gp_in_progress(rsp
) &&
1401 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1403 /* We haven't checked in, so go dump stack. */
1404 print_cpu_stall(rsp
);
1406 } else if (rcu_gp_in_progress(rsp
) &&
1407 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1409 /* They had a few time units to dump stack, so complain. */
1410 print_other_cpu_stall(rsp
, gpnum
);
1415 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1417 * Set the stall-warning timeout way off into the future, thus preventing
1418 * any RCU CPU stall-warning messages from appearing in the current set of
1419 * RCU grace periods.
1421 * The caller must disable hard irqs.
1423 void rcu_cpu_stall_reset(void)
1425 struct rcu_state
*rsp
;
1427 for_each_rcu_flavor(rsp
)
1428 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1432 * Initialize the specified rcu_data structure's default callback list
1433 * to empty. The default callback list is the one that is not used by
1434 * no-callbacks CPUs.
1436 static void init_default_callback_list(struct rcu_data
*rdp
)
1440 rdp
->nxtlist
= NULL
;
1441 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1442 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1446 * Initialize the specified rcu_data structure's callback list to empty.
1448 static void init_callback_list(struct rcu_data
*rdp
)
1450 if (init_nocb_callback_list(rdp
))
1452 init_default_callback_list(rdp
);
1456 * Determine the value that ->completed will have at the end of the
1457 * next subsequent grace period. This is used to tag callbacks so that
1458 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1459 * been dyntick-idle for an extended period with callbacks under the
1460 * influence of RCU_FAST_NO_HZ.
1462 * The caller must hold rnp->lock with interrupts disabled.
1464 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1465 struct rcu_node
*rnp
)
1468 * If RCU is idle, we just wait for the next grace period.
1469 * But we can only be sure that RCU is idle if we are looking
1470 * at the root rcu_node structure -- otherwise, a new grace
1471 * period might have started, but just not yet gotten around
1472 * to initializing the current non-root rcu_node structure.
1474 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1475 return rnp
->completed
+ 1;
1478 * Otherwise, wait for a possible partial grace period and
1479 * then the subsequent full grace period.
1481 return rnp
->completed
+ 2;
1485 * Trace-event helper function for rcu_start_future_gp() and
1486 * rcu_nocb_wait_gp().
1488 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1489 unsigned long c
, const char *s
)
1491 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1492 rnp
->completed
, c
, rnp
->level
,
1493 rnp
->grplo
, rnp
->grphi
, s
);
1497 * Start some future grace period, as needed to handle newly arrived
1498 * callbacks. The required future grace periods are recorded in each
1499 * rcu_node structure's ->need_future_gp field. Returns true if there
1500 * is reason to awaken the grace-period kthread.
1502 * The caller must hold the specified rcu_node structure's ->lock.
1504 static bool __maybe_unused
1505 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1506 unsigned long *c_out
)
1511 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1514 * Pick up grace-period number for new callbacks. If this
1515 * grace period is already marked as needed, return to the caller.
1517 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1518 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1519 if (rnp
->need_future_gp
[c
& 0x1]) {
1520 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1525 * If either this rcu_node structure or the root rcu_node structure
1526 * believe that a grace period is in progress, then we must wait
1527 * for the one following, which is in "c". Because our request
1528 * will be noticed at the end of the current grace period, we don't
1529 * need to explicitly start one. We only do the lockless check
1530 * of rnp_root's fields if the current rcu_node structure thinks
1531 * there is no grace period in flight, and because we hold rnp->lock,
1532 * the only possible change is when rnp_root's two fields are
1533 * equal, in which case rnp_root->gpnum might be concurrently
1534 * incremented. But that is OK, as it will just result in our
1535 * doing some extra useless work.
1537 if (rnp
->gpnum
!= rnp
->completed
||
1538 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1539 rnp
->need_future_gp
[c
& 0x1]++;
1540 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1545 * There might be no grace period in progress. If we don't already
1546 * hold it, acquire the root rcu_node structure's lock in order to
1547 * start one (if needed).
1549 if (rnp
!= rnp_root
) {
1550 raw_spin_lock(&rnp_root
->lock
);
1551 smp_mb__after_unlock_lock();
1555 * Get a new grace-period number. If there really is no grace
1556 * period in progress, it will be smaller than the one we obtained
1557 * earlier. Adjust callbacks as needed. Note that even no-CBs
1558 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1560 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1561 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1562 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1563 rdp
->nxtcompleted
[i
] = c
;
1566 * If the needed for the required grace period is already
1567 * recorded, trace and leave.
1569 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1570 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1574 /* Record the need for the future grace period. */
1575 rnp_root
->need_future_gp
[c
& 0x1]++;
1577 /* If a grace period is not already in progress, start one. */
1578 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1579 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1581 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1582 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1585 if (rnp
!= rnp_root
)
1586 raw_spin_unlock(&rnp_root
->lock
);
1594 * Clean up any old requests for the just-ended grace period. Also return
1595 * whether any additional grace periods have been requested. Also invoke
1596 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1597 * waiting for this grace period to complete.
1599 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1601 int c
= rnp
->completed
;
1603 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1605 rcu_nocb_gp_cleanup(rsp
, rnp
);
1606 rnp
->need_future_gp
[c
& 0x1] = 0;
1607 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1608 trace_rcu_future_gp(rnp
, rdp
, c
,
1609 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1614 * Awaken the grace-period kthread for the specified flavor of RCU.
1615 * Don't do a self-awaken, and don't bother awakening when there is
1616 * nothing for the grace-period kthread to do (as in several CPUs
1617 * raced to awaken, and we lost), and finally don't try to awaken
1618 * a kthread that has not yet been created.
1620 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1622 if (current
== rsp
->gp_kthread
||
1623 !READ_ONCE(rsp
->gp_flags
) ||
1626 wake_up(&rsp
->gp_wq
);
1630 * If there is room, assign a ->completed number to any callbacks on
1631 * this CPU that have not already been assigned. Also accelerate any
1632 * callbacks that were previously assigned a ->completed number that has
1633 * since proven to be too conservative, which can happen if callbacks get
1634 * assigned a ->completed number while RCU is idle, but with reference to
1635 * a non-root rcu_node structure. This function is idempotent, so it does
1636 * not hurt to call it repeatedly. Returns an flag saying that we should
1637 * awaken the RCU grace-period kthread.
1639 * The caller must hold rnp->lock with interrupts disabled.
1641 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1642 struct rcu_data
*rdp
)
1648 /* If the CPU has no callbacks, nothing to do. */
1649 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1653 * Starting from the sublist containing the callbacks most
1654 * recently assigned a ->completed number and working down, find the
1655 * first sublist that is not assignable to an upcoming grace period.
1656 * Such a sublist has something in it (first two tests) and has
1657 * a ->completed number assigned that will complete sooner than
1658 * the ->completed number for newly arrived callbacks (last test).
1660 * The key point is that any later sublist can be assigned the
1661 * same ->completed number as the newly arrived callbacks, which
1662 * means that the callbacks in any of these later sublist can be
1663 * grouped into a single sublist, whether or not they have already
1664 * been assigned a ->completed number.
1666 c
= rcu_cbs_completed(rsp
, rnp
);
1667 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1668 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1669 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1673 * If there are no sublist for unassigned callbacks, leave.
1674 * At the same time, advance "i" one sublist, so that "i" will
1675 * index into the sublist where all the remaining callbacks should
1678 if (++i
>= RCU_NEXT_TAIL
)
1682 * Assign all subsequent callbacks' ->completed number to the next
1683 * full grace period and group them all in the sublist initially
1686 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1687 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1688 rdp
->nxtcompleted
[i
] = c
;
1690 /* Record any needed additional grace periods. */
1691 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1693 /* Trace depending on how much we were able to accelerate. */
1694 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1695 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1697 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1702 * Move any callbacks whose grace period has completed to the
1703 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1704 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1705 * sublist. This function is idempotent, so it does not hurt to
1706 * invoke it repeatedly. As long as it is not invoked -too- often...
1707 * Returns true if the RCU grace-period kthread needs to be awakened.
1709 * The caller must hold rnp->lock with interrupts disabled.
1711 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1712 struct rcu_data
*rdp
)
1716 /* If the CPU has no callbacks, nothing to do. */
1717 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1721 * Find all callbacks whose ->completed numbers indicate that they
1722 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1724 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1725 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1727 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1729 /* Clean up any sublist tail pointers that were misordered above. */
1730 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1731 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1733 /* Copy down callbacks to fill in empty sublists. */
1734 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1735 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1737 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1738 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1741 /* Classify any remaining callbacks. */
1742 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1746 * Update CPU-local rcu_data state to record the beginnings and ends of
1747 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1748 * structure corresponding to the current CPU, and must have irqs disabled.
1749 * Returns true if the grace-period kthread needs to be awakened.
1751 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1752 struct rcu_data
*rdp
)
1756 /* Handle the ends of any preceding grace periods first. */
1757 if (rdp
->completed
== rnp
->completed
&&
1758 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1760 /* No grace period end, so just accelerate recent callbacks. */
1761 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1765 /* Advance callbacks. */
1766 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1768 /* Remember that we saw this grace-period completion. */
1769 rdp
->completed
= rnp
->completed
;
1770 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1773 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1775 * If the current grace period is waiting for this CPU,
1776 * set up to detect a quiescent state, otherwise don't
1777 * go looking for one.
1779 rdp
->gpnum
= rnp
->gpnum
;
1780 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1781 rdp
->cpu_no_qs
.b
.norm
= true;
1782 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1783 rdp
->core_needs_qs
= !!(rnp
->qsmask
& rdp
->grpmask
);
1784 zero_cpu_stall_ticks(rdp
);
1785 WRITE_ONCE(rdp
->gpwrap
, false);
1790 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1792 unsigned long flags
;
1794 struct rcu_node
*rnp
;
1796 local_irq_save(flags
);
1798 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1799 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1800 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1801 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
1802 local_irq_restore(flags
);
1805 smp_mb__after_unlock_lock();
1806 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1807 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1809 rcu_gp_kthread_wake(rsp
);
1812 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1815 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1816 schedule_timeout_uninterruptible(delay
);
1820 * Initialize a new grace period. Return 0 if no grace period required.
