dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / rcu / tree.c
blob8a62cbfe1f2ff835e32bbadaff487527bd9a65a6
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
60 #include "tree.h"
61 #include "rcu.h"
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
83 #ifdef CONFIG_TRACING
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
88 #else
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
91 #endif
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
99 .call = cr, \
100 .gp_state = RCU_GP_IDLE, \
101 .gpnum = 0UL - 300UL, \
102 .completed = 0UL - 300UL, \
103 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
104 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
105 .orphan_donetail = &sname##_state.orphan_donelist, \
106 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
107 .name = RCU_STATE_NAME(sname), \
108 .abbr = sabbr, \
111 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
112 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
114 static struct rcu_state *const rcu_state_p;
115 static struct rcu_data __percpu *const rcu_data_p;
116 LIST_HEAD(rcu_struct_flavors);
118 /* Dump rcu_node combining tree at boot to verify correct setup. */
119 static bool dump_tree;
120 module_param(dump_tree, bool, 0444);
121 /* Control rcu_node-tree auto-balancing at boot time. */
122 static bool rcu_fanout_exact;
123 module_param(rcu_fanout_exact, bool, 0444);
124 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
125 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
126 module_param(rcu_fanout_leaf, int, 0444);
127 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
128 /* Number of rcu_nodes at specified level. */
129 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
130 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
133 * The rcu_scheduler_active variable transitions from zero to one just
134 * before the first task is spawned. So when this variable is zero, RCU
135 * can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_sched() to a simple barrier(). When this variable
137 * is one, RCU must actually do all the hard work required to detect real
138 * grace periods. This variable is also used to suppress boot-time false
139 * positives from lockdep-RCU error checking.
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
156 static int rcu_scheduler_fully_active __read_mostly;
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
166 /* rcuc/rcub kthread realtime priority */
167 #ifdef CONFIG_RCU_KTHREAD_PRIO
168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 module_param(kthread_prio, int, 0644);
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178 module_param(gp_preinit_delay, int, 0644);
179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180 static const int gp_preinit_delay;
181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
185 module_param(gp_init_delay, int, 0644);
186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187 static const int gp_init_delay;
188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192 module_param(gp_cleanup_delay, int, 0644);
193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 static const int gp_cleanup_delay;
195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
217 unsigned long rcutorture_testseq;
218 unsigned long rcutorture_vernum;
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
224 * in most contexts.
226 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 return READ_ONCE(rnp->qsmaskinitnext);
232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
236 static int rcu_gp_in_progress(struct rcu_state *rsp)
238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 * Note a quiescent state. Because we do not need to know
243 * how many quiescent states passed, just if there was at least
244 * one since the start of the grace period, this just sets a flag.
245 * The caller must have disabled preemption.
247 void rcu_sched_qs(void)
249 unsigned long flags;
251 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 local_irq_save(flags);
259 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data),
263 true);
265 local_irq_restore(flags);
269 void rcu_bh_qs(void)
271 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
272 trace_rcu_grace_period(TPS("rcu_bh"),
273 __this_cpu_read(rcu_bh_data.gpnum),
274 TPS("cpuqs"));
275 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
279 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
281 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
282 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
283 .dynticks = ATOMIC_INIT(1),
284 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
285 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
286 .dynticks_idle = ATOMIC_INIT(1),
287 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
290 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
291 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
294 * Let the RCU core know that this CPU has gone through the scheduler,
295 * which is a quiescent state. This is called when the need for a
296 * quiescent state is urgent, so we burn an atomic operation and full
297 * memory barriers to let the RCU core know about it, regardless of what
298 * this CPU might (or might not) do in the near future.
300 * We inform the RCU core by emulating a zero-duration dyntick-idle
301 * period, which we in turn do by incrementing the ->dynticks counter
302 * by two.
304 static void rcu_momentary_dyntick_idle(void)
306 unsigned long flags;
307 struct rcu_data *rdp;
308 struct rcu_dynticks *rdtp;
309 int resched_mask;
310 struct rcu_state *rsp;
312 local_irq_save(flags);
315 * Yes, we can lose flag-setting operations. This is OK, because
316 * the flag will be set again after some delay.
318 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
319 raw_cpu_write(rcu_sched_qs_mask, 0);
321 /* Find the flavor that needs a quiescent state. */
322 for_each_rcu_flavor(rsp) {
323 rdp = raw_cpu_ptr(rsp->rda);
324 if (!(resched_mask & rsp->flavor_mask))
325 continue;
326 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
327 if (READ_ONCE(rdp->mynode->completed) !=
328 READ_ONCE(rdp->cond_resched_completed))
329 continue;
332 * Pretend to be momentarily idle for the quiescent state.
333 * This allows the grace-period kthread to record the
334 * quiescent state, with no need for this CPU to do anything
335 * further.
337 rdtp = this_cpu_ptr(&rcu_dynticks);
338 smp_mb__before_atomic(); /* Earlier stuff before QS. */
339 atomic_add(2, &rdtp->dynticks); /* QS. */
340 smp_mb__after_atomic(); /* Later stuff after QS. */
341 break;
343 local_irq_restore(flags);
347 * Note a context switch. This is a quiescent state for RCU-sched,
348 * and requires special handling for preemptible RCU.
349 * The caller must have disabled preemption.
351 void rcu_note_context_switch(void)
353 barrier(); /* Avoid RCU read-side critical sections leaking down. */
354 trace_rcu_utilization(TPS("Start context switch"));
355 rcu_sched_qs();
356 rcu_preempt_note_context_switch();
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
358 rcu_momentary_dyntick_idle();
359 trace_rcu_utilization(TPS("End context switch"));
360 barrier(); /* Avoid RCU read-side critical sections leaking up. */
362 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
365 * Register a quiescent state for all RCU flavors. If there is an
366 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
367 * dyntick-idle quiescent state visible to other CPUs (but only for those
368 * RCU flavors in desperate need of a quiescent state, which will normally
369 * be none of them). Either way, do a lightweight quiescent state for
370 * all RCU flavors.
372 * The barrier() calls are redundant in the common case when this is
373 * called externally, but just in case this is called from within this
374 * file.
377 void rcu_all_qs(void)
379 barrier(); /* Avoid RCU read-side critical sections leaking down. */
380 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
381 rcu_momentary_dyntick_idle();
382 this_cpu_inc(rcu_qs_ctr);
383 barrier(); /* Avoid RCU read-side critical sections leaking up. */
385 EXPORT_SYMBOL_GPL(rcu_all_qs);
387 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
388 static long qhimark = 10000; /* If this many pending, ignore blimit. */
389 static long qlowmark = 100; /* Once only this many pending, use blimit. */
391 module_param(blimit, long, 0444);
392 module_param(qhimark, long, 0444);
393 module_param(qlowmark, long, 0444);
395 static ulong jiffies_till_first_fqs = ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
398 module_param(jiffies_till_first_fqs, ulong, 0644);
399 module_param(jiffies_till_next_fqs, ulong, 0644);
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
405 static ulong jiffies_till_sched_qs = HZ / 20;
406 module_param(jiffies_till_sched_qs, ulong, 0644);
408 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
409 struct rcu_data *rdp);
410 static void force_qs_rnp(struct rcu_state *rsp,
411 int (*f)(struct rcu_data *rsp, bool *isidle,
412 unsigned long *maxj),
413 bool *isidle, unsigned long *maxj);
414 static void force_quiescent_state(struct rcu_state *rsp);
415 static int rcu_pending(void);
418 * Return the number of RCU batches started thus far for debug & stats.
420 unsigned long rcu_batches_started(void)
422 return rcu_state_p->gpnum;
424 EXPORT_SYMBOL_GPL(rcu_batches_started);
427 * Return the number of RCU-sched batches started thus far for debug & stats.
429 unsigned long rcu_batches_started_sched(void)
431 return rcu_sched_state.gpnum;
433 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
436 * Return the number of RCU BH batches started thus far for debug & stats.
438 unsigned long rcu_batches_started_bh(void)
440 return rcu_bh_state.gpnum;
442 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
445 * Return the number of RCU batches completed thus far for debug & stats.
447 unsigned long rcu_batches_completed(void)
449 return rcu_state_p->completed;
451 EXPORT_SYMBOL_GPL(rcu_batches_completed);
454 * Return the number of RCU-sched batches completed thus far for debug & stats.
456 unsigned long rcu_batches_completed_sched(void)
458 return rcu_sched_state.completed;
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
463 * Return the number of RCU BH batches completed thus far for debug & stats.
465 unsigned long rcu_batches_completed_bh(void)
467 return rcu_bh_state.completed;
469 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
472 * Force a quiescent state.
474 void rcu_force_quiescent_state(void)
476 force_quiescent_state(rcu_state_p);
478 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
481 * Force a quiescent state for RCU BH.
483 void rcu_bh_force_quiescent_state(void)
485 force_quiescent_state(&rcu_bh_state);
487 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
490 * Force a quiescent state for RCU-sched.
492 void rcu_sched_force_quiescent_state(void)
494 force_quiescent_state(&rcu_sched_state);
496 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
499 * Show the state of the grace-period kthreads.
501 void show_rcu_gp_kthreads(void)
503 struct rcu_state *rsp;
505 for_each_rcu_flavor(rsp) {
506 pr_info("%s: wait state: %d ->state: %#lx\n",
507 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
508 /* sched_show_task(rsp->gp_kthread); */
511 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
514 * Record the number of times rcutorture tests have been initiated and
515 * terminated. This information allows the debugfs tracing stats to be
516 * correlated to the rcutorture messages, even when the rcutorture module
517 * is being repeatedly loaded and unloaded. In other words, we cannot
518 * store this state in rcutorture itself.
520 void rcutorture_record_test_transition(void)
522 rcutorture_testseq++;
523 rcutorture_vernum = 0;
525 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
528 * Send along grace-period-related data for rcutorture diagnostics.
530 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
531 unsigned long *gpnum, unsigned long *completed)
533 struct rcu_state *rsp = NULL;
535 switch (test_type) {
536 case RCU_FLAVOR:
537 rsp = rcu_state_p;
538 break;
539 case RCU_BH_FLAVOR:
540 rsp = &rcu_bh_state;
541 break;
542 case RCU_SCHED_FLAVOR:
543 rsp = &rcu_sched_state;
544 break;
545 default:
546 break;
548 if (rsp != NULL) {
549 *flags = READ_ONCE(rsp->gp_flags);
550 *gpnum = READ_ONCE(rsp->gpnum);
551 *completed = READ_ONCE(rsp->completed);
552 return;
554 *flags = 0;
555 *gpnum = 0;
556 *completed = 0;
558 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
561 * Record the number of writer passes through the current rcutorture test.
562 * This is also used to correlate debugfs tracing stats with the rcutorture
563 * messages.
565 void rcutorture_record_progress(unsigned long vernum)
567 rcutorture_vernum++;
569 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
572 * Does the CPU have callbacks ready to be invoked?
574 static int
575 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
577 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
578 rdp->nxttail[RCU_DONE_TAIL] != NULL;
582 * Return the root node of the specified rcu_state structure.
584 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
586 return &rsp->node[0];
590 * Is there any need for future grace periods?
591 * Interrupts must be disabled. If the caller does not hold the root
592 * rnp_node structure's ->lock, the results are advisory only.
594 static int rcu_future_needs_gp(struct rcu_state *rsp)
596 struct rcu_node *rnp = rcu_get_root(rsp);
597 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
598 int *fp = &rnp->need_future_gp[idx];
600 return READ_ONCE(*fp);
604 * Does the current CPU require a not-yet-started grace period?
605 * The caller must have disabled interrupts to prevent races with
606 * normal callback registry.
608 static int
609 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
611 int i;
613 if (rcu_gp_in_progress(rsp))
614 return 0; /* No, a grace period is already in progress. */
615 if (rcu_future_needs_gp(rsp))
616 return 1; /* Yes, a no-CBs CPU needs one. */
617 if (!rdp->nxttail[RCU_NEXT_TAIL])
618 return 0; /* No, this is a no-CBs (or offline) CPU. */
619 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
620 return 1; /* Yes, this CPU has newly registered callbacks. */
621 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
622 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
623 ULONG_CMP_LT(READ_ONCE(rsp->completed),
624 rdp->nxtcompleted[i]))
625 return 1; /* Yes, CBs for future grace period. */
626 return 0; /* No grace period needed. */
630 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
632 * If the new value of the ->dynticks_nesting counter now is zero,
633 * we really have entered idle, and must do the appropriate accounting.
634 * The caller must have disabled interrupts.
636 static void rcu_eqs_enter_common(long long oldval, bool user)
638 struct rcu_state *rsp;
639 struct rcu_data *rdp;
640 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
642 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
643 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
644 !user && !is_idle_task(current)) {
645 struct task_struct *idle __maybe_unused =
646 idle_task(smp_processor_id());
648 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
649 ftrace_dump(DUMP_ORIG);
650 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
651 current->pid, current->comm,
652 idle->pid, idle->comm); /* must be idle task! */
654 for_each_rcu_flavor(rsp) {
655 rdp = this_cpu_ptr(rsp->rda);
656 do_nocb_deferred_wakeup(rdp);
658 rcu_prepare_for_idle();
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic(); /* See above. */
661 atomic_inc(&rdtp->dynticks);
662 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
663 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
664 atomic_read(&rdtp->dynticks) & 0x1);
665 rcu_dynticks_task_enter();
668 * It is illegal to enter an extended quiescent state while
669 * in an RCU read-side critical section.
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
672 "Illegal idle entry in RCU read-side critical section.");
673 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
674 "Illegal idle entry in RCU-bh read-side critical section.");
675 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
676 "Illegal idle entry in RCU-sched read-side critical section.");
680 * Enter an RCU extended quiescent state, which can be either the
681 * idle loop or adaptive-tickless usermode execution.
683 static void rcu_eqs_enter(bool user)
685 long long oldval;
686 struct rcu_dynticks *rdtp;
688 rdtp = this_cpu_ptr(&rcu_dynticks);
689 oldval = rdtp->dynticks_nesting;
690 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
691 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
692 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
693 rdtp->dynticks_nesting = 0;
694 rcu_eqs_enter_common(oldval, user);
695 } else {
696 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
701 * rcu_idle_enter - inform RCU that current CPU is entering idle
703 * Enter idle mode, in other words, -leave- the mode in which RCU
704 * read-side critical sections can occur. (Though RCU read-side
705 * critical sections can occur in irq handlers in idle, a possibility
706 * handled by irq_enter() and irq_exit().)
708 * We crowbar the ->dynticks_nesting field to zero to allow for
709 * the possibility of usermode upcalls having messed up our count
710 * of interrupt nesting level during the prior busy period.
712 void rcu_idle_enter(void)
714 unsigned long flags;
716 local_irq_save(flags);
717 rcu_eqs_enter(false);
718 rcu_sysidle_enter(0);
719 local_irq_restore(flags);
721 EXPORT_SYMBOL_GPL(rcu_idle_enter);
723 #ifdef CONFIG_NO_HZ_FULL
725 * rcu_user_enter - inform RCU that we are resuming userspace.
727 * Enter RCU idle mode right before resuming userspace. No use of RCU
728 * is permitted between this call and rcu_user_exit(). This way the
729 * CPU doesn't need to maintain the tick for RCU maintenance purposes
730 * when the CPU runs in userspace.
732 void rcu_user_enter(void)
734 rcu_eqs_enter(1);
736 #endif /* CONFIG_NO_HZ_FULL */
739 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
741 * Exit from an interrupt handler, which might possibly result in entering
742 * idle mode, in other words, leaving the mode in which read-side critical
743 * sections can occur.
745 * This code assumes that the idle loop never does anything that might
746 * result in unbalanced calls to irq_enter() and irq_exit(). If your
747 * architecture violates this assumption, RCU will give you what you
748 * deserve, good and hard. But very infrequently and irreproducibly.
