2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency
= 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG
;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity
= 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency
= 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly
;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
94 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
117 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
123 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
129 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static unsigned int get_update_sysctl_factor(void)
146 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
149 switch (sysctl_sched_tunable_scaling
) {
150 case SCHED_TUNABLESCALING_NONE
:
153 case SCHED_TUNABLESCALING_LINEAR
:
156 case SCHED_TUNABLESCALING_LOG
:
158 factor
= 1 + ilog2(cpus
);
165 static void update_sysctl(void)
167 unsigned int factor
= get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity
);
172 SET_SYSCTL(sched_latency
);
173 SET_SYSCTL(sched_wakeup_granularity
);
177 void sched_init_granularity(void)
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight
*lw
)
189 if (likely(lw
->inv_weight
))
192 w
= scale_load_down(lw
->weight
);
194 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
196 else if (unlikely(!w
))
197 lw
->inv_weight
= WMULT_CONST
;
199 lw
->inv_weight
= WMULT_CONST
/ w
;
203 * delta_exec * weight / lw.weight
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
216 u64 fact
= scale_load_down(weight
);
217 int shift
= WMULT_SHIFT
;
219 __update_inv_weight(lw
);
221 if (unlikely(fact
>> 32)) {
228 /* hint to use a 32x32->64 mul */
229 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
236 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
240 const struct sched_class fair_sched_class
;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct
*task_of(struct sched_entity
*se
)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se
));
262 return container_of(se
, struct task_struct
, se
);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
288 if (!cfs_rq
->on_list
) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq
->tg
->parent
&&
296 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
297 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
298 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
300 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
301 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
310 if (cfs_rq
->on_list
) {
311 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq
*
322 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
324 if (se
->cfs_rq
== pse
->cfs_rq
)
330 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
336 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
338 int se_depth
, pse_depth
;
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
347 /* First walk up until both entities are at same depth */
348 se_depth
= (*se
)->depth
;
349 pse_depth
= (*pse
)->depth
;
351 while (se_depth
> pse_depth
) {
353 *se
= parent_entity(*se
);
356 while (pse_depth
> se_depth
) {
358 *pse
= parent_entity(*pse
);
361 while (!is_same_group(*se
, *pse
)) {
362 *se
= parent_entity(*se
);
363 *pse
= parent_entity(*pse
);
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
369 static inline struct task_struct
*task_of(struct sched_entity
*se
)
371 return container_of(se
, struct task_struct
, se
);
374 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
376 return container_of(cfs_rq
, struct rq
, cfs
);
379 #define entity_is_task(se) 1
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
384 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
386 return &task_rq(p
)->cfs
;
389 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
391 struct task_struct
*p
= task_of(se
);
392 struct rq
*rq
= task_rq(p
);
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
414 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
420 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
433 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
435 s64 delta
= (s64
)(vruntime
- max_vruntime
);
437 max_vruntime
= vruntime
;
442 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
444 s64 delta
= (s64
)(vruntime
- min_vruntime
);
446 min_vruntime
= vruntime
;
451 static inline int entity_before(struct sched_entity
*a
,
452 struct sched_entity
*b
)
454 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
457 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
459 u64 vruntime
= cfs_rq
->min_vruntime
;
462 vruntime
= cfs_rq
->curr
->vruntime
;
464 if (cfs_rq
->rb_leftmost
) {
465 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
470 vruntime
= se
->vruntime
;
472 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
479 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
484 * Enqueue an entity into the rb-tree:
486 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
488 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
489 struct rb_node
*parent
= NULL
;
490 struct sched_entity
*entry
;
494 * Find the right place in the rbtree:
498 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
503 if (entity_before(se
, entry
)) {
504 link
= &parent
->rb_left
;
506 link
= &parent
->rb_right
;
512 * Maintain a cache of leftmost tree entries (it is frequently
516 cfs_rq
->rb_leftmost
= &se
->run_node
;
518 rb_link_node(&se
->run_node
, parent
, link
);
519 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
522 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
524 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
525 struct rb_node
*next_node
;
527 next_node
= rb_next(&se
->run_node
);
528 cfs_rq
->rb_leftmost
= next_node
;
531 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
534 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
536 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
541 return rb_entry(left
, struct sched_entity
, run_node
);
544 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
546 struct rb_node
*next
= rb_next(&se
->run_node
);
551 return rb_entry(next
, struct sched_entity
, run_node
);
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
557 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
562 return rb_entry(last
, struct sched_entity
, run_node
);
565 /**************************************************************
566 * Scheduling class statistics methods:
569 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
570 void __user
*buffer
, size_t *lenp
,
573 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
574 unsigned int factor
= get_update_sysctl_factor();
579 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
580 sysctl_sched_min_granularity
);
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity
);
585 WRT_SYSCTL(sched_latency
);
586 WRT_SYSCTL(sched_wakeup_granularity
);
596 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
598 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
599 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
605 * The idea is to set a period in which each task runs once.
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
610 * p = (nr <= nl) ? l : l*nr/nl
612 static u64
__sched_period(unsigned long nr_running
)
614 if (unlikely(nr_running
> sched_nr_latency
))
615 return nr_running
* sysctl_sched_min_granularity
;
617 return sysctl_sched_latency
;
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
626 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
630 for_each_sched_entity(se
) {
631 struct load_weight
*load
;
632 struct load_weight lw
;
634 cfs_rq
= cfs_rq_of(se
);
635 load
= &cfs_rq
->load
;
637 if (unlikely(!se
->on_rq
)) {
640 update_load_add(&lw
, se
->load
.weight
);
643 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
649 * We calculate the vruntime slice of a to-be-inserted task.
653 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
655 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
659 static int select_idle_sibling(struct task_struct
*p
, int cpu
);
660 static unsigned long task_h_load(struct task_struct
*p
);
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity
*se
)
674 struct sched_avg
*sa
= &se
->avg
;
676 sa
->last_update_time
= 0;
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
682 sa
->period_contrib
= 1023;
683 sa
->load_avg
= scale_load_down(se
->load
.weight
);
684 sa
->load_sum
= sa
->load_avg
* LOAD_AVG_MAX
;
685 sa
->util_avg
= scale_load_down(SCHED_LOAD_SCALE
);
686 sa
->util_sum
= sa
->util_avg
* LOAD_AVG_MAX
;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 void init_entity_runnable_average(struct sched_entity
*se
)
697 * Update the current task's runtime statistics.
699 static void update_curr(struct cfs_rq
*cfs_rq
)
701 struct sched_entity
*curr
= cfs_rq
->curr
;
702 u64 now
= rq_clock_task(rq_of(cfs_rq
));
708 delta_exec
= now
- curr
->exec_start
;
709 if (unlikely((s64
)delta_exec
<= 0))
712 curr
->exec_start
= now
;
714 schedstat_set(curr
->statistics
.exec_max
,
715 max(delta_exec
, curr
->statistics
.exec_max
));
717 curr
->sum_exec_runtime
+= delta_exec
;
718 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
720 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
721 update_min_vruntime(cfs_rq
);
723 if (entity_is_task(curr
)) {
724 struct task_struct
*curtask
= task_of(curr
);
726 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
727 cpuacct_charge(curtask
, delta_exec
);
728 account_group_exec_runtime(curtask
, delta_exec
);
731 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
734 static void update_curr_fair(struct rq
*rq
)
736 update_curr(cfs_rq_of(&rq
->curr
->se
));
740 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
742 schedstat_set(se
->statistics
.wait_start
, rq_clock(rq_of(cfs_rq
)));
746 * Task is being enqueued - update stats:
748 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
751 * Are we enqueueing a waiting task? (for current tasks
752 * a dequeue/enqueue event is a NOP)
754 if (se
!= cfs_rq
->curr
)
755 update_stats_wait_start(cfs_rq
, se
);
759 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
761 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
762 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
));
763 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
764 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
765 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
);
766 #ifdef CONFIG_SCHEDSTATS
767 if (entity_is_task(se
)) {
768 trace_sched_stat_wait(task_of(se
),
769 rq_clock(rq_of(cfs_rq
)) - se
->statistics
.wait_start
);
772 schedstat_set(se
->statistics
.wait_start
, 0);
776 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
779 * Mark the end of the wait period if dequeueing a
782 if (se
!= cfs_rq
->curr
)
783 update_stats_wait_end(cfs_rq
, se
);
787 * We are picking a new current task - update its stats:
790 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
793 * We are starting a new run period:
795 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
798 /**************************************************
799 * Scheduling class queueing methods:
802 #ifdef CONFIG_NUMA_BALANCING
804 * Approximate time to scan a full NUMA task in ms. The task scan period is
805 * calculated based on the tasks virtual memory size and
806 * numa_balancing_scan_size.
808 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
809 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
811 /* Portion of address space to scan in MB */
812 unsigned int sysctl_numa_balancing_scan_size
= 256;
814 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
815 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
817 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
819 unsigned long rss
= 0;
820 unsigned long nr_scan_pages
;
823 * Calculations based on RSS as non-present and empty pages are skipped
824 * by the PTE scanner and NUMA hinting faults should be trapped based
827 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
828 rss
= get_mm_rss(p
->mm
);
832 rss
= round_up(rss
, nr_scan_pages
);
833 return rss
/ nr_scan_pages
;
836 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
837 #define MAX_SCAN_WINDOW 2560
839 static unsigned int task_scan_min(struct task_struct
*p
)
841 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
842 unsigned int scan
, floor
;
843 unsigned int windows
= 1;
845 if (scan_size
< MAX_SCAN_WINDOW
)
846 windows
= MAX_SCAN_WINDOW
/ scan_size
;
847 floor
= 1000 / windows
;
849 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
850 return max_t(unsigned int, floor
, scan
);
853 static unsigned int task_scan_max(struct task_struct
*p
)
855 unsigned int smin
= task_scan_min(p
);
858 /* Watch for min being lower than max due to floor calculations */
859 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
860 return max(smin
, smax
);
863 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
865 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
866 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
869 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
871 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
872 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
878 spinlock_t lock
; /* nr_tasks, tasks */
883 nodemask_t active_nodes
;
884 unsigned long total_faults
;
886 * Faults_cpu is used to decide whether memory should move
887 * towards the CPU. As a consequence, these stats are weighted
888 * more by CPU use than by memory faults.
890 unsigned long *faults_cpu
;
891 unsigned long faults
[0];
894 /* Shared or private faults. */
895 #define NR_NUMA_HINT_FAULT_TYPES 2
897 /* Memory and CPU locality */
898 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900 /* Averaged statistics, and temporary buffers. */
901 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903 pid_t
task_numa_group_id(struct task_struct
*p
)
905 return p
->numa_group
? p
->numa_group
->gid
: 0;
909 * The averaged statistics, shared & private, memory & cpu,
910 * occupy the first half of the array. The second half of the
911 * array is for current counters, which are averaged into the
912 * first set by task_numa_placement.
914 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
916 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
919 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
924 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
925 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
928 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
933 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
934 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
937 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
939 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
940 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
943 /* Handle placement on systems where not all nodes are directly connected. */
944 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
945 int maxdist
, bool task
)
947 unsigned long score
= 0;
951 * All nodes are directly connected, and the same distance
952 * from each other. No need for fancy placement algorithms.
954 if (sched_numa_topology_type
== NUMA_DIRECT
)
958 * This code is called for each node, introducing N^2 complexity,
959 * which should be ok given the number of nodes rarely exceeds 8.
961 for_each_online_node(node
) {
962 unsigned long faults
;
963 int dist
= node_distance(nid
, node
);
966 * The furthest away nodes in the system are not interesting
967 * for placement; nid was already counted.
969 if (dist
== sched_max_numa_distance
|| node
== nid
)
973 * On systems with a backplane NUMA topology, compare groups
974 * of nodes, and move tasks towards the group with the most
975 * memory accesses. When comparing two nodes at distance
976 * "hoplimit", only nodes closer by than "hoplimit" are part
977 * of each group. Skip other nodes.
979 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
983 /* Add up the faults from nearby nodes. */
985 faults
= task_faults(p
, node
);
987 faults
= group_faults(p
, node
);
990 * On systems with a glueless mesh NUMA topology, there are
991 * no fixed "groups of nodes". Instead, nodes that are not
992 * directly connected bounce traffic through intermediate
993 * nodes; a numa_group can occupy any set of nodes.
994 * The further away a node is, the less the faults count.
995 * This seems to result in good task placement.
997 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
998 faults
*= (sched_max_numa_distance
- dist
);
999 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1009 * These return the fraction of accesses done by a particular task, or
1010 * task group, on a particular numa node. The group weight is given a
1011 * larger multiplier, in order to group tasks together that are almost
1012 * evenly spread out between numa nodes.
1014 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1017 unsigned long faults
, total_faults
;
1019 if (!p
->numa_faults
)
1022 total_faults
= p
->total_numa_faults
;
1027 faults
= task_faults(p
, nid
);
1028 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1030 return 1000 * faults
/ total_faults
;
1033 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1036 unsigned long faults
, total_faults
;
1041 total_faults
= p
->numa_group
->total_faults
;
1046 faults
= group_faults(p
, nid
);
1047 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1049 return 1000 * faults
/ total_faults
;
1052 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1053 int src_nid
, int dst_cpu
)
1055 struct numa_group
*ng
= p
->numa_group
;
1056 int dst_nid
= cpu_to_node(dst_cpu
);
1057 int last_cpupid
, this_cpupid
;
1059 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1062 * Multi-stage node selection is used in conjunction with a periodic
1063 * migration fault to build a temporal task<->page relation. By using
1064 * a two-stage filter we remove short/unlikely relations.
1066 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1067 * a task's usage of a particular page (n_p) per total usage of this
1068 * page (n_t) (in a given time-span) to a probability.
1070 * Our periodic faults will sample this probability and getting the
1071 * same result twice in a row, given these samples are fully
1072 * independent, is then given by P(n)^2, provided our sample period
1073 * is sufficiently short compared to the usage pattern.
1075 * This quadric squishes small probabilities, making it less likely we
1076 * act on an unlikely task<->page relation.
1078 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1079 if (!cpupid_pid_unset(last_cpupid
) &&
1080 cpupid_to_nid(last_cpupid
) != dst_nid
)
1083 /* Always allow migrate on private faults */
1084 if (cpupid_match_pid(p
, last_cpupid
))
1087 /* A shared fault, but p->numa_group has not been set up yet. */
1092 * Do not migrate if the destination is not a node that
1093 * is actively used by this numa group.
1095 if (!node_isset(dst_nid
, ng
->active_nodes
))
1099 * Source is a node that is not actively used by this
1100 * numa group, while the destination is. Migrate.
1102 if (!node_isset(src_nid
, ng
->active_nodes
))
1106 * Both source and destination are nodes in active
1107 * use by this numa group. Maximize memory bandwidth
1108 * by migrating from more heavily used groups, to less
1109 * heavily used ones, spreading the load around.
1110 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 return group_faults(p
, dst_nid
) < (group_faults(p
, src_nid
) * 3 / 4);
1115 static unsigned long weighted_cpuload(const int cpu
);
1116 static unsigned long source_load(int cpu
, int type
);
1117 static unsigned long target_load(int cpu
, int type
);
1118 static unsigned long capacity_of(int cpu
);
1119 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
);
1121 /* Cached statistics for all CPUs within a node */
1123 unsigned long nr_running
;
1126 /* Total compute capacity of CPUs on a node */
1127 unsigned long compute_capacity
;
1129 /* Approximate capacity in terms of runnable tasks on a node */
1130 unsigned long task_capacity
;
1131 int has_free_capacity
;
1135 * XXX borrowed from update_sg_lb_stats
1137 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1139 int smt
, cpu
, cpus
= 0;
1140 unsigned long capacity
;
1142 memset(ns
, 0, sizeof(*ns
));
1143 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1144 struct rq
*rq
= cpu_rq(cpu
);
1146 ns
->nr_running
+= rq
->nr_running
;
1147 ns
->load
+= weighted_cpuload(cpu
);
1148 ns
->compute_capacity
+= capacity_of(cpu
);
1154 * If we raced with hotplug and there are no CPUs left in our mask
1155 * the @ns structure is NULL'ed and task_numa_compare() will
1156 * not find this node attractive.
1158 * We'll either bail at !has_free_capacity, or we'll detect a huge
1159 * imbalance and bail there.
1164 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1165 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1166 capacity
= cpus
/ smt
; /* cores */
1168 ns
->task_capacity
= min_t(unsigned, capacity
,
1169 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1170 ns
->has_free_capacity
= (ns
->nr_running
< ns
->task_capacity
);
1173 struct task_numa_env
{
1174 struct task_struct
*p
;
1176 int src_cpu
, src_nid
;
1177 int dst_cpu
, dst_nid
;
1179 struct numa_stats src_stats
, dst_stats
;
1184 struct task_struct
*best_task
;
1189 static void task_numa_assign(struct task_numa_env
*env
,
1190 struct task_struct
*p
, long imp
)
1193 put_task_struct(env
->best_task
);
1196 env
->best_imp
= imp
;
1197 env
->best_cpu
= env
->dst_cpu
;
1200 static bool load_too_imbalanced(long src_load
, long dst_load
,
1201 struct task_numa_env
*env
)
1204 long orig_src_load
, orig_dst_load
;
1205 long src_capacity
, dst_capacity
;
1208 * The load is corrected for the CPU capacity available on each node.
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1214 src_capacity
= env
->src_stats
.compute_capacity
;
1215 dst_capacity
= env
->dst_stats
.compute_capacity
;
1217 /* We care about the slope of the imbalance, not the direction. */
1218 if (dst_load
< src_load
)
1219 swap(dst_load
, src_load
);
1221 /* Is the difference below the threshold? */
1222 imb
= dst_load
* src_capacity
* 100 -
1223 src_load
* dst_capacity
* env
->imbalance_pct
;
1228 * The imbalance is above the allowed threshold.
1229 * Compare it with the old imbalance.
1231 orig_src_load
= env
->src_stats
.load
;
1232 orig_dst_load
= env
->dst_stats
.load
;
1234 if (orig_dst_load
< orig_src_load
)
1235 swap(orig_dst_load
, orig_src_load
);
1237 old_imb
= orig_dst_load
* src_capacity
* 100 -
1238 orig_src_load
* dst_capacity
* env
->imbalance_pct
;
1240 /* Would this change make things worse? */
1241 return (imb
> old_imb
);
1245 * This checks if the overall compute and NUMA accesses of the system would
1246 * be improved if the source tasks was migrated to the target dst_cpu taking
1247 * into account that it might be best if task running on the dst_cpu should
1248 * be exchanged with the source task
1250 static void task_numa_compare(struct task_numa_env
*env
,
1251 long taskimp
, long groupimp
)
1253 struct rq
*src_rq
= cpu_rq(env
->src_cpu
);
1254 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1255 struct task_struct
*cur
;
1256 long src_load
, dst_load
;
1258 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1260 int dist
= env
->dist
;
1261 bool assigned
= false;
1265 raw_spin_lock_irq(&dst_rq
->lock
);
1268 * No need to move the exiting task or idle task.
1270 if ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
))
1274 * The task_struct must be protected here to protect the
1275 * p->numa_faults access in the task_weight since the
1276 * numa_faults could already be freed in the following path:
1277 * finish_task_switch()
1278 * --> put_task_struct()
1279 * --> __put_task_struct()
1280 * --> task_numa_free()
1282 get_task_struct(cur
);
1285 raw_spin_unlock_irq(&dst_rq
->lock
);
1288 * Because we have preemption enabled we can get migrated around and
1289 * end try selecting ourselves (current == env->p) as a swap candidate.
1295 * "imp" is the fault differential for the source task between the
1296 * source and destination node. Calculate the total differential for
1297 * the source task and potential destination task. The more negative
1298 * the value is, the more rmeote accesses that would be expected to
1299 * be incurred if the tasks were swapped.
1302 /* Skip this swap candidate if cannot move to the source cpu */
1303 if (!cpumask_test_cpu(env
->src_cpu
, tsk_cpus_allowed(cur
)))
1307 * If dst and source tasks are in the same NUMA group, or not
1308 * in any group then look only at task weights.
1310 if (cur
->numa_group
== env
->p
->numa_group
) {
1311 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1312 task_weight(cur
, env
->dst_nid
, dist
);
1314 * Add some hysteresis to prevent swapping the
1315 * tasks within a group over tiny differences.
1317 if (cur
->numa_group
)
1321 * Compare the group weights. If a task is all by
1322 * itself (not part of a group), use the task weight
1325 if (cur
->numa_group
)
1326 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1327 group_weight(cur
, env
->dst_nid
, dist
);
1329 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1330 task_weight(cur
, env
->dst_nid
, dist
);
1334 if (imp
<= env
->best_imp
&& moveimp
<= env
->best_imp
)
1338 /* Is there capacity at our destination? */
1339 if (env
->src_stats
.nr_running
<= env
->src_stats
.task_capacity
&&
1340 !env
->dst_stats
.has_free_capacity
)
1346 /* Balance doesn't matter much if we're running a task per cpu */
1347 if (imp
> env
->best_imp
&& src_rq
->nr_running
== 1 &&
1348 dst_rq
->nr_running
== 1)
1352 * In the overloaded case, try and keep the load balanced.
1355 load
= task_h_load(env
->p
);
1356 dst_load
= env
->dst_stats
.load
+ load
;
1357 src_load
= env
->src_stats
.load
- load
;
1359 if (moveimp
> imp
&& moveimp
> env
->best_imp
) {
1361 * If the improvement from just moving env->p direction is
1362 * better than swapping tasks around, check if a move is
1363 * possible. Store a slightly smaller score than moveimp,
1364 * so an actually idle CPU will win.
1366 if (!load_too_imbalanced(src_load
, dst_load
, env
)) {
1368 put_task_struct(cur
);
1374 if (imp
<= env
->best_imp
)
1378 load
= task_h_load(cur
);
1383 if (load_too_imbalanced(src_load
, dst_load
, env
))
1387 * One idle CPU per node is evaluated for a task numa move.
1388 * Call select_idle_sibling to maybe find a better one.
1391 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->dst_cpu
);
1395 task_numa_assign(env
, cur
, imp
);
1399 * The dst_rq->curr isn't assigned. The protection for task_struct is
1402 if (cur
&& !assigned
)
1403 put_task_struct(cur
);
1406 static void task_numa_find_cpu(struct task_numa_env
*env
,
1407 long taskimp
, long groupimp
)
1411 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1412 /* Skip this CPU if the source task cannot migrate */
1413 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(env
->p
)))
1417 task_numa_compare(env
, taskimp
, groupimp
);
1421 /* Only move tasks to a NUMA node less busy than the current node. */
1422 static bool numa_has_capacity(struct task_numa_env
*env
)
1424 struct numa_stats
*src
= &env
->src_stats
;
1425 struct numa_stats
*dst
= &env
->dst_stats
;
1427 if (src
->has_free_capacity
&& !dst
->has_free_capacity
)
1431 * Only consider a task move if the source has a higher load
1432 * than the destination, corrected for CPU capacity on each node.
1434 * src->load dst->load
1435 * --------------------- vs ---------------------
1436 * src->compute_capacity dst->compute_capacity
1438 if (src
->load
* dst
->compute_capacity
* env
->imbalance_pct
>
1440 dst
->load
* src
->compute_capacity
* 100)
1446 static int task_numa_migrate(struct task_struct
*p
)
1448 struct task_numa_env env
= {
1451 .src_cpu
= task_cpu(p
),
1452 .src_nid
= task_node(p
),
1454 .imbalance_pct
= 112,
1460 struct sched_domain
*sd
;
1461 unsigned long taskweight
, groupweight
;
1463 long taskimp
, groupimp
;
1466 * Pick the lowest SD_NUMA domain, as that would have the smallest
1467 * imbalance and would be the first to start moving tasks about.