1822 static int rcu_gp_init(struct rcu_state
*rsp
)
1824 unsigned long oldmask
;
1825 struct rcu_data
*rdp
;
1826 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1828 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1829 raw_spin_lock_irq(&rnp
->lock
);
1830 smp_mb__after_unlock_lock();
1831 if (!READ_ONCE(rsp
->gp_flags
)) {
1832 /* Spurious wakeup, tell caller to go back to sleep. */
1833 raw_spin_unlock_irq(&rnp
->lock
);
1836 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1838 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1840 * Grace period already in progress, don't start another.
1841 * Not supposed to be able to happen.
1843 raw_spin_unlock_irq(&rnp
->lock
);
1847 /* Advance to a new grace period and initialize state. */
1848 record_gp_stall_check_time(rsp
);
1849 /* Record GP times before starting GP, hence smp_store_release(). */
1850 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1851 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1852 raw_spin_unlock_irq(&rnp
->lock
);
1855 * Apply per-leaf buffered online and offline operations to the
1856 * rcu_node tree. Note that this new grace period need not wait
1857 * for subsequent online CPUs, and that quiescent-state forcing
1858 * will handle subsequent offline CPUs.
1860 rcu_for_each_leaf_node(rsp
, rnp
) {
1861 rcu_gp_slow(rsp
, gp_preinit_delay
);
1862 raw_spin_lock_irq(&rnp
->lock
);
1863 smp_mb__after_unlock_lock();
1864 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1865 !rnp
->wait_blkd_tasks
) {
1866 /* Nothing to do on this leaf rcu_node structure. */
1867 raw_spin_unlock_irq(&rnp
->lock
);
1871 /* Record old state, apply changes to ->qsmaskinit field. */
1872 oldmask
= rnp
->qsmaskinit
;
1873 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1875 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1876 if (!oldmask
!= !rnp
->qsmaskinit
) {
1877 if (!oldmask
) /* First online CPU for this rcu_node. */
1878 rcu_init_new_rnp(rnp
);
1879 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1880 rnp
->wait_blkd_tasks
= true;
1881 else /* Last offline CPU and can propagate. */
1882 rcu_cleanup_dead_rnp(rnp
);
1886 * If all waited-on tasks from prior grace period are
1887 * done, and if all this rcu_node structure's CPUs are
1888 * still offline, propagate up the rcu_node tree and
1889 * clear ->wait_blkd_tasks. Otherwise, if one of this
1890 * rcu_node structure's CPUs has since come back online,
1891 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1892 * checks for this, so just call it unconditionally).
1894 if (rnp
->wait_blkd_tasks
&&
1895 (!rcu_preempt_has_tasks(rnp
) ||
1897 rnp
->wait_blkd_tasks
= false;
1898 rcu_cleanup_dead_rnp(rnp
);
1901 raw_spin_unlock_irq(&rnp
->lock
);
1905 * Set the quiescent-state-needed bits in all the rcu_node
1906 * structures for all currently online CPUs in breadth-first order,
1907 * starting from the root rcu_node structure, relying on the layout
1908 * of the tree within the rsp->node[] array. Note that other CPUs
1909 * will access only the leaves of the hierarchy, thus seeing that no
1910 * grace period is in progress, at least until the corresponding
1911 * leaf node has been initialized. In addition, we have excluded
1912 * CPU-hotplug operations.
1914 * The grace period cannot complete until the initialization
1915 * process finishes, because this kthread handles both.
1917 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1918 rcu_gp_slow(rsp
, gp_init_delay
);
1919 raw_spin_lock_irq(&rnp
->lock
);
1920 smp_mb__after_unlock_lock();
1921 rdp
= this_cpu_ptr(rsp
->rda
);
1922 rcu_preempt_check_blocked_tasks(rnp
);
1923 rnp
->qsmask
= rnp
->qsmaskinit
;
1924 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
1925 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
1926 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
1927 if (rnp
== rdp
->mynode
)
1928 (void)__note_gp_changes(rsp
, rnp
, rdp
);
1929 rcu_preempt_boost_start_gp(rnp
);
1930 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1931 rnp
->level
, rnp
->grplo
,
1932 rnp
->grphi
, rnp
->qsmask
);
1933 raw_spin_unlock_irq(&rnp
->lock
);
1934 cond_resched_rcu_qs();
1935 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1942 * Helper function for wait_event_interruptible_timeout() wakeup
1943 * at force-quiescent-state time.
1945 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
1947 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1949 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1950 *gfp
= READ_ONCE(rsp
->gp_flags
);
1951 if (*gfp
& RCU_GP_FLAG_FQS
)
1954 /* The current grace period has completed. */
1955 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1962 * Do one round of quiescent-state forcing.
1964 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
1966 bool isidle
= false;
1968 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1970 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1973 /* Collect dyntick-idle snapshots. */
1974 if (is_sysidle_rcu_state(rsp
)) {
1976 maxj
= jiffies
- ULONG_MAX
/ 4;
1978 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
1980 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
1982 /* Handle dyntick-idle and offline CPUs. */
1984 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
1986 /* Clear flag to prevent immediate re-entry. */
1987 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
1988 raw_spin_lock_irq(&rnp
->lock
);
1989 smp_mb__after_unlock_lock();
1990 WRITE_ONCE(rsp
->gp_flags
,
1991 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
1992 raw_spin_unlock_irq(&rnp
->lock
);
1997 * Clean up after the old grace period.
1999 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2001 unsigned long gp_duration
;
2002 bool needgp
= false;
2004 struct rcu_data
*rdp
;
2005 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2007 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2008 raw_spin_lock_irq(&rnp
->lock
);
2009 smp_mb__after_unlock_lock();
2010 gp_duration
= jiffies
- rsp
->gp_start
;
2011 if (gp_duration
> rsp
->gp_max
)
2012 rsp
->gp_max
= gp_duration
;
2015 * We know the grace period is complete, but to everyone else
2016 * it appears to still be ongoing. But it is also the case
2017 * that to everyone else it looks like there is nothing that
2018 * they can do to advance the grace period. It is therefore
2019 * safe for us to drop the lock in order to mark the grace
2020 * period as completed in all of the rcu_node structures.
2022 raw_spin_unlock_irq(&rnp
->lock
);
2025 * Propagate new ->completed value to rcu_node structures so
2026 * that other CPUs don't have to wait until the start of the next
2027 * grace period to process their callbacks. This also avoids
2028 * some nasty RCU grace-period initialization races by forcing
2029 * the end of the current grace period to be completely recorded in
2030 * all of the rcu_node structures before the beginning of the next
2031 * grace period is recorded in any of the rcu_node structures.
2033 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2034 raw_spin_lock_irq(&rnp
->lock
);
2035 smp_mb__after_unlock_lock();
2036 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2037 WARN_ON_ONCE(rnp
->qsmask
);
2038 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2039 rdp
= this_cpu_ptr(rsp
->rda
);
2040 if (rnp
== rdp
->mynode
)
2041 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2042 /* smp_mb() provided by prior unlock-lock pair. */
2043 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2044 raw_spin_unlock_irq(&rnp
->lock
);
2045 cond_resched_rcu_qs();
2046 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2047 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2049 rnp
= rcu_get_root(rsp
);
2050 raw_spin_lock_irq(&rnp
->lock
);
2051 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2052 rcu_nocb_gp_set(rnp
, nocb
);
2054 /* Declare grace period done. */
2055 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2056 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2057 rsp
->gp_state
= RCU_GP_IDLE
;
2058 rdp
= this_cpu_ptr(rsp
->rda
);
2059 /* Advance CBs to reduce false positives below. */
2060 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2061 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2062 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2063 trace_rcu_grace_period(rsp
->name
,
2064 READ_ONCE(rsp
->gpnum
),
2067 raw_spin_unlock_irq(&rnp
->lock
);
2071 * Body of kthread that handles grace periods.
2073 static int __noreturn
rcu_gp_kthread(void *arg
)
2079 struct rcu_state
*rsp
= arg
;
2080 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2082 rcu_bind_gp_kthread();
2085 /* Handle grace-period start. */
2087 trace_rcu_grace_period(rsp
->name
,
2088 READ_ONCE(rsp
->gpnum
),
2090 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2091 wait_event_interruptible(rsp
->gp_wq
,
2092 READ_ONCE(rsp
->gp_flags
) &
2094 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2095 /* Locking provides needed memory barrier. */
2096 if (rcu_gp_init(rsp
))
2098 cond_resched_rcu_qs();
2099 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2100 WARN_ON(signal_pending(current
));
2101 trace_rcu_grace_period(rsp
->name
,
2102 READ_ONCE(rsp
->gpnum
),
2106 /* Handle quiescent-state forcing. */
2107 first_gp_fqs
= true;
2108 j
= jiffies_till_first_fqs
;
2111 jiffies_till_first_fqs
= HZ
;
2116 rsp
->jiffies_force_qs
= jiffies
+ j
;
2117 trace_rcu_grace_period(rsp
->name
,
2118 READ_ONCE(rsp
->gpnum
),
2120 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2121 ret
= wait_event_interruptible_timeout(rsp
->gp_wq
,
2122 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2123 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2124 /* Locking provides needed memory barriers. */
2125 /* If grace period done, leave loop. */
2126 if (!READ_ONCE(rnp
->qsmask
) &&
2127 !rcu_preempt_blocked_readers_cgp(rnp
))
2129 /* If time for quiescent-state forcing, do it. */
2130 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2131 (gf
& RCU_GP_FLAG_FQS
)) {
2132 trace_rcu_grace_period(rsp
->name
,
2133 READ_ONCE(rsp
->gpnum
),
2135 rcu_gp_fqs(rsp
, first_gp_fqs
);
2136 first_gp_fqs
= false;
2137 trace_rcu_grace_period(rsp
->name
,
2138 READ_ONCE(rsp
->gpnum
),
2140 cond_resched_rcu_qs();
2141 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2143 /* Deal with stray signal. */
2144 cond_resched_rcu_qs();
2145 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2146 WARN_ON(signal_pending(current
));
2147 trace_rcu_grace_period(rsp
->name
,
2148 READ_ONCE(rsp
->gpnum
),
2151 j
= jiffies_till_next_fqs
;
2154 jiffies_till_next_fqs
= HZ
;
2157 jiffies_till_next_fqs
= 1;
2161 /* Handle grace-period end. */
2162 rsp
->gp_state
= RCU_GP_CLEANUP
;
2163 rcu_gp_cleanup(rsp
);
2164 rsp
->gp_state
= RCU_GP_CLEANED
;
2169 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2170 * in preparation for detecting the next grace period. The caller must hold
2171 * the root node's ->lock and hard irqs must be disabled.