750 * Use things like work queues to work around this limitation.
752 * You have been warned.
754 void rcu_irq_exit(void)
756 unsigned long flags;
757 long long oldval;
758 struct rcu_dynticks *rdtp;
760 local_irq_save(flags);
761 rdtp = this_cpu_ptr(&rcu_dynticks);
763 /* Page faults can happen in NMI handlers, so check... */
764 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
765 return;
767 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
768 oldval = rdtp->dynticks_nesting;
769 rdtp->dynticks_nesting--;
770 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
771 rdtp->dynticks_nesting < 0);
772 if (rdtp->dynticks_nesting)
773 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
774 else
775 rcu_eqs_enter_common(oldval, true);
776 rcu_sysidle_enter(1);
777 local_irq_restore(flags);
781 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
783 * If the new value of the ->dynticks_nesting counter was previously zero,
784 * we really have exited idle, and must do the appropriate accounting.
785 * The caller must have disabled interrupts.
787 static void rcu_eqs_exit_common(long long oldval, int user)
789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
791 rcu_dynticks_task_exit();
792 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
793 atomic_inc(&rdtp->dynticks);
794 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
795 smp_mb__after_atomic(); /* See above. */
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 !(atomic_read(&rdtp->dynticks) & 0x1));
798 rcu_cleanup_after_idle();
799 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
800 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
801 !user && !is_idle_task(current)) {
802 struct task_struct *idle __maybe_unused =
803 idle_task(smp_processor_id());
805 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
806 oldval, rdtp->dynticks_nesting);
807 ftrace_dump(DUMP_ORIG);
808 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
809 current->pid, current->comm,
810 idle->pid, idle->comm); /* must be idle task! */
815 * Exit an RCU extended quiescent state, which can be either the
816 * idle loop or adaptive-tickless usermode execution.
818 static void rcu_eqs_exit(bool user)
820 struct rcu_dynticks *rdtp;
821 long long oldval;
823 rdtp = this_cpu_ptr(&rcu_dynticks);
824 oldval = rdtp->dynticks_nesting;
825 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
826 if (oldval & DYNTICK_TASK_NEST_MASK) {
827 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
828 } else {
829 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
830 rcu_eqs_exit_common(oldval, user);
835 * rcu_idle_exit - inform RCU that current CPU is leaving idle
837 * Exit idle mode, in other words, -enter- the mode in which RCU
838 * read-side critical sections can occur.
840 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
841 * allow for the possibility of usermode upcalls messing up our count
842 * of interrupt nesting level during the busy period that is just
843 * now starting.
845 void rcu_idle_exit(void)
847 unsigned long flags;
849 local_irq_save(flags);
850 rcu_eqs_exit(false);
851 rcu_sysidle_exit(0);
852 local_irq_restore(flags);
854 EXPORT_SYMBOL_GPL(rcu_idle_exit);
856 #ifdef CONFIG_NO_HZ_FULL
858 * rcu_user_exit - inform RCU that we are exiting userspace.
860 * Exit RCU idle mode while entering the kernel because it can
861 * run a RCU read side critical section anytime.
863 void rcu_user_exit(void)
865 rcu_eqs_exit(1);
867 #endif /* CONFIG_NO_HZ_FULL */
870 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
872 * Enter an interrupt handler, which might possibly result in exiting
873 * idle mode, in other words, entering the mode in which read-side critical
874 * sections can occur.
876 * Note that the Linux kernel is fully capable of entering an interrupt
877 * handler that it never exits, for example when doing upcalls to
878 * user mode! This code assumes that the idle loop never does upcalls to
879 * user mode. If your architecture does do upcalls from the idle loop (or
880 * does anything else that results in unbalanced calls to the irq_enter()
881 * and irq_exit() functions), RCU will give you what you deserve, good
882 * and hard. But very infrequently and irreproducibly.
884 * Use things like work queues to work around this limitation.
886 * You have been warned.
888 void rcu_irq_enter(void)
890 unsigned long flags;
891 struct rcu_dynticks *rdtp;
892 long long oldval;
894 local_irq_save(flags);
895 rdtp = this_cpu_ptr(&rcu_dynticks);
897 /* Page faults can happen in NMI handlers, so check... */
898 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
899 return;
901 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
902 oldval = rdtp->dynticks_nesting;
903 rdtp->dynticks_nesting++;
904 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
905 rdtp->dynticks_nesting == 0);
906 if (oldval)
907 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
908 else
909 rcu_eqs_exit_common(oldval, true);
910 rcu_sysidle_exit(1);
911 local_irq_restore(flags);
915 * rcu_nmi_enter - inform RCU of entry to NMI context
917 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
918 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
919 * that the CPU is active. This implementation permits nested NMIs, as
920 * long as the nesting level does not overflow an int. (You will probably
921 * run out of stack space first.)
923 void rcu_nmi_enter(void)
925 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
926 int incby = 2;
928 /* Complain about underflow. */
929 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
932 * If idle from RCU viewpoint, atomically increment ->dynticks
933 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
934 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
935 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
936 * to be in the outermost NMI handler that interrupted an RCU-idle
937 * period (observation due to Andy Lutomirski).
939 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
940 smp_mb__before_atomic(); /* Force delay from prior write. */
941 atomic_inc(&rdtp->dynticks);
942 /* atomic_inc() before later RCU read-side crit sects */
943 smp_mb__after_atomic(); /* See above. */
944 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
945 incby = 1;
947 rdtp->dynticks_nmi_nesting += incby;
948 barrier();
952 * rcu_nmi_exit - inform RCU of exit from NMI context
954 * If we are returning from the outermost NMI handler that interrupted an
955 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
956 * to let the RCU grace-period handling know that the CPU is back to
957 * being RCU-idle.
959 void rcu_nmi_exit(void)
961 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
964 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
965 * (We are exiting an NMI handler, so RCU better be paying attention
966 * to us!)
968 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
969 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
972 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
973 * leave it in non-RCU-idle state.
975 if (rdtp->dynticks_nmi_nesting != 1) {
976 rdtp->dynticks_nmi_nesting -= 2;
977 return;
980 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
981 rdtp->dynticks_nmi_nesting = 0;
982 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983 smp_mb__before_atomic(); /* See above. */
984 atomic_inc(&rdtp->dynticks);
985 smp_mb__after_atomic(); /* Force delay to next write. */
986 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
990 * __rcu_is_watching - are RCU read-side critical sections safe?
992 * Return true if RCU is watching the running CPU, which means that
993 * this CPU can safely enter RCU read-side critical sections. Unlike
994 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
995 * least disabled preemption.
997 bool notrace __rcu_is_watching(void)
999 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1003 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1005 * If the current CPU is in its idle loop and is neither in an interrupt
1006 * or NMI handler, return true.
1008 bool notrace rcu_is_watching(void)
1010 bool ret;
1012 preempt_disable_notrace();
1013 ret = __rcu_is_watching();
1014 preempt_enable_notrace();
1015 return ret;
1017 EXPORT_SYMBOL_GPL(rcu_is_watching);
1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1022 * Is the current CPU online? Disable preemption to avoid false positives
1023 * that could otherwise happen due to the current CPU number being sampled,
1024 * this task being preempted, its old CPU being taken offline, resuming
1025 * on some other CPU, then determining that its old CPU is now offline.
1026 * It is OK to use RCU on an offline processor during initial boot, hence
1027 * the check for rcu_scheduler_fully_active. Note also that it is OK
1028 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1029 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1030 * offline to continue to use RCU for one jiffy after marking itself
1031 * offline in the cpu_online_mask. This leniency is necessary given the
1032 * non-atomic nature of the online and offline processing, for example,
1033 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1034 * notifiers.
1036 * This is also why RCU internally marks CPUs online during the
1037 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1039 * Disable checking if in an NMI handler because we cannot safely report
1040 * errors from NMI handlers anyway.
1042 bool rcu_lockdep_current_cpu_online(void)
1044 struct rcu_data *rdp;
1045 struct rcu_node *rnp;
1046 bool ret;
1048 if (in_nmi())
1049 return true;
1050 preempt_disable();
1051 rdp = this_cpu_ptr(&rcu_sched_data);
1052 rnp = rdp->mynode;
1053 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1054 !rcu_scheduler_fully_active;
1055 preempt_enable();
1056 return ret;
1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1063 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1065 * If the current CPU is idle or running at a first-level (not nested)
1066 * interrupt from idle, return true. The caller must have at least
1067 * disabled preemption.
1069 static int rcu_is_cpu_rrupt_from_idle(void)
1071 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1075 * Snapshot the specified CPU's dynticks counter so that we can later
1076 * credit them with an implicit quiescent state. Return 1 if this CPU
1077 * is in dynticks idle mode, which is an extended quiescent state.
1079 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1080 bool *isidle, unsigned long *maxj)
1082 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1083 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1084 if ((rdp->dynticks_snap & 0x1) == 0) {
1085 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1086 return 1;
1087 } else {
1088 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1089 rdp->mynode->gpnum))
1090 WRITE_ONCE(rdp->gpwrap, true);
1091 return 0;
1096 * Return true if the specified CPU has passed through a quiescent
1097 * state by virtue of being in or having passed through an dynticks
1098 * idle state since the last call to dyntick_save_progress_counter()
1099 * for this same CPU, or by virtue of having been offline.
1101 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1102 bool *isidle, unsigned long *maxj)
1104 unsigned int curr;
1105 int *rcrmp;
1106 unsigned int snap;
1108 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1109 snap = (unsigned int)rdp->dynticks_snap;
1112 * If the CPU passed through or entered a dynticks idle phase with
1113 * no active irq/NMI handlers, then we can safely pretend that the CPU
1114 * already acknowledged the request to pass through a quiescent
1115 * state. Either way, that CPU cannot possibly be in an RCU
1116 * read-side critical section that started before the beginning
1117 * of the current RCU grace period.
1119 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1120 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1121 rdp->dynticks_fqs++;
1122 return 1;
1126 * Check for the CPU being offline, but only if the grace period
1127 * is old enough. We don't need to worry about the CPU changing
1128 * state: If we see it offline even once, it has been through a
1129 * quiescent state.
1131 * The reason for insisting that the grace period be at least
1132 * one jiffy old is that CPUs that are not quite online and that
1133 * have just gone offline can still execute RCU read-side critical
1134 * sections.
1136 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1137 return 0; /* Grace period is not old enough. */
1138 barrier();
1139 if (cpu_is_offline(rdp->cpu)) {
1140 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1141 rdp->offline_fqs++;
1142 return 1;
1146 * A CPU running for an extended time within the kernel can
1147 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1148 * even context-switching back and forth between a pair of
1149 * in-kernel CPU-bound tasks cannot advance grace periods.
1150 * So if the grace period is old enough, make the CPU pay attention.
1151 * Note that the unsynchronized assignments to the per-CPU
1152 * rcu_sched_qs_mask variable are safe. Yes, setting of
1153 * bits can be lost, but they will be set again on the next
1154 * force-quiescent-state pass. So lost bit sets do not result
1155 * in incorrect behavior, merely in a grace period lasting
1156 * a few jiffies longer than it might otherwise. Because
1157 * there are at most four threads involved, and because the
1158 * updates are only once every few jiffies, the probability of
1159 * lossage (and thus of slight grace-period extension) is
1160 * quite low.
1162 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1163 * is set too high, we override with half of the RCU CPU stall
1164 * warning delay.
1166 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1167 if (ULONG_CMP_GE(jiffies,
1168 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1169 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1170 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1171 WRITE_ONCE(rdp->cond_resched_completed,
1172 READ_ONCE(rdp->mynode->completed));
1173 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1174 WRITE_ONCE(*rcrmp,
1175 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1176 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1177 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1178 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1179 /* Time to beat on that CPU again! */
1180 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1181 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1185 return 0;
1188 static void record_gp_stall_check_time(struct rcu_state *rsp)
1190 unsigned long j = jiffies;
1191 unsigned long j1;
1193 rsp->gp_start = j;
1194 smp_wmb(); /* Record start time before stall time. */
1195 j1 = rcu_jiffies_till_stall_check();
1196 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1197 rsp->jiffies_resched = j + j1 / 2;
1198 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1202 * Complain about starvation of grace-period kthread.
1204 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1206 unsigned long gpa;
1207 unsigned long j;
1209 j = jiffies;
1210 gpa = READ_ONCE(rsp->gp_activity);
1211 if (j - gpa > 2 * HZ)
1212 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1213 rsp->name, j - gpa,
1214 rsp->gpnum, rsp->completed,
1215 rsp->gp_flags, rsp->gp_state,
1216 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1220 * Dump stacks of all tasks running on stalled CPUs.
1222 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1224 int cpu;
1225 unsigned long flags;
1226 struct rcu_node *rnp;
1228 rcu_for_each_leaf_node(rsp, rnp) {
1229 raw_spin_lock_irqsave(&rnp->lock, flags);
1230 if (rnp->qsmask != 0) {
1231 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1232 if (rnp->qsmask & (1UL << cpu))
1233 dump_cpu_task(rnp->grplo + cpu);
1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1241 int cpu;
1242 long delta;
1243 unsigned long flags;
1244 unsigned long gpa;
1245 unsigned long j;
1246 int ndetected = 0;
1247 struct rcu_node *rnp = rcu_get_root(rsp);
1248 long totqlen = 0;
1250 /* Only let one CPU complain about others per time interval. */
1252 raw_spin_lock_irqsave(&rnp->lock, flags);
1253 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1254 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1256 return;
1258 WRITE_ONCE(rsp->jiffies_stall,
1259 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1260 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1263 * OK, time to rat on our buddy...
1264 * See Documentation/RCU/stallwarn.txt for info on how to debug
1265 * RCU CPU stall warnings.
1267 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1268 rsp->name);
1269 print_cpu_stall_info_begin();
1270 rcu_for_each_leaf_node(rsp, rnp) {
1271 raw_spin_lock_irqsave(&rnp->lock, flags);
1272 ndetected += rcu_print_task_stall(rnp);
1273 if (rnp->qsmask != 0) {
1274 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1275 if (rnp->qsmask & (1UL << cpu)) {
1276 print_cpu_stall_info(rsp,
1277 rnp->grplo + cpu);
1278 ndetected++;
1281 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1284 print_cpu_stall_info_end();
1285 for_each_possible_cpu(cpu)
1286 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1287 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1288 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1289 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1290 if (ndetected) {
1291 rcu_dump_cpu_stacks(rsp);
1292 } else {
1293 if (READ_ONCE(rsp->gpnum) != gpnum ||
1294 READ_ONCE(rsp->completed) == gpnum) {
1295 pr_err("INFO: Stall ended before state dump start\n");
1296 } else {
1297 j = jiffies;
1298 gpa = READ_ONCE(rsp->gp_activity);
1299 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1300 rsp->name, j - gpa, j, gpa,
1301 jiffies_till_next_fqs,
1302 rcu_get_root(rsp)->qsmask);
1303 /* In this case, the current CPU might be at fault. */
1304 sched_show_task(current);
1308 /* Complain about tasks blocking the grace period. */
1309 rcu_print_detail_task_stall(rsp);
1311 rcu_check_gp_kthread_starvation(rsp);
1313 force_quiescent_state(rsp); /* Kick them all. */
1316 static void print_cpu_stall(struct rcu_state *rsp)
1318 int cpu;
1319 unsigned long flags;
1320 struct rcu_node *rnp = rcu_get_root(rsp);
1321 long totqlen = 0;
1324 * OK, time to rat on ourselves...
1325 * See Documentation/RCU/stallwarn.txt for info on how to debug
1326 * RCU CPU stall warnings.
