dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / sched / core.c
blob65ed3501c2caf4e6d8f66cca01ef763b073ede0b
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 void update_rq_clock(struct rq *rq)
100 s64 delta;
102 lockdep_assert_held(&rq->lock);
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
125 #undef SCHED_FEAT
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
135 #undef SCHED_FEAT
137 static int sched_feat_show(struct seq_file *m, void *v)
139 int i;
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
146 seq_puts(m, "\n");
148 return 0;
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
163 #undef SCHED_FEAT
165 static void sched_feat_disable(int i)
167 static_key_disable(&sched_feat_keys[i]);
170 static void sched_feat_enable(int i)
172 static_key_enable(&sched_feat_keys[i]);
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
179 static int sched_feat_set(char *cmp)
181 int i;
182 int neg = 0;
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
198 break;
202 return i;
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
214 if (cnt > 63)
215 cnt = 63;
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
231 *ppos += cnt;
233 return cnt;
236 static int sched_feat_open(struct inode *inode, struct file *filp)
238 return single_open(filp, sched_feat_show, NULL);
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
249 static __init int sched_init_debug(void)
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
254 return 0;
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 * period over which we average the RT time consumption, measured
267 * in ms.
269 * default: 1s
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
277 unsigned int sysctl_sched_rt_period = 1000000;
279 __read_mostly int scheduler_running;
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
285 int sysctl_sched_rt_runtime = 950000;
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
291 * this_rq_lock - lock this runqueue and disable interrupts.
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
296 struct rq *rq;
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
302 return rq;
305 #ifdef CONFIG_SCHED_HRTICK
307 * Use HR-timers to deliver accurate preemption points.
310 static void hrtick_clear(struct rq *rq)
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
331 return HRTIMER_NORESTART;
334 #ifdef CONFIG_SMP
336 static void __hrtick_restart(struct rq *rq)
338 struct hrtimer *timer = &rq->hrtick_timer;
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
344 * called from hardirq (IPI) context
346 static void __hrtick_start(void *arg)
348 struct rq *rq = arg;
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
357 * Called to set the hrtick timer state.
359 * called with rq->lock held and irqs disabled
361 void hrtick_start(struct rq *rq, u64 delay)
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
374 hrtimer_set_expires(timer, time);
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
387 int cpu = (int)(long)hcpu;
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
400 return NOTIFY_DONE;
403 static __init void init_hrtick(void)
405 hotcpu_notifier(hotplug_hrtick, 0);
407 #else
409 * Called to set the hrtick timer state.
411 * called with rq->lock held and irqs disabled
413 void hrtick_start(struct rq *rq, u64 delay)
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
424 static inline void init_hrtick(void)
427 #endif /* CONFIG_SMP */
429 static void init_rq_hrtick(struct rq *rq)
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
447 static inline void init_rq_hrtick(struct rq *rq)
451 static inline void init_hrtick(void)
454 #endif /* CONFIG_SCHED_HRTICK */
457 * cmpxchg based fetch_or, macro so it works for different integer types
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
467 __old; \
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
476 static bool set_nr_and_not_polling(struct task_struct *p)
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
488 static bool set_nr_if_polling(struct task_struct *p)
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
503 return true;
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
509 set_tsk_need_resched(p);
510 return true;
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
516 return false;
518 #endif
519 #endif
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 struct wake_q_node *node = &task->wake_q;
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
536 get_task_struct(task);
539 * The head is context local, there can be no concurrency.
541 *head->lastp = node;
542 head->lastp = &node->next;
545 void wake_up_q(struct wake_q_head *head)
547 struct wake_q_node *node = head->first;
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
562 wake_up_process(task);
563 put_task_struct(task);
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
574 void resched_curr(struct rq *rq)
576 struct task_struct *curr = rq->curr;
577 int cpu;
579 lockdep_assert_held(&rq->lock);
581 if (test_tsk_need_resched(curr))
582 return;
584 cpu = cpu_of(rq);
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
598 void resched_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
603 raw_spin_lock_irqsave(&rq->lock, flags);
604 if (cpu_online(cpu) || cpu == smp_processor_id())
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619 int get_nohz_timer_target(void)
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (cpu == i)
631 continue;
633 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
634 cpu = i;
635 goto unlock;
640 if (!is_housekeeping_cpu(cpu))
641 cpu = housekeeping_any_cpu();
642 unlock:
643 rcu_read_unlock();
644 return cpu;
647 * When add_timer_on() enqueues a timer into the timer wheel of an
648 * idle CPU then this timer might expire before the next timer event
649 * which is scheduled to wake up that CPU. In case of a completely
650 * idle system the next event might even be infinite time into the
651 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
652 * leaves the inner idle loop so the newly added timer is taken into
653 * account when the CPU goes back to idle and evaluates the timer
654 * wheel for the next timer event.
656 static void wake_up_idle_cpu(int cpu)
658 struct rq *rq = cpu_rq(cpu);
660 if (cpu == smp_processor_id())
661 return;
663 if (set_nr_and_not_polling(rq->idle))
664 smp_send_reschedule(cpu);
665 else
666 trace_sched_wake_idle_without_ipi(cpu);
669 static bool wake_up_full_nohz_cpu(int cpu)
672 * We just need the target to call irq_exit() and re-evaluate
673 * the next tick. The nohz full kick at least implies that.
674 * If needed we can still optimize that later with an
675 * empty IRQ.
677 if (tick_nohz_full_cpu(cpu)) {
678 if (cpu != smp_processor_id() ||
679 tick_nohz_tick_stopped())
680 tick_nohz_full_kick_cpu(cpu);
681 return true;
684 return false;
687 void wake_up_nohz_cpu(int cpu)
689 if (!wake_up_full_nohz_cpu(cpu))
690 wake_up_idle_cpu(cpu);
693 static inline bool got_nohz_idle_kick(void)
695 int cpu = smp_processor_id();
697 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
698 return false;
700 if (idle_cpu(cpu) && !need_resched())
701 return true;
704 * We can't run Idle Load Balance on this CPU for this time so we
705 * cancel it and clear NOHZ_BALANCE_KICK
707 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
708 return false;
711 #else /* CONFIG_NO_HZ_COMMON */
713 static inline bool got_nohz_idle_kick(void)
715 return false;
718 #endif /* CONFIG_NO_HZ_COMMON */
720 #ifdef CONFIG_NO_HZ_FULL
721 bool sched_can_stop_tick(void)
724 * FIFO realtime policy runs the highest priority task. Other runnable
725 * tasks are of a lower priority. The scheduler tick does nothing.
727 if (current->policy == SCHED_FIFO)
728 return true;
731 * Round-robin realtime tasks time slice with other tasks at the same
732 * realtime priority. Is this task the only one at this priority?
734 if (current->policy == SCHED_RR) {
735 struct sched_rt_entity *rt_se = &current->rt;
737 return rt_se->run_list.prev == rt_se->run_list.next;
741 * More than one running task need preemption.
742 * nr_running update is assumed to be visible
743 * after IPI is sent from wakers.
745 if (this_rq()->nr_running > 1)
746 return false;
748 return true;
750 #endif /* CONFIG_NO_HZ_FULL */
752 void sched_avg_update(struct rq *rq)
754 s64 period = sched_avg_period();
756 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
758 * Inline assembly required to prevent the compiler
759 * optimising this loop into a divmod call.
760 * See __iter_div_u64_rem() for another example of this.
762 asm("" : "+rm" (rq->age_stamp));
763 rq->age_stamp += period;
764 rq->rt_avg /= 2;
768 #endif /* CONFIG_SMP */
770 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
771 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
773 * Iterate task_group tree rooted at *from, calling @down when first entering a
774 * node and @up when leaving it for the final time.
776 * Caller must hold rcu_lock or sufficient equivalent.
778 int walk_tg_tree_from(struct task_group *from,
779 tg_visitor down, tg_visitor up, void *data)
781 struct task_group *parent, *child;
782 int ret;
784 parent = from;
786 down:
787 ret = (*down)(parent, data);
788 if (ret)
789 goto out;
790 list_for_each_entry_rcu(child, &parent->children, siblings) {
791 parent = child;
792 goto down;
795 continue;
797 ret = (*up)(parent, data);
798 if (ret || parent == from)
799 goto out;
801 child = parent;
802 parent = parent->parent;
803 if (parent)
804 goto up;
805 out:
806 return ret;
809 int tg_nop(struct task_group *tg, void *data)
811 return 0;
813 #endif
815 static void set_load_weight(struct task_struct *p)
817 int prio = p->static_prio - MAX_RT_PRIO;
818 struct load_weight *load = &p->se.load;
821 * SCHED_IDLE tasks get minimal weight:
823 if (idle_policy(p->policy)) {
824 load->weight = scale_load(WEIGHT_IDLEPRIO);
825 load->inv_weight = WMULT_IDLEPRIO;
826 return;
829 load->weight = scale_load(prio_to_weight[prio]);
830 load->inv_weight = prio_to_wmult[prio];
833 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
835 update_rq_clock(rq);
836 if (!(flags & ENQUEUE_RESTORE))
837 sched_info_queued(rq, p);
838 p->sched_class->enqueue_task(rq, p, flags);
841 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
843 update_rq_clock(rq);
844 if (!(flags & DEQUEUE_SAVE))
845 sched_info_dequeued(rq, p);
846 p->sched_class->dequeue_task(rq, p, flags);
849 void activate_task(struct rq *rq, struct task_struct *p, int flags)
851 if (task_contributes_to_load(p))
852 rq->nr_uninterruptible--;
854 enqueue_task(rq, p, flags);
857 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
859 if (task_contributes_to_load(p))
860 rq->nr_uninterruptible++;
862 dequeue_task(rq, p, flags);
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
892 if (irq_delta > delta)
893 irq_delta = delta;
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 if (static_key_false((&paravirt_steal_rq_enabled))) {
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
903 if (unlikely(steal > delta))
904 steal = delta;
906 rq->prev_steal_time_rq += steal;
907 delta -= steal;
909 #endif
911 rq->clock_task += delta;
913 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
914 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
915 sched_rt_avg_update(rq, irq_delta + steal);
916 #endif
919 void sched_set_stop_task(int cpu, struct task_struct *stop)
921 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
922 struct task_struct *old_stop = cpu_rq(cpu)->stop;
924 if (stop) {
926 * Make it appear like a SCHED_FIFO task, its something
927 * userspace knows about and won't get confused about.
929 * Also, it will make PI more or less work without too
930 * much confusion -- but then, stop work should not
931 * rely on PI working anyway.
933 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
935 stop->sched_class = &stop_sched_class;
938 cpu_rq(cpu)->stop = stop;
940 if (old_stop) {
942 * Reset it back to a normal scheduling class so that
943 * it can die in pieces.
945 old_stop->sched_class = &rt_sched_class;
950 * __normal_prio - return the priority that is based on the static prio
952 static inline int __normal_prio(struct task_struct *p)
954 return p->static_prio;
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
964 static inline int normal_prio(struct task_struct *p)
966 int prio;
968 if (task_has_dl_policy(p))
969 prio = MAX_DL_PRIO-1;
970 else if (task_has_rt_policy(p))
971 prio = MAX_RT_PRIO-1 - p->rt_priority;
972 else
973 prio = __normal_prio(p);
974 return prio;
978 * Calculate the current priority, i.e. the priority
979 * taken into account by the scheduler. This value might
980 * be boosted by RT tasks, or might be boosted by
981 * interactivity modifiers. Will be RT if the task got
982 * RT-boosted. If not then it returns p->normal_prio.
984 static int effective_prio(struct task_struct *p)
986 p->normal_prio = normal_prio(p);
988 * If we are RT tasks or we were boosted to RT priority,
989 * keep the priority unchanged. Otherwise, update priority
990 * to the normal priority:
992 if (!rt_prio(p->prio))
993 return p->normal_prio;
994 return p->prio;
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1001 * Return: 1 if the task is currently executing. 0 otherwise.
1003 inline int task_curr(const struct task_struct *p)
1005 return cpu_curr(task_cpu(p)) == p;
1009 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1010 * use the balance_callback list if you want balancing.
1012 * this means any call to check_class_changed() must be followed by a call to
1013 * balance_callback().
1015 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1016 const struct sched_class *prev_class,
1017 int oldprio)
1019 if (prev_class != p->sched_class) {
1020 if (prev_class->switched_from)
1021 prev_class->switched_from(rq, p);
1023 p->sched_class->switched_to(rq, p);
1024 } else if (oldprio != p->prio || dl_task(p))
1025 p->sched_class->prio_changed(rq, p, oldprio);
1028 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1030 const struct sched_class *class;
1032 if (p->sched_class == rq->curr->sched_class) {
1033 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1034 } else {
1035 for_each_class(class) {
1036 if (class == rq->curr->sched_class)
1037 break;
1038 if (class == p->sched_class) {
1039 resched_curr(rq);
1040 break;
1046 * A queue event has occurred, and we're going to schedule. In
1047 * this case, we can save a useless back to back clock update.
1049 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1050 rq_clock_skip_update(rq, true);
1053 #ifdef CONFIG_SMP
1055 * This is how migration works:
1057 * 1) we invoke migration_cpu_stop() on the target CPU using
1058 * stop_one_cpu().
1059 * 2) stopper starts to run (implicitly forcing the migrated thread
1060 * off the CPU)
1061 * 3) it checks whether the migrated task is still in the wrong runqueue.
1062 * 4) if it's in the wrong runqueue then the migration thread removes
1063 * it and puts it into the right queue.
1064 * 5) stopper completes and stop_one_cpu() returns and the migration
1065 * is done.
1069 * move_queued_task - move a queued task to new rq.
1071 * Returns (locked) new rq. Old rq's lock is released.
1073 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1075 lockdep_assert_held(&rq->lock);
1077 dequeue_task(rq, p, 0);
1078 p->on_rq = TASK_ON_RQ_MIGRATING;
1079 set_task_cpu(p, new_cpu);
1080 raw_spin_unlock(&rq->lock);
1082 rq = cpu_rq(new_cpu);
1084 raw_spin_lock(&rq->lock);
1085 BUG_ON(task_cpu(p) != new_cpu);
1086 p->on_rq = TASK_ON_RQ_QUEUED;
1087 enqueue_task(rq, p, 0);
1088 check_preempt_curr(rq, p, 0);
1090 return rq;
1093 struct migration_arg {
1094 struct task_struct *task;
1095 int dest_cpu;
1099 * Move (not current) task off this cpu, onto dest cpu. We're doing
1100 * this because either it can't run here any more (set_cpus_allowed()
1101 * away from this CPU, or CPU going down), or because we're
1102 * attempting to rebalance this task on exec (sched_exec).
1104 * So we race with normal scheduler movements, but that's OK, as long
1105 * as the task is no longer on this CPU.
1107 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1109 if (unlikely(!cpu_active(dest_cpu)))
1110 return rq;
1112 /* Affinity changed (again). */
1113 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1114 return rq;
1116 rq = move_queued_task(rq, p, dest_cpu);
1118 return rq;
1122 * migration_cpu_stop - this will be executed by a highprio stopper thread
1123 * and performs thread migration by bumping thread off CPU then
1124 * 'pushing' onto another runqueue.
1126 static int migration_cpu_stop(void *data)
1128 struct migration_arg *arg = data;
1129 struct task_struct *p = arg->task;
1130 struct rq *rq = this_rq();
1133 * The original target cpu might have gone down and we might
1134 * be on another cpu but it doesn't matter.
1136 local_irq_disable();
1138 * We need to explicitly wake pending tasks before running
1139 * __migrate_task() such that we will not miss enforcing cpus_allowed
1140 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1142 sched_ttwu_pending();
1144 raw_spin_lock(&p->pi_lock);
1145 raw_spin_lock(&rq->lock);
1147 * If task_rq(p) != rq, it cannot be migrated here, because we're
1148 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1149 * we're holding p->pi_lock.
1151 if (task_rq(p) == rq && task_on_rq_queued(p))
1152 rq = __migrate_task(rq, p, arg->dest_cpu);
1153 raw_spin_unlock(&rq->lock);
1154 raw_spin_unlock(&p->pi_lock);
1156 local_irq_enable();
1157 return 0;
1161 * sched_class::set_cpus_allowed must do the below, but is not required to
1162 * actually call this function.
1164 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1166 cpumask_copy(&p->cpus_allowed, new_mask);
1167 p->nr_cpus_allowed = cpumask_weight(new_mask);
1170 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1172 struct rq *rq = task_rq(p);
1173 bool queued, running;
1175 lockdep_assert_held(&p->pi_lock);
1177 queued = task_on_rq_queued(p);
1178 running = task_current(rq, p);
1180 if (queued) {
1182 * Because __kthread_bind() calls this on blocked tasks without
1183 * holding rq->lock.
1185 lockdep_assert_held(&rq->lock);
1186 dequeue_task(rq, p, DEQUEUE_SAVE);
1188 if (running)
1189 put_prev_task(rq, p);
1191 p->sched_class->set_cpus_allowed(p, new_mask);
1193 if (running)
1194 p->sched_class->set_curr_task(rq);
1195 if (queued)
1196 enqueue_task(rq, p, ENQUEUE_RESTORE);
1200 * Change a given task's CPU affinity. Migrate the thread to a
1201 * proper CPU and schedule it away if the CPU it's executing on
1202 * is removed from the allowed bitmask.
1204 * NOTE: the caller must have a valid reference to the task, the
1205 * task must not exit() & deallocate itself prematurely. The
1206 * call is not atomic; no spinlocks may be held.
1208 static int __set_cpus_allowed_ptr(struct task_struct *p,
1209 const struct cpumask *new_mask, bool check)
1211 unsigned long flags;
1212 struct rq *rq;
1213 unsigned int dest_cpu;
1214 int ret = 0;
1216 rq = task_rq_lock(p, &flags);
1219 * Must re-check here, to close a race against __kthread_bind(),
1220 * sched_setaffinity() is not guaranteed to observe the flag.
1222 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1223 ret = -EINVAL;
1224 goto out;
1227 if (cpumask_equal(&p->cpus_allowed, new_mask))
1228 goto out;
1230 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1231 ret = -EINVAL;
1232 goto out;
1235 do_set_cpus_allowed(p, new_mask);
1237 /* Can the task run on the task's current CPU? If so, we're done */
1238 if (cpumask_test_cpu(task_cpu(p), new_mask))
1239 goto out;
1241 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1242 if (task_running(rq, p) || p->state == TASK_WAKING) {
1243 struct migration_arg arg = { p, dest_cpu };
1244 /* Need help from migration thread: drop lock and wait. */
1245 task_rq_unlock(rq, p, &flags);
1246 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1247 tlb_migrate_finish(p->mm);
1248 return 0;
1249 } else if (task_on_rq_queued(p)) {
1251 * OK, since we're going to drop the lock immediately
1252 * afterwards anyway.
1254 lockdep_unpin_lock(&rq->lock);
1255 rq = move_queued_task(rq, p, dest_cpu);
1256 lockdep_pin_lock(&rq->lock);
1258 out:
1259 task_rq_unlock(rq, p, &flags);
1261 return ret;
1264 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1266 return __set_cpus_allowed_ptr(p, new_mask, false);
1268 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1270 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1272 #ifdef CONFIG_SCHED_DEBUG
1274 * We should never call set_task_cpu() on a blocked task,
1275 * ttwu() will sort out the placement.
1277 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1278 !p->on_rq);
1280 #ifdef CONFIG_LOCKDEP
1282 * The caller should hold either p->pi_lock or rq->lock, when changing
1283 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1285 * sched_move_task() holds both and thus holding either pins the cgroup,
1286 * see task_group().
1288 * Furthermore, all task_rq users should acquire both locks, see
1289 * task_rq_lock().
1291 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1292 lockdep_is_held(&task_rq(p)->lock)));
1293 #endif
1294 #endif
1296 trace_sched_migrate_task(p, new_cpu);
1298 if (task_cpu(p) != new_cpu) {
1299 if (p->sched_class->migrate_task_rq)
1300 p->sched_class->migrate_task_rq(p);
1301 p->se.nr_migrations++;
1302 perf_event_task_migrate(p);
1305 __set_task_cpu(p, new_cpu);
1308 static void __migrate_swap_task(struct task_struct *p, int cpu)
1310 if (task_on_rq_queued(p)) {
1311 struct rq *src_rq, *dst_rq;
1313 src_rq = task_rq(p);
1314 dst_rq = cpu_rq(cpu);
1316 deactivate_task(src_rq, p, 0);
1317 set_task_cpu(p, cpu);
1318 activate_task(dst_rq, p, 0);
1319 check_preempt_curr(dst_rq, p, 0);
1320 } else {
1322 * Task isn't running anymore; make it appear like we migrated
1323 * it before it went to sleep. This means on wakeup we make the
1324 * previous cpu our targer instead of where it really is.
1326 p->wake_cpu = cpu;
1330 struct migration_swap_arg {
1331 struct task_struct *src_task, *dst_task;
1332 int src_cpu, dst_cpu;
1335 static int migrate_swap_stop(void *data)
1337 struct migration_swap_arg *arg = data;
1338 struct rq *src_rq, *dst_rq;
1339 int ret = -EAGAIN;
1341 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1342 return -EAGAIN;
1344 src_rq = cpu_rq(arg->src_cpu);
1345 dst_rq = cpu_rq(arg->dst_cpu);
1347 double_raw_lock(&arg->src_task->pi_lock,
1348 &arg->dst_task->pi_lock);
1349 double_rq_lock(src_rq, dst_rq);
1351 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1352 goto unlock;
1354 if (task_cpu(arg->src_task) != arg->src_cpu)
1355 goto unlock;
1357 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1358 goto unlock;
1360 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1361 goto unlock;
1363 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1364 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1366 ret = 0;
1368 unlock:
1369 double_rq_unlock(src_rq, dst_rq);
1370 raw_spin_unlock(&arg->dst_task->pi_lock);
1371 raw_spin_unlock(&arg->src_task->pi_lock);
1373 return ret;
1377 * Cross migrate two tasks
1379 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1381 struct migration_swap_arg arg;
1382 int ret = -EINVAL;
1384 arg = (struct migration_swap_arg){
1385 .src_task = cur,
1386 .src_cpu = task_cpu(cur),
1387 .dst_task = p,
1388 .dst_cpu = task_cpu(p),
1391 if (arg.src_cpu == arg.dst_cpu)
1392 goto out;
1395 * These three tests are all lockless; this is OK since all of them
1396 * will be re-checked with proper locks held further down the line.
1398 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1399 goto out;
1401 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1402 goto out;
1404 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1405 goto out;
1407 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1408 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1410 out:
1411 return ret;
1415 * wait_task_inactive - wait for a thread to unschedule.
1417 * If @match_state is nonzero, it's the @p->state value just checked and
1418 * not expected to change. If it changes, i.e. @p might have woken up,
1419 * then return zero. When we succeed in waiting for @p to be off its CPU,
1420 * we return a positive number (its total switch count). If a second call
1421 * a short while later returns the same number, the caller can be sure that
1422 * @p has remained unscheduled the whole time.
1424 * The caller must ensure that the task *will* unschedule sometime soon,
1425 * else this function might spin for a *long* time. This function can't
1426 * be called with interrupts off, or it may introduce deadlock with
1427 * smp_call_function() if an IPI is sent by the same process we are
1428 * waiting to become inactive.
1430 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1432 unsigned long flags;
1433 int running, queued;
1434 unsigned long ncsw;
1435 struct rq *rq;
1437 for (;;) {
1439 * We do the initial early heuristics without holding
1440 * any task-queue locks at all. We'll only try to get
1441 * the runqueue lock when things look like they will
1442 * work out!
1444 rq = task_rq(p);
1447 * If the task is actively running on another CPU
1448 * still, just relax and busy-wait without holding
1449 * any locks.
1451 * NOTE! Since we don't hold any locks, it's not
1452 * even sure that "rq" stays as the right runqueue!
1453 * But we don't care, since "task_running()" will
1454 * return false if the runqueue has changed and p
1455 * is actually now running somewhere else!
1457 while (task_running(rq, p)) {
1458 if (match_state && unlikely(p->state != match_state))
1459 return 0;
1460 cpu_relax();
1464 * Ok, time to look more closely! We need the rq
1465 * lock now, to be *sure*. If we're wrong, we'll
1466 * just go back and repeat.
1468 rq = task_rq_lock(p, &flags);
1469 trace_sched_wait_task(p);
1470 running = task_running(rq, p);
1471 queued = task_on_rq_queued(p);
1472 ncsw = 0;
1473 if (!match_state || p->state == match_state)
1474 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1475 task_rq_unlock(rq, p, &flags);
1478 * If it changed from the expected state, bail out now.
1480 if (unlikely(!ncsw))
1481 break;
1484 * Was it really running after all now that we
1485 * checked with the proper locks actually held?
1487 * Oops. Go back and try again..
1489 if (unlikely(running)) {
1490 cpu_relax();
1491 continue;
1495 * It's not enough that it's not actively running,
1496 * it must be off the runqueue _entirely_, and not
1497 * preempted!
1499 * So if it was still runnable (but just not actively
1500 * running right now), it's preempted, and we should
1501 * yield - it could be a while.
1503 if (unlikely(queued)) {
1504 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1506 set_current_state(TASK_UNINTERRUPTIBLE);
1507 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1508 continue;
1512 * Ahh, all good. It wasn't running, and it wasn't
1513 * runnable, which means that it will never become
1514 * running in the future either. We're all done!
1516 break;
1519 return ncsw;
1522 /***
1523 * kick_process - kick a running thread to enter/exit the kernel
1524 * @p: the to-be-kicked thread
1526 * Cause a process which is running on another CPU to enter
1527 * kernel-mode, without any delay. (to get signals handled.)
1529 * NOTE: this function doesn't have to take the runqueue lock,
1530 * because all it wants to ensure is that the remote task enters
1531 * the kernel. If the IPI races and the task has been migrated
1532 * to another CPU then no harm is done and the purpose has been
1533 * achieved as well.
1535 void kick_process(struct task_struct *p)
1537 int cpu;
1539 preempt_disable();
1540 cpu = task_cpu(p);
1541 if ((cpu != smp_processor_id()) && task_curr(p))
1542 smp_send_reschedule(cpu);
1543 preempt_enable();
1545 EXPORT_SYMBOL_GPL(kick_process);
1548 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1550 static int select_fallback_rq(int cpu, struct task_struct *p)
1552 int nid = cpu_to_node(cpu);
1553 const struct cpumask *nodemask = NULL;
1554 enum { cpuset, possible, fail } state = cpuset;
1555 int dest_cpu;
1558 * If the node that the cpu is on has been offlined, cpu_to_node()
1559 * will return -1. There is no cpu on the node, and we should
1560 * select the cpu on the other node.