2173 * Note that it is legal for a dying CPU (which is marked as offline) to
2174 * invoke this function. This can happen when the dying CPU reports its
2177 * Returns true if the grace-period kthread must be awakened.
2180 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2181 struct rcu_data
*rdp
)
2183 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2185 * Either we have not yet spawned the grace-period
2186 * task, this CPU does not need another grace period,
2187 * or a grace period is already in progress.
2188 * Either way, don't start a new grace period.
2192 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2193 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2197 * We can't do wakeups while holding the rnp->lock, as that
2198 * could cause possible deadlocks with the rq->lock. Defer
2199 * the wakeup to our caller.
2205 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2206 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2207 * is invoked indirectly from rcu_advance_cbs(), which would result in
2208 * endless recursion -- or would do so if it wasn't for the self-deadlock
2209 * that is encountered beforehand.
2211 * Returns true if the grace-period kthread needs to be awakened.
2213 static bool rcu_start_gp(struct rcu_state
*rsp
)
2215 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2216 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2220 * If there is no grace period in progress right now, any
2221 * callbacks we have up to this point will be satisfied by the
2222 * next grace period. Also, advancing the callbacks reduces the
2223 * probability of false positives from cpu_needs_another_gp()
2224 * resulting in pointless grace periods. So, advance callbacks
2225 * then start the grace period!
2227 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2228 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2233 * Report a full set of quiescent states to the specified rcu_state
2234 * data structure. This involves cleaning up after the prior grace
2235 * period and letting rcu_start_gp() start up the next grace period
2236 * if one is needed. Note that the caller must hold rnp->lock, which
2237 * is released before return.
2239 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2240 __releases(rcu_get_root(rsp
)->lock
)
2242 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2243 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2244 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2245 rcu_gp_kthread_wake(rsp
);
2249 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2250 * Allows quiescent states for a group of CPUs to be reported at one go
2251 * to the specified rcu_node structure, though all the CPUs in the group
2252 * must be represented by the same rcu_node structure (which need not be a
2253 * leaf rcu_node structure, though it often will be). The gps parameter
2254 * is the grace-period snapshot, which means that the quiescent states
2255 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2256 * must be held upon entry, and it is released before return.
2259 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2260 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2261 __releases(rnp
->lock
)
2263 unsigned long oldmask
= 0;
2264 struct rcu_node
*rnp_c
;
2266 /* Walk up the rcu_node hierarchy. */
2268 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2271 * Our bit has already been cleared, or the
2272 * relevant grace period is already over, so done.
2274 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2277 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2278 rnp
->qsmask
&= ~mask
;
2279 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2280 mask
, rnp
->qsmask
, rnp
->level
,
2281 rnp
->grplo
, rnp
->grphi
,
2283 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2285 /* Other bits still set at this level, so done. */
2286 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2289 mask
= rnp
->grpmask
;
2290 if (rnp
->parent
== NULL
) {
2292 /* No more levels. Exit loop holding root lock. */
2296 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2299 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2300 smp_mb__after_unlock_lock();
2301 oldmask
= rnp_c
->qsmask
;
2305 * Get here if we are the last CPU to pass through a quiescent
2306 * state for this grace period. Invoke rcu_report_qs_rsp()
2307 * to clean up and start the next grace period if one is needed.
2309 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2313 * Record a quiescent state for all tasks that were previously queued
2314 * on the specified rcu_node structure and that were blocking the current
2315 * RCU grace period. The caller must hold the specified rnp->lock with
2316 * irqs disabled, and this lock is released upon return, but irqs remain
2319 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2320 struct rcu_node
*rnp
, unsigned long flags
)
2321 __releases(rnp
->lock
)
2325 struct rcu_node
*rnp_p
;
2327 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2328 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2329 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2330 return; /* Still need more quiescent states! */
2333 rnp_p
= rnp
->parent
;
2334 if (rnp_p
== NULL
) {
2336 * Only one rcu_node structure in the tree, so don't
2337 * try to report up to its nonexistent parent!
2339 rcu_report_qs_rsp(rsp
, flags
);
2343 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2345 mask
= rnp
->grpmask
;
2346 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2347 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
2348 smp_mb__after_unlock_lock();
2349 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2353 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2354 * structure. This must be either called from the specified CPU, or
2355 * called when the specified CPU is known to be offline (and when it is
2356 * also known that no other CPU is concurrently trying to help the offline
2357 * CPU). The lastcomp argument is used to make sure we are still in the
2358 * grace period of interest. We don't want to end the current grace period
2359 * based on quiescent states detected in an earlier grace period!
2362 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2364 unsigned long flags
;
2367 struct rcu_node
*rnp
;
2370 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2371 smp_mb__after_unlock_lock();
2372 if ((rdp
->cpu_no_qs
.b
.norm
&&
2373 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2374 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2378 * The grace period in which this quiescent state was
2379 * recorded has ended, so don't report it upwards.
2380 * We will instead need a new quiescent state that lies
2381 * within the current grace period.
2383 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2384 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2385 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2388 mask
= rdp
->grpmask
;
2389 if ((rnp
->qsmask
& mask
) == 0) {
2390 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2392 rdp
->core_needs_qs
= 0;
2395 * This GP can't end until cpu checks in, so all of our
2396 * callbacks can be processed during the next GP.
2398 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2400 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2401 /* ^^^ Released rnp->lock */
2403 rcu_gp_kthread_wake(rsp
);
2408 * Check to see if there is a new grace period of which this CPU
2409 * is not yet aware, and if so, set up local rcu_data state for it.
2410 * Otherwise, see if this CPU has just passed through its first
2411 * quiescent state for this grace period, and record that fact if so.
2414 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2416 /* Check for grace-period ends and beginnings. */
2417 note_gp_changes(rsp
, rdp
);
2420 * Does this CPU still need to do its part for current grace period?
2421 * If no, return and let the other CPUs do their part as well.
2423 if (!rdp
->core_needs_qs
)
2427 * Was there a quiescent state since the beginning of the grace
2428 * period? If no, then exit and wait for the next call.
2430 if (rdp
->cpu_no_qs
.b
.norm
&&
2431 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2435 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2438 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2442 * Send the specified CPU's RCU callbacks to the orphanage. The
2443 * specified CPU must be offline, and the caller must hold the
2447 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2448 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2450 /* No-CBs CPUs do not have orphanable callbacks. */
2451 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2455 * Orphan the callbacks. First adjust the counts. This is safe
2456 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2457 * cannot be running now. Thus no memory barrier is required.
2459 if (rdp
->nxtlist
!= NULL
) {
2460 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2461 rsp
->qlen
+= rdp
->qlen
;
2462 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2464 WRITE_ONCE(rdp
->qlen
, 0);
2468 * Next, move those callbacks still needing a grace period to
2469 * the orphanage, where some other CPU will pick them up.
2470 * Some of the callbacks might have gone partway through a grace
2471 * period, but that is too bad. They get to start over because we
2472 * cannot assume that grace periods are synchronized across CPUs.
2473 * We don't bother updating the ->nxttail[] array yet, instead
2474 * we just reset the whole thing later on.
2476 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2477 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2478 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2479 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2483 * Then move the ready-to-invoke callbacks to the orphanage,
2484 * where some other CPU will pick them up. These will not be
2485 * required to pass though another grace period: They are done.
2487 if (rdp
->nxtlist
!= NULL
) {
2488 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2489 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2493 * Finally, initialize the rcu_data structure's list to empty and
2494 * disallow further callbacks on this CPU.
2496 init_callback_list(rdp
);
2497 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2501 * Adopt the RCU callbacks from the specified rcu_state structure's
2502 * orphanage. The caller must hold the ->orphan_lock.
2504 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2507 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2509 /* No-CBs CPUs are handled specially. */
2510 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2511 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2514 /* Do the accounting first. */
2515 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2516 rdp
->qlen
+= rsp
->qlen
;
2517 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2518 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2519 rcu_idle_count_callbacks_posted();
2524 * We do not need a memory barrier here because the only way we
2525 * can get here if there is an rcu_barrier() in flight is if
2526 * we are the task doing the rcu_barrier().
2529 /* First adopt the ready-to-invoke callbacks. */
2530 if (rsp
->orphan_donelist
!= NULL
) {
2531 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2532 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2533 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2534 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2535 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2536 rsp
->orphan_donelist
= NULL
;
2537 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2540 /* And then adopt the callbacks that still need a grace period. */
2541 if (rsp
->orphan_nxtlist
!= NULL
) {
2542 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2543 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2544 rsp
->orphan_nxtlist
= NULL
;
2545 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2550 * Trace the fact that this CPU is going offline.
2552 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2554 RCU_TRACE(unsigned long mask
);
2555 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2556 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2558 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2561 RCU_TRACE(mask
= rdp
->grpmask
);
2562 trace_rcu_grace_period(rsp
->name
,
2563 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2568 * All CPUs for the specified rcu_node structure have gone offline,
2569 * and all tasks that were preempted within an RCU read-side critical
2570 * section while running on one of those CPUs have since exited their RCU
2571 * read-side critical section. Some other CPU is reporting this fact with
2572 * the specified rcu_node structure's ->lock held and interrupts disabled.
2573 * This function therefore goes up the tree of rcu_node structures,
2574 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2575 * the leaf rcu_node structure's ->qsmaskinit field has already been
2578 * This function does check that the specified rcu_node structure has
2579 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2580 * prematurely. That said, invoking it after the fact will cost you
2581 * a needless lock acquisition. So once it has done its work, don't
2584 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2587 struct rcu_node
*rnp
= rnp_leaf
;
2589 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2590 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2593 mask
= rnp
->grpmask
;
2597 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2598 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2599 rnp
->qsmaskinit
&= ~mask
;
2600 rnp
->qsmask
&= ~mask
;
2601 if (rnp
->qsmaskinit
) {
2602 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2605 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2610 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2611 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2614 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
2616 unsigned long flags
;
2618 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2619 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2624 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2625 mask
= rdp
->grpmask
;
2626 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2627 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2628 rnp
->qsmaskinitnext
&= ~mask
;
2629 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2633 * The CPU has been completely removed, and some other CPU is reporting
2634 * this fact from process context. Do the remainder of the cleanup,
2635 * including orphaning the outgoing CPU's RCU callbacks, and also
2636 * adopting them. There can only be one CPU hotplug operation at a time,
2637 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2639 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2641 unsigned long flags
;
2642 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2643 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2645 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2648 /* Adjust any no-longer-needed kthreads. */
2649 rcu_boost_kthread_setaffinity(rnp
, -1);
2651 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2652 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2653 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2654 rcu_adopt_orphan_cbs(rsp
, flags
);
2655 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2657 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2658 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2659 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2663 * Invoke any RCU callbacks that have made it to the end of their grace
2664 * period. Thottle as specified by rdp->blimit.