1328 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1329 print_cpu_stall_info_begin();
1330 print_cpu_stall_info(rsp, smp_processor_id());
1331 print_cpu_stall_info_end();
1332 for_each_possible_cpu(cpu)
1333 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1334 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1335 jiffies - rsp->gp_start,
1336 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1338 rcu_check_gp_kthread_starvation(rsp);
1340 rcu_dump_cpu_stacks(rsp);
1342 raw_spin_lock_irqsave(&rnp->lock, flags);
1343 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1344 WRITE_ONCE(rsp->jiffies_stall,
1345 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1346 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1349 * Attempt to revive the RCU machinery by forcing a context switch.
1351 * A context switch would normally allow the RCU state machine to make
1352 * progress and it could be we're stuck in kernel space without context
1353 * switches for an entirely unreasonable amount of time.
1355 resched_cpu(smp_processor_id());
1358 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1360 unsigned long completed;
1361 unsigned long gpnum;
1362 unsigned long gps;
1363 unsigned long j;
1364 unsigned long js;
1365 struct rcu_node *rnp;
1367 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1368 return;
1369 j = jiffies;
1372 * Lots of memory barriers to reject false positives.
1374 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1375 * then rsp->gp_start, and finally rsp->completed. These values
1376 * are updated in the opposite order with memory barriers (or
1377 * equivalent) during grace-period initialization and cleanup.
1378 * Now, a false positive can occur if we get an new value of
1379 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1380 * the memory barriers, the only way that this can happen is if one
1381 * grace period ends and another starts between these two fetches.
1382 * Detect this by comparing rsp->completed with the previous fetch
1383 * from rsp->gpnum.
1385 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1386 * and rsp->gp_start suffice to forestall false positives.
1388 gpnum = READ_ONCE(rsp->gpnum);
1389 smp_rmb(); /* Pick up ->gpnum first... */
1390 js = READ_ONCE(rsp->jiffies_stall);
1391 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1392 gps = READ_ONCE(rsp->gp_start);
1393 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1394 completed = READ_ONCE(rsp->completed);
1395 if (ULONG_CMP_GE(completed, gpnum) ||
1396 ULONG_CMP_LT(j, js) ||
1397 ULONG_CMP_GE(gps, js))
1398 return; /* No stall or GP completed since entering function. */
1399 rnp = rdp->mynode;
1400 if (rcu_gp_in_progress(rsp) &&
1401 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1403 /* We haven't checked in, so go dump stack. */
1404 print_cpu_stall(rsp);
1406 } else if (rcu_gp_in_progress(rsp) &&
1407 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1409 /* They had a few time units to dump stack, so complain. */
1410 print_other_cpu_stall(rsp, gpnum);
1415 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1417 * Set the stall-warning timeout way off into the future, thus preventing
1418 * any RCU CPU stall-warning messages from appearing in the current set of
1419 * RCU grace periods.
1421 * The caller must disable hard irqs.
1423 void rcu_cpu_stall_reset(void)
1425 struct rcu_state *rsp;
1427 for_each_rcu_flavor(rsp)
1428 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1432 * Initialize the specified rcu_data structure's default callback list
1433 * to empty. The default callback list is the one that is not used by
1434 * no-callbacks CPUs.
1436 static void init_default_callback_list(struct rcu_data *rdp)
1438 int i;
1440 rdp->nxtlist = NULL;
1441 for (i = 0; i < RCU_NEXT_SIZE; i++)
1442 rdp->nxttail[i] = &rdp->nxtlist;
1446 * Initialize the specified rcu_data structure's callback list to empty.
1448 static void init_callback_list(struct rcu_data *rdp)
1450 if (init_nocb_callback_list(rdp))
1451 return;
1452 init_default_callback_list(rdp);
1456 * Determine the value that ->completed will have at the end of the
1457 * next subsequent grace period. This is used to tag callbacks so that
1458 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1459 * been dyntick-idle for an extended period with callbacks under the
1460 * influence of RCU_FAST_NO_HZ.
1462 * The caller must hold rnp->lock with interrupts disabled.
1464 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1465 struct rcu_node *rnp)
1468 * If RCU is idle, we just wait for the next grace period.
1469 * But we can only be sure that RCU is idle if we are looking
1470 * at the root rcu_node structure -- otherwise, a new grace
1471 * period might have started, but just not yet gotten around
1472 * to initializing the current non-root rcu_node structure.
1474 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1475 return rnp->completed + 1;
1478 * Otherwise, wait for a possible partial grace period and
1479 * then the subsequent full grace period.
1481 return rnp->completed + 2;
1485 * Trace-event helper function for rcu_start_future_gp() and
1486 * rcu_nocb_wait_gp().
1488 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1489 unsigned long c, const char *s)
1491 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1492 rnp->completed, c, rnp->level,
1493 rnp->grplo, rnp->grphi, s);
1497 * Start some future grace period, as needed to handle newly arrived
1498 * callbacks. The required future grace periods are recorded in each
1499 * rcu_node structure's ->need_future_gp field. Returns true if there
1500 * is reason to awaken the grace-period kthread.
1502 * The caller must hold the specified rcu_node structure's ->lock.
1504 static bool __maybe_unused
1505 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1506 unsigned long *c_out)
1508 unsigned long c;
1509 int i;
1510 bool ret = false;
1511 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1514 * Pick up grace-period number for new callbacks. If this
1515 * grace period is already marked as needed, return to the caller.
1517 c = rcu_cbs_completed(rdp->rsp, rnp);
1518 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1519 if (rnp->need_future_gp[c & 0x1]) {
1520 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1521 goto out;
1525 * If either this rcu_node structure or the root rcu_node structure
1526 * believe that a grace period is in progress, then we must wait
1527 * for the one following, which is in "c". Because our request
1528 * will be noticed at the end of the current grace period, we don't
1529 * need to explicitly start one. We only do the lockless check
1530 * of rnp_root's fields if the current rcu_node structure thinks
1531 * there is no grace period in flight, and because we hold rnp->lock,
1532 * the only possible change is when rnp_root's two fields are
1533 * equal, in which case rnp_root->gpnum might be concurrently
1534 * incremented. But that is OK, as it will just result in our
1535 * doing some extra useless work.
1537 if (rnp->gpnum != rnp->completed ||
1538 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1539 rnp->need_future_gp[c & 0x1]++;
1540 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1541 goto out;
1545 * There might be no grace period in progress. If we don't already
1546 * hold it, acquire the root rcu_node structure's lock in order to
1547 * start one (if needed).
1549 if (rnp != rnp_root) {
1550 raw_spin_lock(&rnp_root->lock);
1551 smp_mb__after_unlock_lock();
1555 * Get a new grace-period number. If there really is no grace
1556 * period in progress, it will be smaller than the one we obtained
1557 * earlier. Adjust callbacks as needed. Note that even no-CBs
1558 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1560 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1561 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1562 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1563 rdp->nxtcompleted[i] = c;
1566 * If the needed for the required grace period is already
1567 * recorded, trace and leave.
1569 if (rnp_root->need_future_gp[c & 0x1]) {
1570 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1571 goto unlock_out;
1574 /* Record the need for the future grace period. */
1575 rnp_root->need_future_gp[c & 0x1]++;
1577 /* If a grace period is not already in progress, start one. */
1578 if (rnp_root->gpnum != rnp_root->completed) {
1579 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1580 } else {
1581 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1582 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1584 unlock_out:
1585 if (rnp != rnp_root)
1586 raw_spin_unlock(&rnp_root->lock);
1587 out:
1588 if (c_out != NULL)
1589 *c_out = c;
1590 return ret;
1594 * Clean up any old requests for the just-ended grace period. Also return
1595 * whether any additional grace periods have been requested. Also invoke
1596 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1597 * waiting for this grace period to complete.
1599 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1601 int c = rnp->completed;
1602 int needmore;
1603 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1605 rcu_nocb_gp_cleanup(rsp, rnp);
1606 rnp->need_future_gp[c & 0x1] = 0;
1607 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1608 trace_rcu_future_gp(rnp, rdp, c,
1609 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1610 return needmore;
1614 * Awaken the grace-period kthread for the specified flavor of RCU.
1615 * Don't do a self-awaken, and don't bother awakening when there is
1616 * nothing for the grace-period kthread to do (as in several CPUs
1617 * raced to awaken, and we lost), and finally don't try to awaken
1618 * a kthread that has not yet been created.
1620 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1622 if (current == rsp->gp_kthread ||
1623 !READ_ONCE(rsp->gp_flags) ||
1624 !rsp->gp_kthread)
1625 return;
1626 wake_up(&rsp->gp_wq);
1630 * If there is room, assign a ->completed number to any callbacks on
1631 * this CPU that have not already been assigned. Also accelerate any
1632 * callbacks that were previously assigned a ->completed number that has
1633 * since proven to be too conservative, which can happen if callbacks get
1634 * assigned a ->completed number while RCU is idle, but with reference to
1635 * a non-root rcu_node structure. This function is idempotent, so it does
1636 * not hurt to call it repeatedly. Returns an flag saying that we should
1637 * awaken the RCU grace-period kthread.
1639 * The caller must hold rnp->lock with interrupts disabled.
1641 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1642 struct rcu_data *rdp)
1644 unsigned long c;
1645 int i;
1646 bool ret;
1648 /* If the CPU has no callbacks, nothing to do. */
1649 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1650 return false;
1653 * Starting from the sublist containing the callbacks most
1654 * recently assigned a ->completed number and working down, find the
1655 * first sublist that is not assignable to an upcoming grace period.
1656 * Such a sublist has something in it (first two tests) and has
1657 * a ->completed number assigned that will complete sooner than
1658 * the ->completed number for newly arrived callbacks (last test).
1660 * The key point is that any later sublist can be assigned the
1661 * same ->completed number as the newly arrived callbacks, which
1662 * means that the callbacks in any of these later sublist can be
1663 * grouped into a single sublist, whether or not they have already
1664 * been assigned a ->completed number.
1666 c = rcu_cbs_completed(rsp, rnp);
1667 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1668 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1669 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1670 break;
1673 * If there are no sublist for unassigned callbacks, leave.
1674 * At the same time, advance "i" one sublist, so that "i" will
1675 * index into the sublist where all the remaining callbacks should
1676 * be grouped into.
1678 if (++i >= RCU_NEXT_TAIL)
1679 return false;
1682 * Assign all subsequent callbacks' ->completed number to the next
1683 * full grace period and group them all in the sublist initially
1684 * indexed by "i".
1686 for (; i <= RCU_NEXT_TAIL; i++) {
1687 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1688 rdp->nxtcompleted[i] = c;
1690 /* Record any needed additional grace periods. */
1691 ret = rcu_start_future_gp(rnp, rdp, NULL);
1693 /* Trace depending on how much we were able to accelerate. */
1694 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1695 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1696 else
1697 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1698 return ret;
1702 * Move any callbacks whose grace period has completed to the
1703 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1704 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1705 * sublist. This function is idempotent, so it does not hurt to
1706 * invoke it repeatedly. As long as it is not invoked -too- often...
1707 * Returns true if the RCU grace-period kthread needs to be awakened.
1709 * The caller must hold rnp->lock with interrupts disabled.
1711 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1712 struct rcu_data *rdp)
1714 int i, j;
1716 /* If the CPU has no callbacks, nothing to do. */
1717 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1718 return false;
1721 * Find all callbacks whose ->completed numbers indicate that they
1722 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1724 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1725 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1726 break;
1727 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1729 /* Clean up any sublist tail pointers that were misordered above. */
1730 for (j = RCU_WAIT_TAIL; j < i; j++)
1731 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1733 /* Copy down callbacks to fill in empty sublists. */
1734 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1735 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1736 break;
1737 rdp->nxttail[j] = rdp->nxttail[i];
1738 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1741 /* Classify any remaining callbacks. */
1742 return rcu_accelerate_cbs(rsp, rnp, rdp);
1746 * Update CPU-local rcu_data state to record the beginnings and ends of
1747 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1748 * structure corresponding to the current CPU, and must have irqs disabled.
1749 * Returns true if the grace-period kthread needs to be awakened.
1751 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1752 struct rcu_data *rdp)
1754 bool ret;
1756 /* Handle the ends of any preceding grace periods first. */
1757 if (rdp->completed == rnp->completed &&
1758 !unlikely(READ_ONCE(rdp->gpwrap))) {
1760 /* No grace period end, so just accelerate recent callbacks. */
1761 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1763 } else {
1765 /* Advance callbacks. */
1766 ret = rcu_advance_cbs(rsp, rnp, rdp);
1768 /* Remember that we saw this grace-period completion. */
1769 rdp->completed = rnp->completed;
1770 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1773 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1775 * If the current grace period is waiting for this CPU,
1776 * set up to detect a quiescent state, otherwise don't
1777 * go looking for one.
1779 rdp->gpnum = rnp->gpnum;
1780 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1781 rdp->cpu_no_qs.b.norm = true;
1782 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1783 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1784 zero_cpu_stall_ticks(rdp);
1785 WRITE_ONCE(rdp->gpwrap, false);
1787 return ret;
1790 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1792 unsigned long flags;
1793 bool needwake;
1794 struct rcu_node *rnp;
1796 local_irq_save(flags);
1797 rnp = rdp->mynode;
1798 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1799 rdp->completed == READ_ONCE(rnp->completed) &&
1800 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1801 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1802 local_irq_restore(flags);
1803 return;
1805 smp_mb__after_unlock_lock();
1806 needwake = __note_gp_changes(rsp, rnp, rdp);
1807 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1808 if (needwake)
1809 rcu_gp_kthread_wake(rsp);
1812 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1814 if (delay > 0 &&
1815 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1816 schedule_timeout_uninterruptible(delay);
1820 * Initialize a new grace period. Return 0 if no grace period required.
1822 static int rcu_gp_init(struct rcu_state *rsp)
1824 unsigned long oldmask;
1825 struct rcu_data *rdp;
1826 struct rcu_node *rnp = rcu_get_root(rsp);
1828 WRITE_ONCE(rsp->gp_activity, jiffies);
1829 raw_spin_lock_irq(&rnp->lock);
1830 smp_mb__after_unlock_lock();
1831 if (!READ_ONCE(rsp->gp_flags)) {
1832 /* Spurious wakeup, tell caller to go back to sleep. */
1833 raw_spin_unlock_irq(&rnp->lock);
1834 return 0;
1836 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1838 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1840 * Grace period already in progress, don't start another.
1841 * Not supposed to be able to happen.
1843 raw_spin_unlock_irq(&rnp->lock);
1844 return 0;
1847 /* Advance to a new grace period and initialize state. */
1848 record_gp_stall_check_time(rsp);
1849 /* Record GP times before starting GP, hence smp_store_release(). */
1850 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1851 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1852 raw_spin_unlock_irq(&rnp->lock);
1855 * Apply per-leaf buffered online and offline operations to the
1856 * rcu_node tree. Note that this new grace period need not wait
1857 * for subsequent online CPUs, and that quiescent-state forcing
1858 * will handle subsequent offline CPUs.
1860 rcu_for_each_leaf_node(rsp, rnp) {
1861 rcu_gp_slow(rsp, gp_preinit_delay);
1862 raw_spin_lock_irq(&rnp->lock);
1863 smp_mb__after_unlock_lock();
1864 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1865 !rnp->wait_blkd_tasks) {
1866 /* Nothing to do on this leaf rcu_node structure. */
1867 raw_spin_unlock_irq(&rnp->lock);
1868 continue;
1871 /* Record old state, apply changes to ->qsmaskinit field. */
1872 oldmask = rnp->qsmaskinit;
1873 rnp->qsmaskinit = rnp->qsmaskinitnext;
1875 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1876 if (!oldmask != !rnp->qsmaskinit) {
1877 if (!oldmask) /* First online CPU for this rcu_node. */
1878 rcu_init_new_rnp(rnp);
1879 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1880 rnp->wait_blkd_tasks = true;
1881 else /* Last offline CPU and can propagate. */
1882 rcu_cleanup_dead_rnp(rnp);
1886 * If all waited-on tasks from prior grace period are
1887 * done, and if all this rcu_node structure's CPUs are
1888 * still offline, propagate up the rcu_node tree and
1889 * clear ->wait_blkd_tasks. Otherwise, if one of this
1890 * rcu_node structure's CPUs has since come back online,
1891 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1892 * checks for this, so just call it unconditionally).
