4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex
);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
96 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
98 void update_rq_clock(struct rq
*rq
)
102 lockdep_assert_held(&rq
->lock
);
104 if (rq
->clock_skip_update
& RQCF_ACT_SKIP
)
107 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
111 update_rq_clock_task(rq
, delta
);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug
unsigned int sysctl_sched_features
=
122 #include "features.h"
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
131 static const char * const sched_feat_names
[] = {
132 #include "features.h"
137 static int sched_feat_show(struct seq_file
*m
, void *v
)
141 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
142 if (!(sysctl_sched_features
& (1UL << i
)))
144 seq_printf(m
, "%s ", sched_feat_names
[i
]);
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
160 #include "features.h"
165 static void sched_feat_disable(int i
)
167 static_key_disable(&sched_feat_keys
[i
]);
170 static void sched_feat_enable(int i
)
172 static_key_enable(&sched_feat_keys
[i
]);
175 static void sched_feat_disable(int i
) { };
176 static void sched_feat_enable(int i
) { };
177 #endif /* HAVE_JUMP_LABEL */
179 static int sched_feat_set(char *cmp
)
184 if (strncmp(cmp
, "NO_", 3) == 0) {
189 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
190 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
192 sysctl_sched_features
&= ~(1UL << i
);
193 sched_feat_disable(i
);
195 sysctl_sched_features
|= (1UL << i
);
196 sched_feat_enable(i
);
206 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
207 size_t cnt
, loff_t
*ppos
)
217 if (copy_from_user(&buf
, ubuf
, cnt
))
223 /* Ensure the static_key remains in a consistent state */
224 inode
= file_inode(filp
);
225 mutex_lock(&inode
->i_mutex
);
226 i
= sched_feat_set(cmp
);
227 mutex_unlock(&inode
->i_mutex
);
228 if (i
== __SCHED_FEAT_NR
)
236 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
238 return single_open(filp
, sched_feat_show
, NULL
);
241 static const struct file_operations sched_feat_fops
= {
242 .open
= sched_feat_open
,
243 .write
= sched_feat_write
,
246 .release
= single_release
,
249 static __init
int sched_init_debug(void)
251 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
256 late_initcall(sched_init_debug
);
257 #endif /* CONFIG_SCHED_DEBUG */
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
263 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
266 * period over which we average the RT time consumption, measured
271 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
274 * period over which we measure -rt task cpu usage in us.
277 unsigned int sysctl_sched_rt_period
= 1000000;
279 __read_mostly
int scheduler_running
;
282 * part of the period that we allow rt tasks to run in us.
285 int sysctl_sched_rt_runtime
= 950000;
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map
;
291 * this_rq_lock - lock this runqueue and disable interrupts.
293 static struct rq
*this_rq_lock(void)
300 raw_spin_lock(&rq
->lock
);
305 #ifdef CONFIG_SCHED_HRTICK
307 * Use HR-timers to deliver accurate preemption points.
310 static void hrtick_clear(struct rq
*rq
)
312 if (hrtimer_active(&rq
->hrtick_timer
))
313 hrtimer_cancel(&rq
->hrtick_timer
);
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
320 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
322 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
324 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
326 raw_spin_lock(&rq
->lock
);
328 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
329 raw_spin_unlock(&rq
->lock
);
331 return HRTIMER_NORESTART
;
336 static void __hrtick_restart(struct rq
*rq
)
338 struct hrtimer
*timer
= &rq
->hrtick_timer
;
340 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
344 * called from hardirq (IPI) context
346 static void __hrtick_start(void *arg
)
350 raw_spin_lock(&rq
->lock
);
351 __hrtick_restart(rq
);
352 rq
->hrtick_csd_pending
= 0;
353 raw_spin_unlock(&rq
->lock
);
357 * Called to set the hrtick timer state.
359 * called with rq->lock held and irqs disabled
361 void hrtick_start(struct rq
*rq
, u64 delay
)
363 struct hrtimer
*timer
= &rq
->hrtick_timer
;
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
371 delta
= max_t(s64
, delay
, 10000LL);
372 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
374 hrtimer_set_expires(timer
, time
);
376 if (rq
== this_rq()) {
377 __hrtick_restart(rq
);
378 } else if (!rq
->hrtick_csd_pending
) {
379 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
380 rq
->hrtick_csd_pending
= 1;
385 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
387 int cpu
= (int)(long)hcpu
;
390 case CPU_UP_CANCELED
:
391 case CPU_UP_CANCELED_FROZEN
:
392 case CPU_DOWN_PREPARE
:
393 case CPU_DOWN_PREPARE_FROZEN
:
395 case CPU_DEAD_FROZEN
:
396 hrtick_clear(cpu_rq(cpu
));
403 static __init
void init_hrtick(void)
405 hotcpu_notifier(hotplug_hrtick
, 0);
409 * Called to set the hrtick timer state.
411 * called with rq->lock held and irqs disabled
413 void hrtick_start(struct rq
*rq
, u64 delay
)
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
419 delay
= max_t(u64
, delay
, 10000LL);
420 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
421 HRTIMER_MODE_REL_PINNED
);
424 static inline void init_hrtick(void)
427 #endif /* CONFIG_SMP */
429 static void init_rq_hrtick(struct rq
*rq
)
432 rq
->hrtick_csd_pending
= 0;
434 rq
->hrtick_csd
.flags
= 0;
435 rq
->hrtick_csd
.func
= __hrtick_start
;
436 rq
->hrtick_csd
.info
= rq
;
439 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
440 rq
->hrtick_timer
.function
= hrtick
;
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq
*rq
)
447 static inline void init_rq_hrtick(struct rq
*rq
)
451 static inline void init_hrtick(void)
454 #endif /* CONFIG_SCHED_HRTICK */
457 * cmpxchg based fetch_or, macro so it works for different integer types
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
476 static bool set_nr_and_not_polling(struct task_struct
*p
)
478 struct thread_info
*ti
= task_thread_info(p
);
479 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
488 static bool set_nr_if_polling(struct task_struct
*p
)
490 struct thread_info
*ti
= task_thread_info(p
);
491 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
494 if (!(val
& _TIF_POLLING_NRFLAG
))
496 if (val
& _TIF_NEED_RESCHED
)
498 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
507 static bool set_nr_and_not_polling(struct task_struct
*p
)
509 set_tsk_need_resched(p
);
514 static bool set_nr_if_polling(struct task_struct
*p
)
521 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
523 struct wake_q_node
*node
= &task
->wake_q
;
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
533 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
536 get_task_struct(task
);
539 * The head is context local, there can be no concurrency.
542 head
->lastp
= &node
->next
;
545 void wake_up_q(struct wake_q_head
*head
)
547 struct wake_q_node
*node
= head
->first
;
549 while (node
!= WAKE_Q_TAIL
) {
550 struct task_struct
*task
;
552 task
= container_of(node
, struct task_struct
, wake_q
);
554 /* task can safely be re-inserted now */
556 task
->wake_q
.next
= NULL
;
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
562 wake_up_process(task
);
563 put_task_struct(task
);
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
574 void resched_curr(struct rq
*rq
)
576 struct task_struct
*curr
= rq
->curr
;
579 lockdep_assert_held(&rq
->lock
);
581 if (test_tsk_need_resched(curr
))
586 if (cpu
== smp_processor_id()) {
587 set_tsk_need_resched(curr
);
588 set_preempt_need_resched();
592 if (set_nr_and_not_polling(curr
))
593 smp_send_reschedule(cpu
);
595 trace_sched_wake_idle_without_ipi(cpu
);
598 void resched_cpu(int cpu
)
600 struct rq
*rq
= cpu_rq(cpu
);
603 raw_spin_lock_irqsave(&rq
->lock
, flags
);
604 if (cpu_online(cpu
) || cpu
== smp_processor_id())
606 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
610 #ifdef CONFIG_NO_HZ_COMMON
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619 int get_nohz_timer_target(void)
621 int i
, cpu
= smp_processor_id();
622 struct sched_domain
*sd
;
624 if (!idle_cpu(cpu
) && is_housekeeping_cpu(cpu
))
628 for_each_domain(cpu
, sd
) {
629 for_each_cpu(i
, sched_domain_span(sd
)) {
633 if (!idle_cpu(i
) && is_housekeeping_cpu(i
)) {
640 if (!is_housekeeping_cpu(cpu
))
641 cpu
= housekeeping_any_cpu();
647 * When add_timer_on() enqueues a timer into the timer wheel of an
648 * idle CPU then this timer might expire before the next timer event
649 * which is scheduled to wake up that CPU. In case of a completely
650 * idle system the next event might even be infinite time into the
651 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
652 * leaves the inner idle loop so the newly added timer is taken into
653 * account when the CPU goes back to idle and evaluates the timer
654 * wheel for the next timer event.
656 static void wake_up_idle_cpu(int cpu
)
658 struct rq
*rq
= cpu_rq(cpu
);
660 if (cpu
== smp_processor_id())
663 if (set_nr_and_not_polling(rq
->idle
))
664 smp_send_reschedule(cpu
);
666 trace_sched_wake_idle_without_ipi(cpu
);
669 static bool wake_up_full_nohz_cpu(int cpu
)
672 * We just need the target to call irq_exit() and re-evaluate
673 * the next tick. The nohz full kick at least implies that.
674 * If needed we can still optimize that later with an
677 if (tick_nohz_full_cpu(cpu
)) {
678 if (cpu
!= smp_processor_id() ||
679 tick_nohz_tick_stopped())
680 tick_nohz_full_kick_cpu(cpu
);
687 void wake_up_nohz_cpu(int cpu
)
689 if (!wake_up_full_nohz_cpu(cpu
))
690 wake_up_idle_cpu(cpu
);
693 static inline bool got_nohz_idle_kick(void)
695 int cpu
= smp_processor_id();
697 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
700 if (idle_cpu(cpu
) && !need_resched())
704 * We can't run Idle Load Balance on this CPU for this time so we
705 * cancel it and clear NOHZ_BALANCE_KICK
707 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
711 #else /* CONFIG_NO_HZ_COMMON */
713 static inline bool got_nohz_idle_kick(void)
718 #endif /* CONFIG_NO_HZ_COMMON */
720 #ifdef CONFIG_NO_HZ_FULL
721 bool sched_can_stop_tick(void)
724 * FIFO realtime policy runs the highest priority task. Other runnable
725 * tasks are of a lower priority. The scheduler tick does nothing.
727 if (current
->policy
== SCHED_FIFO
)
731 * Round-robin realtime tasks time slice with other tasks at the same
732 * realtime priority. Is this task the only one at this priority?
734 if (current
->policy
== SCHED_RR
) {
735 struct sched_rt_entity
*rt_se
= ¤t
->rt
;
737 return rt_se
->run_list
.prev
== rt_se
->run_list
.next
;
741 * More than one running task need preemption.
742 * nr_running update is assumed to be visible
743 * after IPI is sent from wakers.
745 if (this_rq()->nr_running
> 1)
750 #endif /* CONFIG_NO_HZ_FULL */
752 void sched_avg_update(struct rq
*rq
)
754 s64 period
= sched_avg_period();
756 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
758 * Inline assembly required to prevent the compiler
759 * optimising this loop into a divmod call.
760 * See __iter_div_u64_rem() for another example of this.
762 asm("" : "+rm" (rq
->age_stamp
));
763 rq
->age_stamp
+= period
;
768 #endif /* CONFIG_SMP */
770 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
771 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
773 * Iterate task_group tree rooted at *from, calling @down when first entering a
774 * node and @up when leaving it for the final time.
776 * Caller must hold rcu_lock or sufficient equivalent.
778 int walk_tg_tree_from(struct task_group
*from
,
779 tg_visitor down
, tg_visitor up
, void *data
)
781 struct task_group
*parent
, *child
;
787 ret
= (*down
)(parent
, data
);
790 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
797 ret
= (*up
)(parent
, data
);
798 if (ret
|| parent
== from
)
802 parent
= parent
->parent
;
809 int tg_nop(struct task_group
*tg
, void *data
)
815 static void set_load_weight(struct task_struct
*p
)
817 int prio
= p
->static_prio
- MAX_RT_PRIO
;
818 struct load_weight
*load
= &p
->se
.load
;
821 * SCHED_IDLE tasks get minimal weight:
823 if (idle_policy(p
->policy
)) {
824 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
825 load
->inv_weight
= WMULT_IDLEPRIO
;
829 load
->weight
= scale_load(prio_to_weight
[prio
]);
830 load
->inv_weight
= prio_to_wmult
[prio
];
833 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
836 if (!(flags
& ENQUEUE_RESTORE
))
837 sched_info_queued(rq
, p
);
838 p
->sched_class
->enqueue_task(rq
, p
, flags
);
841 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
844 if (!(flags
& DEQUEUE_SAVE
))
845 sched_info_dequeued(rq
, p
);
846 p
->sched_class
->dequeue_task(rq
, p
, flags
);
849 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
851 if (task_contributes_to_load(p
))
852 rq
->nr_uninterruptible
--;
854 enqueue_task(rq
, p
, flags
);
857 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
859 if (task_contributes_to_load(p
))
860 rq
->nr_uninterruptible
++;
862 dequeue_task(rq
, p
, flags
);
865 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal
= 0, irq_delta
= 0;
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
892 if (irq_delta
> delta
)
895 rq
->prev_irq_time
+= irq_delta
;
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 if (static_key_false((¶virt_steal_rq_enabled
))) {
900 steal
= paravirt_steal_clock(cpu_of(rq
));
901 steal
-= rq
->prev_steal_time_rq
;
903 if (unlikely(steal
> delta
))
906 rq
->prev_steal_time_rq
+= steal
;
911 rq
->clock_task
+= delta
;
913 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
914 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
915 sched_rt_avg_update(rq
, irq_delta
+ steal
);
919 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
921 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
922 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
926 * Make it appear like a SCHED_FIFO task, its something
927 * userspace knows about and won't get confused about.
929 * Also, it will make PI more or less work without too
930 * much confusion -- but then, stop work should not
931 * rely on PI working anyway.
933 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
935 stop
->sched_class
= &stop_sched_class
;
938 cpu_rq(cpu
)->stop
= stop
;
942 * Reset it back to a normal scheduling class so that
943 * it can die in pieces.
945 old_stop
->sched_class
= &rt_sched_class
;
950 * __normal_prio - return the priority that is based on the static prio
952 static inline int __normal_prio(struct task_struct
*p
)
954 return p
->static_prio
;
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
964 static inline int normal_prio(struct task_struct
*p
)
968 if (task_has_dl_policy(p
))
969 prio
= MAX_DL_PRIO
-1;
970 else if (task_has_rt_policy(p
))
971 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
973 prio
= __normal_prio(p
);
978 * Calculate the current priority, i.e. the priority
979 * taken into account by the scheduler. This value might
980 * be boosted by RT tasks, or might be boosted by
981 * interactivity modifiers. Will be RT if the task got
982 * RT-boosted. If not then it returns p->normal_prio.
984 static int effective_prio(struct task_struct
*p
)
986 p
->normal_prio
= normal_prio(p
);
988 * If we are RT tasks or we were boosted to RT priority,
989 * keep the priority unchanged. Otherwise, update priority
990 * to the normal priority:
992 if (!rt_prio(p
->prio
))
993 return p
->normal_prio
;
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1001 * Return: 1 if the task is currently executing. 0 otherwise.
1003 inline int task_curr(const struct task_struct
*p
)
1005 return cpu_curr(task_cpu(p
)) == p
;
1009 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1010 * use the balance_callback list if you want balancing.
1012 * this means any call to check_class_changed() must be followed by a call to
1013 * balance_callback().
1015 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1016 const struct sched_class
*prev_class
,
1019 if (prev_class
!= p
->sched_class
) {
1020 if (prev_class
->switched_from
)
1021 prev_class
->switched_from(rq
, p
);
1023 p
->sched_class
->switched_to(rq
, p
);
1024 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1025 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1028 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1030 const struct sched_class
*class;
1032 if (p
->sched_class
== rq
->curr
->sched_class
) {
1033 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1035 for_each_class(class) {
1036 if (class == rq
->curr
->sched_class
)
1038 if (class == p
->sched_class
) {
1046 * A queue event has occurred, and we're going to schedule. In
1047 * this case, we can save a useless back to back clock update.
1049 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1050 rq_clock_skip_update(rq
, true);
1055 * This is how migration works:
1057 * 1) we invoke migration_cpu_stop() on the target CPU using
1059 * 2) stopper starts to run (implicitly forcing the migrated thread
1061 * 3) it checks whether the migrated task is still in the wrong runqueue.
1062 * 4) if it's in the wrong runqueue then the migration thread removes
1063 * it and puts it into the right queue.
1064 * 5) stopper completes and stop_one_cpu() returns and the migration
1069 * move_queued_task - move a queued task to new rq.
1071 * Returns (locked) new rq. Old rq's lock is released.
1073 static struct rq
*move_queued_task(struct rq
*rq
, struct task_struct
*p
, int new_cpu
)
1075 lockdep_assert_held(&rq
->lock
);
1077 dequeue_task(rq
, p
, 0);
1078 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1079 set_task_cpu(p
, new_cpu
);
1080 raw_spin_unlock(&rq
->lock
);
1082 rq
= cpu_rq(new_cpu
);
1084 raw_spin_lock(&rq
->lock
);
1085 BUG_ON(task_cpu(p
) != new_cpu
);
1086 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1087 enqueue_task(rq
, p
, 0);
1088 check_preempt_curr(rq
, p
, 0);
1093 struct migration_arg
{
1094 struct task_struct
*task
;
1099 * Move (not current) task off this cpu, onto dest cpu. We're doing
1100 * this because either it can't run here any more (set_cpus_allowed()
1101 * away from this CPU, or CPU going down), or because we're
1102 * attempting to rebalance this task on exec (sched_exec).
1104 * So we race with normal scheduler movements, but that's OK, as long
1105 * as the task is no longer on this CPU.
1107 static struct rq
*__migrate_task(struct rq
*rq
, struct task_struct
*p
, int dest_cpu
)
1109 if (unlikely(!cpu_active(dest_cpu
)))
1112 /* Affinity changed (again). */
1113 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1116 rq
= move_queued_task(rq
, p
, dest_cpu
);
1122 * migration_cpu_stop - this will be executed by a highprio stopper thread
1123 * and performs thread migration by bumping thread off CPU then
1124 * 'pushing' onto another runqueue.
1126 static int migration_cpu_stop(void *data
)
1128 struct migration_arg
*arg
= data
;
1129 struct task_struct
*p
= arg
->task
;
1130 struct rq
*rq
= this_rq();
1133 * The original target cpu might have gone down and we might
1134 * be on another cpu but it doesn't matter.
1136 local_irq_disable();
1138 * We need to explicitly wake pending tasks before running
1139 * __migrate_task() such that we will not miss enforcing cpus_allowed
1140 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1142 sched_ttwu_pending();
1144 raw_spin_lock(&p
->pi_lock
);
1145 raw_spin_lock(&rq
->lock
);
1147 * If task_rq(p) != rq, it cannot be migrated here, because we're
1148 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1149 * we're holding p->pi_lock.
1151 if (task_rq(p
) == rq
&& task_on_rq_queued(p
))
1152 rq
= __migrate_task(rq
, p
, arg
->dest_cpu
);
1153 raw_spin_unlock(&rq
->lock
);
1154 raw_spin_unlock(&p
->pi_lock
);
1161 * sched_class::set_cpus_allowed must do the below, but is not required to
1162 * actually call this function.
1164 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1166 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1167 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1170 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1172 struct rq
*rq
= task_rq(p
);
1173 bool queued
, running
;
1175 lockdep_assert_held(&p
->pi_lock
);
1177 queued
= task_on_rq_queued(p
);
1178 running
= task_current(rq
, p
);
1182 * Because __kthread_bind() calls this on blocked tasks without
1185 lockdep_assert_held(&rq
->lock
);
1186 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
1189 put_prev_task(rq
, p
);
1191 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1194 p
->sched_class
->set_curr_task(rq
);
1196 enqueue_task(rq
, p
, ENQUEUE_RESTORE
);
1200 * Change a given task's CPU affinity. Migrate the thread to a
1201 * proper CPU and schedule it away if the CPU it's executing on
1202 * is removed from the allowed bitmask.
1204 * NOTE: the caller must have a valid reference to the task, the
1205 * task must not exit() & deallocate itself prematurely. The
1206 * call is not atomic; no spinlocks may be held.
1208 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1209 const struct cpumask
*new_mask
, bool check
)
1211 unsigned long flags
;
1213 unsigned int dest_cpu
;
1216 rq
= task_rq_lock(p
, &flags
);
1219 * Must re-check here, to close a race against __kthread_bind(),
1220 * sched_setaffinity() is not guaranteed to observe the flag.
1222 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1227 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1230 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
1235 do_set_cpus_allowed(p
, new_mask
);
1237 /* Can the task run on the task's current CPU? If so, we're done */
1238 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1241 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
1242 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1243 struct migration_arg arg
= { p
, dest_cpu
};
1244 /* Need help from migration thread: drop lock and wait. */
1245 task_rq_unlock(rq
, p
, &flags
);
1246 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1247 tlb_migrate_finish(p
->mm
);
1249 } else if (task_on_rq_queued(p
)) {
1251 * OK, since we're going to drop the lock immediately
1252 * afterwards anyway.
1254 lockdep_unpin_lock(&rq
->lock
);
1255 rq
= move_queued_task(rq
, p
, dest_cpu
);
1256 lockdep_pin_lock(&rq
->lock
);
1259 task_rq_unlock(rq
, p
, &flags
);
1264 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1266 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1268 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1270 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1272 #ifdef CONFIG_SCHED_DEBUG
1274 * We should never call set_task_cpu() on a blocked task,
1275 * ttwu() will sort out the placement.
1277 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1280 #ifdef CONFIG_LOCKDEP
1282 * The caller should hold either p->pi_lock or rq->lock, when changing
1283 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1285 * sched_move_task() holds both and thus holding either pins the cgroup,
1288 * Furthermore, all task_rq users should acquire both locks, see
1291 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1292 lockdep_is_held(&task_rq(p
)->lock
)));
1296 trace_sched_migrate_task(p
, new_cpu
);
1298 if (task_cpu(p
) != new_cpu
) {
1299 if (p
->sched_class
->migrate_task_rq
)
1300 p
->sched_class
->migrate_task_rq(p
);
1301 p
->se
.nr_migrations
++;
1302 perf_event_task_migrate(p
);
1305 __set_task_cpu(p
, new_cpu
);
1308 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1310 if (task_on_rq_queued(p
)) {
1311 struct rq
*src_rq
, *dst_rq
;
1313 src_rq
= task_rq(p
);
1314 dst_rq
= cpu_rq(cpu
);
1316 deactivate_task(src_rq
, p
, 0);
1317 set_task_cpu(p
, cpu
);
1318 activate_task(dst_rq
, p
, 0);
1319 check_preempt_curr(dst_rq
, p
, 0);
1322 * Task isn't running anymore; make it appear like we migrated
1323 * it before it went to sleep. This means on wakeup we make the
1324 * previous cpu our targer instead of where it really is.