2666 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2668 unsigned long flags
;
2669 struct rcu_head
*next
, *list
, **tail
;
2670 long bl
, count
, count_lazy
;
2673 /* If no callbacks are ready, just return. */
2674 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2675 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2676 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2677 need_resched(), is_idle_task(current
),
2678 rcu_is_callbacks_kthread());
2683 * Extract the list of ready callbacks, disabling to prevent
2684 * races with call_rcu() from interrupt handlers.
2686 local_irq_save(flags
);
2687 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2689 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2690 list
= rdp
->nxtlist
;
2691 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2692 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2693 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2694 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2695 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2696 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2697 local_irq_restore(flags
);
2699 /* Invoke callbacks. */
2700 count
= count_lazy
= 0;
2704 debug_rcu_head_unqueue(list
);
2705 if (__rcu_reclaim(rsp
->name
, list
))
2708 /* Stop only if limit reached and CPU has something to do. */
2709 if (++count
>= bl
&&
2711 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2715 local_irq_save(flags
);
2716 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2717 is_idle_task(current
),
2718 rcu_is_callbacks_kthread());
2720 /* Update count, and requeue any remaining callbacks. */
2722 *tail
= rdp
->nxtlist
;
2723 rdp
->nxtlist
= list
;
2724 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2725 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2726 rdp
->nxttail
[i
] = tail
;
2730 smp_mb(); /* List handling before counting for rcu_barrier(). */
2731 rdp
->qlen_lazy
-= count_lazy
;
2732 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2733 rdp
->n_cbs_invoked
+= count
;
2735 /* Reinstate batch limit if we have worked down the excess. */
2736 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2737 rdp
->blimit
= blimit
;
2739 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2740 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2741 rdp
->qlen_last_fqs_check
= 0;
2742 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2743 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2744 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2745 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2747 local_irq_restore(flags
);
2749 /* Re-invoke RCU core processing if there are callbacks remaining. */
2750 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2755 * Check to see if this CPU is in a non-context-switch quiescent state
2756 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2757 * Also schedule RCU core processing.
2759 * This function must be called from hardirq context. It is normally
2760 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2761 * false, there is no point in invoking rcu_check_callbacks().
2763 void rcu_check_callbacks(int user
)
2765 trace_rcu_utilization(TPS("Start scheduler-tick"));
2766 increment_cpu_stall_ticks();
2767 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2770 * Get here if this CPU took its interrupt from user
2771 * mode or from the idle loop, and if this is not a
2772 * nested interrupt. In this case, the CPU is in
2773 * a quiescent state, so note it.
2775 * No memory barrier is required here because both
2776 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2777 * variables that other CPUs neither access nor modify,
2778 * at least not while the corresponding CPU is online.
2784 } else if (!in_softirq()) {
2787 * Get here if this CPU did not take its interrupt from
2788 * softirq, in other words, if it is not interrupting
2789 * a rcu_bh read-side critical section. This is an _bh
2790 * critical section, so note it.
2795 rcu_preempt_check_callbacks();
2799 rcu_note_voluntary_context_switch(current
);
2800 trace_rcu_utilization(TPS("End scheduler-tick"));
2804 * Scan the leaf rcu_node structures, processing dyntick state for any that
2805 * have not yet encountered a quiescent state, using the function specified.
2806 * Also initiate boosting for any threads blocked on the root rcu_node.
2808 * The caller must have suppressed start of new grace periods.
2810 static void force_qs_rnp(struct rcu_state
*rsp
,
2811 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2812 unsigned long *maxj
),
2813 bool *isidle
, unsigned long *maxj
)
2817 unsigned long flags
;
2819 struct rcu_node
*rnp
;
2821 rcu_for_each_leaf_node(rsp
, rnp
) {
2822 cond_resched_rcu_qs();
2824 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2825 smp_mb__after_unlock_lock();
2826 if (rnp
->qsmask
== 0) {
2827 if (rcu_state_p
== &rcu_sched_state
||
2828 rsp
!= rcu_state_p
||
2829 rcu_preempt_blocked_readers_cgp(rnp
)) {
2831 * No point in scanning bits because they
2832 * are all zero. But we might need to
2833 * priority-boost blocked readers.
2835 rcu_initiate_boost(rnp
, flags
);
2836 /* rcu_initiate_boost() releases rnp->lock */
2840 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2842 * Race between grace-period
2843 * initialization and task exiting RCU
2844 * read-side critical section: Report.
2846 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2847 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2853 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
2854 if ((rnp
->qsmask
& bit
) != 0) {
2855 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2860 /* Idle/offline CPUs, report (releases rnp->lock. */
2861 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2863 /* Nothing to do here, so just drop the lock. */
2864 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2870 * Force quiescent states on reluctant CPUs, and also detect which
2871 * CPUs are in dyntick-idle mode.
2873 static void force_quiescent_state(struct rcu_state
*rsp
)
2875 unsigned long flags
;
2877 struct rcu_node
*rnp
;
2878 struct rcu_node
*rnp_old
= NULL
;
2880 /* Funnel through hierarchy to reduce memory contention. */
2881 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2882 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2883 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2884 !raw_spin_trylock(&rnp
->fqslock
);
2885 if (rnp_old
!= NULL
)
2886 raw_spin_unlock(&rnp_old
->fqslock
);
2888 rsp
->n_force_qs_lh
++;
2893 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2895 /* Reached the root of the rcu_node tree, acquire lock. */
2896 raw_spin_lock_irqsave(&rnp_old
->lock
, flags
);
2897 smp_mb__after_unlock_lock();
2898 raw_spin_unlock(&rnp_old
->fqslock
);
2899 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2900 rsp
->n_force_qs_lh
++;
2901 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2902 return; /* Someone beat us to it. */
2904 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2905 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2906 rcu_gp_kthread_wake(rsp
);
2910 * This does the RCU core processing work for the specified rcu_state
2911 * and rcu_data structures. This may be called only from the CPU to
2912 * whom the rdp belongs.
2915 __rcu_process_callbacks(struct rcu_state
*rsp
)
2917 unsigned long flags
;
2919 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2921 WARN_ON_ONCE(rdp
->beenonline
== 0);
2923 /* Update RCU state based on any recent quiescent states. */
2924 rcu_check_quiescent_state(rsp
, rdp
);
2926 /* Does this CPU require a not-yet-started grace period? */
2927 local_irq_save(flags
);
2928 if (cpu_needs_another_gp(rsp
, rdp
)) {
2929 raw_spin_lock(&rcu_get_root(rsp
)->lock
); /* irqs disabled. */
2930 needwake
= rcu_start_gp(rsp
);
2931 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2933 rcu_gp_kthread_wake(rsp
);
2935 local_irq_restore(flags
);
2938 /* If there are callbacks ready, invoke them. */
2939 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2940 invoke_rcu_callbacks(rsp
, rdp
);
2942 /* Do any needed deferred wakeups of rcuo kthreads. */
2943 do_nocb_deferred_wakeup(rdp
);
2947 * Do RCU core processing for the current CPU.
2949 static void rcu_process_callbacks(struct softirq_action
*unused
)
2951 struct rcu_state
*rsp
;
2953 if (cpu_is_offline(smp_processor_id()))
2955 trace_rcu_utilization(TPS("Start RCU core"));
2956 for_each_rcu_flavor(rsp
)
2957 __rcu_process_callbacks(rsp
);
2958 trace_rcu_utilization(TPS("End RCU core"));
2962 * Schedule RCU callback invocation. If the specified type of RCU
2963 * does not support RCU priority boosting, just do a direct call,
2964 * otherwise wake up the per-CPU kernel kthread. Note that because we
2965 * are running on the current CPU with softirqs disabled, the
2966 * rcu_cpu_kthread_task cannot disappear out from under us.
2968 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2970 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2972 if (likely(!rsp
->boost
)) {
2973 rcu_do_batch(rsp
, rdp
);
2976 invoke_rcu_callbacks_kthread();
2979 static void invoke_rcu_core(void)
2981 if (cpu_online(smp_processor_id()))
2982 raise_softirq(RCU_SOFTIRQ
);
2986 * Handle any core-RCU processing required by a call_rcu() invocation.
2988 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2989 struct rcu_head
*head
, unsigned long flags
)
2994 * If called from an extended quiescent state, invoke the RCU
2995 * core in order to force a re-evaluation of RCU's idleness.
2997 if (!rcu_is_watching())
3000 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3001 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3005 * Force the grace period if too many callbacks or too long waiting.
3006 * Enforce hysteresis, and don't invoke force_quiescent_state()
3007 * if some other CPU has recently done so. Also, don't bother
3008 * invoking force_quiescent_state() if the newly enqueued callback
3009 * is the only one waiting for a grace period to complete.
3011 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3013 /* Are we ignoring a completed grace period? */
3014 note_gp_changes(rsp
, rdp
);
3016 /* Start a new grace period if one not already started. */
3017 if (!rcu_gp_in_progress(rsp
)) {
3018 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3020 raw_spin_lock(&rnp_root
->lock
);
3021 smp_mb__after_unlock_lock();
3022 needwake
= rcu_start_gp(rsp
);
3023 raw_spin_unlock(&rnp_root
->lock
);
3025 rcu_gp_kthread_wake(rsp
);
3027 /* Give the grace period a kick. */
3028 rdp
->blimit
= LONG_MAX
;
3029 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3030 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3031 force_quiescent_state(rsp
);
3032 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3033 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3039 * RCU callback function to leak a callback.
3041 static void rcu_leak_callback(struct rcu_head
*rhp
)
3046 * Helper function for call_rcu() and friends. The cpu argument will
3047 * normally be -1, indicating "currently running CPU". It may specify
3048 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3049 * is expected to specify a CPU.