1894 if (rnp->wait_blkd_tasks &&
1895 (!rcu_preempt_has_tasks(rnp) ||
1896 rnp->qsmaskinit)) {
1897 rnp->wait_blkd_tasks = false;
1898 rcu_cleanup_dead_rnp(rnp);
1901 raw_spin_unlock_irq(&rnp->lock);
1905 * Set the quiescent-state-needed bits in all the rcu_node
1906 * structures for all currently online CPUs in breadth-first order,
1907 * starting from the root rcu_node structure, relying on the layout
1908 * of the tree within the rsp->node[] array. Note that other CPUs
1909 * will access only the leaves of the hierarchy, thus seeing that no
1910 * grace period is in progress, at least until the corresponding
1911 * leaf node has been initialized. In addition, we have excluded
1912 * CPU-hotplug operations.
1914 * The grace period cannot complete until the initialization
1915 * process finishes, because this kthread handles both.
1917 rcu_for_each_node_breadth_first(rsp, rnp) {
1918 rcu_gp_slow(rsp, gp_init_delay);
1919 raw_spin_lock_irq(&rnp->lock);
1920 smp_mb__after_unlock_lock();
1921 rdp = this_cpu_ptr(rsp->rda);
1922 rcu_preempt_check_blocked_tasks(rnp);
1923 rnp->qsmask = rnp->qsmaskinit;
1924 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1925 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1926 WRITE_ONCE(rnp->completed, rsp->completed);
1927 if (rnp == rdp->mynode)
1928 (void)__note_gp_changes(rsp, rnp, rdp);
1929 rcu_preempt_boost_start_gp(rnp);
1930 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1931 rnp->level, rnp->grplo,
1932 rnp->grphi, rnp->qsmask);
1933 raw_spin_unlock_irq(&rnp->lock);
1934 cond_resched_rcu_qs();
1935 WRITE_ONCE(rsp->gp_activity, jiffies);
1938 return 1;
1942 * Helper function for wait_event_interruptible_timeout() wakeup
1943 * at force-quiescent-state time.
1945 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1947 struct rcu_node *rnp = rcu_get_root(rsp);
1949 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1950 *gfp = READ_ONCE(rsp->gp_flags);
1951 if (*gfp & RCU_GP_FLAG_FQS)
1952 return true;
1954 /* The current grace period has completed. */
1955 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1956 return true;
1958 return false;
1962 * Do one round of quiescent-state forcing.
1964 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1966 bool isidle = false;
1967 unsigned long maxj;
1968 struct rcu_node *rnp = rcu_get_root(rsp);
1970 WRITE_ONCE(rsp->gp_activity, jiffies);
1971 rsp->n_force_qs++;
1972 if (first_time) {
1973 /* Collect dyntick-idle snapshots. */
1974 if (is_sysidle_rcu_state(rsp)) {
1975 isidle = true;
1976 maxj = jiffies - ULONG_MAX / 4;
1978 force_qs_rnp(rsp, dyntick_save_progress_counter,
1979 &isidle, &maxj);
1980 rcu_sysidle_report_gp(rsp, isidle, maxj);
1981 } else {
1982 /* Handle dyntick-idle and offline CPUs. */
1983 isidle = true;
1984 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1986 /* Clear flag to prevent immediate re-entry. */
1987 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1988 raw_spin_lock_irq(&rnp->lock);
1989 smp_mb__after_unlock_lock();
1990 WRITE_ONCE(rsp->gp_flags,
1991 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1992 raw_spin_unlock_irq(&rnp->lock);
1997 * Clean up after the old grace period.
1999 static void rcu_gp_cleanup(struct rcu_state *rsp)
2001 unsigned long gp_duration;
2002 bool needgp = false;
2003 int nocb = 0;
2004 struct rcu_data *rdp;
2005 struct rcu_node *rnp = rcu_get_root(rsp);
2007 WRITE_ONCE(rsp->gp_activity, jiffies);
2008 raw_spin_lock_irq(&rnp->lock);
2009 smp_mb__after_unlock_lock();
2010 gp_duration = jiffies - rsp->gp_start;
2011 if (gp_duration > rsp->gp_max)
2012 rsp->gp_max = gp_duration;
2015 * We know the grace period is complete, but to everyone else
2016 * it appears to still be ongoing. But it is also the case
2017 * that to everyone else it looks like there is nothing that
2018 * they can do to advance the grace period. It is therefore
2019 * safe for us to drop the lock in order to mark the grace
2020 * period as completed in all of the rcu_node structures.
2022 raw_spin_unlock_irq(&rnp->lock);
2025 * Propagate new ->completed value to rcu_node structures so
2026 * that other CPUs don't have to wait until the start of the next
2027 * grace period to process their callbacks. This also avoids
2028 * some nasty RCU grace-period initialization races by forcing
2029 * the end of the current grace period to be completely recorded in
2030 * all of the rcu_node structures before the beginning of the next
2031 * grace period is recorded in any of the rcu_node structures.
2033 rcu_for_each_node_breadth_first(rsp, rnp) {
2034 raw_spin_lock_irq(&rnp->lock);
2035 smp_mb__after_unlock_lock();
2036 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2037 WARN_ON_ONCE(rnp->qsmask);
2038 WRITE_ONCE(rnp->completed, rsp->gpnum);
2039 rdp = this_cpu_ptr(rsp->rda);
2040 if (rnp == rdp->mynode)
2041 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2042 /* smp_mb() provided by prior unlock-lock pair. */
2043 nocb += rcu_future_gp_cleanup(rsp, rnp);
2044 raw_spin_unlock_irq(&rnp->lock);
2045 cond_resched_rcu_qs();
2046 WRITE_ONCE(rsp->gp_activity, jiffies);
2047 rcu_gp_slow(rsp, gp_cleanup_delay);
2049 rnp = rcu_get_root(rsp);
2050 raw_spin_lock_irq(&rnp->lock);
2051 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2052 rcu_nocb_gp_set(rnp, nocb);
2054 /* Declare grace period done. */
2055 WRITE_ONCE(rsp->completed, rsp->gpnum);
2056 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2057 rsp->gp_state = RCU_GP_IDLE;
2058 rdp = this_cpu_ptr(rsp->rda);
2059 /* Advance CBs to reduce false positives below. */
2060 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2061 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2062 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2063 trace_rcu_grace_period(rsp->name,
2064 READ_ONCE(rsp->gpnum),
2065 TPS("newreq"));
2067 raw_spin_unlock_irq(&rnp->lock);
2071 * Body of kthread that handles grace periods.
2073 static int __noreturn rcu_gp_kthread(void *arg)
2075 bool first_gp_fqs;
2076 int gf;
2077 unsigned long j;
2078 int ret;
2079 struct rcu_state *rsp = arg;
2080 struct rcu_node *rnp = rcu_get_root(rsp);
2082 rcu_bind_gp_kthread();
2083 for (;;) {
2085 /* Handle grace-period start. */
2086 for (;;) {
2087 trace_rcu_grace_period(rsp->name,
2088 READ_ONCE(rsp->gpnum),
2089 TPS("reqwait"));
2090 rsp->gp_state = RCU_GP_WAIT_GPS;
2091 wait_event_interruptible(rsp->gp_wq,
2092 READ_ONCE(rsp->gp_flags) &
2093 RCU_GP_FLAG_INIT);
2094 rsp->gp_state = RCU_GP_DONE_GPS;
2095 /* Locking provides needed memory barrier. */
2096 if (rcu_gp_init(rsp))
2097 break;
2098 cond_resched_rcu_qs();
2099 WRITE_ONCE(rsp->gp_activity, jiffies);
2100 WARN_ON(signal_pending(current));
2101 trace_rcu_grace_period(rsp->name,
2102 READ_ONCE(rsp->gpnum),
2103 TPS("reqwaitsig"));
2106 /* Handle quiescent-state forcing. */
2107 first_gp_fqs = true;
2108 j = jiffies_till_first_fqs;
2109 if (j > HZ) {
2110 j = HZ;
2111 jiffies_till_first_fqs = HZ;
2113 ret = 0;
2114 for (;;) {
2115 if (!ret)
2116 rsp->jiffies_force_qs = jiffies + j;
2117 trace_rcu_grace_period(rsp->name,
2118 READ_ONCE(rsp->gpnum),
2119 TPS("fqswait"));
2120 rsp->gp_state = RCU_GP_WAIT_FQS;
2121 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2122 rcu_gp_fqs_check_wake(rsp, &gf), j);
2123 rsp->gp_state = RCU_GP_DOING_FQS;
2124 /* Locking provides needed memory barriers. */
2125 /* If grace period done, leave loop. */
2126 if (!READ_ONCE(rnp->qsmask) &&
2127 !rcu_preempt_blocked_readers_cgp(rnp))
2128 break;
2129 /* If time for quiescent-state forcing, do it. */
2130 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2131 (gf & RCU_GP_FLAG_FQS)) {
2132 trace_rcu_grace_period(rsp->name,
2133 READ_ONCE(rsp->gpnum),
2134 TPS("fqsstart"));
2135 rcu_gp_fqs(rsp, first_gp_fqs);
2136 first_gp_fqs = false;
2137 trace_rcu_grace_period(rsp->name,
2138 READ_ONCE(rsp->gpnum),
2139 TPS("fqsend"));
2140 cond_resched_rcu_qs();
2141 WRITE_ONCE(rsp->gp_activity, jiffies);
2142 } else {
2143 /* Deal with stray signal. */
2144 cond_resched_rcu_qs();
2145 WRITE_ONCE(rsp->gp_activity, jiffies);
2146 WARN_ON(signal_pending(current));
2147 trace_rcu_grace_period(rsp->name,
2148 READ_ONCE(rsp->gpnum),
2149 TPS("fqswaitsig"));
2151 j = jiffies_till_next_fqs;
2152 if (j > HZ) {
2153 j = HZ;
2154 jiffies_till_next_fqs = HZ;
2155 } else if (j < 1) {
2156 j = 1;
2157 jiffies_till_next_fqs = 1;
2161 /* Handle grace-period end. */
2162 rsp->gp_state = RCU_GP_CLEANUP;
2163 rcu_gp_cleanup(rsp);
2164 rsp->gp_state = RCU_GP_CLEANED;
2169 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2170 * in preparation for detecting the next grace period. The caller must hold
2171 * the root node's ->lock and hard irqs must be disabled.
2173 * Note that it is legal for a dying CPU (which is marked as offline) to
2174 * invoke this function. This can happen when the dying CPU reports its
2175 * quiescent state.
2177 * Returns true if the grace-period kthread must be awakened.
2179 static bool
2180 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2181 struct rcu_data *rdp)
2183 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2185 * Either we have not yet spawned the grace-period
2186 * task, this CPU does not need another grace period,
2187 * or a grace period is already in progress.
2188 * Either way, don't start a new grace period.
2190 return false;
2192 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2193 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2194 TPS("newreq"));
2197 * We can't do wakeups while holding the rnp->lock, as that
2198 * could cause possible deadlocks with the rq->lock. Defer
2199 * the wakeup to our caller.
2201 return true;
2205 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2206 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2207 * is invoked indirectly from rcu_advance_cbs(), which would result in
2208 * endless recursion -- or would do so if it wasn't for the self-deadlock
2209 * that is encountered beforehand.
2211 * Returns true if the grace-period kthread needs to be awakened.
2213 static bool rcu_start_gp(struct rcu_state *rsp)
2215 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2216 struct rcu_node *rnp = rcu_get_root(rsp);
2217 bool ret = false;
2220 * If there is no grace period in progress right now, any
2221 * callbacks we have up to this point will be satisfied by the
2222 * next grace period. Also, advancing the callbacks reduces the
2223 * probability of false positives from cpu_needs_another_gp()
2224 * resulting in pointless grace periods. So, advance callbacks
2225 * then start the grace period!
2227 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2228 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2229 return ret;
2233 * Report a full set of quiescent states to the specified rcu_state
2234 * data structure. This involves cleaning up after the prior grace
2235 * period and letting rcu_start_gp() start up the next grace period
2236 * if one is needed. Note that the caller must hold rnp->lock, which
2237 * is released before return.
2239 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2240 __releases(rcu_get_root(rsp)->lock)
2242 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2243 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2244 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2245 rcu_gp_kthread_wake(rsp);
2249 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2250 * Allows quiescent states for a group of CPUs to be reported at one go
2251 * to the specified rcu_node structure, though all the CPUs in the group
2252 * must be represented by the same rcu_node structure (which need not be a
2253 * leaf rcu_node structure, though it often will be). The gps parameter
2254 * is the grace-period snapshot, which means that the quiescent states
2255 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2256 * must be held upon entry, and it is released before return.
2258 static void
2259 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2260 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2261 __releases(rnp->lock)
2263 unsigned long oldmask = 0;
2264 struct rcu_node *rnp_c;
2266 /* Walk up the rcu_node hierarchy. */
2267 for (;;) {
2268 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2271 * Our bit has already been cleared, or the
2272 * relevant grace period is already over, so done.
2274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2275 return;
2277 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2278 rnp->qsmask &= ~mask;
2279 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2280 mask, rnp->qsmask, rnp->level,
2281 rnp->grplo, rnp->grphi,
2282 !!rnp->gp_tasks);
2283 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2285 /* Other bits still set at this level, so done. */
2286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2287 return;
2289 mask = rnp->grpmask;
2290 if (rnp->parent == NULL) {
2292 /* No more levels. Exit loop holding root lock. */
2294 break;
2296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2297 rnp_c = rnp;
2298 rnp = rnp->parent;
2299 raw_spin_lock_irqsave(&rnp->lock, flags);
2300 smp_mb__after_unlock_lock();
2301 oldmask = rnp_c->qsmask;
2305 * Get here if we are the last CPU to pass through a quiescent
2306 * state for this grace period. Invoke rcu_report_qs_rsp()
2307 * to clean up and start the next grace period if one is needed.
2309 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2313 * Record a quiescent state for all tasks that were previously queued
2314 * on the specified rcu_node structure and that were blocking the current
2315 * RCU grace period. The caller must hold the specified rnp->lock with
2316 * irqs disabled, and this lock is released upon return, but irqs remain
2317 * disabled.
2319 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2320 struct rcu_node *rnp, unsigned long flags)
2321 __releases(rnp->lock)
2323 unsigned long gps;
2324 unsigned long mask;
2325 struct rcu_node *rnp_p;
2327 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2328 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2329 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2330 return; /* Still need more quiescent states! */
2333 rnp_p = rnp->parent;
2334 if (rnp_p == NULL) {
2336 * Only one rcu_node structure in the tree, so don't
2337 * try to report up to its nonexistent parent!
2339 rcu_report_qs_rsp(rsp, flags);
2340 return;
2343 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2344 gps = rnp->gpnum;
2345 mask = rnp->grpmask;
2346 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2347 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2348 smp_mb__after_unlock_lock();
2349 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2353 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2354 * structure. This must be either called from the specified CPU, or
2355 * called when the specified CPU is known to be offline (and when it is
2356 * also known that no other CPU is concurrently trying to help the offline
2357 * CPU). The lastcomp argument is used to make sure we are still in the
2358 * grace period of interest. We don't want to end the current grace period
2359 * based on quiescent states detected in an earlier grace period!
2361 static void
2362 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2364 unsigned long flags;
2365 unsigned long mask;
2366 bool needwake;
2367 struct rcu_node *rnp;
2369 rnp = rdp->mynode;
2370 raw_spin_lock_irqsave(&rnp->lock, flags);
2371 smp_mb__after_unlock_lock();
2372 if ((rdp->cpu_no_qs.b.norm &&
2373 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2374 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2375 rdp->gpwrap) {
2378 * The grace period in which this quiescent state was
2379 * recorded has ended, so don't report it upwards.