1562 if (nid != -1) {
1563 nodemask = cpumask_of_node(nid);
1565 /* Look for allowed, online CPU in same node. */
1566 for_each_cpu(dest_cpu, nodemask) {
1567 if (!cpu_online(dest_cpu))
1568 continue;
1569 if (!cpu_active(dest_cpu))
1570 continue;
1571 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1572 return dest_cpu;
1576 for (;;) {
1577 /* Any allowed, online CPU? */
1578 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1579 if (!cpu_online(dest_cpu))
1580 continue;
1581 if (!cpu_active(dest_cpu))
1582 continue;
1583 goto out;
1586 /* No more Mr. Nice Guy. */
1587 switch (state) {
1588 case cpuset:
1589 if (IS_ENABLED(CONFIG_CPUSETS)) {
1590 cpuset_cpus_allowed_fallback(p);
1591 state = possible;
1592 break;
1594 /* fall-through */
1595 case possible:
1596 do_set_cpus_allowed(p, cpu_possible_mask);
1597 state = fail;
1598 break;
1600 case fail:
1601 BUG();
1602 break;
1606 out:
1607 if (state != cpuset) {
1609 * Don't tell them about moving exiting tasks or
1610 * kernel threads (both mm NULL), since they never
1611 * leave kernel.
1613 if (p->mm && printk_ratelimit()) {
1614 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1615 task_pid_nr(p), p->comm, cpu);
1619 return dest_cpu;
1623 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1625 static inline
1626 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1628 lockdep_assert_held(&p->pi_lock);
1630 if (p->nr_cpus_allowed > 1)
1631 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1634 * In order not to call set_task_cpu() on a blocking task we need
1635 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1636 * cpu.
1638 * Since this is common to all placement strategies, this lives here.
1640 * [ this allows ->select_task() to simply return task_cpu(p) and
1641 * not worry about this generic constraint ]
1643 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1644 !cpu_online(cpu)))
1645 cpu = select_fallback_rq(task_cpu(p), p);
1647 return cpu;
1650 static void update_avg(u64 *avg, u64 sample)
1652 s64 diff = sample - *avg;
1653 *avg += diff >> 3;
1656 #else
1658 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1659 const struct cpumask *new_mask, bool check)
1661 return set_cpus_allowed_ptr(p, new_mask);
1664 #endif /* CONFIG_SMP */
1666 static void
1667 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1669 #ifdef CONFIG_SCHEDSTATS
1670 struct rq *rq = this_rq();
1672 #ifdef CONFIG_SMP
1673 int this_cpu = smp_processor_id();
1675 if (cpu == this_cpu) {
1676 schedstat_inc(rq, ttwu_local);
1677 schedstat_inc(p, se.statistics.nr_wakeups_local);
1678 } else {
1679 struct sched_domain *sd;
1681 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1682 rcu_read_lock();
1683 for_each_domain(this_cpu, sd) {
1684 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1685 schedstat_inc(sd, ttwu_wake_remote);
1686 break;
1689 rcu_read_unlock();
1692 if (wake_flags & WF_MIGRATED)
1693 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1695 #endif /* CONFIG_SMP */
1697 schedstat_inc(rq, ttwu_count);
1698 schedstat_inc(p, se.statistics.nr_wakeups);
1700 if (wake_flags & WF_SYNC)
1701 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1703 #endif /* CONFIG_SCHEDSTATS */
1706 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1708 activate_task(rq, p, en_flags);
1709 p->on_rq = TASK_ON_RQ_QUEUED;
1711 /* if a worker is waking up, notify workqueue */
1712 if (p->flags & PF_WQ_WORKER)
1713 wq_worker_waking_up(p, cpu_of(rq));
1717 * Mark the task runnable and perform wakeup-preemption.
1719 static void
1720 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1722 check_preempt_curr(rq, p, wake_flags);
1723 p->state = TASK_RUNNING;
1724 trace_sched_wakeup(p);
1726 #ifdef CONFIG_SMP
1727 if (p->sched_class->task_woken) {
1729 * Our task @p is fully woken up and running; so its safe to
1730 * drop the rq->lock, hereafter rq is only used for statistics.
1732 lockdep_unpin_lock(&rq->lock);
1733 p->sched_class->task_woken(rq, p);
1734 lockdep_pin_lock(&rq->lock);
1737 if (rq->idle_stamp) {
1738 u64 delta = rq_clock(rq) - rq->idle_stamp;
1739 u64 max = 2*rq->max_idle_balance_cost;
1741 update_avg(&rq->avg_idle, delta);
1743 if (rq->avg_idle > max)
1744 rq->avg_idle = max;
1746 rq->idle_stamp = 0;
1748 #endif
1751 static void
1752 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1754 lockdep_assert_held(&rq->lock);
1756 #ifdef CONFIG_SMP
1757 if (p->sched_contributes_to_load)
1758 rq->nr_uninterruptible--;
1759 #endif
1761 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1762 ttwu_do_wakeup(rq, p, wake_flags);
1766 * Called in case the task @p isn't fully descheduled from its runqueue,
1767 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1768 * since all we need to do is flip p->state to TASK_RUNNING, since
1769 * the task is still ->on_rq.
1771 static int ttwu_remote(struct task_struct *p, int wake_flags)
1773 struct rq *rq;
1774 int ret = 0;
1776 rq = __task_rq_lock(p);
1777 if (task_on_rq_queued(p)) {
1778 /* check_preempt_curr() may use rq clock */
1779 update_rq_clock(rq);
1780 ttwu_do_wakeup(rq, p, wake_flags);
1781 ret = 1;
1783 __task_rq_unlock(rq);
1785 return ret;
1788 #ifdef CONFIG_SMP
1789 void sched_ttwu_pending(void)
1791 struct rq *rq = this_rq();
1792 struct llist_node *llist = llist_del_all(&rq->wake_list);
1793 struct task_struct *p;
1794 unsigned long flags;
1796 if (!llist)
1797 return;
1799 raw_spin_lock_irqsave(&rq->lock, flags);
1800 lockdep_pin_lock(&rq->lock);
1802 while (llist) {
1803 p = llist_entry(llist, struct task_struct, wake_entry);
1804 llist = llist_next(llist);
1805 ttwu_do_activate(rq, p, 0);
1808 lockdep_unpin_lock(&rq->lock);
1809 raw_spin_unlock_irqrestore(&rq->lock, flags);
1812 void scheduler_ipi(void)
1815 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1816 * TIF_NEED_RESCHED remotely (for the first time) will also send
1817 * this IPI.
1819 preempt_fold_need_resched();
1821 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1822 return;
1825 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1826 * traditionally all their work was done from the interrupt return
1827 * path. Now that we actually do some work, we need to make sure
1828 * we do call them.
1830 * Some archs already do call them, luckily irq_enter/exit nest
1831 * properly.
1833 * Arguably we should visit all archs and update all handlers,
1834 * however a fair share of IPIs are still resched only so this would
1835 * somewhat pessimize the simple resched case.
1837 irq_enter();
1838 sched_ttwu_pending();
1841 * Check if someone kicked us for doing the nohz idle load balance.
1843 if (unlikely(got_nohz_idle_kick())) {
1844 this_rq()->idle_balance = 1;
1845 raise_softirq_irqoff(SCHED_SOFTIRQ);
1847 irq_exit();
1850 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1852 struct rq *rq = cpu_rq(cpu);
1854 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1855 if (!set_nr_if_polling(rq->idle))
1856 smp_send_reschedule(cpu);
1857 else
1858 trace_sched_wake_idle_without_ipi(cpu);
1862 void wake_up_if_idle(int cpu)
1864 struct rq *rq = cpu_rq(cpu);
1865 unsigned long flags;
1867 rcu_read_lock();
1869 if (!is_idle_task(rcu_dereference(rq->curr)))
1870 goto out;
1872 if (set_nr_if_polling(rq->idle)) {
1873 trace_sched_wake_idle_without_ipi(cpu);
1874 } else {
1875 raw_spin_lock_irqsave(&rq->lock, flags);
1876 if (is_idle_task(rq->curr))
1877 smp_send_reschedule(cpu);
1878 /* Else cpu is not in idle, do nothing here */
1879 raw_spin_unlock_irqrestore(&rq->lock, flags);
1882 out:
1883 rcu_read_unlock();
1886 bool cpus_share_cache(int this_cpu, int that_cpu)
1888 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1890 #endif /* CONFIG_SMP */
1892 static void ttwu_queue(struct task_struct *p, int cpu)
1894 struct rq *rq = cpu_rq(cpu);
1896 #if defined(CONFIG_SMP)
1897 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1898 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1899 ttwu_queue_remote(p, cpu);
1900 return;
1902 #endif
1904 raw_spin_lock(&rq->lock);
1905 lockdep_pin_lock(&rq->lock);
1906 ttwu_do_activate(rq, p, 0);
1907 lockdep_unpin_lock(&rq->lock);
1908 raw_spin_unlock(&rq->lock);
1912 * try_to_wake_up - wake up a thread
1913 * @p: the thread to be awakened
1914 * @state: the mask of task states that can be woken
1915 * @wake_flags: wake modifier flags (WF_*)
1917 * Put it on the run-queue if it's not already there. The "current"
1918 * thread is always on the run-queue (except when the actual
1919 * re-schedule is in progress), and as such you're allowed to do
1920 * the simpler "current->state = TASK_RUNNING" to mark yourself
1921 * runnable without the overhead of this.
1923 * Return: %true if @p was woken up, %false if it was already running.
1924 * or @state didn't match @p's state.
1926 static int
1927 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1929 unsigned long flags;
1930 int cpu, success = 0;
1933 * If we are going to wake up a thread waiting for CONDITION we
1934 * need to ensure that CONDITION=1 done by the caller can not be
1935 * reordered with p->state check below. This pairs with mb() in
1936 * set_current_state() the waiting thread does.
1938 smp_mb__before_spinlock();
1939 raw_spin_lock_irqsave(&p->pi_lock, flags);
1940 if (!(p->state & state))
1941 goto out;
1943 trace_sched_waking(p);
1945 success = 1; /* we're going to change ->state */
1946 cpu = task_cpu(p);
1949 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1950 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1951 * in smp_cond_load_acquire() below.
1953 * sched_ttwu_pending() try_to_wake_up()
1954 * [S] p->on_rq = 1; [L] P->state
1955 * UNLOCK rq->lock -----.
1957 * +--- RMB
1958 * schedule() /
1959 * LOCK rq->lock -----'
1960 * UNLOCK rq->lock
1962 * [task p]
1963 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1965 * Pairs with the UNLOCK+LOCK on rq->lock from the
1966 * last wakeup of our task and the schedule that got our task
1967 * current.
1969 smp_rmb();
1970 if (p->on_rq && ttwu_remote(p, wake_flags))
1971 goto stat;
1973 #ifdef CONFIG_SMP
1975 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1976 * possible to, falsely, observe p->on_cpu == 0.
1978 * One must be running (->on_cpu == 1) in order to remove oneself
1979 * from the runqueue.
1981 * [S] ->on_cpu = 1; [L] ->on_rq
1982 * UNLOCK rq->lock
1983 * RMB
1984 * LOCK rq->lock
1985 * [S] ->on_rq = 0; [L] ->on_cpu
1987 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1988 * from the consecutive calls to schedule(); the first switching to our
1989 * task, the second putting it to sleep.
1991 smp_rmb();
1994 * If the owning (remote) cpu is still in the middle of schedule() with
1995 * this task as prev, wait until its done referencing the task.
1997 while (p->on_cpu)
1998 cpu_relax();
2000 * Combined with the control dependency above, we have an effective
2001 * smp_load_acquire() without the need for full barriers.
2003 * Pairs with the smp_store_release() in finish_lock_switch().
2005 * This ensures that tasks getting woken will be fully ordered against
2006 * their previous state and preserve Program Order.
2008 smp_rmb();
2010 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2011 p->state = TASK_WAKING;
2013 if (p->sched_class->task_waking)
2014 p->sched_class->task_waking(p);
2016 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2017 if (task_cpu(p) != cpu) {
2018 wake_flags |= WF_MIGRATED;
2019 set_task_cpu(p, cpu);
2021 #endif /* CONFIG_SMP */
2023 ttwu_queue(p, cpu);
2024 stat:
2025 ttwu_stat(p, cpu, wake_flags);
2026 out:
2027 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2029 return success;
2033 * try_to_wake_up_local - try to wake up a local task with rq lock held
2034 * @p: the thread to be awakened
2036 * Put @p on the run-queue if it's not already there. The caller must
2037 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2038 * the current task.
2040 static void try_to_wake_up_local(struct task_struct *p)
2042 struct rq *rq = task_rq(p);
2044 if (WARN_ON_ONCE(rq != this_rq()) ||
2045 WARN_ON_ONCE(p == current))
2046 return;
2048 lockdep_assert_held(&rq->lock);
2050 if (!raw_spin_trylock(&p->pi_lock)) {
2052 * This is OK, because current is on_cpu, which avoids it being
2053 * picked for load-balance and preemption/IRQs are still
2054 * disabled avoiding further scheduler activity on it and we've
2055 * not yet picked a replacement task.
2057 lockdep_unpin_lock(&rq->lock);
2058 raw_spin_unlock(&rq->lock);
2059 raw_spin_lock(&p->pi_lock);
2060 raw_spin_lock(&rq->lock);
2061 lockdep_pin_lock(&rq->lock);
2064 if (!(p->state & TASK_NORMAL))
2065 goto out;
2067 trace_sched_waking(p);
2069 if (!task_on_rq_queued(p))
2070 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2072 ttwu_do_wakeup(rq, p, 0);
2073 ttwu_stat(p, smp_processor_id(), 0);
2074 out:
2075 raw_spin_unlock(&p->pi_lock);
2079 * wake_up_process - Wake up a specific process
2080 * @p: The process to be woken up.
2082 * Attempt to wake up the nominated process and move it to the set of runnable
2083 * processes.
2085 * Return: 1 if the process was woken up, 0 if it was already running.
2087 * It may be assumed that this function implies a write memory barrier before
2088 * changing the task state if and only if any tasks are woken up.
2090 int wake_up_process(struct task_struct *p)
2092 return try_to_wake_up(p, TASK_NORMAL, 0);
2094 EXPORT_SYMBOL(wake_up_process);
2096 int wake_up_state(struct task_struct *p, unsigned int state)
2098 return try_to_wake_up(p, state, 0);
2102 * This function clears the sched_dl_entity static params.
2104 void __dl_clear_params(struct task_struct *p)
2106 struct sched_dl_entity *dl_se = &p->dl;
2108 dl_se->dl_runtime = 0;
2109 dl_se->dl_deadline = 0;
2110 dl_se->dl_period = 0;
2111 dl_se->flags = 0;
2112 dl_se->dl_bw = 0;
2113 dl_se->dl_density = 0;
2115 dl_se->dl_throttled = 0;
2116 dl_se->dl_new = 1;
2117 dl_se->dl_yielded = 0;
2121 * Perform scheduler related setup for a newly forked process p.
2122 * p is forked by current.
2124 * __sched_fork() is basic setup used by init_idle() too:
2126 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2128 p->on_rq = 0;
2130 p->se.on_rq = 0;
2131 p->se.exec_start = 0;
2132 p->se.sum_exec_runtime = 0;
2133 p->se.prev_sum_exec_runtime = 0;
2134 p->se.nr_migrations = 0;
2135 p->se.vruntime = 0;
2136 INIT_LIST_HEAD(&p->se.group_node);
2138 #ifdef CONFIG_SCHEDSTATS
2139 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2140 #endif
2142 RB_CLEAR_NODE(&p->dl.rb_node);
2143 init_dl_task_timer(&p->dl);
2144 __dl_clear_params(p);
2146 INIT_LIST_HEAD(&p->rt.run_list);
2148 #ifdef CONFIG_PREEMPT_NOTIFIERS
2149 INIT_HLIST_HEAD(&p->preempt_notifiers);
2150 #endif
2152 #ifdef CONFIG_NUMA_BALANCING
2153 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2154 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2155 p->mm->numa_scan_seq = 0;
2158 if (clone_flags & CLONE_VM)
2159 p->numa_preferred_nid = current->numa_preferred_nid;
2160 else
2161 p->numa_preferred_nid = -1;
2163 p->node_stamp = 0ULL;
2164 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2165 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2166 p->numa_work.next = &p->numa_work;
2167 p->numa_faults = NULL;
2168 p->last_task_numa_placement = 0;
2169 p->last_sum_exec_runtime = 0;
2171 p->numa_group = NULL;
2172 #endif /* CONFIG_NUMA_BALANCING */
2175 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2177 #ifdef CONFIG_NUMA_BALANCING
2179 void set_numabalancing_state(bool enabled)
2181 if (enabled)
2182 static_branch_enable(&sched_numa_balancing);
2183 else
2184 static_branch_disable(&sched_numa_balancing);
2187 #ifdef CONFIG_PROC_SYSCTL
2188 int sysctl_numa_balancing(struct ctl_table *table, int write,
2189 void __user *buffer, size_t *lenp, loff_t *ppos)
2191 struct ctl_table t;
2192 int err;
2193 int state = static_branch_likely(&sched_numa_balancing);
2195 if (write && !capable(CAP_SYS_ADMIN))
2196 return -EPERM;
2198 t = *table;
2199 t.data = &state;
2200 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2201 if (err < 0)
2202 return err;
2203 if (write)
2204 set_numabalancing_state(state);
2205 return err;
2207 #endif
2208 #endif
2211 * fork()/clone()-time setup:
2213 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2215 unsigned long flags;
2216 int cpu = get_cpu();
2218 __sched_fork(clone_flags, p);
2220 * We mark the process as running here. This guarantees that
2221 * nobody will actually run it, and a signal or other external
2222 * event cannot wake it up and insert it on the runqueue either.
2224 p->state = TASK_RUNNING;
2227 * Make sure we do not leak PI boosting priority to the child.
2229 p->prio = current->normal_prio;
2232 * Revert to default priority/policy on fork if requested.
2234 if (unlikely(p->sched_reset_on_fork)) {
2235 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2236 p->policy = SCHED_NORMAL;
2237 p->static_prio = NICE_TO_PRIO(0);
2238 p->rt_priority = 0;
2239 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2240 p->static_prio = NICE_TO_PRIO(0);
2242 p->prio = p->normal_prio = __normal_prio(p);
2243 set_load_weight(p);
2246 * We don't need the reset flag anymore after the fork. It has
2247 * fulfilled its duty:
2249 p->sched_reset_on_fork = 0;
2252 if (dl_prio(p->prio)) {
2253 put_cpu();
2254 return -EAGAIN;
2255 } else if (rt_prio(p->prio)) {
2256 p->sched_class = &rt_sched_class;
2257 } else {
2258 p->sched_class = &fair_sched_class;
2261 if (p->sched_class->task_fork)
2262 p->sched_class->task_fork(p);
2265 * The child is not yet in the pid-hash so no cgroup attach races,
2266 * and the cgroup is pinned to this child due to cgroup_fork()
2267 * is ran before sched_fork().
2269 * Silence PROVE_RCU.
2271 raw_spin_lock_irqsave(&p->pi_lock, flags);
2272 set_task_cpu(p, cpu);
2273 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2275 #ifdef CONFIG_SCHED_INFO
2276 if (likely(sched_info_on()))
2277 memset(&p->sched_info, 0, sizeof(p->sched_info));
2278 #endif
2279 #if defined(CONFIG_SMP)
2280 p->on_cpu = 0;
2281 #endif
2282 init_task_preempt_count(p);
2283 #ifdef CONFIG_SMP
2284 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2285 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2286 #endif
2288 put_cpu();
2289 return 0;
2292 unsigned long to_ratio(u64 period, u64 runtime)
2294 if (runtime == RUNTIME_INF)
2295 return 1ULL << 20;
2298 * Doing this here saves a lot of checks in all
2299 * the calling paths, and returning zero seems
2300 * safe for them anyway.
2302 if (period == 0)
2303 return 0;
2305 return div64_u64(runtime << 20, period);
2308 #ifdef CONFIG_SMP
2309 inline struct dl_bw *dl_bw_of(int i)
2311 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2312 "sched RCU must be held");
2313 return &cpu_rq(i)->rd->dl_bw;
2316 static inline int dl_bw_cpus(int i)
2318 struct root_domain *rd = cpu_rq(i)->rd;
2319 int cpus = 0;
2321 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2322 "sched RCU must be held");
2323 for_each_cpu_and(i, rd->span, cpu_active_mask)
2324 cpus++;
2326 return cpus;
2328 #else
2329 inline struct dl_bw *dl_bw_of(int i)
2331 return &cpu_rq(i)->dl.dl_bw;
2334 static inline int dl_bw_cpus(int i)
2336 return 1;
2338 #endif
2341 * We must be sure that accepting a new task (or allowing changing the
2342 * parameters of an existing one) is consistent with the bandwidth
2343 * constraints. If yes, this function also accordingly updates the currently
2344 * allocated bandwidth to reflect the new situation.
2346 * This function is called while holding p's rq->lock.
2348 * XXX we should delay bw change until the task's 0-lag point, see
2349 * __setparam_dl().
2351 static int dl_overflow(struct task_struct *p, int policy,
2352 const struct sched_attr *attr)
2355 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2356 u64 period = attr->sched_period ?: attr->sched_deadline;
2357 u64 runtime = attr->sched_runtime;
2358 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2359 int cpus, err = -1;
2361 if (new_bw == p->dl.dl_bw)
2362 return 0;
2365 * Either if a task, enters, leave, or stays -deadline but changes
2366 * its parameters, we may need to update accordingly the total
2367 * allocated bandwidth of the container.
2369 raw_spin_lock(&dl_b->lock);
2370 cpus = dl_bw_cpus(task_cpu(p));
2371 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2372 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2373 __dl_add(dl_b, new_bw);
2374 err = 0;
2375 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2376 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2377 __dl_clear(dl_b, p->dl.dl_bw);
2378 __dl_add(dl_b, new_bw);
2379 err = 0;
2380 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2381 __dl_clear(dl_b, p->dl.dl_bw);
2382 err = 0;
2384 raw_spin_unlock(&dl_b->lock);
2386 return err;
2389 extern void init_dl_bw(struct dl_bw *dl_b);
2392 * wake_up_new_task - wake up a newly created task for the first time.
2394 * This function will do some initial scheduler statistics housekeeping
2395 * that must be done for every newly created context, then puts the task
2396 * on the runqueue and wakes it.
2398 void wake_up_new_task(struct task_struct *p)
2400 unsigned long flags;
2401 struct rq *rq;
2403 raw_spin_lock_irqsave(&p->pi_lock, flags);
2404 /* Initialize new task's runnable average */
2405 init_entity_runnable_average(&p->se);
2406 #ifdef CONFIG_SMP
2408 * Fork balancing, do it here and not earlier because:
2409 * - cpus_allowed can change in the fork path
2410 * - any previously selected cpu might disappear through hotplug
2412 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2413 #endif
2415 rq = __task_rq_lock(p);
2416 activate_task(rq, p, 0);
2417 p->on_rq = TASK_ON_RQ_QUEUED;
2418 trace_sched_wakeup_new(p);
2419 check_preempt_curr(rq, p, WF_FORK);
2420 #ifdef CONFIG_SMP
2421 if (p->sched_class->task_woken) {
2423 * Nothing relies on rq->lock after this, so its fine to
2424 * drop it.
2426 lockdep_unpin_lock(&rq->lock);
2427 p->sched_class->task_woken(rq, p);
2428 lockdep_pin_lock(&rq->lock);
2430 #endif
2431 task_rq_unlock(rq, p, &flags);
2434 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2438 void preempt_notifier_inc(void)
2440 static_key_slow_inc(&preempt_notifier_key);
2442 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444 void preempt_notifier_dec(void)
2446 static_key_slow_dec(&preempt_notifier_key);
2448 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2451 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2452 * @notifier: notifier struct to register
2454 void preempt_notifier_register(struct preempt_notifier *notifier)
2456 if (!static_key_false(&preempt_notifier_key))
2457 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2464 * preempt_notifier_unregister - no longer interested in preemption notifications
2465 * @notifier: notifier struct to unregister
2467 * This is *not* safe to call from within a preemption notifier.
2469 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471 hlist_del(&notifier->link);
2473 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 struct preempt_notifier *notifier;
2479 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2480 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2483 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485 if (static_key_false(&preempt_notifier_key))
2486 __fire_sched_in_preempt_notifiers(curr);
2489 static void
2490 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2491 struct task_struct *next)
2493 struct preempt_notifier *notifier;
2495 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2496 notifier->ops->sched_out(notifier, next);
2499 static __always_inline void
2500 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2501 struct task_struct *next)
2503 if (static_key_false(&preempt_notifier_key))
2504 __fire_sched_out_preempt_notifiers(curr, next);
2507 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 static inline void
2514 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2515 struct task_struct *next)
2519 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 * prepare_task_switch - prepare to switch tasks
2523 * @rq: the runqueue preparing to switch
2524 * @prev: the current task that is being switched out
2525 * @next: the task we are going to switch to.
2527 * This is called with the rq lock held and interrupts off. It must
2528 * be paired with a subsequent finish_task_switch after the context
2529 * switch.
2531 * prepare_task_switch sets up locking and calls architecture specific
2532 * hooks.
2534 static inline void
2535 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2536 struct task_struct *next)
2538 sched_info_switch(rq, prev, next);
2539 perf_event_task_sched_out(prev, next);
2540 fire_sched_out_preempt_notifiers(prev, next);
2541 prepare_lock_switch(rq, next);
2542 prepare_arch_switch(next);
2546 * finish_task_switch - clean up after a task-switch
2547 * @prev: the thread we just switched away from.
2549 * finish_task_switch must be called after the context switch, paired
2550 * with a prepare_task_switch call before the context switch.
2551 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2552 * and do any other architecture-specific cleanup actions.
2554 * Note that we may have delayed dropping an mm in context_switch(). If
2555 * so, we finish that here outside of the runqueue lock. (Doing it
2556 * with the lock held can cause deadlocks; see schedule() for
2557 * details.)
2559 * The context switch have flipped the stack from under us and restored the
2560 * local variables which were saved when this task called schedule() in the
2561 * past. prev == current is still correct but we need to recalculate this_rq
2562 * because prev may have moved to another CPU.