3052 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3053 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3055 unsigned long flags
;
3056 struct rcu_data
*rdp
;
3058 WARN_ON_ONCE((unsigned long)head
& 0x1); /* Misaligned rcu_head! */
3059 if (debug_rcu_head_queue(head
)) {
3060 /* Probable double call_rcu(), so leak the callback. */
3061 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3062 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3069 * Opportunistically note grace-period endings and beginnings.
3070 * Note that we might see a beginning right after we see an
3071 * end, but never vice versa, since this CPU has to pass through
3072 * a quiescent state betweentimes.
3074 local_irq_save(flags
);
3075 rdp
= this_cpu_ptr(rsp
->rda
);
3077 /* Add the callback to our list. */
3078 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3082 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3083 if (likely(rdp
->mynode
)) {
3084 /* Post-boot, so this should be for a no-CBs CPU. */
3085 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3086 WARN_ON_ONCE(offline
);
3087 /* Offline CPU, _call_rcu() illegal, leak callback. */
3088 local_irq_restore(flags
);
3092 * Very early boot, before rcu_init(). Initialize if needed
3093 * and then drop through to queue the callback.
3096 WARN_ON_ONCE(!rcu_is_watching());
3097 if (!likely(rdp
->nxtlist
))
3098 init_default_callback_list(rdp
);
3100 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3104 rcu_idle_count_callbacks_posted();
3105 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3106 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3107 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3109 if (__is_kfree_rcu_offset((unsigned long)func
))
3110 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3111 rdp
->qlen_lazy
, rdp
->qlen
);
3113 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3115 /* Go handle any RCU core processing required. */
3116 __call_rcu_core(rsp
, rdp
, head
, flags
);
3117 local_irq_restore(flags
);
3121 * Queue an RCU-sched callback for invocation after a grace period.
3123 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3125 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3127 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3130 * Queue an RCU callback for invocation after a quicker grace period.
3132 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3134 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3136 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3139 * Queue an RCU callback for lazy invocation after a grace period.
3140 * This will likely be later named something like "call_rcu_lazy()",
3141 * but this change will require some way of tagging the lazy RCU
3142 * callbacks in the list of pending callbacks. Until then, this
3143 * function may only be called from __kfree_rcu().
3145 void kfree_call_rcu(struct rcu_head
*head
,
3146 rcu_callback_t func
)
3148 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3150 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3153 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3154 * any blocking grace-period wait automatically implies a grace period
3155 * if there is only one CPU online at any point time during execution
3156 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3157 * occasionally incorrectly indicate that there are multiple CPUs online
3158 * when there was in fact only one the whole time, as this just adds
3159 * some overhead: RCU still operates correctly.
3161 static inline int rcu_blocking_is_gp(void)
3165 might_sleep(); /* Check for RCU read-side critical section. */
3167 ret
= num_online_cpus() <= 1;
3173 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3175 * Control will return to the caller some time after a full rcu-sched
3176 * grace period has elapsed, in other words after all currently executing
3177 * rcu-sched read-side critical sections have completed. These read-side
3178 * critical sections are delimited by rcu_read_lock_sched() and
3179 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3180 * local_irq_disable(), and so on may be used in place of
3181 * rcu_read_lock_sched().
3183 * This means that all preempt_disable code sequences, including NMI and
3184 * non-threaded hardware-interrupt handlers, in progress on entry will
3185 * have completed before this primitive returns. However, this does not
3186 * guarantee that softirq handlers will have completed, since in some
3187 * kernels, these handlers can run in process context, and can block.
3189 * Note that this guarantee implies further memory-ordering guarantees.
3190 * On systems with more than one CPU, when synchronize_sched() returns,
3191 * each CPU is guaranteed to have executed a full memory barrier since the
3192 * end of its last RCU-sched read-side critical section whose beginning
3193 * preceded the call to synchronize_sched(). In addition, each CPU having
3194 * an RCU read-side critical section that extends beyond the return from
3195 * synchronize_sched() is guaranteed to have executed a full memory barrier
3196 * after the beginning of synchronize_sched() and before the beginning of
3197 * that RCU read-side critical section. Note that these guarantees include
3198 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3199 * that are executing in the kernel.
3201 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3202 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3203 * to have executed a full memory barrier during the execution of
3204 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3205 * again only if the system has more than one CPU).
3207 * This primitive provides the guarantees made by the (now removed)
3208 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3209 * guarantees that rcu_read_lock() sections will have completed.
3210 * In "classic RCU", these two guarantees happen to be one and
3211 * the same, but can differ in realtime RCU implementations.
3213 void synchronize_sched(void)
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3216 lock_is_held(&rcu_lock_map
) ||
3217 lock_is_held(&rcu_sched_lock_map
),
3218 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3219 if (rcu_blocking_is_gp())
3221 if (rcu_gp_is_expedited())
3222 synchronize_sched_expedited();
3224 wait_rcu_gp(call_rcu_sched
);
3226 EXPORT_SYMBOL_GPL(synchronize_sched
);
3229 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3231 * Control will return to the caller some time after a full rcu_bh grace
3232 * period has elapsed, in other words after all currently executing rcu_bh
3233 * read-side critical sections have completed. RCU read-side critical
3234 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3235 * and may be nested.
3237 * See the description of synchronize_sched() for more detailed information
3238 * on memory ordering guarantees.
3240 void synchronize_rcu_bh(void)
3242 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3243 lock_is_held(&rcu_lock_map
) ||
3244 lock_is_held(&rcu_sched_lock_map
),
3245 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3246 if (rcu_blocking_is_gp())
3248 if (rcu_gp_is_expedited())
3249 synchronize_rcu_bh_expedited();
3251 wait_rcu_gp(call_rcu_bh
);
3253 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3256 * get_state_synchronize_rcu - Snapshot current RCU state
3258 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3259 * to determine whether or not a full grace period has elapsed in the
3262 unsigned long get_state_synchronize_rcu(void)
3265 * Any prior manipulation of RCU-protected data must happen
3266 * before the load from ->gpnum.
3271 * Make sure this load happens before the purportedly
3272 * time-consuming work between get_state_synchronize_rcu()
3273 * and cond_synchronize_rcu().
3275 return smp_load_acquire(&rcu_state_p
->gpnum
);
3277 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3280 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3282 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3284 * If a full RCU grace period has elapsed since the earlier call to
3285 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3286 * synchronize_rcu() to wait for a full grace period.
3288 * Yes, this function does not take counter wrap into account. But
3289 * counter wrap is harmless. If the counter wraps, we have waited for
3290 * more than 2 billion grace periods (and way more on a 64-bit system!),
3291 * so waiting for one additional grace period should be just fine.
3293 void cond_synchronize_rcu(unsigned long oldstate
)
3295 unsigned long newstate
;
3298 * Ensure that this load happens before any RCU-destructive
3299 * actions the caller might carry out after we return.
3301 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3302 if (ULONG_CMP_GE(oldstate
, newstate
))
3305 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3308 * get_state_synchronize_sched - Snapshot current RCU-sched state
3310 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3311 * to determine whether or not a full grace period has elapsed in the
3314 unsigned long get_state_synchronize_sched(void)
3317 * Any prior manipulation of RCU-protected data must happen
3318 * before the load from ->gpnum.
3323 * Make sure this load happens before the purportedly
3324 * time-consuming work between get_state_synchronize_sched()
3325 * and cond_synchronize_sched().
3327 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3329 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3332 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3334 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3336 * If a full RCU-sched grace period has elapsed since the earlier call to
3337 * get_state_synchronize_sched(), just return. Otherwise, invoke
3338 * synchronize_sched() to wait for a full grace period.
3340 * Yes, this function does not take counter wrap into account. But
3341 * counter wrap is harmless. If the counter wraps, we have waited for
3342 * more than 2 billion grace periods (and way more on a 64-bit system!),
3343 * so waiting for one additional grace period should be just fine.
3345 void cond_synchronize_sched(unsigned long oldstate
)
3347 unsigned long newstate
;
3350 * Ensure that this load happens before any RCU-destructive
3351 * actions the caller might carry out after we return.
3353 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3354 if (ULONG_CMP_GE(oldstate
, newstate
))
3355 synchronize_sched();
3357 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3359 /* Adjust sequence number for start of update-side operation. */
3360 static void rcu_seq_start(unsigned long *sp
)
3362 WRITE_ONCE(*sp
, *sp
+ 1);
3363 smp_mb(); /* Ensure update-side operation after counter increment. */
3364 WARN_ON_ONCE(!(*sp
& 0x1));
3367 /* Adjust sequence number for end of update-side operation. */
3368 static void rcu_seq_end(unsigned long *sp
)
3370 smp_mb(); /* Ensure update-side operation before counter increment. */
3371 WRITE_ONCE(*sp
, *sp
+ 1);
3372 WARN_ON_ONCE(*sp
& 0x1);
3375 /* Take a snapshot of the update side's sequence number. */
3376 static unsigned long rcu_seq_snap(unsigned long *sp
)
3380 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3381 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3382 smp_mb(); /* Above access must not bleed into critical section. */
3387 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3388 * full update-side operation has occurred.
3390 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3392 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3395 /* Wrapper functions for expedited grace periods. */
3396 static void rcu_exp_gp_seq_start(struct rcu_state
*rsp
)
3398 rcu_seq_start(&rsp
->expedited_sequence
);
3400 static void rcu_exp_gp_seq_end(struct rcu_state
*rsp
)
3402 rcu_seq_end(&rsp
->expedited_sequence
);
3403 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3405 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state
*rsp
)
3407 return rcu_seq_snap(&rsp
->expedited_sequence
);
3409 static bool rcu_exp_gp_seq_done(struct rcu_state
*rsp
, unsigned long s
)
3411 return rcu_seq_done(&rsp
->expedited_sequence
, s
);
3415 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3416 * recent CPU-online activity. Note that these masks are not cleared
3417 * when CPUs go offline, so they reflect the union of all CPUs that have
3418 * ever been online. This means that this function normally takes its
3419 * no-work-to-do fastpath.
3421 static void sync_exp_reset_tree_hotplug(struct rcu_state
*rsp
)
3424 unsigned long flags
;
3426 unsigned long oldmask
;
3427 int ncpus
= READ_ONCE(rsp
->ncpus
);
3428 struct rcu_node
*rnp
;
3429 struct rcu_node
*rnp_up
;
3431 /* If no new CPUs onlined since last time, nothing to do. */
3432 if (likely(ncpus
== rsp
->ncpus_snap
))
3434 rsp
->ncpus_snap
= ncpus
;
3437 * Each pass through the following loop propagates newly onlined
3438 * CPUs for the current rcu_node structure up the rcu_node tree.