2380 * We will instead need a new quiescent state that lies
2381 * within the current grace period.
2383 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2384 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2385 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2386 return;
2388 mask = rdp->grpmask;
2389 if ((rnp->qsmask & mask) == 0) {
2390 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2391 } else {
2392 rdp->core_needs_qs = 0;
2395 * This GP can't end until cpu checks in, so all of our
2396 * callbacks can be processed during the next GP.
2398 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2400 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2401 /* ^^^ Released rnp->lock */
2402 if (needwake)
2403 rcu_gp_kthread_wake(rsp);
2408 * Check to see if there is a new grace period of which this CPU
2409 * is not yet aware, and if so, set up local rcu_data state for it.
2410 * Otherwise, see if this CPU has just passed through its first
2411 * quiescent state for this grace period, and record that fact if so.
2413 static void
2414 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2416 /* Check for grace-period ends and beginnings. */
2417 note_gp_changes(rsp, rdp);
2420 * Does this CPU still need to do its part for current grace period?
2421 * If no, return and let the other CPUs do their part as well.
2423 if (!rdp->core_needs_qs)
2424 return;
2427 * Was there a quiescent state since the beginning of the grace
2428 * period? If no, then exit and wait for the next call.
2430 if (rdp->cpu_no_qs.b.norm &&
2431 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2432 return;
2435 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2436 * judge of that).
2438 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2442 * Send the specified CPU's RCU callbacks to the orphanage. The
2443 * specified CPU must be offline, and the caller must hold the
2444 * ->orphan_lock.
2446 static void
2447 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2448 struct rcu_node *rnp, struct rcu_data *rdp)
2450 /* No-CBs CPUs do not have orphanable callbacks. */
2451 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2452 return;
2455 * Orphan the callbacks. First adjust the counts. This is safe
2456 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2457 * cannot be running now. Thus no memory barrier is required.
2459 if (rdp->nxtlist != NULL) {
2460 rsp->qlen_lazy += rdp->qlen_lazy;
2461 rsp->qlen += rdp->qlen;
2462 rdp->n_cbs_orphaned += rdp->qlen;
2463 rdp->qlen_lazy = 0;
2464 WRITE_ONCE(rdp->qlen, 0);
2468 * Next, move those callbacks still needing a grace period to
2469 * the orphanage, where some other CPU will pick them up.
2470 * Some of the callbacks might have gone partway through a grace
2471 * period, but that is too bad. They get to start over because we
2472 * cannot assume that grace periods are synchronized across CPUs.
2473 * We don't bother updating the ->nxttail[] array yet, instead
2474 * we just reset the whole thing later on.
2476 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2477 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2478 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2479 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2483 * Then move the ready-to-invoke callbacks to the orphanage,
2484 * where some other CPU will pick them up. These will not be
2485 * required to pass though another grace period: They are done.
2487 if (rdp->nxtlist != NULL) {
2488 *rsp->orphan_donetail = rdp->nxtlist;
2489 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2493 * Finally, initialize the rcu_data structure's list to empty and
2494 * disallow further callbacks on this CPU.
2496 init_callback_list(rdp);
2497 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2501 * Adopt the RCU callbacks from the specified rcu_state structure's
2502 * orphanage. The caller must hold the ->orphan_lock.
2504 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2506 int i;
2507 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2509 /* No-CBs CPUs are handled specially. */
2510 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2511 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2512 return;
2514 /* Do the accounting first. */
2515 rdp->qlen_lazy += rsp->qlen_lazy;
2516 rdp->qlen += rsp->qlen;
2517 rdp->n_cbs_adopted += rsp->qlen;
2518 if (rsp->qlen_lazy != rsp->qlen)
2519 rcu_idle_count_callbacks_posted();
2520 rsp->qlen_lazy = 0;
2521 rsp->qlen = 0;
2524 * We do not need a memory barrier here because the only way we
2525 * can get here if there is an rcu_barrier() in flight is if
2526 * we are the task doing the rcu_barrier().
2529 /* First adopt the ready-to-invoke callbacks. */
2530 if (rsp->orphan_donelist != NULL) {
2531 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2532 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2533 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2534 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2535 rdp->nxttail[i] = rsp->orphan_donetail;
2536 rsp->orphan_donelist = NULL;
2537 rsp->orphan_donetail = &rsp->orphan_donelist;
2540 /* And then adopt the callbacks that still need a grace period. */
2541 if (rsp->orphan_nxtlist != NULL) {
2542 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2543 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2544 rsp->orphan_nxtlist = NULL;
2545 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2550 * Trace the fact that this CPU is going offline.
2552 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2554 RCU_TRACE(unsigned long mask);
2555 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2556 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2558 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2559 return;
2561 RCU_TRACE(mask = rdp->grpmask);
2562 trace_rcu_grace_period(rsp->name,
2563 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2564 TPS("cpuofl"));
2568 * All CPUs for the specified rcu_node structure have gone offline,
2569 * and all tasks that were preempted within an RCU read-side critical
2570 * section while running on one of those CPUs have since exited their RCU
2571 * read-side critical section. Some other CPU is reporting this fact with
2572 * the specified rcu_node structure's ->lock held and interrupts disabled.
2573 * This function therefore goes up the tree of rcu_node structures,
2574 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2575 * the leaf rcu_node structure's ->qsmaskinit field has already been
2576 * updated
2578 * This function does check that the specified rcu_node structure has
2579 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2580 * prematurely. That said, invoking it after the fact will cost you
2581 * a needless lock acquisition. So once it has done its work, don't
2582 * invoke it again.
2584 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2586 long mask;
2587 struct rcu_node *rnp = rnp_leaf;
2589 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2590 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2591 return;
2592 for (;;) {
2593 mask = rnp->grpmask;
2594 rnp = rnp->parent;
2595 if (!rnp)
2596 break;
2597 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2598 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2599 rnp->qsmaskinit &= ~mask;
2600 rnp->qsmask &= ~mask;
2601 if (rnp->qsmaskinit) {
2602 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2603 return;
2605 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2610 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2611 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2612 * bit masks.
2614 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2616 unsigned long flags;
2617 unsigned long mask;
2618 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 return;
2624 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2625 mask = rdp->grpmask;
2626 raw_spin_lock_irqsave(&rnp->lock, flags);
2627 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2628 rnp->qsmaskinitnext &= ~mask;
2629 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2633 * The CPU has been completely removed, and some other CPU is reporting
2634 * this fact from process context. Do the remainder of the cleanup,
2635 * including orphaning the outgoing CPU's RCU callbacks, and also
2636 * adopting them. There can only be one CPU hotplug operation at a time,
2637 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2639 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2641 unsigned long flags;
2642 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2643 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2645 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2646 return;
2648 /* Adjust any no-longer-needed kthreads. */
2649 rcu_boost_kthread_setaffinity(rnp, -1);
2651 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2652 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2653 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2654 rcu_adopt_orphan_cbs(rsp, flags);
2655 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2657 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2658 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2659 cpu, rdp->qlen, rdp->nxtlist);
2663 * Invoke any RCU callbacks that have made it to the end of their grace
2664 * period. Thottle as specified by rdp->blimit.
2666 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2668 unsigned long flags;
2669 struct rcu_head *next, *list, **tail;
2670 long bl, count, count_lazy;
2671 int i;
2673 /* If no callbacks are ready, just return. */
2674 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2675 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2676 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2677 need_resched(), is_idle_task(current),
2678 rcu_is_callbacks_kthread());
2679 return;
2683 * Extract the list of ready callbacks, disabling to prevent
2684 * races with call_rcu() from interrupt handlers.
2686 local_irq_save(flags);
2687 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2688 bl = rdp->blimit;
2689 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2690 list = rdp->nxtlist;
2691 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2692 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2693 tail = rdp->nxttail[RCU_DONE_TAIL];
2694 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2695 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2696 rdp->nxttail[i] = &rdp->nxtlist;
2697 local_irq_restore(flags);
2699 /* Invoke callbacks. */
2700 count = count_lazy = 0;
2701 while (list) {
2702 next = list->next;
2703 prefetch(next);
2704 debug_rcu_head_unqueue(list);
2705 if (__rcu_reclaim(rsp->name, list))
2706 count_lazy++;
2707 list = next;
2708 /* Stop only if limit reached and CPU has something to do. */
2709 if (++count >= bl &&
2710 (need_resched() ||
2711 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2712 break;
2715 local_irq_save(flags);
2716 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2717 is_idle_task(current),
2718 rcu_is_callbacks_kthread());
2720 /* Update count, and requeue any remaining callbacks. */
2721 if (list != NULL) {
2722 *tail = rdp->nxtlist;
2723 rdp->nxtlist = list;
2724 for (i = 0; i < RCU_NEXT_SIZE; i++)
2725 if (&rdp->nxtlist == rdp->nxttail[i])
2726 rdp->nxttail[i] = tail;
2727 else
2728 break;
2730 smp_mb(); /* List handling before counting for rcu_barrier(). */
2731 rdp->qlen_lazy -= count_lazy;
2732 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2733 rdp->n_cbs_invoked += count;
2735 /* Reinstate batch limit if we have worked down the excess. */
2736 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2737 rdp->blimit = blimit;
2739 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2740 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2741 rdp->qlen_last_fqs_check = 0;
2742 rdp->n_force_qs_snap = rsp->n_force_qs;
2743 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2744 rdp->qlen_last_fqs_check = rdp->qlen;
2745 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2747 local_irq_restore(flags);
2749 /* Re-invoke RCU core processing if there are callbacks remaining. */
2750 if (cpu_has_callbacks_ready_to_invoke(rdp))
2751 invoke_rcu_core();
2755 * Check to see if this CPU is in a non-context-switch quiescent state
2756 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2757 * Also schedule RCU core processing.
2759 * This function must be called from hardirq context. It is normally
2760 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2761 * false, there is no point in invoking rcu_check_callbacks().
2763 void rcu_check_callbacks(int user)
2765 trace_rcu_utilization(TPS("Start scheduler-tick"));
2766 increment_cpu_stall_ticks();
2767 if (user || rcu_is_cpu_rrupt_from_idle()) {
2770 * Get here if this CPU took its interrupt from user
2771 * mode or from the idle loop, and if this is not a
2772 * nested interrupt. In this case, the CPU is in
2773 * a quiescent state, so note it.
2775 * No memory barrier is required here because both
2776 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2777 * variables that other CPUs neither access nor modify,
2778 * at least not while the corresponding CPU is online.
2781 rcu_sched_qs();
2782 rcu_bh_qs();
2784 } else if (!in_softirq()) {
2787 * Get here if this CPU did not take its interrupt from
2788 * softirq, in other words, if it is not interrupting
2789 * a rcu_bh read-side critical section. This is an _bh
2790 * critical section, so note it.
2793 rcu_bh_qs();
2795 rcu_preempt_check_callbacks();
2796 if (rcu_pending())
2797 invoke_rcu_core();
2798 if (user)
2799 rcu_note_voluntary_context_switch(current);
2800 trace_rcu_utilization(TPS("End scheduler-tick"));
2804 * Scan the leaf rcu_node structures, processing dyntick state for any that
2805 * have not yet encountered a quiescent state, using the function specified.
2806 * Also initiate boosting for any threads blocked on the root rcu_node.
2808 * The caller must have suppressed start of new grace periods.
2810 static void force_qs_rnp(struct rcu_state *rsp,
2811 int (*f)(struct rcu_data *rsp, bool *isidle,
2812 unsigned long *maxj),
2813 bool *isidle, unsigned long *maxj)
2815 unsigned long bit;
2816 int cpu;
2817 unsigned long flags;
2818 unsigned long mask;
2819 struct rcu_node *rnp;
2821 rcu_for_each_leaf_node(rsp, rnp) {
2822 cond_resched_rcu_qs();
2823 mask = 0;
2824 raw_spin_lock_irqsave(&rnp->lock, flags);
2825 smp_mb__after_unlock_lock();
2826 if (rnp->qsmask == 0) {
2827 if (rcu_state_p == &rcu_sched_state ||
2828 rsp != rcu_state_p ||
2829 rcu_preempt_blocked_readers_cgp(rnp)) {
2831 * No point in scanning bits because they
2832 * are all zero. But we might need to
2833 * priority-boost blocked readers.
2835 rcu_initiate_boost(rnp, flags);
2836 /* rcu_initiate_boost() releases rnp->lock */
2837 continue;
2839 if (rnp->parent &&
2840 (rnp->parent->qsmask & rnp->grpmask)) {
2842 * Race between grace-period
2843 * initialization and task exiting RCU
2844 * read-side critical section: Report.
2846 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2847 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2848 continue;
2851 cpu = rnp->grplo;
2852 bit = 1;
2853 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2854 if ((rnp->qsmask & bit) != 0) {
2855 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2856 mask |= bit;
2859 if (mask != 0) {
2860 /* Idle/offline CPUs, report (releases rnp->lock. */
2861 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2862 } else {
2863 /* Nothing to do here, so just drop the lock. */
2864 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2870 * Force quiescent states on reluctant CPUs, and also detect which
2871 * CPUs are in dyntick-idle mode.
2873 static void force_quiescent_state(struct rcu_state *rsp)
2875 unsigned long flags;
2876 bool ret;
2877 struct rcu_node *rnp;
2878 struct rcu_node *rnp_old = NULL;
2880 /* Funnel through hierarchy to reduce memory contention. */
2881 rnp = __this_cpu_read(rsp->rda->mynode);
2882 for (; rnp != NULL; rnp = rnp->parent) {
2883 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2884 !raw_spin_trylock(&rnp->fqslock);
2885 if (rnp_old != NULL)
2886 raw_spin_unlock(&rnp_old->fqslock);
2887 if (ret) {
2888 rsp->n_force_qs_lh++;
2889 return;
2891 rnp_old = rnp;
2893 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2895 /* Reached the root of the rcu_node tree, acquire lock. */
2896 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2897 smp_mb__after_unlock_lock();
2898 raw_spin_unlock(&rnp_old->fqslock);
2899 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2900 rsp->n_force_qs_lh++;
2901 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2902 return; /* Someone beat us to it. */
2904 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2905 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2906 rcu_gp_kthread_wake(rsp);
2910 * This does the RCU core processing work for the specified rcu_state
2911 * and rcu_data structures. This may be called only from the CPU to
2912 * whom the rdp belongs.
2914 static void
2915 __rcu_process_callbacks(struct rcu_state *rsp)
2917 unsigned long flags;
2918 bool needwake;
2919 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2921 WARN_ON_ONCE(rdp->beenonline == 0);
2923 /* Update RCU state based on any recent quiescent states. */
2924 rcu_check_quiescent_state(rsp, rdp);
2926 /* Does this CPU require a not-yet-started grace period? */
2927 local_irq_save(flags);
2928 if (cpu_needs_another_gp(rsp, rdp)) {
2929 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2930 needwake = rcu_start_gp(rsp);
2931 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2932 if (needwake)
2933 rcu_gp_kthread_wake(rsp);
2934 } else {
2935 local_irq_restore(flags);
2938 /* If there are callbacks ready, invoke them. */
2939 if (cpu_has_callbacks_ready_to_invoke(rdp))
2940 invoke_rcu_callbacks(rsp, rdp);
2942 /* Do any needed deferred wakeups of rcuo kthreads. */
2943 do_nocb_deferred_wakeup(rdp);
2947 * Do RCU core processing for the current CPU.
