2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 void init_dl_bw(struct dl_bw
*dl_b
)
62 raw_spin_lock_init(&dl_b
->lock
);
63 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
64 if (global_rt_runtime() == RUNTIME_INF
)
67 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
72 void init_dl_rq(struct dl_rq
*dl_rq
)
74 dl_rq
->rb_root
= RB_ROOT
;
77 /* zero means no -deadline tasks */
78 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
80 dl_rq
->dl_nr_migratory
= 0;
81 dl_rq
->overloaded
= 0;
82 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
84 init_dl_bw(&dl_rq
->dl_bw
);
90 static inline int dl_overloaded(struct rq
*rq
)
92 return atomic_read(&rq
->rd
->dlo_count
);
95 static inline void dl_set_overload(struct rq
*rq
)
100 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq
->rd
->dlo_count
);
111 static inline void dl_clear_overload(struct rq
*rq
)
116 atomic_dec(&rq
->rd
->dlo_count
);
117 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
120 static void update_dl_migration(struct dl_rq
*dl_rq
)
122 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
123 if (!dl_rq
->overloaded
) {
124 dl_set_overload(rq_of_dl_rq(dl_rq
));
125 dl_rq
->overloaded
= 1;
127 } else if (dl_rq
->overloaded
) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq
));
129 dl_rq
->overloaded
= 0;
133 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
135 struct task_struct
*p
= dl_task_of(dl_se
);
137 if (p
->nr_cpus_allowed
> 1)
138 dl_rq
->dl_nr_migratory
++;
140 update_dl_migration(dl_rq
);
143 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 struct task_struct
*p
= dl_task_of(dl_se
);
147 if (p
->nr_cpus_allowed
> 1)
148 dl_rq
->dl_nr_migratory
--;
150 update_dl_migration(dl_rq
);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
159 struct dl_rq
*dl_rq
= &rq
->dl
;
160 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct task_struct
*entry
;
165 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
169 entry
= rb_entry(parent
, struct task_struct
,
171 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
172 link
= &parent
->rb_left
;
174 link
= &parent
->rb_right
;
180 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
182 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
183 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
186 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
188 struct dl_rq
*dl_rq
= &rq
->dl
;
190 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
193 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
194 struct rb_node
*next_node
;
196 next_node
= rb_next(&p
->pushable_dl_tasks
);
197 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
200 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
201 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
204 static inline int has_pushable_dl_tasks(struct rq
*rq
)
206 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
209 static int push_dl_task(struct rq
*rq
);
211 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
213 return dl_task(prev
);
216 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
217 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
219 static void push_dl_tasks(struct rq
*);
220 static void pull_dl_task(struct rq
*);
222 static inline void queue_push_tasks(struct rq
*rq
)
224 if (!has_pushable_dl_tasks(rq
))
227 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
230 static inline void queue_pull_task(struct rq
*rq
)
232 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
235 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
237 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
239 struct rq
*later_rq
= NULL
;
240 bool fallback
= false;
242 later_rq
= find_lock_later_rq(p
, rq
);
248 * If we cannot preempt any rq, fall back to pick any
252 cpu
= cpumask_any_and(cpu_active_mask
, tsk_cpus_allowed(p
));
253 if (cpu
>= nr_cpu_ids
) {
255 * Fail to find any suitable cpu.
256 * The task will never come back!
258 BUG_ON(dl_bandwidth_enabled());
261 * If admission control is disabled we
262 * try a little harder to let the task
265 cpu
= cpumask_any(cpu_active_mask
);
267 later_rq
= cpu_rq(cpu
);
268 double_lock_balance(rq
, later_rq
);
272 * By now the task is replenished and enqueued; migrate it.
274 deactivate_task(rq
, p
, 0);
275 set_task_cpu(p
, later_rq
->cpu
);
276 activate_task(later_rq
, p
, 0);
279 resched_curr(later_rq
);
281 double_unlock_balance(later_rq
, rq
);
289 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
294 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
299 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
304 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
308 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
313 static inline void pull_dl_task(struct rq
*rq
)
317 static inline void queue_push_tasks(struct rq
*rq
)
321 static inline void queue_pull_task(struct rq
*rq
)
324 #endif /* CONFIG_SMP */
326 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
327 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
328 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
343 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
,
344 struct sched_dl_entity
*pi_se
)
346 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
347 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
349 WARN_ON(!dl_se
->dl_new
|| dl_se
->dl_throttled
);
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
356 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
357 dl_se
->runtime
= pi_se
->dl_runtime
;
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
377 * runtime, or it just underestimated it during sched_setattr().
379 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
380 struct sched_dl_entity
*pi_se
)
382 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
383 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
385 BUG_ON(pi_se
->dl_runtime
<= 0);
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
391 if (dl_se
->dl_deadline
== 0) {
392 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
393 dl_se
->runtime
= pi_se
->dl_runtime
;
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
402 while (dl_se
->runtime
<= 0) {
403 dl_se
->deadline
+= pi_se
->dl_period
;
404 dl_se
->runtime
+= pi_se
->dl_runtime
;
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
416 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
417 printk_deferred_once("sched: DL replenish lagged to much\n");
418 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
419 dl_se
->runtime
= pi_se
->dl_runtime
;
422 if (dl_se
->dl_yielded
)
423 dl_se
->dl_yielded
= 0;
424 if (dl_se
->dl_throttled
)
425 dl_se
->dl_throttled
= 0;
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
442 * This function returns true if:
444 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
446 * IOW we can't recycle current parameters.
