dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / sched / deadline.c
blobe12b0a4df8918d92866df93b363e93e6926c03aa
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
72 void init_dl_rq(struct dl_rq *dl_rq)
74 dl_rq->rb_root = RB_ROOT;
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
88 #ifdef CONFIG_SMP
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
97 if (!rq->online)
98 return;
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
113 if (!rq->online)
114 return;
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
188 struct dl_rq *dl_rq = &rq->dl;
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 static inline int has_pushable_dl_tasks(struct rq *rq)
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 static int push_dl_task(struct rq *rq);
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
213 return dl_task(prev);
216 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
217 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
219 static void push_dl_tasks(struct rq *);
220 static void pull_dl_task(struct rq *);
222 static inline void queue_push_tasks(struct rq *rq)
224 if (!has_pushable_dl_tasks(rq))
225 return;
227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
230 static inline void queue_pull_task(struct rq *rq)
232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
235 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
237 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
239 struct rq *later_rq = NULL;
240 bool fallback = false;
242 later_rq = find_lock_later_rq(p, rq);
244 if (!later_rq) {
245 int cpu;
248 * If we cannot preempt any rq, fall back to pick any
249 * online cpu.
251 fallback = true;
252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
253 if (cpu >= nr_cpu_ids) {
255 * Fail to find any suitable cpu.
256 * The task will never come back!
258 BUG_ON(dl_bandwidth_enabled());
261 * If admission control is disabled we
262 * try a little harder to let the task
263 * run.
265 cpu = cpumask_any(cpu_active_mask);
267 later_rq = cpu_rq(cpu);
268 double_lock_balance(rq, later_rq);
272 * By now the task is replenished and enqueued; migrate it.
274 deactivate_task(rq, p, 0);
275 set_task_cpu(p, later_rq->cpu);
276 activate_task(later_rq, p, 0);
278 if (!fallback)
279 resched_curr(later_rq);
281 double_unlock_balance(later_rq, rq);
283 return later_rq;
286 #else
288 static inline
289 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
293 static inline
294 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
298 static inline
299 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
303 static inline
304 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
308 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
310 return false;
313 static inline void pull_dl_task(struct rq *rq)
317 static inline void queue_push_tasks(struct rq *rq)
321 static inline void queue_pull_task(struct rq *rq)
324 #endif /* CONFIG_SMP */
326 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
327 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
328 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
329 int flags);
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
341 * parameters.
343 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
344 struct sched_dl_entity *pi_se)
346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
347 struct rq *rq = rq_of_dl_rq(dl_rq);
349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
357 dl_se->runtime = pi_se->dl_runtime;
358 dl_se->dl_new = 0;
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
368 * other entities.
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
377 * runtime, or it just underestimated it during sched_setattr().
379 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se)
382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
383 struct rq *rq = rq_of_dl_rq(dl_rq);
385 BUG_ON(pi_se->dl_runtime <= 0);
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
391 if (dl_se->dl_deadline == 0) {
392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
393 dl_se->runtime = pi_se->dl_runtime;
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
400 * arbitrary large.
402 while (dl_se->runtime <= 0) {
403 dl_se->deadline += pi_se->dl_period;
404 dl_se->runtime += pi_se->dl_runtime;
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
414 * entity.
416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
417 printk_deferred_once("sched: DL replenish lagged to much\n");
418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
419 dl_se->runtime = pi_se->dl_runtime;
422 if (dl_se->dl_yielded)
423 dl_se->dl_yielded = 0;
424 if (dl_se->dl_throttled)
425 dl_se->dl_throttled = 0;
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
442 * This function returns true if:
444 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
446 * IOW we can't recycle current parameters.
448 * Notice that the bandwidth check is done against the deadline. For
449 * task with deadline equal to period this is the same of using
450 * dl_period instead of dl_deadline in the equation above.
452 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
453 struct sched_dl_entity *pi_se, u64 t)
455 u64 left, right;
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
460 * of divisions.
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
475 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
476 right = ((dl_se->deadline - t) >> DL_SCALE) *
477 (pi_se->dl_runtime >> DL_SCALE);
479 return dl_time_before(right, left);
483 * Revised wakeup rule [1]: For self-suspending tasks, rather then
484 * re-initializing task's runtime and deadline, the revised wakeup
485 * rule adjusts the task's runtime to avoid the task to overrun its
486 * density.
488 * Reasoning: a task may overrun the density if:
489 * runtime / (deadline - t) > dl_runtime / dl_deadline
491 * Therefore, runtime can be adjusted to:
492 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
494 * In such way that runtime will be equal to the maximum density
495 * the task can use without breaking any rule.
497 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
498 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
500 static void
501 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
503 u64 laxity = dl_se->deadline - rq_clock(rq);
506 * If the task has deadline < period, and the deadline is in the past,
507 * it should already be throttled before this check.
509 * See update_dl_entity() comments for further details.
511 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
513 dl_se->runtime = (dl_se->dl_density * laxity) >> 20;
517 * Regarding the deadline, a task with implicit deadline has a relative
518 * deadline == relative period. A task with constrained deadline has a
519 * relative deadline <= relative period.
521 * We support constrained deadline tasks. However, there are some restrictions
522 * applied only for tasks which do not have an implicit deadline. See
523 * update_dl_entity() to know more about such restrictions.
525 * The dl_is_implicit() returns true if the task has an implicit deadline.
527 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
529 return dl_se->dl_deadline == dl_se->dl_period;
533 * When a deadline entity is placed in the runqueue, its runtime and deadline
534 * might need to be updated. This is done by a CBS wake up rule. There are two
535 * different rules: 1) the original CBS; and 2) the Revisited CBS.