2564 static struct rq *finish_task_switch(struct task_struct *prev)
2565 __releases(rq->lock)
2567 struct rq *rq = this_rq();
2568 struct mm_struct *mm = rq->prev_mm;
2569 long prev_state;
2572 * The previous task will have left us with a preempt_count of 2
2573 * because it left us after:
2575 * schedule()
2576 * preempt_disable(); // 1
2577 * __schedule()
2578 * raw_spin_lock_irq(&rq->lock) // 2
2580 * Also, see FORK_PREEMPT_COUNT.
2582 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2583 "corrupted preempt_count: %s/%d/0x%x\n",
2584 current->comm, current->pid, preempt_count()))
2585 preempt_count_set(FORK_PREEMPT_COUNT);
2587 rq->prev_mm = NULL;
2590 * A task struct has one reference for the use as "current".
2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
2595 * We must observe prev->state before clearing prev->on_cpu (in
2596 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2597 * running on another CPU and we could rave with its RUNNING -> DEAD
2598 * transition, resulting in a double drop.
2600 prev_state = prev->state;
2601 vtime_task_switch(prev);
2602 perf_event_task_sched_in(prev, current);
2603 finish_lock_switch(rq, prev);
2604 finish_arch_post_lock_switch();
2606 fire_sched_in_preempt_notifiers(current);
2607 if (mm)
2608 mmdrop(mm);
2609 if (unlikely(prev_state == TASK_DEAD)) {
2610 if (prev->sched_class->task_dead)
2611 prev->sched_class->task_dead(prev);
2614 * Remove function-return probe instances associated with this
2615 * task and put them back on the free list.
2617 kprobe_flush_task(prev);
2618 put_task_struct(prev);
2621 tick_nohz_task_switch();
2622 return rq;
2625 #ifdef CONFIG_SMP
2627 /* rq->lock is NOT held, but preemption is disabled */
2628 static void __balance_callback(struct rq *rq)
2630 struct callback_head *head, *next;
2631 void (*func)(struct rq *rq);
2632 unsigned long flags;
2634 raw_spin_lock_irqsave(&rq->lock, flags);
2635 head = rq->balance_callback;
2636 rq->balance_callback = NULL;
2637 while (head) {
2638 func = (void (*)(struct rq *))head->func;
2639 next = head->next;
2640 head->next = NULL;
2641 head = next;
2643 func(rq);
2645 raw_spin_unlock_irqrestore(&rq->lock, flags);
2648 static inline void balance_callback(struct rq *rq)
2650 if (unlikely(rq->balance_callback))
2651 __balance_callback(rq);
2654 #else
2656 static inline void balance_callback(struct rq *rq)
2660 #endif
2663 * schedule_tail - first thing a freshly forked thread must call.
2664 * @prev: the thread we just switched away from.
2666 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2667 __releases(rq->lock)
2669 struct rq *rq;
2672 * New tasks start with FORK_PREEMPT_COUNT, see there and
2673 * finish_task_switch() for details.
2675 * finish_task_switch() will drop rq->lock() and lower preempt_count
2676 * and the preempt_enable() will end up enabling preemption (on
2677 * PREEMPT_COUNT kernels).
2680 rq = finish_task_switch(prev);
2681 balance_callback(rq);
2682 preempt_enable();
2684 if (current->set_child_tid)
2685 put_user(task_pid_vnr(current), current->set_child_tid);
2689 * context_switch - switch to the new MM and the new thread's register state.
2691 static inline struct rq *
2692 context_switch(struct rq *rq, struct task_struct *prev,
2693 struct task_struct *next)
2695 struct mm_struct *mm, *oldmm;
2697 prepare_task_switch(rq, prev, next);
2699 mm = next->mm;
2700 oldmm = prev->active_mm;
2702 * For paravirt, this is coupled with an exit in switch_to to
2703 * combine the page table reload and the switch backend into
2704 * one hypercall.
2706 arch_start_context_switch(prev);
2708 if (!mm) {
2709 next->active_mm = oldmm;
2710 atomic_inc(&oldmm->mm_count);
2711 enter_lazy_tlb(oldmm, next);
2712 } else
2713 switch_mm_irqs_off(oldmm, mm, next);
2715 if (!prev->mm) {
2716 prev->active_mm = NULL;
2717 rq->prev_mm = oldmm;
2720 * Since the runqueue lock will be released by the next
2721 * task (which is an invalid locking op but in the case
2722 * of the scheduler it's an obvious special-case), so we
2723 * do an early lockdep release here:
2725 lockdep_unpin_lock(&rq->lock);
2726 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2728 /* Here we just switch the register state and the stack. */
2729 switch_to(prev, next, prev);
2730 barrier();
2732 return finish_task_switch(prev);
2736 * nr_running and nr_context_switches:
2738 * externally visible scheduler statistics: current number of runnable
2739 * threads, total number of context switches performed since bootup.
2741 unsigned long nr_running(void)
2743 unsigned long i, sum = 0;
2745 for_each_online_cpu(i)
2746 sum += cpu_rq(i)->nr_running;
2748 return sum;
2752 * Check if only the current task is running on the cpu.
2754 * Caution: this function does not check that the caller has disabled
2755 * preemption, thus the result might have a time-of-check-to-time-of-use
2756 * race. The caller is responsible to use it correctly, for example:
2758 * - from a non-preemptable section (of course)
2760 * - from a thread that is bound to a single CPU
2762 * - in a loop with very short iterations (e.g. a polling loop)
2764 bool single_task_running(void)
2766 return raw_rq()->nr_running == 1;
2768 EXPORT_SYMBOL(single_task_running);
2770 unsigned long long nr_context_switches(void)
2772 int i;
2773 unsigned long long sum = 0;
2775 for_each_possible_cpu(i)
2776 sum += cpu_rq(i)->nr_switches;
2778 return sum;
2781 unsigned long nr_iowait(void)
2783 unsigned long i, sum = 0;
2785 for_each_possible_cpu(i)
2786 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2788 return sum;
2791 unsigned long nr_iowait_cpu(int cpu)
2793 struct rq *this = cpu_rq(cpu);
2794 return atomic_read(&this->nr_iowait);
2797 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2799 struct rq *rq = this_rq();
2800 *nr_waiters = atomic_read(&rq->nr_iowait);
2801 *load = rq->load.weight;
2804 #ifdef CONFIG_SMP
2807 * sched_exec - execve() is a valuable balancing opportunity, because at
2808 * this point the task has the smallest effective memory and cache footprint.
2810 void sched_exec(void)
2812 struct task_struct *p = current;
2813 unsigned long flags;
2814 int dest_cpu;
2816 raw_spin_lock_irqsave(&p->pi_lock, flags);
2817 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2818 if (dest_cpu == smp_processor_id())
2819 goto unlock;
2821 if (likely(cpu_active(dest_cpu))) {
2822 struct migration_arg arg = { p, dest_cpu };
2824 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2825 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2826 return;
2828 unlock:
2829 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2832 #endif
2834 DEFINE_PER_CPU(struct kernel_stat, kstat);
2835 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2837 EXPORT_PER_CPU_SYMBOL(kstat);
2838 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2841 * Return accounted runtime for the task.
2842 * In case the task is currently running, return the runtime plus current's
2843 * pending runtime that have not been accounted yet.
2845 unsigned long long task_sched_runtime(struct task_struct *p)
2847 unsigned long flags;
2848 struct rq *rq;
2849 u64 ns;
2851 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2853 * 64-bit doesn't need locks to atomically read a 64bit value.
2854 * So we have a optimization chance when the task's delta_exec is 0.
2855 * Reading ->on_cpu is racy, but this is ok.
2857 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2858 * If we race with it entering cpu, unaccounted time is 0. This is
2859 * indistinguishable from the read occurring a few cycles earlier.
2860 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2861 * been accounted, so we're correct here as well.
2863 if (!p->on_cpu || !task_on_rq_queued(p))
2864 return p->se.sum_exec_runtime;
2865 #endif
2867 rq = task_rq_lock(p, &flags);
2869 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2870 * project cycles that may never be accounted to this
2871 * thread, breaking clock_gettime().
2873 if (task_current(rq, p) && task_on_rq_queued(p)) {
2874 update_rq_clock(rq);
2875 p->sched_class->update_curr(rq);
2877 ns = p->se.sum_exec_runtime;
2878 task_rq_unlock(rq, p, &flags);
2880 return ns;
2884 * This function gets called by the timer code, with HZ frequency.
2885 * We call it with interrupts disabled.
2887 void scheduler_tick(void)
2889 int cpu = smp_processor_id();
2890 struct rq *rq = cpu_rq(cpu);
2891 struct task_struct *curr = rq->curr;
2893 sched_clock_tick();
2895 raw_spin_lock(&rq->lock);
2896 update_rq_clock(rq);
2897 curr->sched_class->task_tick(rq, curr, 0);
2898 update_cpu_load_active(rq);
2899 calc_global_load_tick(rq);
2900 raw_spin_unlock(&rq->lock);
2902 perf_event_task_tick();
2904 #ifdef CONFIG_SMP
2905 rq->idle_balance = idle_cpu(cpu);
2906 trigger_load_balance(rq);
2907 #endif
2908 rq_last_tick_reset(rq);
2911 #ifdef CONFIG_NO_HZ_FULL
2913 * scheduler_tick_max_deferment
2915 * Keep at least one tick per second when a single
2916 * active task is running because the scheduler doesn't
2917 * yet completely support full dynticks environment.
2919 * This makes sure that uptime, CFS vruntime, load
2920 * balancing, etc... continue to move forward, even
2921 * with a very low granularity.
2923 * Return: Maximum deferment in nanoseconds.
2925 u64 scheduler_tick_max_deferment(void)
2927 struct rq *rq = this_rq();
2928 unsigned long next, now = READ_ONCE(jiffies);
2930 next = rq->last_sched_tick + HZ;
2932 if (time_before_eq(next, now))
2933 return 0;
2935 return jiffies_to_nsecs(next - now);
2937 #endif
2939 notrace unsigned long get_parent_ip(unsigned long addr)
2941 if (in_lock_functions(addr)) {
2942 addr = CALLER_ADDR2;
2943 if (in_lock_functions(addr))
2944 addr = CALLER_ADDR3;
2946 return addr;
2949 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2950 defined(CONFIG_PREEMPT_TRACER))
2952 void preempt_count_add(int val)
2954 #ifdef CONFIG_DEBUG_PREEMPT
2956 * Underflow?
2958 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2959 return;
2960 #endif
2961 __preempt_count_add(val);
2962 #ifdef CONFIG_DEBUG_PREEMPT
2964 * Spinlock count overflowing soon?
2966 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2967 PREEMPT_MASK - 10);
2968 #endif
2969 if (preempt_count() == val) {
2970 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2971 #ifdef CONFIG_DEBUG_PREEMPT
2972 current->preempt_disable_ip = ip;
2973 #endif
2974 trace_preempt_off(CALLER_ADDR0, ip);
2977 EXPORT_SYMBOL(preempt_count_add);
2978 NOKPROBE_SYMBOL(preempt_count_add);
2980 void preempt_count_sub(int val)
2982 #ifdef CONFIG_DEBUG_PREEMPT
2984 * Underflow?
2986 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2987 return;
2989 * Is the spinlock portion underflowing?
2991 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2992 !(preempt_count() & PREEMPT_MASK)))
2993 return;
2994 #endif
2996 if (preempt_count() == val)
2997 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2998 __preempt_count_sub(val);
3000 EXPORT_SYMBOL(preempt_count_sub);
3001 NOKPROBE_SYMBOL(preempt_count_sub);
3003 #endif
3006 * Print scheduling while atomic bug:
3008 static noinline void __schedule_bug(struct task_struct *prev)
3010 if (oops_in_progress)
3011 return;
3013 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3014 prev->comm, prev->pid, preempt_count());
3016 debug_show_held_locks(prev);
3017 print_modules();
3018 if (irqs_disabled())
3019 print_irqtrace_events(prev);
3020 #ifdef CONFIG_DEBUG_PREEMPT
3021 if (in_atomic_preempt_off()) {
3022 pr_err("Preemption disabled at:");
3023 print_ip_sym(current->preempt_disable_ip);
3024 pr_cont("\n");
3026 #endif
3027 dump_stack();
3028 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3032 * Various schedule()-time debugging checks and statistics:
3034 static inline void schedule_debug(struct task_struct *prev)
3036 #ifdef CONFIG_SCHED_STACK_END_CHECK
3037 if (task_stack_end_corrupted(prev))
3038 panic("corrupted stack end detected inside scheduler\n");
3039 #endif
3041 if (unlikely(in_atomic_preempt_off())) {
3042 __schedule_bug(prev);
3043 preempt_count_set(PREEMPT_DISABLED);
3045 rcu_sleep_check();
3047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3049 schedstat_inc(this_rq(), sched_count);
3053 * Pick up the highest-prio task:
3055 static inline struct task_struct *
3056 pick_next_task(struct rq *rq, struct task_struct *prev)
3058 const struct sched_class *class = &fair_sched_class;
3059 struct task_struct *p;
3062 * Optimization: we know that if all tasks are in
3063 * the fair class we can call that function directly:
3065 if (likely(prev->sched_class == class &&
3066 rq->nr_running == rq->cfs.h_nr_running)) {
3067 p = fair_sched_class.pick_next_task(rq, prev);
3068 if (unlikely(p == RETRY_TASK))
3069 goto again;
3071 /* assumes fair_sched_class->next == idle_sched_class */
3072 if (unlikely(!p))
3073 p = idle_sched_class.pick_next_task(rq, prev);
3075 return p;
3078 again:
3079 for_each_class(class) {
3080 p = class->pick_next_task(rq, prev);
3081 if (p) {
3082 if (unlikely(p == RETRY_TASK))
3083 goto again;
3084 return p;
3088 BUG(); /* the idle class will always have a runnable task */
3092 * __schedule() is the main scheduler function.
3094 * The main means of driving the scheduler and thus entering this function are:
3096 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3098 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3099 * paths. For example, see arch/x86/entry_64.S.
3101 * To drive preemption between tasks, the scheduler sets the flag in timer
3102 * interrupt handler scheduler_tick().
3104 * 3. Wakeups don't really cause entry into schedule(). They add a
3105 * task to the run-queue and that's it.
3107 * Now, if the new task added to the run-queue preempts the current
3108 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3109 * called on the nearest possible occasion:
3111 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3113 * - in syscall or exception context, at the next outmost
3114 * preempt_enable(). (this might be as soon as the wake_up()'s
3115 * spin_unlock()!)
3117 * - in IRQ context, return from interrupt-handler to
3118 * preemptible context
3120 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3121 * then at the next:
3123 * - cond_resched() call
3124 * - explicit schedule() call
3125 * - return from syscall or exception to user-space
3126 * - return from interrupt-handler to user-space
3128 * WARNING: must be called with preemption disabled!
3130 static void __sched notrace __schedule(bool preempt)
3132 struct task_struct *prev, *next;
3133 unsigned long *switch_count;
3134 struct rq *rq;
3135 int cpu;
3137 cpu = smp_processor_id();
3138 rq = cpu_rq(cpu);
3139 rcu_note_context_switch();
3140 prev = rq->curr;
3143 * do_exit() calls schedule() with preemption disabled as an exception;
3144 * however we must fix that up, otherwise the next task will see an
3145 * inconsistent (higher) preempt count.
3147 * It also avoids the below schedule_debug() test from complaining
3148 * about this.
3150 if (unlikely(prev->state == TASK_DEAD))
3151 preempt_enable_no_resched_notrace();
3153 schedule_debug(prev);
3155 if (sched_feat(HRTICK))
3156 hrtick_clear(rq);
3159 * Make sure that signal_pending_state()->signal_pending() below
3160 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3161 * done by the caller to avoid the race with signal_wake_up().
3163 smp_mb__before_spinlock();
3164 raw_spin_lock_irq(&rq->lock);
3165 lockdep_pin_lock(&rq->lock);
3167 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3169 switch_count = &prev->nivcsw;
3170 if (!preempt && prev->state) {
3171 if (unlikely(signal_pending_state(prev->state, prev))) {
3172 prev->state = TASK_RUNNING;
3173 } else {
3174 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3175 prev->on_rq = 0;
3178 * If a worker went to sleep, notify and ask workqueue
3179 * whether it wants to wake up a task to maintain
3180 * concurrency.
3182 if (prev->flags & PF_WQ_WORKER) {
3183 struct task_struct *to_wakeup;
3185 to_wakeup = wq_worker_sleeping(prev, cpu);
3186 if (to_wakeup)
3187 try_to_wake_up_local(to_wakeup);
3190 switch_count = &prev->nvcsw;
3193 if (task_on_rq_queued(prev))
3194 update_rq_clock(rq);
3196 next = pick_next_task(rq, prev);
3197 clear_tsk_need_resched(prev);
3198 clear_preempt_need_resched();
3199 rq->clock_skip_update = 0;
3201 if (likely(prev != next)) {
3202 rq->nr_switches++;
3203 rq->curr = next;
3204 ++*switch_count;
3206 trace_sched_switch(preempt, prev, next);
3207 rq = context_switch(rq, prev, next); /* unlocks the rq */
3208 cpu = cpu_of(rq);
3209 } else {
3210 lockdep_unpin_lock(&rq->lock);
3211 raw_spin_unlock_irq(&rq->lock);
3214 balance_callback(rq);
3217 static inline void sched_submit_work(struct task_struct *tsk)
3219 if (!tsk->state || tsk_is_pi_blocked(tsk))
3220 return;
3222 * If we are going to sleep and we have plugged IO queued,
3223 * make sure to submit it to avoid deadlocks.
3225 if (blk_needs_flush_plug(tsk))
3226 blk_schedule_flush_plug(tsk);
3229 asmlinkage __visible void __sched schedule(void)
3231 struct task_struct *tsk = current;
3233 sched_submit_work(tsk);
3234 do {
3235 preempt_disable();
3236 __schedule(false);
3237 sched_preempt_enable_no_resched();
3238 } while (need_resched());
3240 EXPORT_SYMBOL(schedule);
3242 #ifdef CONFIG_CONTEXT_TRACKING
3243 asmlinkage __visible void __sched schedule_user(void)
3246 * If we come here after a random call to set_need_resched(),
3247 * or we have been woken up remotely but the IPI has not yet arrived,
3248 * we haven't yet exited the RCU idle mode. Do it here manually until
3249 * we find a better solution.
3251 * NB: There are buggy callers of this function. Ideally we
3252 * should warn if prev_state != CONTEXT_USER, but that will trigger
3253 * too frequently to make sense yet.
3255 enum ctx_state prev_state = exception_enter();
3256 schedule();
3257 exception_exit(prev_state);
3259 #endif
3262 * schedule_preempt_disabled - called with preemption disabled
3264 * Returns with preemption disabled. Note: preempt_count must be 1
3266 void __sched schedule_preempt_disabled(void)
3268 sched_preempt_enable_no_resched();
3269 schedule();
3270 preempt_disable();
3273 static void __sched notrace preempt_schedule_common(void)
3275 do {
3276 preempt_disable_notrace();
3277 __schedule(true);
3278 preempt_enable_no_resched_notrace();
3281 * Check again in case we missed a preemption opportunity
3282 * between schedule and now.
3284 } while (need_resched());
3287 #ifdef CONFIG_PREEMPT
3289 * this is the entry point to schedule() from in-kernel preemption
3290 * off of preempt_enable. Kernel preemptions off return from interrupt
3291 * occur there and call schedule directly.
3293 asmlinkage __visible void __sched notrace preempt_schedule(void)
3296 * If there is a non-zero preempt_count or interrupts are disabled,
3297 * we do not want to preempt the current task. Just return..
3299 if (likely(!preemptible()))
3300 return;
3302 preempt_schedule_common();
3304 NOKPROBE_SYMBOL(preempt_schedule);
3305 EXPORT_SYMBOL(preempt_schedule);
3308 * preempt_schedule_notrace - preempt_schedule called by tracing
3310 * The tracing infrastructure uses preempt_enable_notrace to prevent
3311 * recursion and tracing preempt enabling caused by the tracing
3312 * infrastructure itself. But as tracing can happen in areas coming
3313 * from userspace or just about to enter userspace, a preempt enable
3314 * can occur before user_exit() is called. This will cause the scheduler
3315 * to be called when the system is still in usermode.
3317 * To prevent this, the preempt_enable_notrace will use this function
3318 * instead of preempt_schedule() to exit user context if needed before
3319 * calling the scheduler.
3321 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3323 enum ctx_state prev_ctx;
3325 if (likely(!preemptible()))
3326 return;
3328 do {
3329 preempt_disable_notrace();
3331 * Needs preempt disabled in case user_exit() is traced
3332 * and the tracer calls preempt_enable_notrace() causing
3333 * an infinite recursion.
3335 prev_ctx = exception_enter();
3336 __schedule(true);
3337 exception_exit(prev_ctx);
3339 preempt_enable_no_resched_notrace();
3340 } while (need_resched());
3342 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3344 #endif /* CONFIG_PREEMPT */
3347 * this is the entry point to schedule() from kernel preemption
3348 * off of irq context.
3349 * Note, that this is called and return with irqs disabled. This will
3350 * protect us against recursive calling from irq.
3352 asmlinkage __visible void __sched preempt_schedule_irq(void)
3354 enum ctx_state prev_state;
3356 /* Catch callers which need to be fixed */
3357 BUG_ON(preempt_count() || !irqs_disabled());
3359 prev_state = exception_enter();
3361 do {
3362 preempt_disable();
3363 local_irq_enable();
3364 __schedule(true);
3365 local_irq_disable();
3366 sched_preempt_enable_no_resched();
3367 } while (need_resched());
3369 exception_exit(prev_state);
3372 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3373 void *key)
3375 return try_to_wake_up(curr->private, mode, wake_flags);
3377 EXPORT_SYMBOL(default_wake_function);
3379 #ifdef CONFIG_RT_MUTEXES
3382 * rt_mutex_setprio - set the current priority of a task
3383 * @p: task
3384 * @prio: prio value (kernel-internal form)
3386 * This function changes the 'effective' priority of a task. It does
3387 * not touch ->normal_prio like __setscheduler().
3389 * Used by the rt_mutex code to implement priority inheritance
3390 * logic. Call site only calls if the priority of the task changed.
3392 void rt_mutex_setprio(struct task_struct *p, int prio)
3394 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3395 struct rq *rq;
3396 const struct sched_class *prev_class;
3398 BUG_ON(prio > MAX_PRIO);
3400 rq = __task_rq_lock(p);
3403 * Idle task boosting is a nono in general. There is one
3404 * exception, when PREEMPT_RT and NOHZ is active:
3406 * The idle task calls get_next_timer_interrupt() and holds
3407 * the timer wheel base->lock on the CPU and another CPU wants
3408 * to access the timer (probably to cancel it). We can safely
3409 * ignore the boosting request, as the idle CPU runs this code
3410 * with interrupts disabled and will complete the lock
3411 * protected section without being interrupted. So there is no
3412 * real need to boost.
3414 if (unlikely(p == rq->idle)) {
3415 WARN_ON(p != rq->curr);
3416 WARN_ON(p->pi_blocked_on);
3417 goto out_unlock;
3420 trace_sched_pi_setprio(p, prio);
3421 oldprio = p->prio;
3422 prev_class = p->sched_class;
3423 queued = task_on_rq_queued(p);
3424 running = task_current(rq, p);
3425 if (queued)
3426 dequeue_task(rq, p, DEQUEUE_SAVE);
3427 if (running)
3428 put_prev_task(rq, p);
3431 * Boosting condition are:
3432 * 1. -rt task is running and holds mutex A
3433 * --> -dl task blocks on mutex A
3435 * 2. -dl task is running and holds mutex A
3436 * --> -dl task blocks on mutex A and could preempt the
3437 * running task
3439 if (dl_prio(prio)) {
3440 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3441 if (!dl_prio(p->normal_prio) ||
3442 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3443 p->dl.dl_boosted = 1;
3444 enqueue_flag |= ENQUEUE_REPLENISH;
3445 } else
3446 p->dl.dl_boosted = 0;
3447 p->sched_class = &dl_sched_class;
3448 } else if (rt_prio(prio)) {
3449 if (dl_prio(oldprio))
3450 p->dl.dl_boosted = 0;
3451 if (oldprio < prio)
3452 enqueue_flag |= ENQUEUE_HEAD;
3453 p->sched_class = &rt_sched_class;
3454 } else {
3455 if (dl_prio(oldprio))
3456 p->dl.dl_boosted = 0;
3457 if (rt_prio(oldprio))
3458 p->rt.timeout = 0;
3459 p->sched_class = &fair_sched_class;
3462 p->prio = prio;
3464 if (running)
3465 p->sched_class->set_curr_task(rq);
3466 if (queued)
3467 enqueue_task(rq, p, enqueue_flag);
3469 check_class_changed(rq, p, prev_class, oldprio);
3470 out_unlock:
3471 preempt_disable(); /* avoid rq from going away on us */
3472 __task_rq_unlock(rq);
3474 balance_callback(rq);
3475 preempt_enable();
3477 #endif
3479 void set_user_nice(struct task_struct *p, long nice)
3481 int old_prio, delta, queued;
3482 unsigned long flags;
3483 struct rq *rq;
3485 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3486 return;
3488 * We have to be careful, if called from sys_setpriority(),
3489 * the task might be in the middle of scheduling on another CPU.
3491 rq = task_rq_lock(p, &flags);
3493 * The RT priorities are set via sched_setscheduler(), but we still
3494 * allow the 'normal' nice value to be set - but as expected
3495 * it wont have any effect on scheduling until the task is
3496 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3498 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3499 p->static_prio = NICE_TO_PRIO(nice);
3500 goto out_unlock;
3502 queued = task_on_rq_queued(p);
3503 if (queued)
3504 dequeue_task(rq, p, DEQUEUE_SAVE);
3506 p->static_prio = NICE_TO_PRIO(nice);
3507 set_load_weight(p);
3508 old_prio = p->prio;
3509 p->prio = effective_prio(p);
3510 delta = p->prio - old_prio;
3512 if (queued) {
3513 enqueue_task(rq, p, ENQUEUE_RESTORE);
3515 * If the task increased its priority or is running and
3516 * lowered its priority, then reschedule its CPU:
3518 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3519 resched_curr(rq);
3521 out_unlock:
3522 task_rq_unlock(rq, p, &flags);
3524 EXPORT_SYMBOL(set_user_nice);
3527 * can_nice - check if a task can reduce its nice value
3528 * @p: task
3529 * @nice: nice value
3531 int can_nice(const struct task_struct *p, const int nice)
3533 /* convert nice value [19,-20] to rlimit style value [1,40] */
3534 int nice_rlim = nice_to_rlimit(nice);
3536 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3537 capable(CAP_SYS_NICE));
3540 #ifdef __ARCH_WANT_SYS_NICE
3543 * sys_nice - change the priority of the current process.