1330 struct migration_swap_arg
{
1331 struct task_struct
*src_task
, *dst_task
;
1332 int src_cpu
, dst_cpu
;
1335 static int migrate_swap_stop(void *data
)
1337 struct migration_swap_arg
*arg
= data
;
1338 struct rq
*src_rq
, *dst_rq
;
1341 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1344 src_rq
= cpu_rq(arg
->src_cpu
);
1345 dst_rq
= cpu_rq(arg
->dst_cpu
);
1347 double_raw_lock(&arg
->src_task
->pi_lock
,
1348 &arg
->dst_task
->pi_lock
);
1349 double_rq_lock(src_rq
, dst_rq
);
1351 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1354 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1357 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1360 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1363 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1364 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1369 double_rq_unlock(src_rq
, dst_rq
);
1370 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1371 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1377 * Cross migrate two tasks
1379 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1381 struct migration_swap_arg arg
;
1384 arg
= (struct migration_swap_arg
){
1386 .src_cpu
= task_cpu(cur
),
1388 .dst_cpu
= task_cpu(p
),
1391 if (arg
.src_cpu
== arg
.dst_cpu
)
1395 * These three tests are all lockless; this is OK since all of them
1396 * will be re-checked with proper locks held further down the line.
1398 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1401 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1404 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1407 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1408 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1415 * wait_task_inactive - wait for a thread to unschedule.
1417 * If @match_state is nonzero, it's the @p->state value just checked and
1418 * not expected to change. If it changes, i.e. @p might have woken up,
1419 * then return zero. When we succeed in waiting for @p to be off its CPU,
1420 * we return a positive number (its total switch count). If a second call
1421 * a short while later returns the same number, the caller can be sure that
1422 * @p has remained unscheduled the whole time.
1424 * The caller must ensure that the task *will* unschedule sometime soon,
1425 * else this function might spin for a *long* time. This function can't
1426 * be called with interrupts off, or it may introduce deadlock with
1427 * smp_call_function() if an IPI is sent by the same process we are
1428 * waiting to become inactive.
1430 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1432 unsigned long flags
;
1433 int running
, queued
;
1439 * We do the initial early heuristics without holding
1440 * any task-queue locks at all. We'll only try to get
1441 * the runqueue lock when things look like they will
1447 * If the task is actively running on another CPU
1448 * still, just relax and busy-wait without holding
1451 * NOTE! Since we don't hold any locks, it's not
1452 * even sure that "rq" stays as the right runqueue!
1453 * But we don't care, since "task_running()" will
1454 * return false if the runqueue has changed and p
1455 * is actually now running somewhere else!
1457 while (task_running(rq
, p
)) {
1458 if (match_state
&& unlikely(p
->state
!= match_state
))
1464 * Ok, time to look more closely! We need the rq
1465 * lock now, to be *sure*. If we're wrong, we'll
1466 * just go back and repeat.
1468 rq
= task_rq_lock(p
, &flags
);
1469 trace_sched_wait_task(p
);
1470 running
= task_running(rq
, p
);
1471 queued
= task_on_rq_queued(p
);
1473 if (!match_state
|| p
->state
== match_state
)
1474 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1475 task_rq_unlock(rq
, p
, &flags
);
1478 * If it changed from the expected state, bail out now.
1480 if (unlikely(!ncsw
))
1484 * Was it really running after all now that we
1485 * checked with the proper locks actually held?
1487 * Oops. Go back and try again..
1489 if (unlikely(running
)) {
1495 * It's not enough that it's not actively running,
1496 * it must be off the runqueue _entirely_, and not
1499 * So if it was still runnable (but just not actively
1500 * running right now), it's preempted, and we should
1501 * yield - it could be a while.
1503 if (unlikely(queued
)) {
1504 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1506 set_current_state(TASK_UNINTERRUPTIBLE
);
1507 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1512 * Ahh, all good. It wasn't running, and it wasn't
1513 * runnable, which means that it will never become
1514 * running in the future either. We're all done!
1523 * kick_process - kick a running thread to enter/exit the kernel
1524 * @p: the to-be-kicked thread
1526 * Cause a process which is running on another CPU to enter
1527 * kernel-mode, without any delay. (to get signals handled.)
1529 * NOTE: this function doesn't have to take the runqueue lock,
1530 * because all it wants to ensure is that the remote task enters
1531 * the kernel. If the IPI races and the task has been migrated
1532 * to another CPU then no harm is done and the purpose has been
1535 void kick_process(struct task_struct
*p
)
1541 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1542 smp_send_reschedule(cpu
);
1545 EXPORT_SYMBOL_GPL(kick_process
);
1548 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1550 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1552 int nid
= cpu_to_node(cpu
);
1553 const struct cpumask
*nodemask
= NULL
;
1554 enum { cpuset
, possible
, fail
} state
= cpuset
;
1558 * If the node that the cpu is on has been offlined, cpu_to_node()
1559 * will return -1. There is no cpu on the node, and we should
1560 * select the cpu on the other node.
1563 nodemask
= cpumask_of_node(nid
);
1565 /* Look for allowed, online CPU in same node. */
1566 for_each_cpu(dest_cpu
, nodemask
) {
1567 if (!cpu_online(dest_cpu
))
1569 if (!cpu_active(dest_cpu
))
1571 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1577 /* Any allowed, online CPU? */
1578 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1579 if (!cpu_online(dest_cpu
))
1581 if (!cpu_active(dest_cpu
))
1586 /* No more Mr. Nice Guy. */
1589 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1590 cpuset_cpus_allowed_fallback(p
);
1596 do_set_cpus_allowed(p
, cpu_possible_mask
);
1607 if (state
!= cpuset
) {
1609 * Don't tell them about moving exiting tasks or
1610 * kernel threads (both mm NULL), since they never
1613 if (p
->mm
&& printk_ratelimit()) {
1614 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1615 task_pid_nr(p
), p
->comm
, cpu
);
1623 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1626 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1628 lockdep_assert_held(&p
->pi_lock
);
1630 if (p
->nr_cpus_allowed
> 1)
1631 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1634 * In order not to call set_task_cpu() on a blocking task we need
1635 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1638 * Since this is common to all placement strategies, this lives here.
1640 * [ this allows ->select_task() to simply return task_cpu(p) and
1641 * not worry about this generic constraint ]
1643 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1645 cpu
= select_fallback_rq(task_cpu(p
), p
);
1650 static void update_avg(u64
*avg
, u64 sample
)
1652 s64 diff
= sample
- *avg
;
1658 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1659 const struct cpumask
*new_mask
, bool check
)
1661 return set_cpus_allowed_ptr(p
, new_mask
);
1664 #endif /* CONFIG_SMP */
1667 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1669 #ifdef CONFIG_SCHEDSTATS
1670 struct rq
*rq
= this_rq();
1673 int this_cpu
= smp_processor_id();
1675 if (cpu
== this_cpu
) {
1676 schedstat_inc(rq
, ttwu_local
);
1677 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1679 struct sched_domain
*sd
;
1681 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1683 for_each_domain(this_cpu
, sd
) {
1684 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1685 schedstat_inc(sd
, ttwu_wake_remote
);
1692 if (wake_flags
& WF_MIGRATED
)
1693 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1695 #endif /* CONFIG_SMP */
1697 schedstat_inc(rq
, ttwu_count
);
1698 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1700 if (wake_flags
& WF_SYNC
)
1701 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1703 #endif /* CONFIG_SCHEDSTATS */
1706 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1708 activate_task(rq
, p
, en_flags
);
1709 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1711 /* if a worker is waking up, notify workqueue */
1712 if (p
->flags
& PF_WQ_WORKER
)
1713 wq_worker_waking_up(p
, cpu_of(rq
));
1717 * Mark the task runnable and perform wakeup-preemption.
1720 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1722 check_preempt_curr(rq
, p
, wake_flags
);
1723 p
->state
= TASK_RUNNING
;
1724 trace_sched_wakeup(p
);
1727 if (p
->sched_class
->task_woken
) {
1729 * Our task @p is fully woken up and running; so its safe to
1730 * drop the rq->lock, hereafter rq is only used for statistics.
1732 lockdep_unpin_lock(&rq
->lock
);
1733 p
->sched_class
->task_woken(rq
, p
);
1734 lockdep_pin_lock(&rq
->lock
);
1737 if (rq
->idle_stamp
) {
1738 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1739 u64 max
= 2*rq
->max_idle_balance_cost
;
1741 update_avg(&rq
->avg_idle
, delta
);
1743 if (rq
->avg_idle
> max
)
1752 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1754 lockdep_assert_held(&rq
->lock
);
1757 if (p
->sched_contributes_to_load
)
1758 rq
->nr_uninterruptible
--;
1761 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1762 ttwu_do_wakeup(rq
, p
, wake_flags
);
1766 * Called in case the task @p isn't fully descheduled from its runqueue,
1767 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1768 * since all we need to do is flip p->state to TASK_RUNNING, since
1769 * the task is still ->on_rq.
1771 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1776 rq
= __task_rq_lock(p
);
1777 if (task_on_rq_queued(p
)) {
1778 /* check_preempt_curr() may use rq clock */
1779 update_rq_clock(rq
);
1780 ttwu_do_wakeup(rq
, p
, wake_flags
);
1783 __task_rq_unlock(rq
);
1789 void sched_ttwu_pending(void)
1791 struct rq
*rq
= this_rq();
1792 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1793 struct task_struct
*p
;
1794 unsigned long flags
;
1799 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1800 lockdep_pin_lock(&rq
->lock
);
1803 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1804 llist
= llist_next(llist
);
1805 ttwu_do_activate(rq
, p
, 0);
1808 lockdep_unpin_lock(&rq
->lock
);
1809 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1812 void scheduler_ipi(void)
1815 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1816 * TIF_NEED_RESCHED remotely (for the first time) will also send
1819 preempt_fold_need_resched();
1821 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1825 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1826 * traditionally all their work was done from the interrupt return
1827 * path. Now that we actually do some work, we need to make sure
1830 * Some archs already do call them, luckily irq_enter/exit nest
1833 * Arguably we should visit all archs and update all handlers,
1834 * however a fair share of IPIs are still resched only so this would
1835 * somewhat pessimize the simple resched case.
1838 sched_ttwu_pending();
1841 * Check if someone kicked us for doing the nohz idle load balance.
1843 if (unlikely(got_nohz_idle_kick())) {
1844 this_rq()->idle_balance
= 1;
1845 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1850 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1852 struct rq
*rq
= cpu_rq(cpu
);
1854 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1855 if (!set_nr_if_polling(rq
->idle
))
1856 smp_send_reschedule(cpu
);
1858 trace_sched_wake_idle_without_ipi(cpu
);
1862 void wake_up_if_idle(int cpu
)
1864 struct rq
*rq
= cpu_rq(cpu
);
1865 unsigned long flags
;
1869 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1872 if (set_nr_if_polling(rq
->idle
)) {
1873 trace_sched_wake_idle_without_ipi(cpu
);
1875 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1876 if (is_idle_task(rq
->curr
))
1877 smp_send_reschedule(cpu
);
1878 /* Else cpu is not in idle, do nothing here */
1879 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1886 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1888 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1890 #endif /* CONFIG_SMP */
1892 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1894 struct rq
*rq
= cpu_rq(cpu
);
1896 #if defined(CONFIG_SMP)
1897 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1898 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1899 ttwu_queue_remote(p
, cpu
);
1904 raw_spin_lock(&rq
->lock
);
1905 lockdep_pin_lock(&rq
->lock
);
1906 ttwu_do_activate(rq
, p
, 0);
1907 lockdep_unpin_lock(&rq
->lock
);
1908 raw_spin_unlock(&rq
->lock
);
1912 * try_to_wake_up - wake up a thread
1913 * @p: the thread to be awakened
1914 * @state: the mask of task states that can be woken
1915 * @wake_flags: wake modifier flags (WF_*)
1917 * Put it on the run-queue if it's not already there. The "current"
1918 * thread is always on the run-queue (except when the actual
1919 * re-schedule is in progress), and as such you're allowed to do
1920 * the simpler "current->state = TASK_RUNNING" to mark yourself
1921 * runnable without the overhead of this.
1923 * Return: %true if @p was woken up, %false if it was already running.
1924 * or @state didn't match @p's state.
1927 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1929 unsigned long flags
;
1930 int cpu
, success
= 0;
1933 * If we are going to wake up a thread waiting for CONDITION we
1934 * need to ensure that CONDITION=1 done by the caller can not be
1935 * reordered with p->state check below. This pairs with mb() in
1936 * set_current_state() the waiting thread does.
1938 smp_mb__before_spinlock();
1939 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1940 if (!(p
->state
& state
))
1943 trace_sched_waking(p
);
1945 success
= 1; /* we're going to change ->state */
1949 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1950 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1951 * in smp_cond_load_acquire() below.
1953 * sched_ttwu_pending() try_to_wake_up()
1954 * [S] p->on_rq = 1; [L] P->state
1955 * UNLOCK rq->lock -----.
1959 * LOCK rq->lock -----'
1963 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1965 * Pairs with the UNLOCK+LOCK on rq->lock from the
1966 * last wakeup of our task and the schedule that got our task
1970 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1975 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1976 * possible to, falsely, observe p->on_cpu == 0.
1978 * One must be running (->on_cpu == 1) in order to remove oneself
1979 * from the runqueue.
1981 * [S] ->on_cpu = 1; [L] ->on_rq
1985 * [S] ->on_rq = 0; [L] ->on_cpu
1987 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1988 * from the consecutive calls to schedule(); the first switching to our
1989 * task, the second putting it to sleep.
1994 * If the owning (remote) cpu is still in the middle of schedule() with
1995 * this task as prev, wait until its done referencing the task.
2000 * Combined with the control dependency above, we have an effective
2001 * smp_load_acquire() without the need for full barriers.
2003 * Pairs with the smp_store_release() in finish_lock_switch().
2005 * This ensures that tasks getting woken will be fully ordered against
2006 * their previous state and preserve Program Order.
2010 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2011 p
->state
= TASK_WAKING
;
2013 if (p
->sched_class
->task_waking
)
2014 p
->sched_class
->task_waking(p
);
2016 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2017 if (task_cpu(p
) != cpu
) {
2018 wake_flags
|= WF_MIGRATED
;
2019 set_task_cpu(p
, cpu
);
2021 #endif /* CONFIG_SMP */
2025 ttwu_stat(p
, cpu
, wake_flags
);
2027 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2033 * try_to_wake_up_local - try to wake up a local task with rq lock held
2034 * @p: the thread to be awakened
2036 * Put @p on the run-queue if it's not already there. The caller must
2037 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2040 static void try_to_wake_up_local(struct task_struct
*p
)
2042 struct rq
*rq
= task_rq(p
);
2044 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2045 WARN_ON_ONCE(p
== current
))
2048 lockdep_assert_held(&rq
->lock
);
2050 if (!raw_spin_trylock(&p
->pi_lock
)) {
2052 * This is OK, because current is on_cpu, which avoids it being
2053 * picked for load-balance and preemption/IRQs are still
2054 * disabled avoiding further scheduler activity on it and we've
2055 * not yet picked a replacement task.
2057 lockdep_unpin_lock(&rq
->lock
);
2058 raw_spin_unlock(&rq
->lock
);
2059 raw_spin_lock(&p
->pi_lock
);
2060 raw_spin_lock(&rq
->lock
);
2061 lockdep_pin_lock(&rq
->lock
);
2064 if (!(p
->state
& TASK_NORMAL
))
2067 trace_sched_waking(p
);
2069 if (!task_on_rq_queued(p
))
2070 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2072 ttwu_do_wakeup(rq
, p
, 0);
2073 ttwu_stat(p
, smp_processor_id(), 0);
2075 raw_spin_unlock(&p
->pi_lock
);
2079 * wake_up_process - Wake up a specific process
2080 * @p: The process to be woken up.
2082 * Attempt to wake up the nominated process and move it to the set of runnable
2085 * Return: 1 if the process was woken up, 0 if it was already running.
2087 * It may be assumed that this function implies a write memory barrier before
2088 * changing the task state if and only if any tasks are woken up.
2090 int wake_up_process(struct task_struct
*p
)
2092 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2094 EXPORT_SYMBOL(wake_up_process
);
2096 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2098 return try_to_wake_up(p
, state
, 0);
2102 * This function clears the sched_dl_entity static params.
2104 void __dl_clear_params(struct task_struct
*p
)
2106 struct sched_dl_entity
*dl_se
= &p
->dl
;
2108 dl_se
->dl_runtime
= 0;
2109 dl_se
->dl_deadline
= 0;
2110 dl_se
->dl_period
= 0;
2113 dl_se
->dl_density
= 0;
2115 dl_se
->dl_throttled
= 0;
2117 dl_se
->dl_yielded
= 0;
2121 * Perform scheduler related setup for a newly forked process p.
2122 * p is forked by current.
2124 * __sched_fork() is basic setup used by init_idle() too:
2126 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2131 p
->se
.exec_start
= 0;
2132 p
->se
.sum_exec_runtime
= 0;
2133 p
->se
.prev_sum_exec_runtime
= 0;
2134 p
->se
.nr_migrations
= 0;
2136 INIT_LIST_HEAD(&p
->se
.group_node
);
2138 #ifdef CONFIG_SCHEDSTATS
2139 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2142 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2143 init_dl_task_timer(&p
->dl
);
2144 __dl_clear_params(p
);
2146 INIT_LIST_HEAD(&p
->rt
.run_list
);
2148 #ifdef CONFIG_PREEMPT_NOTIFIERS
2149 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2152 #ifdef CONFIG_NUMA_BALANCING
2153 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
2154 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2155 p
->mm
->numa_scan_seq
= 0;
2158 if (clone_flags
& CLONE_VM
)
2159 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
2161 p
->numa_preferred_nid
= -1;
2163 p
->node_stamp
= 0ULL;
2164 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
2165 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2166 p
->numa_work
.next
= &p
->numa_work
;
2167 p
->numa_faults
= NULL
;
2168 p
->last_task_numa_placement
= 0;
2169 p
->last_sum_exec_runtime
= 0;
2171 p
->numa_group
= NULL
;
2172 #endif /* CONFIG_NUMA_BALANCING */
2175 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2177 #ifdef CONFIG_NUMA_BALANCING
2179 void set_numabalancing_state(bool enabled
)
2182 static_branch_enable(&sched_numa_balancing
);
2184 static_branch_disable(&sched_numa_balancing
);
2187 #ifdef CONFIG_PROC_SYSCTL
2188 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2189 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2193 int state
= static_branch_likely(&sched_numa_balancing
);
2195 if (write
&& !capable(CAP_SYS_ADMIN
))
2200 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2204 set_numabalancing_state(state
);
2211 * fork()/clone()-time setup:
2213 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2215 unsigned long flags
;
2216 int cpu
= get_cpu();
2218 __sched_fork(clone_flags
, p
);
2220 * We mark the process as running here. This guarantees that
2221 * nobody will actually run it, and a signal or other external
2222 * event cannot wake it up and insert it on the runqueue either.
2224 p
->state
= TASK_RUNNING
;
2227 * Make sure we do not leak PI boosting priority to the child.
2229 p
->prio
= current
->normal_prio
;
2232 * Revert to default priority/policy on fork if requested.
2234 if (unlikely(p
->sched_reset_on_fork
)) {
2235 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2236 p
->policy
= SCHED_NORMAL
;
2237 p
->static_prio
= NICE_TO_PRIO(0);
2239 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2240 p
->static_prio
= NICE_TO_PRIO(0);
2242 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2246 * We don't need the reset flag anymore after the fork. It has
2247 * fulfilled its duty:
2249 p
->sched_reset_on_fork
= 0;
2252 if (dl_prio(p
->prio
)) {
2255 } else if (rt_prio(p
->prio
)) {
2256 p
->sched_class
= &rt_sched_class
;
2258 p
->sched_class
= &fair_sched_class
;
2261 if (p
->sched_class
->task_fork
)
2262 p
->sched_class
->task_fork(p
);
2265 * The child is not yet in the pid-hash so no cgroup attach races,
2266 * and the cgroup is pinned to this child due to cgroup_fork()
2267 * is ran before sched_fork().
2269 * Silence PROVE_RCU.
2271 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2272 set_task_cpu(p
, cpu
);
2273 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2275 #ifdef CONFIG_SCHED_INFO
2276 if (likely(sched_info_on()))
2277 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2279 #if defined(CONFIG_SMP)
2282 init_task_preempt_count(p
);
2284 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2285 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2292 unsigned long to_ratio(u64 period
, u64 runtime
)
2294 if (runtime
== RUNTIME_INF
)
2298 * Doing this here saves a lot of checks in all
2299 * the calling paths, and returning zero seems
2300 * safe for them anyway.
2305 return div64_u64(runtime
<< 20, period
);
2309 inline struct dl_bw
*dl_bw_of(int i
)
2311 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2312 "sched RCU must be held");
2313 return &cpu_rq(i
)->rd
->dl_bw
;
2316 static inline int dl_bw_cpus(int i
)
2318 struct root_domain
*rd
= cpu_rq(i
)->rd
;
2321 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2322 "sched RCU must be held");
2323 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
2329 inline struct dl_bw
*dl_bw_of(int i
)
2331 return &cpu_rq(i
)->dl
.dl_bw
;
2334 static inline int dl_bw_cpus(int i
)
2341 * We must be sure that accepting a new task (or allowing changing the
2342 * parameters of an existing one) is consistent with the bandwidth
2343 * constraints. If yes, this function also accordingly updates the currently
2344 * allocated bandwidth to reflect the new situation.
2346 * This function is called while holding p's rq->lock.
2348 * XXX we should delay bw change until the task's 0-lag point, see
2351 static int dl_overflow(struct task_struct
*p
, int policy
,
2352 const struct sched_attr
*attr
)
2355 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2356 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2357 u64 runtime
= attr
->sched_runtime
;
2358 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2361 if (new_bw
== p
->dl
.dl_bw
)
2365 * Either if a task, enters, leave, or stays -deadline but changes
2366 * its parameters, we may need to update accordingly the total
2367 * allocated bandwidth of the container.