537 * When the task is starting a new period, the Original CBS is used. In this
538 * case, the runtime is replenished and a new absolute deadline is set.
540 * When a task is queued before the begin of the next period, using the
541 * remaining runtime and deadline could make the entity to overflow, see
542 * dl_entity_overflow() to find more about runtime overflow. When such case
543 * is detected, the runtime and deadline need to be updated.
545 * If the task has an implicit deadline, i.e., deadline == period, the Original
546 * CBS is applied. the runtime is replenished and a new absolute deadline is
547 * set, as in the previous cases.
549 * However, the Original CBS does not work properly for tasks with
550 * deadline < period, which are said to have a constrained deadline. By
551 * applying the Original CBS, a constrained deadline task would be able to run
552 * runtime/deadline in a period. With deadline < period, the task would
553 * overrun the runtime/period allowed bandwidth, breaking the admission test.
555 * In order to prevent this misbehave, the Revisited CBS is used for
556 * constrained deadline tasks when a runtime overflow is detected. In the
557 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
558 * the remaining runtime of the task is reduced to avoid runtime overflow.
559 * Please refer to the comments update_dl_revised_wakeup() function to find
560 * more about the Revised CBS rule.
562 static void update_dl_entity(struct sched_dl_entity *dl_se,
563 struct sched_dl_entity *pi_se)
565 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
566 struct rq *rq = rq_of_dl_rq(dl_rq);
569 * The arrival of a new instance needs special treatment, i.e.,
570 * the actual scheduling parameters have to be "renewed".
572 if (dl_se->dl_new) {
573 setup_new_dl_entity(dl_se, pi_se);
574 return;
577 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
578 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
580 if (unlikely(!dl_is_implicit(dl_se) &&
581 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
582 !dl_se->dl_boosted)){
583 update_dl_revised_wakeup(dl_se, rq);
584 return;
587 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
588 dl_se->runtime = pi_se->dl_runtime;
592 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
594 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
598 * If the entity depleted all its runtime, and if we want it to sleep
599 * while waiting for some new execution time to become available, we
600 * set the bandwidth replenishment timer to the replenishment instant
601 * and try to activate it.
603 * Notice that it is important for the caller to know if the timer
604 * actually started or not (i.e., the replenishment instant is in
605 * the future or in the past).
607 static int start_dl_timer(struct task_struct *p)
609 struct sched_dl_entity *dl_se = &p->dl;
610 struct hrtimer *timer = &dl_se->dl_timer;
611 struct rq *rq = task_rq(p);
612 ktime_t now, act;
613 s64 delta;
615 lockdep_assert_held(&rq->lock);
618 * We want the timer to fire at the deadline, but considering
619 * that it is actually coming from rq->clock and not from
620 * hrtimer's time base reading.
622 act = ns_to_ktime(dl_next_period(dl_se));
623 now = hrtimer_cb_get_time(timer);
624 delta = ktime_to_ns(now) - rq_clock(rq);
625 act = ktime_add_ns(act, delta);
628 * If the expiry time already passed, e.g., because the value
629 * chosen as the deadline is too small, don't even try to
630 * start the timer in the past!
632 if (ktime_us_delta(act, now) < 0)
633 return 0;
636 * !enqueued will guarantee another callback; even if one is already in
637 * progress. This ensures a balanced {get,put}_task_struct().
639 * The race against __run_timer() clearing the enqueued state is
640 * harmless because we're holding task_rq()->lock, therefore the timer
641 * expiring after we've done the check will wait on its task_rq_lock()
642 * and observe our state.
644 if (!hrtimer_is_queued(timer)) {
645 get_task_struct(p);
646 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
649 return 1;
653 * This is the bandwidth enforcement timer callback. If here, we know
654 * a task is not on its dl_rq, since the fact that the timer was running
655 * means the task is throttled and needs a runtime replenishment.
657 * However, what we actually do depends on the fact the task is active,
658 * (it is on its rq) or has been removed from there by a call to
659 * dequeue_task_dl(). In the former case we must issue the runtime
660 * replenishment and add the task back to the dl_rq; in the latter, we just
661 * do nothing but clearing dl_throttled, so that runtime and deadline
662 * updating (and the queueing back to dl_rq) will be done by the
663 * next call to enqueue_task_dl().
665 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
667 struct sched_dl_entity *dl_se = container_of(timer,
668 struct sched_dl_entity,
669 dl_timer);
670 struct task_struct *p = dl_task_of(dl_se);
671 unsigned long flags;
672 struct rq *rq;
674 rq = task_rq_lock(p, &flags);
677 * The task might have changed its scheduling policy to something
678 * different than SCHED_DEADLINE (through switched_fromd_dl()).
680 if (!dl_task(p)) {
681 __dl_clear_params(p);
682 goto unlock;
686 * This is possible if switched_from_dl() raced against a running
687 * callback that took the above !dl_task() path and we've since then
688 * switched back into SCHED_DEADLINE.
690 * There's nothing to do except drop our task reference.
692 if (dl_se->dl_new)
693 goto unlock;
696 * The task might have been boosted by someone else and might be in the
697 * boosting/deboosting path, its not throttled.
699 if (dl_se->dl_boosted)
700 goto unlock;
703 * Spurious timer due to start_dl_timer() race; or we already received
704 * a replenishment from rt_mutex_setprio().