1469 * And we want to avoid any moving of tasks about, as that would create
1470 * random movement of tasks -- counter the numa conditions we're trying
1474 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1476 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1480 * Cpusets can break the scheduler domain tree into smaller
1481 * balance domains, some of which do not cross NUMA boundaries.
1482 * Tasks that are "trapped" in such domains cannot be migrated
1483 * elsewhere, so there is no point in (re)trying.
1485 if (unlikely(!sd
)) {
1486 p
->numa_preferred_nid
= task_node(p
);
1490 env
.dst_nid
= p
->numa_preferred_nid
;
1491 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1492 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1493 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1494 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1495 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1496 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1497 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1499 /* Try to find a spot on the preferred nid. */
1500 if (numa_has_capacity(&env
))
1501 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1504 * Look at other nodes in these cases:
1505 * - there is no space available on the preferred_nid
1506 * - the task is part of a numa_group that is interleaved across
1507 * multiple NUMA nodes; in order to better consolidate the group,
1508 * we need to check other locations.
1510 if (env
.best_cpu
== -1 || (p
->numa_group
&&
1511 nodes_weight(p
->numa_group
->active_nodes
) > 1)) {
1512 for_each_online_node(nid
) {
1513 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1516 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1517 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1519 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1520 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1523 /* Only consider nodes where both task and groups benefit */
1524 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1525 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1526 if (taskimp
< 0 && groupimp
< 0)
1531 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1532 if (numa_has_capacity(&env
))
1533 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1538 * If the task is part of a workload that spans multiple NUMA nodes,
1539 * and is migrating into one of the workload's active nodes, remember
1540 * this node as the task's preferred numa node, so the workload can
1542 * A task that migrated to a second choice node will be better off
1543 * trying for a better one later. Do not set the preferred node here.
1545 if (p
->numa_group
) {
1546 if (env
.best_cpu
== -1)
1551 if (node_isset(nid
, p
->numa_group
->active_nodes
))
1552 sched_setnuma(p
, env
.dst_nid
);
1555 /* No better CPU than the current one was found. */
1556 if (env
.best_cpu
== -1)
1560 * Reset the scan period if the task is being rescheduled on an
1561 * alternative node to recheck if the tasks is now properly placed.
1563 p
->numa_scan_period
= task_scan_min(p
);
1565 if (env
.best_task
== NULL
) {
1566 ret
= migrate_task_to(p
, env
.best_cpu
);
1568 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1572 ret
= migrate_swap(p
, env
.best_task
);
1574 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1575 put_task_struct(env
.best_task
);
1579 /* Attempt to migrate a task to a CPU on the preferred node. */
1580 static void numa_migrate_preferred(struct task_struct
*p
)
1582 unsigned long interval
= HZ
;
1584 /* This task has no NUMA fault statistics yet */
1585 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1588 /* Periodically retry migrating the task to the preferred node */
1589 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1590 p
->numa_migrate_retry
= jiffies
+ interval
;
1592 /* Success if task is already running on preferred CPU */
1593 if (task_node(p
) == p
->numa_preferred_nid
)
1596 /* Otherwise, try migrate to a CPU on the preferred node */
1597 task_numa_migrate(p
);
1601 * Find the nodes on which the workload is actively running. We do this by
1602 * tracking the nodes from which NUMA hinting faults are triggered. This can
1603 * be different from the set of nodes where the workload's memory is currently
1606 * The bitmask is used to make smarter decisions on when to do NUMA page
1607 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1608 * are added when they cause over 6/16 of the maximum number of faults, but
1609 * only removed when they drop below 3/16.
1611 static void update_numa_active_node_mask(struct numa_group
*numa_group
)
1613 unsigned long faults
, max_faults
= 0;
1616 for_each_online_node(nid
) {
1617 faults
= group_faults_cpu(numa_group
, nid
);
1618 if (faults
> max_faults
)
1619 max_faults
= faults
;
1622 for_each_online_node(nid
) {
1623 faults
= group_faults_cpu(numa_group
, nid
);
1624 if (!node_isset(nid
, numa_group
->active_nodes
)) {
1625 if (faults
> max_faults
* 6 / 16)
1626 node_set(nid
, numa_group
->active_nodes
);
1627 } else if (faults
< max_faults
* 3 / 16)
1628 node_clear(nid
, numa_group
->active_nodes
);
1633 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1634 * increments. The more local the fault statistics are, the higher the scan
1635 * period will be for the next scan window. If local/(local+remote) ratio is
1636 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1637 * the scan period will decrease. Aim for 70% local accesses.
1639 #define NUMA_PERIOD_SLOTS 10
1640 #define NUMA_PERIOD_THRESHOLD 7
1643 * Increase the scan period (slow down scanning) if the majority of
1644 * our memory is already on our local node, or if the majority of
1645 * the page accesses are shared with other processes.
1646 * Otherwise, decrease the scan period.
1648 static void update_task_scan_period(struct task_struct
*p
,
1649 unsigned long shared
, unsigned long private)
1651 unsigned int period_slot
;
1655 unsigned long remote
= p
->numa_faults_locality
[0];
1656 unsigned long local
= p
->numa_faults_locality
[1];
1659 * If there were no record hinting faults then either the task is
1660 * completely idle or all activity is areas that are not of interest
1661 * to automatic numa balancing. Related to that, if there were failed
1662 * migration then it implies we are migrating too quickly or the local
1663 * node is overloaded. In either case, scan slower
1665 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1666 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1667 p
->numa_scan_period
<< 1);
1669 p
->mm
->numa_next_scan
= jiffies
+
1670 msecs_to_jiffies(p
->numa_scan_period
);
1676 * Prepare to scale scan period relative to the current period.
1677 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1678 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1679 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1681 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1682 ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1683 if (ratio
>= NUMA_PERIOD_THRESHOLD
) {
1684 int slot
= ratio
- NUMA_PERIOD_THRESHOLD
;
1687 diff
= slot
* period_slot
;
1689 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1692 * Scale scan rate increases based on sharing. There is an
1693 * inverse relationship between the degree of sharing and
1694 * the adjustment made to the scanning period. Broadly
1695 * speaking the intent is that there is little point
1696 * scanning faster if shared accesses dominate as it may
1697 * simply bounce migrations uselessly
1699 ratio
= DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS
, (private + shared
+ 1));
1700 diff
= (diff
* ratio
) / NUMA_PERIOD_SLOTS
;
1703 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1704 task_scan_min(p
), task_scan_max(p
));
1705 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
1709 * Get the fraction of time the task has been running since the last
1710 * NUMA placement cycle. The scheduler keeps similar statistics, but
1711 * decays those on a 32ms period, which is orders of magnitude off
1712 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1713 * stats only if the task is so new there are no NUMA statistics yet.
1715 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
1717 u64 runtime
, delta
, now
;
1718 /* Use the start of this time slice to avoid calculations. */
1719 now
= p
->se
.exec_start
;
1720 runtime
= p
->se
.sum_exec_runtime
;
1722 if (p
->last_task_numa_placement
) {
1723 delta
= runtime
- p
->last_sum_exec_runtime
;
1724 *period
= now
- p
->last_task_numa_placement
;
1726 delta
= p
->se
.avg
.load_sum
/ p
->se
.load
.weight
;
1727 *period
= LOAD_AVG_MAX
;
1730 p
->last_sum_exec_runtime
= runtime
;
1731 p
->last_task_numa_placement
= now
;
1737 * Determine the preferred nid for a task in a numa_group. This needs to
1738 * be done in a way that produces consistent results with group_weight,
1739 * otherwise workloads might not converge.
1741 static int preferred_group_nid(struct task_struct
*p
, int nid
)
1746 /* Direct connections between all NUMA nodes. */
1747 if (sched_numa_topology_type
== NUMA_DIRECT
)
1751 * On a system with glueless mesh NUMA topology, group_weight
1752 * scores nodes according to the number of NUMA hinting faults on
1753 * both the node itself, and on nearby nodes.
1755 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1756 unsigned long score
, max_score
= 0;
1757 int node
, max_node
= nid
;
1759 dist
= sched_max_numa_distance
;
1761 for_each_online_node(node
) {
1762 score
= group_weight(p
, node
, dist
);
1763 if (score
> max_score
) {
1772 * Finding the preferred nid in a system with NUMA backplane
1773 * interconnect topology is more involved. The goal is to locate
1774 * tasks from numa_groups near each other in the system, and
1775 * untangle workloads from different sides of the system. This requires
1776 * searching down the hierarchy of node groups, recursively searching
1777 * inside the highest scoring group of nodes. The nodemask tricks
1778 * keep the complexity of the search down.
1780 nodes
= node_online_map
;
1781 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
1782 unsigned long max_faults
= 0;
1783 nodemask_t max_group
= NODE_MASK_NONE
;
1786 /* Are there nodes at this distance from each other? */
1787 if (!find_numa_distance(dist
))
1790 for_each_node_mask(a
, nodes
) {
1791 unsigned long faults
= 0;
1792 nodemask_t this_group
;
1793 nodes_clear(this_group
);
1795 /* Sum group's NUMA faults; includes a==b case. */
1796 for_each_node_mask(b
, nodes
) {
1797 if (node_distance(a
, b
) < dist
) {
1798 faults
+= group_faults(p
, b
);
1799 node_set(b
, this_group
);
1800 node_clear(b
, nodes
);
1804 /* Remember the top group. */
1805 if (faults
> max_faults
) {
1806 max_faults
= faults
;
1807 max_group
= this_group
;
1809 * subtle: at the smallest distance there is
1810 * just one node left in each "group", the
1811 * winner is the preferred nid.
1816 /* Next round, evaluate the nodes within max_group. */
1824 static void task_numa_placement(struct task_struct
*p
)
1826 int seq
, nid
, max_nid
= -1, max_group_nid
= -1;
1827 unsigned long max_faults
= 0, max_group_faults
= 0;
1828 unsigned long fault_types
[2] = { 0, 0 };
1829 unsigned long total_faults
;
1830 u64 runtime
, period
;
1831 spinlock_t
*group_lock
= NULL
;
1834 * The p->mm->numa_scan_seq field gets updated without
1835 * exclusive access. Use READ_ONCE() here to ensure
1836 * that the field is read in a single access:
1838 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
1839 if (p
->numa_scan_seq
== seq
)
1841 p
->numa_scan_seq
= seq
;
1842 p
->numa_scan_period_max
= task_scan_max(p
);
1844 total_faults
= p
->numa_faults_locality
[0] +
1845 p
->numa_faults_locality
[1];
1846 runtime
= numa_get_avg_runtime(p
, &period
);
1848 /* If the task is part of a group prevent parallel updates to group stats */
1849 if (p
->numa_group
) {
1850 group_lock
= &p
->numa_group
->lock
;
1851 spin_lock_irq(group_lock
);
1854 /* Find the node with the highest number of faults */
1855 for_each_online_node(nid
) {
1856 /* Keep track of the offsets in numa_faults array */
1857 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
1858 unsigned long faults
= 0, group_faults
= 0;
1861 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
1862 long diff
, f_diff
, f_weight
;
1864 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
1865 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
1866 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
1867 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
1869 /* Decay existing window, copy faults since last scan */
1870 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
1871 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
1872 p
->numa_faults
[membuf_idx
] = 0;
1875 * Normalize the faults_from, so all tasks in a group
1876 * count according to CPU use, instead of by the raw
1877 * number of faults. Tasks with little runtime have
1878 * little over-all impact on throughput, and thus their
1879 * faults are less important.
1881 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
1882 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
1884 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
1885 p
->numa_faults
[cpubuf_idx
] = 0;
1887 p
->numa_faults
[mem_idx
] += diff
;
1888 p
->numa_faults
[cpu_idx
] += f_diff
;
1889 faults
+= p
->numa_faults
[mem_idx
];
1890 p
->total_numa_faults
+= diff
;
1891 if (p
->numa_group
) {
1893 * safe because we can only change our own group
1895 * mem_idx represents the offset for a given
1896 * nid and priv in a specific region because it
1897 * is at the beginning of the numa_faults array.
1899 p
->numa_group
->faults
[mem_idx
] += diff
;
1900 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
1901 p
->numa_group
->total_faults
+= diff
;
1902 group_faults
+= p
->numa_group
->faults
[mem_idx
];
1906 if (faults
> max_faults
) {
1907 max_faults
= faults
;
1911 if (group_faults
> max_group_faults
) {
1912 max_group_faults
= group_faults
;
1913 max_group_nid
= nid
;
1917 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
1919 if (p
->numa_group
) {
1920 update_numa_active_node_mask(p
->numa_group
);
1921 spin_unlock_irq(group_lock
);
1922 max_nid
= preferred_group_nid(p
, max_group_nid
);
1926 /* Set the new preferred node */
1927 if (max_nid
!= p
->numa_preferred_nid
)
1928 sched_setnuma(p
, max_nid
);
1930 if (task_node(p
) != p
->numa_preferred_nid
)
1931 numa_migrate_preferred(p
);
1935 static inline int get_numa_group(struct numa_group
*grp
)
1937 return atomic_inc_not_zero(&grp
->refcount
);
1940 static inline void put_numa_group(struct numa_group
*grp
)
1942 if (atomic_dec_and_test(&grp
->refcount
))
1943 kfree_rcu(grp
, rcu
);
1946 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
1949 struct numa_group
*grp
, *my_grp
;
1950 struct task_struct
*tsk
;
1952 int cpu
= cpupid_to_cpu(cpupid
);
1955 if (unlikely(!p
->numa_group
)) {
1956 unsigned int size
= sizeof(struct numa_group
) +
1957 4*nr_node_ids
*sizeof(unsigned long);
1959 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
1963 atomic_set(&grp
->refcount
, 1);
1964 spin_lock_init(&grp
->lock
);
1966 /* Second half of the array tracks nids where faults happen */
1967 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
1970 node_set(task_node(current
), grp
->active_nodes
);
1972 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
1973 grp
->faults
[i
] = p
->numa_faults
[i
];
1975 grp
->total_faults
= p
->total_numa_faults
;
1978 rcu_assign_pointer(p
->numa_group
, grp
);
1982 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
1984 if (!cpupid_match_pid(tsk
, cpupid
))
1987 grp
= rcu_dereference(tsk
->numa_group
);
1991 my_grp
= p
->numa_group
;
1996 * Only join the other group if its bigger; if we're the bigger group,
1997 * the other task will join us.
1999 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2003 * Tie-break on the grp address.
2005 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2008 /* Always join threads in the same process. */
2009 if (tsk
->mm
== current
->mm
)
2012 /* Simple filter to avoid false positives due to PID collisions */
2013 if (flags
& TNF_SHARED
)
2016 /* Update priv based on whether false sharing was detected */
2019 if (join
&& !get_numa_group(grp
))
2027 BUG_ON(irqs_disabled());
2028 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2030 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2031 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2032 grp
->faults
[i
] += p
->numa_faults
[i
];
2034 my_grp
->total_faults
-= p
->total_numa_faults
;
2035 grp
->total_faults
+= p
->total_numa_faults
;
2040 spin_unlock(&my_grp
->lock
);
2041 spin_unlock_irq(&grp
->lock
);
2043 rcu_assign_pointer(p
->numa_group
, grp
);
2045 put_numa_group(my_grp
);
2053 void task_numa_free(struct task_struct
*p
)
2055 struct numa_group
*grp
= p
->numa_group
;
2056 void *numa_faults
= p
->numa_faults
;
2057 unsigned long flags
;
2061 spin_lock_irqsave(&grp
->lock
, flags
);
2062 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2063 grp
->faults
[i
] -= p
->numa_faults
[i
];
2064 grp
->total_faults
-= p
->total_numa_faults
;
2067 spin_unlock_irqrestore(&grp
->lock
, flags
);
2068 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2069 put_numa_group(grp
);
2072 p
->numa_faults
= NULL
;
2077 * Got a PROT_NONE fault for a page on @node.
2079 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2081 struct task_struct
*p
= current
;
2082 bool migrated
= flags
& TNF_MIGRATED
;
2083 int cpu_node
= task_node(current
);
2084 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2087 if (!static_branch_likely(&sched_numa_balancing
))
2090 /* for example, ksmd faulting in a user's mm */
2094 /* Allocate buffer to track faults on a per-node basis */
2095 if (unlikely(!p
->numa_faults
)) {
2096 int size
= sizeof(*p
->numa_faults
) *
2097 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2099 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2100 if (!p
->numa_faults
)
2103 p
->total_numa_faults
= 0;
2104 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2108 * First accesses are treated as private, otherwise consider accesses
2109 * to be private if the accessing pid has not changed
2111 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2114 priv
= cpupid_match_pid(p
, last_cpupid
);
2115 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2116 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2120 * If a workload spans multiple NUMA nodes, a shared fault that
2121 * occurs wholly within the set of nodes that the workload is
2122 * actively using should be counted as local. This allows the
2123 * scan rate to slow down when a workload has settled down.
2125 if (!priv
&& !local
&& p
->numa_group
&&
2126 node_isset(cpu_node
, p
->numa_group
->active_nodes
) &&
2127 node_isset(mem_node
, p
->numa_group
->active_nodes
))
2130 task_numa_placement(p
);
2133 * Retry task to preferred node migration periodically, in case it
2134 * case it previously failed, or the scheduler moved us.
2136 if (time_after(jiffies
, p
->numa_migrate_retry
))
2137 numa_migrate_preferred(p
);
2140 p
->numa_pages_migrated
+= pages
;
2141 if (flags
& TNF_MIGRATE_FAIL
)
2142 p
->numa_faults_locality
[2] += pages
;
2144 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2145 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2146 p
->numa_faults_locality
[local
] += pages
;
2149 static void reset_ptenuma_scan(struct task_struct
*p
)
2152 * We only did a read acquisition of the mmap sem, so
2153 * p->mm->numa_scan_seq is written to without exclusive access
2154 * and the update is not guaranteed to be atomic. That's not
2155 * much of an issue though, since this is just used for
2156 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2157 * expensive, to avoid any form of compiler optimizations:
2159 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2160 p
->mm
->numa_scan_offset
= 0;
2164 * The expensive part of numa migration is done from task_work context.
2165 * Triggered from task_tick_numa().
2167 void task_numa_work(struct callback_head
*work
)
2169 unsigned long migrate
, next_scan
, now
= jiffies
;
2170 struct task_struct
*p
= current
;
2171 struct mm_struct
*mm
= p
->mm
;
2172 struct vm_area_struct
*vma
;
2173 unsigned long start
, end
;
2174 unsigned long nr_pte_updates
= 0;
2175 long pages
, virtpages
;
2177 WARN_ON_ONCE(p
!= container_of(work
, struct task_struct
, numa_work
));
2179 work
->next
= work
; /* protect against double add */
2181 * Who cares about NUMA placement when they're dying.
2183 * NOTE: make sure not to dereference p->mm before this check,
2184 * exit_task_work() happens _after_ exit_mm() so we could be called
2185 * without p->mm even though we still had it when we enqueued this
2188 if (p
->flags
& PF_EXITING
)
2191 if (!mm
->numa_next_scan
) {
2192 mm
->numa_next_scan
= now
+
2193 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2197 * Enforce maximal scan/migration frequency..
2199 migrate
= mm
->numa_next_scan
;
2200 if (time_before(now
, migrate
))
2203 if (p
->numa_scan_period
== 0) {
2204 p
->numa_scan_period_max
= task_scan_max(p
);
2205 p
->numa_scan_period
= task_scan_min(p
);
2208 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2209 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2213 * Delay this task enough that another task of this mm will likely win
2214 * the next time around.
2216 p
->node_stamp
+= 2 * TICK_NSEC
;
2218 start
= mm
->numa_scan_offset
;
2219 pages
= sysctl_numa_balancing_scan_size
;
2220 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2221 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2226 if (!down_read_trylock(&mm
->mmap_sem
))
2228 vma
= find_vma(mm
, start
);
2230 reset_ptenuma_scan(p
);
2234 for (; vma
; vma
= vma
->vm_next
) {
2235 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2236 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2241 * Shared library pages mapped by multiple processes are not
2242 * migrated as it is expected they are cache replicated. Avoid
2243 * hinting faults in read-only file-backed mappings or the vdso
2244 * as migrating the pages will be of marginal benefit.
2247 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2251 * Skip inaccessible VMAs to avoid any confusion between
2252 * PROT_NONE and NUMA hinting ptes
2254 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2258 start
= max(start
, vma
->vm_start
);
2259 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2260 end
= min(end
, vma
->vm_end
);
2261 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2264 * Try to scan sysctl_numa_balancing_size worth of
2265 * hpages that have at least one present PTE that
2266 * is not already pte-numa. If the VMA contains
2267 * areas that are unused or already full of prot_numa
2268 * PTEs, scan up to virtpages, to skip through those
2272 pages
-= (end
- start
) >> PAGE_SHIFT
;
2273 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2276 if (pages
<= 0 || virtpages
<= 0)
2280 } while (end
!= vma
->vm_end
);
2285 * It is possible to reach the end of the VMA list but the last few
2286 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2287 * would find the !migratable VMA on the next scan but not reset the
2288 * scanner to the start so check it now.
2291 mm
->numa_scan_offset
= start
;
2293 reset_ptenuma_scan(p
);
2294 up_read(&mm
->mmap_sem
);
2298 * Drive the periodic memory faults..
2300 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2302 struct callback_head
*work
= &curr
->numa_work
;
2306 * We don't care about NUMA placement if we don't have memory.
2308 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2312 * Using runtime rather than walltime has the dual advantage that
2313 * we (mostly) drive the selection from busy threads and that the
2314 * task needs to have done some actual work before we bother with
2317 now
= curr
->se
.sum_exec_runtime
;
2318 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2320 if (now
> curr
->node_stamp
+ period
) {
2321 if (!curr
->node_stamp
)
2322 curr
->numa_scan_period
= task_scan_min(curr
);
2323 curr
->node_stamp
+= period
;
2325 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2326 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2327 task_work_add(curr
, work
, true);
2332 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2336 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2340 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2343 #endif /* CONFIG_NUMA_BALANCING */
2346 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2348 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2349 if (!parent_entity(se
))
2350 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2352 if (entity_is_task(se
)) {
2353 struct rq
*rq
= rq_of(cfs_rq
);
2355 account_numa_enqueue(rq
, task_of(se
));
2356 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2359 cfs_rq
->nr_running
++;
2363 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2365 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2366 if (!parent_entity(se
))
2367 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2368 if (entity_is_task(se
)) {
2369 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2370 list_del_init(&se
->group_node
);
2372 cfs_rq
->nr_running
--;
2375 #ifdef CONFIG_FAIR_GROUP_SCHED
2377 static inline long calc_tg_weight(struct task_group
*tg
, struct cfs_rq
*cfs_rq
)
2382 * Use this CPU's real-time load instead of the last load contribution
2383 * as the updating of the contribution is delayed, and we will use the
2384 * the real-time load to calc the share. See update_tg_load_avg().