448 * Notice that the bandwidth check is done against the deadline. For
449 * task with deadline equal to period this is the same of using
450 * dl_period instead of dl_deadline in the equation above.
452 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
453 struct sched_dl_entity
*pi_se
, u64 t
)
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
475 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
476 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
477 (pi_se
->dl_runtime
>> DL_SCALE
);
479 return dl_time_before(right
, left
);
483 * Revised wakeup rule [1]: For self-suspending tasks, rather then
484 * re-initializing task's runtime and deadline, the revised wakeup
485 * rule adjusts the task's runtime to avoid the task to overrun its
488 * Reasoning: a task may overrun the density if:
489 * runtime / (deadline - t) > dl_runtime / dl_deadline
491 * Therefore, runtime can be adjusted to:
492 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
494 * In such way that runtime will be equal to the maximum density
495 * the task can use without breaking any rule.
497 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
498 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
501 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
503 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
506 * If the task has deadline < period, and the deadline is in the past,
507 * it should already be throttled before this check.
509 * See update_dl_entity() comments for further details.
511 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
513 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> 20;
517 * Regarding the deadline, a task with implicit deadline has a relative
518 * deadline == relative period. A task with constrained deadline has a
519 * relative deadline <= relative period.
521 * We support constrained deadline tasks. However, there are some restrictions
522 * applied only for tasks which do not have an implicit deadline. See
523 * update_dl_entity() to know more about such restrictions.
525 * The dl_is_implicit() returns true if the task has an implicit deadline.
527 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
529 return dl_se
->dl_deadline
== dl_se
->dl_period
;
533 * When a deadline entity is placed in the runqueue, its runtime and deadline
534 * might need to be updated. This is done by a CBS wake up rule. There are two
535 * different rules: 1) the original CBS; and 2) the Revisited CBS.
537 * When the task is starting a new period, the Original CBS is used. In this
538 * case, the runtime is replenished and a new absolute deadline is set.
540 * When a task is queued before the begin of the next period, using the
541 * remaining runtime and deadline could make the entity to overflow, see
542 * dl_entity_overflow() to find more about runtime overflow. When such case
543 * is detected, the runtime and deadline need to be updated.
545 * If the task has an implicit deadline, i.e., deadline == period, the Original
546 * CBS is applied. the runtime is replenished and a new absolute deadline is
547 * set, as in the previous cases.
549 * However, the Original CBS does not work properly for tasks with
550 * deadline < period, which are said to have a constrained deadline. By
551 * applying the Original CBS, a constrained deadline task would be able to run
552 * runtime/deadline in a period. With deadline < period, the task would
553 * overrun the runtime/period allowed bandwidth, breaking the admission test.
555 * In order to prevent this misbehave, the Revisited CBS is used for
556 * constrained deadline tasks when a runtime overflow is detected. In the
557 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
558 * the remaining runtime of the task is reduced to avoid runtime overflow.
559 * Please refer to the comments update_dl_revised_wakeup() function to find
560 * more about the Revised CBS rule.
562 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
563 struct sched_dl_entity
*pi_se
)
565 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
566 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
569 * The arrival of a new instance needs special treatment, i.e.,
570 * the actual scheduling parameters have to be "renewed".
573 setup_new_dl_entity(dl_se
, pi_se
);
577 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
578 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
580 if (unlikely(!dl_is_implicit(dl_se
) &&
581 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
582 !dl_se
->dl_boosted
)){
583 update_dl_revised_wakeup(dl_se
, rq
);
587 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
588 dl_se
->runtime
= pi_se
->dl_runtime
;
592 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
594 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
598 * If the entity depleted all its runtime, and if we want it to sleep
599 * while waiting for some new execution time to become available, we
600 * set the bandwidth replenishment timer to the replenishment instant
601 * and try to activate it.
603 * Notice that it is important for the caller to know if the timer
604 * actually started or not (i.e., the replenishment instant is in
605 * the future or in the past).
607 static int start_dl_timer(struct task_struct
*p
)
609 struct sched_dl_entity
*dl_se
= &p
->dl
;
610 struct hrtimer
*timer
= &dl_se
->dl_timer
;
611 struct rq
*rq
= task_rq(p
);
615 lockdep_assert_held(&rq
->lock
);
618 * We want the timer to fire at the deadline, but considering
619 * that it is actually coming from rq->clock and not from
620 * hrtimer's time base reading.
622 act
= ns_to_ktime(dl_next_period(dl_se
));
623 now
= hrtimer_cb_get_time(timer
);
624 delta
= ktime_to_ns(now
) - rq_clock(rq
);
625 act
= ktime_add_ns(act
, delta
);
628 * If the expiry time already passed, e.g., because the value
629 * chosen as the deadline is too small, don't even try to
630 * start the timer in the past!
632 if (ktime_us_delta(act
, now
) < 0)
636 * !enqueued will guarantee another callback; even if one is already in
637 * progress. This ensures a balanced {get,put}_task_struct().