2369 raw_spin_lock(&dl_b
->lock
);
2370 cpus
= dl_bw_cpus(task_cpu(p
));
2371 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2372 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2373 __dl_add(dl_b
, new_bw
);
2375 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2376 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2377 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2378 __dl_add(dl_b
, new_bw
);
2380 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2381 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2384 raw_spin_unlock(&dl_b
->lock
);
2389 extern void init_dl_bw(struct dl_bw
*dl_b
);
2392 * wake_up_new_task - wake up a newly created task for the first time.
2394 * This function will do some initial scheduler statistics housekeeping
2395 * that must be done for every newly created context, then puts the task
2396 * on the runqueue and wakes it.
2398 void wake_up_new_task(struct task_struct
*p
)
2400 unsigned long flags
;
2403 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2404 /* Initialize new task's runnable average */
2405 init_entity_runnable_average(&p
->se
);
2408 * Fork balancing, do it here and not earlier because:
2409 * - cpus_allowed can change in the fork path
2410 * - any previously selected cpu might disappear through hotplug
2412 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2415 rq
= __task_rq_lock(p
);
2416 activate_task(rq
, p
, 0);
2417 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2418 trace_sched_wakeup_new(p
);
2419 check_preempt_curr(rq
, p
, WF_FORK
);
2421 if (p
->sched_class
->task_woken
) {
2423 * Nothing relies on rq->lock after this, so its fine to
2426 lockdep_unpin_lock(&rq
->lock
);
2427 p
->sched_class
->task_woken(rq
, p
);
2428 lockdep_pin_lock(&rq
->lock
);
2431 task_rq_unlock(rq
, p
, &flags
);
2434 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436 static struct static_key preempt_notifier_key
= STATIC_KEY_INIT_FALSE
;
2438 void preempt_notifier_inc(void)
2440 static_key_slow_inc(&preempt_notifier_key
);
2442 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2444 void preempt_notifier_dec(void)
2446 static_key_slow_dec(&preempt_notifier_key
);
2448 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2451 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2452 * @notifier: notifier struct to register
2454 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2456 if (!static_key_false(&preempt_notifier_key
))
2457 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2461 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2464 * preempt_notifier_unregister - no longer interested in preemption notifications
2465 * @notifier: notifier struct to unregister
2467 * This is *not* safe to call from within a preemption notifier.
2469 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2471 hlist_del(¬ifier
->link
);
2473 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2475 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2477 struct preempt_notifier
*notifier
;
2479 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2480 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2483 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2485 if (static_key_false(&preempt_notifier_key
))
2486 __fire_sched_in_preempt_notifiers(curr
);
2490 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2491 struct task_struct
*next
)
2493 struct preempt_notifier
*notifier
;
2495 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2496 notifier
->ops
->sched_out(notifier
, next
);
2499 static __always_inline
void
2500 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2501 struct task_struct
*next
)
2503 if (static_key_false(&preempt_notifier_key
))
2504 __fire_sched_out_preempt_notifiers(curr
, next
);
2507 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2514 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2515 struct task_struct
*next
)
2519 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 * prepare_task_switch - prepare to switch tasks
2523 * @rq: the runqueue preparing to switch
2524 * @prev: the current task that is being switched out
2525 * @next: the task we are going to switch to.
2527 * This is called with the rq lock held and interrupts off. It must
2528 * be paired with a subsequent finish_task_switch after the context
2531 * prepare_task_switch sets up locking and calls architecture specific
2535 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2536 struct task_struct
*next
)
2538 sched_info_switch(rq
, prev
, next
);
2539 perf_event_task_sched_out(prev
, next
);
2540 fire_sched_out_preempt_notifiers(prev
, next
);
2541 prepare_lock_switch(rq
, next
);
2542 prepare_arch_switch(next
);
2546 * finish_task_switch - clean up after a task-switch
2547 * @prev: the thread we just switched away from.
2549 * finish_task_switch must be called after the context switch, paired
2550 * with a prepare_task_switch call before the context switch.
2551 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2552 * and do any other architecture-specific cleanup actions.
2554 * Note that we may have delayed dropping an mm in context_switch(). If
2555 * so, we finish that here outside of the runqueue lock. (Doing it
2556 * with the lock held can cause deadlocks; see schedule() for
2559 * The context switch have flipped the stack from under us and restored the
2560 * local variables which were saved when this task called schedule() in the
2561 * past. prev == current is still correct but we need to recalculate this_rq
2562 * because prev may have moved to another CPU.
2564 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2565 __releases(rq
->lock
)
2567 struct rq
*rq
= this_rq();
2568 struct mm_struct
*mm
= rq
->prev_mm
;
2572 * The previous task will have left us with a preempt_count of 2
2573 * because it left us after:
2576 * preempt_disable(); // 1
2578 * raw_spin_lock_irq(&rq->lock) // 2
2580 * Also, see FORK_PREEMPT_COUNT.
2582 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2583 "corrupted preempt_count: %s/%d/0x%x\n",
2584 current
->comm
, current
->pid
, preempt_count()))
2585 preempt_count_set(FORK_PREEMPT_COUNT
);
2590 * A task struct has one reference for the use as "current".
2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
2595 * We must observe prev->state before clearing prev->on_cpu (in
2596 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2597 * running on another CPU and we could rave with its RUNNING -> DEAD
2598 * transition, resulting in a double drop.
2600 prev_state
= prev
->state
;
2601 vtime_task_switch(prev
);
2602 perf_event_task_sched_in(prev
, current
);
2603 finish_lock_switch(rq
, prev
);
2604 finish_arch_post_lock_switch();
2606 fire_sched_in_preempt_notifiers(current
);
2609 if (unlikely(prev_state
== TASK_DEAD
)) {
2610 if (prev
->sched_class
->task_dead
)
2611 prev
->sched_class
->task_dead(prev
);
2614 * Remove function-return probe instances associated with this
2615 * task and put them back on the free list.
2617 kprobe_flush_task(prev
);
2618 put_task_struct(prev
);
2621 tick_nohz_task_switch();
2627 /* rq->lock is NOT held, but preemption is disabled */
2628 static void __balance_callback(struct rq
*rq
)
2630 struct callback_head
*head
, *next
;
2631 void (*func
)(struct rq
*rq
);
2632 unsigned long flags
;
2634 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2635 head
= rq
->balance_callback
;
2636 rq
->balance_callback
= NULL
;
2638 func
= (void (*)(struct rq
*))head
->func
;
2645 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2648 static inline void balance_callback(struct rq
*rq
)
2650 if (unlikely(rq
->balance_callback
))
2651 __balance_callback(rq
);
2656 static inline void balance_callback(struct rq
*rq
)
2663 * schedule_tail - first thing a freshly forked thread must call.
2664 * @prev: the thread we just switched away from.
2666 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2667 __releases(rq
->lock
)
2672 * New tasks start with FORK_PREEMPT_COUNT, see there and
2673 * finish_task_switch() for details.
2675 * finish_task_switch() will drop rq->lock() and lower preempt_count
2676 * and the preempt_enable() will end up enabling preemption (on
2677 * PREEMPT_COUNT kernels).
2680 rq
= finish_task_switch(prev
);
2681 balance_callback(rq
);
2684 if (current
->set_child_tid
)
2685 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2689 * context_switch - switch to the new MM and the new thread's register state.
2691 static inline struct rq
*
2692 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2693 struct task_struct
*next
)
2695 struct mm_struct
*mm
, *oldmm
;
2697 prepare_task_switch(rq
, prev
, next
);
2700 oldmm
= prev
->active_mm
;
2702 * For paravirt, this is coupled with an exit in switch_to to
2703 * combine the page table reload and the switch backend into
2706 arch_start_context_switch(prev
);
2709 next
->active_mm
= oldmm
;
2710 atomic_inc(&oldmm
->mm_count
);
2711 enter_lazy_tlb(oldmm
, next
);
2713 switch_mm_irqs_off(oldmm
, mm
, next
);
2716 prev
->active_mm
= NULL
;
2717 rq
->prev_mm
= oldmm
;
2720 * Since the runqueue lock will be released by the next
2721 * task (which is an invalid locking op but in the case
2722 * of the scheduler it's an obvious special-case), so we
2723 * do an early lockdep release here:
2725 lockdep_unpin_lock(&rq
->lock
);
2726 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2728 /* Here we just switch the register state and the stack. */
2729 switch_to(prev
, next
, prev
);
2732 return finish_task_switch(prev
);
2736 * nr_running and nr_context_switches:
2738 * externally visible scheduler statistics: current number of runnable
2739 * threads, total number of context switches performed since bootup.
2741 unsigned long nr_running(void)
2743 unsigned long i
, sum
= 0;
2745 for_each_online_cpu(i
)
2746 sum
+= cpu_rq(i
)->nr_running
;
2752 * Check if only the current task is running on the cpu.
2754 * Caution: this function does not check that the caller has disabled
2755 * preemption, thus the result might have a time-of-check-to-time-of-use
2756 * race. The caller is responsible to use it correctly, for example:
2758 * - from a non-preemptable section (of course)
2760 * - from a thread that is bound to a single CPU
2762 * - in a loop with very short iterations (e.g. a polling loop)
2764 bool single_task_running(void)
2766 return raw_rq()->nr_running
== 1;
2768 EXPORT_SYMBOL(single_task_running
);
2770 unsigned long long nr_context_switches(void)
2773 unsigned long long sum
= 0;
2775 for_each_possible_cpu(i
)
2776 sum
+= cpu_rq(i
)->nr_switches
;
2781 unsigned long nr_iowait(void)
2783 unsigned long i
, sum
= 0;
2785 for_each_possible_cpu(i
)
2786 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2791 unsigned long nr_iowait_cpu(int cpu
)
2793 struct rq
*this = cpu_rq(cpu
);
2794 return atomic_read(&this->nr_iowait
);
2797 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2799 struct rq
*rq
= this_rq();
2800 *nr_waiters
= atomic_read(&rq
->nr_iowait
);
2801 *load
= rq
->load
.weight
;
2807 * sched_exec - execve() is a valuable balancing opportunity, because at
2808 * this point the task has the smallest effective memory and cache footprint.
2810 void sched_exec(void)
2812 struct task_struct
*p
= current
;
2813 unsigned long flags
;
2816 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2817 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2818 if (dest_cpu
== smp_processor_id())
2821 if (likely(cpu_active(dest_cpu
))) {
2822 struct migration_arg arg
= { p
, dest_cpu
};
2824 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2825 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2829 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2834 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2835 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2837 EXPORT_PER_CPU_SYMBOL(kstat
);
2838 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2841 * Return accounted runtime for the task.
2842 * In case the task is currently running, return the runtime plus current's
2843 * pending runtime that have not been accounted yet.
2845 unsigned long long task_sched_runtime(struct task_struct
*p
)
2847 unsigned long flags
;
2851 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2853 * 64-bit doesn't need locks to atomically read a 64bit value.
2854 * So we have a optimization chance when the task's delta_exec is 0.
2855 * Reading ->on_cpu is racy, but this is ok.
2857 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2858 * If we race with it entering cpu, unaccounted time is 0. This is
2859 * indistinguishable from the read occurring a few cycles earlier.
2860 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2861 * been accounted, so we're correct here as well.
2863 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2864 return p
->se
.sum_exec_runtime
;
2867 rq
= task_rq_lock(p
, &flags
);
2869 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2870 * project cycles that may never be accounted to this
2871 * thread, breaking clock_gettime().
2873 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2874 update_rq_clock(rq
);
2875 p
->sched_class
->update_curr(rq
);
2877 ns
= p
->se
.sum_exec_runtime
;
2878 task_rq_unlock(rq
, p
, &flags
);
2884 * This function gets called by the timer code, with HZ frequency.
2885 * We call it with interrupts disabled.
2887 void scheduler_tick(void)
2889 int cpu
= smp_processor_id();
2890 struct rq
*rq
= cpu_rq(cpu
);
2891 struct task_struct
*curr
= rq
->curr
;
2895 raw_spin_lock(&rq
->lock
);
2896 update_rq_clock(rq
);
2897 curr
->sched_class
->task_tick(rq
, curr
, 0);
2898 update_cpu_load_active(rq
);
2899 calc_global_load_tick(rq
);
2900 raw_spin_unlock(&rq
->lock
);
2902 perf_event_task_tick();
2905 rq
->idle_balance
= idle_cpu(cpu
);
2906 trigger_load_balance(rq
);
2908 rq_last_tick_reset(rq
);
2911 #ifdef CONFIG_NO_HZ_FULL
2913 * scheduler_tick_max_deferment
2915 * Keep at least one tick per second when a single
2916 * active task is running because the scheduler doesn't
2917 * yet completely support full dynticks environment.
2919 * This makes sure that uptime, CFS vruntime, load
2920 * balancing, etc... continue to move forward, even
2921 * with a very low granularity.
2923 * Return: Maximum deferment in nanoseconds.
2925 u64
scheduler_tick_max_deferment(void)
2927 struct rq
*rq
= this_rq();
2928 unsigned long next
, now
= READ_ONCE(jiffies
);
2930 next
= rq
->last_sched_tick
+ HZ
;
2932 if (time_before_eq(next
, now
))
2935 return jiffies_to_nsecs(next
- now
);
2939 notrace
unsigned long get_parent_ip(unsigned long addr
)
2941 if (in_lock_functions(addr
)) {
2942 addr
= CALLER_ADDR2
;
2943 if (in_lock_functions(addr
))
2944 addr
= CALLER_ADDR3
;
2949 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2950 defined(CONFIG_PREEMPT_TRACER))
2952 void preempt_count_add(int val
)
2954 #ifdef CONFIG_DEBUG_PREEMPT
2958 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2961 __preempt_count_add(val
);
2962 #ifdef CONFIG_DEBUG_PREEMPT
2964 * Spinlock count overflowing soon?
2966 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2969 if (preempt_count() == val
) {
2970 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2971 #ifdef CONFIG_DEBUG_PREEMPT
2972 current
->preempt_disable_ip
= ip
;
2974 trace_preempt_off(CALLER_ADDR0
, ip
);
2977 EXPORT_SYMBOL(preempt_count_add
);
2978 NOKPROBE_SYMBOL(preempt_count_add
);
2980 void preempt_count_sub(int val
)
2982 #ifdef CONFIG_DEBUG_PREEMPT
2986 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2989 * Is the spinlock portion underflowing?
2991 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2992 !(preempt_count() & PREEMPT_MASK
)))
2996 if (preempt_count() == val
)
2997 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2998 __preempt_count_sub(val
);
3000 EXPORT_SYMBOL(preempt_count_sub
);
3001 NOKPROBE_SYMBOL(preempt_count_sub
);
3006 * Print scheduling while atomic bug:
3008 static noinline
void __schedule_bug(struct task_struct
*prev
)
3010 if (oops_in_progress
)
3013 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3014 prev
->comm
, prev
->pid
, preempt_count());
3016 debug_show_held_locks(prev
);
3018 if (irqs_disabled())
3019 print_irqtrace_events(prev
);
3020 #ifdef CONFIG_DEBUG_PREEMPT
3021 if (in_atomic_preempt_off()) {
3022 pr_err("Preemption disabled at:");
3023 print_ip_sym(current
->preempt_disable_ip
);
3028 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3032 * Various schedule()-time debugging checks and statistics:
3034 static inline void schedule_debug(struct task_struct
*prev
)
3036 #ifdef CONFIG_SCHED_STACK_END_CHECK
3037 if (task_stack_end_corrupted(prev
))
3038 panic("corrupted stack end detected inside scheduler\n");
3041 if (unlikely(in_atomic_preempt_off())) {
3042 __schedule_bug(prev
);
3043 preempt_count_set(PREEMPT_DISABLED
);
3047 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3049 schedstat_inc(this_rq(), sched_count
);
3053 * Pick up the highest-prio task:
3055 static inline struct task_struct
*
3056 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3058 const struct sched_class
*class = &fair_sched_class
;
3059 struct task_struct
*p
;
3062 * Optimization: we know that if all tasks are in
3063 * the fair class we can call that function directly:
3065 if (likely(prev
->sched_class
== class &&
3066 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3067 p
= fair_sched_class
.pick_next_task(rq
, prev
);
3068 if (unlikely(p
== RETRY_TASK
))
3071 /* assumes fair_sched_class->next == idle_sched_class */
3073 p
= idle_sched_class
.pick_next_task(rq
, prev
);
3079 for_each_class(class) {
3080 p
= class->pick_next_task(rq
, prev
);
3082 if (unlikely(p
== RETRY_TASK
))
3088 BUG(); /* the idle class will always have a runnable task */
3092 * __schedule() is the main scheduler function.
3094 * The main means of driving the scheduler and thus entering this function are:
3096 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3098 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3099 * paths. For example, see arch/x86/entry_64.S.
3101 * To drive preemption between tasks, the scheduler sets the flag in timer
3102 * interrupt handler scheduler_tick().
3104 * 3. Wakeups don't really cause entry into schedule(). They add a
3105 * task to the run-queue and that's it.
3107 * Now, if the new task added to the run-queue preempts the current
3108 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3109 * called on the nearest possible occasion:
3111 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3113 * - in syscall or exception context, at the next outmost
3114 * preempt_enable(). (this might be as soon as the wake_up()'s
3117 * - in IRQ context, return from interrupt-handler to
3118 * preemptible context
3120 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3123 * - cond_resched() call
3124 * - explicit schedule() call
3125 * - return from syscall or exception to user-space
3126 * - return from interrupt-handler to user-space
3128 * WARNING: must be called with preemption disabled!
3130 static void __sched notrace
__schedule(bool preempt
)
3132 struct task_struct
*prev
, *next
;
3133 unsigned long *switch_count
;
3137 cpu
= smp_processor_id();
3139 rcu_note_context_switch();
3143 * do_exit() calls schedule() with preemption disabled as an exception;
3144 * however we must fix that up, otherwise the next task will see an
3145 * inconsistent (higher) preempt count.
3147 * It also avoids the below schedule_debug() test from complaining
3150 if (unlikely(prev
->state
== TASK_DEAD
))
3151 preempt_enable_no_resched_notrace();
3153 schedule_debug(prev
);
3155 if (sched_feat(HRTICK
))
3159 * Make sure that signal_pending_state()->signal_pending() below
3160 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3161 * done by the caller to avoid the race with signal_wake_up().
3163 smp_mb__before_spinlock();
3164 raw_spin_lock_irq(&rq
->lock
);
3165 lockdep_pin_lock(&rq
->lock
);
3167 rq
->clock_skip_update
<<= 1; /* promote REQ to ACT */
3169 switch_count
= &prev
->nivcsw
;
3170 if (!preempt
&& prev
->state
) {
3171 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3172 prev
->state
= TASK_RUNNING
;
3174 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3178 * If a worker went to sleep, notify and ask workqueue
3179 * whether it wants to wake up a task to maintain
3182 if (prev
->flags
& PF_WQ_WORKER
) {
3183 struct task_struct
*to_wakeup
;
3185 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3187 try_to_wake_up_local(to_wakeup
);
3190 switch_count
= &prev
->nvcsw
;
3193 if (task_on_rq_queued(prev
))
3194 update_rq_clock(rq
);
3196 next
= pick_next_task(rq
, prev
);
3197 clear_tsk_need_resched(prev
);
3198 clear_preempt_need_resched();
3199 rq
->clock_skip_update
= 0;
3201 if (likely(prev
!= next
)) {
3206 trace_sched_switch(preempt
, prev
, next
);
3207 rq
= context_switch(rq
, prev
, next
); /* unlocks the rq */
3210 lockdep_unpin_lock(&rq
->lock
);
3211 raw_spin_unlock_irq(&rq
->lock
);
3214 balance_callback(rq
);
3217 static inline void sched_submit_work(struct task_struct
*tsk
)
3219 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3222 * If we are going to sleep and we have plugged IO queued,
3223 * make sure to submit it to avoid deadlocks.
3225 if (blk_needs_flush_plug(tsk
))
3226 blk_schedule_flush_plug(tsk
);
3229 asmlinkage __visible
void __sched
schedule(void)
3231 struct task_struct
*tsk
= current
;
3233 sched_submit_work(tsk
);
3237 sched_preempt_enable_no_resched();
3238 } while (need_resched());
3240 EXPORT_SYMBOL(schedule
);
3242 #ifdef CONFIG_CONTEXT_TRACKING
3243 asmlinkage __visible
void __sched
schedule_user(void)
3246 * If we come here after a random call to set_need_resched(),
3247 * or we have been woken up remotely but the IPI has not yet arrived,
3248 * we haven't yet exited the RCU idle mode. Do it here manually until
3249 * we find a better solution.
3251 * NB: There are buggy callers of this function. Ideally we
3252 * should warn if prev_state != CONTEXT_USER, but that will trigger
3253 * too frequently to make sense yet.
3255 enum ctx_state prev_state
= exception_enter();
3257 exception_exit(prev_state
);
3262 * schedule_preempt_disabled - called with preemption disabled
3264 * Returns with preemption disabled. Note: preempt_count must be 1
3266 void __sched
schedule_preempt_disabled(void)
3268 sched_preempt_enable_no_resched();
3273 static void __sched notrace
preempt_schedule_common(void)
3276 preempt_disable_notrace();
3278 preempt_enable_no_resched_notrace();
3281 * Check again in case we missed a preemption opportunity
3282 * between schedule and now.
3284 } while (need_resched());
3287 #ifdef CONFIG_PREEMPT
3289 * this is the entry point to schedule() from in-kernel preemption
3290 * off of preempt_enable. Kernel preemptions off return from interrupt
3291 * occur there and call schedule directly.
3293 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3296 * If there is a non-zero preempt_count or interrupts are disabled,
3297 * we do not want to preempt the current task. Just return..
3299 if (likely(!preemptible()))
3302 preempt_schedule_common();
3304 NOKPROBE_SYMBOL(preempt_schedule
);
3305 EXPORT_SYMBOL(preempt_schedule
);
3308 * preempt_schedule_notrace - preempt_schedule called by tracing
3310 * The tracing infrastructure uses preempt_enable_notrace to prevent
3311 * recursion and tracing preempt enabling caused by the tracing
3312 * infrastructure itself. But as tracing can happen in areas coming
3313 * from userspace or just about to enter userspace, a preempt enable
3314 * can occur before user_exit() is called. This will cause the scheduler
3315 * to be called when the system is still in usermode.
3317 * To prevent this, the preempt_enable_notrace will use this function
3318 * instead of preempt_schedule() to exit user context if needed before
3319 * calling the scheduler.