706 if (!dl_se->dl_throttled)
707 goto unlock;
709 sched_clock_tick();
710 update_rq_clock(rq);
713 * If the throttle happened during sched-out; like:
715 * schedule()
716 * deactivate_task()
717 * dequeue_task_dl()
718 * update_curr_dl()
719 * start_dl_timer()
720 * __dequeue_task_dl()
721 * prev->on_rq = 0;
723 * We can be both throttled and !queued. Replenish the counter
724 * but do not enqueue -- wait for our wakeup to do that.
726 if (!task_on_rq_queued(p)) {
727 replenish_dl_entity(dl_se, dl_se);
728 goto unlock;
731 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
732 if (dl_task(rq->curr))
733 check_preempt_curr_dl(rq, p, 0);
734 else
735 resched_curr(rq);
737 #ifdef CONFIG_SMP
739 * Perform balancing operations here; after the replenishments. We
740 * cannot drop rq->lock before this, otherwise the assertion in
741 * start_dl_timer() about not missing updates is not true.
743 * If we find that the rq the task was on is no longer available, we
744 * need to select a new rq.
746 * XXX figure out if select_task_rq_dl() deals with offline cpus.
748 if (unlikely(!rq->online))
749 rq = dl_task_offline_migration(rq, p);
752 * Queueing this task back might have overloaded rq, check if we need
753 * to kick someone away.
755 if (has_pushable_dl_tasks(rq)) {
757 * Nothing relies on rq->lock after this, so its safe to drop
758 * rq->lock.
760 lockdep_unpin_lock(&rq->lock);
761 push_dl_task(rq);
762 lockdep_pin_lock(&rq->lock);
764 #endif
766 unlock:
767 task_rq_unlock(rq, p, &flags);
770 * This can free the task_struct, including this hrtimer, do not touch
771 * anything related to that after this.
773 put_task_struct(p);
775 return HRTIMER_NORESTART;
778 void init_dl_task_timer(struct sched_dl_entity *dl_se)
780 struct hrtimer *timer = &dl_se->dl_timer;
782 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
783 timer->function = dl_task_timer;
787 * During the activation, CBS checks if it can reuse the current task's
788 * runtime and period. If the deadline of the task is in the past, CBS
789 * cannot use the runtime, and so it replenishes the task. This rule
790 * works fine for implicit deadline tasks (deadline == period), and the
791 * CBS was designed for implicit deadline tasks. However, a task with
792 * constrained deadline (deadine < period) might be awakened after the
793 * deadline, but before the next period. In this case, replenishing the
794 * task would allow it to run for runtime / deadline. As in this case
795 * deadline < period, CBS enables a task to run for more than the
796 * runtime / period. In a very loaded system, this can cause a domino
797 * effect, making other tasks miss their deadlines.
799 * To avoid this problem, in the activation of a constrained deadline
800 * task after the deadline but before the next period, throttle the
801 * task and set the replenishing timer to the begin of the next period,
802 * unless it is boosted.
804 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
806 struct task_struct *p = dl_task_of(dl_se);
807 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
809 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
810 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
811 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
812 return;
813 dl_se->dl_throttled = 1;
814 if (dl_se->runtime > 0)
815 dl_se->runtime = 0;
819 static
820 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
822 return (dl_se->runtime <= 0);
825 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
828 * Update the current task's runtime statistics (provided it is still
829 * a -deadline task and has not been removed from the dl_rq).
831 static void update_curr_dl(struct rq *rq)
833 struct task_struct *curr = rq->curr;
834 struct sched_dl_entity *dl_se = &curr->dl;
835 u64 delta_exec;
837 if (!dl_task(curr) || !on_dl_rq(dl_se))
838 return;
841 * Consumed budget is computed considering the time as
842 * observed by schedulable tasks (excluding time spent
843 * in hardirq context, etc.). Deadlines are instead
844 * computed using hard walltime. This seems to be the more
845 * natural solution, but the full ramifications of this
846 * approach need further study.
848 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
849 if (unlikely((s64)delta_exec <= 0))
850 return;
852 schedstat_set(curr->se.statistics.exec_max,
853 max(curr->se.statistics.exec_max, delta_exec));
855 curr->se.sum_exec_runtime += delta_exec;
856 account_group_exec_runtime(curr, delta_exec);
858 curr->se.exec_start = rq_clock_task(rq);
859 cpuacct_charge(curr, delta_exec);
861 sched_rt_avg_update(rq, delta_exec);
863 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
864 if (dl_runtime_exceeded(dl_se)) {
865 dl_se->dl_throttled = 1;
866 __dequeue_task_dl(rq, curr, 0);
867 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
868 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
870 if (!is_leftmost(curr, &rq->dl))
871 resched_curr(rq);
875 * Because -- for now -- we share the rt bandwidth, we need to
876 * account our runtime there too, otherwise actual rt tasks
877 * would be able to exceed the shared quota.
879 * Account to the root rt group for now.
881 * The solution we're working towards is having the RT groups scheduled
882 * using deadline servers -- however there's a few nasties to figure
883 * out before that can happen.
885 if (rt_bandwidth_enabled()) {
886 struct rt_rq *rt_rq = &rq->rt;
888 raw_spin_lock(&rt_rq->rt_runtime_lock);
890 * We'll let actual RT tasks worry about the overflow here, we
891 * have our own CBS to keep us inline; only account when RT
892 * bandwidth is relevant.