2386 tg_weight
= atomic_long_read(&tg
->load_avg
);
2387 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2388 tg_weight
+= cfs_rq
->load
.weight
;
2393 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2395 long tg_weight
, load
, shares
;
2397 tg_weight
= calc_tg_weight(tg
, cfs_rq
);
2398 load
= cfs_rq
->load
.weight
;
2400 shares
= (tg
->shares
* load
);
2402 shares
/= tg_weight
;
2404 if (shares
< MIN_SHARES
)
2405 shares
= MIN_SHARES
;
2406 if (shares
> tg
->shares
)
2407 shares
= tg
->shares
;
2411 # else /* CONFIG_SMP */
2412 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2416 # endif /* CONFIG_SMP */
2417 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2418 unsigned long weight
)
2421 /* commit outstanding execution time */
2422 if (cfs_rq
->curr
== se
)
2423 update_curr(cfs_rq
);
2424 account_entity_dequeue(cfs_rq
, se
);
2427 update_load_set(&se
->load
, weight
);
2430 account_entity_enqueue(cfs_rq
, se
);
2433 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
2435 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2437 struct task_group
*tg
;
2438 struct sched_entity
*se
;
2442 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
2443 if (!se
|| throttled_hierarchy(cfs_rq
))
2446 if (likely(se
->load
.weight
== tg
->shares
))
2449 shares
= calc_cfs_shares(cfs_rq
, tg
);
2451 reweight_entity(cfs_rq_of(se
), se
, shares
);
2453 #else /* CONFIG_FAIR_GROUP_SCHED */
2454 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2457 #endif /* CONFIG_FAIR_GROUP_SCHED */
2460 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2461 static const u32 runnable_avg_yN_inv
[] = {
2462 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2463 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2464 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2465 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2466 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2467 0x85aac367, 0x82cd8698,
2471 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2472 * over-estimates when re-combining.
2474 static const u32 runnable_avg_yN_sum
[] = {
2475 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2476 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2477 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2482 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2484 static __always_inline u64
decay_load(u64 val
, u64 n
)
2486 unsigned int local_n
;
2490 else if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
2493 /* after bounds checking we can collapse to 32-bit */
2497 * As y^PERIOD = 1/2, we can combine
2498 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2499 * With a look-up table which covers y^n (n<PERIOD)
2501 * To achieve constant time decay_load.
2503 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
2504 val
>>= local_n
/ LOAD_AVG_PERIOD
;
2505 local_n
%= LOAD_AVG_PERIOD
;
2508 val
= mul_u64_u32_shr(val
, runnable_avg_yN_inv
[local_n
], 32);
2513 * For updates fully spanning n periods, the contribution to runnable
2514 * average will be: \Sum 1024*y^n
2516 * We can compute this reasonably efficiently by combining:
2517 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2519 static u32
__compute_runnable_contrib(u64 n
)
2523 if (likely(n
<= LOAD_AVG_PERIOD
))
2524 return runnable_avg_yN_sum
[n
];
2525 else if (unlikely(n
>= LOAD_AVG_MAX_N
))
2526 return LOAD_AVG_MAX
;
2528 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2530 contrib
/= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2531 contrib
+= runnable_avg_yN_sum
[LOAD_AVG_PERIOD
];
2533 n
-= LOAD_AVG_PERIOD
;
2534 } while (n
> LOAD_AVG_PERIOD
);
2536 contrib
= decay_load(contrib
, n
);
2537 return contrib
+ runnable_avg_yN_sum
[n
];
2540 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2541 #error "load tracking assumes 2^10 as unit"
2544 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2547 * We can represent the historical contribution to runnable average as the
2548 * coefficients of a geometric series. To do this we sub-divide our runnable
2549 * history into segments of approximately 1ms (1024us); label the segment that
2550 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2552 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2554 * (now) (~1ms ago) (~2ms ago)
2556 * Let u_i denote the fraction of p_i that the entity was runnable.
2558 * We then designate the fractions u_i as our co-efficients, yielding the
2559 * following representation of historical load:
2560 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2562 * We choose y based on the with of a reasonably scheduling period, fixing:
2565 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2566 * approximately half as much as the contribution to load within the last ms
2569 * When a period "rolls over" and we have new u_0`, multiplying the previous
2570 * sum again by y is sufficient to update:
2571 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2572 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2574 static __always_inline
int
2575 __update_load_avg(u64 now
, int cpu
, struct sched_avg
*sa
,
2576 unsigned long weight
, int running
, struct cfs_rq
*cfs_rq
)
2578 u64 delta
, scaled_delta
, periods
;
2580 unsigned int delta_w
, scaled_delta_w
, decayed
= 0;
2581 unsigned long scale_freq
, scale_cpu
;
2583 delta
= now
- sa
->last_update_time
;
2585 * This should only happen when time goes backwards, which it
2586 * unfortunately does during sched clock init when we swap over to TSC.
2588 if ((s64
)delta
< 0) {
2589 sa
->last_update_time
= now
;
2594 * Use 1024ns as the unit of measurement since it's a reasonable
2595 * approximation of 1us and fast to compute.
2600 sa
->last_update_time
= now
;
2602 scale_freq
= arch_scale_freq_capacity(NULL
, cpu
);
2603 scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
2605 /* delta_w is the amount already accumulated against our next period */
2606 delta_w
= sa
->period_contrib
;
2607 if (delta
+ delta_w
>= 1024) {
2610 /* how much left for next period will start over, we don't know yet */
2611 sa
->period_contrib
= 0;
2614 * Now that we know we're crossing a period boundary, figure
2615 * out how much from delta we need to complete the current
2616 * period and accrue it.
2618 delta_w
= 1024 - delta_w
;
2619 scaled_delta_w
= cap_scale(delta_w
, scale_freq
);
2621 sa
->load_sum
+= weight
* scaled_delta_w
;
2623 cfs_rq
->runnable_load_sum
+=
2624 weight
* scaled_delta_w
;
2628 sa
->util_sum
+= scaled_delta_w
* scale_cpu
;
2632 /* Figure out how many additional periods this update spans */
2633 periods
= delta
/ 1024;
2636 sa
->load_sum
= decay_load(sa
->load_sum
, periods
+ 1);
2638 cfs_rq
->runnable_load_sum
=
2639 decay_load(cfs_rq
->runnable_load_sum
, periods
+ 1);
2641 sa
->util_sum
= decay_load((u64
)(sa
->util_sum
), periods
+ 1);
2643 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2644 contrib
= __compute_runnable_contrib(periods
);
2645 contrib
= cap_scale(contrib
, scale_freq
);
2647 sa
->load_sum
+= weight
* contrib
;
2649 cfs_rq
->runnable_load_sum
+= weight
* contrib
;
2652 sa
->util_sum
+= contrib
* scale_cpu
;
2655 /* Remainder of delta accrued against u_0` */
2656 scaled_delta
= cap_scale(delta
, scale_freq
);
2658 sa
->load_sum
+= weight
* scaled_delta
;
2660 cfs_rq
->runnable_load_sum
+= weight
* scaled_delta
;
2663 sa
->util_sum
+= scaled_delta
* scale_cpu
;
2665 sa
->period_contrib
+= delta
;
2668 sa
->load_avg
= div_u64(sa
->load_sum
, LOAD_AVG_MAX
);
2670 cfs_rq
->runnable_load_avg
=
2671 div_u64(cfs_rq
->runnable_load_sum
, LOAD_AVG_MAX
);
2673 sa
->util_avg
= sa
->util_sum
/ LOAD_AVG_MAX
;
2679 #ifdef CONFIG_FAIR_GROUP_SCHED
2681 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2682 * and effective_load (which is not done because it is too costly).
2684 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
2686 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
2688 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
2689 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
2690 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
2694 #else /* CONFIG_FAIR_GROUP_SCHED */
2695 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
2696 #endif /* CONFIG_FAIR_GROUP_SCHED */
2698 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
2701 * Unsigned subtract and clamp on underflow.
2703 * Explicitly do a load-store to ensure the intermediate value never hits
2704 * memory. This allows lockless observations without ever seeing the negative
2707 #define sub_positive(_ptr, _val) do { \
2708 typeof(_ptr) ptr = (_ptr); \
2709 typeof(*ptr) val = (_val); \
2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2714 WRITE_ONCE(*ptr, res); \
2717 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2718 static inline int update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
2720 struct sched_avg
*sa
= &cfs_rq
->avg
;
2721 int decayed
, removed
= 0;
2723 if (atomic_long_read(&cfs_rq
->removed_load_avg
)) {
2724 s64 r
= atomic_long_xchg(&cfs_rq
->removed_load_avg
, 0);
2725 sub_positive(&sa
->load_avg
, r
);
2726 sub_positive(&sa
->load_sum
, r
* LOAD_AVG_MAX
);
2730 if (atomic_long_read(&cfs_rq
->removed_util_avg
)) {
2731 long r
= atomic_long_xchg(&cfs_rq
->removed_util_avg
, 0);
2732 sub_positive(&sa
->util_avg
, r
);
2733 sub_positive(&sa
->util_sum
, r
* LOAD_AVG_MAX
);
2736 decayed
= __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
2737 scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->curr
!= NULL
, cfs_rq
);
2739 #ifndef CONFIG_64BIT
2741 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
2744 return decayed
|| removed
;
2747 /* Update task and its cfs_rq load average */
2748 static inline void update_load_avg(struct sched_entity
*se
, int update_tg
)
2750 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2751 u64 now
= cfs_rq_clock_task(cfs_rq
);
2752 int cpu
= cpu_of(rq_of(cfs_rq
));
2755 * Track task load average for carrying it to new CPU after migrated, and
2756 * track group sched_entity load average for task_h_load calc in migration
2758 __update_load_avg(now
, cpu
, &se
->avg
,
2759 se
->on_rq
* scale_load_down(se
->load
.weight
),
2760 cfs_rq
->curr
== se
, NULL
);
2762 if (update_cfs_rq_load_avg(now
, cfs_rq
) && update_tg
)
2763 update_tg_load_avg(cfs_rq
, 0);
2766 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2768 if (!sched_feat(ATTACH_AGE_LOAD
))
2772 * If we got migrated (either between CPUs or between cgroups) we'll
2773 * have aged the average right before clearing @last_update_time.
2775 if (se
->avg
.last_update_time
) {
2776 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
2777 &se
->avg
, 0, 0, NULL
);
2780 * XXX: we could have just aged the entire load away if we've been
2781 * absent from the fair class for too long.
2786 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
2787 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
2788 cfs_rq
->avg
.load_sum
+= se
->avg
.load_sum
;
2789 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
2790 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
2793 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2795 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
2796 &se
->avg
, se
->on_rq
* scale_load_down(se
->load
.weight
),
2797 cfs_rq
->curr
== se
, NULL
);
2799 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
2800 sub_positive(&cfs_rq
->avg
.load_sum
, se
->avg
.load_sum
);
2801 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
2802 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
2805 /* Add the load generated by se into cfs_rq's load average */
2807 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2809 struct sched_avg
*sa
= &se
->avg
;
2810 u64 now
= cfs_rq_clock_task(cfs_rq
);
2811 int migrated
, decayed
;
2813 migrated
= !sa
->last_update_time
;
2815 __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
2816 se
->on_rq
* scale_load_down(se
->load
.weight
),
2817 cfs_rq
->curr
== se
, NULL
);
2820 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
2822 cfs_rq
->runnable_load_avg
+= sa
->load_avg
;
2823 cfs_rq
->runnable_load_sum
+= sa
->load_sum
;
2826 attach_entity_load_avg(cfs_rq
, se
);
2828 if (decayed
|| migrated
)
2829 update_tg_load_avg(cfs_rq
, 0);
2832 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2834 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2836 update_load_avg(se
, 1);
2838 cfs_rq
->runnable_load_avg
=
2839 max_t(long, cfs_rq
->runnable_load_avg
- se
->avg
.load_avg
, 0);
2840 cfs_rq
->runnable_load_sum
=
2841 max_t(s64
, cfs_rq
->runnable_load_sum
- se
->avg
.load_sum
, 0);
2845 * Task first catches up with cfs_rq, and then subtract
2846 * itself from the cfs_rq (task must be off the queue now).
2848 void remove_entity_load_avg(struct sched_entity
*se
)
2850 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2851 u64 last_update_time
;
2853 #ifndef CONFIG_64BIT
2854 u64 last_update_time_copy
;
2857 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
2859 last_update_time
= cfs_rq
->avg
.last_update_time
;
2860 } while (last_update_time
!= last_update_time_copy
);
2862 last_update_time
= cfs_rq
->avg
.last_update_time
;
2865 __update_load_avg(last_update_time
, cpu_of(rq_of(cfs_rq
)), &se
->avg
, 0, 0, NULL
);
2866 atomic_long_add(se
->avg
.load_avg
, &cfs_rq
->removed_load_avg
);
2867 atomic_long_add(se
->avg
.util_avg
, &cfs_rq
->removed_util_avg
);
2871 * Update the rq's load with the elapsed running time before entering
2872 * idle. if the last scheduled task is not a CFS task, idle_enter will
2873 * be the only way to update the runnable statistic.
2875 void idle_enter_fair(struct rq
*this_rq
)
2880 * Update the rq's load with the elapsed idle time before a task is
2881 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2882 * be the only way to update the runnable statistic.
2884 void idle_exit_fair(struct rq
*this_rq
)
2888 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
2890 return cfs_rq
->runnable_load_avg
;
2893 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
2895 return cfs_rq
->avg
.load_avg
;
2898 static int idle_balance(struct rq
*this_rq
);
2900 #else /* CONFIG_SMP */
2902 static inline void update_load_avg(struct sched_entity
*se
, int update_tg
) {}
2904 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
2906 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
2907 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
2910 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
2912 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
2914 static inline int idle_balance(struct rq
*rq
)
2919 #endif /* CONFIG_SMP */
2921 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2923 #ifdef CONFIG_SCHEDSTATS
2924 struct task_struct
*tsk
= NULL
;
2926 if (entity_is_task(se
))
2929 if (se
->statistics
.sleep_start
) {
2930 u64 delta
= rq_clock(rq_of(cfs_rq
)) - se
->statistics
.sleep_start
;
2935 if (unlikely(delta
> se
->statistics
.sleep_max
))
2936 se
->statistics
.sleep_max
= delta
;
2938 se
->statistics
.sleep_start
= 0;
2939 se
->statistics
.sum_sleep_runtime
+= delta
;
2942 account_scheduler_latency(tsk
, delta
>> 10, 1);
2943 trace_sched_stat_sleep(tsk
, delta
);
2946 if (se
->statistics
.block_start
) {
2947 u64 delta
= rq_clock(rq_of(cfs_rq
)) - se
->statistics
.block_start
;
2952 if (unlikely(delta
> se
->statistics
.block_max
))
2953 se
->statistics
.block_max
= delta
;
2955 se
->statistics
.block_start
= 0;
2956 se
->statistics
.sum_sleep_runtime
+= delta
;
2959 if (tsk
->in_iowait
) {
2960 se
->statistics
.iowait_sum
+= delta
;
2961 se
->statistics
.iowait_count
++;
2962 trace_sched_stat_iowait(tsk
, delta
);
2965 trace_sched_stat_blocked(tsk
, delta
);
2968 * Blocking time is in units of nanosecs, so shift by
2969 * 20 to get a milliseconds-range estimation of the
2970 * amount of time that the task spent sleeping:
2972 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
2973 profile_hits(SLEEP_PROFILING
,
2974 (void *)get_wchan(tsk
),
2977 account_scheduler_latency(tsk
, delta
>> 10, 0);
2983 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2985 #ifdef CONFIG_SCHED_DEBUG
2986 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
2991 if (d
> 3*sysctl_sched_latency
)
2992 schedstat_inc(cfs_rq
, nr_spread_over
);
2997 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
2999 u64 vruntime
= cfs_rq
->min_vruntime
;
3002 * The 'current' period is already promised to the current tasks,
3003 * however the extra weight of the new task will slow them down a
3004 * little, place the new task so that it fits in the slot that
3005 * stays open at the end.
3007 if (initial
&& sched_feat(START_DEBIT
))
3008 vruntime
+= sched_vslice(cfs_rq
, se
);
3010 /* sleeps up to a single latency don't count. */
3012 unsigned long thresh
= sysctl_sched_latency
;
3015 * Halve their sleep time's effect, to allow
3016 * for a gentler effect of sleepers:
3018 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3024 /* ensure we never gain time by being placed backwards. */
3025 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3028 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3031 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3034 * Update the normalized vruntime before updating min_vruntime
3035 * through calling update_curr().
3037 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
3038 se
->vruntime
+= cfs_rq
->min_vruntime
;
3041 * Update run-time statistics of the 'current'.
3043 update_curr(cfs_rq
);
3044 enqueue_entity_load_avg(cfs_rq
, se
);
3045 account_entity_enqueue(cfs_rq
, se
);
3046 update_cfs_shares(cfs_rq
);
3048 if (flags
& ENQUEUE_WAKEUP
) {
3049 place_entity(cfs_rq
, se
, 0);
3050 enqueue_sleeper(cfs_rq
, se
);
3053 update_stats_enqueue(cfs_rq
, se
);
3054 check_spread(cfs_rq
, se
);
3055 if (se
!= cfs_rq
->curr
)
3056 __enqueue_entity(cfs_rq
, se
);
3059 if (cfs_rq
->nr_running
== 1) {
3060 list_add_leaf_cfs_rq(cfs_rq
);
3061 check_enqueue_throttle(cfs_rq
);
3065 static void __clear_buddies_last(struct sched_entity
*se
)
3067 for_each_sched_entity(se
) {
3068 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3069 if (cfs_rq
->last
!= se
)
3072 cfs_rq
->last
= NULL
;
3076 static void __clear_buddies_next(struct sched_entity
*se
)
3078 for_each_sched_entity(se
) {
3079 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3080 if (cfs_rq
->next
!= se
)
3083 cfs_rq
->next
= NULL
;
3087 static void __clear_buddies_skip(struct sched_entity
*se
)
3089 for_each_sched_entity(se
) {
3090 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3091 if (cfs_rq
->skip
!= se
)
3094 cfs_rq
->skip
= NULL
;
3098 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3100 if (cfs_rq
->last
== se
)
3101 __clear_buddies_last(se
);
3103 if (cfs_rq
->next
== se
)
3104 __clear_buddies_next(se
);
3106 if (cfs_rq
->skip
== se
)
3107 __clear_buddies_skip(se
);
3110 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3113 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3116 * Update run-time statistics of the 'current'.
3118 update_curr(cfs_rq
);
3119 dequeue_entity_load_avg(cfs_rq
, se
);
3121 update_stats_dequeue(cfs_rq
, se
);
3122 if (flags
& DEQUEUE_SLEEP
) {
3123 #ifdef CONFIG_SCHEDSTATS
3124 if (entity_is_task(se
)) {
3125 struct task_struct
*tsk
= task_of(se
);
3127 if (tsk
->state
& TASK_INTERRUPTIBLE
)
3128 se
->statistics
.sleep_start
= rq_clock(rq_of(cfs_rq
));
3129 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
3130 se
->statistics
.block_start
= rq_clock(rq_of(cfs_rq
));
3135 clear_buddies(cfs_rq
, se
);
3137 if (se
!= cfs_rq
->curr
)
3138 __dequeue_entity(cfs_rq
, se
);
3140 account_entity_dequeue(cfs_rq
, se
);
3143 * Normalize the entity after updating the min_vruntime because the
3144 * update can refer to the ->curr item and we need to reflect this
3145 * movement in our normalized position.
3147 if (!(flags
& DEQUEUE_SLEEP
))
3148 se
->vruntime
-= cfs_rq
->min_vruntime
;
3150 /* return excess runtime on last dequeue */
3151 return_cfs_rq_runtime(cfs_rq
);
3153 update_min_vruntime(cfs_rq
);
3154 update_cfs_shares(cfs_rq
);
3158 * Preempt the current task with a newly woken task if needed:
3161 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3163 unsigned long ideal_runtime
, delta_exec
;
3164 struct sched_entity
*se
;
3167 ideal_runtime
= sched_slice(cfs_rq
, curr
);
3168 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
3169 if (delta_exec
> ideal_runtime
) {
3170 resched_curr(rq_of(cfs_rq
));
3172 * The current task ran long enough, ensure it doesn't get
3173 * re-elected due to buddy favours.
3175 clear_buddies(cfs_rq
, curr
);
3180 * Ensure that a task that missed wakeup preemption by a
3181 * narrow margin doesn't have to wait for a full slice.
3182 * This also mitigates buddy induced latencies under load.
3184 if (delta_exec
< sysctl_sched_min_granularity
)
3187 se
= __pick_first_entity(cfs_rq
);
3188 delta
= curr
->vruntime
- se
->vruntime
;
3193 if (delta
> ideal_runtime
)
3194 resched_curr(rq_of(cfs_rq
));
3198 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3200 /* 'current' is not kept within the tree. */
3203 * Any task has to be enqueued before it get to execute on
3204 * a CPU. So account for the time it spent waiting on the
3207 update_stats_wait_end(cfs_rq
, se
);
3208 __dequeue_entity(cfs_rq
, se
);
3209 update_load_avg(se
, 1);
3212 update_stats_curr_start(cfs_rq
, se
);
3214 #ifdef CONFIG_SCHEDSTATS
3216 * Track our maximum slice length, if the CPU's load is at
3217 * least twice that of our own weight (i.e. dont track it
3218 * when there are only lesser-weight tasks around):
3220 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
3221 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
3222 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
3225 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
3229 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
3232 * Pick the next process, keeping these things in mind, in this order:
3233 * 1) keep things fair between processes/task groups
3234 * 2) pick the "next" process, since someone really wants that to run
3235 * 3) pick the "last" process, for cache locality
3236 * 4) do not run the "skip" process, if something else is available
3238 static struct sched_entity
*
3239 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3241 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
3242 struct sched_entity
*se
;
3245 * If curr is set we have to see if its left of the leftmost entity
3246 * still in the tree, provided there was anything in the tree at all.
3248 if (!left
|| (curr
&& entity_before(curr
, left
)))
3251 se
= left
; /* ideally we run the leftmost entity */
3254 * Avoid running the skip buddy, if running something else can
3255 * be done without getting too unfair.
3257 if (cfs_rq
->skip
== se
) {
3258 struct sched_entity
*second
;
3261 second
= __pick_first_entity(cfs_rq
);
3263 second
= __pick_next_entity(se
);
3264 if (!second
|| (curr
&& entity_before(curr
, second
)))
3268 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
3273 * Prefer last buddy, try to return the CPU to a preempted task.
3275 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
3279 * Someone really wants this to run. If it's not unfair, run it.
3281 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
3284 clear_buddies(cfs_rq
, se
);
3289 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3291 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
3294 * If still on the runqueue then deactivate_task()
3295 * was not called and update_curr() has to be done:
3298 update_curr(cfs_rq
);
3300 /* throttle cfs_rqs exceeding runtime */
3301 check_cfs_rq_runtime(cfs_rq
);
3303 check_spread(cfs_rq
, prev
);
3305 update_stats_wait_start(cfs_rq
, prev
);
3306 /* Put 'current' back into the tree. */
3307 __enqueue_entity(cfs_rq
, prev
);
3308 /* in !on_rq case, update occurred at dequeue */
3309 update_load_avg(prev
, 0);
3311 cfs_rq
->curr
= NULL
;
3315 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
3318 * Update run-time statistics of the 'current'.
3320 update_curr(cfs_rq
);
3323 * Ensure that runnable average is periodically updated.
3325 update_load_avg(curr
, 1);
3326 update_cfs_shares(cfs_rq
);
3328 #ifdef CONFIG_SCHED_HRTICK
3330 * queued ticks are scheduled to match the slice, so don't bother
3331 * validating it and just reschedule.
3334 resched_curr(rq_of(cfs_rq
));
3338 * don't let the period tick interfere with the hrtick preemption
3340 if (!sched_feat(DOUBLE_TICK
) &&
3341 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
3345 if (cfs_rq
->nr_running
> 1)
3346 check_preempt_tick(cfs_rq
, curr
);
3350 /**************************************************
3351 * CFS bandwidth control machinery
3354 #ifdef CONFIG_CFS_BANDWIDTH
3356 #ifdef HAVE_JUMP_LABEL
3357 static struct static_key __cfs_bandwidth_used
;
3359 static inline bool cfs_bandwidth_used(void)
3361 return static_key_false(&__cfs_bandwidth_used
);
3364 void cfs_bandwidth_usage_inc(void)
3366 static_key_slow_inc(&__cfs_bandwidth_used
);
3369 void cfs_bandwidth_usage_dec(void)
3371 static_key_slow_dec(&__cfs_bandwidth_used
);
3373 #else /* HAVE_JUMP_LABEL */
3374 static bool cfs_bandwidth_used(void)
3379 void cfs_bandwidth_usage_inc(void) {}
3380 void cfs_bandwidth_usage_dec(void) {}
3381 #endif /* HAVE_JUMP_LABEL */
3384 * default period for cfs group bandwidth.