3321 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3323 enum ctx_state prev_ctx
;
3325 if (likely(!preemptible()))
3329 preempt_disable_notrace();
3331 * Needs preempt disabled in case user_exit() is traced
3332 * and the tracer calls preempt_enable_notrace() causing
3333 * an infinite recursion.
3335 prev_ctx
= exception_enter();
3337 exception_exit(prev_ctx
);
3339 preempt_enable_no_resched_notrace();
3340 } while (need_resched());
3342 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3344 #endif /* CONFIG_PREEMPT */
3347 * this is the entry point to schedule() from kernel preemption
3348 * off of irq context.
3349 * Note, that this is called and return with irqs disabled. This will
3350 * protect us against recursive calling from irq.
3352 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3354 enum ctx_state prev_state
;
3356 /* Catch callers which need to be fixed */
3357 BUG_ON(preempt_count() || !irqs_disabled());
3359 prev_state
= exception_enter();
3365 local_irq_disable();
3366 sched_preempt_enable_no_resched();
3367 } while (need_resched());
3369 exception_exit(prev_state
);
3372 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3375 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3377 EXPORT_SYMBOL(default_wake_function
);
3379 #ifdef CONFIG_RT_MUTEXES
3382 * rt_mutex_setprio - set the current priority of a task
3384 * @prio: prio value (kernel-internal form)
3386 * This function changes the 'effective' priority of a task. It does
3387 * not touch ->normal_prio like __setscheduler().
3389 * Used by the rt_mutex code to implement priority inheritance
3390 * logic. Call site only calls if the priority of the task changed.
3392 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3394 int oldprio
, queued
, running
, enqueue_flag
= ENQUEUE_RESTORE
;
3396 const struct sched_class
*prev_class
;
3398 BUG_ON(prio
> MAX_PRIO
);
3400 rq
= __task_rq_lock(p
);
3403 * Idle task boosting is a nono in general. There is one
3404 * exception, when PREEMPT_RT and NOHZ is active:
3406 * The idle task calls get_next_timer_interrupt() and holds
3407 * the timer wheel base->lock on the CPU and another CPU wants
3408 * to access the timer (probably to cancel it). We can safely
3409 * ignore the boosting request, as the idle CPU runs this code
3410 * with interrupts disabled and will complete the lock
3411 * protected section without being interrupted. So there is no
3412 * real need to boost.
3414 if (unlikely(p
== rq
->idle
)) {
3415 WARN_ON(p
!= rq
->curr
);
3416 WARN_ON(p
->pi_blocked_on
);
3420 trace_sched_pi_setprio(p
, prio
);
3422 prev_class
= p
->sched_class
;
3423 queued
= task_on_rq_queued(p
);
3424 running
= task_current(rq
, p
);
3426 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
3428 put_prev_task(rq
, p
);
3431 * Boosting condition are:
3432 * 1. -rt task is running and holds mutex A
3433 * --> -dl task blocks on mutex A
3435 * 2. -dl task is running and holds mutex A
3436 * --> -dl task blocks on mutex A and could preempt the
3439 if (dl_prio(prio
)) {
3440 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3441 if (!dl_prio(p
->normal_prio
) ||
3442 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3443 p
->dl
.dl_boosted
= 1;
3444 enqueue_flag
|= ENQUEUE_REPLENISH
;
3446 p
->dl
.dl_boosted
= 0;
3447 p
->sched_class
= &dl_sched_class
;
3448 } else if (rt_prio(prio
)) {
3449 if (dl_prio(oldprio
))
3450 p
->dl
.dl_boosted
= 0;
3452 enqueue_flag
|= ENQUEUE_HEAD
;
3453 p
->sched_class
= &rt_sched_class
;
3455 if (dl_prio(oldprio
))
3456 p
->dl
.dl_boosted
= 0;
3457 if (rt_prio(oldprio
))
3459 p
->sched_class
= &fair_sched_class
;
3465 p
->sched_class
->set_curr_task(rq
);
3467 enqueue_task(rq
, p
, enqueue_flag
);
3469 check_class_changed(rq
, p
, prev_class
, oldprio
);
3471 preempt_disable(); /* avoid rq from going away on us */
3472 __task_rq_unlock(rq
);
3474 balance_callback(rq
);
3479 void set_user_nice(struct task_struct
*p
, long nice
)
3481 int old_prio
, delta
, queued
;
3482 unsigned long flags
;
3485 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3488 * We have to be careful, if called from sys_setpriority(),
3489 * the task might be in the middle of scheduling on another CPU.
3491 rq
= task_rq_lock(p
, &flags
);
3493 * The RT priorities are set via sched_setscheduler(), but we still
3494 * allow the 'normal' nice value to be set - but as expected
3495 * it wont have any effect on scheduling until the task is
3496 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3498 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3499 p
->static_prio
= NICE_TO_PRIO(nice
);
3502 queued
= task_on_rq_queued(p
);
3504 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
3506 p
->static_prio
= NICE_TO_PRIO(nice
);
3509 p
->prio
= effective_prio(p
);
3510 delta
= p
->prio
- old_prio
;
3513 enqueue_task(rq
, p
, ENQUEUE_RESTORE
);
3515 * If the task increased its priority or is running and
3516 * lowered its priority, then reschedule its CPU:
3518 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3522 task_rq_unlock(rq
, p
, &flags
);
3524 EXPORT_SYMBOL(set_user_nice
);
3527 * can_nice - check if a task can reduce its nice value
3531 int can_nice(const struct task_struct
*p
, const int nice
)
3533 /* convert nice value [19,-20] to rlimit style value [1,40] */
3534 int nice_rlim
= nice_to_rlimit(nice
);
3536 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3537 capable(CAP_SYS_NICE
));
3540 #ifdef __ARCH_WANT_SYS_NICE
3543 * sys_nice - change the priority of the current process.
3544 * @increment: priority increment
3546 * sys_setpriority is a more generic, but much slower function that
3547 * does similar things.
3549 SYSCALL_DEFINE1(nice
, int, increment
)
3554 * Setpriority might change our priority at the same moment.
3555 * We don't have to worry. Conceptually one call occurs first
3556 * and we have a single winner.
3558 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3559 nice
= task_nice(current
) + increment
;
3561 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3562 if (increment
< 0 && !can_nice(current
, nice
))
3565 retval
= security_task_setnice(current
, nice
);
3569 set_user_nice(current
, nice
);
3576 * task_prio - return the priority value of a given task.
3577 * @p: the task in question.
3579 * Return: The priority value as seen by users in /proc.
3580 * RT tasks are offset by -200. Normal tasks are centered
3581 * around 0, value goes from -16 to +15.
3583 int task_prio(const struct task_struct
*p
)
3585 return p
->prio
- MAX_RT_PRIO
;
3589 * idle_cpu - is a given cpu idle currently?
3590 * @cpu: the processor in question.
3592 * Return: 1 if the CPU is currently idle. 0 otherwise.
3594 int idle_cpu(int cpu
)
3596 struct rq
*rq
= cpu_rq(cpu
);
3598 if (rq
->curr
!= rq
->idle
)
3605 if (!llist_empty(&rq
->wake_list
))
3613 * idle_task - return the idle task for a given cpu.
3614 * @cpu: the processor in question.
3616 * Return: The idle task for the cpu @cpu.
3618 struct task_struct
*idle_task(int cpu
)
3620 return cpu_rq(cpu
)->idle
;
3624 * find_process_by_pid - find a process with a matching PID value.
3625 * @pid: the pid in question.
3627 * The task of @pid, if found. %NULL otherwise.
3629 static struct task_struct
*find_process_by_pid(pid_t pid
)
3631 return pid
? find_task_by_vpid(pid
) : current
;
3635 * This function initializes the sched_dl_entity of a newly becoming
3636 * SCHED_DEADLINE task.
3638 * Only the static values are considered here, the actual runtime and the
3639 * absolute deadline will be properly calculated when the task is enqueued
3640 * for the first time with its new policy.
3643 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3645 struct sched_dl_entity
*dl_se
= &p
->dl
;
3647 dl_se
->dl_runtime
= attr
->sched_runtime
;
3648 dl_se
->dl_deadline
= attr
->sched_deadline
;
3649 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3650 dl_se
->flags
= attr
->sched_flags
;
3651 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3652 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
3655 * Changing the parameters of a task is 'tricky' and we're not doing
3656 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3658 * What we SHOULD do is delay the bandwidth release until the 0-lag
3659 * point. This would include retaining the task_struct until that time
3660 * and change dl_overflow() to not immediately decrement the current
3663 * Instead we retain the current runtime/deadline and let the new
3664 * parameters take effect after the current reservation period lapses.
3665 * This is safe (albeit pessimistic) because the 0-lag point is always
3666 * before the current scheduling deadline.
3668 * We can still have temporary overloads because we do not delay the
3669 * change in bandwidth until that time; so admission control is
3670 * not on the safe side. It does however guarantee tasks will never
3671 * consume more than promised.
3676 * sched_setparam() passes in -1 for its policy, to let the functions
3677 * it calls know not to change it.
3679 #define SETPARAM_POLICY -1
3681 static void __setscheduler_params(struct task_struct
*p
,
3682 const struct sched_attr
*attr
)
3684 int policy
= attr
->sched_policy
;
3686 if (policy
== SETPARAM_POLICY
)
3691 if (dl_policy(policy
))
3692 __setparam_dl(p
, attr
);
3693 else if (fair_policy(policy
))
3694 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3697 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3698 * !rt_policy. Always setting this ensures that things like
3699 * getparam()/getattr() don't report silly values for !rt tasks.
3701 p
->rt_priority
= attr
->sched_priority
;
3702 p
->normal_prio
= normal_prio(p
);
3706 /* Actually do priority change: must hold pi & rq lock. */
3707 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3708 const struct sched_attr
*attr
, bool keep_boost
)
3710 __setscheduler_params(p
, attr
);
3713 * Keep a potential priority boosting if called from
3714 * sched_setscheduler().
3717 p
->prio
= rt_mutex_get_effective_prio(p
, normal_prio(p
));
3719 p
->prio
= normal_prio(p
);
3721 if (dl_prio(p
->prio
))
3722 p
->sched_class
= &dl_sched_class
;
3723 else if (rt_prio(p
->prio
))
3724 p
->sched_class
= &rt_sched_class
;
3726 p
->sched_class
= &fair_sched_class
;
3730 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3732 struct sched_dl_entity
*dl_se
= &p
->dl
;
3734 attr
->sched_priority
= p
->rt_priority
;
3735 attr
->sched_runtime
= dl_se
->dl_runtime
;
3736 attr
->sched_deadline
= dl_se
->dl_deadline
;
3737 attr
->sched_period
= dl_se
->dl_period
;
3738 attr
->sched_flags
= dl_se
->flags
;
3742 * This function validates the new parameters of a -deadline task.
3743 * We ask for the deadline not being zero, and greater or equal
3744 * than the runtime, as well as the period of being zero or
3745 * greater than deadline. Furthermore, we have to be sure that
3746 * user parameters are above the internal resolution of 1us (we
3747 * check sched_runtime only since it is always the smaller one) and
3748 * below 2^63 ns (we have to check both sched_deadline and
3749 * sched_period, as the latter can be zero).
3752 __checkparam_dl(const struct sched_attr
*attr
)
3755 if (attr
->sched_deadline
== 0)
3759 * Since we truncate DL_SCALE bits, make sure we're at least
3762 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3766 * Since we use the MSB for wrap-around and sign issues, make
3767 * sure it's not set (mind that period can be equal to zero).
3769 if (attr
->sched_deadline
& (1ULL << 63) ||
3770 attr
->sched_period
& (1ULL << 63))
3773 /* runtime <= deadline <= period (if period != 0) */
3774 if ((attr
->sched_period
!= 0 &&
3775 attr
->sched_period
< attr
->sched_deadline
) ||
3776 attr
->sched_deadline
< attr
->sched_runtime
)
3783 * check the target process has a UID that matches the current process's
3785 static bool check_same_owner(struct task_struct
*p
)
3787 const struct cred
*cred
= current_cred(), *pcred
;
3791 pcred
= __task_cred(p
);
3792 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3793 uid_eq(cred
->euid
, pcred
->uid
));
3798 static bool dl_param_changed(struct task_struct
*p
,
3799 const struct sched_attr
*attr
)
3801 struct sched_dl_entity
*dl_se
= &p
->dl
;
3803 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
3804 dl_se
->dl_deadline
!= attr
->sched_deadline
||
3805 dl_se
->dl_period
!= attr
->sched_period
||
3806 dl_se
->flags
!= attr
->sched_flags
)
3812 static int __sched_setscheduler(struct task_struct
*p
,
3813 const struct sched_attr
*attr
,
3816 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3817 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3818 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3819 int new_effective_prio
, policy
= attr
->sched_policy
;
3820 unsigned long flags
;
3821 const struct sched_class
*prev_class
;
3825 /* may grab non-irq protected spin_locks */
3826 BUG_ON(in_interrupt());
3828 /* double check policy once rq lock held */
3830 reset_on_fork
= p
->sched_reset_on_fork
;
3831 policy
= oldpolicy
= p
->policy
;
3833 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3835 if (!valid_policy(policy
))
3839 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3843 * Valid priorities for SCHED_FIFO and SCHED_RR are
3844 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3845 * SCHED_BATCH and SCHED_IDLE is 0.
3847 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3848 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3850 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3851 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3855 * Allow unprivileged RT tasks to decrease priority:
3857 if (user
&& !capable(CAP_SYS_NICE
)) {
3858 if (fair_policy(policy
)) {
3859 if (attr
->sched_nice
< task_nice(p
) &&
3860 !can_nice(p
, attr
->sched_nice
))
3864 if (rt_policy(policy
)) {
3865 unsigned long rlim_rtprio
=
3866 task_rlimit(p
, RLIMIT_RTPRIO
);
3868 /* can't set/change the rt policy */
3869 if (policy
!= p
->policy
&& !rlim_rtprio
)
3872 /* can't increase priority */
3873 if (attr
->sched_priority
> p
->rt_priority
&&
3874 attr
->sched_priority
> rlim_rtprio
)
3879 * Can't set/change SCHED_DEADLINE policy at all for now
3880 * (safest behavior); in the future we would like to allow
3881 * unprivileged DL tasks to increase their relative deadline
3882 * or reduce their runtime (both ways reducing utilization)
3884 if (dl_policy(policy
))
3888 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3889 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3891 if (idle_policy(p
->policy
) && !idle_policy(policy
)) {
3892 if (!can_nice(p
, task_nice(p
)))
3896 /* can't change other user's priorities */
3897 if (!check_same_owner(p
))
3900 /* Normal users shall not reset the sched_reset_on_fork flag */
3901 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3906 retval
= security_task_setscheduler(p
);
3912 * make sure no PI-waiters arrive (or leave) while we are
3913 * changing the priority of the task:
3915 * To be able to change p->policy safely, the appropriate
3916 * runqueue lock must be held.
3918 rq
= task_rq_lock(p
, &flags
);
3921 * Changing the policy of the stop threads its a very bad idea
3923 if (p
== rq
->stop
) {
3924 task_rq_unlock(rq
, p
, &flags
);
3929 * If not changing anything there's no need to proceed further,
3930 * but store a possible modification of reset_on_fork.
3932 if (unlikely(policy
== p
->policy
)) {
3933 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3935 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3937 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
3940 p
->sched_reset_on_fork
= reset_on_fork
;
3941 task_rq_unlock(rq
, p
, &flags
);
3947 #ifdef CONFIG_RT_GROUP_SCHED
3949 * Do not allow realtime tasks into groups that have no runtime
3952 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3953 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3954 !task_group_is_autogroup(task_group(p
))) {
3955 task_rq_unlock(rq
, p
, &flags
);
3960 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3961 cpumask_t
*span
= rq
->rd
->span
;
3964 * Don't allow tasks with an affinity mask smaller than
3965 * the entire root_domain to become SCHED_DEADLINE. We
3966 * will also fail if there's no bandwidth available.
3968 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3969 rq
->rd
->dl_bw
.bw
== 0) {
3970 task_rq_unlock(rq
, p
, &flags
);
3977 /* recheck policy now with rq lock held */
3978 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3979 policy
= oldpolicy
= -1;
3980 task_rq_unlock(rq
, p
, &flags
);
3985 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3986 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3989 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3990 task_rq_unlock(rq
, p
, &flags
);
3994 p
->sched_reset_on_fork
= reset_on_fork
;
3999 * Take priority boosted tasks into account. If the new
4000 * effective priority is unchanged, we just store the new
4001 * normal parameters and do not touch the scheduler class and
4002 * the runqueue. This will be done when the task deboost
4005 new_effective_prio
= rt_mutex_get_effective_prio(p
, newprio
);
4006 if (new_effective_prio
== oldprio
) {
4007 __setscheduler_params(p
, attr
);
4008 task_rq_unlock(rq
, p
, &flags
);
4013 queued
= task_on_rq_queued(p
);
4014 running
= task_current(rq
, p
);
4016 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
4018 put_prev_task(rq
, p
);
4020 prev_class
= p
->sched_class
;
4021 __setscheduler(rq
, p
, attr
, pi
);
4024 p
->sched_class
->set_curr_task(rq
);
4026 int enqueue_flags
= ENQUEUE_RESTORE
;
4028 * We enqueue to tail when the priority of a task is
4029 * increased (user space view).
4031 if (oldprio
<= p
->prio
)
4032 enqueue_flags
|= ENQUEUE_HEAD
;
4034 enqueue_task(rq
, p
, enqueue_flags
);
4037 check_class_changed(rq
, p
, prev_class
, oldprio
);
4038 preempt_disable(); /* avoid rq from going away on us */
4039 task_rq_unlock(rq
, p
, &flags
);
4042 rt_mutex_adjust_pi(p
);
4045 * Run balance callbacks after we've adjusted the PI chain.
4047 balance_callback(rq
);
4053 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4054 const struct sched_param
*param
, bool check
)
4056 struct sched_attr attr
= {
4057 .sched_policy
= policy
,
4058 .sched_priority
= param
->sched_priority
,
4059 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4062 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4063 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4064 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4065 policy
&= ~SCHED_RESET_ON_FORK
;
4066 attr
.sched_policy
= policy
;
4069 return __sched_setscheduler(p
, &attr
, check
, true);
4072 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4073 * @p: the task in question.
4074 * @policy: new policy.
4075 * @param: structure containing the new RT priority.
4077 * Return: 0 on success. An error code otherwise.
4079 * NOTE that the task may be already dead.
4081 int sched_setscheduler(struct task_struct
*p
, int policy
,
4082 const struct sched_param
*param
)
4084 return _sched_setscheduler(p
, policy
, param
, true);
4086 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4088 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4090 return __sched_setscheduler(p
, attr
, true, true);
4092 EXPORT_SYMBOL_GPL(sched_setattr
);
4095 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4096 * @p: the task in question.
4097 * @policy: new policy.
4098 * @param: structure containing the new RT priority.
4100 * Just like sched_setscheduler, only don't bother checking if the
4101 * current context has permission. For example, this is needed in
4102 * stop_machine(): we create temporary high priority worker threads,
4103 * but our caller might not have that capability.
4105 * Return: 0 on success. An error code otherwise.
4107 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4108 const struct sched_param
*param
)
4110 return _sched_setscheduler(p
, policy
, param
, false);
4112 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4115 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4117 struct sched_param lparam
;
4118 struct task_struct
*p
;
4121 if (!param
|| pid
< 0)
4123 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4128 p
= find_process_by_pid(pid
);
4130 retval
= sched_setscheduler(p
, policy
, &lparam
);
4137 * Mimics kernel/events/core.c perf_copy_attr().
4139 static int sched_copy_attr(struct sched_attr __user
*uattr
,
4140 struct sched_attr
*attr
)
4145 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4149 * zero the full structure, so that a short copy will be nice.
4151 memset(attr
, 0, sizeof(*attr
));
4153 ret
= get_user(size
, &uattr
->size
);
4157 if (size
> PAGE_SIZE
) /* silly large */
4160 if (!size
) /* abi compat */
4161 size
= SCHED_ATTR_SIZE_VER0
;
4163 if (size
< SCHED_ATTR_SIZE_VER0
)
4167 * If we're handed a bigger struct than we know of,
4168 * ensure all the unknown bits are 0 - i.e. new
4169 * user-space does not rely on any kernel feature
4170 * extensions we dont know about yet.
4172 if (size
> sizeof(*attr
)) {
4173 unsigned char __user
*addr
;
4174 unsigned char __user
*end
;
4177 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4178 end
= (void __user
*)uattr
+ size
;
4180 for (; addr
< end
; addr
++) {
4181 ret
= get_user(val
, addr
);
4187 size
= sizeof(*attr
);
4190 ret
= copy_from_user(attr
, uattr
, size
);
4195 * XXX: do we want to be lenient like existing syscalls; or do we want
4196 * to be strict and return an error on out-of-bounds values?
4198 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4203 put_user(sizeof(*attr
), &uattr
->size
);
4208 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4209 * @pid: the pid in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 * Return: 0 on success. An error code otherwise.
4215 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4216 struct sched_param __user
*, param
)
4218 /* negative values for policy are not valid */
4222 return do_sched_setscheduler(pid
, policy
, param
);
4226 * sys_sched_setparam - set/change the RT priority of a thread
4227 * @pid: the pid in question.
4228 * @param: structure containing the new RT priority.
4230 * Return: 0 on success. An error code otherwise.
4232 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4234 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4238 * sys_sched_setattr - same as above, but with extended sched_attr
4239 * @pid: the pid in question.
4240 * @uattr: structure containing the extended parameters.
4241 * @flags: for future extension.
4243 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4244 unsigned int, flags
)
4246 struct sched_attr attr
;
4247 struct task_struct
*p
;
4250 if (!uattr
|| pid
< 0 || flags
)
4253 retval
= sched_copy_attr(uattr
, &attr
);
4257 if ((int)attr
.sched_policy
< 0)
4262 p
= find_process_by_pid(pid
);
4264 retval
= sched_setattr(p
, &attr
);
4271 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4272 * @pid: the pid in question.
4274 * Return: On success, the policy of the thread. Otherwise, a negative error
4277 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4279 struct task_struct
*p
;
4287 p
= find_process_by_pid(pid
);
4289 retval
= security_task_getscheduler(p
);
4292 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4299 * sys_sched_getparam - get the RT priority of a thread
4300 * @pid: the pid in question.
4301 * @param: structure containing the RT priority.