639 * The race against __run_timer() clearing the enqueued state is
640 * harmless because we're holding task_rq()->lock, therefore the timer
641 * expiring after we've done the check will wait on its task_rq_lock()
642 * and observe our state.
644 if (!hrtimer_is_queued(timer
)) {
646 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
653 * This is the bandwidth enforcement timer callback. If here, we know
654 * a task is not on its dl_rq, since the fact that the timer was running
655 * means the task is throttled and needs a runtime replenishment.
657 * However, what we actually do depends on the fact the task is active,
658 * (it is on its rq) or has been removed from there by a call to
659 * dequeue_task_dl(). In the former case we must issue the runtime
660 * replenishment and add the task back to the dl_rq; in the latter, we just
661 * do nothing but clearing dl_throttled, so that runtime and deadline
662 * updating (and the queueing back to dl_rq) will be done by the
663 * next call to enqueue_task_dl().
665 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
667 struct sched_dl_entity
*dl_se
= container_of(timer
,
668 struct sched_dl_entity
,
670 struct task_struct
*p
= dl_task_of(dl_se
);
674 rq
= task_rq_lock(p
, &flags
);
677 * The task might have changed its scheduling policy to something
678 * different than SCHED_DEADLINE (through switched_fromd_dl()).
681 __dl_clear_params(p
);
686 * This is possible if switched_from_dl() raced against a running
687 * callback that took the above !dl_task() path and we've since then
688 * switched back into SCHED_DEADLINE.
690 * There's nothing to do except drop our task reference.
696 * The task might have been boosted by someone else and might be in the
697 * boosting/deboosting path, its not throttled.
699 if (dl_se
->dl_boosted
)
703 * Spurious timer due to start_dl_timer() race; or we already received
704 * a replenishment from rt_mutex_setprio().
706 if (!dl_se
->dl_throttled
)
713 * If the throttle happened during sched-out; like:
720 * __dequeue_task_dl()
723 * We can be both throttled and !queued. Replenish the counter
724 * but do not enqueue -- wait for our wakeup to do that.
726 if (!task_on_rq_queued(p
)) {
727 replenish_dl_entity(dl_se
, dl_se
);
731 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
732 if (dl_task(rq
->curr
))
733 check_preempt_curr_dl(rq
, p
, 0);
739 * Perform balancing operations here; after the replenishments. We
740 * cannot drop rq->lock before this, otherwise the assertion in
741 * start_dl_timer() about not missing updates is not true.
743 * If we find that the rq the task was on is no longer available, we
744 * need to select a new rq.
746 * XXX figure out if select_task_rq_dl() deals with offline cpus.
748 if (unlikely(!rq
->online
))
749 rq
= dl_task_offline_migration(rq
, p
);
752 * Queueing this task back might have overloaded rq, check if we need
753 * to kick someone away.
755 if (has_pushable_dl_tasks(rq
)) {
757 * Nothing relies on rq->lock after this, so its safe to drop
760 lockdep_unpin_lock(&rq
->lock
);
762 lockdep_pin_lock(&rq
->lock
);
767 task_rq_unlock(rq
, p
, &flags
);
770 * This can free the task_struct, including this hrtimer, do not touch
771 * anything related to that after this.
775 return HRTIMER_NORESTART
;
778 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
780 struct hrtimer
*timer
= &dl_se
->dl_timer
;
782 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
783 timer
->function
= dl_task_timer
;
787 * During the activation, CBS checks if it can reuse the current task's
788 * runtime and period. If the deadline of the task is in the past, CBS
789 * cannot use the runtime, and so it replenishes the task. This rule
790 * works fine for implicit deadline tasks (deadline == period), and the
791 * CBS was designed for implicit deadline tasks. However, a task with
792 * constrained deadline (deadine < period) might be awakened after the
793 * deadline, but before the next period. In this case, replenishing the
794 * task would allow it to run for runtime / deadline. As in this case
795 * deadline < period, CBS enables a task to run for more than the
796 * runtime / period. In a very loaded system, this can cause a domino
797 * effect, making other tasks miss their deadlines.
799 * To avoid this problem, in the activation of a constrained deadline
800 * task after the deadline but before the next period, throttle the
801 * task and set the replenishing timer to the begin of the next period,
802 * unless it is boosted.
804 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
806 struct task_struct
*p
= dl_task_of(dl_se
);
807 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
809 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
810 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
811 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
813 dl_se
->dl_throttled
= 1;
814 if (dl_se
->runtime
> 0)
820 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
822 return (dl_se
->runtime
<= 0);
825 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
828 * Update the current task's runtime statistics (provided it is still
829 * a -deadline task and has not been removed from the dl_rq).
831 static void update_curr_dl(struct rq
*rq
)
833 struct task_struct
*curr
= rq
->curr
;
834 struct sched_dl_entity
*dl_se
= &curr
->dl
;
837 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
841 * Consumed budget is computed considering the time as
842 * observed by schedulable tasks (excluding time spent
843 * in hardirq context, etc.). Deadlines are instead
844 * computed using hard walltime. This seems to be the more
845 * natural solution, but the full ramifications of this
846 * approach need further study.