3385 * default: 0.1s, units: nanoseconds
3387 static inline u64
default_cfs_period(void)
3389 return 100000000ULL;
3392 static inline u64
sched_cfs_bandwidth_slice(void)
3394 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
3398 * Replenish runtime according to assigned quota and update expiration time.
3399 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3400 * additional synchronization around rq->lock.
3402 * requires cfs_b->lock
3404 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
3408 if (cfs_b
->quota
== RUNTIME_INF
)
3411 now
= sched_clock_cpu(smp_processor_id());
3412 cfs_b
->runtime
= cfs_b
->quota
;
3413 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
3416 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
3418 return &tg
->cfs_bandwidth
;
3421 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3422 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
3424 if (unlikely(cfs_rq
->throttle_count
))
3425 return cfs_rq
->throttled_clock_task
;
3427 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
3430 /* returns 0 on failure to allocate runtime */
3431 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3433 struct task_group
*tg
= cfs_rq
->tg
;
3434 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
3435 u64 amount
= 0, min_amount
, expires
;
3437 /* note: this is a positive sum as runtime_remaining <= 0 */
3438 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
3440 raw_spin_lock(&cfs_b
->lock
);
3441 if (cfs_b
->quota
== RUNTIME_INF
)
3442 amount
= min_amount
;
3444 start_cfs_bandwidth(cfs_b
);
3446 if (cfs_b
->runtime
> 0) {
3447 amount
= min(cfs_b
->runtime
, min_amount
);
3448 cfs_b
->runtime
-= amount
;
3452 expires
= cfs_b
->runtime_expires
;
3453 raw_spin_unlock(&cfs_b
->lock
);
3455 cfs_rq
->runtime_remaining
+= amount
;
3457 * we may have advanced our local expiration to account for allowed
3458 * spread between our sched_clock and the one on which runtime was
3461 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
3462 cfs_rq
->runtime_expires
= expires
;
3464 return cfs_rq
->runtime_remaining
> 0;
3468 * Note: This depends on the synchronization provided by sched_clock and the
3469 * fact that rq->clock snapshots this value.
3471 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3473 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3475 /* if the deadline is ahead of our clock, nothing to do */
3476 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
3479 if (cfs_rq
->runtime_remaining
< 0)
3483 * If the local deadline has passed we have to consider the
3484 * possibility that our sched_clock is 'fast' and the global deadline
3485 * has not truly expired.
3487 * Fortunately we can check determine whether this the case by checking
3488 * whether the global deadline has advanced. It is valid to compare
3489 * cfs_b->runtime_expires without any locks since we only care about
3490 * exact equality, so a partial write will still work.
3493 if (cfs_rq
->runtime_expires
!= cfs_b
->runtime_expires
) {
3494 /* extend local deadline, drift is bounded above by 2 ticks */
3495 cfs_rq
->runtime_expires
+= TICK_NSEC
;
3497 /* global deadline is ahead, expiration has passed */
3498 cfs_rq
->runtime_remaining
= 0;
3502 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3504 /* dock delta_exec before expiring quota (as it could span periods) */
3505 cfs_rq
->runtime_remaining
-= delta_exec
;
3506 expire_cfs_rq_runtime(cfs_rq
);
3508 if (likely(cfs_rq
->runtime_remaining
> 0))
3512 * if we're unable to extend our runtime we resched so that the active
3513 * hierarchy can be throttled
3515 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
3516 resched_curr(rq_of(cfs_rq
));
3519 static __always_inline
3520 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3522 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
3525 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
3528 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
3530 return cfs_bandwidth_used() && cfs_rq
->throttled
;
3533 /* check whether cfs_rq, or any parent, is throttled */
3534 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
3536 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
3540 * Ensure that neither of the group entities corresponding to src_cpu or
3541 * dest_cpu are members of a throttled hierarchy when performing group
3542 * load-balance operations.
3544 static inline int throttled_lb_pair(struct task_group
*tg
,
3545 int src_cpu
, int dest_cpu
)
3547 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
3549 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
3550 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
3552 return throttled_hierarchy(src_cfs_rq
) ||
3553 throttled_hierarchy(dest_cfs_rq
);
3556 /* updated child weight may affect parent so we have to do this bottom up */
3557 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
3559 struct rq
*rq
= data
;
3560 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3562 cfs_rq
->throttle_count
--;
3564 if (!cfs_rq
->throttle_count
) {
3565 /* adjust cfs_rq_clock_task() */
3566 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
3567 cfs_rq
->throttled_clock_task
;
3574 static int tg_throttle_down(struct task_group
*tg
, void *data
)
3576 struct rq
*rq
= data
;
3577 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3579 /* group is entering throttled state, stop time */
3580 if (!cfs_rq
->throttle_count
)
3581 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
3582 cfs_rq
->throttle_count
++;
3587 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
3589 struct rq
*rq
= rq_of(cfs_rq
);
3590 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3591 struct sched_entity
*se
;
3592 long task_delta
, dequeue
= 1;
3595 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
3597 /* freeze hierarchy runnable averages while throttled */
3599 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
3602 task_delta
= cfs_rq
->h_nr_running
;
3603 for_each_sched_entity(se
) {
3604 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
3605 /* throttled entity or throttle-on-deactivate */
3610 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
3611 qcfs_rq
->h_nr_running
-= task_delta
;
3613 if (qcfs_rq
->load
.weight
)
3618 sub_nr_running(rq
, task_delta
);
3620 cfs_rq
->throttled
= 1;
3621 cfs_rq
->throttled_clock
= rq_clock(rq
);
3622 raw_spin_lock(&cfs_b
->lock
);
3623 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
3626 * Add to the _head_ of the list, so that an already-started
3627 * distribute_cfs_runtime will not see us
3629 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
3632 * If we're the first throttled task, make sure the bandwidth
3636 start_cfs_bandwidth(cfs_b
);
3638 raw_spin_unlock(&cfs_b
->lock
);
3641 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
3643 struct rq
*rq
= rq_of(cfs_rq
);
3644 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3645 struct sched_entity
*se
;
3649 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
3651 cfs_rq
->throttled
= 0;
3653 update_rq_clock(rq
);
3655 raw_spin_lock(&cfs_b
->lock
);
3656 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
3657 list_del_rcu(&cfs_rq
->throttled_list
);
3658 raw_spin_unlock(&cfs_b
->lock
);
3660 /* update hierarchical throttle state */
3661 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
3663 if (!cfs_rq
->load
.weight
)
3666 task_delta
= cfs_rq
->h_nr_running
;
3667 for_each_sched_entity(se
) {
3671 cfs_rq
= cfs_rq_of(se
);
3673 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
3674 cfs_rq
->h_nr_running
+= task_delta
;
3676 if (cfs_rq_throttled(cfs_rq
))
3681 add_nr_running(rq
, task_delta
);
3683 /* determine whether we need to wake up potentially idle cpu */
3684 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
3688 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
3689 u64 remaining
, u64 expires
)
3691 struct cfs_rq
*cfs_rq
;
3693 u64 starting_runtime
= remaining
;
3696 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
3698 struct rq
*rq
= rq_of(cfs_rq
);
3700 raw_spin_lock(&rq
->lock
);
3701 if (!cfs_rq_throttled(cfs_rq
))
3704 runtime
= -cfs_rq
->runtime_remaining
+ 1;
3705 if (runtime
> remaining
)
3706 runtime
= remaining
;
3707 remaining
-= runtime
;
3709 cfs_rq
->runtime_remaining
+= runtime
;
3710 cfs_rq
->runtime_expires
= expires
;
3712 /* we check whether we're throttled above */
3713 if (cfs_rq
->runtime_remaining
> 0)
3714 unthrottle_cfs_rq(cfs_rq
);
3717 raw_spin_unlock(&rq
->lock
);
3724 return starting_runtime
- remaining
;
3728 * Responsible for refilling a task_group's bandwidth and unthrottling its
3729 * cfs_rqs as appropriate. If there has been no activity within the last
3730 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3731 * used to track this state.
3733 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
3735 u64 runtime
, runtime_expires
;
3738 /* no need to continue the timer with no bandwidth constraint */
3739 if (cfs_b
->quota
== RUNTIME_INF
)
3740 goto out_deactivate
;
3742 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
3743 cfs_b
->nr_periods
+= overrun
;
3746 * idle depends on !throttled (for the case of a large deficit), and if
3747 * we're going inactive then everything else can be deferred
3749 if (cfs_b
->idle
&& !throttled
)
3750 goto out_deactivate
;
3752 __refill_cfs_bandwidth_runtime(cfs_b
);
3755 /* mark as potentially idle for the upcoming period */
3760 /* account preceding periods in which throttling occurred */
3761 cfs_b
->nr_throttled
+= overrun
;
3763 runtime_expires
= cfs_b
->runtime_expires
;
3766 * This check is repeated as we are holding onto the new bandwidth while
3767 * we unthrottle. This can potentially race with an unthrottled group
3768 * trying to acquire new bandwidth from the global pool. This can result
3769 * in us over-using our runtime if it is all used during this loop, but
3770 * only by limited amounts in that extreme case.
3772 while (throttled
&& cfs_b
->runtime
> 0) {
3773 runtime
= cfs_b
->runtime
;
3774 raw_spin_unlock(&cfs_b
->lock
);
3775 /* we can't nest cfs_b->lock while distributing bandwidth */
3776 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
3778 raw_spin_lock(&cfs_b
->lock
);
3780 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
3782 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
3786 * While we are ensured activity in the period following an
3787 * unthrottle, this also covers the case in which the new bandwidth is
3788 * insufficient to cover the existing bandwidth deficit. (Forcing the
3789 * timer to remain active while there are any throttled entities.)
3799 /* a cfs_rq won't donate quota below this amount */
3800 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
3801 /* minimum remaining period time to redistribute slack quota */
3802 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
3803 /* how long we wait to gather additional slack before distributing */
3804 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
3807 * Are we near the end of the current quota period?
3809 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3810 * hrtimer base being cleared by hrtimer_start. In the case of
3811 * migrate_hrtimers, base is never cleared, so we are fine.
3813 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
3815 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
3818 /* if the call-back is running a quota refresh is already occurring */
3819 if (hrtimer_callback_running(refresh_timer
))
3822 /* is a quota refresh about to occur? */
3823 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
3824 if (remaining
< min_expire
)
3830 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
3832 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
3834 /* if there's a quota refresh soon don't bother with slack */
3835 if (runtime_refresh_within(cfs_b
, min_left
))
3838 hrtimer_start(&cfs_b
->slack_timer
,
3839 ns_to_ktime(cfs_bandwidth_slack_period
),
3843 /* we know any runtime found here is valid as update_curr() precedes return */
3844 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3846 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3847 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
3849 if (slack_runtime
<= 0)
3852 raw_spin_lock(&cfs_b
->lock
);
3853 if (cfs_b
->quota
!= RUNTIME_INF
&&
3854 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
3855 cfs_b
->runtime
+= slack_runtime
;
3857 /* we are under rq->lock, defer unthrottling using a timer */
3858 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
3859 !list_empty(&cfs_b
->throttled_cfs_rq
))
3860 start_cfs_slack_bandwidth(cfs_b
);
3862 raw_spin_unlock(&cfs_b
->lock
);
3864 /* even if it's not valid for return we don't want to try again */
3865 cfs_rq
->runtime_remaining
-= slack_runtime
;
3868 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3870 if (!cfs_bandwidth_used())
3873 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
3876 __return_cfs_rq_runtime(cfs_rq
);
3880 * This is done with a timer (instead of inline with bandwidth return) since
3881 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3883 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
3885 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
3888 /* confirm we're still not at a refresh boundary */
3889 raw_spin_lock(&cfs_b
->lock
);
3890 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
3891 raw_spin_unlock(&cfs_b
->lock
);
3895 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
3896 runtime
= cfs_b
->runtime
;
3898 expires
= cfs_b
->runtime_expires
;
3899 raw_spin_unlock(&cfs_b
->lock
);
3904 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
3906 raw_spin_lock(&cfs_b
->lock
);
3907 if (expires
== cfs_b
->runtime_expires
)
3908 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
3909 raw_spin_unlock(&cfs_b
->lock
);
3913 * When a group wakes up we want to make sure that its quota is not already
3914 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3915 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3917 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
3919 if (!cfs_bandwidth_used())
3922 /* Synchronize hierarchical throttle counter: */
3923 if (unlikely(!cfs_rq
->throttle_uptodate
)) {
3924 struct rq
*rq
= rq_of(cfs_rq
);
3925 struct cfs_rq
*pcfs_rq
;
3926 struct task_group
*tg
;
3928 cfs_rq
->throttle_uptodate
= 1;
3930 /* Get closest up-to-date node, because leaves go first: */
3931 for (tg
= cfs_rq
->tg
->parent
; tg
; tg
= tg
->parent
) {
3932 pcfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3933 if (pcfs_rq
->throttle_uptodate
)
3937 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
3938 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
3942 /* an active group must be handled by the update_curr()->put() path */
3943 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
3946 /* ensure the group is not already throttled */
3947 if (cfs_rq_throttled(cfs_rq
))
3950 /* update runtime allocation */
3951 account_cfs_rq_runtime(cfs_rq
, 0);
3952 if (cfs_rq
->runtime_remaining
<= 0)
3953 throttle_cfs_rq(cfs_rq
);
3956 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3957 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3959 if (!cfs_bandwidth_used())
3962 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
3966 * it's possible for a throttled entity to be forced into a running
3967 * state (e.g. set_curr_task), in this case we're finished.
3969 if (cfs_rq_throttled(cfs_rq
))
3972 throttle_cfs_rq(cfs_rq
);
3976 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
3978 struct cfs_bandwidth
*cfs_b
=
3979 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
3981 do_sched_cfs_slack_timer(cfs_b
);
3983 return HRTIMER_NORESTART
;
3986 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
3988 struct cfs_bandwidth
*cfs_b
=
3989 container_of(timer
, struct cfs_bandwidth
, period_timer
);
3993 raw_spin_lock(&cfs_b
->lock
);
3995 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
3999 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
4002 cfs_b
->period_active
= 0;
4003 raw_spin_unlock(&cfs_b
->lock
);
4005 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4008 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4010 raw_spin_lock_init(&cfs_b
->lock
);
4012 cfs_b
->quota
= RUNTIME_INF
;
4013 cfs_b
->period
= ns_to_ktime(default_cfs_period());
4015 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
4016 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
4017 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
4018 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4019 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
4022 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4024 cfs_rq
->runtime_enabled
= 0;
4025 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
4028 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4030 lockdep_assert_held(&cfs_b
->lock
);
4032 if (!cfs_b
->period_active
) {
4033 cfs_b
->period_active
= 1;
4034 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
4035 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
4039 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4041 /* init_cfs_bandwidth() was not called */
4042 if (!cfs_b
->throttled_cfs_rq
.next
)
4045 hrtimer_cancel(&cfs_b
->period_timer
);
4046 hrtimer_cancel(&cfs_b
->slack_timer
);
4049 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
4051 struct cfs_rq
*cfs_rq
;
4053 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4054 struct cfs_bandwidth
*cfs_b
= &cfs_rq
->tg
->cfs_bandwidth
;
4056 raw_spin_lock(&cfs_b
->lock
);
4057 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
4058 raw_spin_unlock(&cfs_b
->lock
);
4062 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
4064 struct cfs_rq
*cfs_rq
;
4066 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4067 if (!cfs_rq
->runtime_enabled
)
4071 * clock_task is not advancing so we just need to make sure
4072 * there's some valid quota amount
4074 cfs_rq
->runtime_remaining
= 1;
4076 * Offline rq is schedulable till cpu is completely disabled
4077 * in take_cpu_down(), so we prevent new cfs throttling here.
4079 cfs_rq
->runtime_enabled
= 0;
4081 if (cfs_rq_throttled(cfs_rq
))
4082 unthrottle_cfs_rq(cfs_rq
);
4086 #else /* CONFIG_CFS_BANDWIDTH */
4087 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4089 return rq_clock_task(rq_of(cfs_rq
));
4092 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
4093 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
4094 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
4095 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4097 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4102 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4107 static inline int throttled_lb_pair(struct task_group
*tg
,
4108 int src_cpu
, int dest_cpu
)
4113 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4115 #ifdef CONFIG_FAIR_GROUP_SCHED
4116 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4119 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4123 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4124 static inline void update_runtime_enabled(struct rq
*rq
) {}
4125 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
4127 #endif /* CONFIG_CFS_BANDWIDTH */
4129 /**************************************************
4130 * CFS operations on tasks:
4133 #ifdef CONFIG_SCHED_HRTICK
4134 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4136 struct sched_entity
*se
= &p
->se
;
4137 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4139 WARN_ON(task_rq(p
) != rq
);
4141 if (cfs_rq
->nr_running
> 1) {
4142 u64 slice
= sched_slice(cfs_rq
, se
);
4143 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
4144 s64 delta
= slice
- ran
;
4151 hrtick_start(rq
, delta
);
4156 * called from enqueue/dequeue and updates the hrtick when the
4157 * current task is from our class and nr_running is low enough
4160 static void hrtick_update(struct rq
*rq
)
4162 struct task_struct
*curr
= rq
->curr
;
4164 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
4167 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
4168 hrtick_start_fair(rq
, curr
);
4170 #else /* !CONFIG_SCHED_HRTICK */
4172 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4176 static inline void hrtick_update(struct rq
*rq
)
4182 * The enqueue_task method is called before nr_running is
4183 * increased. Here we update the fair scheduling stats and
4184 * then put the task into the rbtree:
4187 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4189 struct cfs_rq
*cfs_rq
;
4190 struct sched_entity
*se
= &p
->se
;
4192 for_each_sched_entity(se
) {
4195 cfs_rq
= cfs_rq_of(se
);
4196 enqueue_entity(cfs_rq
, se
, flags
);
4199 * end evaluation on encountering a throttled cfs_rq
4201 * note: in the case of encountering a throttled cfs_rq we will
4202 * post the final h_nr_running increment below.
4204 if (cfs_rq_throttled(cfs_rq
))
4206 cfs_rq
->h_nr_running
++;
4208 flags
= ENQUEUE_WAKEUP
;
4211 for_each_sched_entity(se
) {
4212 cfs_rq
= cfs_rq_of(se
);
4213 cfs_rq
->h_nr_running
++;
4215 if (cfs_rq_throttled(cfs_rq
))
4218 update_load_avg(se
, 1);
4219 update_cfs_shares(cfs_rq
);
4223 add_nr_running(rq
, 1);
4228 static void set_next_buddy(struct sched_entity
*se
);
4231 * The dequeue_task method is called before nr_running is
4232 * decreased. We remove the task from the rbtree and
4233 * update the fair scheduling stats:
4235 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4237 struct cfs_rq
*cfs_rq
;
4238 struct sched_entity
*se
= &p
->se
;
4239 int task_sleep
= flags
& DEQUEUE_SLEEP
;
4241 for_each_sched_entity(se
) {
4242 cfs_rq
= cfs_rq_of(se
);
4243 dequeue_entity(cfs_rq
, se
, flags
);
4246 * end evaluation on encountering a throttled cfs_rq
4248 * note: in the case of encountering a throttled cfs_rq we will
4249 * post the final h_nr_running decrement below.
4251 if (cfs_rq_throttled(cfs_rq
))
4253 cfs_rq
->h_nr_running
--;
4255 /* Don't dequeue parent if it has other entities besides us */
4256 if (cfs_rq
->load
.weight
) {
4257 /* Avoid re-evaluating load for this entity: */
4258 se
= parent_entity(se
);
4260 * Bias pick_next to pick a task from this cfs_rq, as
4261 * p is sleeping when it is within its sched_slice.
4263 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
4267 flags
|= DEQUEUE_SLEEP
;
4270 for_each_sched_entity(se
) {
4271 cfs_rq
= cfs_rq_of(se
);
4272 cfs_rq
->h_nr_running
--;
4274 if (cfs_rq_throttled(cfs_rq
))
4277 update_load_avg(se
, 1);
4278 update_cfs_shares(cfs_rq
);
4282 sub_nr_running(rq
, 1);
4290 * per rq 'load' arrray crap; XXX kill this.
4294 * The exact cpuload at various idx values, calculated at every tick would be
4295 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4297 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4298 * on nth tick when cpu may be busy, then we have:
4299 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4300 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4302 * decay_load_missed() below does efficient calculation of
4303 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4304 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4306 * The calculation is approximated on a 128 point scale.
4307 * degrade_zero_ticks is the number of ticks after which load at any
4308 * particular idx is approximated to be zero.
4309 * degrade_factor is a precomputed table, a row for each load idx.
4310 * Each column corresponds to degradation factor for a power of two ticks,
4311 * based on 128 point scale.
4313 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4314 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4316 * With this power of 2 load factors, we can degrade the load n times
4317 * by looking at 1 bits in n and doing as many mult/shift instead of
4318 * n mult/shifts needed by the exact degradation.
4320 #define DEGRADE_SHIFT 7
4321 static const unsigned char
4322 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
4323 static const unsigned char
4324 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
4325 {0, 0, 0, 0, 0, 0, 0, 0},
4326 {64, 32, 8, 0, 0, 0, 0, 0},
4327 {96, 72, 40, 12, 1, 0, 0},
4328 {112, 98, 75, 43, 15, 1, 0},
4329 {120, 112, 98, 76, 45, 16, 2} };
4332 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4333 * would be when CPU is idle and so we just decay the old load without
4334 * adding any new load.
4336 static unsigned long
4337 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
4341 if (!missed_updates
)
4344 if (missed_updates
>= degrade_zero_ticks
[idx
])
4348 return load
>> missed_updates
;
4350 while (missed_updates
) {
4351 if (missed_updates
% 2)
4352 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
4354 missed_updates
>>= 1;
4361 * Update rq->cpu_load[] statistics. This function is usually called every
4362 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4363 * every tick. We fix it up based on jiffies.
4365 static void __update_cpu_load(struct rq
*this_rq
, unsigned long this_load
,
4366 unsigned long pending_updates
)
4370 this_rq
->nr_load_updates
++;
4372 /* Update our load: */
4373 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
4374 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
4375 unsigned long old_load
, new_load
;
4377 /* scale is effectively 1 << i now, and >> i divides by scale */
4379 old_load
= this_rq
->cpu_load
[i
];
4380 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
4381 new_load
= this_load
;
4383 * Round up the averaging division if load is increasing. This
4384 * prevents us from getting stuck on 9 if the load is 10, for
4387 if (new_load
> old_load
)
4388 new_load
+= scale
- 1;
4390 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
4393 sched_avg_update(this_rq
);
4396 /* Used instead of source_load when we know the type == 0 */
4397 static unsigned long weighted_cpuload(const int cpu
)
4399 return cfs_rq_runnable_load_avg(&cpu_rq(cpu
)->cfs
);
4402 #ifdef CONFIG_NO_HZ_COMMON
4404 * There is no sane way to deal with nohz on smp when using jiffies because the
4405 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4406 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4408 * Therefore we cannot use the delta approach from the regular tick since that
4409 * would seriously skew the load calculation. However we'll make do for those
4410 * updates happening while idle (nohz_idle_balance) or coming out of idle
4411 * (tick_nohz_idle_exit).