4303 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4306 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4308 struct sched_param lp
= { .sched_priority
= 0 };
4309 struct task_struct
*p
;
4312 if (!param
|| pid
< 0)
4316 p
= find_process_by_pid(pid
);
4321 retval
= security_task_getscheduler(p
);
4325 if (task_has_rt_policy(p
))
4326 lp
.sched_priority
= p
->rt_priority
;
4330 * This one might sleep, we cannot do it with a spinlock held ...
4332 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4341 static int sched_read_attr(struct sched_attr __user
*uattr
,
4342 struct sched_attr
*attr
,
4347 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4351 * If we're handed a smaller struct than we know of,
4352 * ensure all the unknown bits are 0 - i.e. old
4353 * user-space does not get uncomplete information.
4355 if (usize
< sizeof(*attr
)) {
4356 unsigned char *addr
;
4359 addr
= (void *)attr
+ usize
;
4360 end
= (void *)attr
+ sizeof(*attr
);
4362 for (; addr
< end
; addr
++) {
4370 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4378 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4379 * @pid: the pid in question.
4380 * @uattr: structure containing the extended parameters.
4381 * @size: sizeof(attr) for fwd/bwd comp.
4382 * @flags: for future extension.
4384 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4385 unsigned int, size
, unsigned int, flags
)
4387 struct sched_attr attr
= {
4388 .size
= sizeof(struct sched_attr
),
4390 struct task_struct
*p
;
4393 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4394 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4398 p
= find_process_by_pid(pid
);
4403 retval
= security_task_getscheduler(p
);
4407 attr
.sched_policy
= p
->policy
;
4408 if (p
->sched_reset_on_fork
)
4409 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4410 if (task_has_dl_policy(p
))
4411 __getparam_dl(p
, &attr
);
4412 else if (task_has_rt_policy(p
))
4413 attr
.sched_priority
= p
->rt_priority
;
4415 attr
.sched_nice
= task_nice(p
);
4419 retval
= sched_read_attr(uattr
, &attr
, size
);
4427 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4429 cpumask_var_t cpus_allowed
, new_mask
;
4430 struct task_struct
*p
;
4435 p
= find_process_by_pid(pid
);
4441 /* Prevent p going away */
4445 if (p
->flags
& PF_NO_SETAFFINITY
) {
4449 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4453 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4455 goto out_free_cpus_allowed
;
4458 if (!check_same_owner(p
)) {
4460 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4462 goto out_free_new_mask
;
4467 retval
= security_task_setscheduler(p
);
4469 goto out_free_new_mask
;
4472 cpuset_cpus_allowed(p
, cpus_allowed
);
4473 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4476 * Since bandwidth control happens on root_domain basis,
4477 * if admission test is enabled, we only admit -deadline
4478 * tasks allowed to run on all the CPUs in the task's
4482 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4484 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4487 goto out_free_new_mask
;
4493 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4496 cpuset_cpus_allowed(p
, cpus_allowed
);
4497 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4499 * We must have raced with a concurrent cpuset
4500 * update. Just reset the cpus_allowed to the
4501 * cpuset's cpus_allowed
4503 cpumask_copy(new_mask
, cpus_allowed
);
4508 free_cpumask_var(new_mask
);
4509 out_free_cpus_allowed
:
4510 free_cpumask_var(cpus_allowed
);
4516 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4517 struct cpumask
*new_mask
)
4519 if (len
< cpumask_size())
4520 cpumask_clear(new_mask
);
4521 else if (len
> cpumask_size())
4522 len
= cpumask_size();
4524 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4528 * sys_sched_setaffinity - set the cpu affinity of a process
4529 * @pid: pid of the process
4530 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4531 * @user_mask_ptr: user-space pointer to the new cpu mask
4533 * Return: 0 on success. An error code otherwise.
4535 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4536 unsigned long __user
*, user_mask_ptr
)
4538 cpumask_var_t new_mask
;
4541 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4544 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4546 retval
= sched_setaffinity(pid
, new_mask
);
4547 free_cpumask_var(new_mask
);
4551 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4553 struct task_struct
*p
;
4554 unsigned long flags
;
4560 p
= find_process_by_pid(pid
);
4564 retval
= security_task_getscheduler(p
);
4568 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4569 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4570 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4579 * sys_sched_getaffinity - get the cpu affinity of a process
4580 * @pid: pid of the process
4581 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4582 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4584 * Return: 0 on success. An error code otherwise.
4586 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4587 unsigned long __user
*, user_mask_ptr
)
4592 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4594 if (len
& (sizeof(unsigned long)-1))
4597 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4600 ret
= sched_getaffinity(pid
, mask
);
4602 size_t retlen
= min_t(size_t, len
, cpumask_size());
4604 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4609 free_cpumask_var(mask
);
4615 * sys_sched_yield - yield the current processor to other threads.
4617 * This function yields the current CPU to other tasks. If there are no
4618 * other threads running on this CPU then this function will return.
4622 SYSCALL_DEFINE0(sched_yield
)
4624 struct rq
*rq
= this_rq_lock();
4626 schedstat_inc(rq
, yld_count
);
4627 current
->sched_class
->yield_task(rq
);
4630 * Since we are going to call schedule() anyway, there's
4631 * no need to preempt or enable interrupts:
4633 __release(rq
->lock
);
4634 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4635 do_raw_spin_unlock(&rq
->lock
);
4636 sched_preempt_enable_no_resched();
4643 int __sched
_cond_resched(void)
4645 if (should_resched(0)) {
4646 preempt_schedule_common();
4651 EXPORT_SYMBOL(_cond_resched
);
4654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4655 * call schedule, and on return reacquire the lock.
4657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4658 * operations here to prevent schedule() from being called twice (once via
4659 * spin_unlock(), once by hand).
4661 int __cond_resched_lock(spinlock_t
*lock
)
4663 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4666 lockdep_assert_held(lock
);
4668 if (spin_needbreak(lock
) || resched
) {
4671 preempt_schedule_common();
4679 EXPORT_SYMBOL(__cond_resched_lock
);
4681 int __sched
__cond_resched_softirq(void)
4683 BUG_ON(!in_softirq());
4685 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4687 preempt_schedule_common();
4693 EXPORT_SYMBOL(__cond_resched_softirq
);
4696 * yield - yield the current processor to other threads.
4698 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4700 * The scheduler is at all times free to pick the calling task as the most
4701 * eligible task to run, if removing the yield() call from your code breaks
4702 * it, its already broken.
4704 * Typical broken usage is:
4709 * where one assumes that yield() will let 'the other' process run that will
4710 * make event true. If the current task is a SCHED_FIFO task that will never
4711 * happen. Never use yield() as a progress guarantee!!
4713 * If you want to use yield() to wait for something, use wait_event().
4714 * If you want to use yield() to be 'nice' for others, use cond_resched().
4715 * If you still want to use yield(), do not!
4717 void __sched
yield(void)
4719 set_current_state(TASK_RUNNING
);
4722 EXPORT_SYMBOL(yield
);
4725 * yield_to - yield the current processor to another thread in
4726 * your thread group, or accelerate that thread toward the
4727 * processor it's on.
4729 * @preempt: whether task preemption is allowed or not
4731 * It's the caller's job to ensure that the target task struct
4732 * can't go away on us before we can do any checks.
4735 * true (>0) if we indeed boosted the target task.
4736 * false (0) if we failed to boost the target.
4737 * -ESRCH if there's no task to yield to.
4739 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4741 struct task_struct
*curr
= current
;
4742 struct rq
*rq
, *p_rq
;
4743 unsigned long flags
;
4746 local_irq_save(flags
);
4752 * If we're the only runnable task on the rq and target rq also
4753 * has only one task, there's absolutely no point in yielding.
4755 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4760 double_rq_lock(rq
, p_rq
);
4761 if (task_rq(p
) != p_rq
) {
4762 double_rq_unlock(rq
, p_rq
);
4766 if (!curr
->sched_class
->yield_to_task
)
4769 if (curr
->sched_class
!= p
->sched_class
)
4772 if (task_running(p_rq
, p
) || p
->state
)
4775 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4777 schedstat_inc(rq
, yld_count
);
4779 * Make p's CPU reschedule; pick_next_entity takes care of
4782 if (preempt
&& rq
!= p_rq
)
4787 double_rq_unlock(rq
, p_rq
);
4789 local_irq_restore(flags
);
4796 EXPORT_SYMBOL_GPL(yield_to
);
4799 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4800 * that process accounting knows that this is a task in IO wait state.
4802 long __sched
io_schedule_timeout(long timeout
)
4804 int old_iowait
= current
->in_iowait
;
4808 current
->in_iowait
= 1;
4809 blk_schedule_flush_plug(current
);
4811 delayacct_blkio_start();
4813 atomic_inc(&rq
->nr_iowait
);
4814 ret
= schedule_timeout(timeout
);
4815 current
->in_iowait
= old_iowait
;
4816 atomic_dec(&rq
->nr_iowait
);
4817 delayacct_blkio_end();
4821 EXPORT_SYMBOL(io_schedule_timeout
);
4824 * sys_sched_get_priority_max - return maximum RT priority.
4825 * @policy: scheduling class.
4827 * Return: On success, this syscall returns the maximum
4828 * rt_priority that can be used by a given scheduling class.
4829 * On failure, a negative error code is returned.
4831 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4838 ret
= MAX_USER_RT_PRIO
-1;
4840 case SCHED_DEADLINE
:
4851 * sys_sched_get_priority_min - return minimum RT priority.
4852 * @policy: scheduling class.
4854 * Return: On success, this syscall returns the minimum
4855 * rt_priority that can be used by a given scheduling class.
4856 * On failure, a negative error code is returned.
4858 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4867 case SCHED_DEADLINE
:
4877 * sys_sched_rr_get_interval - return the default timeslice of a process.
4878 * @pid: pid of the process.
4879 * @interval: userspace pointer to the timeslice value.
4881 * this syscall writes the default timeslice value of a given process
4882 * into the user-space timespec buffer. A value of '0' means infinity.
4884 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4887 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4888 struct timespec __user
*, interval
)
4890 struct task_struct
*p
;
4891 unsigned int time_slice
;
4892 unsigned long flags
;
4902 p
= find_process_by_pid(pid
);
4906 retval
= security_task_getscheduler(p
);
4910 rq
= task_rq_lock(p
, &flags
);
4912 if (p
->sched_class
->get_rr_interval
)
4913 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4914 task_rq_unlock(rq
, p
, &flags
);
4917 jiffies_to_timespec(time_slice
, &t
);
4918 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4926 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4928 void sched_show_task(struct task_struct
*p
)
4930 unsigned long free
= 0;
4932 unsigned long state
= p
->state
;
4935 state
= __ffs(state
) + 1;
4936 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4937 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4938 #if BITS_PER_LONG == 32
4939 if (state
== TASK_RUNNING
)
4940 printk(KERN_CONT
" running ");
4942 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4944 if (state
== TASK_RUNNING
)
4945 printk(KERN_CONT
" running task ");
4947 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4949 #ifdef CONFIG_DEBUG_STACK_USAGE
4950 free
= stack_not_used(p
);
4955 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4957 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4958 task_pid_nr(p
), ppid
,
4959 (unsigned long)task_thread_info(p
)->flags
);
4961 print_worker_info(KERN_INFO
, p
);
4962 show_stack(p
, NULL
);
4965 void show_state_filter(unsigned long state_filter
)
4967 struct task_struct
*g
, *p
;
4969 #if BITS_PER_LONG == 32
4971 " task PC stack pid father\n");
4974 " task PC stack pid father\n");
4977 for_each_process_thread(g
, p
) {
4979 * reset the NMI-timeout, listing all files on a slow
4980 * console might take a lot of time:
4981 * Also, reset softlockup watchdogs on all CPUs, because
4982 * another CPU might be blocked waiting for us to process
4985 touch_nmi_watchdog();
4986 touch_all_softlockup_watchdogs();
4987 if (!state_filter
|| (p
->state
& state_filter
))
4991 #ifdef CONFIG_SCHED_DEBUG
4992 sysrq_sched_debug_show();
4996 * Only show locks if all tasks are dumped:
4999 debug_show_all_locks();
5002 void init_idle_bootup_task(struct task_struct
*idle
)
5004 idle
->sched_class
= &idle_sched_class
;
5008 * init_idle - set up an idle thread for a given CPU
5009 * @idle: task in question
5010 * @cpu: cpu the idle task belongs to
5012 * NOTE: this function does not set the idle thread's NEED_RESCHED
5013 * flag, to make booting more robust.
5015 void init_idle(struct task_struct
*idle
, int cpu
)
5017 struct rq
*rq
= cpu_rq(cpu
);
5018 unsigned long flags
;
5020 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5021 raw_spin_lock(&rq
->lock
);
5023 __sched_fork(0, idle
);
5024 idle
->state
= TASK_RUNNING
;
5025 idle
->se
.exec_start
= sched_clock();
5029 * Its possible that init_idle() gets called multiple times on a task,
5030 * in that case do_set_cpus_allowed() will not do the right thing.
5032 * And since this is boot we can forgo the serialization.
5034 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5037 * We're having a chicken and egg problem, even though we are
5038 * holding rq->lock, the cpu isn't yet set to this cpu so the
5039 * lockdep check in task_group() will fail.
5041 * Similar case to sched_fork(). / Alternatively we could
5042 * use task_rq_lock() here and obtain the other rq->lock.
5047 __set_task_cpu(idle
, cpu
);
5050 rq
->curr
= rq
->idle
= idle
;
5051 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5055 raw_spin_unlock(&rq
->lock
);
5056 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5058 /* Set the preempt count _outside_ the spinlocks! */
5059 init_idle_preempt_count(idle
, cpu
);
5062 * The idle tasks have their own, simple scheduling class:
5064 idle
->sched_class
= &idle_sched_class
;
5065 ftrace_graph_init_idle_task(idle
, cpu
);
5066 vtime_init_idle(idle
, cpu
);
5068 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5072 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5073 const struct cpumask
*trial
)
5075 int ret
= 1, trial_cpus
;
5076 struct dl_bw
*cur_dl_b
;
5077 unsigned long flags
;
5079 if (!cpumask_weight(cur
))
5082 rcu_read_lock_sched();
5083 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
5084 trial_cpus
= cpumask_weight(trial
);
5086 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
5087 if (cur_dl_b
->bw
!= -1 &&
5088 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
5090 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
5091 rcu_read_unlock_sched();
5096 int task_can_attach(struct task_struct
*p
,
5097 const struct cpumask
*cs_cpus_allowed
)
5102 * Kthreads which disallow setaffinity shouldn't be moved
5103 * to a new cpuset; we don't want to change their cpu
5104 * affinity and isolating such threads by their set of
5105 * allowed nodes is unnecessary. Thus, cpusets are not
5106 * applicable for such threads. This prevents checking for
5107 * success of set_cpus_allowed_ptr() on all attached tasks
5108 * before cpus_allowed may be changed.
5110 if (p
->flags
& PF_NO_SETAFFINITY
) {
5116 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5118 unsigned int dest_cpu
= cpumask_any_and(cpu_active_mask
,
5123 unsigned long flags
;
5125 rcu_read_lock_sched();
5126 dl_b
= dl_bw_of(dest_cpu
);
5127 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5128 cpus
= dl_bw_cpus(dest_cpu
);
5129 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
5134 * We reserve space for this task in the destination
5135 * root_domain, as we can't fail after this point.
5136 * We will free resources in the source root_domain
5137 * later on (see set_cpus_allowed_dl()).
5139 __dl_add(dl_b
, p
->dl
.dl_bw
);
5141 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5142 rcu_read_unlock_sched();
5152 #ifdef CONFIG_NUMA_BALANCING
5153 /* Migrate current task p to target_cpu */
5154 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5156 struct migration_arg arg
= { p
, target_cpu
};
5157 int curr_cpu
= task_cpu(p
);
5159 if (curr_cpu
== target_cpu
)
5162 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
5165 /* TODO: This is not properly updating schedstats */
5167 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5168 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5172 * Requeue a task on a given node and accurately track the number of NUMA
5173 * tasks on the runqueues
5175 void sched_setnuma(struct task_struct
*p
, int nid
)
5178 unsigned long flags
;
5179 bool queued
, running
;
5181 rq
= task_rq_lock(p
, &flags
);
5182 queued
= task_on_rq_queued(p
);
5183 running
= task_current(rq
, p
);
5186 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5188 put_prev_task(rq
, p
);
5190 p
->numa_preferred_nid
= nid
;
5193 p
->sched_class
->set_curr_task(rq
);
5195 enqueue_task(rq
, p
, ENQUEUE_RESTORE
);
5196 task_rq_unlock(rq
, p
, &flags
);
5198 #endif /* CONFIG_NUMA_BALANCING */
5200 #ifdef CONFIG_HOTPLUG_CPU
5202 * Ensures that the idle task is using init_mm right before its cpu goes
5205 void idle_task_exit(void)
5207 struct mm_struct
*mm
= current
->active_mm
;
5209 BUG_ON(cpu_online(smp_processor_id()));
5211 if (mm
!= &init_mm
) {
5212 switch_mm(mm
, &init_mm
, current
);
5213 finish_arch_post_lock_switch();
5219 * Since this CPU is going 'away' for a while, fold any nr_active delta
5220 * we might have. Assumes we're called after migrate_tasks() so that the
5221 * nr_active count is stable.
5223 * Also see the comment "Global load-average calculations".
5225 static void calc_load_migrate(struct rq
*rq
)
5227 long delta
= calc_load_fold_active(rq
);
5229 atomic_long_add(delta
, &calc_load_tasks
);
5232 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5236 static const struct sched_class fake_sched_class
= {
5237 .put_prev_task
= put_prev_task_fake
,
5240 static struct task_struct fake_task
= {
5242 * Avoid pull_{rt,dl}_task()
5244 .prio
= MAX_PRIO
+ 1,
5245 .sched_class
= &fake_sched_class
,
5249 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5250 * try_to_wake_up()->select_task_rq().
5252 * Called with rq->lock held even though we'er in stop_machine() and
5253 * there's no concurrency possible, we hold the required locks anyway
5254 * because of lock validation efforts.
5256 static void migrate_tasks(struct rq
*dead_rq
)
5258 struct rq
*rq
= dead_rq
;
5259 struct task_struct
*next
, *stop
= rq
->stop
;
5263 * Fudge the rq selection such that the below task selection loop
5264 * doesn't get stuck on the currently eligible stop task.
5266 * We're currently inside stop_machine() and the rq is either stuck
5267 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5268 * either way we should never end up calling schedule() until we're
5274 * put_prev_task() and pick_next_task() sched
5275 * class method both need to have an up-to-date
5276 * value of rq->clock[_task]
5278 update_rq_clock(rq
);
5282 * There's this thread running, bail when that's the only
5285 if (rq
->nr_running
== 1)
5289 * pick_next_task assumes pinned rq->lock.
5291 lockdep_pin_lock(&rq
->lock
);
5292 next
= pick_next_task(rq
, &fake_task
);
5294 next
->sched_class
->put_prev_task(rq
, next
);
5297 * Rules for changing task_struct::cpus_allowed are holding
5298 * both pi_lock and rq->lock, such that holding either
5299 * stabilizes the mask.
5301 * Drop rq->lock is not quite as disastrous as it usually is
5302 * because !cpu_active at this point, which means load-balance
5303 * will not interfere. Also, stop-machine.
5305 lockdep_unpin_lock(&rq
->lock
);
5306 raw_spin_unlock(&rq
->lock
);
5307 raw_spin_lock(&next
->pi_lock
);
5308 raw_spin_lock(&rq
->lock
);
5311 * Since we're inside stop-machine, _nothing_ should have
5312 * changed the task, WARN if weird stuff happened, because in
5313 * that case the above rq->lock drop is a fail too.
5315 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5316 raw_spin_unlock(&next
->pi_lock
);
5320 /* Find suitable destination for @next, with force if needed. */
5321 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5323 rq
= __migrate_task(rq
, next
, dest_cpu
);
5324 if (rq
!= dead_rq
) {
5325 raw_spin_unlock(&rq
->lock
);
5327 raw_spin_lock(&rq
->lock
);
5329 raw_spin_unlock(&next
->pi_lock
);
5334 #endif /* CONFIG_HOTPLUG_CPU */
5336 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5338 static struct ctl_table sd_ctl_dir
[] = {
5340 .procname
= "sched_domain",
5346 static struct ctl_table sd_ctl_root
[] = {
5348 .procname
= "kernel",
5350 .child
= sd_ctl_dir
,
5355 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5357 struct ctl_table
*entry
=
5358 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5363 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5365 struct ctl_table
*entry
;
5368 * In the intermediate directories, both the child directory and
5369 * procname are dynamically allocated and could fail but the mode
5370 * will always be set. In the lowest directory the names are
5371 * static strings and all have proc handlers.
5373 for (entry
= *tablep
; entry
->mode
; entry
++) {
5375 sd_free_ctl_entry(&entry
->child
);
5376 if (entry
->proc_handler
== NULL
)
5377 kfree(entry
->procname
);
5384 static int min_load_idx
= 0;
5385 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
5388 set_table_entry(struct ctl_table
*entry
,
5389 const char *procname
, void *data
, int maxlen
,
5390 umode_t mode
, proc_handler
*proc_handler
,
5393 entry
->procname
= procname
;
5395 entry
->maxlen
= maxlen
;
5397 entry
->proc_handler
= proc_handler
;
5400 entry
->extra1
= &min_load_idx
;
5401 entry
->extra2
= &max_load_idx
;
5405 static struct ctl_table
*
5406 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5408 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5413 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5414 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5415 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5416 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5417 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5418 sizeof(int), 0644, proc_dointvec_minmax
, true);
5419 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5420 sizeof(int), 0644, proc_dointvec_minmax
, true);
5421 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5422 sizeof(int), 0644, proc_dointvec_minmax
, true);
5423 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5424 sizeof(int), 0644, proc_dointvec_minmax
, true);
5425 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5426 sizeof(int), 0644, proc_dointvec_minmax
, true);
5427 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5428 sizeof(int), 0644, proc_dointvec_minmax
, false);
5429 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5430 sizeof(int), 0644, proc_dointvec_minmax
, false);
5431 set_table_entry(&table
[9], "cache_nice_tries",
5432 &sd
->cache_nice_tries
,
5433 sizeof(int), 0644, proc_dointvec_minmax
, false);
5434 set_table_entry(&table
[10], "flags", &sd
->flags
,
5435 sizeof(int), 0644, proc_dointvec_minmax
, false);
5436 set_table_entry(&table
[11], "max_newidle_lb_cost",
5437 &sd
->max_newidle_lb_cost
,
5438 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5439 set_table_entry(&table
[12], "name", sd
->name
,
5440 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
5441 /* &table[13] is terminator */
5446 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5448 struct ctl_table
*entry
, *table
;
5449 struct sched_domain
*sd
;
5450 int domain_num
= 0, i
;
5453 for_each_domain(cpu
, sd
)
5455 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5460 for_each_domain(cpu
, sd
) {
5461 snprintf(buf
, 32, "domain%d", i
);
5462 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5464 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5471 static struct ctl_table_header
*sd_sysctl_header
;
5472 static void register_sched_domain_sysctl(void)
5474 int i
, cpu_num
= num_possible_cpus();
5475 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5478 WARN_ON(sd_ctl_dir
[0].child
);
5479 sd_ctl_dir
[0].child
= entry
;
5484 for_each_possible_cpu(i
) {
5485 snprintf(buf
, 32, "cpu%d", i
);
5486 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5488 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5492 WARN_ON(sd_sysctl_header
);
5493 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5496 /* may be called multiple times per register */
5497 static void unregister_sched_domain_sysctl(void)
5499 unregister_sysctl_table(sd_sysctl_header
);
5500 sd_sysctl_header
= NULL
;
5501 if (sd_ctl_dir
[0].child
)
5502 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5505 static void register_sched_domain_sysctl(void)
5508 static void unregister_sched_domain_sysctl(void)
5511 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5513 static void set_rq_online(struct rq
*rq
)
5516 const struct sched_class
*class;
5518 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5521 for_each_class(class) {
5522 if (class->rq_online
)
5523 class->rq_online(rq
);
5528 static void set_rq_offline(struct rq
*rq
)
5531 const struct sched_class
*class;
5533 for_each_class(class) {
5534 if (class->rq_offline
)
5535 class->rq_offline(rq
);
5538 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5544 * migration_call - callback that gets triggered when a CPU is added.