848 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
849 if (unlikely((s64
)delta_exec
<= 0))
852 schedstat_set(curr
->se
.statistics
.exec_max
,
853 max(curr
->se
.statistics
.exec_max
, delta_exec
));
855 curr
->se
.sum_exec_runtime
+= delta_exec
;
856 account_group_exec_runtime(curr
, delta_exec
);
858 curr
->se
.exec_start
= rq_clock_task(rq
);
859 cpuacct_charge(curr
, delta_exec
);
861 sched_rt_avg_update(rq
, delta_exec
);
863 dl_se
->runtime
-= dl_se
->dl_yielded
? 0 : delta_exec
;
864 if (dl_runtime_exceeded(dl_se
)) {
865 dl_se
->dl_throttled
= 1;
866 __dequeue_task_dl(rq
, curr
, 0);
867 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
868 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
870 if (!is_leftmost(curr
, &rq
->dl
))
875 * Because -- for now -- we share the rt bandwidth, we need to
876 * account our runtime there too, otherwise actual rt tasks
877 * would be able to exceed the shared quota.
879 * Account to the root rt group for now.
881 * The solution we're working towards is having the RT groups scheduled
882 * using deadline servers -- however there's a few nasties to figure
883 * out before that can happen.
885 if (rt_bandwidth_enabled()) {
886 struct rt_rq
*rt_rq
= &rq
->rt
;
888 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
890 * We'll let actual RT tasks worry about the overflow here, we
891 * have our own CBS to keep us inline; only account when RT
892 * bandwidth is relevant.
894 if (sched_rt_bandwidth_account(rt_rq
))
895 rt_rq
->rt_time
+= delta_exec
;
896 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
902 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
);
904 static inline u64
next_deadline(struct rq
*rq
)
906 struct task_struct
*next
= pick_next_earliest_dl_task(rq
, rq
->cpu
);
908 if (next
&& dl_prio(next
->prio
))
909 return next
->dl
.deadline
;
914 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
916 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
918 if (dl_rq
->earliest_dl
.curr
== 0 ||
919 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
921 * If the dl_rq had no -deadline tasks, or if the new task
922 * has shorter deadline than the current one on dl_rq, we
923 * know that the previous earliest becomes our next earliest,
924 * as the new task becomes the earliest itself.
926 dl_rq
->earliest_dl
.next
= dl_rq
->earliest_dl
.curr
;
927 dl_rq
->earliest_dl
.curr
= deadline
;
928 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
, 1);
929 } else if (dl_rq
->earliest_dl
.next
== 0 ||
930 dl_time_before(deadline
, dl_rq
->earliest_dl
.next
)) {
932 * On the other hand, if the new -deadline task has a
933 * a later deadline than the earliest one on dl_rq, but
934 * it is earlier than the next (if any), we must
935 * recompute the next-earliest.
937 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
941 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
943 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
946 * Since we may have removed our earliest (and/or next earliest)
947 * task we must recompute them.
949 if (!dl_rq
->dl_nr_running
) {
950 dl_rq
->earliest_dl
.curr
= 0;
951 dl_rq
->earliest_dl
.next
= 0;
952 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
954 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
955 struct sched_dl_entity
*entry
;
957 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
958 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
959 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
960 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
, 1);
966 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
967 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
969 #endif /* CONFIG_SMP */
972 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
974 int prio
= dl_task_of(dl_se
)->prio
;
975 u64 deadline
= dl_se
->deadline
;
977 WARN_ON(!dl_prio(prio
));
978 dl_rq
->dl_nr_running
++;
979 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
981 inc_dl_deadline(dl_rq
, deadline
);
982 inc_dl_migration(dl_se
, dl_rq
);
986 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
988 int prio
= dl_task_of(dl_se
)->prio
;
990 WARN_ON(!dl_prio(prio
));
991 WARN_ON(!dl_rq
->dl_nr_running
);
992 dl_rq
->dl_nr_running
--;
993 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
995 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
996 dec_dl_migration(dl_se
, dl_rq
);
999 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1001 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1002 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
1003 struct rb_node
*parent
= NULL
;
1004 struct sched_dl_entity
*entry
;
1007 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1011 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
1012 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
1013 link
= &parent
->rb_left
;
1015 link
= &parent
->rb_right
;
1021 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
1023 rb_link_node(&dl_se
->rb_node
, parent
, link
);
1024 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
1026 inc_dl_tasks(dl_se
, dl_rq
);
1029 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1031 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1033 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1036 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
1037 struct rb_node
*next_node
;
1039 next_node
= rb_next(&dl_se
->rb_node
);
1040 dl_rq
->rb_leftmost
= next_node
;
1043 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
1044 RB_CLEAR_NODE(&dl_se
->rb_node
);
1046 dec_dl_tasks(dl_se
, dl_rq
);
1050 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
1051 struct sched_dl_entity
*pi_se
, int flags
)
1053 BUG_ON(on_dl_rq(dl_se
));
1056 * If this is a wakeup or a new instance, the scheduling
1057 * parameters of the task might need updating. Otherwise,
1058 * we want a replenishment of its runtime.