3544 * @increment: priority increment
3546 * sys_setpriority is a more generic, but much slower function that
3547 * does similar things.
3549 SYSCALL_DEFINE1(nice, int, increment)
3551 long nice, retval;
3554 * Setpriority might change our priority at the same moment.
3555 * We don't have to worry. Conceptually one call occurs first
3556 * and we have a single winner.
3558 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3559 nice = task_nice(current) + increment;
3561 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3562 if (increment < 0 && !can_nice(current, nice))
3563 return -EPERM;
3565 retval = security_task_setnice(current, nice);
3566 if (retval)
3567 return retval;
3569 set_user_nice(current, nice);
3570 return 0;
3573 #endif
3576 * task_prio - return the priority value of a given task.
3577 * @p: the task in question.
3579 * Return: The priority value as seen by users in /proc.
3580 * RT tasks are offset by -200. Normal tasks are centered
3581 * around 0, value goes from -16 to +15.
3583 int task_prio(const struct task_struct *p)
3585 return p->prio - MAX_RT_PRIO;
3589 * idle_cpu - is a given cpu idle currently?
3590 * @cpu: the processor in question.
3592 * Return: 1 if the CPU is currently idle. 0 otherwise.
3594 int idle_cpu(int cpu)
3596 struct rq *rq = cpu_rq(cpu);
3598 if (rq->curr != rq->idle)
3599 return 0;
3601 if (rq->nr_running)
3602 return 0;
3604 #ifdef CONFIG_SMP
3605 if (!llist_empty(&rq->wake_list))
3606 return 0;
3607 #endif
3609 return 1;
3613 * idle_task - return the idle task for a given cpu.
3614 * @cpu: the processor in question.
3616 * Return: The idle task for the cpu @cpu.
3618 struct task_struct *idle_task(int cpu)
3620 return cpu_rq(cpu)->idle;
3624 * find_process_by_pid - find a process with a matching PID value.
3625 * @pid: the pid in question.
3627 * The task of @pid, if found. %NULL otherwise.
3629 static struct task_struct *find_process_by_pid(pid_t pid)
3631 return pid ? find_task_by_vpid(pid) : current;
3635 * This function initializes the sched_dl_entity of a newly becoming
3636 * SCHED_DEADLINE task.
3638 * Only the static values are considered here, the actual runtime and the
3639 * absolute deadline will be properly calculated when the task is enqueued
3640 * for the first time with its new policy.
3642 static void
3643 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3645 struct sched_dl_entity *dl_se = &p->dl;
3647 dl_se->dl_runtime = attr->sched_runtime;
3648 dl_se->dl_deadline = attr->sched_deadline;
3649 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3650 dl_se->flags = attr->sched_flags;
3651 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3652 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3655 * Changing the parameters of a task is 'tricky' and we're not doing
3656 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3658 * What we SHOULD do is delay the bandwidth release until the 0-lag
3659 * point. This would include retaining the task_struct until that time
3660 * and change dl_overflow() to not immediately decrement the current
3661 * amount.
3663 * Instead we retain the current runtime/deadline and let the new
3664 * parameters take effect after the current reservation period lapses.
3665 * This is safe (albeit pessimistic) because the 0-lag point is always
3666 * before the current scheduling deadline.
3668 * We can still have temporary overloads because we do not delay the
3669 * change in bandwidth until that time; so admission control is
3670 * not on the safe side. It does however guarantee tasks will never
3671 * consume more than promised.
3676 * sched_setparam() passes in -1 for its policy, to let the functions
3677 * it calls know not to change it.
3679 #define SETPARAM_POLICY -1
3681 static void __setscheduler_params(struct task_struct *p,
3682 const struct sched_attr *attr)
3684 int policy = attr->sched_policy;
3686 if (policy == SETPARAM_POLICY)
3687 policy = p->policy;
3689 p->policy = policy;
3691 if (dl_policy(policy))
3692 __setparam_dl(p, attr);
3693 else if (fair_policy(policy))
3694 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3697 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3698 * !rt_policy. Always setting this ensures that things like
3699 * getparam()/getattr() don't report silly values for !rt tasks.
3701 p->rt_priority = attr->sched_priority;
3702 p->normal_prio = normal_prio(p);
3703 set_load_weight(p);
3706 /* Actually do priority change: must hold pi & rq lock. */
3707 static void __setscheduler(struct rq *rq, struct task_struct *p,
3708 const struct sched_attr *attr, bool keep_boost)
3710 __setscheduler_params(p, attr);
3713 * Keep a potential priority boosting if called from
3714 * sched_setscheduler().
3716 if (keep_boost)
3717 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3718 else
3719 p->prio = normal_prio(p);
3721 if (dl_prio(p->prio))
3722 p->sched_class = &dl_sched_class;
3723 else if (rt_prio(p->prio))
3724 p->sched_class = &rt_sched_class;
3725 else
3726 p->sched_class = &fair_sched_class;
3729 static void
3730 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3732 struct sched_dl_entity *dl_se = &p->dl;
3734 attr->sched_priority = p->rt_priority;
3735 attr->sched_runtime = dl_se->dl_runtime;
3736 attr->sched_deadline = dl_se->dl_deadline;
3737 attr->sched_period = dl_se->dl_period;
3738 attr->sched_flags = dl_se->flags;
3742 * This function validates the new parameters of a -deadline task.
3743 * We ask for the deadline not being zero, and greater or equal
3744 * than the runtime, as well as the period of being zero or
3745 * greater than deadline. Furthermore, we have to be sure that
3746 * user parameters are above the internal resolution of 1us (we
3747 * check sched_runtime only since it is always the smaller one) and
3748 * below 2^63 ns (we have to check both sched_deadline and
3749 * sched_period, as the latter can be zero).
3751 static bool
3752 __checkparam_dl(const struct sched_attr *attr)
3754 /* deadline != 0 */
3755 if (attr->sched_deadline == 0)
3756 return false;
3759 * Since we truncate DL_SCALE bits, make sure we're at least
3760 * that big.
3762 if (attr->sched_runtime < (1ULL << DL_SCALE))
3763 return false;
3766 * Since we use the MSB for wrap-around and sign issues, make
3767 * sure it's not set (mind that period can be equal to zero).
3769 if (attr->sched_deadline & (1ULL << 63) ||
3770 attr->sched_period & (1ULL << 63))
3771 return false;
3773 /* runtime <= deadline <= period (if period != 0) */
3774 if ((attr->sched_period != 0 &&
3775 attr->sched_period < attr->sched_deadline) ||
3776 attr->sched_deadline < attr->sched_runtime)
3777 return false;
3779 return true;
3783 * check the target process has a UID that matches the current process's
3785 static bool check_same_owner(struct task_struct *p)
3787 const struct cred *cred = current_cred(), *pcred;
3788 bool match;
3790 rcu_read_lock();
3791 pcred = __task_cred(p);
3792 match = (uid_eq(cred->euid, pcred->euid) ||
3793 uid_eq(cred->euid, pcred->uid));
3794 rcu_read_unlock();
3795 return match;
3798 static bool dl_param_changed(struct task_struct *p,
3799 const struct sched_attr *attr)
3801 struct sched_dl_entity *dl_se = &p->dl;
3803 if (dl_se->dl_runtime != attr->sched_runtime ||
3804 dl_se->dl_deadline != attr->sched_deadline ||
3805 dl_se->dl_period != attr->sched_period ||
3806 dl_se->flags != attr->sched_flags)
3807 return true;
3809 return false;
3812 static int __sched_setscheduler(struct task_struct *p,
3813 const struct sched_attr *attr,
3814 bool user, bool pi)
3816 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3817 MAX_RT_PRIO - 1 - attr->sched_priority;
3818 int retval, oldprio, oldpolicy = -1, queued, running;
3819 int new_effective_prio, policy = attr->sched_policy;
3820 unsigned long flags;
3821 const struct sched_class *prev_class;
3822 struct rq *rq;
3823 int reset_on_fork;
3825 /* may grab non-irq protected spin_locks */
3826 BUG_ON(in_interrupt());
3827 recheck:
3828 /* double check policy once rq lock held */
3829 if (policy < 0) {
3830 reset_on_fork = p->sched_reset_on_fork;
3831 policy = oldpolicy = p->policy;
3832 } else {
3833 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3835 if (!valid_policy(policy))
3836 return -EINVAL;
3839 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3840 return -EINVAL;
3843 * Valid priorities for SCHED_FIFO and SCHED_RR are
3844 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3845 * SCHED_BATCH and SCHED_IDLE is 0.
3847 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3848 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3849 return -EINVAL;
3850 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3851 (rt_policy(policy) != (attr->sched_priority != 0)))
3852 return -EINVAL;
3855 * Allow unprivileged RT tasks to decrease priority:
3857 if (user && !capable(CAP_SYS_NICE)) {
3858 if (fair_policy(policy)) {
3859 if (attr->sched_nice < task_nice(p) &&
3860 !can_nice(p, attr->sched_nice))
3861 return -EPERM;
3864 if (rt_policy(policy)) {
3865 unsigned long rlim_rtprio =
3866 task_rlimit(p, RLIMIT_RTPRIO);
3868 /* can't set/change the rt policy */
3869 if (policy != p->policy && !rlim_rtprio)
3870 return -EPERM;
3872 /* can't increase priority */
3873 if (attr->sched_priority > p->rt_priority &&
3874 attr->sched_priority > rlim_rtprio)
3875 return -EPERM;
3879 * Can't set/change SCHED_DEADLINE policy at all for now
3880 * (safest behavior); in the future we would like to allow
3881 * unprivileged DL tasks to increase their relative deadline
3882 * or reduce their runtime (both ways reducing utilization)
3884 if (dl_policy(policy))
3885 return -EPERM;
3888 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3889 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3891 if (idle_policy(p->policy) && !idle_policy(policy)) {
3892 if (!can_nice(p, task_nice(p)))
3893 return -EPERM;
3896 /* can't change other user's priorities */
3897 if (!check_same_owner(p))
3898 return -EPERM;
3900 /* Normal users shall not reset the sched_reset_on_fork flag */
3901 if (p->sched_reset_on_fork && !reset_on_fork)
3902 return -EPERM;
3905 if (user) {
3906 retval = security_task_setscheduler(p);
3907 if (retval)
3908 return retval;
3912 * make sure no PI-waiters arrive (or leave) while we are
3913 * changing the priority of the task:
3915 * To be able to change p->policy safely, the appropriate
3916 * runqueue lock must be held.
3918 rq = task_rq_lock(p, &flags);
3921 * Changing the policy of the stop threads its a very bad idea
3923 if (p == rq->stop) {
3924 task_rq_unlock(rq, p, &flags);
3925 return -EINVAL;
3929 * If not changing anything there's no need to proceed further,
3930 * but store a possible modification of reset_on_fork.
3932 if (unlikely(policy == p->policy)) {
3933 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3934 goto change;
3935 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3936 goto change;
3937 if (dl_policy(policy) && dl_param_changed(p, attr))
3938 goto change;
3940 p->sched_reset_on_fork = reset_on_fork;
3941 task_rq_unlock(rq, p, &flags);
3942 return 0;
3944 change:
3946 if (user) {
3947 #ifdef CONFIG_RT_GROUP_SCHED
3949 * Do not allow realtime tasks into groups that have no runtime
3950 * assigned.
3952 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3953 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3954 !task_group_is_autogroup(task_group(p))) {
3955 task_rq_unlock(rq, p, &flags);
3956 return -EPERM;
3958 #endif
3959 #ifdef CONFIG_SMP
3960 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3961 cpumask_t *span = rq->rd->span;
3964 * Don't allow tasks with an affinity mask smaller than
3965 * the entire root_domain to become SCHED_DEADLINE. We
3966 * will also fail if there's no bandwidth available.
3968 if (!cpumask_subset(span, &p->cpus_allowed) ||
3969 rq->rd->dl_bw.bw == 0) {
3970 task_rq_unlock(rq, p, &flags);
3971 return -EPERM;
3974 #endif
3977 /* recheck policy now with rq lock held */
3978 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3979 policy = oldpolicy = -1;
3980 task_rq_unlock(rq, p, &flags);
3981 goto recheck;
3985 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3986 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3987 * is available.
3989 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3990 task_rq_unlock(rq, p, &flags);
3991 return -EBUSY;
3994 p->sched_reset_on_fork = reset_on_fork;
3995 oldprio = p->prio;
3997 if (pi) {
3999 * Take priority boosted tasks into account. If the new
4000 * effective priority is unchanged, we just store the new
4001 * normal parameters and do not touch the scheduler class and
4002 * the runqueue. This will be done when the task deboost
4003 * itself.
4005 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4006 if (new_effective_prio == oldprio) {
4007 __setscheduler_params(p, attr);
4008 task_rq_unlock(rq, p, &flags);
4009 return 0;
4013 queued = task_on_rq_queued(p);
4014 running = task_current(rq, p);
4015 if (queued)
4016 dequeue_task(rq, p, DEQUEUE_SAVE);
4017 if (running)
4018 put_prev_task(rq, p);
4020 prev_class = p->sched_class;
4021 __setscheduler(rq, p, attr, pi);
4023 if (running)
4024 p->sched_class->set_curr_task(rq);
4025 if (queued) {
4026 int enqueue_flags = ENQUEUE_RESTORE;
4028 * We enqueue to tail when the priority of a task is
4029 * increased (user space view).
4031 if (oldprio <= p->prio)
4032 enqueue_flags |= ENQUEUE_HEAD;
4034 enqueue_task(rq, p, enqueue_flags);
4037 check_class_changed(rq, p, prev_class, oldprio);
4038 preempt_disable(); /* avoid rq from going away on us */
4039 task_rq_unlock(rq, p, &flags);
4041 if (pi)
4042 rt_mutex_adjust_pi(p);
4045 * Run balance callbacks after we've adjusted the PI chain.
4047 balance_callback(rq);
4048 preempt_enable();
4050 return 0;
4053 static int _sched_setscheduler(struct task_struct *p, int policy,
4054 const struct sched_param *param, bool check)
4056 struct sched_attr attr = {
4057 .sched_policy = policy,
4058 .sched_priority = param->sched_priority,
4059 .sched_nice = PRIO_TO_NICE(p->static_prio),
4062 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4063 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4064 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4065 policy &= ~SCHED_RESET_ON_FORK;
4066 attr.sched_policy = policy;
4069 return __sched_setscheduler(p, &attr, check, true);
4072 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4073 * @p: the task in question.
4074 * @policy: new policy.
4075 * @param: structure containing the new RT priority.
4077 * Return: 0 on success. An error code otherwise.
4079 * NOTE that the task may be already dead.
4081 int sched_setscheduler(struct task_struct *p, int policy,
4082 const struct sched_param *param)
4084 return _sched_setscheduler(p, policy, param, true);
4086 EXPORT_SYMBOL_GPL(sched_setscheduler);
4088 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4090 return __sched_setscheduler(p, attr, true, true);
4092 EXPORT_SYMBOL_GPL(sched_setattr);
4095 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4096 * @p: the task in question.
4097 * @policy: new policy.
4098 * @param: structure containing the new RT priority.
4100 * Just like sched_setscheduler, only don't bother checking if the
4101 * current context has permission. For example, this is needed in
4102 * stop_machine(): we create temporary high priority worker threads,
4103 * but our caller might not have that capability.
4105 * Return: 0 on success. An error code otherwise.
4107 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4108 const struct sched_param *param)
4110 return _sched_setscheduler(p, policy, param, false);
4112 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4114 static int
4115 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4117 struct sched_param lparam;
4118 struct task_struct *p;
4119 int retval;
4121 if (!param || pid < 0)
4122 return -EINVAL;
4123 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4124 return -EFAULT;
4126 rcu_read_lock();
4127 retval = -ESRCH;
4128 p = find_process_by_pid(pid);
4129 if (p != NULL)
4130 retval = sched_setscheduler(p, policy, &lparam);
4131 rcu_read_unlock();
4133 return retval;
4137 * Mimics kernel/events/core.c perf_copy_attr().
4139 static int sched_copy_attr(struct sched_attr __user *uattr,
4140 struct sched_attr *attr)
4142 u32 size;
4143 int ret;
4145 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4146 return -EFAULT;
4149 * zero the full structure, so that a short copy will be nice.
4151 memset(attr, 0, sizeof(*attr));
4153 ret = get_user(size, &uattr->size);
4154 if (ret)
4155 return ret;
4157 if (size > PAGE_SIZE) /* silly large */
4158 goto err_size;
4160 if (!size) /* abi compat */
4161 size = SCHED_ATTR_SIZE_VER0;
4163 if (size < SCHED_ATTR_SIZE_VER0)
4164 goto err_size;
4167 * If we're handed a bigger struct than we know of,
4168 * ensure all the unknown bits are 0 - i.e. new
4169 * user-space does not rely on any kernel feature
4170 * extensions we dont know about yet.
4172 if (size > sizeof(*attr)) {
4173 unsigned char __user *addr;
4174 unsigned char __user *end;
4175 unsigned char val;
4177 addr = (void __user *)uattr + sizeof(*attr);
4178 end = (void __user *)uattr + size;
4180 for (; addr < end; addr++) {
4181 ret = get_user(val, addr);
4182 if (ret)
4183 return ret;
4184 if (val)
4185 goto err_size;
4187 size = sizeof(*attr);
4190 ret = copy_from_user(attr, uattr, size);
4191 if (ret)
4192 return -EFAULT;
4195 * XXX: do we want to be lenient like existing syscalls; or do we want
4196 * to be strict and return an error on out-of-bounds values?
4198 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4200 return 0;
4202 err_size:
4203 put_user(sizeof(*attr), &uattr->size);
4204 return -E2BIG;
4208 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4209 * @pid: the pid in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 * Return: 0 on success. An error code otherwise.
4215 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4216 struct sched_param __user *, param)
4218 /* negative values for policy are not valid */
4219 if (policy < 0)
4220 return -EINVAL;
4222 return do_sched_setscheduler(pid, policy, param);
4226 * sys_sched_setparam - set/change the RT priority of a thread
4227 * @pid: the pid in question.
4228 * @param: structure containing the new RT priority.
4230 * Return: 0 on success. An error code otherwise.
4232 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4234 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4238 * sys_sched_setattr - same as above, but with extended sched_attr
4239 * @pid: the pid in question.
4240 * @uattr: structure containing the extended parameters.
4241 * @flags: for future extension.
4243 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4244 unsigned int, flags)
4246 struct sched_attr attr;
4247 struct task_struct *p;
4248 int retval;
4250 if (!uattr || pid < 0 || flags)
4251 return -EINVAL;
4253 retval = sched_copy_attr(uattr, &attr);
4254 if (retval)
4255 return retval;
4257 if ((int)attr.sched_policy < 0)
4258 return -EINVAL;
4260 rcu_read_lock();
4261 retval = -ESRCH;
4262 p = find_process_by_pid(pid);
4263 if (p != NULL)
4264 retval = sched_setattr(p, &attr);
4265 rcu_read_unlock();
4267 return retval;
4271 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4272 * @pid: the pid in question.
4274 * Return: On success, the policy of the thread. Otherwise, a negative error
4275 * code.
4277 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4279 struct task_struct *p;
4280 int retval;
4282 if (pid < 0)
4283 return -EINVAL;
4285 retval = -ESRCH;
4286 rcu_read_lock();
4287 p = find_process_by_pid(pid);
4288 if (p) {
4289 retval = security_task_getscheduler(p);
4290 if (!retval)
4291 retval = p->policy
4292 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4294 rcu_read_unlock();
4295 return retval;
4299 * sys_sched_getparam - get the RT priority of a thread
4300 * @pid: the pid in question.
4301 * @param: structure containing the RT priority.
4303 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4304 * code.
4306 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4308 struct sched_param lp = { .sched_priority = 0 };
4309 struct task_struct *p;
4310 int retval;
4312 if (!param || pid < 0)
4313 return -EINVAL;
4315 rcu_read_lock();
4316 p = find_process_by_pid(pid);
4317 retval = -ESRCH;
4318 if (!p)
4319 goto out_unlock;
4321 retval = security_task_getscheduler(p);
4322 if (retval)
4323 goto out_unlock;
4325 if (task_has_rt_policy(p))
4326 lp.sched_priority = p->rt_priority;
4327 rcu_read_unlock();
4330 * This one might sleep, we cannot do it with a spinlock held ...
4332 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4334 return retval;
4336 out_unlock:
4337 rcu_read_unlock();
4338 return retval;
4341 static int sched_read_attr(struct sched_attr __user *uattr,
4342 struct sched_attr *attr,
4343 unsigned int usize)
4345 int ret;
4347 if (!access_ok(VERIFY_WRITE, uattr, usize))
4348 return -EFAULT;
4351 * If we're handed a smaller struct than we know of,
4352 * ensure all the unknown bits are 0 - i.e. old
4353 * user-space does not get uncomplete information.
4355 if (usize < sizeof(*attr)) {
4356 unsigned char *addr;
4357 unsigned char *end;
4359 addr = (void *)attr + usize;
4360 end = (void *)attr + sizeof(*attr);
4362 for (; addr < end; addr++) {
4363 if (*addr)
4364 return -EFBIG;
4367 attr->size = usize;
4370 ret = copy_to_user(uattr, attr, attr->size);
4371 if (ret)
4372 return -EFAULT;
4374 return 0;
4378 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4379 * @pid: the pid in question.
4380 * @uattr: structure containing the extended parameters.
4381 * @size: sizeof(attr) for fwd/bwd comp.
4382 * @flags: for future extension.
4384 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4385 unsigned int, size, unsigned int, flags)
4387 struct sched_attr attr = {
4388 .size = sizeof(struct sched_attr),
4390 struct task_struct *p;
4391 int retval;
4393 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4394 size < SCHED_ATTR_SIZE_VER0 || flags)
4395 return -EINVAL;
4397 rcu_read_lock();
4398 p = find_process_by_pid(pid);
4399 retval = -ESRCH;
4400 if (!p)
4401 goto out_unlock;
4403 retval = security_task_getscheduler(p);
4404 if (retval)
4405 goto out_unlock;
4407 attr.sched_policy = p->policy;
4408 if (p->sched_reset_on_fork)
4409 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4410 if (task_has_dl_policy(p))
4411 __getparam_dl(p, &attr);
4412 else if (task_has_rt_policy(p))
4413 attr.sched_priority = p->rt_priority;
4414 else
4415 attr.sched_nice = task_nice(p);
4417 rcu_read_unlock();
4419 retval = sched_read_attr(uattr, &attr, size);
4420 return retval;
4422 out_unlock:
4423 rcu_read_unlock();
4424 return retval;
4427 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4429 cpumask_var_t cpus_allowed, new_mask;
4430 struct task_struct *p;
4431 int retval;
4433 rcu_read_lock();
4435 p = find_process_by_pid(pid);
4436 if (!p) {
4437 rcu_read_unlock();
4438 return -ESRCH;
4441 /* Prevent p going away */
4442 get_task_struct(p);
4443 rcu_read_unlock();
4445 if (p->flags & PF_NO_SETAFFINITY) {
4446 retval = -EINVAL;
4447 goto out_put_task;
4449 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4450 retval = -ENOMEM;
4451 goto out_put_task;
4453 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4454 retval = -ENOMEM;
4455 goto out_free_cpus_allowed;
4457 retval = -EPERM;
4458 if (!check_same_owner(p)) {
4459 rcu_read_lock();
4460 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4461 rcu_read_unlock();
4462 goto out_free_new_mask;
4464 rcu_read_unlock();
4467 retval = security_task_setscheduler(p);
4468 if (retval)
4469 goto out_free_new_mask;
4472 cpuset_cpus_allowed(p, cpus_allowed);
4473 cpumask_and(new_mask, in_mask, cpus_allowed);
4476 * Since bandwidth control happens on root_domain basis,
4477 * if admission test is enabled, we only admit -deadline
4478 * tasks allowed to run on all the CPUs in the task's
4479 * root_domain.
4481 #ifdef CONFIG_SMP
4482 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4483 rcu_read_lock();
4484 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4485 retval = -EBUSY;
4486 rcu_read_unlock();
4487 goto out_free_new_mask;
4489 rcu_read_unlock();
4491 #endif
4492 again:
4493 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4495 if (!retval) {
4496 cpuset_cpus_allowed(p, cpus_allowed);
4497 if (!cpumask_subset(new_mask, cpus_allowed)) {
4499 * We must have raced with a concurrent cpuset
4500 * update. Just reset the cpus_allowed to the
4501 * cpuset's cpus_allowed
4503 cpumask_copy(new_mask, cpus_allowed);
4504 goto again;
4507 out_free_new_mask:
4508 free_cpumask_var(new_mask);
4509 out_free_cpus_allowed:
4510 free_cpumask_var(cpus_allowed);
4511 out_put_task:
4512 put_task_struct(p);
4513 return retval;
4516 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4517 struct cpumask *new_mask)
4519 if (len < cpumask_size())
4520 cpumask_clear(new_mask);
4521 else if (len > cpumask_size())
4522 len = cpumask_size();
4524 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4528 * sys_sched_setaffinity - set the cpu affinity of a process
4529 * @pid: pid of the process
4530 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4531 * @user_mask_ptr: user-space pointer to the new cpu mask
4533 * Return: 0 on success. An error code otherwise.
4535 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4536 unsigned long __user *, user_mask_ptr)
4538 cpumask_var_t new_mask;
4539 int retval;
4541 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4542 return -ENOMEM;
4544 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4545 if (retval == 0)
4546 retval = sched_setaffinity(pid, new_mask);
4547 free_cpumask_var(new_mask);
4548 return retval;
4551 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4553 struct task_struct *p;
4554 unsigned long flags;
4555 int retval;
4557 rcu_read_lock();
4559 retval = -ESRCH;
4560 p = find_process_by_pid(pid);
4561 if (!p)
4562 goto out_unlock;
4564 retval = security_task_getscheduler(p);
4565 if (retval)
4566 goto out_unlock;
4568 raw_spin_lock_irqsave(&p->pi_lock, flags);
4569 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4570 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4572 out_unlock:
4573 rcu_read_unlock();
4575 return retval;
4579 * sys_sched_getaffinity - get the cpu affinity of a process
4580 * @pid: pid of the process
4581 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4582 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4584 * Return: 0 on success. An error code otherwise.
