dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / sched / sched.h
blob0c9ebd82a68460fa2954249cb2365b22467909f5
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
17 struct rq;
18 struct cpuidle_state;
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
24 extern __read_mostly int scheduler_running;
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
39 * Helpers for converting nanosecond timing to jiffy resolution
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
63 #endif
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
76 #define DL_SCALE (10)
79 * These are the 'tuning knobs' of the scheduler:
83 * single value that denotes runtime == period, ie unlimited time.
85 #define RUNTIME_INF ((u64)~0ULL)
87 static inline int idle_policy(int policy)
89 return policy == SCHED_IDLE;
91 static inline int fair_policy(int policy)
93 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
96 static inline int rt_policy(int policy)
98 return policy == SCHED_FIFO || policy == SCHED_RR;
101 static inline int dl_policy(int policy)
103 return policy == SCHED_DEADLINE;
105 static inline bool valid_policy(int policy)
107 return idle_policy(policy) || fair_policy(policy) ||
108 rt_policy(policy) || dl_policy(policy);
111 static inline int task_has_rt_policy(struct task_struct *p)
113 return rt_policy(p->policy);
116 static inline int task_has_dl_policy(struct task_struct *p)
118 return dl_policy(p->policy);
122 * Tells if entity @a should preempt entity @b.
124 static inline bool
125 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
127 return dl_time_before(a->deadline, b->deadline);
131 * This is the priority-queue data structure of the RT scheduling class:
133 struct rt_prio_array {
134 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
135 struct list_head queue[MAX_RT_PRIO];
138 struct rt_bandwidth {
139 /* nests inside the rq lock: */
140 raw_spinlock_t rt_runtime_lock;
141 ktime_t rt_period;
142 u64 rt_runtime;
143 struct hrtimer rt_period_timer;
144 unsigned int rt_period_active;
147 void __dl_clear_params(struct task_struct *p);
150 * To keep the bandwidth of -deadline tasks and groups under control
151 * we need some place where:
152 * - store the maximum -deadline bandwidth of the system (the group);
153 * - cache the fraction of that bandwidth that is currently allocated.
155 * This is all done in the data structure below. It is similar to the
156 * one used for RT-throttling (rt_bandwidth), with the main difference
157 * that, since here we are only interested in admission control, we
158 * do not decrease any runtime while the group "executes", neither we
159 * need a timer to replenish it.
161 * With respect to SMP, the bandwidth is given on a per-CPU basis,
162 * meaning that:
163 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
164 * - dl_total_bw array contains, in the i-eth element, the currently
165 * allocated bandwidth on the i-eth CPU.
166 * Moreover, groups consume bandwidth on each CPU, while tasks only
167 * consume bandwidth on the CPU they're running on.
168 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
169 * that will be shown the next time the proc or cgroup controls will
170 * be red. It on its turn can be changed by writing on its own
171 * control.
173 struct dl_bandwidth {
174 raw_spinlock_t dl_runtime_lock;
175 u64 dl_runtime;
176 u64 dl_period;
179 static inline int dl_bandwidth_enabled(void)
181 return sysctl_sched_rt_runtime >= 0;
184 extern struct dl_bw *dl_bw_of(int i);
186 struct dl_bw {
187 raw_spinlock_t lock;
188 u64 bw, total_bw;
191 static inline
192 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
194 dl_b->total_bw -= tsk_bw;
197 static inline
198 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
200 dl_b->total_bw += tsk_bw;
203 static inline
204 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
206 return dl_b->bw != -1 &&
207 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
210 extern struct mutex sched_domains_mutex;
212 #ifdef CONFIG_CGROUP_SCHED
214 #include <linux/cgroup.h>
216 struct cfs_rq;
217 struct rt_rq;
219 extern struct list_head task_groups;
221 struct cfs_bandwidth {
222 #ifdef CONFIG_CFS_BANDWIDTH
223 raw_spinlock_t lock;
224 ktime_t period;
225 u64 quota, runtime;
226 s64 hierarchical_quota;
227 u64 runtime_expires;
229 int idle, period_active;
230 struct hrtimer period_timer, slack_timer;
231 struct list_head throttled_cfs_rq;
233 /* statistics */
234 int nr_periods, nr_throttled;
235 u64 throttled_time;
236 #endif
239 /* task group related information */
240 struct task_group {
241 struct cgroup_subsys_state css;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 /* schedulable entities of this group on each cpu */
245 struct sched_entity **se;
246 /* runqueue "owned" by this group on each cpu */
247 struct cfs_rq **cfs_rq;
248 unsigned long shares;
250 #ifdef CONFIG_SMP
251 atomic_long_t load_avg;
252 #endif
253 #endif
255 #ifdef CONFIG_RT_GROUP_SCHED
256 struct sched_rt_entity **rt_se;
257 struct rt_rq **rt_rq;
259 struct rt_bandwidth rt_bandwidth;
260 #endif
262 struct rcu_head rcu;
263 struct list_head list;
265 struct task_group *parent;
266 struct list_head siblings;
267 struct list_head children;
269 #ifdef CONFIG_SCHED_AUTOGROUP
270 struct autogroup *autogroup;
271 #endif
273 struct cfs_bandwidth cfs_bandwidth;
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
280 * A weight of 0 or 1 can cause arithmetics problems.