894 if (sched_rt_bandwidth_account(rt_rq))
895 rt_rq->rt_time += delta_exec;
896 raw_spin_unlock(&rt_rq->rt_runtime_lock);
900 #ifdef CONFIG_SMP
902 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
904 static inline u64 next_deadline(struct rq *rq)
906 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
908 if (next && dl_prio(next->prio))
909 return next->dl.deadline;
910 else
911 return 0;
914 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
916 struct rq *rq = rq_of_dl_rq(dl_rq);
918 if (dl_rq->earliest_dl.curr == 0 ||
919 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
921 * If the dl_rq had no -deadline tasks, or if the new task
922 * has shorter deadline than the current one on dl_rq, we
923 * know that the previous earliest becomes our next earliest,
924 * as the new task becomes the earliest itself.
926 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
927 dl_rq->earliest_dl.curr = deadline;
928 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
929 } else if (dl_rq->earliest_dl.next == 0 ||
930 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
932 * On the other hand, if the new -deadline task has a
933 * a later deadline than the earliest one on dl_rq, but
934 * it is earlier than the next (if any), we must
935 * recompute the next-earliest.
937 dl_rq->earliest_dl.next = next_deadline(rq);
941 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
943 struct rq *rq = rq_of_dl_rq(dl_rq);
946 * Since we may have removed our earliest (and/or next earliest)
947 * task we must recompute them.
949 if (!dl_rq->dl_nr_running) {
950 dl_rq->earliest_dl.curr = 0;
951 dl_rq->earliest_dl.next = 0;
952 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
953 } else {
954 struct rb_node *leftmost = dl_rq->rb_leftmost;
955 struct sched_dl_entity *entry;
957 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
958 dl_rq->earliest_dl.curr = entry->deadline;
959 dl_rq->earliest_dl.next = next_deadline(rq);
960 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
964 #else
966 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
967 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
969 #endif /* CONFIG_SMP */
971 static inline
972 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
974 int prio = dl_task_of(dl_se)->prio;
975 u64 deadline = dl_se->deadline;
977 WARN_ON(!dl_prio(prio));
978 dl_rq->dl_nr_running++;
979 add_nr_running(rq_of_dl_rq(dl_rq), 1);
981 inc_dl_deadline(dl_rq, deadline);
982 inc_dl_migration(dl_se, dl_rq);
985 static inline
986 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
988 int prio = dl_task_of(dl_se)->prio;
990 WARN_ON(!dl_prio(prio));
991 WARN_ON(!dl_rq->dl_nr_running);
992 dl_rq->dl_nr_running--;
993 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
995 dec_dl_deadline(dl_rq, dl_se->deadline);
996 dec_dl_migration(dl_se, dl_rq);
999 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1001 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1002 struct rb_node **link = &dl_rq->rb_root.rb_node;
1003 struct rb_node *parent = NULL;
1004 struct sched_dl_entity *entry;
1005 int leftmost = 1;
1007 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1009 while (*link) {
1010 parent = *link;
1011 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1012 if (dl_time_before(dl_se->deadline, entry->deadline))
1013 link = &parent->rb_left;
1014 else {
1015 link = &parent->rb_right;
1016 leftmost = 0;
1020 if (leftmost)
1021 dl_rq->rb_leftmost = &dl_se->rb_node;
1023 rb_link_node(&dl_se->rb_node, parent, link);
1024 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
1026 inc_dl_tasks(dl_se, dl_rq);
1029 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1031 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1033 if (RB_EMPTY_NODE(&dl_se->rb_node))
1034 return;
1036 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
1037 struct rb_node *next_node;
1039 next_node = rb_next(&dl_se->rb_node);
1040 dl_rq->rb_leftmost = next_node;
1043 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
1044 RB_CLEAR_NODE(&dl_se->rb_node);
1046 dec_dl_tasks(dl_se, dl_rq);
1049 static void
1050 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1051 struct sched_dl_entity *pi_se, int flags)
1053 BUG_ON(on_dl_rq(dl_se));
1056 * If this is a wakeup or a new instance, the scheduling
1057 * parameters of the task might need updating. Otherwise,
1058 * we want a replenishment of its runtime.
1060 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
1061 update_dl_entity(dl_se, pi_se);
1062 else if (flags & ENQUEUE_REPLENISH)
1063 replenish_dl_entity(dl_se, pi_se);
1065 __enqueue_dl_entity(dl_se);
1068 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1070 __dequeue_dl_entity(dl_se);
1073 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1075 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1076 struct sched_dl_entity *pi_se = &p->dl;
1079 * Use the scheduling parameters of the top pi-waiter
1080 * task if we have one and its (absolute) deadline is
1081 * smaller than our one... OTW we keep our runtime and
1082 * deadline.
1084 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
1085 pi_se = &pi_task->dl;
1086 } else if (!dl_prio(p->normal_prio)) {
1088 * Special case in which we have a !SCHED_DEADLINE task
1089 * that is going to be deboosted, but exceedes its
1090 * runtime while doing so. No point in replenishing
1091 * it, as it's going to return back to its original
1092 * scheduling class after this.
1094 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1095 return;
1099 * Check if a constrained deadline task was activated
1100 * after the deadline but before the next period.
1101 * If that is the case, the task will be throttled and
1102 * the replenishment timer will be set to the next period.
1104 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1105 dl_check_constrained_dl(&p->dl);
1108 * If p is throttled, we do nothing. In fact, if it exhausted
1109 * its budget it needs a replenishment and, since it now is on
1110 * its rq, the bandwidth timer callback (which clearly has not
1111 * run yet) will take care of this.