4586 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4587 unsigned long __user *, user_mask_ptr)
4589 int ret;
4590 cpumask_var_t mask;
4592 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4593 return -EINVAL;
4594 if (len & (sizeof(unsigned long)-1))
4595 return -EINVAL;
4597 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4598 return -ENOMEM;
4600 ret = sched_getaffinity(pid, mask);
4601 if (ret == 0) {
4602 size_t retlen = min_t(size_t, len, cpumask_size());
4604 if (copy_to_user(user_mask_ptr, mask, retlen))
4605 ret = -EFAULT;
4606 else
4607 ret = retlen;
4609 free_cpumask_var(mask);
4611 return ret;
4615 * sys_sched_yield - yield the current processor to other threads.
4617 * This function yields the current CPU to other tasks. If there are no
4618 * other threads running on this CPU then this function will return.
4620 * Return: 0.
4622 SYSCALL_DEFINE0(sched_yield)
4624 struct rq *rq = this_rq_lock();
4626 schedstat_inc(rq, yld_count);
4627 current->sched_class->yield_task(rq);
4630 * Since we are going to call schedule() anyway, there's
4631 * no need to preempt or enable interrupts:
4633 __release(rq->lock);
4634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4635 do_raw_spin_unlock(&rq->lock);
4636 sched_preempt_enable_no_resched();
4638 schedule();
4640 return 0;
4643 int __sched _cond_resched(void)
4645 if (should_resched(0)) {
4646 preempt_schedule_common();
4647 return 1;
4649 return 0;
4651 EXPORT_SYMBOL(_cond_resched);
4654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4655 * call schedule, and on return reacquire the lock.
4657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4658 * operations here to prevent schedule() from being called twice (once via
4659 * spin_unlock(), once by hand).
4661 int __cond_resched_lock(spinlock_t *lock)
4663 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4664 int ret = 0;
4666 lockdep_assert_held(lock);
4668 if (spin_needbreak(lock) || resched) {
4669 spin_unlock(lock);
4670 if (resched)
4671 preempt_schedule_common();
4672 else
4673 cpu_relax();
4674 ret = 1;
4675 spin_lock(lock);
4677 return ret;
4679 EXPORT_SYMBOL(__cond_resched_lock);
4681 int __sched __cond_resched_softirq(void)
4683 BUG_ON(!in_softirq());
4685 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4686 local_bh_enable();
4687 preempt_schedule_common();
4688 local_bh_disable();
4689 return 1;
4691 return 0;
4693 EXPORT_SYMBOL(__cond_resched_softirq);
4696 * yield - yield the current processor to other threads.
4698 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4700 * The scheduler is at all times free to pick the calling task as the most
4701 * eligible task to run, if removing the yield() call from your code breaks
4702 * it, its already broken.
4704 * Typical broken usage is:
4706 * while (!event)
4707 * yield();
4709 * where one assumes that yield() will let 'the other' process run that will
4710 * make event true. If the current task is a SCHED_FIFO task that will never
4711 * happen. Never use yield() as a progress guarantee!!
4713 * If you want to use yield() to wait for something, use wait_event().
4714 * If you want to use yield() to be 'nice' for others, use cond_resched().
4715 * If you still want to use yield(), do not!
4717 void __sched yield(void)
4719 set_current_state(TASK_RUNNING);
4720 sys_sched_yield();
4722 EXPORT_SYMBOL(yield);
4725 * yield_to - yield the current processor to another thread in
4726 * your thread group, or accelerate that thread toward the
4727 * processor it's on.
4728 * @p: target task
4729 * @preempt: whether task preemption is allowed or not
4731 * It's the caller's job to ensure that the target task struct
4732 * can't go away on us before we can do any checks.
4734 * Return:
4735 * true (>0) if we indeed boosted the target task.
4736 * false (0) if we failed to boost the target.
4737 * -ESRCH if there's no task to yield to.
4739 int __sched yield_to(struct task_struct *p, bool preempt)
4741 struct task_struct *curr = current;
4742 struct rq *rq, *p_rq;
4743 unsigned long flags;
4744 int yielded = 0;
4746 local_irq_save(flags);
4747 rq = this_rq();
4749 again:
4750 p_rq = task_rq(p);
4752 * If we're the only runnable task on the rq and target rq also
4753 * has only one task, there's absolutely no point in yielding.
4755 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4756 yielded = -ESRCH;
4757 goto out_irq;
4760 double_rq_lock(rq, p_rq);
4761 if (task_rq(p) != p_rq) {
4762 double_rq_unlock(rq, p_rq);
4763 goto again;
4766 if (!curr->sched_class->yield_to_task)
4767 goto out_unlock;
4769 if (curr->sched_class != p->sched_class)
4770 goto out_unlock;
4772 if (task_running(p_rq, p) || p->state)
4773 goto out_unlock;
4775 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4776 if (yielded) {
4777 schedstat_inc(rq, yld_count);
4779 * Make p's CPU reschedule; pick_next_entity takes care of
4780 * fairness.
4782 if (preempt && rq != p_rq)
4783 resched_curr(p_rq);
4786 out_unlock:
4787 double_rq_unlock(rq, p_rq);
4788 out_irq:
4789 local_irq_restore(flags);
4791 if (yielded > 0)
4792 schedule();
4794 return yielded;
4796 EXPORT_SYMBOL_GPL(yield_to);
4799 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4800 * that process accounting knows that this is a task in IO wait state.
4802 long __sched io_schedule_timeout(long timeout)
4804 int old_iowait = current->in_iowait;
4805 struct rq *rq;
4806 long ret;
4808 current->in_iowait = 1;
4809 blk_schedule_flush_plug(current);
4811 delayacct_blkio_start();
4812 rq = raw_rq();
4813 atomic_inc(&rq->nr_iowait);
4814 ret = schedule_timeout(timeout);
4815 current->in_iowait = old_iowait;
4816 atomic_dec(&rq->nr_iowait);
4817 delayacct_blkio_end();
4819 return ret;
4821 EXPORT_SYMBOL(io_schedule_timeout);
4824 * sys_sched_get_priority_max - return maximum RT priority.
4825 * @policy: scheduling class.
4827 * Return: On success, this syscall returns the maximum
4828 * rt_priority that can be used by a given scheduling class.
4829 * On failure, a negative error code is returned.
4831 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4833 int ret = -EINVAL;
4835 switch (policy) {
4836 case SCHED_FIFO:
4837 case SCHED_RR:
4838 ret = MAX_USER_RT_PRIO-1;
4839 break;
4840 case SCHED_DEADLINE:
4841 case SCHED_NORMAL:
4842 case SCHED_BATCH:
4843 case SCHED_IDLE:
4844 ret = 0;
4845 break;
4847 return ret;
4851 * sys_sched_get_priority_min - return minimum RT priority.
4852 * @policy: scheduling class.
4854 * Return: On success, this syscall returns the minimum
4855 * rt_priority that can be used by a given scheduling class.
4856 * On failure, a negative error code is returned.
4858 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4860 int ret = -EINVAL;
4862 switch (policy) {
4863 case SCHED_FIFO:
4864 case SCHED_RR:
4865 ret = 1;
4866 break;
4867 case SCHED_DEADLINE:
4868 case SCHED_NORMAL:
4869 case SCHED_BATCH:
4870 case SCHED_IDLE:
4871 ret = 0;
4873 return ret;
4877 * sys_sched_rr_get_interval - return the default timeslice of a process.
4878 * @pid: pid of the process.
4879 * @interval: userspace pointer to the timeslice value.
4881 * this syscall writes the default timeslice value of a given process
4882 * into the user-space timespec buffer. A value of '0' means infinity.
4884 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4885 * an error code.
4887 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4888 struct timespec __user *, interval)
4890 struct task_struct *p;
4891 unsigned int time_slice;
4892 unsigned long flags;
4893 struct rq *rq;
4894 int retval;
4895 struct timespec t;
4897 if (pid < 0)
4898 return -EINVAL;
4900 retval = -ESRCH;
4901 rcu_read_lock();
4902 p = find_process_by_pid(pid);
4903 if (!p)
4904 goto out_unlock;
4906 retval = security_task_getscheduler(p);
4907 if (retval)
4908 goto out_unlock;
4910 rq = task_rq_lock(p, &flags);
4911 time_slice = 0;
4912 if (p->sched_class->get_rr_interval)
4913 time_slice = p->sched_class->get_rr_interval(rq, p);
4914 task_rq_unlock(rq, p, &flags);
4916 rcu_read_unlock();
4917 jiffies_to_timespec(time_slice, &t);
4918 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4919 return retval;
4921 out_unlock:
4922 rcu_read_unlock();
4923 return retval;
4926 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4928 void sched_show_task(struct task_struct *p)
4930 unsigned long free = 0;
4931 int ppid;
4932 unsigned long state = p->state;
4934 if (state)
4935 state = __ffs(state) + 1;
4936 printk(KERN_INFO "%-15.15s %c", p->comm,
4937 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4938 #if BITS_PER_LONG == 32
4939 if (state == TASK_RUNNING)
4940 printk(KERN_CONT " running ");
4941 else
4942 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4943 #else
4944 if (state == TASK_RUNNING)
4945 printk(KERN_CONT " running task ");
4946 else
4947 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4948 #endif
4949 #ifdef CONFIG_DEBUG_STACK_USAGE
4950 free = stack_not_used(p);
4951 #endif
4952 ppid = 0;
4953 rcu_read_lock();
4954 if (pid_alive(p))
4955 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4956 rcu_read_unlock();
4957 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4958 task_pid_nr(p), ppid,
4959 (unsigned long)task_thread_info(p)->flags);
4961 print_worker_info(KERN_INFO, p);
4962 show_stack(p, NULL);
4965 void show_state_filter(unsigned long state_filter)
4967 struct task_struct *g, *p;
4969 #if BITS_PER_LONG == 32
4970 printk(KERN_INFO
4971 " task PC stack pid father\n");
4972 #else
4973 printk(KERN_INFO
4974 " task PC stack pid father\n");
4975 #endif
4976 rcu_read_lock();
4977 for_each_process_thread(g, p) {
4979 * reset the NMI-timeout, listing all files on a slow
4980 * console might take a lot of time:
4981 * Also, reset softlockup watchdogs on all CPUs, because
4982 * another CPU might be blocked waiting for us to process
4983 * an IPI.
4985 touch_nmi_watchdog();
4986 touch_all_softlockup_watchdogs();
4987 if (!state_filter || (p->state & state_filter))
4988 sched_show_task(p);
4991 #ifdef CONFIG_SCHED_DEBUG
4992 sysrq_sched_debug_show();
4993 #endif
4994 rcu_read_unlock();
4996 * Only show locks if all tasks are dumped:
4998 if (!state_filter)
4999 debug_show_all_locks();
5002 void init_idle_bootup_task(struct task_struct *idle)
5004 idle->sched_class = &idle_sched_class;
5008 * init_idle - set up an idle thread for a given CPU
5009 * @idle: task in question
5010 * @cpu: cpu the idle task belongs to
5012 * NOTE: this function does not set the idle thread's NEED_RESCHED
5013 * flag, to make booting more robust.
5015 void init_idle(struct task_struct *idle, int cpu)
5017 struct rq *rq = cpu_rq(cpu);
5018 unsigned long flags;
5020 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5021 raw_spin_lock(&rq->lock);
5023 __sched_fork(0, idle);
5024 idle->state = TASK_RUNNING;
5025 idle->se.exec_start = sched_clock();
5027 #ifdef CONFIG_SMP
5029 * Its possible that init_idle() gets called multiple times on a task,
5030 * in that case do_set_cpus_allowed() will not do the right thing.
5032 * And since this is boot we can forgo the serialization.
5034 set_cpus_allowed_common(idle, cpumask_of(cpu));
5035 #endif
5037 * We're having a chicken and egg problem, even though we are
5038 * holding rq->lock, the cpu isn't yet set to this cpu so the
5039 * lockdep check in task_group() will fail.
5041 * Similar case to sched_fork(). / Alternatively we could
5042 * use task_rq_lock() here and obtain the other rq->lock.
5044 * Silence PROVE_RCU
5046 rcu_read_lock();
5047 __set_task_cpu(idle, cpu);
5048 rcu_read_unlock();
5050 rq->curr = rq->idle = idle;
5051 idle->on_rq = TASK_ON_RQ_QUEUED;
5052 #ifdef CONFIG_SMP
5053 idle->on_cpu = 1;
5054 #endif
5055 raw_spin_unlock(&rq->lock);
5056 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5058 /* Set the preempt count _outside_ the spinlocks! */
5059 init_idle_preempt_count(idle, cpu);
5062 * The idle tasks have their own, simple scheduling class:
5064 idle->sched_class = &idle_sched_class;
5065 ftrace_graph_init_idle_task(idle, cpu);
5066 vtime_init_idle(idle, cpu);
5067 #ifdef CONFIG_SMP
5068 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5069 #endif
5072 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5073 const struct cpumask *trial)
5075 int ret = 1, trial_cpus;
5076 struct dl_bw *cur_dl_b;
5077 unsigned long flags;
5079 if (!cpumask_weight(cur))
5080 return ret;
5082 rcu_read_lock_sched();
5083 cur_dl_b = dl_bw_of(cpumask_any(cur));
5084 trial_cpus = cpumask_weight(trial);
5086 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5087 if (cur_dl_b->bw != -1 &&
5088 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5089 ret = 0;
5090 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5091 rcu_read_unlock_sched();
5093 return ret;
5096 int task_can_attach(struct task_struct *p,
5097 const struct cpumask *cs_cpus_allowed)
5099 int ret = 0;
5102 * Kthreads which disallow setaffinity shouldn't be moved
5103 * to a new cpuset; we don't want to change their cpu
5104 * affinity and isolating such threads by their set of
5105 * allowed nodes is unnecessary. Thus, cpusets are not
5106 * applicable for such threads. This prevents checking for
5107 * success of set_cpus_allowed_ptr() on all attached tasks
5108 * before cpus_allowed may be changed.
5110 if (p->flags & PF_NO_SETAFFINITY) {
5111 ret = -EINVAL;
5112 goto out;
5115 #ifdef CONFIG_SMP
5116 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5117 cs_cpus_allowed)) {
5118 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5119 cs_cpus_allowed);
5120 struct dl_bw *dl_b;
5121 bool overflow;
5122 int cpus;
5123 unsigned long flags;
5125 rcu_read_lock_sched();
5126 dl_b = dl_bw_of(dest_cpu);
5127 raw_spin_lock_irqsave(&dl_b->lock, flags);
5128 cpus = dl_bw_cpus(dest_cpu);
5129 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5130 if (overflow)
5131 ret = -EBUSY;
5132 else {
5134 * We reserve space for this task in the destination
5135 * root_domain, as we can't fail after this point.
5136 * We will free resources in the source root_domain
5137 * later on (see set_cpus_allowed_dl()).
5139 __dl_add(dl_b, p->dl.dl_bw);
5141 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5142 rcu_read_unlock_sched();
5145 #endif
5146 out:
5147 return ret;
5150 #ifdef CONFIG_SMP
5152 #ifdef CONFIG_NUMA_BALANCING
5153 /* Migrate current task p to target_cpu */
5154 int migrate_task_to(struct task_struct *p, int target_cpu)
5156 struct migration_arg arg = { p, target_cpu };
5157 int curr_cpu = task_cpu(p);
5159 if (curr_cpu == target_cpu)
5160 return 0;
5162 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5163 return -EINVAL;
5165 /* TODO: This is not properly updating schedstats */
5167 trace_sched_move_numa(p, curr_cpu, target_cpu);
5168 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5172 * Requeue a task on a given node and accurately track the number of NUMA
5173 * tasks on the runqueues
5175 void sched_setnuma(struct task_struct *p, int nid)
5177 struct rq *rq;
5178 unsigned long flags;
5179 bool queued, running;
5181 rq = task_rq_lock(p, &flags);
5182 queued = task_on_rq_queued(p);
5183 running = task_current(rq, p);
5185 if (queued)
5186 dequeue_task(rq, p, DEQUEUE_SAVE);
5187 if (running)
5188 put_prev_task(rq, p);
5190 p->numa_preferred_nid = nid;
5192 if (running)
5193 p->sched_class->set_curr_task(rq);
5194 if (queued)
5195 enqueue_task(rq, p, ENQUEUE_RESTORE);
5196 task_rq_unlock(rq, p, &flags);
5198 #endif /* CONFIG_NUMA_BALANCING */
5200 #ifdef CONFIG_HOTPLUG_CPU
5202 * Ensures that the idle task is using init_mm right before its cpu goes
5203 * offline.
5205 void idle_task_exit(void)
5207 struct mm_struct *mm = current->active_mm;
5209 BUG_ON(cpu_online(smp_processor_id()));
5211 if (mm != &init_mm) {
5212 switch_mm(mm, &init_mm, current);
5213 finish_arch_post_lock_switch();
5215 mmdrop(mm);
5219 * Since this CPU is going 'away' for a while, fold any nr_active delta
5220 * we might have. Assumes we're called after migrate_tasks() so that the
5221 * nr_active count is stable.
5223 * Also see the comment "Global load-average calculations".
5225 static void calc_load_migrate(struct rq *rq)
5227 long delta = calc_load_fold_active(rq);
5228 if (delta)
5229 atomic_long_add(delta, &calc_load_tasks);
5232 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5236 static const struct sched_class fake_sched_class = {
5237 .put_prev_task = put_prev_task_fake,
5240 static struct task_struct fake_task = {
5242 * Avoid pull_{rt,dl}_task()
5244 .prio = MAX_PRIO + 1,
5245 .sched_class = &fake_sched_class,
5249 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5250 * try_to_wake_up()->select_task_rq().
5252 * Called with rq->lock held even though we'er in stop_machine() and
5253 * there's no concurrency possible, we hold the required locks anyway
5254 * because of lock validation efforts.
5256 static void migrate_tasks(struct rq *dead_rq)
5258 struct rq *rq = dead_rq;
5259 struct task_struct *next, *stop = rq->stop;
5260 int dest_cpu;
5263 * Fudge the rq selection such that the below task selection loop
5264 * doesn't get stuck on the currently eligible stop task.
5266 * We're currently inside stop_machine() and the rq is either stuck
5267 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5268 * either way we should never end up calling schedule() until we're
5269 * done here.
5271 rq->stop = NULL;
5274 * put_prev_task() and pick_next_task() sched
5275 * class method both need to have an up-to-date
5276 * value of rq->clock[_task]
5278 update_rq_clock(rq);
5280 for (;;) {
5282 * There's this thread running, bail when that's the only
5283 * remaining thread.
5285 if (rq->nr_running == 1)
5286 break;
5289 * pick_next_task assumes pinned rq->lock.
5291 lockdep_pin_lock(&rq->lock);
5292 next = pick_next_task(rq, &fake_task);
5293 BUG_ON(!next);
5294 next->sched_class->put_prev_task(rq, next);
5297 * Rules for changing task_struct::cpus_allowed are holding
5298 * both pi_lock and rq->lock, such that holding either
5299 * stabilizes the mask.
5301 * Drop rq->lock is not quite as disastrous as it usually is
5302 * because !cpu_active at this point, which means load-balance
5303 * will not interfere. Also, stop-machine.
5305 lockdep_unpin_lock(&rq->lock);
5306 raw_spin_unlock(&rq->lock);
5307 raw_spin_lock(&next->pi_lock);
5308 raw_spin_lock(&rq->lock);
5311 * Since we're inside stop-machine, _nothing_ should have
5312 * changed the task, WARN if weird stuff happened, because in
5313 * that case the above rq->lock drop is a fail too.
5315 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5316 raw_spin_unlock(&next->pi_lock);
5317 continue;
5320 /* Find suitable destination for @next, with force if needed. */
5321 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5323 rq = __migrate_task(rq, next, dest_cpu);
5324 if (rq != dead_rq) {
5325 raw_spin_unlock(&rq->lock);
5326 rq = dead_rq;
5327 raw_spin_lock(&rq->lock);
5329 raw_spin_unlock(&next->pi_lock);
5332 rq->stop = stop;
5334 #endif /* CONFIG_HOTPLUG_CPU */
5336 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5338 static struct ctl_table sd_ctl_dir[] = {
5340 .procname = "sched_domain",
5341 .mode = 0555,
5346 static struct ctl_table sd_ctl_root[] = {
5348 .procname = "kernel",
5349 .mode = 0555,
5350 .child = sd_ctl_dir,
5355 static struct ctl_table *sd_alloc_ctl_entry(int n)
5357 struct ctl_table *entry =
5358 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5360 return entry;
5363 static void sd_free_ctl_entry(struct ctl_table **tablep)
5365 struct ctl_table *entry;
5368 * In the intermediate directories, both the child directory and
5369 * procname are dynamically allocated and could fail but the mode
5370 * will always be set. In the lowest directory the names are
5371 * static strings and all have proc handlers.
5373 for (entry = *tablep; entry->mode; entry++) {
5374 if (entry->child)
5375 sd_free_ctl_entry(&entry->child);
5376 if (entry->proc_handler == NULL)
5377 kfree(entry->procname);
5380 kfree(*tablep);
5381 *tablep = NULL;
5384 static int min_load_idx = 0;
5385 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5387 static void
5388 set_table_entry(struct ctl_table *entry,
5389 const char *procname, void *data, int maxlen,
5390 umode_t mode, proc_handler *proc_handler,
5391 bool load_idx)
5393 entry->procname = procname;
5394 entry->data = data;
5395 entry->maxlen = maxlen;
5396 entry->mode = mode;
5397 entry->proc_handler = proc_handler;
5399 if (load_idx) {
5400 entry->extra1 = &min_load_idx;
5401 entry->extra2 = &max_load_idx;
5405 static struct ctl_table *
5406 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5408 struct ctl_table *table = sd_alloc_ctl_entry(14);
5410 if (table == NULL)
5411 return NULL;
5413 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5414 sizeof(long), 0644, proc_doulongvec_minmax, false);
5415 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5416 sizeof(long), 0644, proc_doulongvec_minmax, false);
5417 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5418 sizeof(int), 0644, proc_dointvec_minmax, true);
5419 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5420 sizeof(int), 0644, proc_dointvec_minmax, true);
5421 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5422 sizeof(int), 0644, proc_dointvec_minmax, true);
5423 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5424 sizeof(int), 0644, proc_dointvec_minmax, true);
5425 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5426 sizeof(int), 0644, proc_dointvec_minmax, true);
5427 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5428 sizeof(int), 0644, proc_dointvec_minmax, false);
5429 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5430 sizeof(int), 0644, proc_dointvec_minmax, false);
5431 set_table_entry(&table[9], "cache_nice_tries",
5432 &sd->cache_nice_tries,
5433 sizeof(int), 0644, proc_dointvec_minmax, false);
5434 set_table_entry(&table[10], "flags", &sd->flags,
5435 sizeof(int), 0644, proc_dointvec_minmax, false);
5436 set_table_entry(&table[11], "max_newidle_lb_cost",
5437 &sd->max_newidle_lb_cost,
5438 sizeof(long), 0644, proc_doulongvec_minmax, false);
5439 set_table_entry(&table[12], "name", sd->name,
5440 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5441 /* &table[13] is terminator */
5443 return table;
5446 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5448 struct ctl_table *entry, *table;
5449 struct sched_domain *sd;
5450 int domain_num = 0, i;
5451 char buf[32];
5453 for_each_domain(cpu, sd)
5454 domain_num++;
5455 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5456 if (table == NULL)
5457 return NULL;
5459 i = 0;
5460 for_each_domain(cpu, sd) {
5461 snprintf(buf, 32, "domain%d", i);
5462 entry->procname = kstrdup(buf, GFP_KERNEL);
5463 entry->mode = 0555;
5464 entry->child = sd_alloc_ctl_domain_table(sd);
5465 entry++;
5466 i++;
5468 return table;
5471 static struct ctl_table_header *sd_sysctl_header;
5472 static void register_sched_domain_sysctl(void)
5474 int i, cpu_num = num_possible_cpus();
5475 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5476 char buf[32];
5478 WARN_ON(sd_ctl_dir[0].child);
5479 sd_ctl_dir[0].child = entry;
5481 if (entry == NULL)
5482 return;
5484 for_each_possible_cpu(i) {
5485 snprintf(buf, 32, "cpu%d", i);
5486 entry->procname = kstrdup(buf, GFP_KERNEL);
5487 entry->mode = 0555;
5488 entry->child = sd_alloc_ctl_cpu_table(i);
5489 entry++;
5492 WARN_ON(sd_sysctl_header);
5493 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5496 /* may be called multiple times per register */
5497 static void unregister_sched_domain_sysctl(void)
5499 unregister_sysctl_table(sd_sysctl_header);
5500 sd_sysctl_header = NULL;
5501 if (sd_ctl_dir[0].child)
5502 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5504 #else
5505 static void register_sched_domain_sysctl(void)
5508 static void unregister_sched_domain_sysctl(void)
5511 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5513 static void set_rq_online(struct rq *rq)
5515 if (!rq->online) {
5516 const struct sched_class *class;
5518 cpumask_set_cpu(rq->cpu, rq->rd->online);
5519 rq->online = 1;
5521 for_each_class(class) {
5522 if (class->rq_online)
5523 class->rq_online(rq);
5528 static void set_rq_offline(struct rq *rq)
5530 if (rq->online) {
5531 const struct sched_class *class;
5533 for_each_class(class) {
5534 if (class->rq_offline)
5535 class->rq_offline(rq);
5538 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5539 rq->online = 0;
5544 * migration_call - callback that gets triggered when a CPU is added.
5545 * Here we can start up the necessary migration thread for the new CPU.
5547 static int
5548 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5550 int cpu = (long)hcpu;
5551 unsigned long flags;
5552 struct rq *rq = cpu_rq(cpu);
5554 switch (action & ~CPU_TASKS_FROZEN) {
5556 case CPU_UP_PREPARE:
5557 rq->calc_load_update = calc_load_update;
5558 break;
5560 case CPU_ONLINE:
5561 /* Update our root-domain */
5562 raw_spin_lock_irqsave(&rq->lock, flags);
5563 if (rq->rd) {
5564 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5566 set_rq_online(rq);
5568 raw_spin_unlock_irqrestore(&rq->lock, flags);
5569 break;
5571 #ifdef CONFIG_HOTPLUG_CPU
5572 case CPU_DYING:
5573 sched_ttwu_pending();
5574 /* Update our root-domain */
5575 raw_spin_lock_irqsave(&rq->lock, flags);
5576 if (rq->rd) {
5577 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5578 set_rq_offline(rq);
5580 migrate_tasks(rq);
5581 BUG_ON(rq->nr_running != 1); /* the migration thread */
5582 raw_spin_unlock_irqrestore(&rq->lock, flags);
5583 break;
5585 case CPU_DEAD:
5586 calc_load_migrate(rq);
5587 break;
5588 #endif
5591 update_max_interval();
5593 return NOTIFY_OK;
5597 * Register at high priority so that task migration (migrate_all_tasks)
5598 * happens before everything else. This has to be lower priority than
5599 * the notifier in the perf_event subsystem, though.