2949 static void rcu_process_callbacks(struct softirq_action *unused)
2951 struct rcu_state *rsp;
2953 if (cpu_is_offline(smp_processor_id()))
2954 return;
2955 trace_rcu_utilization(TPS("Start RCU core"));
2956 for_each_rcu_flavor(rsp)
2957 __rcu_process_callbacks(rsp);
2958 trace_rcu_utilization(TPS("End RCU core"));
2962 * Schedule RCU callback invocation. If the specified type of RCU
2963 * does not support RCU priority boosting, just do a direct call,
2964 * otherwise wake up the per-CPU kernel kthread. Note that because we
2965 * are running on the current CPU with softirqs disabled, the
2966 * rcu_cpu_kthread_task cannot disappear out from under us.
2968 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2970 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2971 return;
2972 if (likely(!rsp->boost)) {
2973 rcu_do_batch(rsp, rdp);
2974 return;
2976 invoke_rcu_callbacks_kthread();
2979 static void invoke_rcu_core(void)
2981 if (cpu_online(smp_processor_id()))
2982 raise_softirq(RCU_SOFTIRQ);
2986 * Handle any core-RCU processing required by a call_rcu() invocation.
2988 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2989 struct rcu_head *head, unsigned long flags)
2991 bool needwake;
2994 * If called from an extended quiescent state, invoke the RCU
2995 * core in order to force a re-evaluation of RCU's idleness.
2997 if (!rcu_is_watching())
2998 invoke_rcu_core();
3000 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3001 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3002 return;
3005 * Force the grace period if too many callbacks or too long waiting.
3006 * Enforce hysteresis, and don't invoke force_quiescent_state()
3007 * if some other CPU has recently done so. Also, don't bother
3008 * invoking force_quiescent_state() if the newly enqueued callback
3009 * is the only one waiting for a grace period to complete.
3011 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3013 /* Are we ignoring a completed grace period? */
3014 note_gp_changes(rsp, rdp);
3016 /* Start a new grace period if one not already started. */
3017 if (!rcu_gp_in_progress(rsp)) {
3018 struct rcu_node *rnp_root = rcu_get_root(rsp);
3020 raw_spin_lock(&rnp_root->lock);
3021 smp_mb__after_unlock_lock();
3022 needwake = rcu_start_gp(rsp);
3023 raw_spin_unlock(&rnp_root->lock);
3024 if (needwake)
3025 rcu_gp_kthread_wake(rsp);
3026 } else {
3027 /* Give the grace period a kick. */
3028 rdp->blimit = LONG_MAX;
3029 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3030 *rdp->nxttail[RCU_DONE_TAIL] != head)
3031 force_quiescent_state(rsp);
3032 rdp->n_force_qs_snap = rsp->n_force_qs;
3033 rdp->qlen_last_fqs_check = rdp->qlen;
3039 * RCU callback function to leak a callback.
3041 static void rcu_leak_callback(struct rcu_head *rhp)
3046 * Helper function for call_rcu() and friends. The cpu argument will
3047 * normally be -1, indicating "currently running CPU". It may specify
3048 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3049 * is expected to specify a CPU.
3051 static void
3052 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3053 struct rcu_state *rsp, int cpu, bool lazy)
3055 unsigned long flags;
3056 struct rcu_data *rdp;
3058 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3059 if (debug_rcu_head_queue(head)) {
3060 /* Probable double call_rcu(), so leak the callback. */
3061 WRITE_ONCE(head->func, rcu_leak_callback);
3062 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3063 return;
3065 head->func = func;
3066 head->next = NULL;
3069 * Opportunistically note grace-period endings and beginnings.
3070 * Note that we might see a beginning right after we see an
3071 * end, but never vice versa, since this CPU has to pass through
3072 * a quiescent state betweentimes.
3074 local_irq_save(flags);
3075 rdp = this_cpu_ptr(rsp->rda);
3077 /* Add the callback to our list. */
3078 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3079 int offline;
3081 if (cpu != -1)
3082 rdp = per_cpu_ptr(rsp->rda, cpu);
3083 if (likely(rdp->mynode)) {
3084 /* Post-boot, so this should be for a no-CBs CPU. */
3085 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3086 WARN_ON_ONCE(offline);
3087 /* Offline CPU, _call_rcu() illegal, leak callback. */
3088 local_irq_restore(flags);
3089 return;
3092 * Very early boot, before rcu_init(). Initialize if needed
3093 * and then drop through to queue the callback.
3095 BUG_ON(cpu != -1);
3096 WARN_ON_ONCE(!rcu_is_watching());
3097 if (!likely(rdp->nxtlist))
3098 init_default_callback_list(rdp);
3100 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3101 if (lazy)
3102 rdp->qlen_lazy++;
3103 else
3104 rcu_idle_count_callbacks_posted();
3105 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3106 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3107 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3109 if (__is_kfree_rcu_offset((unsigned long)func))
3110 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3111 rdp->qlen_lazy, rdp->qlen);
3112 else
3113 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3115 /* Go handle any RCU core processing required. */
3116 __call_rcu_core(rsp, rdp, head, flags);
3117 local_irq_restore(flags);
3121 * Queue an RCU-sched callback for invocation after a grace period.
3123 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3125 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3127 EXPORT_SYMBOL_GPL(call_rcu_sched);
3130 * Queue an RCU callback for invocation after a quicker grace period.
3132 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3134 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3136 EXPORT_SYMBOL_GPL(call_rcu_bh);
3139 * Queue an RCU callback for lazy invocation after a grace period.
3140 * This will likely be later named something like "call_rcu_lazy()",
3141 * but this change will require some way of tagging the lazy RCU
3142 * callbacks in the list of pending callbacks. Until then, this
3143 * function may only be called from __kfree_rcu().
3145 void kfree_call_rcu(struct rcu_head *head,
3146 rcu_callback_t func)
3148 __call_rcu(head, func, rcu_state_p, -1, 1);
3150 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3153 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3154 * any blocking grace-period wait automatically implies a grace period
3155 * if there is only one CPU online at any point time during execution
3156 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3157 * occasionally incorrectly indicate that there are multiple CPUs online
3158 * when there was in fact only one the whole time, as this just adds
3159 * some overhead: RCU still operates correctly.
3161 static inline int rcu_blocking_is_gp(void)
3163 int ret;
3165 might_sleep(); /* Check for RCU read-side critical section. */
3166 preempt_disable();
3167 ret = num_online_cpus() <= 1;
3168 preempt_enable();
3169 return ret;
3173 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3175 * Control will return to the caller some time after a full rcu-sched
3176 * grace period has elapsed, in other words after all currently executing
3177 * rcu-sched read-side critical sections have completed. These read-side
3178 * critical sections are delimited by rcu_read_lock_sched() and
3179 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3180 * local_irq_disable(), and so on may be used in place of
3181 * rcu_read_lock_sched().
3183 * This means that all preempt_disable code sequences, including NMI and
3184 * non-threaded hardware-interrupt handlers, in progress on entry will
3185 * have completed before this primitive returns. However, this does not
3186 * guarantee that softirq handlers will have completed, since in some
3187 * kernels, these handlers can run in process context, and can block.
3189 * Note that this guarantee implies further memory-ordering guarantees.
3190 * On systems with more than one CPU, when synchronize_sched() returns,
3191 * each CPU is guaranteed to have executed a full memory barrier since the
3192 * end of its last RCU-sched read-side critical section whose beginning
3193 * preceded the call to synchronize_sched(). In addition, each CPU having
3194 * an RCU read-side critical section that extends beyond the return from
3195 * synchronize_sched() is guaranteed to have executed a full memory barrier
3196 * after the beginning of synchronize_sched() and before the beginning of
3197 * that RCU read-side critical section. Note that these guarantees include
3198 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3199 * that are executing in the kernel.
3201 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3202 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3203 * to have executed a full memory barrier during the execution of
3204 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3205 * again only if the system has more than one CPU).
3207 * This primitive provides the guarantees made by the (now removed)
3208 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3209 * guarantees that rcu_read_lock() sections will have completed.
3210 * In "classic RCU", these two guarantees happen to be one and
3211 * the same, but can differ in realtime RCU implementations.
3213 void synchronize_sched(void)
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 lock_is_held(&rcu_lock_map) ||
3217 lock_is_held(&rcu_sched_lock_map),
3218 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3219 if (rcu_blocking_is_gp())
3220 return;
3221 if (rcu_gp_is_expedited())
3222 synchronize_sched_expedited();
3223 else
3224 wait_rcu_gp(call_rcu_sched);
3226 EXPORT_SYMBOL_GPL(synchronize_sched);
3229 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3231 * Control will return to the caller some time after a full rcu_bh grace
3232 * period has elapsed, in other words after all currently executing rcu_bh
3233 * read-side critical sections have completed. RCU read-side critical
3234 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3235 * and may be nested.
3237 * See the description of synchronize_sched() for more detailed information
3238 * on memory ordering guarantees.
3240 void synchronize_rcu_bh(void)
3242 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3243 lock_is_held(&rcu_lock_map) ||
3244 lock_is_held(&rcu_sched_lock_map),
3245 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3246 if (rcu_blocking_is_gp())
3247 return;
3248 if (rcu_gp_is_expedited())
3249 synchronize_rcu_bh_expedited();
3250 else
3251 wait_rcu_gp(call_rcu_bh);
3253 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3256 * get_state_synchronize_rcu - Snapshot current RCU state
3258 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3259 * to determine whether or not a full grace period has elapsed in the
3260 * meantime.
3262 unsigned long get_state_synchronize_rcu(void)
3265 * Any prior manipulation of RCU-protected data must happen
3266 * before the load from ->gpnum.
3268 smp_mb(); /* ^^^ */
3271 * Make sure this load happens before the purportedly
3272 * time-consuming work between get_state_synchronize_rcu()
3273 * and cond_synchronize_rcu().
3275 return smp_load_acquire(&rcu_state_p->gpnum);
3277 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3280 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3282 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3284 * If a full RCU grace period has elapsed since the earlier call to
3285 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3286 * synchronize_rcu() to wait for a full grace period.
3288 * Yes, this function does not take counter wrap into account. But
3289 * counter wrap is harmless. If the counter wraps, we have waited for
3290 * more than 2 billion grace periods (and way more on a 64-bit system!),
3291 * so waiting for one additional grace period should be just fine.
3293 void cond_synchronize_rcu(unsigned long oldstate)
3295 unsigned long newstate;
3298 * Ensure that this load happens before any RCU-destructive
3299 * actions the caller might carry out after we return.
3301 newstate = smp_load_acquire(&rcu_state_p->completed);
3302 if (ULONG_CMP_GE(oldstate, newstate))
3303 synchronize_rcu();
3305 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3308 * get_state_synchronize_sched - Snapshot current RCU-sched state
3310 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3311 * to determine whether or not a full grace period has elapsed in the
3312 * meantime.
3314 unsigned long get_state_synchronize_sched(void)
3317 * Any prior manipulation of RCU-protected data must happen
3318 * before the load from ->gpnum.
3320 smp_mb(); /* ^^^ */
3323 * Make sure this load happens before the purportedly
3324 * time-consuming work between get_state_synchronize_sched()
3325 * and cond_synchronize_sched().
3327 return smp_load_acquire(&rcu_sched_state.gpnum);
3329 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3332 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3334 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3336 * If a full RCU-sched grace period has elapsed since the earlier call to
3337 * get_state_synchronize_sched(), just return. Otherwise, invoke
3338 * synchronize_sched() to wait for a full grace period.
3340 * Yes, this function does not take counter wrap into account. But
3341 * counter wrap is harmless. If the counter wraps, we have waited for
3342 * more than 2 billion grace periods (and way more on a 64-bit system!),
3343 * so waiting for one additional grace period should be just fine.
3345 void cond_synchronize_sched(unsigned long oldstate)
3347 unsigned long newstate;
3350 * Ensure that this load happens before any RCU-destructive
3351 * actions the caller might carry out after we return.
3353 newstate = smp_load_acquire(&rcu_sched_state.completed);
3354 if (ULONG_CMP_GE(oldstate, newstate))
3355 synchronize_sched();
3357 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3359 /* Adjust sequence number for start of update-side operation. */
3360 static void rcu_seq_start(unsigned long *sp)
3362 WRITE_ONCE(*sp, *sp + 1);
3363 smp_mb(); /* Ensure update-side operation after counter increment. */
3364 WARN_ON_ONCE(!(*sp & 0x1));
3367 /* Adjust sequence number for end of update-side operation. */
3368 static void rcu_seq_end(unsigned long *sp)
3370 smp_mb(); /* Ensure update-side operation before counter increment. */
3371 WRITE_ONCE(*sp, *sp + 1);
3372 WARN_ON_ONCE(*sp & 0x1);
3375 /* Take a snapshot of the update side's sequence number. */
3376 static unsigned long rcu_seq_snap(unsigned long *sp)
3378 unsigned long s;
3380 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3381 s = (READ_ONCE(*sp) + 3) & ~0x1;
3382 smp_mb(); /* Above access must not bleed into critical section. */
3383 return s;
3387 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3388 * full update-side operation has occurred.
3390 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3392 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3395 /* Wrapper functions for expedited grace periods. */
3396 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3398 rcu_seq_start(&rsp->expedited_sequence);
3400 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3402 rcu_seq_end(&rsp->expedited_sequence);
3403 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3405 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3407 return rcu_seq_snap(&rsp->expedited_sequence);
3409 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3411 return rcu_seq_done(&rsp->expedited_sequence, s);
3415 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3416 * recent CPU-online activity. Note that these masks are not cleared
3417 * when CPUs go offline, so they reflect the union of all CPUs that have
3418 * ever been online. This means that this function normally takes its
3419 * no-work-to-do fastpath.
3421 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3423 bool done;
3424 unsigned long flags;
3425 unsigned long mask;
3426 unsigned long oldmask;
3427 int ncpus = READ_ONCE(rsp->ncpus);
3428 struct rcu_node *rnp;
3429 struct rcu_node *rnp_up;
3431 /* If no new CPUs onlined since last time, nothing to do. */
3432 if (likely(ncpus == rsp->ncpus_snap))
3433 return;
3434 rsp->ncpus_snap = ncpus;
3437 * Each pass through the following loop propagates newly onlined
3438 * CPUs for the current rcu_node structure up the rcu_node tree.
3440 rcu_for_each_leaf_node(rsp, rnp) {
3441 raw_spin_lock_irqsave(&rnp->lock, flags);
3442 smp_mb__after_unlock_lock();
3443 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3444 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3445 continue; /* No new CPUs, nothing to do. */
3448 /* Update this node's mask, track old value for propagation. */
3449 oldmask = rnp->expmaskinit;
3450 rnp->expmaskinit = rnp->expmaskinitnext;
3451 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3453 /* If was already nonzero, nothing to propagate. */
3454 if (oldmask)
3455 continue;
3457 /* Propagate the new CPU up the tree. */
3458 mask = rnp->grpmask;
3459 rnp_up = rnp->parent;
3460 done = false;
3461 while (rnp_up) {
3462 raw_spin_lock_irqsave(&rnp_up->lock, flags);
3463 smp_mb__after_unlock_lock();
3464 if (rnp_up->expmaskinit)
3465 done = true;
3466 rnp_up->expmaskinit |= mask;
3467 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3468 if (done)
3469 break;
3470 mask = rnp_up->grpmask;
3471 rnp_up = rnp_up->parent;
3477 * Reset the ->expmask values in the rcu_node tree in preparation for
3478 * a new expedited grace period.
3480 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3482 unsigned long flags;
3483 struct rcu_node *rnp;
3485 sync_exp_reset_tree_hotplug(rsp);
3486 rcu_for_each_node_breadth_first(rsp, rnp) {
3487 raw_spin_lock_irqsave(&rnp->lock, flags);
3488 smp_mb__after_unlock_lock();
3489 WARN_ON_ONCE(rnp->expmask);
3490 rnp->expmask = rnp->expmaskinit;
3491 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3496 * Return non-zero if there is no RCU expedited grace period in progress
3497 * for the specified rcu_node structure, in other words, if all CPUs and
3498 * tasks covered by the specified rcu_node structure have done their bit
3499 * for the current expedited grace period. Works only for preemptible
3500 * RCU -- other RCU implementation use other means.