3440 rcu_for_each_leaf_node(rsp
, rnp
) {
3441 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3442 smp_mb__after_unlock_lock();
3443 if (rnp
->expmaskinit
== rnp
->expmaskinitnext
) {
3444 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3445 continue; /* No new CPUs, nothing to do. */
3448 /* Update this node's mask, track old value for propagation. */
3449 oldmask
= rnp
->expmaskinit
;
3450 rnp
->expmaskinit
= rnp
->expmaskinitnext
;
3451 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3453 /* If was already nonzero, nothing to propagate. */
3457 /* Propagate the new CPU up the tree. */
3458 mask
= rnp
->grpmask
;
3459 rnp_up
= rnp
->parent
;
3462 raw_spin_lock_irqsave(&rnp_up
->lock
, flags
);
3463 smp_mb__after_unlock_lock();
3464 if (rnp_up
->expmaskinit
)
3466 rnp_up
->expmaskinit
|= mask
;
3467 raw_spin_unlock_irqrestore(&rnp_up
->lock
, flags
);
3470 mask
= rnp_up
->grpmask
;
3471 rnp_up
= rnp_up
->parent
;
3477 * Reset the ->expmask values in the rcu_node tree in preparation for
3478 * a new expedited grace period.
3480 static void __maybe_unused
sync_exp_reset_tree(struct rcu_state
*rsp
)
3482 unsigned long flags
;
3483 struct rcu_node
*rnp
;
3485 sync_exp_reset_tree_hotplug(rsp
);
3486 rcu_for_each_node_breadth_first(rsp
, rnp
) {
3487 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3488 smp_mb__after_unlock_lock();
3489 WARN_ON_ONCE(rnp
->expmask
);
3490 rnp
->expmask
= rnp
->expmaskinit
;
3491 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3496 * Return non-zero if there is no RCU expedited grace period in progress
3497 * for the specified rcu_node structure, in other words, if all CPUs and
3498 * tasks covered by the specified rcu_node structure have done their bit
3499 * for the current expedited grace period. Works only for preemptible
3500 * RCU -- other RCU implementation use other means.
3502 * Caller must hold the root rcu_node's exp_funnel_mutex.
3504 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
3506 return rnp
->exp_tasks
== NULL
&&
3507 READ_ONCE(rnp
->expmask
) == 0;
3511 * Report the exit from RCU read-side critical section for the last task
3512 * that queued itself during or before the current expedited preemptible-RCU
3513 * grace period. This event is reported either to the rcu_node structure on
3514 * which the task was queued or to one of that rcu_node structure's ancestors,
3515 * recursively up the tree. (Calm down, calm down, we do the recursion
3518 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3519 * specified rcu_node structure's ->lock.
3521 static void __rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3522 bool wake
, unsigned long flags
)
3523 __releases(rnp
->lock
)
3528 if (!sync_rcu_preempt_exp_done(rnp
)) {
3530 rcu_initiate_boost(rnp
, flags
);
3532 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3535 if (rnp
->parent
== NULL
) {
3536 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3538 smp_mb(); /* EGP done before wake_up(). */
3539 wake_up(&rsp
->expedited_wq
);
3543 mask
= rnp
->grpmask
;
3544 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
3546 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
3547 smp_mb__after_unlock_lock();
3548 WARN_ON_ONCE(!(rnp
->expmask
& mask
));
3549 rnp
->expmask
&= ~mask
;
3554 * Report expedited quiescent state for specified node. This is a
3555 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3557 * Caller must hold the root rcu_node's exp_funnel_mutex.
3559 static void __maybe_unused
rcu_report_exp_rnp(struct rcu_state
*rsp
,
3560 struct rcu_node
*rnp
, bool wake
)
3562 unsigned long flags
;
3564 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3565 smp_mb__after_unlock_lock();
3566 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
);
3570 * Report expedited quiescent state for multiple CPUs, all covered by the
3571 * specified leaf rcu_node structure. Caller must hold the root
3572 * rcu_node's exp_funnel_mutex.
3574 static void rcu_report_exp_cpu_mult(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3575 unsigned long mask
, bool wake
)
3577 unsigned long flags
;
3579 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3580 smp_mb__after_unlock_lock();
3581 if (!(rnp
->expmask
& mask
)) {
3582 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3585 rnp
->expmask
&= ~mask
;
3586 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
); /* Releases rnp->lock. */
3590 * Report expedited quiescent state for specified rcu_data (CPU).
3591 * Caller must hold the root rcu_node's exp_funnel_mutex.
3593 static void rcu_report_exp_rdp(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3596 rcu_report_exp_cpu_mult(rsp
, rdp
->mynode
, rdp
->grpmask
, wake
);
3599 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3600 static bool sync_exp_work_done(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3601 struct rcu_data
*rdp
,
3602 atomic_long_t
*stat
, unsigned long s
)
3604 if (rcu_exp_gp_seq_done(rsp
, s
)) {
3606 mutex_unlock(&rnp
->exp_funnel_mutex
);
3608 mutex_unlock(&rdp
->exp_funnel_mutex
);
3609 /* Ensure test happens before caller kfree(). */
3610 smp_mb__before_atomic(); /* ^^^ */
3611 atomic_long_inc(stat
);
3618 * Funnel-lock acquisition for expedited grace periods. Returns a
3619 * pointer to the root rcu_node structure, or NULL if some other
3620 * task did the expedited grace period for us.
3622 static struct rcu_node
*exp_funnel_lock(struct rcu_state
*rsp
, unsigned long s
)
3624 struct rcu_data
*rdp
;
3625 struct rcu_node
*rnp0
;
3626 struct rcu_node
*rnp1
= NULL
;
3629 * First try directly acquiring the root lock in order to reduce
3630 * latency in the common case where expedited grace periods are
3631 * rare. We check mutex_is_locked() to avoid pathological levels of
3632 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3634 rnp0
= rcu_get_root(rsp
);
3635 if (!mutex_is_locked(&rnp0
->exp_funnel_mutex
)) {
3636 if (mutex_trylock(&rnp0
->exp_funnel_mutex
)) {
3637 if (sync_exp_work_done(rsp
, rnp0
, NULL
,
3638 &rsp
->expedited_workdone0
, s
))
3645 * Each pass through the following loop works its way
3646 * up the rcu_node tree, returning if others have done the
3647 * work or otherwise falls through holding the root rnp's
3648 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3649 * can be inexact, as it is just promoting locality and is not
3650 * strictly needed for correctness.
3652 rdp
= per_cpu_ptr(rsp
->rda
, raw_smp_processor_id());
3653 if (sync_exp_work_done(rsp
, NULL
, NULL
, &rsp
->expedited_workdone1
, s
))
3655 mutex_lock(&rdp
->exp_funnel_mutex
);
3657 for (; rnp0
!= NULL
; rnp0
= rnp0
->parent
) {
3658 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3659 &rsp
->expedited_workdone2
, s
))
3661 mutex_lock(&rnp0
->exp_funnel_mutex
);
3663 mutex_unlock(&rnp1
->exp_funnel_mutex
);
3665 mutex_unlock(&rdp
->exp_funnel_mutex
);
3668 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3669 &rsp
->expedited_workdone3
, s
))
3674 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3675 static void sync_sched_exp_handler(void *data
)
3677 struct rcu_data
*rdp
;
3678 struct rcu_node
*rnp
;
3679 struct rcu_state
*rsp
= data
;
3681 rdp
= this_cpu_ptr(rsp
->rda
);
3683 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
) ||
3684 __this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
3686 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, true);
3687 resched_cpu(smp_processor_id());
3690 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3691 static void sync_sched_exp_online_cleanup(int cpu
)
3693 struct rcu_data
*rdp
;
3695 struct rcu_node
*rnp
;
3696 struct rcu_state
*rsp
= &rcu_sched_state
;
3698 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3700 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
))
3702 ret
= smp_call_function_single(cpu
, sync_sched_exp_handler
, rsp
, 0);
3707 * Select the nodes that the upcoming expedited grace period needs
3710 static void sync_rcu_exp_select_cpus(struct rcu_state
*rsp
,
3711 smp_call_func_t func
)
3714 unsigned long flags
;
3716 unsigned long mask_ofl_test
;
3717 unsigned long mask_ofl_ipi
;
3719 struct rcu_node
*rnp
;
3721 sync_exp_reset_tree(rsp
);
3722 rcu_for_each_leaf_node(rsp
, rnp
) {
3723 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3724 smp_mb__after_unlock_lock();
3726 /* Each pass checks a CPU for identity, offline, and idle. */
3728 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
3729 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3730 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
3732 if (raw_smp_processor_id() == cpu
||
3733 !(atomic_add_return(0, &rdtp
->dynticks
) & 0x1))
3734 mask_ofl_test
|= rdp
->grpmask
;
3736 mask_ofl_ipi
= rnp
->expmask
& ~mask_ofl_test
;
3739 * Need to wait for any blocked tasks as well. Note that
3740 * additional blocking tasks will also block the expedited
3741 * GP until such time as the ->expmask bits are cleared.