1113 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
1114 return;
1116 enqueue_dl_entity(&p->dl, pi_se, flags);
1118 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1119 enqueue_pushable_dl_task(rq, p);
1122 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1124 dequeue_dl_entity(&p->dl);
1125 dequeue_pushable_dl_task(rq, p);
1128 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1130 update_curr_dl(rq);
1131 __dequeue_task_dl(rq, p, flags);
1135 * Yield task semantic for -deadline tasks is:
1137 * get off from the CPU until our next instance, with
1138 * a new runtime. This is of little use now, since we
1139 * don't have a bandwidth reclaiming mechanism. Anyway,
1140 * bandwidth reclaiming is planned for the future, and
1141 * yield_task_dl will indicate that some spare budget
1142 * is available for other task instances to use it.
1144 static void yield_task_dl(struct rq *rq)
1146 struct task_struct *p = rq->curr;
1149 * We make the task go to sleep until its current deadline by
1150 * forcing its runtime to zero. This way, update_curr_dl() stops
1151 * it and the bandwidth timer will wake it up and will give it
1152 * new scheduling parameters (thanks to dl_yielded=1).
1154 if (p->dl.runtime > 0) {
1155 rq->curr->dl.dl_yielded = 1;
1156 p->dl.runtime = 0;
1158 update_rq_clock(rq);
1159 update_curr_dl(rq);
1161 * Tell update_rq_clock() that we've just updated,
1162 * so we don't do microscopic update in schedule()
1163 * and double the fastpath cost.
1165 rq_clock_skip_update(rq, true);
1168 #ifdef CONFIG_SMP
1170 static int find_later_rq(struct task_struct *task);
1172 static int
1173 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1175 struct task_struct *curr;
1176 struct rq *rq;
1178 if (sd_flag != SD_BALANCE_WAKE)
1179 goto out;
1181 rq = cpu_rq(cpu);
1183 rcu_read_lock();
1184 curr = READ_ONCE(rq->curr); /* unlocked access */
1187 * If we are dealing with a -deadline task, we must
1188 * decide where to wake it up.
1189 * If it has a later deadline and the current task
1190 * on this rq can't move (provided the waking task
1191 * can!) we prefer to send it somewhere else. On the
1192 * other hand, if it has a shorter deadline, we
1193 * try to make it stay here, it might be important.
1195 if (unlikely(dl_task(curr)) &&
1196 (curr->nr_cpus_allowed < 2 ||
1197 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1198 (p->nr_cpus_allowed > 1)) {
1199 int target = find_later_rq(p);
1201 if (target != -1 &&
1202 (dl_time_before(p->dl.deadline,
1203 cpu_rq(target)->dl.earliest_dl.curr) ||
1204 (cpu_rq(target)->dl.dl_nr_running == 0)))
1205 cpu = target;
1207 rcu_read_unlock();
1209 out:
1210 return cpu;
1213 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1216 * Current can't be migrated, useless to reschedule,
1217 * let's hope p can move out.
1219 if (rq->curr->nr_cpus_allowed == 1 ||
1220 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1221 return;
1224 * p is migratable, so let's not schedule it and
1225 * see if it is pushed or pulled somewhere else.
1227 if (p->nr_cpus_allowed != 1 &&
1228 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1229 return;
1231 resched_curr(rq);
1234 #endif /* CONFIG_SMP */
1237 * Only called when both the current and waking task are -deadline
1238 * tasks.
1240 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1241 int flags)
1243 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1244 resched_curr(rq);
1245 return;
1248 #ifdef CONFIG_SMP
1250 * In the unlikely case current and p have the same deadline
1251 * let us try to decide what's the best thing to do...
1253 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1254 !test_tsk_need_resched(rq->curr))
1255 check_preempt_equal_dl(rq, p);
1256 #endif /* CONFIG_SMP */
1259 #ifdef CONFIG_SCHED_HRTICK
1260 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1262 hrtick_start(rq, p->dl.runtime);
1264 #else /* !CONFIG_SCHED_HRTICK */
1265 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1268 #endif
1270 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1271 struct dl_rq *dl_rq)
1273 struct rb_node *left = dl_rq->rb_leftmost;
1275 if (!left)
1276 return NULL;
1278 return rb_entry(left, struct sched_dl_entity, rb_node);
1281 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1283 struct sched_dl_entity *dl_se;
1284 struct task_struct *p;
1285 struct dl_rq *dl_rq;
1287 dl_rq = &rq->dl;
1289 if (need_pull_dl_task(rq, prev)) {
1291 * This is OK, because current is on_cpu, which avoids it being
1292 * picked for load-balance and preemption/IRQs are still
1293 * disabled avoiding further scheduler activity on it and we're
1294 * being very careful to re-start the picking loop.
1296 lockdep_unpin_lock(&rq->lock);
1297 pull_dl_task(rq);
1298 lockdep_pin_lock(&rq->lock);
1300 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1301 * means a stop task can slip in, in which case we need to
1302 * re-start task selection.
1304 if (rq->stop && task_on_rq_queued(rq->stop))
1305 return RETRY_TASK;
1309 * When prev is DL, we may throttle it in put_prev_task().
1310 * So, we update time before we check for dl_nr_running.
1312 if (prev->sched_class == &dl_sched_class)
1313 update_curr_dl(rq);
1315 if (unlikely(!dl_rq->dl_nr_running))
1316 return NULL;
1318 put_prev_task(rq, prev);
1320 dl_se = pick_next_dl_entity(rq, dl_rq);
1321 BUG_ON(!dl_se);
1323 p = dl_task_of(dl_se);
1324 p->se.exec_start = rq_clock_task(rq);
1326 /* Running task will never be pushed. */
1327 dequeue_pushable_dl_task(rq, p);
1329 if (hrtick_enabled(rq))
1330 start_hrtick_dl(rq, p);
1332 queue_push_tasks(rq);
1334 return p;
1337 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1339 update_curr_dl(rq);
1341 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1342 enqueue_pushable_dl_task(rq, p);
1345 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1347 update_curr_dl(rq);
1350 * Even when we have runtime, update_curr_dl() might have resulted in us
1351 * not being the leftmost task anymore. In that case NEED_RESCHED will
1352 * be set and schedule() will start a new hrtick for the next task.