4413 * This means we might still be one tick off for nohz periods.
4417 * Called from nohz_idle_balance() to update the load ratings before doing the
4420 static void update_idle_cpu_load(struct rq
*this_rq
)
4422 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
4423 unsigned long load
= weighted_cpuload(cpu_of(this_rq
));
4424 unsigned long pending_updates
;
4427 * bail if there's load or we're actually up-to-date.
4429 if (load
|| curr_jiffies
== this_rq
->last_load_update_tick
)
4432 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
4433 this_rq
->last_load_update_tick
= curr_jiffies
;
4435 __update_cpu_load(this_rq
, load
, pending_updates
);
4439 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4441 void update_cpu_load_nohz(void)
4443 struct rq
*this_rq
= this_rq();
4444 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
4445 unsigned long pending_updates
;
4447 if (curr_jiffies
== this_rq
->last_load_update_tick
)
4450 raw_spin_lock(&this_rq
->lock
);
4451 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
4452 if (pending_updates
) {
4453 this_rq
->last_load_update_tick
= curr_jiffies
;
4455 * We were idle, this means load 0, the current load might be
4456 * !0 due to remote wakeups and the sort.
4458 __update_cpu_load(this_rq
, 0, pending_updates
);
4460 raw_spin_unlock(&this_rq
->lock
);
4462 #endif /* CONFIG_NO_HZ */
4465 * Called from scheduler_tick()
4467 void update_cpu_load_active(struct rq
*this_rq
)
4469 unsigned long load
= weighted_cpuload(cpu_of(this_rq
));
4471 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4473 this_rq
->last_load_update_tick
= jiffies
;
4474 __update_cpu_load(this_rq
, load
, 1);
4478 * Return a low guess at the load of a migration-source cpu weighted
4479 * according to the scheduling class and "nice" value.
4481 * We want to under-estimate the load of migration sources, to
4482 * balance conservatively.
4484 static unsigned long source_load(int cpu
, int type
)
4486 struct rq
*rq
= cpu_rq(cpu
);
4487 unsigned long total
= weighted_cpuload(cpu
);
4489 if (type
== 0 || !sched_feat(LB_BIAS
))
4492 return min(rq
->cpu_load
[type
-1], total
);
4496 * Return a high guess at the load of a migration-target cpu weighted
4497 * according to the scheduling class and "nice" value.
4499 static unsigned long target_load(int cpu
, int type
)
4501 struct rq
*rq
= cpu_rq(cpu
);
4502 unsigned long total
= weighted_cpuload(cpu
);
4504 if (type
== 0 || !sched_feat(LB_BIAS
))
4507 return max(rq
->cpu_load
[type
-1], total
);
4510 static unsigned long capacity_of(int cpu
)
4512 return cpu_rq(cpu
)->cpu_capacity
;
4515 static unsigned long capacity_orig_of(int cpu
)
4517 return cpu_rq(cpu
)->cpu_capacity_orig
;
4520 static unsigned long cpu_avg_load_per_task(int cpu
)
4522 struct rq
*rq
= cpu_rq(cpu
);
4523 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
4524 unsigned long load_avg
= weighted_cpuload(cpu
);
4527 return load_avg
/ nr_running
;
4532 static void record_wakee(struct task_struct
*p
)
4535 * Rough decay (wiping) for cost saving, don't worry
4536 * about the boundary, really active task won't care
4539 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
4540 current
->wakee_flips
>>= 1;
4541 current
->wakee_flip_decay_ts
= jiffies
;
4544 if (current
->last_wakee
!= p
) {
4545 current
->last_wakee
= p
;
4546 current
->wakee_flips
++;
4550 static void task_waking_fair(struct task_struct
*p
)
4552 struct sched_entity
*se
= &p
->se
;
4553 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4556 #ifndef CONFIG_64BIT
4557 u64 min_vruntime_copy
;
4560 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
4562 min_vruntime
= cfs_rq
->min_vruntime
;
4563 } while (min_vruntime
!= min_vruntime_copy
);
4565 min_vruntime
= cfs_rq
->min_vruntime
;
4568 se
->vruntime
-= min_vruntime
;
4572 #ifdef CONFIG_FAIR_GROUP_SCHED
4574 * effective_load() calculates the load change as seen from the root_task_group
4576 * Adding load to a group doesn't make a group heavier, but can cause movement
4577 * of group shares between cpus. Assuming the shares were perfectly aligned one
4578 * can calculate the shift in shares.
4580 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4581 * on this @cpu and results in a total addition (subtraction) of @wg to the
4582 * total group weight.
4584 * Given a runqueue weight distribution (rw_i) we can compute a shares
4585 * distribution (s_i) using:
4587 * s_i = rw_i / \Sum rw_j (1)
4589 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4590 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4591 * shares distribution (s_i):
4593 * rw_i = { 2, 4, 1, 0 }
4594 * s_i = { 2/7, 4/7, 1/7, 0 }
4596 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4597 * task used to run on and the CPU the waker is running on), we need to
4598 * compute the effect of waking a task on either CPU and, in case of a sync
4599 * wakeup, compute the effect of the current task going to sleep.
4601 * So for a change of @wl to the local @cpu with an overall group weight change
4602 * of @wl we can compute the new shares distribution (s'_i) using:
4604 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4606 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4607 * differences in waking a task to CPU 0. The additional task changes the
4608 * weight and shares distributions like:
4610 * rw'_i = { 3, 4, 1, 0 }
4611 * s'_i = { 3/8, 4/8, 1/8, 0 }
4613 * We can then compute the difference in effective weight by using:
4615 * dw_i = S * (s'_i - s_i) (3)
4617 * Where 'S' is the group weight as seen by its parent.
4619 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4620 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4621 * 4/7) times the weight of the group.
4623 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
4625 struct sched_entity
*se
= tg
->se
[cpu
];
4627 if (!tg
->parent
) /* the trivial, non-cgroup case */
4630 for_each_sched_entity(se
) {
4631 struct cfs_rq
*cfs_rq
= se
->my_q
;
4632 long W
, w
= cfs_rq_load_avg(cfs_rq
);
4637 * W = @wg + \Sum rw_j
4639 W
= wg
+ atomic_long_read(&tg
->load_avg
);
4641 /* Ensure \Sum rw_j >= rw_i */
4642 W
-= cfs_rq
->tg_load_avg_contrib
;
4651 * wl = S * s'_i; see (2)
4654 wl
= (w
* (long)tg
->shares
) / W
;
4659 * Per the above, wl is the new se->load.weight value; since
4660 * those are clipped to [MIN_SHARES, ...) do so now. See
4661 * calc_cfs_shares().
4663 if (wl
< MIN_SHARES
)
4667 * wl = dw_i = S * (s'_i - s_i); see (3)
4669 wl
-= se
->avg
.load_avg
;
4672 * Recursively apply this logic to all parent groups to compute
4673 * the final effective load change on the root group. Since
4674 * only the @tg group gets extra weight, all parent groups can
4675 * only redistribute existing shares. @wl is the shift in shares
4676 * resulting from this level per the above.
4685 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
4693 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4694 * A waker of many should wake a different task than the one last awakened
4695 * at a frequency roughly N times higher than one of its wakees. In order
4696 * to determine whether we should let the load spread vs consolodating to
4697 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4698 * partner, and a factor of lls_size higher frequency in the other. With
4699 * both conditions met, we can be relatively sure that the relationship is
4700 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4701 * being client/server, worker/dispatcher, interrupt source or whatever is
4702 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4704 static int wake_wide(struct task_struct
*p
)
4706 unsigned int master
= current
->wakee_flips
;
4707 unsigned int slave
= p
->wakee_flips
;
4708 int factor
= this_cpu_read(sd_llc_size
);
4711 swap(master
, slave
);
4712 if (slave
< factor
|| master
< slave
* factor
)
4717 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
4719 s64 this_load
, load
;
4720 s64 this_eff_load
, prev_eff_load
;
4721 int idx
, this_cpu
, prev_cpu
;
4722 struct task_group
*tg
;
4723 unsigned long weight
;
4727 this_cpu
= smp_processor_id();
4728 prev_cpu
= task_cpu(p
);
4729 load
= source_load(prev_cpu
, idx
);
4730 this_load
= target_load(this_cpu
, idx
);
4733 * If sync wakeup then subtract the (maximum possible)
4734 * effect of the currently running task from the load
4735 * of the current CPU:
4738 tg
= task_group(current
);
4739 weight
= current
->se
.avg
.load_avg
;
4741 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
4742 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
4746 weight
= p
->se
.avg
.load_avg
;
4749 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4750 * due to the sync cause above having dropped this_load to 0, we'll
4751 * always have an imbalance, but there's really nothing you can do
4752 * about that, so that's good too.
4754 * Otherwise check if either cpus are near enough in load to allow this
4755 * task to be woken on this_cpu.
4757 this_eff_load
= 100;
4758 this_eff_load
*= capacity_of(prev_cpu
);
4760 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
4761 prev_eff_load
*= capacity_of(this_cpu
);
4763 if (this_load
> 0) {
4764 this_eff_load
*= this_load
+
4765 effective_load(tg
, this_cpu
, weight
, weight
);
4767 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
4770 balanced
= this_eff_load
<= prev_eff_load
;
4772 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
4777 schedstat_inc(sd
, ttwu_move_affine
);
4778 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
4784 * find_idlest_group finds and returns the least busy CPU group within the
4787 static struct sched_group
*
4788 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
4789 int this_cpu
, int sd_flag
)
4791 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
4792 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
4793 int load_idx
= sd
->forkexec_idx
;
4794 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
4796 if (sd_flag
& SD_BALANCE_WAKE
)
4797 load_idx
= sd
->wake_idx
;
4800 unsigned long load
, avg_load
;
4804 /* Skip over this group if it has no CPUs allowed */
4805 if (!cpumask_intersects(sched_group_cpus(group
),
4806 tsk_cpus_allowed(p
)))
4809 local_group
= cpumask_test_cpu(this_cpu
,
4810 sched_group_cpus(group
));
4812 /* Tally up the load of all CPUs in the group */
4815 for_each_cpu(i
, sched_group_cpus(group
)) {
4816 /* Bias balancing toward cpus of our domain */
4818 load
= source_load(i
, load_idx
);
4820 load
= target_load(i
, load_idx
);
4825 /* Adjust by relative CPU capacity of the group */
4826 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) / group
->sgc
->capacity
;
4829 this_load
= avg_load
;
4830 } else if (avg_load
< min_load
) {
4831 min_load
= avg_load
;
4834 } while (group
= group
->next
, group
!= sd
->groups
);
4836 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
4842 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4845 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
4847 unsigned long load
, min_load
= ULONG_MAX
;
4848 unsigned int min_exit_latency
= UINT_MAX
;
4849 u64 latest_idle_timestamp
= 0;
4850 int least_loaded_cpu
= this_cpu
;
4851 int shallowest_idle_cpu
= -1;
4854 /* Traverse only the allowed CPUs */
4855 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
4857 struct rq
*rq
= cpu_rq(i
);
4858 struct cpuidle_state
*idle
= idle_get_state(rq
);
4859 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
4861 * We give priority to a CPU whose idle state
4862 * has the smallest exit latency irrespective
4863 * of any idle timestamp.
4865 min_exit_latency
= idle
->exit_latency
;
4866 latest_idle_timestamp
= rq
->idle_stamp
;
4867 shallowest_idle_cpu
= i
;
4868 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
4869 rq
->idle_stamp
> latest_idle_timestamp
) {
4871 * If equal or no active idle state, then
4872 * the most recently idled CPU might have
4875 latest_idle_timestamp
= rq
->idle_stamp
;
4876 shallowest_idle_cpu
= i
;
4878 } else if (shallowest_idle_cpu
== -1) {
4879 load
= weighted_cpuload(i
);
4880 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
4882 least_loaded_cpu
= i
;
4887 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
4891 * Try and locate an idle CPU in the sched_domain.
4893 static int select_idle_sibling(struct task_struct
*p
, int target
)
4895 struct sched_domain
*sd
;
4896 struct sched_group
*sg
;
4897 int i
= task_cpu(p
);
4899 if (idle_cpu(target
))
4903 * If the prevous cpu is cache affine and idle, don't be stupid.
4905 if (i
!= target
&& cpus_share_cache(i
, target
) && idle_cpu(i
))
4909 * Otherwise, iterate the domains and find an elegible idle cpu.
4911 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
4912 for_each_lower_domain(sd
) {
4915 if (!cpumask_intersects(sched_group_cpus(sg
),
4916 tsk_cpus_allowed(p
)))
4919 for_each_cpu(i
, sched_group_cpus(sg
)) {
4920 if (i
== target
|| !idle_cpu(i
))
4924 target
= cpumask_first_and(sched_group_cpus(sg
),
4925 tsk_cpus_allowed(p
));
4929 } while (sg
!= sd
->groups
);
4936 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4937 * tasks. The unit of the return value must be the one of capacity so we can
4938 * compare the utilization with the capacity of the CPU that is available for
4939 * CFS task (ie cpu_capacity).
4941 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4942 * recent utilization of currently non-runnable tasks on a CPU. It represents
4943 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4944 * capacity_orig is the cpu_capacity available at the highest frequency
4945 * (arch_scale_freq_capacity()).
4946 * The utilization of a CPU converges towards a sum equal to or less than the
4947 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4948 * the running time on this CPU scaled by capacity_curr.
4950 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4951 * higher than capacity_orig because of unfortunate rounding in
4952 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4953 * the average stabilizes with the new running time. We need to check that the
4954 * utilization stays within the range of [0..capacity_orig] and cap it if
4955 * necessary. Without utilization capping, a group could be seen as overloaded
4956 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4957 * available capacity. We allow utilization to overshoot capacity_curr (but not
4958 * capacity_orig) as it useful for predicting the capacity required after task
4959 * migrations (scheduler-driven DVFS).
4961 static int cpu_util(int cpu
)
4963 unsigned long util
= cpu_rq(cpu
)->cfs
.avg
.util_avg
;
4964 unsigned long capacity
= capacity_orig_of(cpu
);
4966 return (util
>= capacity
) ? capacity
: util
;
4970 * select_task_rq_fair: Select target runqueue for the waking task in domains
4971 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4972 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4974 * Balances load by selecting the idlest cpu in the idlest group, or under
4975 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4977 * Returns the target cpu number.
4979 * preempt must be disabled.
4982 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
4984 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
4985 int cpu
= smp_processor_id();
4986 int new_cpu
= prev_cpu
;
4987 int want_affine
= 0;
4988 int sync
= wake_flags
& WF_SYNC
;
4990 if (sd_flag
& SD_BALANCE_WAKE
)
4991 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
));
4994 for_each_domain(cpu
, tmp
) {
4995 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
4999 * If both cpu and prev_cpu are part of this domain,
5000 * cpu is a valid SD_WAKE_AFFINE target.
5002 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
5003 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
5008 if (tmp
->flags
& sd_flag
)
5010 else if (!want_affine
)
5015 sd
= NULL
; /* Prefer wake_affine over balance flags */
5016 if (cpu
!= prev_cpu
&& wake_affine(affine_sd
, p
, sync
))
5021 if (sd_flag
& SD_BALANCE_WAKE
) /* XXX always ? */
5022 new_cpu
= select_idle_sibling(p
, new_cpu
);
5025 struct sched_group
*group
;
5028 if (!(sd
->flags
& sd_flag
)) {
5033 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5039 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
5040 if (new_cpu
== -1 || new_cpu
== cpu
) {
5041 /* Now try balancing at a lower domain level of cpu */
5046 /* Now try balancing at a lower domain level of new_cpu */
5048 weight
= sd
->span_weight
;
5050 for_each_domain(cpu
, tmp
) {
5051 if (weight
<= tmp
->span_weight
)
5053 if (tmp
->flags
& sd_flag
)
5056 /* while loop will break here if sd == NULL */
5064 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5065 * cfs_rq_of(p) references at time of call are still valid and identify the
5066 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5067 * other assumptions, including the state of rq->lock, should be made.
5069 static void migrate_task_rq_fair(struct task_struct
*p
)
5072 * We are supposed to update the task to "current" time, then its up to date
5073 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5074 * what current time is, so simply throw away the out-of-date time. This
5075 * will result in the wakee task is less decayed, but giving the wakee more
5076 * load sounds not bad.
5078 remove_entity_load_avg(&p
->se
);
5080 /* Tell new CPU we are migrated */
5081 p
->se
.avg
.last_update_time
= 0;
5083 /* We have migrated, no longer consider this task hot */
5084 p
->se
.exec_start
= 0;
5087 static void task_dead_fair(struct task_struct
*p
)
5089 remove_entity_load_avg(&p
->se
);
5091 #endif /* CONFIG_SMP */
5093 static unsigned long
5094 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
5096 unsigned long gran
= sysctl_sched_wakeup_granularity
;
5099 * Since its curr running now, convert the gran from real-time
5100 * to virtual-time in his units.
5102 * By using 'se' instead of 'curr' we penalize light tasks, so
5103 * they get preempted easier. That is, if 'se' < 'curr' then
5104 * the resulting gran will be larger, therefore penalizing the
5105 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5106 * be smaller, again penalizing the lighter task.
5108 * This is especially important for buddies when the leftmost
5109 * task is higher priority than the buddy.
5111 return calc_delta_fair(gran
, se
);
5115 * Should 'se' preempt 'curr'.
5129 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
5131 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
5136 gran
= wakeup_gran(curr
, se
);
5143 static void set_last_buddy(struct sched_entity
*se
)
5145 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5148 for_each_sched_entity(se
)
5149 cfs_rq_of(se
)->last
= se
;
5152 static void set_next_buddy(struct sched_entity
*se
)
5154 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5157 for_each_sched_entity(se
)
5158 cfs_rq_of(se
)->next
= se
;
5161 static void set_skip_buddy(struct sched_entity
*se
)
5163 for_each_sched_entity(se
)
5164 cfs_rq_of(se
)->skip
= se
;
5168 * Preempt the current task with a newly woken task if needed:
5170 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
5172 struct task_struct
*curr
= rq
->curr
;
5173 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
5174 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
5175 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
5176 int next_buddy_marked
= 0;
5178 if (unlikely(se
== pse
))
5182 * This is possible from callers such as attach_tasks(), in which we
5183 * unconditionally check_prempt_curr() after an enqueue (which may have
5184 * lead to a throttle). This both saves work and prevents false
5185 * next-buddy nomination below.
5187 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
5190 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
5191 set_next_buddy(pse
);
5192 next_buddy_marked
= 1;
5196 * We can come here with TIF_NEED_RESCHED already set from new task
5199 * Note: this also catches the edge-case of curr being in a throttled
5200 * group (e.g. via set_curr_task), since update_curr() (in the
5201 * enqueue of curr) will have resulted in resched being set. This
5202 * prevents us from potentially nominating it as a false LAST_BUDDY
5205 if (test_tsk_need_resched(curr
))
5208 /* Idle tasks are by definition preempted by non-idle tasks. */
5209 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
5210 likely(p
->policy
!= SCHED_IDLE
))
5214 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5215 * is driven by the tick):
5217 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
5220 find_matching_se(&se
, &pse
);
5221 update_curr(cfs_rq_of(se
));
5223 if (wakeup_preempt_entity(se
, pse
) == 1) {
5225 * Bias pick_next to pick the sched entity that is
5226 * triggering this preemption.
5228 if (!next_buddy_marked
)
5229 set_next_buddy(pse
);
5238 * Only set the backward buddy when the current task is still
5239 * on the rq. This can happen when a wakeup gets interleaved
5240 * with schedule on the ->pre_schedule() or idle_balance()
5241 * point, either of which can * drop the rq lock.
5243 * Also, during early boot the idle thread is in the fair class,
5244 * for obvious reasons its a bad idea to schedule back to it.
5246 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
5249 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
5253 static struct task_struct
*
5254 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
)
5256 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
5257 struct sched_entity
*se
;
5258 struct task_struct
*p
;
5262 #ifdef CONFIG_FAIR_GROUP_SCHED
5263 if (!cfs_rq
->nr_running
)
5266 if (prev
->sched_class
!= &fair_sched_class
)
5270 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5271 * likely that a next task is from the same cgroup as the current.
5273 * Therefore attempt to avoid putting and setting the entire cgroup
5274 * hierarchy, only change the part that actually changes.
5278 struct sched_entity
*curr
= cfs_rq
->curr
;
5281 * Since we got here without doing put_prev_entity() we also
5282 * have to consider cfs_rq->curr. If it is still a runnable
5283 * entity, update_curr() will update its vruntime, otherwise
5284 * forget we've ever seen it.
5288 update_curr(cfs_rq
);
5293 * This call to check_cfs_rq_runtime() will do the
5294 * throttle and dequeue its entity in the parent(s).
5295 * Therefore the 'simple' nr_running test will indeed
5298 if (unlikely(check_cfs_rq_runtime(cfs_rq
)))
5302 se
= pick_next_entity(cfs_rq
, curr
);
5303 cfs_rq
= group_cfs_rq(se
);
5309 * Since we haven't yet done put_prev_entity and if the selected task
5310 * is a different task than we started out with, try and touch the
5311 * least amount of cfs_rqs.
5314 struct sched_entity
*pse
= &prev
->se
;
5316 while (!(cfs_rq
= is_same_group(se
, pse
))) {
5317 int se_depth
= se
->depth
;
5318 int pse_depth
= pse
->depth
;
5320 if (se_depth
<= pse_depth
) {
5321 put_prev_entity(cfs_rq_of(pse
), pse
);
5322 pse
= parent_entity(pse
);
5324 if (se_depth
>= pse_depth
) {
5325 set_next_entity(cfs_rq_of(se
), se
);
5326 se
= parent_entity(se
);
5330 put_prev_entity(cfs_rq
, pse
);
5331 set_next_entity(cfs_rq
, se
);
5334 if (hrtick_enabled(rq
))
5335 hrtick_start_fair(rq
, p
);
5342 if (!cfs_rq
->nr_running
)
5345 put_prev_task(rq
, prev
);
5348 se
= pick_next_entity(cfs_rq
, NULL
);
5349 set_next_entity(cfs_rq
, se
);
5350 cfs_rq
= group_cfs_rq(se
);
5355 if (hrtick_enabled(rq
))
5356 hrtick_start_fair(rq
, p
);
5362 * This is OK, because current is on_cpu, which avoids it being picked
5363 * for load-balance and preemption/IRQs are still disabled avoiding
5364 * further scheduler activity on it and we're being very careful to
5365 * re-start the picking loop.
5367 lockdep_unpin_lock(&rq
->lock
);
5368 new_tasks
= idle_balance(rq
);
5369 lockdep_pin_lock(&rq
->lock
);
5371 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5372 * possible for any higher priority task to appear. In that case we
5373 * must re-start the pick_next_entity() loop.
5385 * Account for a descheduled task:
5387 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
5389 struct sched_entity
*se
= &prev
->se
;
5390 struct cfs_rq
*cfs_rq
;
5392 for_each_sched_entity(se
) {
5393 cfs_rq
= cfs_rq_of(se
);
5394 put_prev_entity(cfs_rq
, se
);
5399 * sched_yield() is very simple
5401 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5403 static void yield_task_fair(struct rq
*rq
)
5405 struct task_struct
*curr
= rq
->curr
;
5406 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
5407 struct sched_entity
*se
= &curr
->se
;
5410 * Are we the only task in the tree?
5412 if (unlikely(rq
->nr_running
== 1))
5415 clear_buddies(cfs_rq
, se
);
5417 if (curr
->policy
!= SCHED_BATCH
) {
5418 update_rq_clock(rq
);
5420 * Update run-time statistics of the 'current'.