1060 if (dl_se
->dl_new
|| flags
& ENQUEUE_WAKEUP
)
1061 update_dl_entity(dl_se
, pi_se
);
1062 else if (flags
& ENQUEUE_REPLENISH
)
1063 replenish_dl_entity(dl_se
, pi_se
);
1065 __enqueue_dl_entity(dl_se
);
1068 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1070 __dequeue_dl_entity(dl_se
);
1073 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1075 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
1076 struct sched_dl_entity
*pi_se
= &p
->dl
;
1079 * Use the scheduling parameters of the top pi-waiter
1080 * task if we have one and its (absolute) deadline is
1081 * smaller than our one... OTW we keep our runtime and
1084 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
)) {
1085 pi_se
= &pi_task
->dl
;
1086 } else if (!dl_prio(p
->normal_prio
)) {
1088 * Special case in which we have a !SCHED_DEADLINE task
1089 * that is going to be deboosted, but exceedes its
1090 * runtime while doing so. No point in replenishing
1091 * it, as it's going to return back to its original
1092 * scheduling class after this.
1094 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
1099 * Check if a constrained deadline task was activated
1100 * after the deadline but before the next period.
1101 * If that is the case, the task will be throttled and
1102 * the replenishment timer will be set to the next period.
1104 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1105 dl_check_constrained_dl(&p
->dl
);
1108 * If p is throttled, we do nothing. In fact, if it exhausted
1109 * its budget it needs a replenishment and, since it now is on
1110 * its rq, the bandwidth timer callback (which clearly has not
1111 * run yet) will take care of this.
1113 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
))
1116 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1118 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1119 enqueue_pushable_dl_task(rq
, p
);
1122 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1124 dequeue_dl_entity(&p
->dl
);
1125 dequeue_pushable_dl_task(rq
, p
);
1128 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1131 __dequeue_task_dl(rq
, p
, flags
);
1135 * Yield task semantic for -deadline tasks is:
1137 * get off from the CPU until our next instance, with
1138 * a new runtime. This is of little use now, since we
1139 * don't have a bandwidth reclaiming mechanism. Anyway,
1140 * bandwidth reclaiming is planned for the future, and
1141 * yield_task_dl will indicate that some spare budget
1142 * is available for other task instances to use it.
1144 static void yield_task_dl(struct rq
*rq
)
1146 struct task_struct
*p
= rq
->curr
;
1149 * We make the task go to sleep until its current deadline by
1150 * forcing its runtime to zero. This way, update_curr_dl() stops
1151 * it and the bandwidth timer will wake it up and will give it
1152 * new scheduling parameters (thanks to dl_yielded=1).
1154 if (p
->dl
.runtime
> 0) {
1155 rq
->curr
->dl
.dl_yielded
= 1;
1158 update_rq_clock(rq
);
1161 * Tell update_rq_clock() that we've just updated,
1162 * so we don't do microscopic update in schedule()
1163 * and double the fastpath cost.
1165 rq_clock_skip_update(rq
, true);
1170 static int find_later_rq(struct task_struct
*task
);
1173 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1175 struct task_struct
*curr
;
1178 if (sd_flag
!= SD_BALANCE_WAKE
)
1184 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1187 * If we are dealing with a -deadline task, we must
1188 * decide where to wake it up.
1189 * If it has a later deadline and the current task
1190 * on this rq can't move (provided the waking task
1191 * can!) we prefer to send it somewhere else. On the
1192 * other hand, if it has a shorter deadline, we
1193 * try to make it stay here, it might be important.
1195 if (unlikely(dl_task(curr
)) &&
1196 (curr
->nr_cpus_allowed
< 2 ||
1197 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1198 (p
->nr_cpus_allowed
> 1)) {
1199 int target
= find_later_rq(p
);
1202 (dl_time_before(p
->dl
.deadline
,
1203 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1204 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1213 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1216 * Current can't be migrated, useless to reschedule,
1217 * let's hope p can move out.
1219 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1220 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
1224 * p is migratable, so let's not schedule it and
1225 * see if it is pushed or pulled somewhere else.
1227 if (p
->nr_cpus_allowed
!= 1 &&
1228 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
1234 #endif /* CONFIG_SMP */
1237 * Only called when both the current and waking task are -deadline
1240 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1243 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1250 * In the unlikely case current and p have the same deadline
1251 * let us try to decide what's the best thing to do...
1253 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1254 !test_tsk_need_resched(rq
->curr
))
1255 check_preempt_equal_dl(rq
, p
);
1256 #endif /* CONFIG_SMP */
1259 #ifdef CONFIG_SCHED_HRTICK
1260 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1262 hrtick_start(rq
, p
->dl
.runtime
);
1264 #else /* !CONFIG_SCHED_HRTICK */
1265 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1270 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1271 struct dl_rq
*dl_rq
)
1273 struct rb_node
*left
= dl_rq
->rb_leftmost
;
1278 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1281 struct task_struct
*pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
)
1283 struct sched_dl_entity
*dl_se
;
1284 struct task_struct
*p
;
1285 struct dl_rq
*dl_rq
;
1289 if (need_pull_dl_task(rq
, prev
)) {
1291 * This is OK, because current is on_cpu, which avoids it being
1292 * picked for load-balance and preemption/IRQs are still
1293 * disabled avoiding further scheduler activity on it and we're
1294 * being very careful to re-start the picking loop.