5601 static struct notifier_block migration_notifier = {
5602 .notifier_call = migration_call,
5603 .priority = CPU_PRI_MIGRATION,
5606 static void set_cpu_rq_start_time(void)
5608 int cpu = smp_processor_id();
5609 struct rq *rq = cpu_rq(cpu);
5610 rq->age_stamp = sched_clock_cpu(cpu);
5613 static int sched_cpu_active(struct notifier_block *nfb,
5614 unsigned long action, void *hcpu)
5616 int cpu = (long)hcpu;
5618 switch (action & ~CPU_TASKS_FROZEN) {
5619 case CPU_STARTING:
5620 set_cpu_rq_start_time();
5621 return NOTIFY_OK;
5623 case CPU_ONLINE:
5625 * At this point a starting CPU has marked itself as online via
5626 * set_cpu_online(). But it might not yet have marked itself
5627 * as active, which is essential from here on.
5629 set_cpu_active(cpu, true);
5630 stop_machine_unpark(cpu);
5631 return NOTIFY_OK;
5633 case CPU_DOWN_FAILED:
5634 set_cpu_active(cpu, true);
5635 return NOTIFY_OK;
5637 default:
5638 return NOTIFY_DONE;
5642 static int sched_cpu_inactive(struct notifier_block *nfb,
5643 unsigned long action, void *hcpu)
5645 switch (action & ~CPU_TASKS_FROZEN) {
5646 case CPU_DOWN_PREPARE:
5647 set_cpu_active((long)hcpu, false);
5648 return NOTIFY_OK;
5649 default:
5650 return NOTIFY_DONE;
5654 static int __init migration_init(void)
5656 void *cpu = (void *)(long)smp_processor_id();
5657 int err;
5659 /* Initialize migration for the boot CPU */
5660 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5661 BUG_ON(err == NOTIFY_BAD);
5662 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5663 register_cpu_notifier(&migration_notifier);
5665 /* Register cpu active notifiers */
5666 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5667 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5669 return 0;
5671 early_initcall(migration_init);
5673 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5675 #ifdef CONFIG_SCHED_DEBUG
5677 static __read_mostly int sched_debug_enabled;
5679 static int __init sched_debug_setup(char *str)
5681 sched_debug_enabled = 1;
5683 return 0;
5685 early_param("sched_debug", sched_debug_setup);
5687 static inline bool sched_debug(void)
5689 return sched_debug_enabled;
5692 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5693 struct cpumask *groupmask)
5695 struct sched_group *group = sd->groups;
5697 cpumask_clear(groupmask);
5699 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5701 if (!(sd->flags & SD_LOAD_BALANCE)) {
5702 printk("does not load-balance\n");
5703 if (sd->parent)
5704 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5705 " has parent");
5706 return -1;
5709 printk(KERN_CONT "span %*pbl level %s\n",
5710 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5712 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5713 printk(KERN_ERR "ERROR: domain->span does not contain "
5714 "CPU%d\n", cpu);
5716 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5717 printk(KERN_ERR "ERROR: domain->groups does not contain"
5718 " CPU%d\n", cpu);
5721 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5722 do {
5723 if (!group) {
5724 printk("\n");
5725 printk(KERN_ERR "ERROR: group is NULL\n");
5726 break;
5729 if (!cpumask_weight(sched_group_cpus(group))) {
5730 printk(KERN_CONT "\n");
5731 printk(KERN_ERR "ERROR: empty group\n");
5732 break;
5735 if (!(sd->flags & SD_OVERLAP) &&
5736 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5737 printk(KERN_CONT "\n");
5738 printk(KERN_ERR "ERROR: repeated CPUs\n");
5739 break;
5742 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5744 printk(KERN_CONT " %*pbl",
5745 cpumask_pr_args(sched_group_cpus(group)));
5746 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5747 printk(KERN_CONT " (cpu_capacity = %d)",
5748 group->sgc->capacity);
5751 group = group->next;
5752 } while (group != sd->groups);
5753 printk(KERN_CONT "\n");
5755 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5756 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5758 if (sd->parent &&
5759 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5760 printk(KERN_ERR "ERROR: parent span is not a superset "
5761 "of domain->span\n");
5762 return 0;
5765 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5767 int level = 0;
5769 if (!sched_debug_enabled)
5770 return;
5772 if (!sd) {
5773 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5774 return;
5777 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5779 for (;;) {
5780 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5781 break;
5782 level++;
5783 sd = sd->parent;
5784 if (!sd)
5785 break;
5788 #else /* !CONFIG_SCHED_DEBUG */
5789 # define sched_domain_debug(sd, cpu) do { } while (0)
5790 static inline bool sched_debug(void)
5792 return false;
5794 #endif /* CONFIG_SCHED_DEBUG */
5796 static int sd_degenerate(struct sched_domain *sd)
5798 if (cpumask_weight(sched_domain_span(sd)) == 1)
5799 return 1;
5801 /* Following flags need at least 2 groups */
5802 if (sd->flags & (SD_LOAD_BALANCE |
5803 SD_BALANCE_NEWIDLE |
5804 SD_BALANCE_FORK |
5805 SD_BALANCE_EXEC |
5806 SD_SHARE_CPUCAPACITY |
5807 SD_SHARE_PKG_RESOURCES |
5808 SD_SHARE_POWERDOMAIN)) {
5809 if (sd->groups != sd->groups->next)
5810 return 0;
5813 /* Following flags don't use groups */
5814 if (sd->flags & (SD_WAKE_AFFINE))
5815 return 0;
5817 return 1;
5820 static int
5821 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5823 unsigned long cflags = sd->flags, pflags = parent->flags;
5825 if (sd_degenerate(parent))
5826 return 1;
5828 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5829 return 0;
5831 /* Flags needing groups don't count if only 1 group in parent */
5832 if (parent->groups == parent->groups->next) {
5833 pflags &= ~(SD_LOAD_BALANCE |
5834 SD_BALANCE_NEWIDLE |
5835 SD_BALANCE_FORK |
5836 SD_BALANCE_EXEC |
5837 SD_SHARE_CPUCAPACITY |
5838 SD_SHARE_PKG_RESOURCES |
5839 SD_PREFER_SIBLING |
5840 SD_SHARE_POWERDOMAIN);
5841 if (nr_node_ids == 1)
5842 pflags &= ~SD_SERIALIZE;
5844 if (~cflags & pflags)
5845 return 0;
5847 return 1;
5850 static void free_rootdomain(struct rcu_head *rcu)
5852 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5854 cpupri_cleanup(&rd->cpupri);
5855 cpudl_cleanup(&rd->cpudl);
5856 free_cpumask_var(rd->dlo_mask);
5857 free_cpumask_var(rd->rto_mask);
5858 free_cpumask_var(rd->online);
5859 free_cpumask_var(rd->span);
5860 kfree(rd);
5863 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5865 struct root_domain *old_rd = NULL;
5866 unsigned long flags;
5868 raw_spin_lock_irqsave(&rq->lock, flags);
5870 if (rq->rd) {
5871 old_rd = rq->rd;
5873 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5874 set_rq_offline(rq);
5876 cpumask_clear_cpu(rq->cpu, old_rd->span);
5879 * If we dont want to free the old_rd yet then
5880 * set old_rd to NULL to skip the freeing later
5881 * in this function:
5883 if (!atomic_dec_and_test(&old_rd->refcount))
5884 old_rd = NULL;
5887 atomic_inc(&rd->refcount);
5888 rq->rd = rd;
5890 cpumask_set_cpu(rq->cpu, rd->span);
5891 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5892 set_rq_online(rq);
5894 raw_spin_unlock_irqrestore(&rq->lock, flags);
5896 if (old_rd)
5897 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5900 void sched_get_rd(struct root_domain *rd)
5902 atomic_inc(&rd->refcount);
5905 void sched_put_rd(struct root_domain *rd)
5907 if (!atomic_dec_and_test(&rd->refcount))
5908 return;
5910 call_rcu_sched(&rd->rcu, free_rootdomain);
5913 static int init_rootdomain(struct root_domain *rd)
5915 memset(rd, 0, sizeof(*rd));
5917 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5918 goto out;
5919 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5920 goto free_span;
5921 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5922 goto free_online;
5923 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5924 goto free_dlo_mask;
5926 #ifdef HAVE_RT_PUSH_IPI
5927 rd->rto_cpu = -1;
5928 raw_spin_lock_init(&rd->rto_lock);
5929 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
5930 #endif
5932 init_dl_bw(&rd->dl_bw);
5933 if (cpudl_init(&rd->cpudl) != 0)
5934 goto free_dlo_mask;
5936 if (cpupri_init(&rd->cpupri) != 0)
5937 goto free_rto_mask;
5938 return 0;
5940 free_rto_mask:
5941 free_cpumask_var(rd->rto_mask);
5942 free_dlo_mask:
5943 free_cpumask_var(rd->dlo_mask);
5944 free_online:
5945 free_cpumask_var(rd->online);
5946 free_span:
5947 free_cpumask_var(rd->span);
5948 out:
5949 return -ENOMEM;
5953 * By default the system creates a single root-domain with all cpus as
5954 * members (mimicking the global state we have today).
5956 struct root_domain def_root_domain;
5958 static void init_defrootdomain(void)
5960 init_rootdomain(&def_root_domain);
5962 atomic_set(&def_root_domain.refcount, 1);
5965 static struct root_domain *alloc_rootdomain(void)
5967 struct root_domain *rd;
5969 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5970 if (!rd)
5971 return NULL;
5973 if (init_rootdomain(rd) != 0) {
5974 kfree(rd);
5975 return NULL;
5978 return rd;
5981 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5983 struct sched_group *tmp, *first;
5985 if (!sg)
5986 return;
5988 first = sg;
5989 do {
5990 tmp = sg->next;
5992 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5993 kfree(sg->sgc);
5995 kfree(sg);
5996 sg = tmp;
5997 } while (sg != first);
6000 static void free_sched_domain(struct rcu_head *rcu)
6002 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6005 * If its an overlapping domain it has private groups, iterate and
6006 * nuke them all.
6008 if (sd->flags & SD_OVERLAP) {
6009 free_sched_groups(sd->groups, 1);
6010 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6011 kfree(sd->groups->sgc);
6012 kfree(sd->groups);
6014 kfree(sd);
6017 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6019 call_rcu(&sd->rcu, free_sched_domain);
6022 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6024 for (; sd; sd = sd->parent)
6025 destroy_sched_domain(sd, cpu);
6029 * Keep a special pointer to the highest sched_domain that has
6030 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6031 * allows us to avoid some pointer chasing select_idle_sibling().
6033 * Also keep a unique ID per domain (we use the first cpu number in
6034 * the cpumask of the domain), this allows us to quickly tell if
6035 * two cpus are in the same cache domain, see cpus_share_cache().
6037 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6038 DEFINE_PER_CPU(int, sd_llc_size);
6039 DEFINE_PER_CPU(int, sd_llc_id);
6040 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6041 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6042 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6044 static void update_top_cache_domain(int cpu)
6046 struct sched_domain *sd;
6047 struct sched_domain *busy_sd = NULL;
6048 int id = cpu;
6049 int size = 1;
6051 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6052 if (sd) {
6053 id = cpumask_first(sched_domain_span(sd));
6054 size = cpumask_weight(sched_domain_span(sd));
6055 busy_sd = sd->parent; /* sd_busy */
6057 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6059 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6060 per_cpu(sd_llc_size, cpu) = size;
6061 per_cpu(sd_llc_id, cpu) = id;
6063 sd = lowest_flag_domain(cpu, SD_NUMA);
6064 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6066 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6067 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6071 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6072 * hold the hotplug lock.
6074 static void
6075 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6077 struct rq *rq = cpu_rq(cpu);
6078 struct sched_domain *tmp;
6080 /* Remove the sched domains which do not contribute to scheduling. */
6081 for (tmp = sd; tmp; ) {
6082 struct sched_domain *parent = tmp->parent;
6083 if (!parent)
6084 break;
6086 if (sd_parent_degenerate(tmp, parent)) {
6087 tmp->parent = parent->parent;
6088 if (parent->parent)
6089 parent->parent->child = tmp;
6091 * Transfer SD_PREFER_SIBLING down in case of a
6092 * degenerate parent; the spans match for this
6093 * so the property transfers.
6095 if (parent->flags & SD_PREFER_SIBLING)
6096 tmp->flags |= SD_PREFER_SIBLING;
6097 destroy_sched_domain(parent, cpu);
6098 } else
6099 tmp = tmp->parent;
6102 if (sd && sd_degenerate(sd)) {
6103 tmp = sd;
6104 sd = sd->parent;
6105 destroy_sched_domain(tmp, cpu);
6106 if (sd)
6107 sd->child = NULL;
6110 sched_domain_debug(sd, cpu);
6112 rq_attach_root(rq, rd);
6113 tmp = rq->sd;
6114 rcu_assign_pointer(rq->sd, sd);
6115 destroy_sched_domains(tmp, cpu);
6117 update_top_cache_domain(cpu);
6120 /* Setup the mask of cpus configured for isolated domains */
6121 static int __init isolated_cpu_setup(char *str)
6123 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6124 cpulist_parse(str, cpu_isolated_map);
6125 return 1;
6128 __setup("isolcpus=", isolated_cpu_setup);
6130 struct s_data {
6131 struct sched_domain ** __percpu sd;
6132 struct root_domain *rd;
6135 enum s_alloc {
6136 sa_rootdomain,
6137 sa_sd,
6138 sa_sd_storage,
6139 sa_none,
6143 * Build an iteration mask that can exclude certain CPUs from the upwards
6144 * domain traversal.
6146 * Only CPUs that can arrive at this group should be considered to continue
6147 * balancing.
6149 * Asymmetric node setups can result in situations where the domain tree is of
6150 * unequal depth, make sure to skip domains that already cover the entire
6151 * range.
6153 * In that case build_sched_domains() will have terminated the iteration early
6154 * and our sibling sd spans will be empty. Domains should always include the
6155 * cpu they're built on, so check that.
6158 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6160 const struct cpumask *sg_span = sched_group_cpus(sg);
6161 struct sd_data *sdd = sd->private;
6162 struct sched_domain *sibling;
6163 int i;
6165 for_each_cpu(i, sg_span) {
6166 sibling = *per_cpu_ptr(sdd->sd, i);
6169 * Can happen in the asymmetric case, where these siblings are
6170 * unused. The mask will not be empty because those CPUs that
6171 * do have the top domain _should_ span the domain.
6173 if (!sibling->child)
6174 continue;
6176 /* If we would not end up here, we can't continue from here */
6177 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6178 continue;
6180 cpumask_set_cpu(i, sched_group_mask(sg));
6183 /* We must not have empty masks here */
6184 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6188 * Return the canonical balance cpu for this group, this is the first cpu
6189 * of this group that's also in the iteration mask.
6191 int group_balance_cpu(struct sched_group *sg)
6193 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6196 static int
6197 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6199 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6200 const struct cpumask *span = sched_domain_span(sd);
6201 struct cpumask *covered = sched_domains_tmpmask;
6202 struct sd_data *sdd = sd->private;
6203 struct sched_domain *sibling;
6204 int i;
6206 cpumask_clear(covered);
6208 for_each_cpu(i, span) {
6209 struct cpumask *sg_span;
6211 if (cpumask_test_cpu(i, covered))
6212 continue;
6214 sibling = *per_cpu_ptr(sdd->sd, i);
6216 /* See the comment near build_group_mask(). */
6217 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6218 continue;
6220 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6221 GFP_KERNEL, cpu_to_node(cpu));
6223 if (!sg)
6224 goto fail;
6226 sg_span = sched_group_cpus(sg);
6227 if (sibling->child)
6228 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6229 else
6230 cpumask_set_cpu(i, sg_span);
6232 cpumask_or(covered, covered, sg_span);
6234 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6235 if (atomic_inc_return(&sg->sgc->ref) == 1)
6236 build_group_mask(sd, sg);
6239 * Initialize sgc->capacity such that even if we mess up the
6240 * domains and no possible iteration will get us here, we won't
6241 * die on a /0 trap.
6243 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6246 * Make sure the first group of this domain contains the
6247 * canonical balance cpu. Otherwise the sched_domain iteration
6248 * breaks. See update_sg_lb_stats().
6250 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6251 group_balance_cpu(sg) == cpu)
6252 groups = sg;
6254 if (!first)
6255 first = sg;
6256 if (last)
6257 last->next = sg;
6258 last = sg;
6259 last->next = first;
6261 sd->groups = groups;
6263 return 0;
6265 fail:
6266 free_sched_groups(first, 0);
6268 return -ENOMEM;
6271 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6273 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6274 struct sched_domain *child = sd->child;
6276 if (child)
6277 cpu = cpumask_first(sched_domain_span(child));
6279 if (sg) {
6280 *sg = *per_cpu_ptr(sdd->sg, cpu);
6281 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6282 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6285 return cpu;
6289 * build_sched_groups will build a circular linked list of the groups
6290 * covered by the given span, and will set each group's ->cpumask correctly,
6291 * and ->cpu_capacity to 0.
6293 * Assumes the sched_domain tree is fully constructed
6295 static int
6296 build_sched_groups(struct sched_domain *sd, int cpu)
6298 struct sched_group *first = NULL, *last = NULL;
6299 struct sd_data *sdd = sd->private;
6300 const struct cpumask *span = sched_domain_span(sd);
6301 struct cpumask *covered;
6302 int i;
6304 get_group(cpu, sdd, &sd->groups);
6305 atomic_inc(&sd->groups->ref);
6307 if (cpu != cpumask_first(span))
6308 return 0;
6310 lockdep_assert_held(&sched_domains_mutex);
6311 covered = sched_domains_tmpmask;
6313 cpumask_clear(covered);
6315 for_each_cpu(i, span) {
6316 struct sched_group *sg;
6317 int group, j;
6319 if (cpumask_test_cpu(i, covered))
6320 continue;
6322 group = get_group(i, sdd, &sg);
6323 cpumask_setall(sched_group_mask(sg));
6325 for_each_cpu(j, span) {
6326 if (get_group(j, sdd, NULL) != group)
6327 continue;
6329 cpumask_set_cpu(j, covered);
6330 cpumask_set_cpu(j, sched_group_cpus(sg));
6333 if (!first)
6334 first = sg;
6335 if (last)
6336 last->next = sg;
6337 last = sg;
6339 last->next = first;
6341 return 0;
6345 * Initialize sched groups cpu_capacity.
6347 * cpu_capacity indicates the capacity of sched group, which is used while
6348 * distributing the load between different sched groups in a sched domain.
6349 * Typically cpu_capacity for all the groups in a sched domain will be same
6350 * unless there are asymmetries in the topology. If there are asymmetries,
6351 * group having more cpu_capacity will pickup more load compared to the
6352 * group having less cpu_capacity.
6354 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6356 struct sched_group *sg = sd->groups;
6358 WARN_ON(!sg);
6360 do {
6361 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6362 sg = sg->next;
6363 } while (sg != sd->groups);
6365 if (cpu != group_balance_cpu(sg))
6366 return;
6368 update_group_capacity(sd, cpu);
6369 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6373 * Initializers for schedule domains
6374 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6377 static int default_relax_domain_level = -1;
6378 int sched_domain_level_max;
6380 static int __init setup_relax_domain_level(char *str)
6382 if (kstrtoint(str, 0, &default_relax_domain_level))
6383 pr_warn("Unable to set relax_domain_level\n");
6385 return 1;
6387 __setup("relax_domain_level=", setup_relax_domain_level);
6389 static void set_domain_attribute(struct sched_domain *sd,
6390 struct sched_domain_attr *attr)
6392 int request;
6394 if (!attr || attr->relax_domain_level < 0) {
6395 if (default_relax_domain_level < 0)
6396 return;
6397 else
6398 request = default_relax_domain_level;
6399 } else
6400 request = attr->relax_domain_level;
6401 if (request < sd->level) {
6402 /* turn off idle balance on this domain */
6403 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6404 } else {
6405 /* turn on idle balance on this domain */
6406 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6410 static void __sdt_free(const struct cpumask *cpu_map);
6411 static int __sdt_alloc(const struct cpumask *cpu_map);
6413 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6414 const struct cpumask *cpu_map)
6416 switch (what) {
6417 case sa_rootdomain:
6418 if (!atomic_read(&d->rd->refcount))
6419 free_rootdomain(&d->rd->rcu); /* fall through */
6420 case sa_sd:
6421 free_percpu(d->sd); /* fall through */
6422 case sa_sd_storage:
6423 __sdt_free(cpu_map); /* fall through */
6424 case sa_none:
6425 break;
6429 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6430 const struct cpumask *cpu_map)
6432 memset(d, 0, sizeof(*d));
6434 if (__sdt_alloc(cpu_map))
6435 return sa_sd_storage;
6436 d->sd = alloc_percpu(struct sched_domain *);
6437 if (!d->sd)
6438 return sa_sd_storage;
6439 d->rd = alloc_rootdomain();
6440 if (!d->rd)
6441 return sa_sd;
6442 return sa_rootdomain;
6446 * NULL the sd_data elements we've used to build the sched_domain and
6447 * sched_group structure so that the subsequent __free_domain_allocs()
6448 * will not free the data we're using.
6450 static void claim_allocations(int cpu, struct sched_domain *sd)
6452 struct sd_data *sdd = sd->private;
6454 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6455 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6457 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6458 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6460 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6461 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6464 #ifdef CONFIG_NUMA
6465 static int sched_domains_numa_levels;
6466 enum numa_topology_type sched_numa_topology_type;
6467 static int *sched_domains_numa_distance;
6468 int sched_max_numa_distance;
6469 static struct cpumask ***sched_domains_numa_masks;
6470 static int sched_domains_curr_level;
6471 #endif
6474 * SD_flags allowed in topology descriptions.
6476 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6477 * SD_SHARE_PKG_RESOURCES - describes shared caches
6478 * SD_NUMA - describes NUMA topologies
6479 * SD_SHARE_POWERDOMAIN - describes shared power domain
6481 * Odd one out:
6482 * SD_ASYM_PACKING - describes SMT quirks
6484 #define TOPOLOGY_SD_FLAGS \
6485 (SD_SHARE_CPUCAPACITY | \
6486 SD_SHARE_PKG_RESOURCES | \
6487 SD_NUMA | \
6488 SD_ASYM_PACKING | \
6489 SD_SHARE_POWERDOMAIN)
6491 static struct sched_domain *
6492 sd_init(struct sched_domain_topology_level *tl, int cpu)
6494 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6495 int sd_weight, sd_flags = 0;
6497 #ifdef CONFIG_NUMA
6499 * Ugly hack to pass state to sd_numa_mask()...
6501 sched_domains_curr_level = tl->numa_level;
6502 #endif
6504 sd_weight = cpumask_weight(tl->mask(cpu));
6506 if (tl->sd_flags)
6507 sd_flags = (*tl->sd_flags)();
6508 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6509 "wrong sd_flags in topology description\n"))
6510 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6512 *sd = (struct sched_domain){
6513 .min_interval = sd_weight,
6514 .max_interval = 2*sd_weight,
6515 .busy_factor = 32,
6516 .imbalance_pct = 125,
6518 .cache_nice_tries = 0,
6519 .busy_idx = 0,
6520 .idle_idx = 0,
6521 .newidle_idx = 0,
6522 .wake_idx = 0,
6523 .forkexec_idx = 0,
6525 .flags = 1*SD_LOAD_BALANCE
6526 | 1*SD_BALANCE_NEWIDLE
6527 | 1*SD_BALANCE_EXEC
6528 | 1*SD_BALANCE_FORK
6529 | 0*SD_BALANCE_WAKE
6530 | 1*SD_WAKE_AFFINE
6531 | 0*SD_SHARE_CPUCAPACITY
6532 | 0*SD_SHARE_PKG_RESOURCES
6533 | 0*SD_SERIALIZE
6534 | 0*SD_PREFER_SIBLING
6535 | 0*SD_NUMA
6536 | sd_flags
6539 .last_balance = jiffies,
6540 .balance_interval = sd_weight,
6541 .smt_gain = 0,
6542 .max_newidle_lb_cost = 0,
6543 .next_decay_max_lb_cost = jiffies,
6544 #ifdef CONFIG_SCHED_DEBUG
6545 .name = tl->name,
6546 #endif
6550 * Convert topological properties into behaviour.
6553 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6554 sd->flags |= SD_PREFER_SIBLING;
6555 sd->imbalance_pct = 110;
6556 sd->smt_gain = 1178; /* ~15% */
6558 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6559 sd->imbalance_pct = 117;
6560 sd->cache_nice_tries = 1;
6561 sd->busy_idx = 2;
6563 #ifdef CONFIG_NUMA
6564 } else if (sd->flags & SD_NUMA) {
6565 sd->cache_nice_tries = 2;
6566 sd->busy_idx = 3;
6567 sd->idle_idx = 2;
6569 sd->flags |= SD_SERIALIZE;
6570 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6571 sd->flags &= ~(SD_BALANCE_EXEC |
6572 SD_BALANCE_FORK |
6573 SD_WAKE_AFFINE);
6576 #endif
6577 } else {
6578 sd->flags |= SD_PREFER_SIBLING;
6579 sd->cache_nice_tries = 1;
6580 sd->busy_idx = 2;
6581 sd->idle_idx = 1;
6584 sd->private = &tl->data;
6586 return sd;
6590 * Topology list, bottom-up.
6592 static struct sched_domain_topology_level default_topology[] = {
6593 #ifdef CONFIG_SCHED_SMT
6594 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6595 #endif
6596 #ifdef CONFIG_SCHED_MC
6597 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6598 #endif
6599 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6600 { NULL, },
6603 static struct sched_domain_topology_level *sched_domain_topology =
6604 default_topology;
6606 #define for_each_sd_topology(tl) \
6607 for (tl = sched_domain_topology; tl->mask; tl++)
6609 void set_sched_topology(struct sched_domain_topology_level *tl)
6611 sched_domain_topology = tl;
6614 #ifdef CONFIG_NUMA
6616 static const struct cpumask *sd_numa_mask(int cpu)
6618 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6621 static void sched_numa_warn(const char *str)
6623 static int done = false;
6624 int i,j;
6626 if (done)
6627 return;
6629 done = true;
6631 printk(KERN_WARNING "ERROR: %s\n\n", str);
6633 for (i = 0; i < nr_node_ids; i++) {
6634 printk(KERN_WARNING " ");
6635 for (j = 0; j < nr_node_ids; j++)
6636 printk(KERN_CONT "%02d ", node_distance(i,j));
6637 printk(KERN_CONT "\n");
6639 printk(KERN_WARNING "\n");
6642 bool find_numa_distance(int distance)
6644 int i;
6646 if (distance == node_distance(0, 0))
6647 return true;
6649 for (i = 0; i < sched_domains_numa_levels; i++) {
6650 if (sched_domains_numa_distance[i] == distance)
6651 return true;
6654 return false;
6658 * A system can have three types of NUMA topology:
6659 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6660 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6661 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6663 * The difference between a glueless mesh topology and a backplane
6664 * topology lies in whether communication between not directly
6665 * connected nodes goes through intermediary nodes (where programs
6666 * could run), or through backplane controllers. This affects
6667 * placement of programs.