5422 update_curr(cfs_rq
);
5424 * Tell update_rq_clock() that we've just updated,
5425 * so we don't do microscopic update in schedule()
5426 * and double the fastpath cost.
5428 rq_clock_skip_update(rq
, true);
5434 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
5436 struct sched_entity
*se
= &p
->se
;
5438 /* throttled hierarchies are not runnable */
5439 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
5442 /* Tell the scheduler that we'd really like pse to run next. */
5445 yield_task_fair(rq
);
5451 /**************************************************
5452 * Fair scheduling class load-balancing methods.
5456 * The purpose of load-balancing is to achieve the same basic fairness the
5457 * per-cpu scheduler provides, namely provide a proportional amount of compute
5458 * time to each task. This is expressed in the following equation:
5460 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5462 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5463 * W_i,0 is defined as:
5465 * W_i,0 = \Sum_j w_i,j (2)
5467 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5468 * is derived from the nice value as per prio_to_weight[].
5470 * The weight average is an exponential decay average of the instantaneous
5473 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5475 * C_i is the compute capacity of cpu i, typically it is the
5476 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5477 * can also include other factors [XXX].
5479 * To achieve this balance we define a measure of imbalance which follows
5480 * directly from (1):
5482 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5484 * We them move tasks around to minimize the imbalance. In the continuous
5485 * function space it is obvious this converges, in the discrete case we get
5486 * a few fun cases generally called infeasible weight scenarios.
5489 * - infeasible weights;
5490 * - local vs global optima in the discrete case. ]
5495 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5496 * for all i,j solution, we create a tree of cpus that follows the hardware
5497 * topology where each level pairs two lower groups (or better). This results
5498 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5499 * tree to only the first of the previous level and we decrease the frequency
5500 * of load-balance at each level inv. proportional to the number of cpus in
5506 * \Sum { --- * --- * 2^i } = O(n) (5)
5508 * `- size of each group
5509 * | | `- number of cpus doing load-balance
5511 * `- sum over all levels
5513 * Coupled with a limit on how many tasks we can migrate every balance pass,
5514 * this makes (5) the runtime complexity of the balancer.
5516 * An important property here is that each CPU is still (indirectly) connected
5517 * to every other cpu in at most O(log n) steps:
5519 * The adjacency matrix of the resulting graph is given by:
5522 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5525 * And you'll find that:
5527 * A^(log_2 n)_i,j != 0 for all i,j (7)
5529 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5530 * The task movement gives a factor of O(m), giving a convergence complexity
5533 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5538 * In order to avoid CPUs going idle while there's still work to do, new idle
5539 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5540 * tree itself instead of relying on other CPUs to bring it work.
5542 * This adds some complexity to both (5) and (8) but it reduces the total idle
5550 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5553 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5558 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5560 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5562 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5565 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5566 * rewrite all of this once again.]
5569 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
5571 enum fbq_type
{ regular
, remote
, all
};
5573 #define LBF_ALL_PINNED 0x01
5574 #define LBF_NEED_BREAK 0x02
5575 #define LBF_DST_PINNED 0x04
5576 #define LBF_SOME_PINNED 0x08
5579 struct sched_domain
*sd
;
5587 struct cpumask
*dst_grpmask
;
5589 enum cpu_idle_type idle
;
5591 /* The set of CPUs under consideration for load-balancing */
5592 struct cpumask
*cpus
;
5597 unsigned int loop_break
;
5598 unsigned int loop_max
;
5600 enum fbq_type fbq_type
;
5601 struct list_head tasks
;
5605 * Is this task likely cache-hot:
5607 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
5611 lockdep_assert_held(&env
->src_rq
->lock
);
5613 if (p
->sched_class
!= &fair_sched_class
)
5616 if (unlikely(p
->policy
== SCHED_IDLE
))
5620 * Buddy candidates are cache hot:
5622 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
5623 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
5624 &p
->se
== cfs_rq_of(&p
->se
)->last
))
5627 if (sysctl_sched_migration_cost
== -1)
5629 if (sysctl_sched_migration_cost
== 0)
5632 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
5634 return delta
< (s64
)sysctl_sched_migration_cost
;
5637 #ifdef CONFIG_NUMA_BALANCING
5639 * Returns 1, if task migration degrades locality
5640 * Returns 0, if task migration improves locality i.e migration preferred.
5641 * Returns -1, if task migration is not affected by locality.
5643 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
5645 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
5646 unsigned long src_faults
, dst_faults
;
5647 int src_nid
, dst_nid
;
5649 if (!static_branch_likely(&sched_numa_balancing
))
5652 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
5655 src_nid
= cpu_to_node(env
->src_cpu
);
5656 dst_nid
= cpu_to_node(env
->dst_cpu
);
5658 if (src_nid
== dst_nid
)
5661 /* Migrating away from the preferred node is always bad. */
5662 if (src_nid
== p
->numa_preferred_nid
) {
5663 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
5669 /* Encourage migration to the preferred node. */
5670 if (dst_nid
== p
->numa_preferred_nid
)
5674 src_faults
= group_faults(p
, src_nid
);
5675 dst_faults
= group_faults(p
, dst_nid
);
5677 src_faults
= task_faults(p
, src_nid
);
5678 dst_faults
= task_faults(p
, dst_nid
);
5681 return dst_faults
< src_faults
;
5685 static inline int migrate_degrades_locality(struct task_struct
*p
,
5693 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5696 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
5700 lockdep_assert_held(&env
->src_rq
->lock
);
5703 * We do not migrate tasks that are:
5704 * 1) throttled_lb_pair, or
5705 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5706 * 3) running (obviously), or
5707 * 4) are cache-hot on their current CPU.
5709 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
5712 if (!cpumask_test_cpu(env
->dst_cpu
, tsk_cpus_allowed(p
))) {
5715 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
5717 env
->flags
|= LBF_SOME_PINNED
;
5720 * Remember if this task can be migrated to any other cpu in
5721 * our sched_group. We may want to revisit it if we couldn't
5722 * meet load balance goals by pulling other tasks on src_cpu.
5724 * Also avoid computing new_dst_cpu if we have already computed
5725 * one in current iteration.
5727 if (!env
->dst_grpmask
|| (env
->flags
& LBF_DST_PINNED
))
5730 /* Prevent to re-select dst_cpu via env's cpus */
5731 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
5732 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) {
5733 env
->flags
|= LBF_DST_PINNED
;
5734 env
->new_dst_cpu
= cpu
;
5742 /* Record that we found atleast one task that could run on dst_cpu */
5743 env
->flags
&= ~LBF_ALL_PINNED
;
5745 if (task_running(env
->src_rq
, p
)) {
5746 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
5751 * Aggressive migration if:
5752 * 1) destination numa is preferred
5753 * 2) task is cache cold, or
5754 * 3) too many balance attempts have failed.
5756 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
5757 if (tsk_cache_hot
== -1)
5758 tsk_cache_hot
= task_hot(p
, env
);
5760 if (tsk_cache_hot
<= 0 ||
5761 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
5762 if (tsk_cache_hot
== 1) {
5763 schedstat_inc(env
->sd
, lb_hot_gained
[env
->idle
]);
5764 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
5769 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
5774 * detach_task() -- detach the task for the migration specified in env
5776 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
5778 lockdep_assert_held(&env
->src_rq
->lock
);
5780 deactivate_task(env
->src_rq
, p
, 0);
5781 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
5782 set_task_cpu(p
, env
->dst_cpu
);
5786 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5787 * part of active balancing operations within "domain".
5789 * Returns a task if successful and NULL otherwise.
5791 static struct task_struct
*detach_one_task(struct lb_env
*env
)
5793 struct task_struct
*p
, *n
;
5795 lockdep_assert_held(&env
->src_rq
->lock
);
5797 list_for_each_entry_safe(p
, n
, &env
->src_rq
->cfs_tasks
, se
.group_node
) {
5798 if (!can_migrate_task(p
, env
))
5801 detach_task(p
, env
);
5804 * Right now, this is only the second place where
5805 * lb_gained[env->idle] is updated (other is detach_tasks)
5806 * so we can safely collect stats here rather than
5807 * inside detach_tasks().
5809 schedstat_inc(env
->sd
, lb_gained
[env
->idle
]);
5815 static const unsigned int sched_nr_migrate_break
= 32;
5818 * detach_tasks() -- tries to detach up to imbalance weighted load from
5819 * busiest_rq, as part of a balancing operation within domain "sd".
5821 * Returns number of detached tasks if successful and 0 otherwise.
5823 static int detach_tasks(struct lb_env
*env
)
5825 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
5826 struct task_struct
*p
;
5830 lockdep_assert_held(&env
->src_rq
->lock
);
5832 if (env
->imbalance
<= 0)
5835 while (!list_empty(tasks
)) {
5837 * We don't want to steal all, otherwise we may be treated likewise,
5838 * which could at worst lead to a livelock crash.
5840 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
5843 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
5846 /* We've more or less seen every task there is, call it quits */
5847 if (env
->loop
> env
->loop_max
)
5850 /* take a breather every nr_migrate tasks */
5851 if (env
->loop
> env
->loop_break
) {
5852 env
->loop_break
+= sched_nr_migrate_break
;
5853 env
->flags
|= LBF_NEED_BREAK
;
5857 if (!can_migrate_task(p
, env
))
5860 load
= task_h_load(p
);
5862 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
5865 if ((load
/ 2) > env
->imbalance
)
5868 detach_task(p
, env
);
5869 list_add(&p
->se
.group_node
, &env
->tasks
);
5872 env
->imbalance
-= load
;
5874 #ifdef CONFIG_PREEMPT
5876 * NEWIDLE balancing is a source of latency, so preemptible
5877 * kernels will stop after the first task is detached to minimize
5878 * the critical section.
5880 if (env
->idle
== CPU_NEWLY_IDLE
)
5885 * We only want to steal up to the prescribed amount of
5888 if (env
->imbalance
<= 0)
5893 list_move_tail(&p
->se
.group_node
, tasks
);
5897 * Right now, this is one of only two places we collect this stat
5898 * so we can safely collect detach_one_task() stats here rather
5899 * than inside detach_one_task().
5901 schedstat_add(env
->sd
, lb_gained
[env
->idle
], detached
);
5907 * attach_task() -- attach the task detached by detach_task() to its new rq.
5909 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
5911 lockdep_assert_held(&rq
->lock
);
5913 BUG_ON(task_rq(p
) != rq
);
5914 p
->on_rq
= TASK_ON_RQ_QUEUED
;
5915 activate_task(rq
, p
, 0);
5916 check_preempt_curr(rq
, p
, 0);
5920 * attach_one_task() -- attaches the task returned from detach_one_task() to
5923 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
5925 raw_spin_lock(&rq
->lock
);
5927 raw_spin_unlock(&rq
->lock
);
5931 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5934 static void attach_tasks(struct lb_env
*env
)
5936 struct list_head
*tasks
= &env
->tasks
;
5937 struct task_struct
*p
;
5939 raw_spin_lock(&env
->dst_rq
->lock
);
5941 while (!list_empty(tasks
)) {
5942 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
5943 list_del_init(&p
->se
.group_node
);
5945 attach_task(env
->dst_rq
, p
);
5948 raw_spin_unlock(&env
->dst_rq
->lock
);
5951 #ifdef CONFIG_FAIR_GROUP_SCHED
5952 static void update_blocked_averages(int cpu
)
5954 struct rq
*rq
= cpu_rq(cpu
);
5955 struct cfs_rq
*cfs_rq
;
5956 unsigned long flags
;
5958 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5959 update_rq_clock(rq
);
5962 * Iterates the task_group tree in a bottom up fashion, see
5963 * list_add_leaf_cfs_rq() for details.
5965 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
5966 /* throttled entities do not contribute to load */
5967 if (throttled_hierarchy(cfs_rq
))
5970 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
))
5971 update_tg_load_avg(cfs_rq
, 0);
5973 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5977 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5978 * This needs to be done in a top-down fashion because the load of a child
5979 * group is a fraction of its parents load.
5981 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
5983 struct rq
*rq
= rq_of(cfs_rq
);
5984 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
5985 unsigned long now
= jiffies
;
5988 if (cfs_rq
->last_h_load_update
== now
)
5991 cfs_rq
->h_load_next
= NULL
;
5992 for_each_sched_entity(se
) {
5993 cfs_rq
= cfs_rq_of(se
);
5994 cfs_rq
->h_load_next
= se
;
5995 if (cfs_rq
->last_h_load_update
== now
)
6000 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
6001 cfs_rq
->last_h_load_update
= now
;
6004 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
6005 load
= cfs_rq
->h_load
;
6006 load
= div64_ul(load
* se
->avg
.load_avg
,
6007 cfs_rq_load_avg(cfs_rq
) + 1);
6008 cfs_rq
= group_cfs_rq(se
);
6009 cfs_rq
->h_load
= load
;
6010 cfs_rq
->last_h_load_update
= now
;
6014 static unsigned long task_h_load(struct task_struct
*p
)
6016 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
6018 update_cfs_rq_h_load(cfs_rq
);
6019 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
6020 cfs_rq_load_avg(cfs_rq
) + 1);
6023 static inline void update_blocked_averages(int cpu
)
6025 struct rq
*rq
= cpu_rq(cpu
);
6026 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6027 unsigned long flags
;
6029 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6030 update_rq_clock(rq
);
6031 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
);
6032 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6035 static unsigned long task_h_load(struct task_struct
*p
)
6037 return p
->se
.avg
.load_avg
;
6041 /********** Helpers for find_busiest_group ************************/
6050 * sg_lb_stats - stats of a sched_group required for load_balancing
6052 struct sg_lb_stats
{
6053 unsigned long avg_load
; /*Avg load across the CPUs of the group */
6054 unsigned long group_load
; /* Total load over the CPUs of the group */
6055 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
6056 unsigned long load_per_task
;
6057 unsigned long group_capacity
;
6058 unsigned long group_util
; /* Total utilization of the group */
6059 unsigned int sum_nr_running
; /* Nr tasks running in the group */
6060 unsigned int idle_cpus
;
6061 unsigned int group_weight
;
6062 enum group_type group_type
;
6063 int group_no_capacity
;
6064 #ifdef CONFIG_NUMA_BALANCING
6065 unsigned int nr_numa_running
;
6066 unsigned int nr_preferred_running
;
6071 * sd_lb_stats - Structure to store the statistics of a sched_domain
6072 * during load balancing.
6074 struct sd_lb_stats
{
6075 struct sched_group
*busiest
; /* Busiest group in this sd */
6076 struct sched_group
*local
; /* Local group in this sd */
6077 unsigned long total_load
; /* Total load of all groups in sd */
6078 unsigned long total_capacity
; /* Total capacity of all groups in sd */
6079 unsigned long avg_load
; /* Average load across all groups in sd */
6081 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
6082 struct sg_lb_stats local_stat
; /* Statistics of the local group */
6085 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
6088 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6089 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6090 * We must however clear busiest_stat::avg_load because
6091 * update_sd_pick_busiest() reads this before assignment.
6093 *sds
= (struct sd_lb_stats
){
6097 .total_capacity
= 0UL,
6100 .sum_nr_running
= 0,
6101 .group_type
= group_other
,
6107 * get_sd_load_idx - Obtain the load index for a given sched domain.
6108 * @sd: The sched_domain whose load_idx is to be obtained.
6109 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6111 * Return: The load index.
6113 static inline int get_sd_load_idx(struct sched_domain
*sd
,
6114 enum cpu_idle_type idle
)
6120 load_idx
= sd
->busy_idx
;
6123 case CPU_NEWLY_IDLE
:
6124 load_idx
= sd
->newidle_idx
;
6127 load_idx
= sd
->idle_idx
;
6134 static unsigned long scale_rt_capacity(int cpu
)
6136 struct rq
*rq
= cpu_rq(cpu
);
6137 u64 total
, used
, age_stamp
, avg
;
6141 * Since we're reading these variables without serialization make sure
6142 * we read them once before doing sanity checks on them.
6144 age_stamp
= READ_ONCE(rq
->age_stamp
);
6145 avg
= READ_ONCE(rq
->rt_avg
);
6146 delta
= __rq_clock_broken(rq
) - age_stamp
;
6148 if (unlikely(delta
< 0))
6151 total
= sched_avg_period() + delta
;
6153 used
= div_u64(avg
, total
);
6155 if (likely(used
< SCHED_CAPACITY_SCALE
))
6156 return SCHED_CAPACITY_SCALE
- used
;
6161 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
6163 unsigned long capacity
= arch_scale_cpu_capacity(sd
, cpu
);
6164 struct sched_group
*sdg
= sd
->groups
;
6166 cpu_rq(cpu
)->cpu_capacity_orig
= capacity
;
6168 capacity
*= scale_rt_capacity(cpu
);
6169 capacity
>>= SCHED_CAPACITY_SHIFT
;
6174 cpu_rq(cpu
)->cpu_capacity
= capacity
;
6175 sdg
->sgc
->capacity
= capacity
;
6178 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
6180 struct sched_domain
*child
= sd
->child
;
6181 struct sched_group
*group
, *sdg
= sd
->groups
;
6182 unsigned long capacity
;
6183 unsigned long interval
;
6185 interval
= msecs_to_jiffies(sd
->balance_interval
);
6186 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
6187 sdg
->sgc
->next_update
= jiffies
+ interval
;
6190 update_cpu_capacity(sd
, cpu
);
6196 if (child
->flags
& SD_OVERLAP
) {
6198 * SD_OVERLAP domains cannot assume that child groups
6199 * span the current group.
6202 for_each_cpu(cpu
, sched_group_cpus(sdg
)) {
6203 struct sched_group_capacity
*sgc
;
6204 struct rq
*rq
= cpu_rq(cpu
);
6207 * build_sched_domains() -> init_sched_groups_capacity()
6208 * gets here before we've attached the domains to the
6211 * Use capacity_of(), which is set irrespective of domains
6212 * in update_cpu_capacity().
6214 * This avoids capacity from being 0 and
6215 * causing divide-by-zero issues on boot.
6217 if (unlikely(!rq
->sd
)) {
6218 capacity
+= capacity_of(cpu
);
6222 sgc
= rq
->sd
->groups
->sgc
;
6223 capacity
+= sgc
->capacity
;
6227 * !SD_OVERLAP domains can assume that child groups
6228 * span the current group.
6231 group
= child
->groups
;
6233 capacity
+= group
->sgc
->capacity
;
6234 group
= group
->next
;
6235 } while (group
!= child
->groups
);
6238 sdg
->sgc
->capacity
= capacity
;
6242 * Check whether the capacity of the rq has been noticeably reduced by side
6243 * activity. The imbalance_pct is used for the threshold.
6244 * Return true is the capacity is reduced
6247 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
6249 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
6250 (rq
->cpu_capacity_orig
* 100));
6254 * Group imbalance indicates (and tries to solve) the problem where balancing
6255 * groups is inadequate due to tsk_cpus_allowed() constraints.
6257 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6258 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6261 * { 0 1 2 3 } { 4 5 6 7 }
6264 * If we were to balance group-wise we'd place two tasks in the first group and
6265 * two tasks in the second group. Clearly this is undesired as it will overload
6266 * cpu 3 and leave one of the cpus in the second group unused.
6268 * The current solution to this issue is detecting the skew in the first group
6269 * by noticing the lower domain failed to reach balance and had difficulty
6270 * moving tasks due to affinity constraints.
6272 * When this is so detected; this group becomes a candidate for busiest; see
6273 * update_sd_pick_busiest(). And calculate_imbalance() and
6274 * find_busiest_group() avoid some of the usual balance conditions to allow it
6275 * to create an effective group imbalance.
6277 * This is a somewhat tricky proposition since the next run might not find the
6278 * group imbalance and decide the groups need to be balanced again. A most
6279 * subtle and fragile situation.
6282 static inline int sg_imbalanced(struct sched_group
*group
)
6284 return group
->sgc
->imbalance
;
6288 * group_has_capacity returns true if the group has spare capacity that could
6289 * be used by some tasks.
6290 * We consider that a group has spare capacity if the * number of task is
6291 * smaller than the number of CPUs or if the utilization is lower than the
6292 * available capacity for CFS tasks.
6293 * For the latter, we use a threshold to stabilize the state, to take into
6294 * account the variance of the tasks' load and to return true if the available
6295 * capacity in meaningful for the load balancer.
6296 * As an example, an available capacity of 1% can appear but it doesn't make
6297 * any benefit for the load balance.
6300 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
6302 if (sgs
->sum_nr_running
< sgs
->group_weight
)
6305 if ((sgs
->group_capacity
* 100) >
6306 (sgs
->group_util
* env
->sd
->imbalance_pct
))
6313 * group_is_overloaded returns true if the group has more tasks than it can
6315 * group_is_overloaded is not equals to !group_has_capacity because a group
6316 * with the exact right number of tasks, has no more spare capacity but is not
6317 * overloaded so both group_has_capacity and group_is_overloaded return
6321 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
6323 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
6326 if ((sgs
->group_capacity
* 100) <
6327 (sgs
->group_util
* env
->sd
->imbalance_pct
))
6334 group_type
group_classify(struct sched_group
*group
,
6335 struct sg_lb_stats
*sgs
)
6337 if (sgs
->group_no_capacity
)
6338 return group_overloaded
;
6340 if (sg_imbalanced(group
))
6341 return group_imbalanced
;
6347 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6348 * @env: The load balancing environment.
6349 * @group: sched_group whose statistics are to be updated.
6350 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6351 * @local_group: Does group contain this_cpu.
6352 * @sgs: variable to hold the statistics for this group.
6353 * @overload: Indicate more than one runnable task for any CPU.
6355 static inline void update_sg_lb_stats(struct lb_env
*env
,
6356 struct sched_group
*group
, int load_idx
,
6357 int local_group
, struct sg_lb_stats
*sgs
,
6363 memset(sgs
, 0, sizeof(*sgs
));
6365 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
6366 struct rq
*rq
= cpu_rq(i
);
6368 /* Bias balancing toward cpus of our domain */
6370 load
= target_load(i
, load_idx
);
6372 load
= source_load(i
, load_idx
);
6374 sgs
->group_load
+= load
;
6375 sgs
->group_util
+= cpu_util(i
);
6376 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
6378 if (rq
->nr_running
> 1)
6381 #ifdef CONFIG_NUMA_BALANCING
6382 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
6383 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
6385 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
6390 /* Adjust by relative CPU capacity of the group */
6391 sgs
->group_capacity
= group
->sgc
->capacity
;
6392 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
6394 if (sgs
->sum_nr_running
)
6395 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
6397 sgs
->group_weight
= group
->group_weight
;
6399 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
6400 sgs
->group_type
= group_classify(group
, sgs
);
6404 * update_sd_pick_busiest - return 1 on busiest group
6405 * @env: The load balancing environment.
6406 * @sds: sched_domain statistics
6407 * @sg: sched_group candidate to be checked for being the busiest
6408 * @sgs: sched_group statistics
6410 * Determine if @sg is a busier group than the previously selected
6413 * Return: %true if @sg is a busier group than the previously selected
6414 * busiest group. %false otherwise.
6416 static bool update_sd_pick_busiest(struct lb_env
*env
,
6417 struct sd_lb_stats
*sds
,
6418 struct sched_group
*sg
,
6419 struct sg_lb_stats
*sgs
)
6421 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
6423 if (sgs
->group_type
> busiest
->group_type
)
6426 if (sgs
->group_type
< busiest
->group_type
)
6429 if (sgs
->avg_load
<= busiest
->avg_load
)
6432 /* This is the busiest node in its class. */
6433 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
6437 * ASYM_PACKING needs to move all the work to the lowest
6438 * numbered CPUs in the group, therefore mark all groups
6439 * higher than ourself as busy.