1354 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1355 is_leftmost(p, &rq->dl))
1356 start_hrtick_dl(rq, p);
1359 static void task_fork_dl(struct task_struct *p)
1362 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1363 * sched_fork()
1367 static void task_dead_dl(struct task_struct *p)
1369 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1372 * Since we are TASK_DEAD we won't slip out of the domain!
1374 raw_spin_lock_irq(&dl_b->lock);
1375 /* XXX we should retain the bw until 0-lag */
1376 dl_b->total_bw -= p->dl.dl_bw;
1377 raw_spin_unlock_irq(&dl_b->lock);
1380 static void set_curr_task_dl(struct rq *rq)
1382 struct task_struct *p = rq->curr;
1384 p->se.exec_start = rq_clock_task(rq);
1386 /* You can't push away the running task */
1387 dequeue_pushable_dl_task(rq, p);
1390 #ifdef CONFIG_SMP
1392 /* Only try algorithms three times */
1393 #define DL_MAX_TRIES 3
1395 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1397 if (!task_running(rq, p) &&
1398 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1399 return 1;
1400 return 0;
1403 /* Returns the second earliest -deadline task, NULL otherwise */
1404 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1406 struct rb_node *next_node = rq->dl.rb_leftmost;
1407 struct sched_dl_entity *dl_se;
1408 struct task_struct *p = NULL;
1410 next_node:
1411 next_node = rb_next(next_node);
1412 if (next_node) {
1413 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1414 p = dl_task_of(dl_se);
1416 if (pick_dl_task(rq, p, cpu))
1417 return p;
1419 goto next_node;
1422 return NULL;
1426 * Return the earliest pushable rq's task, which is suitable to be executed
1427 * on the CPU, NULL otherwise:
1429 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1431 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1432 struct task_struct *p = NULL;
1434 if (!has_pushable_dl_tasks(rq))
1435 return NULL;
1437 next_node:
1438 if (next_node) {
1439 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1441 if (pick_dl_task(rq, p, cpu))
1442 return p;
1444 next_node = rb_next(next_node);
1445 goto next_node;
1448 return NULL;
1451 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1453 static int find_later_rq(struct task_struct *task)
1455 struct sched_domain *sd;
1456 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1457 int this_cpu = smp_processor_id();
1458 int best_cpu, cpu = task_cpu(task);
1460 /* Make sure the mask is initialized first */
1461 if (unlikely(!later_mask))
1462 return -1;
1464 if (task->nr_cpus_allowed == 1)
1465 return -1;
1468 * We have to consider system topology and task affinity
1469 * first, then we can look for a suitable cpu.
1471 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1472 task, later_mask);
1473 if (best_cpu == -1)
1474 return -1;
1477 * If we are here, some target has been found,
1478 * the most suitable of which is cached in best_cpu.
1479 * This is, among the runqueues where the current tasks
1480 * have later deadlines than the task's one, the rq
1481 * with the latest possible one.
1483 * Now we check how well this matches with task's
1484 * affinity and system topology.
1486 * The last cpu where the task run is our first
1487 * guess, since it is most likely cache-hot there.
1489 if (cpumask_test_cpu(cpu, later_mask))
1490 return cpu;
1492 * Check if this_cpu is to be skipped (i.e., it is
1493 * not in the mask) or not.
1495 if (!cpumask_test_cpu(this_cpu, later_mask))
1496 this_cpu = -1;
1498 rcu_read_lock();
1499 for_each_domain(cpu, sd) {
1500 if (sd->flags & SD_WAKE_AFFINE) {
1503 * If possible, preempting this_cpu is
1504 * cheaper than migrating.
1506 if (this_cpu != -1 &&
1507 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1508 rcu_read_unlock();
1509 return this_cpu;
1513 * Last chance: if best_cpu is valid and is
1514 * in the mask, that becomes our choice.
1516 if (best_cpu < nr_cpu_ids &&
1517 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1518 rcu_read_unlock();
1519 return best_cpu;
1523 rcu_read_unlock();
1526 * At this point, all our guesses failed, we just return
1527 * 'something', and let the caller sort the things out.
1529 if (this_cpu != -1)
1530 return this_cpu;
1532 cpu = cpumask_any(later_mask);
1533 if (cpu < nr_cpu_ids)
1534 return cpu;
1536 return -1;
1539 /* Locks the rq it finds */
1540 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1542 struct rq *later_rq = NULL;
1543 int tries;
1544 int cpu;
1546 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1547 cpu = find_later_rq(task);
1549 if ((cpu == -1) || (cpu == rq->cpu))
1550 break;
1552 later_rq = cpu_rq(cpu);
1554 if (later_rq->dl.dl_nr_running &&
1555 !dl_time_before(task->dl.deadline,
1556 later_rq->dl.earliest_dl.curr)) {
1558 * Target rq has tasks of equal or earlier deadline,
1559 * retrying does not release any lock and is unlikely
1560 * to yield a different result.