3743 if (rcu_preempt_has_tasks(rnp
))
3744 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
3745 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3747 /* IPI the remaining CPUs for expedited quiescent state. */
3749 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3750 if (!(mask_ofl_ipi
& mask
))
3753 ret
= smp_call_function_single(cpu
, func
, rsp
, 0);
3755 mask_ofl_ipi
&= ~mask
;
3757 /* Failed, raced with offline. */
3758 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3759 if (cpu_online(cpu
) &&
3760 (rnp
->expmask
& mask
)) {
3761 raw_spin_unlock_irqrestore(&rnp
->lock
,
3763 schedule_timeout_uninterruptible(1);
3764 if (cpu_online(cpu
) &&
3765 (rnp
->expmask
& mask
))
3767 raw_spin_lock_irqsave(&rnp
->lock
,
3770 if (!(rnp
->expmask
& mask
))
3771 mask_ofl_ipi
&= ~mask
;
3772 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3775 /* Report quiescent states for those that went offline. */
3776 mask_ofl_test
|= mask_ofl_ipi
;
3778 rcu_report_exp_cpu_mult(rsp
, rnp
, mask_ofl_test
, false);
3782 static void synchronize_sched_expedited_wait(struct rcu_state
*rsp
)
3785 unsigned long jiffies_stall
;
3786 unsigned long jiffies_start
;
3788 struct rcu_node
*rnp
;
3789 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3792 jiffies_stall
= rcu_jiffies_till_stall_check();
3793 jiffies_start
= jiffies
;
3796 ret
= wait_event_interruptible_timeout(
3798 sync_rcu_preempt_exp_done(rnp_root
),
3803 /* Hit a signal, disable CPU stall warnings. */
3804 wait_event(rsp
->expedited_wq
,
3805 sync_rcu_preempt_exp_done(rnp_root
));
3808 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3810 rcu_for_each_leaf_node(rsp
, rnp
) {
3811 (void)rcu_print_task_exp_stall(rnp
);
3813 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3814 struct rcu_data
*rdp
;
3816 if (!(rnp
->expmask
& mask
))
3818 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3819 pr_cont(" %d-%c%c%c", cpu
,
3820 "O."[cpu_online(cpu
)],
3821 "o."[!!(rdp
->grpmask
& rnp
->expmaskinit
)],
3822 "N."[!!(rdp
->grpmask
& rnp
->expmaskinitnext
)]);
3826 pr_cont(" } %lu jiffies s: %lu\n",
3827 jiffies
- jiffies_start
, rsp
->expedited_sequence
);
3828 rcu_for_each_leaf_node(rsp
, rnp
) {
3830 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3831 if (!(rnp
->expmask
& mask
))
3836 jiffies_stall
= 3 * rcu_jiffies_till_stall_check() + 3;
3841 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3843 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3844 * approach to force the grace period to end quickly. This consumes
3845 * significant time on all CPUs and is unfriendly to real-time workloads,
3846 * so is thus not recommended for any sort of common-case code. In fact,
3847 * if you are using synchronize_sched_expedited() in a loop, please
3848 * restructure your code to batch your updates, and then use a single
3849 * synchronize_sched() instead.
3851 * This implementation can be thought of as an application of sequence
3852 * locking to expedited grace periods, but using the sequence counter to
3853 * determine when someone else has already done the work instead of for
3856 void synchronize_sched_expedited(void)
3859 struct rcu_node
*rnp
;
3860 struct rcu_state
*rsp
= &rcu_sched_state
;
3862 /* Take a snapshot of the sequence number. */
3863 s
= rcu_exp_gp_seq_snap(rsp
);
3865 rnp
= exp_funnel_lock(rsp
, s
);
3867 return; /* Someone else did our work for us. */
3869 rcu_exp_gp_seq_start(rsp
);
3870 sync_rcu_exp_select_cpus(rsp
, sync_sched_exp_handler
);
3871 synchronize_sched_expedited_wait(rsp
);
3873 rcu_exp_gp_seq_end(rsp
);
3874 mutex_unlock(&rnp
->exp_funnel_mutex
);
3876 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
3879 * Check to see if there is any immediate RCU-related work to be done
3880 * by the current CPU, for the specified type of RCU, returning 1 if so.
3881 * The checks are in order of increasing expense: checks that can be
3882 * carried out against CPU-local state are performed first. However,
3883 * we must check for CPU stalls first, else we might not get a chance.
3885 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3887 struct rcu_node
*rnp
= rdp
->mynode
;
3889 rdp
->n_rcu_pending
++;
3891 /* Check for CPU stalls, if enabled. */
3892 check_cpu_stall(rsp
, rdp
);
3894 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3895 if (rcu_nohz_full_cpu(rsp
))
3898 /* Is the RCU core waiting for a quiescent state from this CPU? */
3899 if (rcu_scheduler_fully_active
&&
3900 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3901 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3902 rdp
->n_rp_core_needs_qs
++;
3903 } else if (rdp
->core_needs_qs
&&
3904 (!rdp
->cpu_no_qs
.b
.norm
||
3905 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3906 rdp
->n_rp_report_qs
++;
3910 /* Does this CPU have callbacks ready to invoke? */
3911 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3912 rdp
->n_rp_cb_ready
++;
3916 /* Has RCU gone idle with this CPU needing another grace period? */
3917 if (cpu_needs_another_gp(rsp
, rdp
)) {
3918 rdp
->n_rp_cpu_needs_gp
++;
3922 /* Has another RCU grace period completed? */
3923 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3924 rdp
->n_rp_gp_completed
++;
3928 /* Has a new RCU grace period started? */
3929 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3930 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3931 rdp
->n_rp_gp_started
++;
3935 /* Does this CPU need a deferred NOCB wakeup? */
3936 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3937 rdp
->n_rp_nocb_defer_wakeup
++;
3942 rdp
->n_rp_need_nothing
++;
3947 * Check to see if there is any immediate RCU-related work to be done
3948 * by the current CPU, returning 1 if so. This function is part of the
3949 * RCU implementation; it is -not- an exported member of the RCU API.
3951 static int rcu_pending(void)
3953 struct rcu_state
*rsp
;
3955 for_each_rcu_flavor(rsp
)
3956 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3962 * Return true if the specified CPU has any callback. If all_lazy is
3963 * non-NULL, store an indication of whether all callbacks are lazy.
3964 * (If there are no callbacks, all of them are deemed to be lazy.)
3966 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3970 struct rcu_data
*rdp
;
3971 struct rcu_state
*rsp
;
3973 for_each_rcu_flavor(rsp
) {
3974 rdp
= this_cpu_ptr(rsp
->rda
);
3978 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3989 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3990 * the compiler is expected to optimize this away.
3992 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3993 int cpu
, unsigned long done
)
3995 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3996 atomic_read(&rsp
->barrier_cpu_count
), done
);
4000 * RCU callback function for _rcu_barrier(). If we are last, wake
4001 * up the task executing _rcu_barrier().
4003 static void rcu_barrier_callback(struct rcu_head
*rhp
)
4005 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
4006 struct rcu_state
*rsp
= rdp
->rsp
;
4008 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
4009 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
4010 complete(&rsp
->barrier_completion
);
4012 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
4017 * Called with preemption disabled, and from cross-cpu IRQ context.
4019 static void rcu_barrier_func(void *type
)
4021 struct rcu_state
*rsp
= type
;
4022 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
4024 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
4025 atomic_inc(&rsp
->barrier_cpu_count
);
4026 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
4030 * Orchestrate the specified type of RCU barrier, waiting for all
4031 * RCU callbacks of the specified type to complete.
4033 static void _rcu_barrier(struct rcu_state
*rsp
)
4036 struct rcu_data
*rdp
;
4037 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
4039 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
4041 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4042 mutex_lock(&rsp
->barrier_mutex
);
4044 /* Did someone else do our work for us? */
4045 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
4046 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
4047 smp_mb(); /* caller's subsequent code after above check. */
4048 mutex_unlock(&rsp
->barrier_mutex
);
4052 /* Mark the start of the barrier operation. */
4053 rcu_seq_start(&rsp
->barrier_sequence
);
4054 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
4057 * Initialize the count to one rather than to zero in order to
4058 * avoid a too-soon return to zero in case of a short grace period
4059 * (or preemption of this task). Exclude CPU-hotplug operations
4060 * to ensure that no offline CPU has callbacks queued.
4062 init_completion(&rsp
->barrier_completion
);
4063 atomic_set(&rsp
->barrier_cpu_count
, 1);
4067 * Force each CPU with callbacks to register a new callback.
4068 * When that callback is invoked, we will know that all of the
4069 * corresponding CPU's preceding callbacks have been invoked.
4071 for_each_possible_cpu(cpu
) {
4072 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
4074 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4075 if (rcu_is_nocb_cpu(cpu
)) {
4076 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
4077 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
4078 rsp
->barrier_sequence
);
4080 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
4081 rsp
->barrier_sequence
);
4082 smp_mb__before_atomic();
4083 atomic_inc(&rsp
->barrier_cpu_count
);
4084 __call_rcu(&rdp
->barrier_head
,
4085 rcu_barrier_callback
, rsp
, cpu
, 0);
4087 } else if (READ_ONCE(rdp
->qlen
)) {
4088 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
4089 rsp
->barrier_sequence
);
4090 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
4092 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
4093 rsp
->barrier_sequence
);
4099 * Now that we have an rcu_barrier_callback() callback on each
4100 * CPU, and thus each counted, remove the initial count.
4102 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
4103 complete(&rsp
->barrier_completion
);
4105 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4106 wait_for_completion(&rsp
->barrier_completion
);
4108 /* Mark the end of the barrier operation. */
4109 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
4110 rcu_seq_end(&rsp
->barrier_sequence
);
4112 /* Other rcu_barrier() invocations can now safely proceed. */
4113 mutex_unlock(&rsp
->barrier_mutex
);
4117 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4119 void rcu_barrier_bh(void)
4121 _rcu_barrier(&rcu_bh_state
);
4123 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
4126 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4128 void rcu_barrier_sched(void)
4130 _rcu_barrier(&rcu_sched_state
);
4132 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
4135 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4136 * first CPU in a given leaf rcu_node structure coming online. The caller
4137 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4140 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
4143 struct rcu_node
*rnp
= rnp_leaf
;
4146 mask
= rnp
->grpmask
;
4150 raw_spin_lock(&rnp
->lock
); /* Interrupts already disabled. */
4151 rnp
->qsmaskinit
|= mask
;
4152 raw_spin_unlock(&rnp
->lock
); /* Interrupts remain disabled. */
4157 * Do boot-time initialization of a CPU's per-CPU RCU data.
4160 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4162 unsigned long flags
;
4163 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4164 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4166 /* Set up local state, ensuring consistent view of global state. */
4167 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
4168 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
4169 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
4170 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
4171 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
4174 mutex_init(&rdp
->exp_funnel_mutex
);
4175 rcu_boot_init_nocb_percpu_data(rdp
);
4176 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4180 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4181 * offline event can be happening at a given time. Note also that we
4182 * can accept some slop in the rsp->completed access due to the fact
4183 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4186 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4188 unsigned long flags
;
4190 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4191 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4193 /* Set up local state, ensuring consistent view of global state. */
4194 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
4195 rdp
->qlen_last_fqs_check
= 0;
4196 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
4197 rdp
->blimit
= blimit
;
4199 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
4200 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
4201 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
4202 atomic_set(&rdp
->dynticks
->dynticks
,
4203 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
4204 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
4207 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4208 * propagation up the rcu_node tree will happen at the beginning
4209 * of the next grace period.