1296 lockdep_unpin_lock(&rq
->lock
);
1298 lockdep_pin_lock(&rq
->lock
);
1300 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1301 * means a stop task can slip in, in which case we need to
1302 * re-start task selection.
1304 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1309 * When prev is DL, we may throttle it in put_prev_task().
1310 * So, we update time before we check for dl_nr_running.
1312 if (prev
->sched_class
== &dl_sched_class
)
1315 if (unlikely(!dl_rq
->dl_nr_running
))
1318 put_prev_task(rq
, prev
);
1320 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1323 p
= dl_task_of(dl_se
);
1324 p
->se
.exec_start
= rq_clock_task(rq
);
1326 /* Running task will never be pushed. */
1327 dequeue_pushable_dl_task(rq
, p
);
1329 if (hrtick_enabled(rq
))
1330 start_hrtick_dl(rq
, p
);
1332 queue_push_tasks(rq
);
1337 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1341 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1342 enqueue_pushable_dl_task(rq
, p
);
1345 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1350 * Even when we have runtime, update_curr_dl() might have resulted in us
1351 * not being the leftmost task anymore. In that case NEED_RESCHED will
1352 * be set and schedule() will start a new hrtick for the next task.
1354 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1355 is_leftmost(p
, &rq
->dl
))
1356 start_hrtick_dl(rq
, p
);
1359 static void task_fork_dl(struct task_struct
*p
)
1362 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1367 static void task_dead_dl(struct task_struct
*p
)
1369 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1372 * Since we are TASK_DEAD we won't slip out of the domain!
1374 raw_spin_lock_irq(&dl_b
->lock
);
1375 /* XXX we should retain the bw until 0-lag */
1376 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1377 raw_spin_unlock_irq(&dl_b
->lock
);
1380 static void set_curr_task_dl(struct rq
*rq
)
1382 struct task_struct
*p
= rq
->curr
;
1384 p
->se
.exec_start
= rq_clock_task(rq
);
1386 /* You can't push away the running task */
1387 dequeue_pushable_dl_task(rq
, p
);
1392 /* Only try algorithms three times */
1393 #define DL_MAX_TRIES 3
1395 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1397 if (!task_running(rq
, p
) &&
1398 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1403 /* Returns the second earliest -deadline task, NULL otherwise */
1404 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
)
1406 struct rb_node
*next_node
= rq
->dl
.rb_leftmost
;
1407 struct sched_dl_entity
*dl_se
;
1408 struct task_struct
*p
= NULL
;
1411 next_node
= rb_next(next_node
);
1413 dl_se
= rb_entry(next_node
, struct sched_dl_entity
, rb_node
);
1414 p
= dl_task_of(dl_se
);
1416 if (pick_dl_task(rq
, p
, cpu
))
1426 * Return the earliest pushable rq's task, which is suitable to be executed
1427 * on the CPU, NULL otherwise:
1429 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1431 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_leftmost
;
1432 struct task_struct
*p
= NULL
;
1434 if (!has_pushable_dl_tasks(rq
))
1439 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1441 if (pick_dl_task(rq
, p
, cpu
))
1444 next_node
= rb_next(next_node
);
1451 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1453 static int find_later_rq(struct task_struct
*task
)
1455 struct sched_domain
*sd
;
1456 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1457 int this_cpu
= smp_processor_id();
1458 int best_cpu
, cpu
= task_cpu(task
);
1460 /* Make sure the mask is initialized first */
1461 if (unlikely(!later_mask
))
1464 if (task
->nr_cpus_allowed
== 1)
1468 * We have to consider system topology and task affinity
1469 * first, then we can look for a suitable cpu.
1471 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1477 * If we are here, some target has been found,
1478 * the most suitable of which is cached in best_cpu.
1479 * This is, among the runqueues where the current tasks
1480 * have later deadlines than the task's one, the rq
1481 * with the latest possible one.
1483 * Now we check how well this matches with task's
1484 * affinity and system topology.
1486 * The last cpu where the task run is our first
1487 * guess, since it is most likely cache-hot there.
1489 if (cpumask_test_cpu(cpu
, later_mask
))
1492 * Check if this_cpu is to be skipped (i.e., it is
1493 * not in the mask) or not.
1495 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1499 for_each_domain(cpu
, sd
) {
1500 if (sd
->flags
& SD_WAKE_AFFINE
) {
1503 * If possible, preempting this_cpu is
1504 * cheaper than migrating.
1506 if (this_cpu
!= -1 &&
1507 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1513 * Last chance: if best_cpu is valid and is
1514 * in the mask, that becomes our choice.
1516 if (best_cpu
< nr_cpu_ids
&&
1517 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1526 * At this point, all our guesses failed, we just return
1527 * 'something', and let the caller sort the things out.
1532 cpu
= cpumask_any(later_mask
);
1533 if (cpu
< nr_cpu_ids
)
1539 /* Locks the rq it finds */
1540 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1542 struct rq
*later_rq
= NULL
;
1546 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1547 cpu
= find_later_rq(task
);
1549 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1552 later_rq
= cpu_rq(cpu
);
1554 if (later_rq
->dl
.dl_nr_running
&&
1555 !dl_time_before(task
->dl
.deadline
,
1556 later_rq
->dl
.earliest_dl
.curr
)) {
1558 * Target rq has tasks of equal or earlier deadline,
1559 * retrying does not release any lock and is unlikely
1560 * to yield a different result.