6441 if (sgs
->sum_nr_running
&& env
->dst_cpu
< group_first_cpu(sg
)) {
6445 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
6452 #ifdef CONFIG_NUMA_BALANCING
6453 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
6455 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
6457 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
6462 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
6464 if (rq
->nr_running
> rq
->nr_numa_running
)
6466 if (rq
->nr_running
> rq
->nr_preferred_running
)
6471 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
6476 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
6480 #endif /* CONFIG_NUMA_BALANCING */
6483 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6484 * @env: The load balancing environment.
6485 * @sds: variable to hold the statistics for this sched_domain.
6487 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
6489 struct sched_domain
*child
= env
->sd
->child
;
6490 struct sched_group
*sg
= env
->sd
->groups
;
6491 struct sg_lb_stats tmp_sgs
;
6492 int load_idx
, prefer_sibling
= 0;
6493 bool overload
= false;
6495 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
6498 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
6501 struct sg_lb_stats
*sgs
= &tmp_sgs
;
6504 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_cpus(sg
));
6507 sgs
= &sds
->local_stat
;
6509 if (env
->idle
!= CPU_NEWLY_IDLE
||
6510 time_after_eq(jiffies
, sg
->sgc
->next_update
))
6511 update_group_capacity(env
->sd
, env
->dst_cpu
);
6514 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
6521 * In case the child domain prefers tasks go to siblings
6522 * first, lower the sg capacity so that we'll try
6523 * and move all the excess tasks away. We lower the capacity
6524 * of a group only if the local group has the capacity to fit
6525 * these excess tasks. The extra check prevents the case where
6526 * you always pull from the heaviest group when it is already
6527 * under-utilized (possible with a large weight task outweighs
6528 * the tasks on the system).
6530 if (prefer_sibling
&& sds
->local
&&
6531 group_has_capacity(env
, &sds
->local_stat
) &&
6532 (sgs
->sum_nr_running
> 1)) {
6533 sgs
->group_no_capacity
= 1;
6534 sgs
->group_type
= group_classify(sg
, sgs
);
6537 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
6539 sds
->busiest_stat
= *sgs
;
6543 /* Now, start updating sd_lb_stats */
6544 sds
->total_load
+= sgs
->group_load
;
6545 sds
->total_capacity
+= sgs
->group_capacity
;
6548 } while (sg
!= env
->sd
->groups
);
6550 if (env
->sd
->flags
& SD_NUMA
)
6551 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
6553 if (!env
->sd
->parent
) {
6554 /* update overload indicator if we are at root domain */
6555 if (env
->dst_rq
->rd
->overload
!= overload
)
6556 env
->dst_rq
->rd
->overload
= overload
;
6562 * check_asym_packing - Check to see if the group is packed into the
6565 * This is primarily intended to used at the sibling level. Some
6566 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6567 * case of POWER7, it can move to lower SMT modes only when higher
6568 * threads are idle. When in lower SMT modes, the threads will
6569 * perform better since they share less core resources. Hence when we
6570 * have idle threads, we want them to be the higher ones.
6572 * This packing function is run on idle threads. It checks to see if
6573 * the busiest CPU in this domain (core in the P7 case) has a higher
6574 * CPU number than the packing function is being run on. Here we are
6575 * assuming lower CPU number will be equivalent to lower a SMT thread
6578 * Return: 1 when packing is required and a task should be moved to
6579 * this CPU. The amount of the imbalance is returned in *imbalance.
6581 * @env: The load balancing environment.
6582 * @sds: Statistics of the sched_domain which is to be packed
6584 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
6588 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
6594 busiest_cpu
= group_first_cpu(sds
->busiest
);
6595 if (env
->dst_cpu
> busiest_cpu
)
6598 env
->imbalance
= DIV_ROUND_CLOSEST(
6599 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
6600 SCHED_CAPACITY_SCALE
);
6606 * fix_small_imbalance - Calculate the minor imbalance that exists
6607 * amongst the groups of a sched_domain, during
6609 * @env: The load balancing environment.
6610 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6613 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
6615 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
6616 unsigned int imbn
= 2;
6617 unsigned long scaled_busy_load_per_task
;
6618 struct sg_lb_stats
*local
, *busiest
;
6620 local
= &sds
->local_stat
;
6621 busiest
= &sds
->busiest_stat
;
6623 if (!local
->sum_nr_running
)
6624 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
6625 else if (busiest
->load_per_task
> local
->load_per_task
)
6628 scaled_busy_load_per_task
=
6629 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
6630 busiest
->group_capacity
;
6632 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
6633 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
6634 env
->imbalance
= busiest
->load_per_task
;
6639 * OK, we don't have enough imbalance to justify moving tasks,
6640 * however we may be able to increase total CPU capacity used by
6644 capa_now
+= busiest
->group_capacity
*
6645 min(busiest
->load_per_task
, busiest
->avg_load
);
6646 capa_now
+= local
->group_capacity
*
6647 min(local
->load_per_task
, local
->avg_load
);
6648 capa_now
/= SCHED_CAPACITY_SCALE
;
6650 /* Amount of load we'd subtract */
6651 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
6652 capa_move
+= busiest
->group_capacity
*
6653 min(busiest
->load_per_task
,
6654 busiest
->avg_load
- scaled_busy_load_per_task
);
6657 /* Amount of load we'd add */
6658 if (busiest
->avg_load
* busiest
->group_capacity
<
6659 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
6660 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
6661 local
->group_capacity
;
6663 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
6664 local
->group_capacity
;
6666 capa_move
+= local
->group_capacity
*
6667 min(local
->load_per_task
, local
->avg_load
+ tmp
);
6668 capa_move
/= SCHED_CAPACITY_SCALE
;
6670 /* Move if we gain throughput */
6671 if (capa_move
> capa_now
)
6672 env
->imbalance
= busiest
->load_per_task
;
6676 * calculate_imbalance - Calculate the amount of imbalance present within the
6677 * groups of a given sched_domain during load balance.
6678 * @env: load balance environment
6679 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6681 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
6683 unsigned long max_pull
, load_above_capacity
= ~0UL;
6684 struct sg_lb_stats
*local
, *busiest
;
6686 local
= &sds
->local_stat
;
6687 busiest
= &sds
->busiest_stat
;
6689 if (busiest
->group_type
== group_imbalanced
) {
6691 * In the group_imb case we cannot rely on group-wide averages
6692 * to ensure cpu-load equilibrium, look at wider averages. XXX
6694 busiest
->load_per_task
=
6695 min(busiest
->load_per_task
, sds
->avg_load
);
6699 * In the presence of smp nice balancing, certain scenarios can have
6700 * max load less than avg load(as we skip the groups at or below
6701 * its cpu_capacity, while calculating max_load..)
6703 if (busiest
->avg_load
<= sds
->avg_load
||
6704 local
->avg_load
>= sds
->avg_load
) {
6706 return fix_small_imbalance(env
, sds
);
6710 * If there aren't any idle cpus, avoid creating some.
6712 if (busiest
->group_type
== group_overloaded
&&
6713 local
->group_type
== group_overloaded
) {
6714 load_above_capacity
= busiest
->sum_nr_running
*
6716 if (load_above_capacity
> busiest
->group_capacity
)
6717 load_above_capacity
-= busiest
->group_capacity
;
6719 load_above_capacity
= ~0UL;
6723 * We're trying to get all the cpus to the average_load, so we don't
6724 * want to push ourselves above the average load, nor do we wish to
6725 * reduce the max loaded cpu below the average load. At the same time,
6726 * we also don't want to reduce the group load below the group capacity
6727 * (so that we can implement power-savings policies etc). Thus we look
6728 * for the minimum possible imbalance.
6730 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
6732 /* How much load to actually move to equalise the imbalance */
6733 env
->imbalance
= min(
6734 max_pull
* busiest
->group_capacity
,
6735 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
6736 ) / SCHED_CAPACITY_SCALE
;
6739 * if *imbalance is less than the average load per runnable task
6740 * there is no guarantee that any tasks will be moved so we'll have
6741 * a think about bumping its value to force at least one task to be
6744 if (env
->imbalance
< busiest
->load_per_task
)
6745 return fix_small_imbalance(env
, sds
);
6748 /******* find_busiest_group() helpers end here *********************/
6751 * find_busiest_group - Returns the busiest group within the sched_domain
6752 * if there is an imbalance. If there isn't an imbalance, and
6753 * the user has opted for power-savings, it returns a group whose
6754 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6755 * such a group exists.
6757 * Also calculates the amount of weighted load which should be moved
6758 * to restore balance.
6760 * @env: The load balancing environment.
6762 * Return: - The busiest group if imbalance exists.
6763 * - If no imbalance and user has opted for power-savings balance,
6764 * return the least loaded group whose CPUs can be
6765 * put to idle by rebalancing its tasks onto our group.
6767 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
6769 struct sg_lb_stats
*local
, *busiest
;
6770 struct sd_lb_stats sds
;
6772 init_sd_lb_stats(&sds
);
6775 * Compute the various statistics relavent for load balancing at
6778 update_sd_lb_stats(env
, &sds
);
6779 local
= &sds
.local_stat
;
6780 busiest
= &sds
.busiest_stat
;
6782 /* ASYM feature bypasses nice load balance check */
6783 if ((env
->idle
== CPU_IDLE
|| env
->idle
== CPU_NEWLY_IDLE
) &&
6784 check_asym_packing(env
, &sds
))
6787 /* There is no busy sibling group to pull tasks from */
6788 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
6791 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
6792 / sds
.total_capacity
;
6795 * If the busiest group is imbalanced the below checks don't
6796 * work because they assume all things are equal, which typically
6797 * isn't true due to cpus_allowed constraints and the like.
6799 if (busiest
->group_type
== group_imbalanced
)
6802 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6803 if (env
->idle
== CPU_NEWLY_IDLE
&& group_has_capacity(env
, local
) &&
6804 busiest
->group_no_capacity
)
6808 * If the local group is busier than the selected busiest group
6809 * don't try and pull any tasks.
6811 if (local
->avg_load
>= busiest
->avg_load
)
6815 * Don't pull any tasks if this group is already above the domain
6818 if (local
->avg_load
>= sds
.avg_load
)
6821 if (env
->idle
== CPU_IDLE
) {
6823 * This cpu is idle. If the busiest group is not overloaded
6824 * and there is no imbalance between this and busiest group
6825 * wrt idle cpus, it is balanced. The imbalance becomes
6826 * significant if the diff is greater than 1 otherwise we
6827 * might end up to just move the imbalance on another group
6829 if ((busiest
->group_type
!= group_overloaded
) &&
6830 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
6834 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6835 * imbalance_pct to be conservative.
6837 if (100 * busiest
->avg_load
<=
6838 env
->sd
->imbalance_pct
* local
->avg_load
)
6843 /* Looks like there is an imbalance. Compute it */
6844 calculate_imbalance(env
, &sds
);
6853 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6855 static struct rq
*find_busiest_queue(struct lb_env
*env
,
6856 struct sched_group
*group
)
6858 struct rq
*busiest
= NULL
, *rq
;
6859 unsigned long busiest_load
= 0, busiest_capacity
= 1;
6862 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
6863 unsigned long capacity
, wl
;
6867 rt
= fbq_classify_rq(rq
);
6870 * We classify groups/runqueues into three groups:
6871 * - regular: there are !numa tasks
6872 * - remote: there are numa tasks that run on the 'wrong' node
6873 * - all: there is no distinction
6875 * In order to avoid migrating ideally placed numa tasks,
6876 * ignore those when there's better options.
6878 * If we ignore the actual busiest queue to migrate another
6879 * task, the next balance pass can still reduce the busiest
6880 * queue by moving tasks around inside the node.
6882 * If we cannot move enough load due to this classification
6883 * the next pass will adjust the group classification and
6884 * allow migration of more tasks.
6886 * Both cases only affect the total convergence complexity.
6888 if (rt
> env
->fbq_type
)
6891 capacity
= capacity_of(i
);
6893 wl
= weighted_cpuload(i
);
6896 * When comparing with imbalance, use weighted_cpuload()
6897 * which is not scaled with the cpu capacity.
6900 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
6901 !check_cpu_capacity(rq
, env
->sd
))
6905 * For the load comparisons with the other cpu's, consider
6906 * the weighted_cpuload() scaled with the cpu capacity, so
6907 * that the load can be moved away from the cpu that is
6908 * potentially running at a lower capacity.
6910 * Thus we're looking for max(wl_i / capacity_i), crosswise
6911 * multiplication to rid ourselves of the division works out
6912 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6913 * our previous maximum.
6915 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
6917 busiest_capacity
= capacity
;
6926 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6927 * so long as it is large enough.
6929 #define MAX_PINNED_INTERVAL 512
6931 /* Working cpumask for load_balance and load_balance_newidle. */
6932 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
6934 static int need_active_balance(struct lb_env
*env
)
6936 struct sched_domain
*sd
= env
->sd
;
6938 if (env
->idle
== CPU_NEWLY_IDLE
) {
6941 * ASYM_PACKING needs to force migrate tasks from busy but
6942 * higher numbered CPUs in order to pack all tasks in the
6943 * lowest numbered CPUs.
6945 if ((sd
->flags
& SD_ASYM_PACKING
) && env
->src_cpu
> env
->dst_cpu
)
6950 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6951 * It's worth migrating the task if the src_cpu's capacity is reduced
6952 * because of other sched_class or IRQs if more capacity stays
6953 * available on dst_cpu.
6955 if ((env
->idle
!= CPU_NOT_IDLE
) &&
6956 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
6957 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
6958 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
6962 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
6965 static int active_load_balance_cpu_stop(void *data
);
6967 static int should_we_balance(struct lb_env
*env
)
6969 struct sched_group
*sg
= env
->sd
->groups
;
6970 struct cpumask
*sg_cpus
, *sg_mask
;
6971 int cpu
, balance_cpu
= -1;
6974 * In the newly idle case, we will allow all the cpu's
6975 * to do the newly idle load balance.
6977 if (env
->idle
== CPU_NEWLY_IDLE
)
6980 sg_cpus
= sched_group_cpus(sg
);
6981 sg_mask
= sched_group_mask(sg
);
6982 /* Try to find first idle cpu */
6983 for_each_cpu_and(cpu
, sg_cpus
, env
->cpus
) {
6984 if (!cpumask_test_cpu(cpu
, sg_mask
) || !idle_cpu(cpu
))
6991 if (balance_cpu
== -1)
6992 balance_cpu
= group_balance_cpu(sg
);
6995 * First idle cpu or the first cpu(busiest) in this sched group
6996 * is eligible for doing load balancing at this and above domains.
6998 return balance_cpu
== env
->dst_cpu
;
7002 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7003 * tasks if there is an imbalance.
7005 static int load_balance(int this_cpu
, struct rq
*this_rq
,
7006 struct sched_domain
*sd
, enum cpu_idle_type idle
,
7007 int *continue_balancing
)
7009 int ld_moved
, cur_ld_moved
, active_balance
= 0;
7010 struct sched_domain
*sd_parent
= sd
->parent
;
7011 struct sched_group
*group
;
7013 unsigned long flags
;
7014 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
7016 struct lb_env env
= {
7018 .dst_cpu
= this_cpu
,
7020 .dst_grpmask
= sched_group_cpus(sd
->groups
),
7022 .loop_break
= sched_nr_migrate_break
,
7025 .tasks
= LIST_HEAD_INIT(env
.tasks
),
7029 * For NEWLY_IDLE load_balancing, we don't need to consider
7030 * other cpus in our group
7032 if (idle
== CPU_NEWLY_IDLE
)
7033 env
.dst_grpmask
= NULL
;
7035 cpumask_copy(cpus
, cpu_active_mask
);
7037 schedstat_inc(sd
, lb_count
[idle
]);
7040 if (!should_we_balance(&env
)) {
7041 *continue_balancing
= 0;
7045 group
= find_busiest_group(&env
);
7047 schedstat_inc(sd
, lb_nobusyg
[idle
]);
7051 busiest
= find_busiest_queue(&env
, group
);
7053 schedstat_inc(sd
, lb_nobusyq
[idle
]);
7057 BUG_ON(busiest
== env
.dst_rq
);
7059 schedstat_add(sd
, lb_imbalance
[idle
], env
.imbalance
);
7061 env
.src_cpu
= busiest
->cpu
;
7062 env
.src_rq
= busiest
;
7065 if (busiest
->nr_running
> 1) {
7067 * Attempt to move tasks. If find_busiest_group has found
7068 * an imbalance but busiest->nr_running <= 1, the group is
7069 * still unbalanced. ld_moved simply stays zero, so it is
7070 * correctly treated as an imbalance.
7072 env
.flags
|= LBF_ALL_PINNED
;
7073 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
7076 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7079 * cur_ld_moved - load moved in current iteration
7080 * ld_moved - cumulative load moved across iterations
7082 cur_ld_moved
= detach_tasks(&env
);
7085 * We've detached some tasks from busiest_rq. Every
7086 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7087 * unlock busiest->lock, and we are able to be sure
7088 * that nobody can manipulate the tasks in parallel.
7089 * See task_rq_lock() family for the details.
7092 raw_spin_unlock(&busiest
->lock
);
7096 ld_moved
+= cur_ld_moved
;
7099 local_irq_restore(flags
);
7101 if (env
.flags
& LBF_NEED_BREAK
) {
7102 env
.flags
&= ~LBF_NEED_BREAK
;
7107 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7108 * us and move them to an alternate dst_cpu in our sched_group
7109 * where they can run. The upper limit on how many times we
7110 * iterate on same src_cpu is dependent on number of cpus in our
7113 * This changes load balance semantics a bit on who can move
7114 * load to a given_cpu. In addition to the given_cpu itself
7115 * (or a ilb_cpu acting on its behalf where given_cpu is
7116 * nohz-idle), we now have balance_cpu in a position to move
7117 * load to given_cpu. In rare situations, this may cause
7118 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7119 * _independently_ and at _same_ time to move some load to
7120 * given_cpu) causing exceess load to be moved to given_cpu.
7121 * This however should not happen so much in practice and
7122 * moreover subsequent load balance cycles should correct the
7123 * excess load moved.
7125 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
7127 /* Prevent to re-select dst_cpu via env's cpus */
7128 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
7130 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
7131 env
.dst_cpu
= env
.new_dst_cpu
;
7132 env
.flags
&= ~LBF_DST_PINNED
;
7134 env
.loop_break
= sched_nr_migrate_break
;
7137 * Go back to "more_balance" rather than "redo" since we
7138 * need to continue with same src_cpu.
7144 * We failed to reach balance because of affinity.
7147 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7149 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
7150 *group_imbalance
= 1;
7153 /* All tasks on this runqueue were pinned by CPU affinity */
7154 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
7155 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
7156 if (!cpumask_empty(cpus
)) {
7158 env
.loop_break
= sched_nr_migrate_break
;
7161 goto out_all_pinned
;
7166 schedstat_inc(sd
, lb_failed
[idle
]);
7168 * Increment the failure counter only on periodic balance.
7169 * We do not want newidle balance, which can be very
7170 * frequent, pollute the failure counter causing
7171 * excessive cache_hot migrations and active balances.
7173 if (idle
!= CPU_NEWLY_IDLE
)
7174 sd
->nr_balance_failed
++;
7176 if (need_active_balance(&env
)) {
7177 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7179 /* don't kick the active_load_balance_cpu_stop,
7180 * if the curr task on busiest cpu can't be
7183 if (!cpumask_test_cpu(this_cpu
,
7184 tsk_cpus_allowed(busiest
->curr
))) {
7185 raw_spin_unlock_irqrestore(&busiest
->lock
,
7187 env
.flags
|= LBF_ALL_PINNED
;
7188 goto out_one_pinned
;
7192 * ->active_balance synchronizes accesses to
7193 * ->active_balance_work. Once set, it's cleared
7194 * only after active load balance is finished.
7196 if (!busiest
->active_balance
) {
7197 busiest
->active_balance
= 1;
7198 busiest
->push_cpu
= this_cpu
;
7201 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
7203 if (active_balance
) {
7204 stop_one_cpu_nowait(cpu_of(busiest
),
7205 active_load_balance_cpu_stop
, busiest
,
7206 &busiest
->active_balance_work
);
7210 * We've kicked active balancing, reset the failure
7213 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
7216 sd
->nr_balance_failed
= 0;
7218 if (likely(!active_balance
)) {
7219 /* We were unbalanced, so reset the balancing interval */
7220 sd
->balance_interval
= sd
->min_interval
;
7223 * If we've begun active balancing, start to back off. This
7224 * case may not be covered by the all_pinned logic if there
7225 * is only 1 task on the busy runqueue (because we don't call
7228 if (sd
->balance_interval
< sd
->max_interval
)
7229 sd
->balance_interval
*= 2;
7236 * We reach balance although we may have faced some affinity
7237 * constraints. Clear the imbalance flag if it was set.
7240 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7242 if (*group_imbalance
)
7243 *group_imbalance
= 0;
7248 * We reach balance because all tasks are pinned at this level so
7249 * we can't migrate them. Let the imbalance flag set so parent level
7250 * can try to migrate them.
7252 schedstat_inc(sd
, lb_balanced
[idle
]);
7254 sd
->nr_balance_failed
= 0;
7257 /* tune up the balancing interval */
7258 if (((env
.flags
& LBF_ALL_PINNED
) &&
7259 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
7260 (sd
->balance_interval
< sd
->max_interval
))
7261 sd
->balance_interval
*= 2;
7268 static inline unsigned long
7269 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
7271 unsigned long interval
= sd
->balance_interval
;
7274 interval
*= sd
->busy_factor
;
7276 /* scale ms to jiffies */
7277 interval
= msecs_to_jiffies(interval
);
7278 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7284 update_next_balance(struct sched_domain
*sd
, int cpu_busy
, unsigned long *next_balance
)
7286 unsigned long interval
, next
;
7288 interval
= get_sd_balance_interval(sd
, cpu_busy
);
7289 next
= sd
->last_balance
+ interval
;
7291 if (time_after(*next_balance
, next
))
7292 *next_balance
= next
;
7296 * idle_balance is called by schedule() if this_cpu is about to become
7297 * idle. Attempts to pull tasks from other CPUs.
7299 static int idle_balance(struct rq
*this_rq
)
7301 unsigned long next_balance
= jiffies
+ HZ
;
7302 int this_cpu
= this_rq
->cpu
;
7303 struct sched_domain
*sd
;
7304 int pulled_task
= 0;
7307 idle_enter_fair(this_rq
);
7310 * We must set idle_stamp _before_ calling idle_balance(), such that we
7311 * measure the duration of idle_balance() as idle time.
7313 this_rq
->idle_stamp
= rq_clock(this_rq
);
7315 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
7316 !this_rq
->rd
->overload
) {
7318 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
7320 update_next_balance(sd
, 0, &next_balance
);
7326 raw_spin_unlock(&this_rq
->lock
);
7328 update_blocked_averages(this_cpu
);
7330 for_each_domain(this_cpu
, sd
) {
7331 int continue_balancing
= 1;
7332 u64 t0
, domain_cost
;
7334 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7337 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
7338 update_next_balance(sd
, 0, &next_balance
);
7342 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
7343 t0
= sched_clock_cpu(this_cpu
);
7345 pulled_task
= load_balance(this_cpu
, this_rq
,
7347 &continue_balancing
);
7349 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
7350 if (domain_cost
> sd
->max_newidle_lb_cost
)
7351 sd
->max_newidle_lb_cost
= domain_cost
;
7353 curr_cost
+= domain_cost
;
7356 update_next_balance(sd
, 0, &next_balance
);
7359 * Stop searching for tasks to pull if there are
7360 * now runnable tasks on this rq.