5545 * Here we can start up the necessary migration thread for the new CPU.
5548 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5550 int cpu
= (long)hcpu
;
5551 unsigned long flags
;
5552 struct rq
*rq
= cpu_rq(cpu
);
5554 switch (action
& ~CPU_TASKS_FROZEN
) {
5556 case CPU_UP_PREPARE
:
5557 rq
->calc_load_update
= calc_load_update
;
5561 /* Update our root-domain */
5562 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5564 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5568 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5571 #ifdef CONFIG_HOTPLUG_CPU
5573 sched_ttwu_pending();
5574 /* Update our root-domain */
5575 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5577 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5581 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5582 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5586 calc_load_migrate(rq
);
5591 update_max_interval();
5597 * Register at high priority so that task migration (migrate_all_tasks)
5598 * happens before everything else. This has to be lower priority than
5599 * the notifier in the perf_event subsystem, though.
5601 static struct notifier_block migration_notifier
= {
5602 .notifier_call
= migration_call
,
5603 .priority
= CPU_PRI_MIGRATION
,
5606 static void set_cpu_rq_start_time(void)
5608 int cpu
= smp_processor_id();
5609 struct rq
*rq
= cpu_rq(cpu
);
5610 rq
->age_stamp
= sched_clock_cpu(cpu
);
5613 static int sched_cpu_active(struct notifier_block
*nfb
,
5614 unsigned long action
, void *hcpu
)
5616 int cpu
= (long)hcpu
;
5618 switch (action
& ~CPU_TASKS_FROZEN
) {
5620 set_cpu_rq_start_time();
5625 * At this point a starting CPU has marked itself as online via
5626 * set_cpu_online(). But it might not yet have marked itself
5627 * as active, which is essential from here on.
5629 set_cpu_active(cpu
, true);
5630 stop_machine_unpark(cpu
);
5633 case CPU_DOWN_FAILED
:
5634 set_cpu_active(cpu
, true);
5642 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5643 unsigned long action
, void *hcpu
)
5645 switch (action
& ~CPU_TASKS_FROZEN
) {
5646 case CPU_DOWN_PREPARE
:
5647 set_cpu_active((long)hcpu
, false);
5654 static int __init
migration_init(void)
5656 void *cpu
= (void *)(long)smp_processor_id();
5659 /* Initialize migration for the boot CPU */
5660 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5661 BUG_ON(err
== NOTIFY_BAD
);
5662 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5663 register_cpu_notifier(&migration_notifier
);
5665 /* Register cpu active notifiers */
5666 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5667 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5671 early_initcall(migration_init
);
5673 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5675 #ifdef CONFIG_SCHED_DEBUG
5677 static __read_mostly
int sched_debug_enabled
;
5679 static int __init
sched_debug_setup(char *str
)
5681 sched_debug_enabled
= 1;
5685 early_param("sched_debug", sched_debug_setup
);
5687 static inline bool sched_debug(void)
5689 return sched_debug_enabled
;
5692 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5693 struct cpumask
*groupmask
)
5695 struct sched_group
*group
= sd
->groups
;
5697 cpumask_clear(groupmask
);
5699 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5701 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5702 printk("does not load-balance\n");
5704 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5709 printk(KERN_CONT
"span %*pbl level %s\n",
5710 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
5712 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5713 printk(KERN_ERR
"ERROR: domain->span does not contain "
5716 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5717 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5721 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5725 printk(KERN_ERR
"ERROR: group is NULL\n");
5729 if (!cpumask_weight(sched_group_cpus(group
))) {
5730 printk(KERN_CONT
"\n");
5731 printk(KERN_ERR
"ERROR: empty group\n");
5735 if (!(sd
->flags
& SD_OVERLAP
) &&
5736 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5737 printk(KERN_CONT
"\n");
5738 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5742 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5744 printk(KERN_CONT
" %*pbl",
5745 cpumask_pr_args(sched_group_cpus(group
)));
5746 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5747 printk(KERN_CONT
" (cpu_capacity = %d)",
5748 group
->sgc
->capacity
);
5751 group
= group
->next
;
5752 } while (group
!= sd
->groups
);
5753 printk(KERN_CONT
"\n");
5755 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5756 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5759 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5760 printk(KERN_ERR
"ERROR: parent span is not a superset "
5761 "of domain->span\n");
5765 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5769 if (!sched_debug_enabled
)
5773 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5777 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5780 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5788 #else /* !CONFIG_SCHED_DEBUG */
5789 # define sched_domain_debug(sd, cpu) do { } while (0)
5790 static inline bool sched_debug(void)
5794 #endif /* CONFIG_SCHED_DEBUG */
5796 static int sd_degenerate(struct sched_domain
*sd
)
5798 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5801 /* Following flags need at least 2 groups */
5802 if (sd
->flags
& (SD_LOAD_BALANCE
|
5803 SD_BALANCE_NEWIDLE
|
5806 SD_SHARE_CPUCAPACITY
|
5807 SD_SHARE_PKG_RESOURCES
|
5808 SD_SHARE_POWERDOMAIN
)) {
5809 if (sd
->groups
!= sd
->groups
->next
)
5813 /* Following flags don't use groups */
5814 if (sd
->flags
& (SD_WAKE_AFFINE
))
5821 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5823 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5825 if (sd_degenerate(parent
))
5828 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5831 /* Flags needing groups don't count if only 1 group in parent */
5832 if (parent
->groups
== parent
->groups
->next
) {
5833 pflags
&= ~(SD_LOAD_BALANCE
|
5834 SD_BALANCE_NEWIDLE
|
5837 SD_SHARE_CPUCAPACITY
|
5838 SD_SHARE_PKG_RESOURCES
|
5840 SD_SHARE_POWERDOMAIN
);
5841 if (nr_node_ids
== 1)
5842 pflags
&= ~SD_SERIALIZE
;
5844 if (~cflags
& pflags
)
5850 static void free_rootdomain(struct rcu_head
*rcu
)
5852 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5854 cpupri_cleanup(&rd
->cpupri
);
5855 cpudl_cleanup(&rd
->cpudl
);
5856 free_cpumask_var(rd
->dlo_mask
);
5857 free_cpumask_var(rd
->rto_mask
);
5858 free_cpumask_var(rd
->online
);
5859 free_cpumask_var(rd
->span
);
5863 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5865 struct root_domain
*old_rd
= NULL
;
5866 unsigned long flags
;
5868 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5873 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5876 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5879 * If we dont want to free the old_rd yet then
5880 * set old_rd to NULL to skip the freeing later
5883 if (!atomic_dec_and_test(&old_rd
->refcount
))
5887 atomic_inc(&rd
->refcount
);
5890 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5891 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5894 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5897 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5900 void sched_get_rd(struct root_domain
*rd
)
5902 atomic_inc(&rd
->refcount
);
5905 void sched_put_rd(struct root_domain
*rd
)
5907 if (!atomic_dec_and_test(&rd
->refcount
))
5910 call_rcu_sched(&rd
->rcu
, free_rootdomain
);
5913 static int init_rootdomain(struct root_domain
*rd
)
5915 memset(rd
, 0, sizeof(*rd
));
5917 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5919 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5921 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5923 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5926 #ifdef HAVE_RT_PUSH_IPI
5928 raw_spin_lock_init(&rd
->rto_lock
);
5929 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
5932 init_dl_bw(&rd
->dl_bw
);
5933 if (cpudl_init(&rd
->cpudl
) != 0)
5936 if (cpupri_init(&rd
->cpupri
) != 0)
5941 free_cpumask_var(rd
->rto_mask
);
5943 free_cpumask_var(rd
->dlo_mask
);
5945 free_cpumask_var(rd
->online
);
5947 free_cpumask_var(rd
->span
);
5953 * By default the system creates a single root-domain with all cpus as
5954 * members (mimicking the global state we have today).
5956 struct root_domain def_root_domain
;
5958 static void init_defrootdomain(void)
5960 init_rootdomain(&def_root_domain
);
5962 atomic_set(&def_root_domain
.refcount
, 1);
5965 static struct root_domain
*alloc_rootdomain(void)
5967 struct root_domain
*rd
;
5969 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5973 if (init_rootdomain(rd
) != 0) {
5981 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5983 struct sched_group
*tmp
, *first
;
5992 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5997 } while (sg
!= first
);
6000 static void free_sched_domain(struct rcu_head
*rcu
)
6002 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6005 * If its an overlapping domain it has private groups, iterate and
6008 if (sd
->flags
& SD_OVERLAP
) {
6009 free_sched_groups(sd
->groups
, 1);
6010 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
6011 kfree(sd
->groups
->sgc
);
6017 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6019 call_rcu(&sd
->rcu
, free_sched_domain
);
6022 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6024 for (; sd
; sd
= sd
->parent
)
6025 destroy_sched_domain(sd
, cpu
);
6029 * Keep a special pointer to the highest sched_domain that has
6030 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6031 * allows us to avoid some pointer chasing select_idle_sibling().
6033 * Also keep a unique ID per domain (we use the first cpu number in
6034 * the cpumask of the domain), this allows us to quickly tell if
6035 * two cpus are in the same cache domain, see cpus_share_cache().
6037 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
6038 DEFINE_PER_CPU(int, sd_llc_size
);
6039 DEFINE_PER_CPU(int, sd_llc_id
);
6040 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
6041 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
6042 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
6044 static void update_top_cache_domain(int cpu
)
6046 struct sched_domain
*sd
;
6047 struct sched_domain
*busy_sd
= NULL
;
6051 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
6053 id
= cpumask_first(sched_domain_span(sd
));
6054 size
= cpumask_weight(sched_domain_span(sd
));
6055 busy_sd
= sd
->parent
; /* sd_busy */
6057 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
6059 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
6060 per_cpu(sd_llc_size
, cpu
) = size
;
6061 per_cpu(sd_llc_id
, cpu
) = id
;
6063 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
6064 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
6066 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
6067 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
6071 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6072 * hold the hotplug lock.
6075 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6077 struct rq
*rq
= cpu_rq(cpu
);
6078 struct sched_domain
*tmp
;
6080 /* Remove the sched domains which do not contribute to scheduling. */
6081 for (tmp
= sd
; tmp
; ) {
6082 struct sched_domain
*parent
= tmp
->parent
;
6086 if (sd_parent_degenerate(tmp
, parent
)) {
6087 tmp
->parent
= parent
->parent
;
6089 parent
->parent
->child
= tmp
;
6091 * Transfer SD_PREFER_SIBLING down in case of a
6092 * degenerate parent; the spans match for this
6093 * so the property transfers.
6095 if (parent
->flags
& SD_PREFER_SIBLING
)
6096 tmp
->flags
|= SD_PREFER_SIBLING
;
6097 destroy_sched_domain(parent
, cpu
);
6102 if (sd
&& sd_degenerate(sd
)) {
6105 destroy_sched_domain(tmp
, cpu
);
6110 sched_domain_debug(sd
, cpu
);
6112 rq_attach_root(rq
, rd
);
6114 rcu_assign_pointer(rq
->sd
, sd
);
6115 destroy_sched_domains(tmp
, cpu
);
6117 update_top_cache_domain(cpu
);
6120 /* Setup the mask of cpus configured for isolated domains */
6121 static int __init
isolated_cpu_setup(char *str
)
6123 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6124 cpulist_parse(str
, cpu_isolated_map
);
6128 __setup("isolcpus=", isolated_cpu_setup
);
6131 struct sched_domain
** __percpu sd
;
6132 struct root_domain
*rd
;
6143 * Build an iteration mask that can exclude certain CPUs from the upwards
6146 * Only CPUs that can arrive at this group should be considered to continue
6149 * Asymmetric node setups can result in situations where the domain tree is of
6150 * unequal depth, make sure to skip domains that already cover the entire
6153 * In that case build_sched_domains() will have terminated the iteration early
6154 * and our sibling sd spans will be empty. Domains should always include the
6155 * cpu they're built on, so check that.
6158 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
6160 const struct cpumask
*sg_span
= sched_group_cpus(sg
);
6161 struct sd_data
*sdd
= sd
->private;
6162 struct sched_domain
*sibling
;
6165 for_each_cpu(i
, sg_span
) {
6166 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
6169 * Can happen in the asymmetric case, where these siblings are
6170 * unused. The mask will not be empty because those CPUs that
6171 * do have the top domain _should_ span the domain.
6173 if (!sibling
->child
)
6176 /* If we would not end up here, we can't continue from here */
6177 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
6180 cpumask_set_cpu(i
, sched_group_mask(sg
));
6183 /* We must not have empty masks here */
6184 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg
)));
6188 * Return the canonical balance cpu for this group, this is the first cpu
6189 * of this group that's also in the iteration mask.
6191 int group_balance_cpu(struct sched_group
*sg
)
6193 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
6197 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
6199 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
6200 const struct cpumask
*span
= sched_domain_span(sd
);
6201 struct cpumask
*covered
= sched_domains_tmpmask
;
6202 struct sd_data
*sdd
= sd
->private;
6203 struct sched_domain
*sibling
;
6206 cpumask_clear(covered
);
6208 for_each_cpu(i
, span
) {
6209 struct cpumask
*sg_span
;
6211 if (cpumask_test_cpu(i
, covered
))
6214 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
6216 /* See the comment near build_group_mask(). */
6217 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
6220 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6221 GFP_KERNEL
, cpu_to_node(cpu
));
6226 sg_span
= sched_group_cpus(sg
);
6228 cpumask_copy(sg_span
, sched_domain_span(sibling
->child
));
6230 cpumask_set_cpu(i
, sg_span
);
6232 cpumask_or(covered
, covered
, sg_span
);
6234 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
6235 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
6236 build_group_mask(sd
, sg
);
6239 * Initialize sgc->capacity such that even if we mess up the
6240 * domains and no possible iteration will get us here, we won't
6243 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
6246 * Make sure the first group of this domain contains the
6247 * canonical balance cpu. Otherwise the sched_domain iteration
6248 * breaks. See update_sg_lb_stats().
6250 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
6251 group_balance_cpu(sg
) == cpu
)
6261 sd
->groups
= groups
;
6266 free_sched_groups(first
, 0);
6271 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6273 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6274 struct sched_domain
*child
= sd
->child
;
6277 cpu
= cpumask_first(sched_domain_span(child
));
6280 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6281 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
6282 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
6289 * build_sched_groups will build a circular linked list of the groups
6290 * covered by the given span, and will set each group's ->cpumask correctly,
6291 * and ->cpu_capacity to 0.
6293 * Assumes the sched_domain tree is fully constructed
6296 build_sched_groups(struct sched_domain
*sd
, int cpu
)
6298 struct sched_group
*first
= NULL
, *last
= NULL
;
6299 struct sd_data
*sdd
= sd
->private;
6300 const struct cpumask
*span
= sched_domain_span(sd
);
6301 struct cpumask
*covered
;
6304 get_group(cpu
, sdd
, &sd
->groups
);
6305 atomic_inc(&sd
->groups
->ref
);
6307 if (cpu
!= cpumask_first(span
))
6310 lockdep_assert_held(&sched_domains_mutex
);
6311 covered
= sched_domains_tmpmask
;
6313 cpumask_clear(covered
);
6315 for_each_cpu(i
, span
) {
6316 struct sched_group
*sg
;
6319 if (cpumask_test_cpu(i
, covered
))
6322 group
= get_group(i
, sdd
, &sg
);
6323 cpumask_setall(sched_group_mask(sg
));
6325 for_each_cpu(j
, span
) {
6326 if (get_group(j
, sdd
, NULL
) != group
)
6329 cpumask_set_cpu(j
, covered
);
6330 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6345 * Initialize sched groups cpu_capacity.
6347 * cpu_capacity indicates the capacity of sched group, which is used while
6348 * distributing the load between different sched groups in a sched domain.
6349 * Typically cpu_capacity for all the groups in a sched domain will be same
6350 * unless there are asymmetries in the topology. If there are asymmetries,
6351 * group having more cpu_capacity will pickup more load compared to the
6352 * group having less cpu_capacity.
6354 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
6356 struct sched_group
*sg
= sd
->groups
;
6361 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6363 } while (sg
!= sd
->groups
);
6365 if (cpu
!= group_balance_cpu(sg
))
6368 update_group_capacity(sd
, cpu
);
6369 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
6373 * Initializers for schedule domains
6374 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6377 static int default_relax_domain_level
= -1;
6378 int sched_domain_level_max
;
6380 static int __init
setup_relax_domain_level(char *str
)
6382 if (kstrtoint(str
, 0, &default_relax_domain_level
))
6383 pr_warn("Unable to set relax_domain_level\n");
6387 __setup("relax_domain_level=", setup_relax_domain_level
);
6389 static void set_domain_attribute(struct sched_domain
*sd
,
6390 struct sched_domain_attr
*attr
)
6394 if (!attr
|| attr
->relax_domain_level
< 0) {
6395 if (default_relax_domain_level
< 0)
6398 request
= default_relax_domain_level
;
6400 request
= attr
->relax_domain_level
;
6401 if (request
< sd
->level
) {
6402 /* turn off idle balance on this domain */
6403 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6405 /* turn on idle balance on this domain */
6406 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6410 static void __sdt_free(const struct cpumask
*cpu_map
);
6411 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6413 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6414 const struct cpumask
*cpu_map
)
6418 if (!atomic_read(&d
->rd
->refcount
))
6419 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6421 free_percpu(d
->sd
); /* fall through */
6423 __sdt_free(cpu_map
); /* fall through */
6429 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6430 const struct cpumask
*cpu_map
)
6432 memset(d
, 0, sizeof(*d
));
6434 if (__sdt_alloc(cpu_map
))
6435 return sa_sd_storage
;
6436 d
->sd
= alloc_percpu(struct sched_domain
*);
6438 return sa_sd_storage
;
6439 d
->rd
= alloc_rootdomain();
6442 return sa_rootdomain
;
6446 * NULL the sd_data elements we've used to build the sched_domain and
6447 * sched_group structure so that the subsequent __free_domain_allocs()
6448 * will not free the data we're using.
6450 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6452 struct sd_data
*sdd
= sd
->private;
6454 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6455 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6457 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6458 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6460 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
6461 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
6465 static int sched_domains_numa_levels
;
6466 enum numa_topology_type sched_numa_topology_type
;
6467 static int *sched_domains_numa_distance
;
6468 int sched_max_numa_distance
;
6469 static struct cpumask
***sched_domains_numa_masks
;
6470 static int sched_domains_curr_level
;
6474 * SD_flags allowed in topology descriptions.
6476 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6477 * SD_SHARE_PKG_RESOURCES - describes shared caches
6478 * SD_NUMA - describes NUMA topologies
6479 * SD_SHARE_POWERDOMAIN - describes shared power domain
6482 * SD_ASYM_PACKING - describes SMT quirks
6484 #define TOPOLOGY_SD_FLAGS \
6485 (SD_SHARE_CPUCAPACITY | \
6486 SD_SHARE_PKG_RESOURCES | \
6489 SD_SHARE_POWERDOMAIN)
6491 static struct sched_domain
*
6492 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6494 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6495 int sd_weight
, sd_flags
= 0;
6499 * Ugly hack to pass state to sd_numa_mask()...
6501 sched_domains_curr_level
= tl
->numa_level
;
6504 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6507 sd_flags
= (*tl
->sd_flags
)();
6508 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6509 "wrong sd_flags in topology description\n"))
6510 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6512 *sd
= (struct sched_domain
){
6513 .min_interval
= sd_weight
,
6514 .max_interval
= 2*sd_weight
,
6516 .imbalance_pct
= 125,
6518 .cache_nice_tries
= 0,
6525 .flags
= 1*SD_LOAD_BALANCE
6526 | 1*SD_BALANCE_NEWIDLE
6531 | 0*SD_SHARE_CPUCAPACITY
6532 | 0*SD_SHARE_PKG_RESOURCES
6534 | 0*SD_PREFER_SIBLING
6539 .last_balance
= jiffies
,
6540 .balance_interval
= sd_weight
,
6542 .max_newidle_lb_cost
= 0,
6543 .next_decay_max_lb_cost
= jiffies
,
6544 #ifdef CONFIG_SCHED_DEBUG
6550 * Convert topological properties into behaviour.
6553 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6554 sd
->flags
|= SD_PREFER_SIBLING
;
6555 sd
->imbalance_pct
= 110;
6556 sd
->smt_gain
= 1178; /* ~15% */
6558 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6559 sd
->imbalance_pct
= 117;
6560 sd
->cache_nice_tries
= 1;
6564 } else if (sd
->flags
& SD_NUMA
) {
6565 sd
->cache_nice_tries
= 2;
6569 sd
->flags
|= SD_SERIALIZE
;
6570 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6571 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6578 sd
->flags
|= SD_PREFER_SIBLING
;
6579 sd
->cache_nice_tries
= 1;
6584 sd
->private = &tl
->data
;
6590 * Topology list, bottom-up.