1566 /* Retry if something changed. */
1567 if (double_lock_balance(rq
, later_rq
)) {
1568 if (unlikely(task_rq(task
) != rq
||
1569 !cpumask_test_cpu(later_rq
->cpu
,
1570 &task
->cpus_allowed
) ||
1571 task_running(rq
, task
) ||
1572 !task_on_rq_queued(task
))) {
1573 double_unlock_balance(rq
, later_rq
);
1580 * If the rq we found has no -deadline task, or
1581 * its earliest one has a later deadline than our
1582 * task, the rq is a good one.
1584 if (!later_rq
->dl
.dl_nr_running
||
1585 dl_time_before(task
->dl
.deadline
,
1586 later_rq
->dl
.earliest_dl
.curr
))
1589 /* Otherwise we try again. */
1590 double_unlock_balance(rq
, later_rq
);
1597 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1599 struct task_struct
*p
;
1601 if (!has_pushable_dl_tasks(rq
))
1604 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1605 struct task_struct
, pushable_dl_tasks
);
1607 BUG_ON(rq
->cpu
!= task_cpu(p
));
1608 BUG_ON(task_current(rq
, p
));
1609 BUG_ON(p
->nr_cpus_allowed
<= 1);
1611 BUG_ON(!task_on_rq_queued(p
));
1612 BUG_ON(!dl_task(p
));
1618 * See if the non running -deadline tasks on this rq
1619 * can be sent to some other CPU where they can preempt
1620 * and start executing.
1622 static int push_dl_task(struct rq
*rq
)
1624 struct task_struct
*next_task
;
1625 struct rq
*later_rq
;
1628 if (!rq
->dl
.overloaded
)
1631 next_task
= pick_next_pushable_dl_task(rq
);
1636 if (unlikely(next_task
== rq
->curr
)) {
1642 * If next_task preempts rq->curr, and rq->curr
1643 * can move away, it makes sense to just reschedule
1644 * without going further in pushing next_task.
1646 if (dl_task(rq
->curr
) &&
1647 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1648 rq
->curr
->nr_cpus_allowed
> 1) {
1653 /* We might release rq lock */
1654 get_task_struct(next_task
);
1656 /* Will lock the rq it'll find */
1657 later_rq
= find_lock_later_rq(next_task
, rq
);
1659 struct task_struct
*task
;
1662 * We must check all this again, since
1663 * find_lock_later_rq releases rq->lock and it is
1664 * then possible that next_task has migrated.
1666 task
= pick_next_pushable_dl_task(rq
);
1667 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1669 * The task is still there. We don't try
1670 * again, some other cpu will pull it when ready.
1679 put_task_struct(next_task
);
1684 deactivate_task(rq
, next_task
, 0);
1685 set_task_cpu(next_task
, later_rq
->cpu
);
1686 activate_task(later_rq
, next_task
, 0);
1689 resched_curr(later_rq
);
1691 double_unlock_balance(rq
, later_rq
);
1694 put_task_struct(next_task
);
1699 static void push_dl_tasks(struct rq
*rq
)
1701 /* push_dl_task() will return true if it moved a -deadline task */
1702 while (push_dl_task(rq
))
1706 static void pull_dl_task(struct rq
*this_rq
)
1708 int this_cpu
= this_rq
->cpu
, cpu
;
1709 struct task_struct
*p
;
1710 bool resched
= false;
1712 u64 dmin
= LONG_MAX
;
1714 if (likely(!dl_overloaded(this_rq
)))
1718 * Match the barrier from dl_set_overloaded; this guarantees that if we
1719 * see overloaded we must also see the dlo_mask bit.
1723 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1724 if (this_cpu
== cpu
)
1727 src_rq
= cpu_rq(cpu
);
1730 * It looks racy, abd it is! However, as in sched_rt.c,
1731 * we are fine with this.
1733 if (this_rq
->dl
.dl_nr_running
&&
1734 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1735 src_rq
->dl
.earliest_dl
.next
))
1738 /* Might drop this_rq->lock */
1739 double_lock_balance(this_rq
, src_rq
);
1742 * If there are no more pullable tasks on the
1743 * rq, we're done with it.
1745 if (src_rq
->dl
.dl_nr_running
<= 1)
1748 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
1751 * We found a task to be pulled if:
1752 * - it preempts our current (if there's one),
1753 * - it will preempt the last one we pulled (if any).
1755 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1756 (!this_rq
->dl
.dl_nr_running
||
1757 dl_time_before(p
->dl
.deadline
,
1758 this_rq
->dl
.earliest_dl
.curr
))) {
1759 WARN_ON(p
== src_rq
->curr
);
1760 WARN_ON(!task_on_rq_queued(p
));
1763 * Then we pull iff p has actually an earlier
1764 * deadline than the current task of its runqueue.