7362 if (pulled_task
|| this_rq
->nr_running
> 0)
7367 raw_spin_lock(&this_rq
->lock
);
7369 if (curr_cost
> this_rq
->max_idle_balance_cost
)
7370 this_rq
->max_idle_balance_cost
= curr_cost
;
7373 * While browsing the domains, we released the rq lock, a task could
7374 * have been enqueued in the meantime. Since we're not going idle,
7375 * pretend we pulled a task.
7377 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
7381 /* Move the next balance forward */
7382 if (time_after(this_rq
->next_balance
, next_balance
))
7383 this_rq
->next_balance
= next_balance
;
7385 /* Is there a task of a high priority class? */
7386 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
7390 idle_exit_fair(this_rq
);
7391 this_rq
->idle_stamp
= 0;
7398 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7399 * running tasks off the busiest CPU onto idle CPUs. It requires at
7400 * least 1 task to be running on each physical CPU where possible, and
7401 * avoids physical / logical imbalances.
7403 static int active_load_balance_cpu_stop(void *data
)
7405 struct rq
*busiest_rq
= data
;
7406 int busiest_cpu
= cpu_of(busiest_rq
);
7407 int target_cpu
= busiest_rq
->push_cpu
;
7408 struct rq
*target_rq
= cpu_rq(target_cpu
);
7409 struct sched_domain
*sd
;
7410 struct task_struct
*p
= NULL
;
7412 raw_spin_lock_irq(&busiest_rq
->lock
);
7414 /* make sure the requested cpu hasn't gone down in the meantime */
7415 if (unlikely(busiest_cpu
!= smp_processor_id() ||
7416 !busiest_rq
->active_balance
))
7419 /* Is there any task to move? */
7420 if (busiest_rq
->nr_running
<= 1)
7424 * This condition is "impossible", if it occurs
7425 * we need to fix it. Originally reported by
7426 * Bjorn Helgaas on a 128-cpu setup.
7428 BUG_ON(busiest_rq
== target_rq
);
7430 /* Search for an sd spanning us and the target CPU. */
7432 for_each_domain(target_cpu
, sd
) {
7433 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
7434 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
7439 struct lb_env env
= {
7441 .dst_cpu
= target_cpu
,
7442 .dst_rq
= target_rq
,
7443 .src_cpu
= busiest_rq
->cpu
,
7444 .src_rq
= busiest_rq
,
7448 schedstat_inc(sd
, alb_count
);
7450 p
= detach_one_task(&env
);
7452 schedstat_inc(sd
, alb_pushed
);
7454 schedstat_inc(sd
, alb_failed
);
7458 busiest_rq
->active_balance
= 0;
7459 raw_spin_unlock(&busiest_rq
->lock
);
7462 attach_one_task(target_rq
, p
);
7469 static inline int on_null_domain(struct rq
*rq
)
7471 return unlikely(!rcu_dereference_sched(rq
->sd
));
7474 #ifdef CONFIG_NO_HZ_COMMON
7476 * idle load balancing details
7477 * - When one of the busy CPUs notice that there may be an idle rebalancing
7478 * needed, they will kick the idle load balancer, which then does idle
7479 * load balancing for all the idle CPUs.
7482 cpumask_var_t idle_cpus_mask
;
7484 unsigned long next_balance
; /* in jiffy units */
7485 } nohz ____cacheline_aligned
;
7487 static inline int find_new_ilb(void)
7489 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
7491 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
7498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7500 * CPU (if there is one).
7502 static void nohz_balancer_kick(void)
7506 nohz
.next_balance
++;
7508 ilb_cpu
= find_new_ilb();
7510 if (ilb_cpu
>= nr_cpu_ids
)
7513 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
7516 * Use smp_send_reschedule() instead of resched_cpu().
7517 * This way we generate a sched IPI on the target cpu which
7518 * is idle. And the softirq performing nohz idle load balance
7519 * will be run before returning from the IPI.
7521 smp_send_reschedule(ilb_cpu
);
7525 static inline void nohz_balance_exit_idle(int cpu
)
7527 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
7529 * Completely isolated CPUs don't ever set, so we must test.
7531 if (likely(cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))) {
7532 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
7533 atomic_dec(&nohz
.nr_cpus
);
7535 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
7539 static inline void set_cpu_sd_state_busy(void)
7541 struct sched_domain
*sd
;
7542 int cpu
= smp_processor_id();
7545 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
7547 if (!sd
|| !sd
->nohz_idle
)
7551 atomic_inc(&sd
->groups
->sgc
->nr_busy_cpus
);
7556 void set_cpu_sd_state_idle(void)
7558 struct sched_domain
*sd
;
7559 int cpu
= smp_processor_id();
7562 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
7564 if (!sd
|| sd
->nohz_idle
)
7568 atomic_dec(&sd
->groups
->sgc
->nr_busy_cpus
);
7574 * This routine will record that the cpu is going idle with tick stopped.
7575 * This info will be used in performing idle load balancing in the future.
7577 void nohz_balance_enter_idle(int cpu
)
7580 * If this cpu is going down, then nothing needs to be done.
7582 if (!cpu_active(cpu
))
7585 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
7589 * If we're a completely isolated CPU, we don't play.
7591 if (on_null_domain(cpu_rq(cpu
)))
7594 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
7595 atomic_inc(&nohz
.nr_cpus
);
7596 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
7599 static int sched_ilb_notifier(struct notifier_block
*nfb
,
7600 unsigned long action
, void *hcpu
)
7602 switch (action
& ~CPU_TASKS_FROZEN
) {
7604 nohz_balance_exit_idle(smp_processor_id());
7612 static DEFINE_SPINLOCK(balancing
);
7615 * Scale the max load_balance interval with the number of CPUs in the system.
7616 * This trades load-balance latency on larger machines for less cross talk.
7618 void update_max_interval(void)
7620 max_load_balance_interval
= HZ
*num_online_cpus()/10;
7624 * It checks each scheduling domain to see if it is due to be balanced,
7625 * and initiates a balancing operation if so.
7627 * Balancing parameters are set up in init_sched_domains.
7629 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
7631 int continue_balancing
= 1;
7633 unsigned long interval
;
7634 struct sched_domain
*sd
;
7635 /* Earliest time when we have to do rebalance again */
7636 unsigned long next_balance
= jiffies
+ 60*HZ
;
7637 int update_next_balance
= 0;
7638 int need_serialize
, need_decay
= 0;
7641 update_blocked_averages(cpu
);
7644 for_each_domain(cpu
, sd
) {
7646 * Decay the newidle max times here because this is a regular
7647 * visit to all the domains. Decay ~1% per second.
7649 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
7650 sd
->max_newidle_lb_cost
=
7651 (sd
->max_newidle_lb_cost
* 253) / 256;
7652 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
7655 max_cost
+= sd
->max_newidle_lb_cost
;
7657 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7661 * Stop the load balance at this level. There is another
7662 * CPU in our sched group which is doing load balancing more
7665 if (!continue_balancing
) {
7671 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
7673 need_serialize
= sd
->flags
& SD_SERIALIZE
;
7674 if (need_serialize
) {
7675 if (!spin_trylock(&balancing
))
7679 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
7680 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
7682 * The LBF_DST_PINNED logic could have changed
7683 * env->dst_cpu, so we can't know our idle
7684 * state even if we migrated tasks. Update it.
7686 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
7688 sd
->last_balance
= jiffies
;
7689 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
7692 spin_unlock(&balancing
);
7694 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
7695 next_balance
= sd
->last_balance
+ interval
;
7696 update_next_balance
= 1;
7701 * Ensure the rq-wide value also decays but keep it at a
7702 * reasonable floor to avoid funnies with rq->avg_idle.
7704 rq
->max_idle_balance_cost
=
7705 max((u64
)sysctl_sched_migration_cost
, max_cost
);
7710 * next_balance will be updated only when there is a need.
7711 * When the cpu is attached to null domain for ex, it will not be
7714 if (likely(update_next_balance
)) {
7715 rq
->next_balance
= next_balance
;
7717 #ifdef CONFIG_NO_HZ_COMMON
7719 * If this CPU has been elected to perform the nohz idle
7720 * balance. Other idle CPUs have already rebalanced with
7721 * nohz_idle_balance() and nohz.next_balance has been
7722 * updated accordingly. This CPU is now running the idle load
7723 * balance for itself and we need to update the
7724 * nohz.next_balance accordingly.
7726 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
7727 nohz
.next_balance
= rq
->next_balance
;
7732 #ifdef CONFIG_NO_HZ_COMMON
7734 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7735 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7737 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
7739 int this_cpu
= this_rq
->cpu
;
7742 /* Earliest time when we have to do rebalance again */
7743 unsigned long next_balance
= jiffies
+ 60*HZ
;
7744 int update_next_balance
= 0;
7746 if (idle
!= CPU_IDLE
||
7747 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
7750 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
7751 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
7755 * If this cpu gets work to do, stop the load balancing
7756 * work being done for other cpus. Next load
7757 * balancing owner will pick it up.
7762 rq
= cpu_rq(balance_cpu
);
7765 * If time for next balance is due,
7768 if (time_after_eq(jiffies
, rq
->next_balance
)) {
7769 raw_spin_lock_irq(&rq
->lock
);
7770 update_rq_clock(rq
);
7771 update_idle_cpu_load(rq
);
7772 raw_spin_unlock_irq(&rq
->lock
);
7773 rebalance_domains(rq
, CPU_IDLE
);
7776 if (time_after(next_balance
, rq
->next_balance
)) {
7777 next_balance
= rq
->next_balance
;
7778 update_next_balance
= 1;
7783 * next_balance will be updated only when there is a need.
7784 * When the CPU is attached to null domain for ex, it will not be
7787 if (likely(update_next_balance
))
7788 nohz
.next_balance
= next_balance
;
7790 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
7794 * Current heuristic for kicking the idle load balancer in the presence
7795 * of an idle cpu in the system.
7796 * - This rq has more than one task.
7797 * - This rq has at least one CFS task and the capacity of the CPU is
7798 * significantly reduced because of RT tasks or IRQs.
7799 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7800 * multiple busy cpu.
7801 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7802 * domain span are idle.
7804 static inline bool nohz_kick_needed(struct rq
*rq
)
7806 unsigned long now
= jiffies
;
7807 struct sched_domain
*sd
;
7808 struct sched_group_capacity
*sgc
;
7809 int nr_busy
, cpu
= rq
->cpu
;
7812 if (unlikely(rq
->idle_balance
))
7816 * We may be recently in ticked or tickless idle mode. At the first
7817 * busy tick after returning from idle, we will update the busy stats.
7819 set_cpu_sd_state_busy();
7820 nohz_balance_exit_idle(cpu
);
7823 * None are in tickless mode and hence no need for NOHZ idle load
7826 if (likely(!atomic_read(&nohz
.nr_cpus
)))
7829 if (time_before(now
, nohz
.next_balance
))
7832 if (rq
->nr_running
>= 2)
7836 sd
= rcu_dereference(per_cpu(sd_busy
, cpu
));
7838 sgc
= sd
->groups
->sgc
;
7839 nr_busy
= atomic_read(&sgc
->nr_busy_cpus
);
7848 sd
= rcu_dereference(rq
->sd
);
7850 if ((rq
->cfs
.h_nr_running
>= 1) &&
7851 check_cpu_capacity(rq
, sd
)) {
7857 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
7858 if (sd
&& (cpumask_first_and(nohz
.idle_cpus_mask
,
7859 sched_domain_span(sd
)) < cpu
)) {
7869 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
) { }
7873 * run_rebalance_domains is triggered when needed from the scheduler tick.
7874 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7876 static void run_rebalance_domains(struct softirq_action
*h
)
7878 struct rq
*this_rq
= this_rq();
7879 enum cpu_idle_type idle
= this_rq
->idle_balance
?
7880 CPU_IDLE
: CPU_NOT_IDLE
;
7883 * If this cpu has a pending nohz_balance_kick, then do the
7884 * balancing on behalf of the other idle cpus whose ticks are
7885 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7886 * give the idle cpus a chance to load balance. Else we may
7887 * load balance only within the local sched_domain hierarchy
7888 * and abort nohz_idle_balance altogether if we pull some load.
7890 nohz_idle_balance(this_rq
, idle
);
7891 rebalance_domains(this_rq
, idle
);
7895 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7897 void trigger_load_balance(struct rq
*rq
)
7899 /* Don't need to rebalance while attached to NULL domain */
7900 if (unlikely(on_null_domain(rq
)))
7903 if (time_after_eq(jiffies
, rq
->next_balance
))
7904 raise_softirq(SCHED_SOFTIRQ
);
7905 #ifdef CONFIG_NO_HZ_COMMON
7906 if (nohz_kick_needed(rq
))
7907 nohz_balancer_kick();
7911 static void rq_online_fair(struct rq
*rq
)
7915 update_runtime_enabled(rq
);
7918 static void rq_offline_fair(struct rq
*rq
)
7922 /* Ensure any throttled groups are reachable by pick_next_task */
7923 unthrottle_offline_cfs_rqs(rq
);
7926 #endif /* CONFIG_SMP */
7929 * scheduler tick hitting a task of our scheduling class:
7931 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
7933 struct cfs_rq
*cfs_rq
;
7934 struct sched_entity
*se
= &curr
->se
;
7936 for_each_sched_entity(se
) {
7937 cfs_rq
= cfs_rq_of(se
);
7938 entity_tick(cfs_rq
, se
, queued
);
7941 if (static_branch_unlikely(&sched_numa_balancing
))
7942 task_tick_numa(rq
, curr
);
7946 * called on fork with the child task as argument from the parent's context
7947 * - child not yet on the tasklist
7948 * - preemption disabled
7950 static void task_fork_fair(struct task_struct
*p
)
7952 struct cfs_rq
*cfs_rq
;
7953 struct sched_entity
*se
= &p
->se
, *curr
;
7954 int this_cpu
= smp_processor_id();
7955 struct rq
*rq
= this_rq();
7956 unsigned long flags
;
7958 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7960 update_rq_clock(rq
);
7962 cfs_rq
= task_cfs_rq(current
);
7963 curr
= cfs_rq
->curr
;
7966 * Not only the cpu but also the task_group of the parent might have
7967 * been changed after parent->se.parent,cfs_rq were copied to
7968 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7969 * of child point to valid ones.
7972 __set_task_cpu(p
, this_cpu
);
7975 update_curr(cfs_rq
);
7978 se
->vruntime
= curr
->vruntime
;
7979 place_entity(cfs_rq
, se
, 1);
7981 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
7983 * Upon rescheduling, sched_class::put_prev_task() will place
7984 * 'current' within the tree based on its new key value.
7986 swap(curr
->vruntime
, se
->vruntime
);
7990 se
->vruntime
-= cfs_rq
->min_vruntime
;
7992 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7996 * Priority of the task has changed. Check to see if we preempt
8000 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
8002 if (!task_on_rq_queued(p
))
8006 * Reschedule if we are currently running on this runqueue and
8007 * our priority decreased, or if we are not currently running on
8008 * this runqueue and our priority is higher than the current's
8010 if (rq
->curr
== p
) {
8011 if (p
->prio
> oldprio
)
8014 check_preempt_curr(rq
, p
, 0);
8017 static inline bool vruntime_normalized(struct task_struct
*p
)
8019 struct sched_entity
*se
= &p
->se
;
8022 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8023 * the dequeue_entity(.flags=0) will already have normalized the
8030 * When !on_rq, vruntime of the task has usually NOT been normalized.
8031 * But there are some cases where it has already been normalized:
8033 * - A forked child which is waiting for being woken up by
8034 * wake_up_new_task().
8035 * - A task which has been woken up by try_to_wake_up() and
8036 * waiting for actually being woken up by sched_ttwu_pending().
8038 if (!se
->sum_exec_runtime
|| p
->state
== TASK_WAKING
)
8044 static void detach_task_cfs_rq(struct task_struct
*p
)
8046 struct sched_entity
*se
= &p
->se
;
8047 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8049 if (!vruntime_normalized(p
)) {
8051 * Fix up our vruntime so that the current sleep doesn't
8052 * cause 'unlimited' sleep bonus.
8054 place_entity(cfs_rq
, se
, 0);
8055 se
->vruntime
-= cfs_rq
->min_vruntime
;
8058 /* Catch up with the cfs_rq and remove our load when we leave */
8059 detach_entity_load_avg(cfs_rq
, se
);
8062 static void attach_task_cfs_rq(struct task_struct
*p
)
8064 struct sched_entity
*se
= &p
->se
;
8065 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8067 #ifdef CONFIG_FAIR_GROUP_SCHED
8069 * Since the real-depth could have been changed (only FAIR
8070 * class maintain depth value), reset depth properly.
8072 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
8075 /* Synchronize task with its cfs_rq */
8076 attach_entity_load_avg(cfs_rq
, se
);
8078 if (!vruntime_normalized(p
))
8079 se
->vruntime
+= cfs_rq
->min_vruntime
;
8082 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
8084 detach_task_cfs_rq(p
);
8087 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
8089 attach_task_cfs_rq(p
);
8091 if (task_on_rq_queued(p
)) {
8093 * We were most likely switched from sched_rt, so
8094 * kick off the schedule if running, otherwise just see
8095 * if we can still preempt the current task.
8100 check_preempt_curr(rq
, p
, 0);
8104 /* Account for a task changing its policy or group.
8106 * This routine is mostly called to set cfs_rq->curr field when a task
8107 * migrates between groups/classes.
8109 static void set_curr_task_fair(struct rq
*rq
)
8111 struct sched_entity
*se
= &rq
->curr
->se
;
8113 for_each_sched_entity(se
) {
8114 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8116 set_next_entity(cfs_rq
, se
);
8117 /* ensure bandwidth has been allocated on our new cfs_rq */
8118 account_cfs_rq_runtime(cfs_rq
, 0);
8122 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8124 cfs_rq
->tasks_timeline
= RB_ROOT
;
8125 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8126 #ifndef CONFIG_64BIT
8127 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8130 atomic_long_set(&cfs_rq
->removed_load_avg
, 0);
8131 atomic_long_set(&cfs_rq
->removed_util_avg
, 0);
8135 #ifdef CONFIG_FAIR_GROUP_SCHED
8136 static void task_move_group_fair(struct task_struct
*p
)
8138 detach_task_cfs_rq(p
);
8139 set_task_rq(p
, task_cpu(p
));
8142 /* Tell se's cfs_rq has been changed -- migrated */
8143 p
->se
.avg
.last_update_time
= 0;
8145 attach_task_cfs_rq(p
);
8148 void free_fair_sched_group(struct task_group
*tg
)
8152 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8154 for_each_possible_cpu(i
) {
8156 kfree(tg
->cfs_rq
[i
]);
8159 remove_entity_load_avg(tg
->se
[i
]);
8168 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8170 struct cfs_rq
*cfs_rq
;
8171 struct sched_entity
*se
;
8174 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8177 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8181 tg
->shares
= NICE_0_LOAD
;
8183 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8185 for_each_possible_cpu(i
) {
8186 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8187 GFP_KERNEL
, cpu_to_node(i
));
8191 se
= kzalloc_node(sizeof(struct sched_entity
),
8192 GFP_KERNEL
, cpu_to_node(i
));
8196 init_cfs_rq(cfs_rq
);
8197 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8198 init_entity_runnable_average(se
);
8209 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8211 struct rq
*rq
= cpu_rq(cpu
);
8212 unsigned long flags
;
8215 * Only empty task groups can be destroyed; so we can speculatively
8216 * check on_list without danger of it being re-added.
8218 if (!tg
->cfs_rq
[cpu
]->on_list
)
8221 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8222 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8223 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8226 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8227 struct sched_entity
*se
, int cpu
,
8228 struct sched_entity
*parent
)
8230 struct rq
*rq
= cpu_rq(cpu
);
8234 init_cfs_rq_runtime(cfs_rq
);
8236 tg
->cfs_rq
[cpu
] = cfs_rq
;
8239 /* se could be NULL for root_task_group */
8244 se
->cfs_rq
= &rq
->cfs
;
8247 se
->cfs_rq
= parent
->my_q
;
8248 se
->depth
= parent
->depth
+ 1;
8252 /* guarantee group entities always have weight */
8253 update_load_set(&se
->load
, NICE_0_LOAD
);
8254 se
->parent
= parent
;
8257 static DEFINE_MUTEX(shares_mutex
);
8259 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8262 unsigned long flags
;
8265 * We can't change the weight of the root cgroup.
8270 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
8272 mutex_lock(&shares_mutex
);
8273 if (tg
->shares
== shares
)
8276 tg
->shares
= shares
;
8277 for_each_possible_cpu(i
) {
8278 struct rq
*rq
= cpu_rq(i
);
8279 struct sched_entity
*se
;
8282 /* Propagate contribution to hierarchy */
8283 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8285 /* Possible calls to update_curr() need rq clock */
8286 update_rq_clock(rq
);
8287 for_each_sched_entity(se
)
8288 update_cfs_shares(group_cfs_rq(se
));
8289 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8293 mutex_unlock(&shares_mutex
);
8296 #else /* CONFIG_FAIR_GROUP_SCHED */
8298 void free_fair_sched_group(struct task_group
*tg
) { }
8300 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8305 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
) { }
8307 #endif /* CONFIG_FAIR_GROUP_SCHED */
8310 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
8312 struct sched_entity
*se
= &task
->se
;
8313 unsigned int rr_interval
= 0;
8316 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8319 if (rq
->cfs
.load
.weight
)
8320 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
8326 * All the scheduling class methods:
8328 const struct sched_class fair_sched_class
= {
8329 .next
= &idle_sched_class
,
8330 .enqueue_task
= enqueue_task_fair
,
8331 .dequeue_task
= dequeue_task_fair
,
8332 .yield_task
= yield_task_fair
,
8333 .yield_to_task
= yield_to_task_fair
,
8335 .check_preempt_curr
= check_preempt_wakeup
,
8337 .pick_next_task
= pick_next_task_fair
,
8338 .put_prev_task
= put_prev_task_fair
,
8341 .select_task_rq
= select_task_rq_fair
,
8342 .migrate_task_rq
= migrate_task_rq_fair
,
8344 .rq_online
= rq_online_fair
,
8345 .rq_offline
= rq_offline_fair
,
8347 .task_waking
= task_waking_fair
,
8348 .task_dead
= task_dead_fair
,
8349 .set_cpus_allowed
= set_cpus_allowed_common
,
8352 .set_curr_task
= set_curr_task_fair
,
8353 .task_tick
= task_tick_fair
,
8354 .task_fork
= task_fork_fair
,
8356 .prio_changed
= prio_changed_fair
,
8357 .switched_from
= switched_from_fair
,
8358 .switched_to
= switched_to_fair
,
8360 .get_rr_interval
= get_rr_interval_fair
,
8362 .update_curr
= update_curr_fair
,
8364 #ifdef CONFIG_FAIR_GROUP_SCHED
8365 .task_move_group
= task_move_group_fair
,
8369 #ifdef CONFIG_SCHED_DEBUG
8370 void print_cfs_stats(struct seq_file
*m
, int cpu
)
8372 struct cfs_rq
*cfs_rq
;
8375 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
8376 print_cfs_rq(m
, cpu
, cfs_rq
);
8380 #ifdef CONFIG_NUMA_BALANCING
8381 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
8384 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
8386 for_each_online_node(node
) {
8387 if (p
->numa_faults
) {
8388 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
8389 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
8391 if (p
->numa_group
) {
8392 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
8393 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
8395 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
8398 #endif /* CONFIG_NUMA_BALANCING */
8399 #endif /* CONFIG_SCHED_DEBUG */
8401 __init
void init_sched_fair_class(void)
8404 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8406 #ifdef CONFIG_NO_HZ_COMMON
8407 nohz
.next_balance
= jiffies
;
8408 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8409 cpu_notifier(sched_ilb_notifier
, 0);