3502 * Caller must hold the root rcu_node's exp_funnel_mutex.
3504 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3506 return rnp->exp_tasks == NULL &&
3507 READ_ONCE(rnp->expmask) == 0;
3511 * Report the exit from RCU read-side critical section for the last task
3512 * that queued itself during or before the current expedited preemptible-RCU
3513 * grace period. This event is reported either to the rcu_node structure on
3514 * which the task was queued or to one of that rcu_node structure's ancestors,
3515 * recursively up the tree. (Calm down, calm down, we do the recursion
3516 * iteratively!)
3518 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3519 * specified rcu_node structure's ->lock.
3521 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3522 bool wake, unsigned long flags)
3523 __releases(rnp->lock)
3525 unsigned long mask;
3527 for (;;) {
3528 if (!sync_rcu_preempt_exp_done(rnp)) {
3529 if (!rnp->expmask)
3530 rcu_initiate_boost(rnp, flags);
3531 else
3532 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3533 break;
3535 if (rnp->parent == NULL) {
3536 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3537 if (wake) {
3538 smp_mb(); /* EGP done before wake_up(). */
3539 wake_up(&rsp->expedited_wq);
3541 break;
3543 mask = rnp->grpmask;
3544 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3545 rnp = rnp->parent;
3546 raw_spin_lock(&rnp->lock); /* irqs already disabled */
3547 smp_mb__after_unlock_lock();
3548 WARN_ON_ONCE(!(rnp->expmask & mask));
3549 rnp->expmask &= ~mask;
3554 * Report expedited quiescent state for specified node. This is a
3555 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3557 * Caller must hold the root rcu_node's exp_funnel_mutex.
3559 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3560 struct rcu_node *rnp, bool wake)
3562 unsigned long flags;
3564 raw_spin_lock_irqsave(&rnp->lock, flags);
3565 smp_mb__after_unlock_lock();
3566 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3570 * Report expedited quiescent state for multiple CPUs, all covered by the
3571 * specified leaf rcu_node structure. Caller must hold the root
3572 * rcu_node's exp_funnel_mutex.
3574 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3575 unsigned long mask, bool wake)
3577 unsigned long flags;
3579 raw_spin_lock_irqsave(&rnp->lock, flags);
3580 smp_mb__after_unlock_lock();
3581 if (!(rnp->expmask & mask)) {
3582 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3583 return;
3585 rnp->expmask &= ~mask;
3586 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3590 * Report expedited quiescent state for specified rcu_data (CPU).
3591 * Caller must hold the root rcu_node's exp_funnel_mutex.
3593 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3594 bool wake)
3596 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3599 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3600 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3601 struct rcu_data *rdp,
3602 atomic_long_t *stat, unsigned long s)
3604 if (rcu_exp_gp_seq_done(rsp, s)) {
3605 if (rnp)
3606 mutex_unlock(&rnp->exp_funnel_mutex);
3607 else if (rdp)
3608 mutex_unlock(&rdp->exp_funnel_mutex);
3609 /* Ensure test happens before caller kfree(). */
3610 smp_mb__before_atomic(); /* ^^^ */
3611 atomic_long_inc(stat);
3612 return true;
3614 return false;
3618 * Funnel-lock acquisition for expedited grace periods. Returns a
3619 * pointer to the root rcu_node structure, or NULL if some other
3620 * task did the expedited grace period for us.
3622 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3624 struct rcu_data *rdp;
3625 struct rcu_node *rnp0;
3626 struct rcu_node *rnp1 = NULL;
3629 * First try directly acquiring the root lock in order to reduce
3630 * latency in the common case where expedited grace periods are
3631 * rare. We check mutex_is_locked() to avoid pathological levels of
3632 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3634 rnp0 = rcu_get_root(rsp);
3635 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3636 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3637 if (sync_exp_work_done(rsp, rnp0, NULL,
3638 &rsp->expedited_workdone0, s))
3639 return NULL;
3640 return rnp0;
3645 * Each pass through the following loop works its way
3646 * up the rcu_node tree, returning if others have done the
3647 * work or otherwise falls through holding the root rnp's
3648 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3649 * can be inexact, as it is just promoting locality and is not
3650 * strictly needed for correctness.
3652 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3653 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3654 return NULL;
3655 mutex_lock(&rdp->exp_funnel_mutex);
3656 rnp0 = rdp->mynode;
3657 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3658 if (sync_exp_work_done(rsp, rnp1, rdp,
3659 &rsp->expedited_workdone2, s))
3660 return NULL;
3661 mutex_lock(&rnp0->exp_funnel_mutex);
3662 if (rnp1)
3663 mutex_unlock(&rnp1->exp_funnel_mutex);
3664 else
3665 mutex_unlock(&rdp->exp_funnel_mutex);
3666 rnp1 = rnp0;
3668 if (sync_exp_work_done(rsp, rnp1, rdp,
3669 &rsp->expedited_workdone3, s))
3670 return NULL;
3671 return rnp1;
3674 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3675 static void sync_sched_exp_handler(void *data)
3677 struct rcu_data *rdp;
3678 struct rcu_node *rnp;
3679 struct rcu_state *rsp = data;
3681 rdp = this_cpu_ptr(rsp->rda);
3682 rnp = rdp->mynode;
3683 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3684 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3685 return;
3686 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3687 resched_cpu(smp_processor_id());
3690 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3691 static void sync_sched_exp_online_cleanup(int cpu)
3693 struct rcu_data *rdp;
3694 int ret;
3695 struct rcu_node *rnp;
3696 struct rcu_state *rsp = &rcu_sched_state;
3698 rdp = per_cpu_ptr(rsp->rda, cpu);
3699 rnp = rdp->mynode;
3700 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3701 return;
3702 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3703 WARN_ON_ONCE(ret);
3707 * Select the nodes that the upcoming expedited grace period needs
3708 * to wait for.
3710 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3711 smp_call_func_t func)
3713 int cpu;
3714 unsigned long flags;
3715 unsigned long mask;
3716 unsigned long mask_ofl_test;
3717 unsigned long mask_ofl_ipi;
3718 int ret;
3719 struct rcu_node *rnp;
3721 sync_exp_reset_tree(rsp);
3722 rcu_for_each_leaf_node(rsp, rnp) {
3723 raw_spin_lock_irqsave(&rnp->lock, flags);
3724 smp_mb__after_unlock_lock();
3726 /* Each pass checks a CPU for identity, offline, and idle. */
3727 mask_ofl_test = 0;
3728 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3729 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3730 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3732 if (raw_smp_processor_id() == cpu ||
3733 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3734 mask_ofl_test |= rdp->grpmask;
3736 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3739 * Need to wait for any blocked tasks as well. Note that
3740 * additional blocking tasks will also block the expedited
3741 * GP until such time as the ->expmask bits are cleared.
3743 if (rcu_preempt_has_tasks(rnp))
3744 rnp->exp_tasks = rnp->blkd_tasks.next;
3745 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3747 /* IPI the remaining CPUs for expedited quiescent state. */
3748 mask = 1;
3749 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3750 if (!(mask_ofl_ipi & mask))
3751 continue;
3752 retry_ipi:
3753 ret = smp_call_function_single(cpu, func, rsp, 0);
3754 if (!ret) {
3755 mask_ofl_ipi &= ~mask;
3756 } else {
3757 /* Failed, raced with offline. */
3758 raw_spin_lock_irqsave(&rnp->lock, flags);
3759 if (cpu_online(cpu) &&
3760 (rnp->expmask & mask)) {
3761 raw_spin_unlock_irqrestore(&rnp->lock,
3762 flags);
3763 schedule_timeout_uninterruptible(1);
3764 if (cpu_online(cpu) &&
3765 (rnp->expmask & mask))
3766 goto retry_ipi;
3767 raw_spin_lock_irqsave(&rnp->lock,
3768 flags);
3770 if (!(rnp->expmask & mask))
3771 mask_ofl_ipi &= ~mask;
3772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3775 /* Report quiescent states for those that went offline. */
3776 mask_ofl_test |= mask_ofl_ipi;
3777 if (mask_ofl_test)
3778 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3782 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3784 int cpu;
3785 unsigned long jiffies_stall;
3786 unsigned long jiffies_start;
3787 unsigned long mask;
3788 struct rcu_node *rnp;
3789 struct rcu_node *rnp_root = rcu_get_root(rsp);
3790 int ret;
3792 jiffies_stall = rcu_jiffies_till_stall_check();
3793 jiffies_start = jiffies;
3795 for (;;) {
3796 ret = wait_event_interruptible_timeout(
3797 rsp->expedited_wq,
3798 sync_rcu_preempt_exp_done(rnp_root),
3799 jiffies_stall);
3800 if (ret > 0)
3801 return;
3802 if (ret < 0) {
3803 /* Hit a signal, disable CPU stall warnings. */
3804 wait_event(rsp->expedited_wq,
3805 sync_rcu_preempt_exp_done(rnp_root));
3806 return;
3808 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3809 rsp->name);
3810 rcu_for_each_leaf_node(rsp, rnp) {
3811 (void)rcu_print_task_exp_stall(rnp);
3812 mask = 1;
3813 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3814 struct rcu_data *rdp;
3816 if (!(rnp->expmask & mask))
3817 continue;
3818 rdp = per_cpu_ptr(rsp->rda, cpu);
3819 pr_cont(" %d-%c%c%c", cpu,
3820 "O."[cpu_online(cpu)],
3821 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3822 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3824 mask <<= 1;
3826 pr_cont(" } %lu jiffies s: %lu\n",
3827 jiffies - jiffies_start, rsp->expedited_sequence);
3828 rcu_for_each_leaf_node(rsp, rnp) {
3829 mask = 1;
3830 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3831 if (!(rnp->expmask & mask))
3832 continue;
3833 dump_cpu_task(cpu);
3836 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3841 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3843 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3844 * approach to force the grace period to end quickly. This consumes
3845 * significant time on all CPUs and is unfriendly to real-time workloads,
3846 * so is thus not recommended for any sort of common-case code. In fact,
3847 * if you are using synchronize_sched_expedited() in a loop, please
3848 * restructure your code to batch your updates, and then use a single
3849 * synchronize_sched() instead.
3851 * This implementation can be thought of as an application of sequence
3852 * locking to expedited grace periods, but using the sequence counter to
3853 * determine when someone else has already done the work instead of for
3854 * retrying readers.
3856 void synchronize_sched_expedited(void)
3858 unsigned long s;
3859 struct rcu_node *rnp;
3860 struct rcu_state *rsp = &rcu_sched_state;
3862 /* Take a snapshot of the sequence number. */
3863 s = rcu_exp_gp_seq_snap(rsp);
3865 rnp = exp_funnel_lock(rsp, s);
3866 if (rnp == NULL)
3867 return; /* Someone else did our work for us. */
3869 rcu_exp_gp_seq_start(rsp);
3870 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3871 synchronize_sched_expedited_wait(rsp);
3873 rcu_exp_gp_seq_end(rsp);
3874 mutex_unlock(&rnp->exp_funnel_mutex);
3876 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3879 * Check to see if there is any immediate RCU-related work to be done
3880 * by the current CPU, for the specified type of RCU, returning 1 if so.
3881 * The checks are in order of increasing expense: checks that can be
3882 * carried out against CPU-local state are performed first. However,
3883 * we must check for CPU stalls first, else we might not get a chance.
3885 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3887 struct rcu_node *rnp = rdp->mynode;
3889 rdp->n_rcu_pending++;
3891 /* Check for CPU stalls, if enabled. */
3892 check_cpu_stall(rsp, rdp);
3894 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3895 if (rcu_nohz_full_cpu(rsp))
3896 return 0;
3898 /* Is the RCU core waiting for a quiescent state from this CPU? */
3899 if (rcu_scheduler_fully_active &&
3900 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3901 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3902 rdp->n_rp_core_needs_qs++;
3903 } else if (rdp->core_needs_qs &&
3904 (!rdp->cpu_no_qs.b.norm ||
3905 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3906 rdp->n_rp_report_qs++;
3907 return 1;
3910 /* Does this CPU have callbacks ready to invoke? */
3911 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3912 rdp->n_rp_cb_ready++;
3913 return 1;
3916 /* Has RCU gone idle with this CPU needing another grace period? */
3917 if (cpu_needs_another_gp(rsp, rdp)) {
3918 rdp->n_rp_cpu_needs_gp++;
3919 return 1;
3922 /* Has another RCU grace period completed? */
3923 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3924 rdp->n_rp_gp_completed++;
3925 return 1;
3928 /* Has a new RCU grace period started? */
3929 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3930 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3931 rdp->n_rp_gp_started++;
3932 return 1;
3935 /* Does this CPU need a deferred NOCB wakeup? */
3936 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3937 rdp->n_rp_nocb_defer_wakeup++;
3938 return 1;
3941 /* nothing to do */
3942 rdp->n_rp_need_nothing++;
3943 return 0;
3947 * Check to see if there is any immediate RCU-related work to be done
3948 * by the current CPU, returning 1 if so. This function is part of the
3949 * RCU implementation; it is -not- an exported member of the RCU API.
3951 static int rcu_pending(void)
3953 struct rcu_state *rsp;
3955 for_each_rcu_flavor(rsp)
3956 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3957 return 1;
3958 return 0;
3962 * Return true if the specified CPU has any callback. If all_lazy is
3963 * non-NULL, store an indication of whether all callbacks are lazy.
3964 * (If there are no callbacks, all of them are deemed to be lazy.)
3966 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3968 bool al = true;
3969 bool hc = false;
3970 struct rcu_data *rdp;
3971 struct rcu_state *rsp;
3973 for_each_rcu_flavor(rsp) {
3974 rdp = this_cpu_ptr(rsp->rda);
3975 if (!rdp->nxtlist)
3976 continue;
3977 hc = true;
3978 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3979 al = false;
3980 break;
3983 if (all_lazy)
3984 *all_lazy = al;
3985 return hc;
3989 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3990 * the compiler is expected to optimize this away.
3992 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3993 int cpu, unsigned long done)
3995 trace_rcu_barrier(rsp->name, s, cpu,
3996 atomic_read(&rsp->barrier_cpu_count), done);
4000 * RCU callback function for _rcu_barrier(). If we are last, wake
4001 * up the task executing _rcu_barrier().
4003 static void rcu_barrier_callback(struct rcu_head *rhp)
4005 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4006 struct rcu_state *rsp = rdp->rsp;
4008 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4009 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4010 complete(&rsp->barrier_completion);
4011 } else {
4012 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4017 * Called with preemption disabled, and from cross-cpu IRQ context.
4019 static void rcu_barrier_func(void *type)
4021 struct rcu_state *rsp = type;
4022 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4024 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4025 atomic_inc(&rsp->barrier_cpu_count);
4026 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4030 * Orchestrate the specified type of RCU barrier, waiting for all
4031 * RCU callbacks of the specified type to complete.
4033 static void _rcu_barrier(struct rcu_state *rsp)
4035 int cpu;
4036 struct rcu_data *rdp;
4037 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4039 _rcu_barrier_trace(rsp, "Begin", -1, s);
4041 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4042 mutex_lock(&rsp->barrier_mutex);
4044 /* Did someone else do our work for us? */
4045 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4046 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4047 smp_mb(); /* caller's subsequent code after above check. */
4048 mutex_unlock(&rsp->barrier_mutex);
4049 return;
4052 /* Mark the start of the barrier operation. */
4053 rcu_seq_start(&rsp->barrier_sequence);
4054 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4057 * Initialize the count to one rather than to zero in order to
4058 * avoid a too-soon return to zero in case of a short grace period
4059 * (or preemption of this task). Exclude CPU-hotplug operations
4060 * to ensure that no offline CPU has callbacks queued.