1766 if (dl_time_before(p
->dl
.deadline
,
1767 src_rq
->curr
->dl
.deadline
))
1772 deactivate_task(src_rq
, p
, 0);
1773 set_task_cpu(p
, this_cpu
);
1774 activate_task(this_rq
, p
, 0);
1775 dmin
= p
->dl
.deadline
;
1777 /* Is there any other task even earlier? */
1780 double_unlock_balance(this_rq
, src_rq
);
1784 resched_curr(this_rq
);
1788 * Since the task is not running and a reschedule is not going to happen
1789 * anytime soon on its runqueue, we try pushing it away now.
1791 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1793 if (!task_running(rq
, p
) &&
1794 !test_tsk_need_resched(rq
->curr
) &&
1795 p
->nr_cpus_allowed
> 1 &&
1796 dl_task(rq
->curr
) &&
1797 (rq
->curr
->nr_cpus_allowed
< 2 ||
1798 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
1803 static void set_cpus_allowed_dl(struct task_struct
*p
,
1804 const struct cpumask
*new_mask
)
1806 struct root_domain
*src_rd
;
1809 BUG_ON(!dl_task(p
));
1814 * Migrating a SCHED_DEADLINE task between exclusive
1815 * cpusets (different root_domains) entails a bandwidth
1816 * update. We already made space for us in the destination
1817 * domain (see cpuset_can_attach()).
1819 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
1820 struct dl_bw
*src_dl_b
;
1822 src_dl_b
= dl_bw_of(cpu_of(rq
));
1824 * We now free resources of the root_domain we are migrating
1825 * off. In the worst case, sched_setattr() may temporary fail
1826 * until we complete the update.
1828 raw_spin_lock(&src_dl_b
->lock
);
1829 __dl_clear(src_dl_b
, p
->dl
.dl_bw
);
1830 raw_spin_unlock(&src_dl_b
->lock
);
1833 set_cpus_allowed_common(p
, new_mask
);
1836 /* Assumes rq->lock is held */
1837 static void rq_online_dl(struct rq
*rq
)
1839 if (rq
->dl
.overloaded
)
1840 dl_set_overload(rq
);
1842 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1843 if (rq
->dl
.dl_nr_running
> 0)
1844 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
, 1);
1847 /* Assumes rq->lock is held */
1848 static void rq_offline_dl(struct rq
*rq
)
1850 if (rq
->dl
.overloaded
)
1851 dl_clear_overload(rq
);
1853 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
1854 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1857 void __init
init_sched_dl_class(void)
1861 for_each_possible_cpu(i
)
1862 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1863 GFP_KERNEL
, cpu_to_node(i
));
1866 #endif /* CONFIG_SMP */
1868 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1871 * Start the deadline timer; if we switch back to dl before this we'll
1872 * continue consuming our current CBS slice. If we stay outside of
1873 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1876 if (!start_dl_timer(p
))
1877 __dl_clear_params(p
);
1880 * Since this might be the only -deadline task on the rq,
1881 * this is the right place to try to pull some other one
1882 * from an overloaded cpu, if any.
1884 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
1887 queue_pull_task(rq
);
1891 * When switching to -deadline, we may overload the rq, then
1892 * we try to push someone off, if possible.
1894 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1896 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
1898 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
1899 queue_push_tasks(rq
);
1901 if (dl_task(rq
->curr
))
1902 check_preempt_curr_dl(rq
, p
, 0);
1909 * If the scheduling parameters of a -deadline task changed,
1910 * a push or pull operation might be needed.
1912 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1915 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
1918 * This might be too much, but unfortunately
1919 * we don't have the old deadline value, and
1920 * we can't argue if the task is increasing
1921 * or lowering its prio, so...
1923 if (!rq
->dl
.overloaded
)
1924 queue_pull_task(rq
);
1927 * If we now have a earlier deadline task than p,
1928 * then reschedule, provided p is still on this
1931 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
1935 * Again, we don't know if p has a earlier
1936 * or later deadline, so let's blindly set a
1937 * (maybe not needed) rescheduling point.
1940 #endif /* CONFIG_SMP */
1942 switched_to_dl(rq
, p
);
1945 const struct sched_class dl_sched_class
= {
1946 .next
= &rt_sched_class
,
1947 .enqueue_task
= enqueue_task_dl
,
1948 .dequeue_task
= dequeue_task_dl
,
1949 .yield_task
= yield_task_dl
,
1951 .check_preempt_curr
= check_preempt_curr_dl
,
1953 .pick_next_task
= pick_next_task_dl
,
1954 .put_prev_task
= put_prev_task_dl
,
1957 .select_task_rq
= select_task_rq_dl
,
1958 .set_cpus_allowed
= set_cpus_allowed_dl
,
1959 .rq_online
= rq_online_dl
,
1960 .rq_offline
= rq_offline_dl
,
1961 .task_woken
= task_woken_dl
,
1964 .set_curr_task
= set_curr_task_dl
,
1965 .task_tick
= task_tick_dl
,
1966 .task_fork
= task_fork_dl
,
1967 .task_dead
= task_dead_dl
,
1969 .prio_changed
= prio_changed_dl
,
1970 .switched_from
= switched_from_dl
,
1971 .switched_to
= switched_to_dl
,
1973 .update_curr
= update_curr_dl
,
1976 #ifdef CONFIG_SCHED_DEBUG
1977 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
1979 void print_dl_stats(struct seq_file
*m
, int cpu
)
1981 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
1983 #endif /* CONFIG_SCHED_DEBUG */