6669 * The type of topology can be discerned with the following tests:
6670 * - If the maximum distance between any nodes is 1 hop, the system
6671 * is directly connected.
6672 * - If for two nodes A and B, located N > 1 hops away from each other,
6673 * there is an intermediary node C, which is < N hops away from both
6674 * nodes A and B, the system is a glueless mesh.
6676 static void init_numa_topology_type(void)
6678 int a, b, c, n;
6680 n = sched_max_numa_distance;
6682 if (sched_domains_numa_levels <= 1) {
6683 sched_numa_topology_type = NUMA_DIRECT;
6684 return;
6687 for_each_online_node(a) {
6688 for_each_online_node(b) {
6689 /* Find two nodes furthest removed from each other. */
6690 if (node_distance(a, b) < n)
6691 continue;
6693 /* Is there an intermediary node between a and b? */
6694 for_each_online_node(c) {
6695 if (node_distance(a, c) < n &&
6696 node_distance(b, c) < n) {
6697 sched_numa_topology_type =
6698 NUMA_GLUELESS_MESH;
6699 return;
6703 sched_numa_topology_type = NUMA_BACKPLANE;
6704 return;
6709 static void sched_init_numa(void)
6711 int next_distance, curr_distance = node_distance(0, 0);
6712 struct sched_domain_topology_level *tl;
6713 int level = 0;
6714 int i, j, k;
6716 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6717 if (!sched_domains_numa_distance)
6718 return;
6721 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6722 * unique distances in the node_distance() table.
6724 * Assumes node_distance(0,j) includes all distances in
6725 * node_distance(i,j) in order to avoid cubic time.
6727 next_distance = curr_distance;
6728 for (i = 0; i < nr_node_ids; i++) {
6729 for (j = 0; j < nr_node_ids; j++) {
6730 for (k = 0; k < nr_node_ids; k++) {
6731 int distance = node_distance(i, k);
6733 if (distance > curr_distance &&
6734 (distance < next_distance ||
6735 next_distance == curr_distance))
6736 next_distance = distance;
6739 * While not a strong assumption it would be nice to know
6740 * about cases where if node A is connected to B, B is not
6741 * equally connected to A.
6743 if (sched_debug() && node_distance(k, i) != distance)
6744 sched_numa_warn("Node-distance not symmetric");
6746 if (sched_debug() && i && !find_numa_distance(distance))
6747 sched_numa_warn("Node-0 not representative");
6749 if (next_distance != curr_distance) {
6750 sched_domains_numa_distance[level++] = next_distance;
6751 sched_domains_numa_levels = level;
6752 curr_distance = next_distance;
6753 } else break;
6757 * In case of sched_debug() we verify the above assumption.
6759 if (!sched_debug())
6760 break;
6763 if (!level)
6764 return;
6767 * 'level' contains the number of unique distances, excluding the
6768 * identity distance node_distance(i,i).
6770 * The sched_domains_numa_distance[] array includes the actual distance
6771 * numbers.
6775 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6776 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6777 * the array will contain less then 'level' members. This could be
6778 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6779 * in other functions.
6781 * We reset it to 'level' at the end of this function.
6783 sched_domains_numa_levels = 0;
6785 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6786 if (!sched_domains_numa_masks)
6787 return;
6790 * Now for each level, construct a mask per node which contains all
6791 * cpus of nodes that are that many hops away from us.
6793 for (i = 0; i < level; i++) {
6794 sched_domains_numa_masks[i] =
6795 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6796 if (!sched_domains_numa_masks[i])
6797 return;
6799 for (j = 0; j < nr_node_ids; j++) {
6800 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6801 if (!mask)
6802 return;
6804 sched_domains_numa_masks[i][j] = mask;
6806 for_each_node(k) {
6807 if (node_distance(j, k) > sched_domains_numa_distance[i])
6808 continue;
6810 cpumask_or(mask, mask, cpumask_of_node(k));
6815 /* Compute default topology size */
6816 for (i = 0; sched_domain_topology[i].mask; i++);
6818 tl = kzalloc((i + level + 1) *
6819 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6820 if (!tl)
6821 return;
6824 * Copy the default topology bits..
6826 for (i = 0; sched_domain_topology[i].mask; i++)
6827 tl[i] = sched_domain_topology[i];
6830 * .. and append 'j' levels of NUMA goodness.
6832 for (j = 0; j < level; i++, j++) {
6833 tl[i] = (struct sched_domain_topology_level){
6834 .mask = sd_numa_mask,
6835 .sd_flags = cpu_numa_flags,
6836 .flags = SDTL_OVERLAP,
6837 .numa_level = j,
6838 SD_INIT_NAME(NUMA)
6842 sched_domain_topology = tl;
6844 sched_domains_numa_levels = level;
6845 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6847 init_numa_topology_type();
6850 static void sched_domains_numa_masks_set(int cpu)
6852 int i, j;
6853 int node = cpu_to_node(cpu);
6855 for (i = 0; i < sched_domains_numa_levels; i++) {
6856 for (j = 0; j < nr_node_ids; j++) {
6857 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6858 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6863 static void sched_domains_numa_masks_clear(int cpu)
6865 int i, j;
6866 for (i = 0; i < sched_domains_numa_levels; i++) {
6867 for (j = 0; j < nr_node_ids; j++)
6868 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6873 * Update sched_domains_numa_masks[level][node] array when new cpus
6874 * are onlined.
6876 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6877 unsigned long action,
6878 void *hcpu)
6880 int cpu = (long)hcpu;
6882 switch (action & ~CPU_TASKS_FROZEN) {
6883 case CPU_ONLINE:
6884 sched_domains_numa_masks_set(cpu);
6885 break;
6887 case CPU_DEAD:
6888 sched_domains_numa_masks_clear(cpu);
6889 break;
6891 default:
6892 return NOTIFY_DONE;
6895 return NOTIFY_OK;
6897 #else
6898 static inline void sched_init_numa(void)
6902 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6903 unsigned long action,
6904 void *hcpu)
6906 return 0;
6908 #endif /* CONFIG_NUMA */
6910 static int __sdt_alloc(const struct cpumask *cpu_map)
6912 struct sched_domain_topology_level *tl;
6913 int j;
6915 for_each_sd_topology(tl) {
6916 struct sd_data *sdd = &tl->data;
6918 sdd->sd = alloc_percpu(struct sched_domain *);
6919 if (!sdd->sd)
6920 return -ENOMEM;
6922 sdd->sg = alloc_percpu(struct sched_group *);
6923 if (!sdd->sg)
6924 return -ENOMEM;
6926 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6927 if (!sdd->sgc)
6928 return -ENOMEM;
6930 for_each_cpu(j, cpu_map) {
6931 struct sched_domain *sd;
6932 struct sched_group *sg;
6933 struct sched_group_capacity *sgc;
6935 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6936 GFP_KERNEL, cpu_to_node(j));
6937 if (!sd)
6938 return -ENOMEM;
6940 *per_cpu_ptr(sdd->sd, j) = sd;
6942 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6943 GFP_KERNEL, cpu_to_node(j));
6944 if (!sg)
6945 return -ENOMEM;
6947 sg->next = sg;
6949 *per_cpu_ptr(sdd->sg, j) = sg;
6951 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6952 GFP_KERNEL, cpu_to_node(j));
6953 if (!sgc)
6954 return -ENOMEM;
6956 *per_cpu_ptr(sdd->sgc, j) = sgc;
6960 return 0;
6963 static void __sdt_free(const struct cpumask *cpu_map)
6965 struct sched_domain_topology_level *tl;
6966 int j;
6968 for_each_sd_topology(tl) {
6969 struct sd_data *sdd = &tl->data;
6971 for_each_cpu(j, cpu_map) {
6972 struct sched_domain *sd;
6974 if (sdd->sd) {
6975 sd = *per_cpu_ptr(sdd->sd, j);
6976 if (sd && (sd->flags & SD_OVERLAP))
6977 free_sched_groups(sd->groups, 0);
6978 kfree(*per_cpu_ptr(sdd->sd, j));
6981 if (sdd->sg)
6982 kfree(*per_cpu_ptr(sdd->sg, j));
6983 if (sdd->sgc)
6984 kfree(*per_cpu_ptr(sdd->sgc, j));
6986 free_percpu(sdd->sd);
6987 sdd->sd = NULL;
6988 free_percpu(sdd->sg);
6989 sdd->sg = NULL;
6990 free_percpu(sdd->sgc);
6991 sdd->sgc = NULL;
6995 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6996 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6997 struct sched_domain *child, int cpu)
6999 struct sched_domain *sd = sd_init(tl, cpu);
7000 if (!sd)
7001 return child;
7003 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7004 if (child) {
7005 sd->level = child->level + 1;
7006 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7007 child->parent = sd;
7008 sd->child = child;
7010 if (!cpumask_subset(sched_domain_span(child),
7011 sched_domain_span(sd))) {
7012 pr_err("BUG: arch topology borken\n");
7013 #ifdef CONFIG_SCHED_DEBUG
7014 pr_err(" the %s domain not a subset of the %s domain\n",
7015 child->name, sd->name);
7016 #endif
7017 /* Fixup, ensure @sd has at least @child cpus. */
7018 cpumask_or(sched_domain_span(sd),
7019 sched_domain_span(sd),
7020 sched_domain_span(child));
7024 set_domain_attribute(sd, attr);
7026 return sd;
7030 * Build sched domains for a given set of cpus and attach the sched domains
7031 * to the individual cpus
7033 static int build_sched_domains(const struct cpumask *cpu_map,
7034 struct sched_domain_attr *attr)
7036 enum s_alloc alloc_state;
7037 struct sched_domain *sd;
7038 struct s_data d;
7039 int i, ret = -ENOMEM;
7041 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7042 if (alloc_state != sa_rootdomain)
7043 goto error;
7045 /* Set up domains for cpus specified by the cpu_map. */
7046 for_each_cpu(i, cpu_map) {
7047 struct sched_domain_topology_level *tl;
7049 sd = NULL;
7050 for_each_sd_topology(tl) {
7051 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7052 if (tl == sched_domain_topology)
7053 *per_cpu_ptr(d.sd, i) = sd;
7054 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7055 sd->flags |= SD_OVERLAP;
7056 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7057 break;
7061 /* Build the groups for the domains */
7062 for_each_cpu(i, cpu_map) {
7063 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7064 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7065 if (sd->flags & SD_OVERLAP) {
7066 if (build_overlap_sched_groups(sd, i))
7067 goto error;
7068 } else {
7069 if (build_sched_groups(sd, i))
7070 goto error;
7075 /* Calculate CPU capacity for physical packages and nodes */
7076 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7077 if (!cpumask_test_cpu(i, cpu_map))
7078 continue;
7080 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7081 claim_allocations(i, sd);
7082 init_sched_groups_capacity(i, sd);
7086 /* Attach the domains */
7087 rcu_read_lock();
7088 for_each_cpu(i, cpu_map) {
7089 sd = *per_cpu_ptr(d.sd, i);
7090 cpu_attach_domain(sd, d.rd, i);
7092 rcu_read_unlock();
7094 ret = 0;
7095 error:
7096 __free_domain_allocs(&d, alloc_state, cpu_map);
7097 return ret;
7100 static cpumask_var_t *doms_cur; /* current sched domains */
7101 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7102 static struct sched_domain_attr *dattr_cur;
7103 /* attribues of custom domains in 'doms_cur' */
7106 * Special case: If a kmalloc of a doms_cur partition (array of
7107 * cpumask) fails, then fallback to a single sched domain,
7108 * as determined by the single cpumask fallback_doms.
7110 static cpumask_var_t fallback_doms;
7113 * arch_update_cpu_topology lets virtualized architectures update the
7114 * cpu core maps. It is supposed to return 1 if the topology changed
7115 * or 0 if it stayed the same.
7117 int __weak arch_update_cpu_topology(void)
7119 return 0;
7122 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7124 int i;
7125 cpumask_var_t *doms;
7127 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7128 if (!doms)
7129 return NULL;
7130 for (i = 0; i < ndoms; i++) {
7131 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7132 free_sched_domains(doms, i);
7133 return NULL;
7136 return doms;
7139 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7141 unsigned int i;
7142 for (i = 0; i < ndoms; i++)
7143 free_cpumask_var(doms[i]);
7144 kfree(doms);
7148 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7149 * For now this just excludes isolated cpus, but could be used to
7150 * exclude other special cases in the future.
7152 static int init_sched_domains(const struct cpumask *cpu_map)
7154 int err;
7156 arch_update_cpu_topology();
7157 ndoms_cur = 1;
7158 doms_cur = alloc_sched_domains(ndoms_cur);
7159 if (!doms_cur)
7160 doms_cur = &fallback_doms;
7161 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7162 err = build_sched_domains(doms_cur[0], NULL);
7163 register_sched_domain_sysctl();
7165 return err;
7169 * Detach sched domains from a group of cpus specified in cpu_map
7170 * These cpus will now be attached to the NULL domain
7172 static void detach_destroy_domains(const struct cpumask *cpu_map)
7174 int i;
7176 rcu_read_lock();
7177 for_each_cpu(i, cpu_map)
7178 cpu_attach_domain(NULL, &def_root_domain, i);
7179 rcu_read_unlock();
7182 /* handle null as "default" */
7183 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7184 struct sched_domain_attr *new, int idx_new)
7186 struct sched_domain_attr tmp;
7188 /* fast path */
7189 if (!new && !cur)
7190 return 1;
7192 tmp = SD_ATTR_INIT;
7193 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7194 new ? (new + idx_new) : &tmp,
7195 sizeof(struct sched_domain_attr));
7199 * Partition sched domains as specified by the 'ndoms_new'
7200 * cpumasks in the array doms_new[] of cpumasks. This compares
7201 * doms_new[] to the current sched domain partitioning, doms_cur[].
7202 * It destroys each deleted domain and builds each new domain.
7204 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7205 * The masks don't intersect (don't overlap.) We should setup one
7206 * sched domain for each mask. CPUs not in any of the cpumasks will
7207 * not be load balanced. If the same cpumask appears both in the
7208 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7209 * it as it is.
7211 * The passed in 'doms_new' should be allocated using
7212 * alloc_sched_domains. This routine takes ownership of it and will
7213 * free_sched_domains it when done with it. If the caller failed the
7214 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7215 * and partition_sched_domains() will fallback to the single partition
7216 * 'fallback_doms', it also forces the domains to be rebuilt.
7218 * If doms_new == NULL it will be replaced with cpu_online_mask.
7219 * ndoms_new == 0 is a special case for destroying existing domains,
7220 * and it will not create the default domain.
7222 * Call with hotplug lock held
7224 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7225 struct sched_domain_attr *dattr_new)
7227 int i, j, n;
7228 int new_topology;
7230 mutex_lock(&sched_domains_mutex);
7232 /* always unregister in case we don't destroy any domains */
7233 unregister_sched_domain_sysctl();
7235 /* Let architecture update cpu core mappings. */
7236 new_topology = arch_update_cpu_topology();
7238 n = doms_new ? ndoms_new : 0;
7240 /* Destroy deleted domains */
7241 for (i = 0; i < ndoms_cur; i++) {
7242 for (j = 0; j < n && !new_topology; j++) {
7243 if (cpumask_equal(doms_cur[i], doms_new[j])
7244 && dattrs_equal(dattr_cur, i, dattr_new, j))
7245 goto match1;
7247 /* no match - a current sched domain not in new doms_new[] */
7248 detach_destroy_domains(doms_cur[i]);
7249 match1:
7253 n = ndoms_cur;
7254 if (doms_new == NULL) {
7255 n = 0;
7256 doms_new = &fallback_doms;
7257 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7258 WARN_ON_ONCE(dattr_new);
7261 /* Build new domains */
7262 for (i = 0; i < ndoms_new; i++) {
7263 for (j = 0; j < n && !new_topology; j++) {
7264 if (cpumask_equal(doms_new[i], doms_cur[j])
7265 && dattrs_equal(dattr_new, i, dattr_cur, j))
7266 goto match2;
7268 /* no match - add a new doms_new */
7269 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7270 match2:
7274 /* Remember the new sched domains */
7275 if (doms_cur != &fallback_doms)
7276 free_sched_domains(doms_cur, ndoms_cur);
7277 kfree(dattr_cur); /* kfree(NULL) is safe */
7278 doms_cur = doms_new;
7279 dattr_cur = dattr_new;
7280 ndoms_cur = ndoms_new;
7282 register_sched_domain_sysctl();
7284 mutex_unlock(&sched_domains_mutex);
7287 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7290 * Update cpusets according to cpu_active mask. If cpusets are
7291 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7292 * around partition_sched_domains().
7294 * If we come here as part of a suspend/resume, don't touch cpusets because we
7295 * want to restore it back to its original state upon resume anyway.
7297 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7298 void *hcpu)
7300 switch (action) {
7301 case CPU_ONLINE_FROZEN:
7302 case CPU_DOWN_FAILED_FROZEN:
7305 * num_cpus_frozen tracks how many CPUs are involved in suspend
7306 * resume sequence. As long as this is not the last online
7307 * operation in the resume sequence, just build a single sched
7308 * domain, ignoring cpusets.
7310 partition_sched_domains(1, NULL, NULL);
7311 if (--num_cpus_frozen)
7312 break;
7315 * This is the last CPU online operation. So fall through and
7316 * restore the original sched domains by considering the
7317 * cpuset configurations.
7319 cpuset_force_rebuild();
7321 case CPU_ONLINE:
7322 cpuset_update_active_cpus(true);
7323 break;
7324 default:
7325 return NOTIFY_DONE;
7327 return NOTIFY_OK;
7330 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7331 void *hcpu)
7333 unsigned long flags;
7334 long cpu = (long)hcpu;
7335 struct dl_bw *dl_b;
7336 bool overflow;
7337 int cpus;
7339 switch (action) {
7340 case CPU_DOWN_PREPARE:
7341 rcu_read_lock_sched();
7342 dl_b = dl_bw_of(cpu);
7344 raw_spin_lock_irqsave(&dl_b->lock, flags);
7345 cpus = dl_bw_cpus(cpu);
7346 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7347 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7349 rcu_read_unlock_sched();
7351 if (overflow)
7352 return notifier_from_errno(-EBUSY);
7353 cpuset_update_active_cpus(false);
7354 break;
7355 case CPU_DOWN_PREPARE_FROZEN:
7356 num_cpus_frozen++;
7357 partition_sched_domains(1, NULL, NULL);
7358 break;
7359 default:
7360 return NOTIFY_DONE;
7362 return NOTIFY_OK;
7365 void __init sched_init_smp(void)
7367 cpumask_var_t non_isolated_cpus;
7369 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7370 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7372 sched_init_numa();
7375 * There's no userspace yet to cause hotplug operations; hence all the
7376 * cpu masks are stable and all blatant races in the below code cannot
7377 * happen.
7379 mutex_lock(&sched_domains_mutex);
7380 init_sched_domains(cpu_active_mask);
7381 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7382 if (cpumask_empty(non_isolated_cpus))
7383 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7384 mutex_unlock(&sched_domains_mutex);
7386 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7387 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7388 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7390 init_hrtick();
7392 /* Move init over to a non-isolated CPU */
7393 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7394 BUG();
7395 sched_init_granularity();
7396 free_cpumask_var(non_isolated_cpus);
7398 init_sched_rt_class();
7399 init_sched_dl_class();
7401 #else
7402 void __init sched_init_smp(void)
7404 sched_init_granularity();
7406 #endif /* CONFIG_SMP */
7408 int in_sched_functions(unsigned long addr)
7410 return in_lock_functions(addr) ||
7411 (addr >= (unsigned long)__sched_text_start
7412 && addr < (unsigned long)__sched_text_end);
7415 #ifdef CONFIG_CGROUP_SCHED
7417 * Default task group.
7418 * Every task in system belongs to this group at bootup.
7420 struct task_group root_task_group;
7421 LIST_HEAD(task_groups);
7422 #endif
7424 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7426 void __init sched_init(void)
7428 int i, j;
7429 unsigned long alloc_size = 0, ptr;
7431 #ifdef CONFIG_FAIR_GROUP_SCHED
7432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7433 #endif
7434 #ifdef CONFIG_RT_GROUP_SCHED
7435 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7436 #endif
7437 if (alloc_size) {
7438 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7440 #ifdef CONFIG_FAIR_GROUP_SCHED
7441 root_task_group.se = (struct sched_entity **)ptr;
7442 ptr += nr_cpu_ids * sizeof(void **);
7444 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7445 ptr += nr_cpu_ids * sizeof(void **);
7447 #endif /* CONFIG_FAIR_GROUP_SCHED */
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7450 ptr += nr_cpu_ids * sizeof(void **);
7452 root_task_group.rt_rq = (struct rt_rq **)ptr;
7453 ptr += nr_cpu_ids * sizeof(void **);
7455 #endif /* CONFIG_RT_GROUP_SCHED */
7457 #ifdef CONFIG_CPUMASK_OFFSTACK
7458 for_each_possible_cpu(i) {
7459 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7460 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7462 #endif /* CONFIG_CPUMASK_OFFSTACK */
7464 init_rt_bandwidth(&def_rt_bandwidth,
7465 global_rt_period(), global_rt_runtime());
7466 init_dl_bandwidth(&def_dl_bandwidth,
7467 global_rt_period(), global_rt_runtime());
7469 #ifdef CONFIG_SMP
7470 init_defrootdomain();
7471 #endif
7473 #ifdef CONFIG_RT_GROUP_SCHED
7474 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7475 global_rt_period(), global_rt_runtime());
7476 #endif /* CONFIG_RT_GROUP_SCHED */
7478 #ifdef CONFIG_CGROUP_SCHED
7479 list_add(&root_task_group.list, &task_groups);
7480 INIT_LIST_HEAD(&root_task_group.children);
7481 INIT_LIST_HEAD(&root_task_group.siblings);
7482 autogroup_init(&init_task);
7484 #endif /* CONFIG_CGROUP_SCHED */
7486 for_each_possible_cpu(i) {
7487 struct rq *rq;
7489 rq = cpu_rq(i);
7490 raw_spin_lock_init(&rq->lock);
7491 rq->nr_running = 0;
7492 rq->calc_load_active = 0;
7493 rq->calc_load_update = jiffies + LOAD_FREQ;
7494 init_cfs_rq(&rq->cfs);
7495 init_rt_rq(&rq->rt);
7496 init_dl_rq(&rq->dl);
7497 #ifdef CONFIG_FAIR_GROUP_SCHED
7498 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7499 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7501 * How much cpu bandwidth does root_task_group get?
7503 * In case of task-groups formed thr' the cgroup filesystem, it
7504 * gets 100% of the cpu resources in the system. This overall
7505 * system cpu resource is divided among the tasks of
7506 * root_task_group and its child task-groups in a fair manner,
7507 * based on each entity's (task or task-group's) weight
7508 * (se->load.weight).
7510 * In other words, if root_task_group has 10 tasks of weight
7511 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7512 * then A0's share of the cpu resource is:
7514 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7516 * We achieve this by letting root_task_group's tasks sit
7517 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7519 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7520 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7521 #endif /* CONFIG_FAIR_GROUP_SCHED */
7523 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7524 #ifdef CONFIG_RT_GROUP_SCHED
7525 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7526 #endif
7528 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7529 rq->cpu_load[j] = 0;
7531 rq->last_load_update_tick = jiffies;
7533 #ifdef CONFIG_SMP
7534 rq->sd = NULL;
7535 rq->rd = NULL;
7536 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7537 rq->balance_callback = NULL;
7538 rq->active_balance = 0;
7539 rq->next_balance = jiffies;
7540 rq->push_cpu = 0;
7541 rq->cpu = i;
7542 rq->online = 0;
7543 rq->idle_stamp = 0;
7544 rq->avg_idle = 2*sysctl_sched_migration_cost;
7545 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7547 INIT_LIST_HEAD(&rq->cfs_tasks);
7549 rq_attach_root(rq, &def_root_domain);
7550 #ifdef CONFIG_NO_HZ_COMMON
7551 rq->nohz_flags = 0;
7552 #endif
7553 #ifdef CONFIG_NO_HZ_FULL
7554 rq->last_sched_tick = 0;
7555 #endif
7556 #endif
7557 init_rq_hrtick(rq);
7558 atomic_set(&rq->nr_iowait, 0);
7561 set_load_weight(&init_task);
7563 #ifdef CONFIG_PREEMPT_NOTIFIERS
7564 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7565 #endif
7568 * The boot idle thread does lazy MMU switching as well:
7570 atomic_inc(&init_mm.mm_count);
7571 enter_lazy_tlb(&init_mm, current);
7574 * During early bootup we pretend to be a normal task:
7576 current->sched_class = &fair_sched_class;
7579 * Make us the idle thread. Technically, schedule() should not be
7580 * called from this thread, however somewhere below it might be,
7581 * but because we are the idle thread, we just pick up running again
7582 * when this runqueue becomes "idle".
7584 init_idle(current, smp_processor_id());
7586 calc_load_update = jiffies + LOAD_FREQ;
7588 #ifdef CONFIG_SMP
7589 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7590 /* May be allocated at isolcpus cmdline parse time */
7591 if (cpu_isolated_map == NULL)
7592 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7593 idle_thread_set_boot_cpu();
7594 set_cpu_rq_start_time();
7595 #endif
7596 init_sched_fair_class();
7598 scheduler_running = 1;
7601 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7602 static inline int preempt_count_equals(int preempt_offset)
7604 int nested = preempt_count() + rcu_preempt_depth();
7606 return (nested == preempt_offset);
7609 void __might_sleep(const char *file, int line, int preempt_offset)
7612 * Blocking primitives will set (and therefore destroy) current->state,
7613 * since we will exit with TASK_RUNNING make sure we enter with it,
7614 * otherwise we will destroy state.