6592 static struct sched_domain_topology_level default_topology
[] = {
6593 #ifdef CONFIG_SCHED_SMT
6594 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6596 #ifdef CONFIG_SCHED_MC
6597 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6599 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6603 static struct sched_domain_topology_level
*sched_domain_topology
=
6606 #define for_each_sd_topology(tl) \
6607 for (tl = sched_domain_topology; tl->mask; tl++)
6609 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6611 sched_domain_topology
= tl
;
6616 static const struct cpumask
*sd_numa_mask(int cpu
)
6618 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6621 static void sched_numa_warn(const char *str
)
6623 static int done
= false;
6631 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6633 for (i
= 0; i
< nr_node_ids
; i
++) {
6634 printk(KERN_WARNING
" ");
6635 for (j
= 0; j
< nr_node_ids
; j
++)
6636 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6637 printk(KERN_CONT
"\n");
6639 printk(KERN_WARNING
"\n");
6642 bool find_numa_distance(int distance
)
6646 if (distance
== node_distance(0, 0))
6649 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6650 if (sched_domains_numa_distance
[i
] == distance
)
6658 * A system can have three types of NUMA topology:
6659 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6660 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6661 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6663 * The difference between a glueless mesh topology and a backplane
6664 * topology lies in whether communication between not directly
6665 * connected nodes goes through intermediary nodes (where programs
6666 * could run), or through backplane controllers. This affects
6667 * placement of programs.
6669 * The type of topology can be discerned with the following tests:
6670 * - If the maximum distance between any nodes is 1 hop, the system
6671 * is directly connected.
6672 * - If for two nodes A and B, located N > 1 hops away from each other,
6673 * there is an intermediary node C, which is < N hops away from both
6674 * nodes A and B, the system is a glueless mesh.
6676 static void init_numa_topology_type(void)
6680 n
= sched_max_numa_distance
;
6682 if (sched_domains_numa_levels
<= 1) {
6683 sched_numa_topology_type
= NUMA_DIRECT
;
6687 for_each_online_node(a
) {
6688 for_each_online_node(b
) {
6689 /* Find two nodes furthest removed from each other. */
6690 if (node_distance(a
, b
) < n
)
6693 /* Is there an intermediary node between a and b? */
6694 for_each_online_node(c
) {
6695 if (node_distance(a
, c
) < n
&&
6696 node_distance(b
, c
) < n
) {
6697 sched_numa_topology_type
=
6703 sched_numa_topology_type
= NUMA_BACKPLANE
;
6709 static void sched_init_numa(void)
6711 int next_distance
, curr_distance
= node_distance(0, 0);
6712 struct sched_domain_topology_level
*tl
;
6716 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6717 if (!sched_domains_numa_distance
)
6721 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6722 * unique distances in the node_distance() table.
6724 * Assumes node_distance(0,j) includes all distances in
6725 * node_distance(i,j) in order to avoid cubic time.
6727 next_distance
= curr_distance
;
6728 for (i
= 0; i
< nr_node_ids
; i
++) {
6729 for (j
= 0; j
< nr_node_ids
; j
++) {
6730 for (k
= 0; k
< nr_node_ids
; k
++) {
6731 int distance
= node_distance(i
, k
);
6733 if (distance
> curr_distance
&&
6734 (distance
< next_distance
||
6735 next_distance
== curr_distance
))
6736 next_distance
= distance
;
6739 * While not a strong assumption it would be nice to know
6740 * about cases where if node A is connected to B, B is not
6741 * equally connected to A.
6743 if (sched_debug() && node_distance(k
, i
) != distance
)
6744 sched_numa_warn("Node-distance not symmetric");
6746 if (sched_debug() && i
&& !find_numa_distance(distance
))
6747 sched_numa_warn("Node-0 not representative");
6749 if (next_distance
!= curr_distance
) {
6750 sched_domains_numa_distance
[level
++] = next_distance
;
6751 sched_domains_numa_levels
= level
;
6752 curr_distance
= next_distance
;
6757 * In case of sched_debug() we verify the above assumption.
6767 * 'level' contains the number of unique distances, excluding the
6768 * identity distance node_distance(i,i).
6770 * The sched_domains_numa_distance[] array includes the actual distance
6775 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6776 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6777 * the array will contain less then 'level' members. This could be
6778 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6779 * in other functions.
6781 * We reset it to 'level' at the end of this function.
6783 sched_domains_numa_levels
= 0;
6785 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6786 if (!sched_domains_numa_masks
)
6790 * Now for each level, construct a mask per node which contains all
6791 * cpus of nodes that are that many hops away from us.
6793 for (i
= 0; i
< level
; i
++) {
6794 sched_domains_numa_masks
[i
] =
6795 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6796 if (!sched_domains_numa_masks
[i
])
6799 for (j
= 0; j
< nr_node_ids
; j
++) {
6800 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6804 sched_domains_numa_masks
[i
][j
] = mask
;
6807 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6810 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6815 /* Compute default topology size */
6816 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6818 tl
= kzalloc((i
+ level
+ 1) *
6819 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6824 * Copy the default topology bits..
6826 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6827 tl
[i
] = sched_domain_topology
[i
];
6830 * .. and append 'j' levels of NUMA goodness.
6832 for (j
= 0; j
< level
; i
++, j
++) {
6833 tl
[i
] = (struct sched_domain_topology_level
){
6834 .mask
= sd_numa_mask
,
6835 .sd_flags
= cpu_numa_flags
,
6836 .flags
= SDTL_OVERLAP
,
6842 sched_domain_topology
= tl
;
6844 sched_domains_numa_levels
= level
;
6845 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
6847 init_numa_topology_type();
6850 static void sched_domains_numa_masks_set(int cpu
)
6853 int node
= cpu_to_node(cpu
);
6855 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6856 for (j
= 0; j
< nr_node_ids
; j
++) {
6857 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6858 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6863 static void sched_domains_numa_masks_clear(int cpu
)
6866 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6867 for (j
= 0; j
< nr_node_ids
; j
++)
6868 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6873 * Update sched_domains_numa_masks[level][node] array when new cpus
6876 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6877 unsigned long action
,
6880 int cpu
= (long)hcpu
;
6882 switch (action
& ~CPU_TASKS_FROZEN
) {
6884 sched_domains_numa_masks_set(cpu
);
6888 sched_domains_numa_masks_clear(cpu
);
6898 static inline void sched_init_numa(void)
6902 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6903 unsigned long action
,
6908 #endif /* CONFIG_NUMA */
6910 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6912 struct sched_domain_topology_level
*tl
;
6915 for_each_sd_topology(tl
) {
6916 struct sd_data
*sdd
= &tl
->data
;
6918 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6922 sdd
->sg
= alloc_percpu(struct sched_group
*);
6926 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6930 for_each_cpu(j
, cpu_map
) {
6931 struct sched_domain
*sd
;
6932 struct sched_group
*sg
;
6933 struct sched_group_capacity
*sgc
;
6935 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6936 GFP_KERNEL
, cpu_to_node(j
));
6940 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6942 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6943 GFP_KERNEL
, cpu_to_node(j
));
6949 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6951 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6952 GFP_KERNEL
, cpu_to_node(j
));
6956 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6963 static void __sdt_free(const struct cpumask
*cpu_map
)
6965 struct sched_domain_topology_level
*tl
;
6968 for_each_sd_topology(tl
) {
6969 struct sd_data
*sdd
= &tl
->data
;
6971 for_each_cpu(j
, cpu_map
) {
6972 struct sched_domain
*sd
;
6975 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6976 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6977 free_sched_groups(sd
->groups
, 0);
6978 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6982 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6984 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6986 free_percpu(sdd
->sd
);
6988 free_percpu(sdd
->sg
);
6990 free_percpu(sdd
->sgc
);
6995 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6996 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6997 struct sched_domain
*child
, int cpu
)
6999 struct sched_domain
*sd
= sd_init(tl
, cpu
);
7003 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7005 sd
->level
= child
->level
+ 1;
7006 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7010 if (!cpumask_subset(sched_domain_span(child
),
7011 sched_domain_span(sd
))) {
7012 pr_err("BUG: arch topology borken\n");
7013 #ifdef CONFIG_SCHED_DEBUG
7014 pr_err(" the %s domain not a subset of the %s domain\n",
7015 child
->name
, sd
->name
);
7017 /* Fixup, ensure @sd has at least @child cpus. */
7018 cpumask_or(sched_domain_span(sd
),
7019 sched_domain_span(sd
),
7020 sched_domain_span(child
));
7024 set_domain_attribute(sd
, attr
);
7030 * Build sched domains for a given set of cpus and attach the sched domains
7031 * to the individual cpus
7033 static int build_sched_domains(const struct cpumask
*cpu_map
,
7034 struct sched_domain_attr
*attr
)
7036 enum s_alloc alloc_state
;
7037 struct sched_domain
*sd
;
7039 int i
, ret
= -ENOMEM
;
7041 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7042 if (alloc_state
!= sa_rootdomain
)
7045 /* Set up domains for cpus specified by the cpu_map. */
7046 for_each_cpu(i
, cpu_map
) {
7047 struct sched_domain_topology_level
*tl
;
7050 for_each_sd_topology(tl
) {
7051 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
7052 if (tl
== sched_domain_topology
)
7053 *per_cpu_ptr(d
.sd
, i
) = sd
;
7054 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7055 sd
->flags
|= SD_OVERLAP
;
7056 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7061 /* Build the groups for the domains */
7062 for_each_cpu(i
, cpu_map
) {
7063 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7064 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7065 if (sd
->flags
& SD_OVERLAP
) {
7066 if (build_overlap_sched_groups(sd
, i
))
7069 if (build_sched_groups(sd
, i
))
7075 /* Calculate CPU capacity for physical packages and nodes */
7076 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7077 if (!cpumask_test_cpu(i
, cpu_map
))
7080 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7081 claim_allocations(i
, sd
);
7082 init_sched_groups_capacity(i
, sd
);
7086 /* Attach the domains */
7088 for_each_cpu(i
, cpu_map
) {
7089 sd
= *per_cpu_ptr(d
.sd
, i
);
7090 cpu_attach_domain(sd
, d
.rd
, i
);
7096 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7100 static cpumask_var_t
*doms_cur
; /* current sched domains */
7101 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7102 static struct sched_domain_attr
*dattr_cur
;
7103 /* attribues of custom domains in 'doms_cur' */
7106 * Special case: If a kmalloc of a doms_cur partition (array of
7107 * cpumask) fails, then fallback to a single sched domain,
7108 * as determined by the single cpumask fallback_doms.
7110 static cpumask_var_t fallback_doms
;
7113 * arch_update_cpu_topology lets virtualized architectures update the
7114 * cpu core maps. It is supposed to return 1 if the topology changed
7115 * or 0 if it stayed the same.
7117 int __weak
arch_update_cpu_topology(void)
7122 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7125 cpumask_var_t
*doms
;
7127 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7130 for (i
= 0; i
< ndoms
; i
++) {
7131 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7132 free_sched_domains(doms
, i
);
7139 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7142 for (i
= 0; i
< ndoms
; i
++)
7143 free_cpumask_var(doms
[i
]);
7148 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7149 * For now this just excludes isolated cpus, but could be used to
7150 * exclude other special cases in the future.
7152 static int init_sched_domains(const struct cpumask
*cpu_map
)
7156 arch_update_cpu_topology();
7158 doms_cur
= alloc_sched_domains(ndoms_cur
);
7160 doms_cur
= &fallback_doms
;
7161 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7162 err
= build_sched_domains(doms_cur
[0], NULL
);
7163 register_sched_domain_sysctl();
7169 * Detach sched domains from a group of cpus specified in cpu_map
7170 * These cpus will now be attached to the NULL domain
7172 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7177 for_each_cpu(i
, cpu_map
)
7178 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7182 /* handle null as "default" */
7183 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7184 struct sched_domain_attr
*new, int idx_new
)
7186 struct sched_domain_attr tmp
;
7193 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7194 new ? (new + idx_new
) : &tmp
,
7195 sizeof(struct sched_domain_attr
));
7199 * Partition sched domains as specified by the 'ndoms_new'
7200 * cpumasks in the array doms_new[] of cpumasks. This compares
7201 * doms_new[] to the current sched domain partitioning, doms_cur[].
7202 * It destroys each deleted domain and builds each new domain.
7204 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7205 * The masks don't intersect (don't overlap.) We should setup one
7206 * sched domain for each mask. CPUs not in any of the cpumasks will
7207 * not be load balanced. If the same cpumask appears both in the
7208 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7211 * The passed in 'doms_new' should be allocated using
7212 * alloc_sched_domains. This routine takes ownership of it and will
7213 * free_sched_domains it when done with it. If the caller failed the
7214 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7215 * and partition_sched_domains() will fallback to the single partition
7216 * 'fallback_doms', it also forces the domains to be rebuilt.
7218 * If doms_new == NULL it will be replaced with cpu_online_mask.
7219 * ndoms_new == 0 is a special case for destroying existing domains,
7220 * and it will not create the default domain.
7222 * Call with hotplug lock held
7224 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7225 struct sched_domain_attr
*dattr_new
)
7230 mutex_lock(&sched_domains_mutex
);
7232 /* always unregister in case we don't destroy any domains */
7233 unregister_sched_domain_sysctl();
7235 /* Let architecture update cpu core mappings. */
7236 new_topology
= arch_update_cpu_topology();
7238 n
= doms_new
? ndoms_new
: 0;
7240 /* Destroy deleted domains */
7241 for (i
= 0; i
< ndoms_cur
; i
++) {
7242 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7243 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7244 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7247 /* no match - a current sched domain not in new doms_new[] */
7248 detach_destroy_domains(doms_cur
[i
]);
7254 if (doms_new
== NULL
) {
7256 doms_new
= &fallback_doms
;
7257 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7258 WARN_ON_ONCE(dattr_new
);
7261 /* Build new domains */
7262 for (i
= 0; i
< ndoms_new
; i
++) {
7263 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7264 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7265 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7268 /* no match - add a new doms_new */
7269 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7274 /* Remember the new sched domains */
7275 if (doms_cur
!= &fallback_doms
)
7276 free_sched_domains(doms_cur
, ndoms_cur
);
7277 kfree(dattr_cur
); /* kfree(NULL) is safe */
7278 doms_cur
= doms_new
;
7279 dattr_cur
= dattr_new
;
7280 ndoms_cur
= ndoms_new
;
7282 register_sched_domain_sysctl();
7284 mutex_unlock(&sched_domains_mutex
);
7287 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
7290 * Update cpusets according to cpu_active mask. If cpusets are
7291 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7292 * around partition_sched_domains().
7294 * If we come here as part of a suspend/resume, don't touch cpusets because we
7295 * want to restore it back to its original state upon resume anyway.
7297 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7301 case CPU_ONLINE_FROZEN
:
7302 case CPU_DOWN_FAILED_FROZEN
:
7305 * num_cpus_frozen tracks how many CPUs are involved in suspend
7306 * resume sequence. As long as this is not the last online
7307 * operation in the resume sequence, just build a single sched
7308 * domain, ignoring cpusets.
7310 partition_sched_domains(1, NULL
, NULL
);
7311 if (--num_cpus_frozen
)
7315 * This is the last CPU online operation. So fall through and
7316 * restore the original sched domains by considering the
7317 * cpuset configurations.
7319 cpuset_force_rebuild();
7322 cpuset_update_active_cpus(true);
7330 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7333 unsigned long flags
;
7334 long cpu
= (long)hcpu
;
7340 case CPU_DOWN_PREPARE
:
7341 rcu_read_lock_sched();
7342 dl_b
= dl_bw_of(cpu
);
7344 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7345 cpus
= dl_bw_cpus(cpu
);
7346 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
7347 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7349 rcu_read_unlock_sched();
7352 return notifier_from_errno(-EBUSY
);
7353 cpuset_update_active_cpus(false);
7355 case CPU_DOWN_PREPARE_FROZEN
:
7357 partition_sched_domains(1, NULL
, NULL
);
7365 void __init
sched_init_smp(void)
7367 cpumask_var_t non_isolated_cpus
;
7369 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7370 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7375 * There's no userspace yet to cause hotplug operations; hence all the
7376 * cpu masks are stable and all blatant races in the below code cannot
7379 mutex_lock(&sched_domains_mutex
);
7380 init_sched_domains(cpu_active_mask
);
7381 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7382 if (cpumask_empty(non_isolated_cpus
))
7383 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7384 mutex_unlock(&sched_domains_mutex
);
7386 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
7387 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7388 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7392 /* Move init over to a non-isolated CPU */
7393 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7395 sched_init_granularity();
7396 free_cpumask_var(non_isolated_cpus
);
7398 init_sched_rt_class();
7399 init_sched_dl_class();
7402 void __init
sched_init_smp(void)
7404 sched_init_granularity();
7406 #endif /* CONFIG_SMP */
7408 int in_sched_functions(unsigned long addr
)
7410 return in_lock_functions(addr
) ||
7411 (addr
>= (unsigned long)__sched_text_start
7412 && addr
< (unsigned long)__sched_text_end
);
7415 #ifdef CONFIG_CGROUP_SCHED
7417 * Default task group.
7418 * Every task in system belongs to this group at bootup.
7420 struct task_group root_task_group
;
7421 LIST_HEAD(task_groups
);
7424 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7426 void __init
sched_init(void)
7429 unsigned long alloc_size
= 0, ptr
;
7431 #ifdef CONFIG_FAIR_GROUP_SCHED
7432 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7434 #ifdef CONFIG_RT_GROUP_SCHED
7435 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7438 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7440 #ifdef CONFIG_FAIR_GROUP_SCHED
7441 root_task_group
.se
= (struct sched_entity
**)ptr
;
7442 ptr
+= nr_cpu_ids
* sizeof(void **);
7444 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7445 ptr
+= nr_cpu_ids
* sizeof(void **);
7447 #endif /* CONFIG_FAIR_GROUP_SCHED */
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7450 ptr
+= nr_cpu_ids
* sizeof(void **);
7452 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7453 ptr
+= nr_cpu_ids
* sizeof(void **);
7455 #endif /* CONFIG_RT_GROUP_SCHED */
7457 #ifdef CONFIG_CPUMASK_OFFSTACK
7458 for_each_possible_cpu(i
) {
7459 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
7460 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
7462 #endif /* CONFIG_CPUMASK_OFFSTACK */
7464 init_rt_bandwidth(&def_rt_bandwidth
,
7465 global_rt_period(), global_rt_runtime());
7466 init_dl_bandwidth(&def_dl_bandwidth
,
7467 global_rt_period(), global_rt_runtime());
7470 init_defrootdomain();
7473 #ifdef CONFIG_RT_GROUP_SCHED
7474 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7475 global_rt_period(), global_rt_runtime());
7476 #endif /* CONFIG_RT_GROUP_SCHED */
7478 #ifdef CONFIG_CGROUP_SCHED
7479 list_add(&root_task_group
.list
, &task_groups
);
7480 INIT_LIST_HEAD(&root_task_group
.children
);
7481 INIT_LIST_HEAD(&root_task_group
.siblings
);
7482 autogroup_init(&init_task
);
7484 #endif /* CONFIG_CGROUP_SCHED */
7486 for_each_possible_cpu(i
) {
7490 raw_spin_lock_init(&rq
->lock
);
7492 rq
->calc_load_active
= 0;
7493 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7494 init_cfs_rq(&rq
->cfs
);
7495 init_rt_rq(&rq
->rt
);
7496 init_dl_rq(&rq
->dl
);
7497 #ifdef CONFIG_FAIR_GROUP_SCHED
7498 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7499 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7501 * How much cpu bandwidth does root_task_group get?
7503 * In case of task-groups formed thr' the cgroup filesystem, it
7504 * gets 100% of the cpu resources in the system. This overall
7505 * system cpu resource is divided among the tasks of
7506 * root_task_group and its child task-groups in a fair manner,
7507 * based on each entity's (task or task-group's) weight
7508 * (se->load.weight).
7510 * In other words, if root_task_group has 10 tasks of weight
7511 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7512 * then A0's share of the cpu resource is:
7514 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7516 * We achieve this by letting root_task_group's tasks sit
7517 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7519 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7520 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7521 #endif /* CONFIG_FAIR_GROUP_SCHED */
7523 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7524 #ifdef CONFIG_RT_GROUP_SCHED
7525 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7528 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7529 rq
->cpu_load
[j
] = 0;
7531 rq
->last_load_update_tick
= jiffies
;
7536 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
7537 rq
->balance_callback
= NULL
;
7538 rq
->active_balance
= 0;
7539 rq
->next_balance
= jiffies
;
7544 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7545 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7547 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7549 rq_attach_root(rq
, &def_root_domain
);
7550 #ifdef CONFIG_NO_HZ_COMMON
7553 #ifdef CONFIG_NO_HZ_FULL
7554 rq
->last_sched_tick
= 0;
7558 atomic_set(&rq
->nr_iowait
, 0);
7561 set_load_weight(&init_task
);
7563 #ifdef CONFIG_PREEMPT_NOTIFIERS
7564 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7568 * The boot idle thread does lazy MMU switching as well:
7570 atomic_inc(&init_mm
.mm_count
);
7571 enter_lazy_tlb(&init_mm
, current
);
7574 * During early bootup we pretend to be a normal task:
7576 current
->sched_class
= &fair_sched_class
;
7579 * Make us the idle thread. Technically, schedule() should not be
7580 * called from this thread, however somewhere below it might be,
7581 * but because we are the idle thread, we just pick up running again
7582 * when this runqueue becomes "idle".
7584 init_idle(current
, smp_processor_id());
7586 calc_load_update
= jiffies
+ LOAD_FREQ
;
7589 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7590 /* May be allocated at isolcpus cmdline parse time */
7591 if (cpu_isolated_map
== NULL
)
7592 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7593 idle_thread_set_boot_cpu();
7594 set_cpu_rq_start_time();
7596 init_sched_fair_class();
7598 scheduler_running
= 1;
7601 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7602 static inline int preempt_count_equals(int preempt_offset
)
7604 int nested
= preempt_count() + rcu_preempt_depth();
7606 return (nested
== preempt_offset
);
7609 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7612 * Blocking primitives will set (and therefore destroy) current->state,
7613 * since we will exit with TASK_RUNNING make sure we enter with it,
7614 * otherwise we will destroy state.