4062 init_completion(&rsp->barrier_completion);
4063 atomic_set(&rsp->barrier_cpu_count, 1);
4064 get_online_cpus();
4067 * Force each CPU with callbacks to register a new callback.
4068 * When that callback is invoked, we will know that all of the
4069 * corresponding CPU's preceding callbacks have been invoked.
4071 for_each_possible_cpu(cpu) {
4072 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4073 continue;
4074 rdp = per_cpu_ptr(rsp->rda, cpu);
4075 if (rcu_is_nocb_cpu(cpu)) {
4076 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4077 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4078 rsp->barrier_sequence);
4079 } else {
4080 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4081 rsp->barrier_sequence);
4082 smp_mb__before_atomic();
4083 atomic_inc(&rsp->barrier_cpu_count);
4084 __call_rcu(&rdp->barrier_head,
4085 rcu_barrier_callback, rsp, cpu, 0);
4087 } else if (READ_ONCE(rdp->qlen)) {
4088 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4089 rsp->barrier_sequence);
4090 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4091 } else {
4092 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4093 rsp->barrier_sequence);
4096 put_online_cpus();
4099 * Now that we have an rcu_barrier_callback() callback on each
4100 * CPU, and thus each counted, remove the initial count.
4102 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4103 complete(&rsp->barrier_completion);
4105 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4106 wait_for_completion(&rsp->barrier_completion);
4108 /* Mark the end of the barrier operation. */
4109 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4110 rcu_seq_end(&rsp->barrier_sequence);
4112 /* Other rcu_barrier() invocations can now safely proceed. */
4113 mutex_unlock(&rsp->barrier_mutex);
4117 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4119 void rcu_barrier_bh(void)
4121 _rcu_barrier(&rcu_bh_state);
4123 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4126 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4128 void rcu_barrier_sched(void)
4130 _rcu_barrier(&rcu_sched_state);
4132 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4135 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4136 * first CPU in a given leaf rcu_node structure coming online. The caller
4137 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4138 * disabled.
4140 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4142 long mask;
4143 struct rcu_node *rnp = rnp_leaf;
4145 for (;;) {
4146 mask = rnp->grpmask;
4147 rnp = rnp->parent;
4148 if (rnp == NULL)
4149 return;
4150 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
4151 rnp->qsmaskinit |= mask;
4152 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4157 * Do boot-time initialization of a CPU's per-CPU RCU data.
4159 static void __init
4160 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4162 unsigned long flags;
4163 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4164 struct rcu_node *rnp = rcu_get_root(rsp);
4166 /* Set up local state, ensuring consistent view of global state. */
4167 raw_spin_lock_irqsave(&rnp->lock, flags);
4168 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4169 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4170 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4171 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4172 rdp->cpu = cpu;
4173 rdp->rsp = rsp;
4174 mutex_init(&rdp->exp_funnel_mutex);
4175 rcu_boot_init_nocb_percpu_data(rdp);
4176 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4180 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4181 * offline event can be happening at a given time. Note also that we
4182 * can accept some slop in the rsp->completed access due to the fact
4183 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4185 static void
4186 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4188 unsigned long flags;
4189 unsigned long mask;
4190 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4191 struct rcu_node *rnp = rcu_get_root(rsp);
4193 /* Set up local state, ensuring consistent view of global state. */
4194 raw_spin_lock_irqsave(&rnp->lock, flags);
4195 rdp->qlen_last_fqs_check = 0;
4196 rdp->n_force_qs_snap = rsp->n_force_qs;
4197 rdp->blimit = blimit;
4198 if (!rdp->nxtlist)
4199 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4200 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4201 rcu_sysidle_init_percpu_data(rdp->dynticks);
4202 atomic_set(&rdp->dynticks->dynticks,
4203 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4204 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
4207 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4208 * propagation up the rcu_node tree will happen at the beginning
4209 * of the next grace period.
4211 rnp = rdp->mynode;
4212 mask = rdp->grpmask;
4213 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
4214 smp_mb__after_unlock_lock();
4215 rnp->qsmaskinitnext |= mask;
4216 rnp->expmaskinitnext |= mask;
4217 if (!rdp->beenonline)
4218 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4219 rdp->beenonline = true; /* We have now been online. */
4220 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4221 rdp->completed = rnp->completed;
4222 rdp->cpu_no_qs.b.norm = true;
4223 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4224 rdp->core_needs_qs = false;
4225 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4229 static void rcu_prepare_cpu(int cpu)
4231 struct rcu_state *rsp;
4233 for_each_rcu_flavor(rsp)
4234 rcu_init_percpu_data(cpu, rsp);
4238 * Handle CPU online/offline notification events.
4240 int rcu_cpu_notify(struct notifier_block *self,
4241 unsigned long action, void *hcpu)
4243 long cpu = (long)hcpu;
4244 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4245 struct rcu_node *rnp = rdp->mynode;
4246 struct rcu_state *rsp;
4248 switch (action) {
4249 case CPU_UP_PREPARE:
4250 case CPU_UP_PREPARE_FROZEN:
4251 rcu_prepare_cpu(cpu);
4252 rcu_prepare_kthreads(cpu);
4253 rcu_spawn_all_nocb_kthreads(cpu);
4254 break;
4255 case CPU_ONLINE:
4256 case CPU_DOWN_FAILED:
4257 sync_sched_exp_online_cleanup(cpu);
4258 rcu_boost_kthread_setaffinity(rnp, -1);
4259 break;
4260 case CPU_DOWN_PREPARE:
4261 rcu_boost_kthread_setaffinity(rnp, cpu);
4262 break;
4263 case CPU_DYING:
4264 case CPU_DYING_FROZEN:
4265 for_each_rcu_flavor(rsp)
4266 rcu_cleanup_dying_cpu(rsp);
4267 break;
4268 case CPU_DYING_IDLE:
4269 /* QS for any half-done expedited RCU-sched GP. */
4270 preempt_disable();
4271 rcu_report_exp_rdp(&rcu_sched_state,
4272 this_cpu_ptr(rcu_sched_state.rda), true);
4273 preempt_enable();
4275 for_each_rcu_flavor(rsp) {
4276 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4278 break;
4279 case CPU_DEAD:
4280 case CPU_DEAD_FROZEN:
4281 case CPU_UP_CANCELED:
4282 case CPU_UP_CANCELED_FROZEN:
4283 for_each_rcu_flavor(rsp) {
4284 rcu_cleanup_dead_cpu(cpu, rsp);
4285 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4287 break;
4288 default:
4289 break;
4291 return NOTIFY_OK;
4294 static int rcu_pm_notify(struct notifier_block *self,
4295 unsigned long action, void *hcpu)
4297 switch (action) {
4298 case PM_HIBERNATION_PREPARE:
4299 case PM_SUSPEND_PREPARE:
4300 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4301 rcu_expedite_gp();
4302 break;
4303 case PM_POST_HIBERNATION:
4304 case PM_POST_SUSPEND:
4305 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4306 rcu_unexpedite_gp();
4307 break;
4308 default:
4309 break;
4311 return NOTIFY_OK;
4315 * Spawn the kthreads that handle each RCU flavor's grace periods.
4317 static int __init rcu_spawn_gp_kthread(void)
4319 unsigned long flags;
4320 int kthread_prio_in = kthread_prio;
4321 struct rcu_node *rnp;
4322 struct rcu_state *rsp;
4323 struct sched_param sp;
4324 struct task_struct *t;
4326 /* Force priority into range. */
4327 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4328 kthread_prio = 1;
4329 else if (kthread_prio < 0)
4330 kthread_prio = 0;
4331 else if (kthread_prio > 99)
4332 kthread_prio = 99;
4333 if (kthread_prio != kthread_prio_in)
4334 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4335 kthread_prio, kthread_prio_in);
4337 rcu_scheduler_fully_active = 1;
4338 for_each_rcu_flavor(rsp) {
4339 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4340 BUG_ON(IS_ERR(t));
4341 rnp = rcu_get_root(rsp);
4342 raw_spin_lock_irqsave(&rnp->lock, flags);
4343 rsp->gp_kthread = t;
4344 if (kthread_prio) {
4345 sp.sched_priority = kthread_prio;
4346 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4348 wake_up_process(t);
4349 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4351 rcu_spawn_nocb_kthreads();
4352 rcu_spawn_boost_kthreads();
4353 return 0;
4355 early_initcall(rcu_spawn_gp_kthread);
4358 * This function is invoked towards the end of the scheduler's initialization
4359 * process. Before this is called, the idle task might contain
4360 * RCU read-side critical sections (during which time, this idle
4361 * task is booting the system). After this function is called, the
4362 * idle tasks are prohibited from containing RCU read-side critical
4363 * sections. This function also enables RCU lockdep checking.
4365 void rcu_scheduler_starting(void)
4367 WARN_ON(num_online_cpus() != 1);
4368 WARN_ON(nr_context_switches() > 0);
4369 rcu_scheduler_active = 1;
4373 * Compute the per-level fanout, either using the exact fanout specified
4374 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4376 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4378 int i;
4380 if (rcu_fanout_exact) {
4381 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4382 for (i = rcu_num_lvls - 2; i >= 0; i--)
4383 levelspread[i] = RCU_FANOUT;
4384 } else {
4385 int ccur;
4386 int cprv;
4388 cprv = nr_cpu_ids;
4389 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4390 ccur = levelcnt[i];
4391 levelspread[i] = (cprv + ccur - 1) / ccur;
4392 cprv = ccur;
4398 * Helper function for rcu_init() that initializes one rcu_state structure.
4400 static void __init rcu_init_one(struct rcu_state *rsp,
4401 struct rcu_data __percpu *rda)
4403 static const char * const buf[] = RCU_NODE_NAME_INIT;
4404 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4405 static const char * const exp[] = RCU_EXP_NAME_INIT;
4406 static u8 fl_mask = 0x1;
4408 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4409 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4410 int cpustride = 1;
4411 int i;
4412 int j;
4413 struct rcu_node *rnp;
4415 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4417 /* Silence gcc 4.8 false positive about array index out of range. */
4418 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4419 panic("rcu_init_one: rcu_num_lvls out of range");
4421 /* Initialize the level-tracking arrays. */
4423 for (i = 0; i < rcu_num_lvls; i++)
4424 levelcnt[i] = num_rcu_lvl[i];
4425 for (i = 1; i < rcu_num_lvls; i++)
4426 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4427 rcu_init_levelspread(levelspread, levelcnt);
4428 rsp->flavor_mask = fl_mask;
4429 fl_mask <<= 1;
4431 /* Initialize the elements themselves, starting from the leaves. */
4433 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4434 cpustride *= levelspread[i];
4435 rnp = rsp->level[i];
4436 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4437 raw_spin_lock_init(&rnp->lock);
4438 lockdep_set_class_and_name(&rnp->lock,
4439 &rcu_node_class[i], buf[i]);
4440 raw_spin_lock_init(&rnp->fqslock);
4441 lockdep_set_class_and_name(&rnp->fqslock,
4442 &rcu_fqs_class[i], fqs[i]);
4443 rnp->gpnum = rsp->gpnum;
4444 rnp->completed = rsp->completed;
4445 rnp->qsmask = 0;
4446 rnp->qsmaskinit = 0;
4447 rnp->grplo = j * cpustride;
4448 rnp->grphi = (j + 1) * cpustride - 1;
4449 if (rnp->grphi >= nr_cpu_ids)
4450 rnp->grphi = nr_cpu_ids - 1;
4451 if (i == 0) {
4452 rnp->grpnum = 0;
4453 rnp->grpmask = 0;
4454 rnp->parent = NULL;
4455 } else {
4456 rnp->grpnum = j % levelspread[i - 1];
4457 rnp->grpmask = 1UL << rnp->grpnum;
4458 rnp->parent = rsp->level[i - 1] +
4459 j / levelspread[i - 1];
4461 rnp->level = i;
4462 INIT_LIST_HEAD(&rnp->blkd_tasks);
4463 rcu_init_one_nocb(rnp);
4464 mutex_init(&rnp->exp_funnel_mutex);
4465 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4466 &rcu_exp_class[i], exp[i]);
4470 init_waitqueue_head(&rsp->gp_wq);
4471 init_waitqueue_head(&rsp->expedited_wq);
4472 rnp = rsp->level[rcu_num_lvls - 1];
4473 for_each_possible_cpu(i) {
4474 while (i > rnp->grphi)
4475 rnp++;
4476 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4477 rcu_boot_init_percpu_data(i, rsp);
4479 list_add(&rsp->flavors, &rcu_struct_flavors);
4483 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4484 * replace the definitions in tree.h because those are needed to size
4485 * the ->node array in the rcu_state structure.
4487 static void __init rcu_init_geometry(void)
4489 ulong d;
4490 int i;
4491 int rcu_capacity[RCU_NUM_LVLS];
4494 * Initialize any unspecified boot parameters.
4495 * The default values of jiffies_till_first_fqs and
4496 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4497 * value, which is a function of HZ, then adding one for each
4498 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4500 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4501 if (jiffies_till_first_fqs == ULONG_MAX)
4502 jiffies_till_first_fqs = d;
4503 if (jiffies_till_next_fqs == ULONG_MAX)
4504 jiffies_till_next_fqs = d;
4506 /* If the compile-time values are accurate, just leave. */
4507 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4508 nr_cpu_ids == NR_CPUS)
4509 return;
4510 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4511 rcu_fanout_leaf, nr_cpu_ids);
4514 * The boot-time rcu_fanout_leaf parameter must be at least two
4515 * and cannot exceed the number of bits in the rcu_node masks.
4516 * Complain and fall back to the compile-time values if this
4517 * limit is exceeded.
4519 if (rcu_fanout_leaf < 2 ||
4520 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4521 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4522 WARN_ON(1);
4523 return;
4527 * Compute number of nodes that can be handled an rcu_node tree
4528 * with the given number of levels.
4530 rcu_capacity[0] = rcu_fanout_leaf;
4531 for (i = 1; i < RCU_NUM_LVLS; i++)
4532 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4535 * The tree must be able to accommodate the configured number of CPUs.
4536 * If this limit is exceeded, fall back to the compile-time values.
4538 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4539 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4540 WARN_ON(1);
4541 return;
4544 /* Calculate the number of levels in the tree. */
4545 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4547 rcu_num_lvls = i + 1;
4549 /* Calculate the number of rcu_nodes at each level of the tree. */
4550 for (i = 0; i < rcu_num_lvls; i++) {
4551 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4552 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4555 /* Calculate the total number of rcu_node structures. */
4556 rcu_num_nodes = 0;
4557 for (i = 0; i < rcu_num_lvls; i++)
4558 rcu_num_nodes += num_rcu_lvl[i];
4562 * Dump out the structure of the rcu_node combining tree associated
4563 * with the rcu_state structure referenced by rsp.
4565 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4567 int level = 0;
4568 struct rcu_node *rnp;
4570 pr_info("rcu_node tree layout dump\n");
4571 pr_info(" ");
4572 rcu_for_each_node_breadth_first(rsp, rnp) {
4573 if (rnp->level != level) {
4574 pr_cont("\n");
4575 pr_info(" ");
4576 level = rnp->level;
4578 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4580 pr_cont("\n");
4583 void __init rcu_init(void)
4585 int cpu;
4587 rcu_early_boot_tests();
4589 rcu_bootup_announce();
4590 rcu_init_geometry();
4591 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4592 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4593 if (dump_tree)
4594 rcu_dump_rcu_node_tree(&rcu_sched_state);
4595 __rcu_init_preempt();
4596 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4599 * We don't need protection against CPU-hotplug here because
4600 * this is called early in boot, before either interrupts
4601 * or the scheduler are operational.
4603 cpu_notifier(rcu_cpu_notify, 0);
4604 pm_notifier(rcu_pm_notify, 0);
4605 for_each_online_cpu(cpu)
4606 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4609 #include "tree_plugin.h"