281 * A weight of a cfs_rq is the sum of weights of which entities
282 * are queued on this cfs_rq, so a weight of a entity should not be
283 * too large, so as the shares value of a task group.
284 * (The default weight is 1024 - so there's no practical
285 * limitation from this.)
287 #define MIN_SHARES (1UL << 1)
288 #define MAX_SHARES (1UL << 18)
289 #endif
291 typedef int (*tg_visitor)(struct task_group *, void *);
293 extern int walk_tg_tree_from(struct task_group *from,
294 tg_visitor down, tg_visitor up, void *data);
297 * Iterate the full tree, calling @down when first entering a node and @up when
298 * leaving it for the final time.
300 * Caller must hold rcu_lock or sufficient equivalent.
302 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
304 return walk_tg_tree_from(&root_task_group, down, up, data);
307 extern int tg_nop(struct task_group *tg, void *data);
309 extern void free_fair_sched_group(struct task_group *tg);
310 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
311 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
312 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
313 struct sched_entity *se, int cpu,
314 struct sched_entity *parent);
315 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
316 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
318 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
319 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
320 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
322 extern void free_rt_sched_group(struct task_group *tg);
323 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
325 struct sched_rt_entity *rt_se, int cpu,
326 struct sched_rt_entity *parent);
328 extern struct task_group *sched_create_group(struct task_group *parent);
329 extern void sched_online_group(struct task_group *tg,
330 struct task_group *parent);
331 extern void sched_destroy_group(struct task_group *tg);
332 extern void sched_offline_group(struct task_group *tg);
334 extern void sched_move_task(struct task_struct *tsk);
336 #ifdef CONFIG_FAIR_GROUP_SCHED
337 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
338 #endif
340 #else /* CONFIG_CGROUP_SCHED */
342 struct cfs_bandwidth { };
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned int nr_running, h_nr_running;
351 u64 exec_clock;
352 u64 min_vruntime;
353 #ifndef CONFIG_64BIT
354 u64 min_vruntime_copy;
355 #endif
357 struct rb_root tasks_timeline;
358 struct rb_node *rb_leftmost;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity *curr, *next, *last, *skip;
366 #ifdef CONFIG_SCHED_DEBUG
367 unsigned int nr_spread_over;
368 #endif
370 #ifdef CONFIG_SMP
372 * CFS load tracking
374 struct sched_avg avg;
375 u64 runnable_load_sum;
376 unsigned long runnable_load_avg;
377 #ifdef CONFIG_FAIR_GROUP_SCHED
378 unsigned long tg_load_avg_contrib;
379 #endif
380 atomic_long_t removed_load_avg, removed_util_avg;
381 #ifndef CONFIG_64BIT
382 u64 load_last_update_time_copy;
383 #endif
385 #ifdef CONFIG_FAIR_GROUP_SCHED
387 * h_load = weight * f(tg)
389 * Where f(tg) is the recursive weight fraction assigned to
390 * this group.
392 unsigned long h_load;
393 u64 last_h_load_update;
394 struct sched_entity *h_load_next;
395 #endif /* CONFIG_FAIR_GROUP_SCHED */
396 #endif /* CONFIG_SMP */
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
409 int on_list;
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
413 #ifdef CONFIG_CFS_BANDWIDTH
414 int runtime_enabled;
415 u64 runtime_expires;
416 s64 runtime_remaining;
418 u64 throttled_clock, throttled_clock_task;
419 u64 throttled_clock_task_time;
420 int throttled, throttle_count, throttle_uptodate;
421 struct list_head throttled_list;
422 #endif /* CONFIG_CFS_BANDWIDTH */
423 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 static inline int rt_bandwidth_enabled(void)
428 return sysctl_sched_rt_runtime >= 0;
431 /* RT IPI pull logic requires IRQ_WORK */
432 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
433 # define HAVE_RT_PUSH_IPI
434 #endif
436 /* Real-Time classes' related field in a runqueue: */
437 struct rt_rq {
438 struct rt_prio_array active;
439 unsigned int rt_nr_running;
440 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
441 struct {
442 int curr; /* highest queued rt task prio */
443 #ifdef CONFIG_SMP
444 int next; /* next highest */
445 #endif
446 } highest_prio;
447 #endif
448 #ifdef CONFIG_SMP
449 unsigned long rt_nr_migratory;
450 unsigned long rt_nr_total;
451 int overloaded;
452 struct plist_head pushable_tasks;
453 #endif /* CONFIG_SMP */
454 int rt_queued;
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 raw_spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct task_group *tg;
467 #endif
470 /* Deadline class' related fields in a runqueue */
471 struct dl_rq {
472 /* runqueue is an rbtree, ordered by deadline */
473 struct rb_root rb_root;
474 struct rb_node *rb_leftmost;
476 unsigned long dl_nr_running;
478 #ifdef CONFIG_SMP
480 * Deadline values of the currently executing and the
481 * earliest ready task on this rq. Caching these facilitates
482 * the decision wether or not a ready but not running task
483 * should migrate somewhere else.