1562 later_rq = NULL;
1563 break;
1566 /* Retry if something changed. */
1567 if (double_lock_balance(rq, later_rq)) {
1568 if (unlikely(task_rq(task) != rq ||
1569 !cpumask_test_cpu(later_rq->cpu,
1570 &task->cpus_allowed) ||
1571 task_running(rq, task) ||
1572 !task_on_rq_queued(task))) {
1573 double_unlock_balance(rq, later_rq);
1574 later_rq = NULL;
1575 break;
1580 * If the rq we found has no -deadline task, or
1581 * its earliest one has a later deadline than our
1582 * task, the rq is a good one.
1584 if (!later_rq->dl.dl_nr_running ||
1585 dl_time_before(task->dl.deadline,
1586 later_rq->dl.earliest_dl.curr))
1587 break;
1589 /* Otherwise we try again. */
1590 double_unlock_balance(rq, later_rq);
1591 later_rq = NULL;
1594 return later_rq;
1597 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1599 struct task_struct *p;
1601 if (!has_pushable_dl_tasks(rq))
1602 return NULL;
1604 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1605 struct task_struct, pushable_dl_tasks);
1607 BUG_ON(rq->cpu != task_cpu(p));
1608 BUG_ON(task_current(rq, p));
1609 BUG_ON(p->nr_cpus_allowed <= 1);
1611 BUG_ON(!task_on_rq_queued(p));
1612 BUG_ON(!dl_task(p));
1614 return p;
1618 * See if the non running -deadline tasks on this rq
1619 * can be sent to some other CPU where they can preempt
1620 * and start executing.
1622 static int push_dl_task(struct rq *rq)
1624 struct task_struct *next_task;
1625 struct rq *later_rq;
1626 int ret = 0;
1628 if (!rq->dl.overloaded)
1629 return 0;
1631 next_task = pick_next_pushable_dl_task(rq);
1632 if (!next_task)
1633 return 0;
1635 retry:
1636 if (unlikely(next_task == rq->curr)) {
1637 WARN_ON(1);
1638 return 0;
1642 * If next_task preempts rq->curr, and rq->curr
1643 * can move away, it makes sense to just reschedule
1644 * without going further in pushing next_task.
1646 if (dl_task(rq->curr) &&
1647 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1648 rq->curr->nr_cpus_allowed > 1) {
1649 resched_curr(rq);
1650 return 0;
1653 /* We might release rq lock */
1654 get_task_struct(next_task);
1656 /* Will lock the rq it'll find */
1657 later_rq = find_lock_later_rq(next_task, rq);
1658 if (!later_rq) {
1659 struct task_struct *task;
1662 * We must check all this again, since
1663 * find_lock_later_rq releases rq->lock and it is
1664 * then possible that next_task has migrated.
1666 task = pick_next_pushable_dl_task(rq);
1667 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1669 * The task is still there. We don't try
1670 * again, some other cpu will pull it when ready.
1672 goto out;
1675 if (!task)
1676 /* No more tasks */
1677 goto out;
1679 put_task_struct(next_task);
1680 next_task = task;
1681 goto retry;
1684 deactivate_task(rq, next_task, 0);
1685 set_task_cpu(next_task, later_rq->cpu);
1686 activate_task(later_rq, next_task, 0);
1687 ret = 1;
1689 resched_curr(later_rq);
1691 double_unlock_balance(rq, later_rq);
1693 out:
1694 put_task_struct(next_task);
1696 return ret;
1699 static void push_dl_tasks(struct rq *rq)
1701 /* push_dl_task() will return true if it moved a -deadline task */
1702 while (push_dl_task(rq))
1706 static void pull_dl_task(struct rq *this_rq)
1708 int this_cpu = this_rq->cpu, cpu;
1709 struct task_struct *p;
1710 bool resched = false;
1711 struct rq *src_rq;
1712 u64 dmin = LONG_MAX;
1714 if (likely(!dl_overloaded(this_rq)))
1715 return;
1718 * Match the barrier from dl_set_overloaded; this guarantees that if we
1719 * see overloaded we must also see the dlo_mask bit.
1721 smp_rmb();
1723 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1724 if (this_cpu == cpu)
1725 continue;
1727 src_rq = cpu_rq(cpu);
1730 * It looks racy, abd it is! However, as in sched_rt.c,
1731 * we are fine with this.
1733 if (this_rq->dl.dl_nr_running &&
1734 dl_time_before(this_rq->dl.earliest_dl.curr,
1735 src_rq->dl.earliest_dl.next))
1736 continue;
1738 /* Might drop this_rq->lock */
1739 double_lock_balance(this_rq, src_rq);
1742 * If there are no more pullable tasks on the
1743 * rq, we're done with it.
1745 if (src_rq->dl.dl_nr_running <= 1)
1746 goto skip;
1748 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1751 * We found a task to be pulled if:
1752 * - it preempts our current (if there's one),
1753 * - it will preempt the last one we pulled (if any).
1755 if (p && dl_time_before(p->dl.deadline, dmin) &&
1756 (!this_rq->dl.dl_nr_running ||
1757 dl_time_before(p->dl.deadline,
1758 this_rq->dl.earliest_dl.curr))) {
1759 WARN_ON(p == src_rq->curr);
1760 WARN_ON(!task_on_rq_queued(p));
1763 * Then we pull iff p has actually an earlier
1764 * deadline than the current task of its runqueue.
1766 if (dl_time_before(p->dl.deadline,
1767 src_rq->curr->dl.deadline))
1768 goto skip;
1770 resched = true;
1772 deactivate_task(src_rq, p, 0);
1773 set_task_cpu(p, this_cpu);
1774 activate_task(this_rq, p, 0);
1775 dmin = p->dl.deadline;
1777 /* Is there any other task even earlier? */
1779 skip:
1780 double_unlock_balance(this_rq, src_rq);
1783 if (resched)
1784 resched_curr(this_rq);
1788 * Since the task is not running and a reschedule is not going to happen
1789 * anytime soon on its runqueue, we try pushing it away now.