4212 mask
= rdp
->grpmask
;
4213 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
4214 smp_mb__after_unlock_lock();
4215 rnp
->qsmaskinitnext
|= mask
;
4216 rnp
->expmaskinitnext
|= mask
;
4217 if (!rdp
->beenonline
)
4218 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
4219 rdp
->beenonline
= true; /* We have now been online. */
4220 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
4221 rdp
->completed
= rnp
->completed
;
4222 rdp
->cpu_no_qs
.b
.norm
= true;
4223 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
4224 rdp
->core_needs_qs
= false;
4225 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
4226 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4229 static void rcu_prepare_cpu(int cpu
)
4231 struct rcu_state
*rsp
;
4233 for_each_rcu_flavor(rsp
)
4234 rcu_init_percpu_data(cpu
, rsp
);
4238 * Handle CPU online/offline notification events.
4240 int rcu_cpu_notify(struct notifier_block
*self
,
4241 unsigned long action
, void *hcpu
)
4243 long cpu
= (long)hcpu
;
4244 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
4245 struct rcu_node
*rnp
= rdp
->mynode
;
4246 struct rcu_state
*rsp
;
4249 case CPU_UP_PREPARE
:
4250 case CPU_UP_PREPARE_FROZEN
:
4251 rcu_prepare_cpu(cpu
);
4252 rcu_prepare_kthreads(cpu
);
4253 rcu_spawn_all_nocb_kthreads(cpu
);
4256 case CPU_DOWN_FAILED
:
4257 sync_sched_exp_online_cleanup(cpu
);
4258 rcu_boost_kthread_setaffinity(rnp
, -1);
4260 case CPU_DOWN_PREPARE
:
4261 rcu_boost_kthread_setaffinity(rnp
, cpu
);
4264 case CPU_DYING_FROZEN
:
4265 for_each_rcu_flavor(rsp
)
4266 rcu_cleanup_dying_cpu(rsp
);
4268 case CPU_DYING_IDLE
:
4269 /* QS for any half-done expedited RCU-sched GP. */
4271 rcu_report_exp_rdp(&rcu_sched_state
,
4272 this_cpu_ptr(rcu_sched_state
.rda
), true);
4275 for_each_rcu_flavor(rsp
) {
4276 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
4280 case CPU_DEAD_FROZEN
:
4281 case CPU_UP_CANCELED
:
4282 case CPU_UP_CANCELED_FROZEN
:
4283 for_each_rcu_flavor(rsp
) {
4284 rcu_cleanup_dead_cpu(cpu
, rsp
);
4285 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
4294 static int rcu_pm_notify(struct notifier_block
*self
,
4295 unsigned long action
, void *hcpu
)
4298 case PM_HIBERNATION_PREPARE
:
4299 case PM_SUSPEND_PREPARE
:
4300 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4303 case PM_POST_HIBERNATION
:
4304 case PM_POST_SUSPEND
:
4305 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4306 rcu_unexpedite_gp();
4315 * Spawn the kthreads that handle each RCU flavor's grace periods.
4317 static int __init
rcu_spawn_gp_kthread(void)
4319 unsigned long flags
;
4320 int kthread_prio_in
= kthread_prio
;
4321 struct rcu_node
*rnp
;
4322 struct rcu_state
*rsp
;
4323 struct sched_param sp
;
4324 struct task_struct
*t
;
4326 /* Force priority into range. */
4327 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
4329 else if (kthread_prio
< 0)
4331 else if (kthread_prio
> 99)
4333 if (kthread_prio
!= kthread_prio_in
)
4334 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4335 kthread_prio
, kthread_prio_in
);
4337 rcu_scheduler_fully_active
= 1;
4338 for_each_rcu_flavor(rsp
) {
4339 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
4341 rnp
= rcu_get_root(rsp
);
4342 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
4343 rsp
->gp_kthread
= t
;
4345 sp
.sched_priority
= kthread_prio
;
4346 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
4349 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4351 rcu_spawn_nocb_kthreads();
4352 rcu_spawn_boost_kthreads();
4355 early_initcall(rcu_spawn_gp_kthread
);
4358 * This function is invoked towards the end of the scheduler's initialization
4359 * process. Before this is called, the idle task might contain
4360 * RCU read-side critical sections (during which time, this idle
4361 * task is booting the system). After this function is called, the
4362 * idle tasks are prohibited from containing RCU read-side critical
4363 * sections. This function also enables RCU lockdep checking.
4365 void rcu_scheduler_starting(void)
4367 WARN_ON(num_online_cpus() != 1);
4368 WARN_ON(nr_context_switches() > 0);
4369 rcu_scheduler_active
= 1;
4373 * Compute the per-level fanout, either using the exact fanout specified
4374 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4376 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4380 if (rcu_fanout_exact
) {
4381 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4382 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4383 levelspread
[i
] = RCU_FANOUT
;
4389 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4391 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4398 * Helper function for rcu_init() that initializes one rcu_state structure.
4400 static void __init
rcu_init_one(struct rcu_state
*rsp
,
4401 struct rcu_data __percpu
*rda
)
4403 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4404 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4405 static const char * const exp
[] = RCU_EXP_NAME_INIT
;
4406 static u8 fl_mask
= 0x1;
4408 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4409 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4413 struct rcu_node
*rnp
;
4415 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4417 /* Silence gcc 4.8 false positive about array index out of range. */
4418 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4419 panic("rcu_init_one: rcu_num_lvls out of range");
4421 /* Initialize the level-tracking arrays. */
4423 for (i
= 0; i
< rcu_num_lvls
; i
++)
4424 levelcnt
[i
] = num_rcu_lvl
[i
];
4425 for (i
= 1; i
< rcu_num_lvls
; i
++)
4426 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4427 rcu_init_levelspread(levelspread
, levelcnt
);
4428 rsp
->flavor_mask
= fl_mask
;
4431 /* Initialize the elements themselves, starting from the leaves. */
4433 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4434 cpustride
*= levelspread
[i
];
4435 rnp
= rsp
->level
[i
];
4436 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4437 raw_spin_lock_init(&rnp
->lock
);
4438 lockdep_set_class_and_name(&rnp
->lock
,
4439 &rcu_node_class
[i
], buf
[i
]);
4440 raw_spin_lock_init(&rnp
->fqslock
);
4441 lockdep_set_class_and_name(&rnp
->fqslock
,
4442 &rcu_fqs_class
[i
], fqs
[i
]);
4443 rnp
->gpnum
= rsp
->gpnum
;
4444 rnp
->completed
= rsp
->completed
;
4446 rnp
->qsmaskinit
= 0;
4447 rnp
->grplo
= j
* cpustride
;
4448 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4449 if (rnp
->grphi
>= nr_cpu_ids
)
4450 rnp
->grphi
= nr_cpu_ids
- 1;
4456 rnp
->grpnum
= j
% levelspread
[i
- 1];
4457 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4458 rnp
->parent
= rsp
->level
[i
- 1] +
4459 j
/ levelspread
[i
- 1];
4462 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4463 rcu_init_one_nocb(rnp
);
4464 mutex_init(&rnp
->exp_funnel_mutex
);
4465 lockdep_set_class_and_name(&rnp
->exp_funnel_mutex
,
4466 &rcu_exp_class
[i
], exp
[i
]);
4470 init_waitqueue_head(&rsp
->gp_wq
);
4471 init_waitqueue_head(&rsp
->expedited_wq
);
4472 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4473 for_each_possible_cpu(i
) {
4474 while (i
> rnp
->grphi
)
4476 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4477 rcu_boot_init_percpu_data(i
, rsp
);
4479 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4483 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4484 * replace the definitions in tree.h because those are needed to size
4485 * the ->node array in the rcu_state structure.
4487 static void __init
rcu_init_geometry(void)
4491 int rcu_capacity
[RCU_NUM_LVLS
];
4494 * Initialize any unspecified boot parameters.
4495 * The default values of jiffies_till_first_fqs and
4496 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4497 * value, which is a function of HZ, then adding one for each
4498 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4500 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4501 if (jiffies_till_first_fqs
== ULONG_MAX
)
4502 jiffies_till_first_fqs
= d
;
4503 if (jiffies_till_next_fqs
== ULONG_MAX
)
4504 jiffies_till_next_fqs
= d
;
4506 /* If the compile-time values are accurate, just leave. */
4507 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4508 nr_cpu_ids
== NR_CPUS
)
4510 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4511 rcu_fanout_leaf
, nr_cpu_ids
);
4514 * The boot-time rcu_fanout_leaf parameter must be at least two
4515 * and cannot exceed the number of bits in the rcu_node masks.
4516 * Complain and fall back to the compile-time values if this
4517 * limit is exceeded.
4519 if (rcu_fanout_leaf
< 2 ||
4520 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4521 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4527 * Compute number of nodes that can be handled an rcu_node tree
4528 * with the given number of levels.
4530 rcu_capacity
[0] = rcu_fanout_leaf
;
4531 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4532 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4535 * The tree must be able to accommodate the configured number of CPUs.
4536 * If this limit is exceeded, fall back to the compile-time values.
4538 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4539 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4544 /* Calculate the number of levels in the tree. */
4545 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4547 rcu_num_lvls
= i
+ 1;
4549 /* Calculate the number of rcu_nodes at each level of the tree. */
4550 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4551 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4552 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4555 /* Calculate the total number of rcu_node structures. */
4557 for (i
= 0; i
< rcu_num_lvls
; i
++)
4558 rcu_num_nodes
+= num_rcu_lvl
[i
];
4562 * Dump out the structure of the rcu_node combining tree associated
4563 * with the rcu_state structure referenced by rsp.
4565 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4568 struct rcu_node
*rnp
;
4570 pr_info("rcu_node tree layout dump\n");
4572 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4573 if (rnp
->level
!= level
) {
4578 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4583 void __init
rcu_init(void)
4587 rcu_early_boot_tests();
4589 rcu_bootup_announce();
4590 rcu_init_geometry();
4591 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
4592 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
4594 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4595 __rcu_init_preempt();
4596 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4599 * We don't need protection against CPU-hotplug here because
4600 * this is called early in boot, before either interrupts
4601 * or the scheduler are operational.
4603 cpu_notifier(rcu_cpu_notify
, 0);
4604 pm_notifier(rcu_pm_notify
, 0);
4605 for_each_online_cpu(cpu
)
4606 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
4609 #include "tree_plugin.h"