7616 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
7617 "do not call blocking ops when !TASK_RUNNING; "
7618 "state=%lx set at [<%p>] %pS\n",
7620 (void *)current
->task_state_change
,
7621 (void *)current
->task_state_change
);
7623 ___might_sleep(file
, line
, preempt_offset
);
7625 EXPORT_SYMBOL(__might_sleep
);
7627 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
7629 static unsigned long prev_jiffy
; /* ratelimiting */
7631 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7632 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7633 !is_idle_task(current
)) ||
7634 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7636 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7638 prev_jiffy
= jiffies
;
7641 "BUG: sleeping function called from invalid context at %s:%d\n",
7644 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7645 in_atomic(), irqs_disabled(),
7646 current
->pid
, current
->comm
);
7648 if (task_stack_end_corrupted(current
))
7649 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
7651 debug_show_held_locks(current
);
7652 if (irqs_disabled())
7653 print_irqtrace_events(current
);
7654 #ifdef CONFIG_DEBUG_PREEMPT
7655 if (!preempt_count_equals(preempt_offset
)) {
7656 pr_err("Preemption disabled at:");
7657 print_ip_sym(current
->preempt_disable_ip
);
7663 EXPORT_SYMBOL(___might_sleep
);
7666 #ifdef CONFIG_MAGIC_SYSRQ
7667 void normalize_rt_tasks(void)
7669 struct task_struct
*g
, *p
;
7670 struct sched_attr attr
= {
7671 .sched_policy
= SCHED_NORMAL
,
7674 read_lock(&tasklist_lock
);
7675 for_each_process_thread(g
, p
) {
7677 * Only normalize user tasks:
7679 if (p
->flags
& PF_KTHREAD
)
7682 p
->se
.exec_start
= 0;
7683 #ifdef CONFIG_SCHEDSTATS
7684 p
->se
.statistics
.wait_start
= 0;
7685 p
->se
.statistics
.sleep_start
= 0;
7686 p
->se
.statistics
.block_start
= 0;
7689 if (!dl_task(p
) && !rt_task(p
)) {
7691 * Renice negative nice level userspace
7694 if (task_nice(p
) < 0)
7695 set_user_nice(p
, 0);
7699 __sched_setscheduler(p
, &attr
, false, false);
7701 read_unlock(&tasklist_lock
);
7704 #endif /* CONFIG_MAGIC_SYSRQ */
7706 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7708 * These functions are only useful for the IA64 MCA handling, or kdb.
7710 * They can only be called when the whole system has been
7711 * stopped - every CPU needs to be quiescent, and no scheduling
7712 * activity can take place. Using them for anything else would
7713 * be a serious bug, and as a result, they aren't even visible
7714 * under any other configuration.
7718 * curr_task - return the current task for a given cpu.
7719 * @cpu: the processor in question.
7721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7723 * Return: The current task for @cpu.
7725 struct task_struct
*curr_task(int cpu
)
7727 return cpu_curr(cpu
);
7730 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7734 * set_curr_task - set the current task for a given cpu.
7735 * @cpu: the processor in question.
7736 * @p: the task pointer to set.
7738 * Description: This function must only be used when non-maskable interrupts
7739 * are serviced on a separate stack. It allows the architecture to switch the
7740 * notion of the current task on a cpu in a non-blocking manner. This function
7741 * must be called with all CPU's synchronized, and interrupts disabled, the
7742 * and caller must save the original value of the current task (see
7743 * curr_task() above) and restore that value before reenabling interrupts and
7744 * re-starting the system.
7746 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7748 void set_curr_task(int cpu
, struct task_struct
*p
)
7755 #ifdef CONFIG_CGROUP_SCHED
7756 /* task_group_lock serializes the addition/removal of task groups */
7757 static DEFINE_SPINLOCK(task_group_lock
);
7759 static void sched_free_group(struct task_group
*tg
)
7761 free_fair_sched_group(tg
);
7762 free_rt_sched_group(tg
);
7767 /* allocate runqueue etc for a new task group */
7768 struct task_group
*sched_create_group(struct task_group
*parent
)
7770 struct task_group
*tg
;
7772 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7774 return ERR_PTR(-ENOMEM
);
7776 if (!alloc_fair_sched_group(tg
, parent
))
7779 if (!alloc_rt_sched_group(tg
, parent
))
7785 sched_free_group(tg
);
7786 return ERR_PTR(-ENOMEM
);
7789 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7791 unsigned long flags
;
7793 spin_lock_irqsave(&task_group_lock
, flags
);
7794 list_add_rcu(&tg
->list
, &task_groups
);
7796 WARN_ON(!parent
); /* root should already exist */
7798 tg
->parent
= parent
;
7799 INIT_LIST_HEAD(&tg
->children
);
7800 list_add_rcu(&tg
->siblings
, &parent
->children
);
7801 spin_unlock_irqrestore(&task_group_lock
, flags
);
7804 /* rcu callback to free various structures associated with a task group */
7805 static void sched_free_group_rcu(struct rcu_head
*rhp
)
7807 /* now it should be safe to free those cfs_rqs */
7808 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
7811 void sched_destroy_group(struct task_group
*tg
)
7813 /* wait for possible concurrent references to cfs_rqs complete */
7814 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
7817 void sched_offline_group(struct task_group
*tg
)
7819 unsigned long flags
;
7822 /* end participation in shares distribution */
7823 for_each_possible_cpu(i
)
7824 unregister_fair_sched_group(tg
, i
);
7826 spin_lock_irqsave(&task_group_lock
, flags
);
7827 list_del_rcu(&tg
->list
);
7828 list_del_rcu(&tg
->siblings
);
7829 spin_unlock_irqrestore(&task_group_lock
, flags
);
7832 /* change task's runqueue when it moves between groups.
7833 * The caller of this function should have put the task in its new group
7834 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7835 * reflect its new group.
7837 void sched_move_task(struct task_struct
*tsk
)
7839 struct task_group
*tg
;
7840 int queued
, running
;
7841 unsigned long flags
;
7844 rq
= task_rq_lock(tsk
, &flags
);
7846 running
= task_current(rq
, tsk
);
7847 queued
= task_on_rq_queued(tsk
);
7850 dequeue_task(rq
, tsk
, DEQUEUE_SAVE
);
7851 if (unlikely(running
))
7852 put_prev_task(rq
, tsk
);
7855 * All callers are synchronized by task_rq_lock(); we do not use RCU
7856 * which is pointless here. Thus, we pass "true" to task_css_check()
7857 * to prevent lockdep warnings.
7859 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
7860 struct task_group
, css
);
7861 tg
= autogroup_task_group(tsk
, tg
);
7862 tsk
->sched_task_group
= tg
;
7864 #ifdef CONFIG_FAIR_GROUP_SCHED
7865 if (tsk
->sched_class
->task_move_group
)
7866 tsk
->sched_class
->task_move_group(tsk
);
7869 set_task_rq(tsk
, task_cpu(tsk
));
7871 if (unlikely(running
))
7872 tsk
->sched_class
->set_curr_task(rq
);
7874 enqueue_task(rq
, tsk
, ENQUEUE_RESTORE
);
7876 task_rq_unlock(rq
, tsk
, &flags
);
7878 #endif /* CONFIG_CGROUP_SCHED */
7880 #ifdef CONFIG_RT_GROUP_SCHED
7882 * Ensure that the real time constraints are schedulable.
7884 static DEFINE_MUTEX(rt_constraints_mutex
);
7886 /* Must be called with tasklist_lock held */
7887 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7889 struct task_struct
*g
, *p
;
7892 * Autogroups do not have RT tasks; see autogroup_create().
7894 if (task_group_is_autogroup(tg
))
7897 for_each_process_thread(g
, p
) {
7898 if (rt_task(p
) && task_group(p
) == tg
)
7905 struct rt_schedulable_data
{
7906 struct task_group
*tg
;
7911 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7913 struct rt_schedulable_data
*d
= data
;
7914 struct task_group
*child
;
7915 unsigned long total
, sum
= 0;
7916 u64 period
, runtime
;
7918 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7919 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7922 period
= d
->rt_period
;
7923 runtime
= d
->rt_runtime
;
7927 * Cannot have more runtime than the period.
7929 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7933 * Ensure we don't starve existing RT tasks.
7935 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7938 total
= to_ratio(period
, runtime
);
7941 * Nobody can have more than the global setting allows.
7943 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7947 * The sum of our children's runtime should not exceed our own.
7949 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7950 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7951 runtime
= child
->rt_bandwidth
.rt_runtime
;
7953 if (child
== d
->tg
) {
7954 period
= d
->rt_period
;
7955 runtime
= d
->rt_runtime
;
7958 sum
+= to_ratio(period
, runtime
);
7967 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7971 struct rt_schedulable_data data
= {
7973 .rt_period
= period
,
7974 .rt_runtime
= runtime
,
7978 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7984 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7985 u64 rt_period
, u64 rt_runtime
)
7990 * Disallowing the root group RT runtime is BAD, it would disallow the
7991 * kernel creating (and or operating) RT threads.
7993 if (tg
== &root_task_group
&& rt_runtime
== 0)
7996 /* No period doesn't make any sense. */
8000 mutex_lock(&rt_constraints_mutex
);
8001 read_lock(&tasklist_lock
);
8002 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8006 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8007 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8008 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8010 for_each_possible_cpu(i
) {
8011 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8013 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8014 rt_rq
->rt_runtime
= rt_runtime
;
8015 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8017 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8019 read_unlock(&tasklist_lock
);
8020 mutex_unlock(&rt_constraints_mutex
);
8025 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8027 u64 rt_runtime
, rt_period
;
8029 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8030 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8031 if (rt_runtime_us
< 0)
8032 rt_runtime
= RUNTIME_INF
;
8034 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
8037 static long sched_group_rt_runtime(struct task_group
*tg
)
8041 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8044 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8045 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8046 return rt_runtime_us
;
8049 static int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
8051 u64 rt_runtime
, rt_period
;
8053 rt_period
= rt_period_us
* NSEC_PER_USEC
;
8054 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8056 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
8059 static long sched_group_rt_period(struct task_group
*tg
)
8063 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8064 do_div(rt_period_us
, NSEC_PER_USEC
);
8065 return rt_period_us
;
8067 #endif /* CONFIG_RT_GROUP_SCHED */
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 static int sched_rt_global_constraints(void)
8074 mutex_lock(&rt_constraints_mutex
);
8075 read_lock(&tasklist_lock
);
8076 ret
= __rt_schedulable(NULL
, 0, 0);
8077 read_unlock(&tasklist_lock
);
8078 mutex_unlock(&rt_constraints_mutex
);
8083 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8085 /* Don't accept realtime tasks when there is no way for them to run */
8086 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8092 #else /* !CONFIG_RT_GROUP_SCHED */
8093 static int sched_rt_global_constraints(void)
8095 unsigned long flags
;
8098 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8099 for_each_possible_cpu(i
) {
8100 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8102 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8103 rt_rq
->rt_runtime
= global_rt_runtime();
8104 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8106 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8110 #endif /* CONFIG_RT_GROUP_SCHED */
8112 static int sched_dl_global_validate(void)
8114 u64 runtime
= global_rt_runtime();
8115 u64 period
= global_rt_period();
8116 u64 new_bw
= to_ratio(period
, runtime
);
8119 unsigned long flags
;
8122 * Here we want to check the bandwidth not being set to some
8123 * value smaller than the currently allocated bandwidth in
8124 * any of the root_domains.
8126 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8127 * cycling on root_domains... Discussion on different/better
8128 * solutions is welcome!
8130 for_each_possible_cpu(cpu
) {
8131 rcu_read_lock_sched();
8132 dl_b
= dl_bw_of(cpu
);
8134 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
8135 if (new_bw
< dl_b
->total_bw
)
8137 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
8139 rcu_read_unlock_sched();
8148 static void sched_dl_do_global(void)
8153 unsigned long flags
;
8155 def_dl_bandwidth
.dl_period
= global_rt_period();
8156 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
8158 if (global_rt_runtime() != RUNTIME_INF
)
8159 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
8162 * FIXME: As above...
8164 for_each_possible_cpu(cpu
) {
8165 rcu_read_lock_sched();
8166 dl_b
= dl_bw_of(cpu
);
8168 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
8170 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
8172 rcu_read_unlock_sched();
8176 static int sched_rt_global_validate(void)
8178 if (sysctl_sched_rt_period
<= 0)
8181 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
8182 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
8188 static void sched_rt_do_global(void)
8190 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8191 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
8194 int sched_rt_handler(struct ctl_table
*table
, int write
,
8195 void __user
*buffer
, size_t *lenp
,
8198 int old_period
, old_runtime
;
8199 static DEFINE_MUTEX(mutex
);
8203 old_period
= sysctl_sched_rt_period
;
8204 old_runtime
= sysctl_sched_rt_runtime
;
8206 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8208 if (!ret
&& write
) {
8209 ret
= sched_rt_global_validate();
8213 ret
= sched_dl_global_validate();
8217 ret
= sched_rt_global_constraints();
8221 sched_rt_do_global();
8222 sched_dl_do_global();
8226 sysctl_sched_rt_period
= old_period
;
8227 sysctl_sched_rt_runtime
= old_runtime
;
8229 mutex_unlock(&mutex
);
8234 int sched_rr_handler(struct ctl_table
*table
, int write
,
8235 void __user
*buffer
, size_t *lenp
,
8239 static DEFINE_MUTEX(mutex
);
8242 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8243 /* make sure that internally we keep jiffies */
8244 /* also, writing zero resets timeslice to default */
8245 if (!ret
&& write
) {
8246 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
8247 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
8249 mutex_unlock(&mutex
);
8253 #ifdef CONFIG_CGROUP_SCHED
8255 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
8257 return css
? container_of(css
, struct task_group
, css
) : NULL
;
8260 static struct cgroup_subsys_state
*
8261 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8263 struct task_group
*parent
= css_tg(parent_css
);
8264 struct task_group
*tg
;
8267 /* This is early initialization for the top cgroup */
8268 return &root_task_group
.css
;
8271 tg
= sched_create_group(parent
);
8273 return ERR_PTR(-ENOMEM
);
8278 /* Expose task group only after completing cgroup initialization */
8279 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
8281 struct task_group
*tg
= css_tg(css
);
8282 struct task_group
*parent
= css_tg(css
->parent
);
8285 sched_online_group(tg
, parent
);
8289 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
8291 struct task_group
*tg
= css_tg(css
);
8293 sched_offline_group(tg
);
8296 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
8298 struct task_group
*tg
= css_tg(css
);
8301 * Relies on the RCU grace period between css_released() and this.
8303 sched_free_group(tg
);
8306 static void cpu_cgroup_fork(struct task_struct
*task
, void *private)
8308 sched_move_task(task
);
8311 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
8313 struct task_struct
*task
;
8314 struct cgroup_subsys_state
*css
;
8316 cgroup_taskset_for_each(task
, css
, tset
) {
8317 #ifdef CONFIG_RT_GROUP_SCHED
8318 if (!sched_rt_can_attach(css_tg(css
), task
))
8321 /* We don't support RT-tasks being in separate groups */
8322 if (task
->sched_class
!= &fair_sched_class
)
8329 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
8331 struct task_struct
*task
;
8332 struct cgroup_subsys_state
*css
;
8334 cgroup_taskset_for_each(task
, css
, tset
)
8335 sched_move_task(task
);
8338 #ifdef CONFIG_FAIR_GROUP_SCHED
8339 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
8340 struct cftype
*cftype
, u64 shareval
)
8342 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
8345 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
8348 struct task_group
*tg
= css_tg(css
);
8350 return (u64
) scale_load_down(tg
->shares
);
8353 #ifdef CONFIG_CFS_BANDWIDTH
8354 static DEFINE_MUTEX(cfs_constraints_mutex
);
8356 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
8357 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
8359 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
8361 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
8363 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
8364 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8366 if (tg
== &root_task_group
)
8370 * Ensure we have at some amount of bandwidth every period. This is
8371 * to prevent reaching a state of large arrears when throttled via
8372 * entity_tick() resulting in prolonged exit starvation.
8374 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
8378 * Likewise, bound things on the otherside by preventing insane quota
8379 * periods. This also allows us to normalize in computing quota
8382 if (period
> max_cfs_quota_period
)
8386 * Prevent race between setting of cfs_rq->runtime_enabled and
8387 * unthrottle_offline_cfs_rqs().
8390 mutex_lock(&cfs_constraints_mutex
);
8391 ret
= __cfs_schedulable(tg
, period
, quota
);
8395 runtime_enabled
= quota
!= RUNTIME_INF
;
8396 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
8398 * If we need to toggle cfs_bandwidth_used, off->on must occur
8399 * before making related changes, and on->off must occur afterwards
8401 if (runtime_enabled
&& !runtime_was_enabled
)
8402 cfs_bandwidth_usage_inc();
8403 raw_spin_lock_irq(&cfs_b
->lock
);
8404 cfs_b
->period
= ns_to_ktime(period
);
8405 cfs_b
->quota
= quota
;
8407 __refill_cfs_bandwidth_runtime(cfs_b
);
8408 /* restart the period timer (if active) to handle new period expiry */
8409 if (runtime_enabled
)
8410 start_cfs_bandwidth(cfs_b
);
8411 raw_spin_unlock_irq(&cfs_b
->lock
);
8413 for_each_online_cpu(i
) {
8414 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
8415 struct rq
*rq
= cfs_rq
->rq
;
8417 raw_spin_lock_irq(&rq
->lock
);
8418 cfs_rq
->runtime_enabled
= runtime_enabled
;
8419 cfs_rq
->runtime_remaining
= 0;
8421 if (cfs_rq
->throttled
)
8422 unthrottle_cfs_rq(cfs_rq
);
8423 raw_spin_unlock_irq(&rq
->lock
);
8425 if (runtime_was_enabled
&& !runtime_enabled
)
8426 cfs_bandwidth_usage_dec();
8428 mutex_unlock(&cfs_constraints_mutex
);
8434 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
8438 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8439 if (cfs_quota_us
< 0)
8440 quota
= RUNTIME_INF
;
8442 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
8444 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8447 long tg_get_cfs_quota(struct task_group
*tg
)
8451 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
8454 quota_us
= tg
->cfs_bandwidth
.quota
;
8455 do_div(quota_us
, NSEC_PER_USEC
);
8460 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
8464 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
8465 quota
= tg
->cfs_bandwidth
.quota
;
8467 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8470 long tg_get_cfs_period(struct task_group
*tg
)
8474 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8475 do_div(cfs_period_us
, NSEC_PER_USEC
);
8477 return cfs_period_us
;
8480 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
8483 return tg_get_cfs_quota(css_tg(css
));
8486 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
8487 struct cftype
*cftype
, s64 cfs_quota_us
)
8489 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
8492 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
8495 return tg_get_cfs_period(css_tg(css
));
8498 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
8499 struct cftype
*cftype
, u64 cfs_period_us
)
8501 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
8504 struct cfs_schedulable_data
{
8505 struct task_group
*tg
;
8510 * normalize group quota/period to be quota/max_period
8511 * note: units are usecs
8513 static u64
normalize_cfs_quota(struct task_group
*tg
,
8514 struct cfs_schedulable_data
*d
)
8522 period
= tg_get_cfs_period(tg
);
8523 quota
= tg_get_cfs_quota(tg
);
8526 /* note: these should typically be equivalent */
8527 if (quota
== RUNTIME_INF
|| quota
== -1)
8530 return to_ratio(period
, quota
);
8533 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8535 struct cfs_schedulable_data
*d
= data
;
8536 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8537 s64 quota
= 0, parent_quota
= -1;
8540 quota
= RUNTIME_INF
;
8542 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8544 quota
= normalize_cfs_quota(tg
, d
);
8545 parent_quota
= parent_b
->hierarchical_quota
;
8548 * ensure max(child_quota) <= parent_quota, inherit when no
8551 if (quota
== RUNTIME_INF
)
8552 quota
= parent_quota
;
8553 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8556 cfs_b
->hierarchical_quota
= quota
;
8561 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8564 struct cfs_schedulable_data data
= {
8570 if (quota
!= RUNTIME_INF
) {
8571 do_div(data
.period
, NSEC_PER_USEC
);
8572 do_div(data
.quota
, NSEC_PER_USEC
);
8576 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8582 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8584 struct task_group
*tg
= css_tg(seq_css(sf
));
8585 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8587 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8588 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8589 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8593 #endif /* CONFIG_CFS_BANDWIDTH */
8594 #endif /* CONFIG_FAIR_GROUP_SCHED */
8596 #ifdef CONFIG_RT_GROUP_SCHED
8597 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8598 struct cftype
*cft
, s64 val
)
8600 return sched_group_set_rt_runtime(css_tg(css
), val
);
8603 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8606 return sched_group_rt_runtime(css_tg(css
));
8609 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8610 struct cftype
*cftype
, u64 rt_period_us
)
8612 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8615 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8618 return sched_group_rt_period(css_tg(css
));
8620 #endif /* CONFIG_RT_GROUP_SCHED */
8622 static struct cftype cpu_files
[] = {
8623 #ifdef CONFIG_FAIR_GROUP_SCHED
8626 .read_u64
= cpu_shares_read_u64
,
8627 .write_u64
= cpu_shares_write_u64
,
8630 #ifdef CONFIG_CFS_BANDWIDTH
8632 .name
= "cfs_quota_us",
8633 .read_s64
= cpu_cfs_quota_read_s64
,
8634 .write_s64
= cpu_cfs_quota_write_s64
,
8637 .name
= "cfs_period_us",
8638 .read_u64
= cpu_cfs_period_read_u64
,
8639 .write_u64
= cpu_cfs_period_write_u64
,
8643 .seq_show
= cpu_stats_show
,
8646 #ifdef CONFIG_RT_GROUP_SCHED
8648 .name
= "rt_runtime_us",
8649 .read_s64
= cpu_rt_runtime_read
,
8650 .write_s64
= cpu_rt_runtime_write
,
8653 .name
= "rt_period_us",
8654 .read_u64
= cpu_rt_period_read_uint
,
8655 .write_u64
= cpu_rt_period_write_uint
,
8661 struct cgroup_subsys cpu_cgrp_subsys
= {
8662 .css_alloc
= cpu_cgroup_css_alloc
,
8663 .css_online
= cpu_cgroup_css_online
,
8664 .css_released
= cpu_cgroup_css_released
,
8665 .css_free
= cpu_cgroup_css_free
,
8666 .fork
= cpu_cgroup_fork
,
8667 .can_attach
= cpu_cgroup_can_attach
,
8668 .attach
= cpu_cgroup_attach
,
8669 .legacy_cftypes
= cpu_files
,
8673 #endif /* CONFIG_CGROUP_SCHED */
8675 void dump_cpu_task(int cpu
)
8677 pr_info("Task dump for CPU %d:\n", cpu
);
8678 sched_show_task(cpu_curr(cpu
));