1791 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1793 if (!task_running(rq, p) &&
1794 !test_tsk_need_resched(rq->curr) &&
1795 p->nr_cpus_allowed > 1 &&
1796 dl_task(rq->curr) &&
1797 (rq->curr->nr_cpus_allowed < 2 ||
1798 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1799 push_dl_tasks(rq);
1803 static void set_cpus_allowed_dl(struct task_struct *p,
1804 const struct cpumask *new_mask)
1806 struct root_domain *src_rd;
1807 struct rq *rq;
1809 BUG_ON(!dl_task(p));
1811 rq = task_rq(p);
1812 src_rd = rq->rd;
1814 * Migrating a SCHED_DEADLINE task between exclusive
1815 * cpusets (different root_domains) entails a bandwidth
1816 * update. We already made space for us in the destination
1817 * domain (see cpuset_can_attach()).
1819 if (!cpumask_intersects(src_rd->span, new_mask)) {
1820 struct dl_bw *src_dl_b;
1822 src_dl_b = dl_bw_of(cpu_of(rq));
1824 * We now free resources of the root_domain we are migrating
1825 * off. In the worst case, sched_setattr() may temporary fail
1826 * until we complete the update.
1828 raw_spin_lock(&src_dl_b->lock);
1829 __dl_clear(src_dl_b, p->dl.dl_bw);
1830 raw_spin_unlock(&src_dl_b->lock);
1833 set_cpus_allowed_common(p, new_mask);
1836 /* Assumes rq->lock is held */
1837 static void rq_online_dl(struct rq *rq)
1839 if (rq->dl.overloaded)
1840 dl_set_overload(rq);
1842 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1843 if (rq->dl.dl_nr_running > 0)
1844 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1847 /* Assumes rq->lock is held */
1848 static void rq_offline_dl(struct rq *rq)
1850 if (rq->dl.overloaded)
1851 dl_clear_overload(rq);
1853 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1854 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1857 void __init init_sched_dl_class(void)
1859 unsigned int i;
1861 for_each_possible_cpu(i)
1862 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1863 GFP_KERNEL, cpu_to_node(i));
1866 #endif /* CONFIG_SMP */
1868 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1871 * Start the deadline timer; if we switch back to dl before this we'll
1872 * continue consuming our current CBS slice. If we stay outside of
1873 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1874 * task.
1876 if (!start_dl_timer(p))
1877 __dl_clear_params(p);
1880 * Since this might be the only -deadline task on the rq,
1881 * this is the right place to try to pull some other one
1882 * from an overloaded cpu, if any.
1884 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1885 return;
1887 queue_pull_task(rq);
1891 * When switching to -deadline, we may overload the rq, then
1892 * we try to push someone off, if possible.
1894 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1896 if (task_on_rq_queued(p) && rq->curr != p) {
1897 #ifdef CONFIG_SMP
1898 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1899 queue_push_tasks(rq);
1900 #endif
1901 if (dl_task(rq->curr))
1902 check_preempt_curr_dl(rq, p, 0);
1903 else
1904 resched_curr(rq);
1909 * If the scheduling parameters of a -deadline task changed,
1910 * a push or pull operation might be needed.
1912 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1913 int oldprio)
1915 if (task_on_rq_queued(p) || rq->curr == p) {
1916 #ifdef CONFIG_SMP
1918 * This might be too much, but unfortunately
1919 * we don't have the old deadline value, and
1920 * we can't argue if the task is increasing
1921 * or lowering its prio, so...
1923 if (!rq->dl.overloaded)
1924 queue_pull_task(rq);
1927 * If we now have a earlier deadline task than p,
1928 * then reschedule, provided p is still on this
1929 * runqueue.
1931 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1932 resched_curr(rq);
1933 #else
1935 * Again, we don't know if p has a earlier
1936 * or later deadline, so let's blindly set a
1937 * (maybe not needed) rescheduling point.
1939 resched_curr(rq);
1940 #endif /* CONFIG_SMP */
1941 } else
1942 switched_to_dl(rq, p);
1945 const struct sched_class dl_sched_class = {
1946 .next = &rt_sched_class,
1947 .enqueue_task = enqueue_task_dl,
1948 .dequeue_task = dequeue_task_dl,
1949 .yield_task = yield_task_dl,
1951 .check_preempt_curr = check_preempt_curr_dl,
1953 .pick_next_task = pick_next_task_dl,
1954 .put_prev_task = put_prev_task_dl,
1956 #ifdef CONFIG_SMP
1957 .select_task_rq = select_task_rq_dl,
1958 .set_cpus_allowed = set_cpus_allowed_dl,
1959 .rq_online = rq_online_dl,
1960 .rq_offline = rq_offline_dl,
1961 .task_woken = task_woken_dl,
1962 #endif
1964 .set_curr_task = set_curr_task_dl,
1965 .task_tick = task_tick_dl,
1966 .task_fork = task_fork_dl,
1967 .task_dead = task_dead_dl,
1969 .prio_changed = prio_changed_dl,
1970 .switched_from = switched_from_dl,
1971 .switched_to = switched_to_dl,
1973 .update_curr = update_curr_dl,
1976 #ifdef CONFIG_SCHED_DEBUG
1977 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1979 void print_dl_stats(struct seq_file *m, int cpu)
1981 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1983 #endif /* CONFIG_SCHED_DEBUG */