7616 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7617 "do not call blocking ops when !TASK_RUNNING; "
7618 "state=%lx set at [<%p>] %pS\n",
7619 current->state,
7620 (void *)current->task_state_change,
7621 (void *)current->task_state_change);
7623 ___might_sleep(file, line, preempt_offset);
7625 EXPORT_SYMBOL(__might_sleep);
7627 void ___might_sleep(const char *file, int line, int preempt_offset)
7629 static unsigned long prev_jiffy; /* ratelimiting */
7631 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7632 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7633 !is_idle_task(current)) ||
7634 system_state != SYSTEM_RUNNING || oops_in_progress)
7635 return;
7636 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7637 return;
7638 prev_jiffy = jiffies;
7640 printk(KERN_ERR
7641 "BUG: sleeping function called from invalid context at %s:%d\n",
7642 file, line);
7643 printk(KERN_ERR
7644 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7645 in_atomic(), irqs_disabled(),
7646 current->pid, current->comm);
7648 if (task_stack_end_corrupted(current))
7649 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7651 debug_show_held_locks(current);
7652 if (irqs_disabled())
7653 print_irqtrace_events(current);
7654 #ifdef CONFIG_DEBUG_PREEMPT
7655 if (!preempt_count_equals(preempt_offset)) {
7656 pr_err("Preemption disabled at:");
7657 print_ip_sym(current->preempt_disable_ip);
7658 pr_cont("\n");
7660 #endif
7661 dump_stack();
7663 EXPORT_SYMBOL(___might_sleep);
7664 #endif
7666 #ifdef CONFIG_MAGIC_SYSRQ
7667 void normalize_rt_tasks(void)
7669 struct task_struct *g, *p;
7670 struct sched_attr attr = {
7671 .sched_policy = SCHED_NORMAL,
7674 read_lock(&tasklist_lock);
7675 for_each_process_thread(g, p) {
7677 * Only normalize user tasks:
7679 if (p->flags & PF_KTHREAD)
7680 continue;
7682 p->se.exec_start = 0;
7683 #ifdef CONFIG_SCHEDSTATS
7684 p->se.statistics.wait_start = 0;
7685 p->se.statistics.sleep_start = 0;
7686 p->se.statistics.block_start = 0;
7687 #endif
7689 if (!dl_task(p) && !rt_task(p)) {
7691 * Renice negative nice level userspace
7692 * tasks back to 0:
7694 if (task_nice(p) < 0)
7695 set_user_nice(p, 0);
7696 continue;
7699 __sched_setscheduler(p, &attr, false, false);
7701 read_unlock(&tasklist_lock);
7704 #endif /* CONFIG_MAGIC_SYSRQ */
7706 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7708 * These functions are only useful for the IA64 MCA handling, or kdb.
7710 * They can only be called when the whole system has been
7711 * stopped - every CPU needs to be quiescent, and no scheduling
7712 * activity can take place. Using them for anything else would
7713 * be a serious bug, and as a result, they aren't even visible
7714 * under any other configuration.
7718 * curr_task - return the current task for a given cpu.
7719 * @cpu: the processor in question.
7721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7723 * Return: The current task for @cpu.
7725 struct task_struct *curr_task(int cpu)
7727 return cpu_curr(cpu);
7730 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7732 #ifdef CONFIG_IA64
7734 * set_curr_task - set the current task for a given cpu.
7735 * @cpu: the processor in question.
7736 * @p: the task pointer to set.
7738 * Description: This function must only be used when non-maskable interrupts
7739 * are serviced on a separate stack. It allows the architecture to switch the
7740 * notion of the current task on a cpu in a non-blocking manner. This function
7741 * must be called with all CPU's synchronized, and interrupts disabled, the
7742 * and caller must save the original value of the current task (see
7743 * curr_task() above) and restore that value before reenabling interrupts and
7744 * re-starting the system.
7746 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7748 void set_curr_task(int cpu, struct task_struct *p)
7750 cpu_curr(cpu) = p;
7753 #endif
7755 #ifdef CONFIG_CGROUP_SCHED
7756 /* task_group_lock serializes the addition/removal of task groups */
7757 static DEFINE_SPINLOCK(task_group_lock);
7759 static void sched_free_group(struct task_group *tg)
7761 free_fair_sched_group(tg);
7762 free_rt_sched_group(tg);
7763 autogroup_free(tg);
7764 kfree(tg);
7767 /* allocate runqueue etc for a new task group */
7768 struct task_group *sched_create_group(struct task_group *parent)
7770 struct task_group *tg;
7772 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7773 if (!tg)
7774 return ERR_PTR(-ENOMEM);
7776 if (!alloc_fair_sched_group(tg, parent))
7777 goto err;
7779 if (!alloc_rt_sched_group(tg, parent))
7780 goto err;
7782 return tg;
7784 err:
7785 sched_free_group(tg);
7786 return ERR_PTR(-ENOMEM);
7789 void sched_online_group(struct task_group *tg, struct task_group *parent)
7791 unsigned long flags;
7793 spin_lock_irqsave(&task_group_lock, flags);
7794 list_add_rcu(&tg->list, &task_groups);
7796 WARN_ON(!parent); /* root should already exist */
7798 tg->parent = parent;
7799 INIT_LIST_HEAD(&tg->children);
7800 list_add_rcu(&tg->siblings, &parent->children);
7801 spin_unlock_irqrestore(&task_group_lock, flags);
7804 /* rcu callback to free various structures associated with a task group */
7805 static void sched_free_group_rcu(struct rcu_head *rhp)
7807 /* now it should be safe to free those cfs_rqs */
7808 sched_free_group(container_of(rhp, struct task_group, rcu));
7811 void sched_destroy_group(struct task_group *tg)
7813 /* wait for possible concurrent references to cfs_rqs complete */
7814 call_rcu(&tg->rcu, sched_free_group_rcu);
7817 void sched_offline_group(struct task_group *tg)
7819 unsigned long flags;
7820 int i;
7822 /* end participation in shares distribution */
7823 for_each_possible_cpu(i)
7824 unregister_fair_sched_group(tg, i);
7826 spin_lock_irqsave(&task_group_lock, flags);
7827 list_del_rcu(&tg->list);
7828 list_del_rcu(&tg->siblings);
7829 spin_unlock_irqrestore(&task_group_lock, flags);
7832 /* change task's runqueue when it moves between groups.
7833 * The caller of this function should have put the task in its new group
7834 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7835 * reflect its new group.
7837 void sched_move_task(struct task_struct *tsk)
7839 struct task_group *tg;
7840 int queued, running;
7841 unsigned long flags;
7842 struct rq *rq;
7844 rq = task_rq_lock(tsk, &flags);
7846 running = task_current(rq, tsk);
7847 queued = task_on_rq_queued(tsk);
7849 if (queued)
7850 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7851 if (unlikely(running))
7852 put_prev_task(rq, tsk);
7855 * All callers are synchronized by task_rq_lock(); we do not use RCU
7856 * which is pointless here. Thus, we pass "true" to task_css_check()
7857 * to prevent lockdep warnings.
7859 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7860 struct task_group, css);
7861 tg = autogroup_task_group(tsk, tg);
7862 tsk->sched_task_group = tg;
7864 #ifdef CONFIG_FAIR_GROUP_SCHED
7865 if (tsk->sched_class->task_move_group)
7866 tsk->sched_class->task_move_group(tsk);
7867 else
7868 #endif
7869 set_task_rq(tsk, task_cpu(tsk));
7871 if (unlikely(running))
7872 tsk->sched_class->set_curr_task(rq);
7873 if (queued)
7874 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7876 task_rq_unlock(rq, tsk, &flags);
7878 #endif /* CONFIG_CGROUP_SCHED */
7880 #ifdef CONFIG_RT_GROUP_SCHED
7882 * Ensure that the real time constraints are schedulable.
7884 static DEFINE_MUTEX(rt_constraints_mutex);
7886 /* Must be called with tasklist_lock held */
7887 static inline int tg_has_rt_tasks(struct task_group *tg)
7889 struct task_struct *g, *p;
7892 * Autogroups do not have RT tasks; see autogroup_create().
7894 if (task_group_is_autogroup(tg))
7895 return 0;
7897 for_each_process_thread(g, p) {
7898 if (rt_task(p) && task_group(p) == tg)
7899 return 1;
7902 return 0;
7905 struct rt_schedulable_data {
7906 struct task_group *tg;
7907 u64 rt_period;
7908 u64 rt_runtime;
7911 static int tg_rt_schedulable(struct task_group *tg, void *data)
7913 struct rt_schedulable_data *d = data;
7914 struct task_group *child;
7915 unsigned long total, sum = 0;
7916 u64 period, runtime;
7918 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7919 runtime = tg->rt_bandwidth.rt_runtime;
7921 if (tg == d->tg) {
7922 period = d->rt_period;
7923 runtime = d->rt_runtime;
7927 * Cannot have more runtime than the period.
7929 if (runtime > period && runtime != RUNTIME_INF)
7930 return -EINVAL;
7933 * Ensure we don't starve existing RT tasks.
7935 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7936 return -EBUSY;
7938 total = to_ratio(period, runtime);
7941 * Nobody can have more than the global setting allows.
7943 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7944 return -EINVAL;
7947 * The sum of our children's runtime should not exceed our own.
7949 list_for_each_entry_rcu(child, &tg->children, siblings) {
7950 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7951 runtime = child->rt_bandwidth.rt_runtime;
7953 if (child == d->tg) {
7954 period = d->rt_period;
7955 runtime = d->rt_runtime;
7958 sum += to_ratio(period, runtime);
7961 if (sum > total)
7962 return -EINVAL;
7964 return 0;
7967 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7969 int ret;
7971 struct rt_schedulable_data data = {
7972 .tg = tg,
7973 .rt_period = period,
7974 .rt_runtime = runtime,
7977 rcu_read_lock();
7978 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7979 rcu_read_unlock();
7981 return ret;
7984 static int tg_set_rt_bandwidth(struct task_group *tg,
7985 u64 rt_period, u64 rt_runtime)
7987 int i, err = 0;
7990 * Disallowing the root group RT runtime is BAD, it would disallow the
7991 * kernel creating (and or operating) RT threads.
7993 if (tg == &root_task_group && rt_runtime == 0)
7994 return -EINVAL;
7996 /* No period doesn't make any sense. */
7997 if (rt_period == 0)
7998 return -EINVAL;
8000 mutex_lock(&rt_constraints_mutex);
8001 read_lock(&tasklist_lock);
8002 err = __rt_schedulable(tg, rt_period, rt_runtime);
8003 if (err)
8004 goto unlock;
8006 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8007 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8008 tg->rt_bandwidth.rt_runtime = rt_runtime;
8010 for_each_possible_cpu(i) {
8011 struct rt_rq *rt_rq = tg->rt_rq[i];
8013 raw_spin_lock(&rt_rq->rt_runtime_lock);
8014 rt_rq->rt_runtime = rt_runtime;
8015 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8017 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8018 unlock:
8019 read_unlock(&tasklist_lock);
8020 mutex_unlock(&rt_constraints_mutex);
8022 return err;
8025 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8027 u64 rt_runtime, rt_period;
8029 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8030 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8031 if (rt_runtime_us < 0)
8032 rt_runtime = RUNTIME_INF;
8034 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8037 static long sched_group_rt_runtime(struct task_group *tg)
8039 u64 rt_runtime_us;
8041 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8042 return -1;
8044 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8045 do_div(rt_runtime_us, NSEC_PER_USEC);
8046 return rt_runtime_us;
8049 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8051 u64 rt_runtime, rt_period;
8053 rt_period = rt_period_us * NSEC_PER_USEC;
8054 rt_runtime = tg->rt_bandwidth.rt_runtime;
8056 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8059 static long sched_group_rt_period(struct task_group *tg)
8061 u64 rt_period_us;
8063 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8064 do_div(rt_period_us, NSEC_PER_USEC);
8065 return rt_period_us;
8067 #endif /* CONFIG_RT_GROUP_SCHED */
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 static int sched_rt_global_constraints(void)
8072 int ret = 0;
8074 mutex_lock(&rt_constraints_mutex);
8075 read_lock(&tasklist_lock);
8076 ret = __rt_schedulable(NULL, 0, 0);
8077 read_unlock(&tasklist_lock);
8078 mutex_unlock(&rt_constraints_mutex);
8080 return ret;
8083 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8085 /* Don't accept realtime tasks when there is no way for them to run */
8086 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8087 return 0;
8089 return 1;
8092 #else /* !CONFIG_RT_GROUP_SCHED */
8093 static int sched_rt_global_constraints(void)
8095 unsigned long flags;
8096 int i, ret = 0;
8098 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8099 for_each_possible_cpu(i) {
8100 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8102 raw_spin_lock(&rt_rq->rt_runtime_lock);
8103 rt_rq->rt_runtime = global_rt_runtime();
8104 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8106 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8108 return ret;
8110 #endif /* CONFIG_RT_GROUP_SCHED */
8112 static int sched_dl_global_validate(void)
8114 u64 runtime = global_rt_runtime();
8115 u64 period = global_rt_period();
8116 u64 new_bw = to_ratio(period, runtime);
8117 struct dl_bw *dl_b;
8118 int cpu, ret = 0;
8119 unsigned long flags;
8122 * Here we want to check the bandwidth not being set to some
8123 * value smaller than the currently allocated bandwidth in
8124 * any of the root_domains.
8126 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8127 * cycling on root_domains... Discussion on different/better
8128 * solutions is welcome!
8130 for_each_possible_cpu(cpu) {
8131 rcu_read_lock_sched();
8132 dl_b = dl_bw_of(cpu);
8134 raw_spin_lock_irqsave(&dl_b->lock, flags);
8135 if (new_bw < dl_b->total_bw)
8136 ret = -EBUSY;
8137 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8139 rcu_read_unlock_sched();
8141 if (ret)
8142 break;
8145 return ret;
8148 static void sched_dl_do_global(void)
8150 u64 new_bw = -1;
8151 struct dl_bw *dl_b;
8152 int cpu;
8153 unsigned long flags;
8155 def_dl_bandwidth.dl_period = global_rt_period();
8156 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8158 if (global_rt_runtime() != RUNTIME_INF)
8159 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8162 * FIXME: As above...
8164 for_each_possible_cpu(cpu) {
8165 rcu_read_lock_sched();
8166 dl_b = dl_bw_of(cpu);
8168 raw_spin_lock_irqsave(&dl_b->lock, flags);
8169 dl_b->bw = new_bw;
8170 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8172 rcu_read_unlock_sched();
8176 static int sched_rt_global_validate(void)
8178 if (sysctl_sched_rt_period <= 0)
8179 return -EINVAL;
8181 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8182 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8183 return -EINVAL;
8185 return 0;
8188 static void sched_rt_do_global(void)
8190 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8191 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8194 int sched_rt_handler(struct ctl_table *table, int write,
8195 void __user *buffer, size_t *lenp,
8196 loff_t *ppos)
8198 int old_period, old_runtime;
8199 static DEFINE_MUTEX(mutex);
8200 int ret;
8202 mutex_lock(&mutex);
8203 old_period = sysctl_sched_rt_period;
8204 old_runtime = sysctl_sched_rt_runtime;
8206 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8208 if (!ret && write) {
8209 ret = sched_rt_global_validate();
8210 if (ret)
8211 goto undo;
8213 ret = sched_dl_global_validate();
8214 if (ret)
8215 goto undo;
8217 ret = sched_rt_global_constraints();
8218 if (ret)
8219 goto undo;
8221 sched_rt_do_global();
8222 sched_dl_do_global();
8224 if (0) {
8225 undo:
8226 sysctl_sched_rt_period = old_period;
8227 sysctl_sched_rt_runtime = old_runtime;
8229 mutex_unlock(&mutex);
8231 return ret;
8234 int sched_rr_handler(struct ctl_table *table, int write,
8235 void __user *buffer, size_t *lenp,
8236 loff_t *ppos)
8238 int ret;
8239 static DEFINE_MUTEX(mutex);
8241 mutex_lock(&mutex);
8242 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8243 /* make sure that internally we keep jiffies */
8244 /* also, writing zero resets timeslice to default */
8245 if (!ret && write) {
8246 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8247 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8249 mutex_unlock(&mutex);
8250 return ret;
8253 #ifdef CONFIG_CGROUP_SCHED
8255 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8257 return css ? container_of(css, struct task_group, css) : NULL;
8260 static struct cgroup_subsys_state *
8261 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8263 struct task_group *parent = css_tg(parent_css);
8264 struct task_group *tg;
8266 if (!parent) {
8267 /* This is early initialization for the top cgroup */
8268 return &root_task_group.css;
8271 tg = sched_create_group(parent);
8272 if (IS_ERR(tg))
8273 return ERR_PTR(-ENOMEM);
8275 return &tg->css;
8278 /* Expose task group only after completing cgroup initialization */
8279 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8281 struct task_group *tg = css_tg(css);
8282 struct task_group *parent = css_tg(css->parent);
8284 if (parent)
8285 sched_online_group(tg, parent);
8286 return 0;
8289 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8291 struct task_group *tg = css_tg(css);
8293 sched_offline_group(tg);
8296 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8298 struct task_group *tg = css_tg(css);
8301 * Relies on the RCU grace period between css_released() and this.
8303 sched_free_group(tg);
8306 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8308 sched_move_task(task);
8311 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8313 struct task_struct *task;
8314 struct cgroup_subsys_state *css;
8316 cgroup_taskset_for_each(task, css, tset) {
8317 #ifdef CONFIG_RT_GROUP_SCHED
8318 if (!sched_rt_can_attach(css_tg(css), task))
8319 return -EINVAL;
8320 #else
8321 /* We don't support RT-tasks being in separate groups */
8322 if (task->sched_class != &fair_sched_class)
8323 return -EINVAL;
8324 #endif
8326 return 0;
8329 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8331 struct task_struct *task;
8332 struct cgroup_subsys_state *css;
8334 cgroup_taskset_for_each(task, css, tset)
8335 sched_move_task(task);
8338 #ifdef CONFIG_FAIR_GROUP_SCHED
8339 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8340 struct cftype *cftype, u64 shareval)
8342 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8345 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8346 struct cftype *cft)
8348 struct task_group *tg = css_tg(css);
8350 return (u64) scale_load_down(tg->shares);
8353 #ifdef CONFIG_CFS_BANDWIDTH
8354 static DEFINE_MUTEX(cfs_constraints_mutex);
8356 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8357 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8359 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8361 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8363 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8364 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8366 if (tg == &root_task_group)
8367 return -EINVAL;
8370 * Ensure we have at some amount of bandwidth every period. This is
8371 * to prevent reaching a state of large arrears when throttled via
8372 * entity_tick() resulting in prolonged exit starvation.
8374 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8375 return -EINVAL;
8378 * Likewise, bound things on the otherside by preventing insane quota
8379 * periods. This also allows us to normalize in computing quota
8380 * feasibility.
8382 if (period > max_cfs_quota_period)
8383 return -EINVAL;
8386 * Prevent race between setting of cfs_rq->runtime_enabled and
8387 * unthrottle_offline_cfs_rqs().
8389 get_online_cpus();
8390 mutex_lock(&cfs_constraints_mutex);
8391 ret = __cfs_schedulable(tg, period, quota);
8392 if (ret)
8393 goto out_unlock;
8395 runtime_enabled = quota != RUNTIME_INF;
8396 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8398 * If we need to toggle cfs_bandwidth_used, off->on must occur
8399 * before making related changes, and on->off must occur afterwards
8401 if (runtime_enabled && !runtime_was_enabled)
8402 cfs_bandwidth_usage_inc();
8403 raw_spin_lock_irq(&cfs_b->lock);
8404 cfs_b->period = ns_to_ktime(period);
8405 cfs_b->quota = quota;
8407 __refill_cfs_bandwidth_runtime(cfs_b);
8408 /* restart the period timer (if active) to handle new period expiry */
8409 if (runtime_enabled)
8410 start_cfs_bandwidth(cfs_b);
8411 raw_spin_unlock_irq(&cfs_b->lock);
8413 for_each_online_cpu(i) {
8414 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8415 struct rq *rq = cfs_rq->rq;
8417 raw_spin_lock_irq(&rq->lock);
8418 cfs_rq->runtime_enabled = runtime_enabled;
8419 cfs_rq->runtime_remaining = 0;
8421 if (cfs_rq->throttled)
8422 unthrottle_cfs_rq(cfs_rq);
8423 raw_spin_unlock_irq(&rq->lock);
8425 if (runtime_was_enabled && !runtime_enabled)
8426 cfs_bandwidth_usage_dec();
8427 out_unlock:
8428 mutex_unlock(&cfs_constraints_mutex);
8429 put_online_cpus();
8431 return ret;
8434 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8436 u64 quota, period;
8438 period = ktime_to_ns(tg->cfs_bandwidth.period);
8439 if (cfs_quota_us < 0)
8440 quota = RUNTIME_INF;
8441 else
8442 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8444 return tg_set_cfs_bandwidth(tg, period, quota);
8447 long tg_get_cfs_quota(struct task_group *tg)
8449 u64 quota_us;
8451 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8452 return -1;
8454 quota_us = tg->cfs_bandwidth.quota;
8455 do_div(quota_us, NSEC_PER_USEC);
8457 return quota_us;
8460 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8462 u64 quota, period;
8464 period = (u64)cfs_period_us * NSEC_PER_USEC;
8465 quota = tg->cfs_bandwidth.quota;
8467 return tg_set_cfs_bandwidth(tg, period, quota);
8470 long tg_get_cfs_period(struct task_group *tg)
8472 u64 cfs_period_us;
8474 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8475 do_div(cfs_period_us, NSEC_PER_USEC);
8477 return cfs_period_us;
8480 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8481 struct cftype *cft)
8483 return tg_get_cfs_quota(css_tg(css));
8486 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8487 struct cftype *cftype, s64 cfs_quota_us)
8489 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8492 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8493 struct cftype *cft)
8495 return tg_get_cfs_period(css_tg(css));
8498 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8499 struct cftype *cftype, u64 cfs_period_us)
8501 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8504 struct cfs_schedulable_data {
8505 struct task_group *tg;
8506 u64 period, quota;
8510 * normalize group quota/period to be quota/max_period
8511 * note: units are usecs
8513 static u64 normalize_cfs_quota(struct task_group *tg,
8514 struct cfs_schedulable_data *d)
8516 u64 quota, period;
8518 if (tg == d->tg) {
8519 period = d->period;
8520 quota = d->quota;
8521 } else {
8522 period = tg_get_cfs_period(tg);
8523 quota = tg_get_cfs_quota(tg);
8526 /* note: these should typically be equivalent */
8527 if (quota == RUNTIME_INF || quota == -1)
8528 return RUNTIME_INF;
8530 return to_ratio(period, quota);
8533 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8535 struct cfs_schedulable_data *d = data;
8536 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8537 s64 quota = 0, parent_quota = -1;
8539 if (!tg->parent) {
8540 quota = RUNTIME_INF;
8541 } else {
8542 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8544 quota = normalize_cfs_quota(tg, d);
8545 parent_quota = parent_b->hierarchical_quota;
8548 * ensure max(child_quota) <= parent_quota, inherit when no
8549 * limit is set
8551 if (quota == RUNTIME_INF)
8552 quota = parent_quota;
8553 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8554 return -EINVAL;
8556 cfs_b->hierarchical_quota = quota;
8558 return 0;
8561 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8563 int ret;
8564 struct cfs_schedulable_data data = {
8565 .tg = tg,
8566 .period = period,
8567 .quota = quota,
8570 if (quota != RUNTIME_INF) {
8571 do_div(data.period, NSEC_PER_USEC);
8572 do_div(data.quota, NSEC_PER_USEC);
8575 rcu_read_lock();
8576 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8577 rcu_read_unlock();
8579 return ret;
8582 static int cpu_stats_show(struct seq_file *sf, void *v)
8584 struct task_group *tg = css_tg(seq_css(sf));
8585 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8587 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8588 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8589 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8591 return 0;
8593 #endif /* CONFIG_CFS_BANDWIDTH */
8594 #endif /* CONFIG_FAIR_GROUP_SCHED */
8596 #ifdef CONFIG_RT_GROUP_SCHED
8597 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8598 struct cftype *cft, s64 val)
8600 return sched_group_set_rt_runtime(css_tg(css), val);
8603 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8604 struct cftype *cft)
8606 return sched_group_rt_runtime(css_tg(css));
8609 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8610 struct cftype *cftype, u64 rt_period_us)
8612 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8615 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8616 struct cftype *cft)
8618 return sched_group_rt_period(css_tg(css));
8620 #endif /* CONFIG_RT_GROUP_SCHED */
8622 static struct cftype cpu_files[] = {
8623 #ifdef CONFIG_FAIR_GROUP_SCHED
8625 .name = "shares",
8626 .read_u64 = cpu_shares_read_u64,
8627 .write_u64 = cpu_shares_write_u64,
8629 #endif
8630 #ifdef CONFIG_CFS_BANDWIDTH
8632 .name = "cfs_quota_us",
8633 .read_s64 = cpu_cfs_quota_read_s64,
8634 .write_s64 = cpu_cfs_quota_write_s64,
8637 .name = "cfs_period_us",
8638 .read_u64 = cpu_cfs_period_read_u64,
8639 .write_u64 = cpu_cfs_period_write_u64,
8642 .name = "stat",
8643 .seq_show = cpu_stats_show,
8645 #endif
8646 #ifdef CONFIG_RT_GROUP_SCHED
8648 .name = "rt_runtime_us",
8649 .read_s64 = cpu_rt_runtime_read,
8650 .write_s64 = cpu_rt_runtime_write,
8653 .name = "rt_period_us",
8654 .read_u64 = cpu_rt_period_read_uint,
8655 .write_u64 = cpu_rt_period_write_uint,
8657 #endif
8658 { } /* terminate */
8661 struct cgroup_subsys cpu_cgrp_subsys = {
8662 .css_alloc = cpu_cgroup_css_alloc,
8663 .css_online = cpu_cgroup_css_online,
8664 .css_released = cpu_cgroup_css_released,
8665 .css_free = cpu_cgroup_css_free,
8666 .fork = cpu_cgroup_fork,
8667 .can_attach = cpu_cgroup_can_attach,
8668 .attach = cpu_cgroup_attach,
8669 .legacy_cftypes = cpu_files,
8670 .early_init = 1,
8673 #endif /* CONFIG_CGROUP_SCHED */
8675 void dump_cpu_task(int cpu)
8677 pr_info("Task dump for CPU %d:\n", cpu);
8678 sched_show_task(cpu_curr(cpu));