485 struct {
486 u64 curr;
487 u64 next;
488 } earliest_dl;
490 unsigned long dl_nr_migratory;
491 int overloaded;
494 * Tasks on this rq that can be pushed away. They are kept in
495 * an rb-tree, ordered by tasks' deadlines, with caching
496 * of the leftmost (earliest deadline) element.
498 struct rb_root pushable_dl_tasks_root;
499 struct rb_node *pushable_dl_tasks_leftmost;
500 #else
501 struct dl_bw dl_bw;
502 #endif
505 #ifdef CONFIG_SMP
508 * We add the notion of a root-domain which will be used to define per-domain
509 * variables. Each exclusive cpuset essentially defines an island domain by
510 * fully partitioning the member cpus from any other cpuset. Whenever a new
511 * exclusive cpuset is created, we also create and attach a new root-domain
512 * object.
515 struct root_domain {
516 atomic_t refcount;
517 atomic_t rto_count;
518 struct rcu_head rcu;
519 cpumask_var_t span;
520 cpumask_var_t online;
522 /* Indicate more than one runnable task for any CPU */
523 bool overload;
526 * The bit corresponding to a CPU gets set here if such CPU has more
527 * than one runnable -deadline task (as it is below for RT tasks).
529 cpumask_var_t dlo_mask;
530 atomic_t dlo_count;
531 struct dl_bw dl_bw;
532 struct cpudl cpudl;
534 #ifdef HAVE_RT_PUSH_IPI
536 * For IPI pull requests, loop across the rto_mask.
538 struct irq_work rto_push_work;
539 raw_spinlock_t rto_lock;
540 /* These are only updated and read within rto_lock */
541 int rto_loop;
542 int rto_cpu;
543 /* These atomics are updated outside of a lock */
544 atomic_t rto_loop_next;
545 atomic_t rto_loop_start;
546 #endif
548 * The "RT overload" flag: it gets set if a CPU has more than
549 * one runnable RT task.
551 cpumask_var_t rto_mask;
552 struct cpupri cpupri;
555 extern struct root_domain def_root_domain;
556 extern void sched_get_rd(struct root_domain *rd);
557 extern void sched_put_rd(struct root_domain *rd);
559 #ifdef HAVE_RT_PUSH_IPI
560 extern void rto_push_irq_work_func(struct irq_work *work);
561 #endif
562 #endif /* CONFIG_SMP */
565 * This is the main, per-CPU runqueue data structure.
567 * Locking rule: those places that want to lock multiple runqueues
568 * (such as the load balancing or the thread migration code), lock
569 * acquire operations must be ordered by ascending &runqueue.
571 struct rq {
572 /* runqueue lock: */
573 raw_spinlock_t lock;
576 * nr_running and cpu_load should be in the same cacheline because
577 * remote CPUs use both these fields when doing load calculation.
579 unsigned int nr_running;
580 #ifdef CONFIG_NUMA_BALANCING
581 unsigned int nr_numa_running;
582 unsigned int nr_preferred_running;
583 #endif
584 #define CPU_LOAD_IDX_MAX 5
585 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
586 unsigned long last_load_update_tick;
587 #ifdef CONFIG_NO_HZ_COMMON
588 u64 nohz_stamp;
589 unsigned long nohz_flags;
590 #endif
591 #ifdef CONFIG_NO_HZ_FULL
592 unsigned long last_sched_tick;
593 #endif
594 /* capture load from *all* tasks on this cpu: */
595 struct load_weight load;
596 unsigned long nr_load_updates;
597 u64 nr_switches;
599 struct cfs_rq cfs;
600 struct rt_rq rt;
601 struct dl_rq dl;
603 #ifdef CONFIG_FAIR_GROUP_SCHED
604 /* list of leaf cfs_rq on this cpu: */
605 struct list_head leaf_cfs_rq_list;
606 #endif /* CONFIG_FAIR_GROUP_SCHED */
609 * This is part of a global counter where only the total sum
610 * over all CPUs matters. A task can increase this counter on
611 * one CPU and if it got migrated afterwards it may decrease
612 * it on another CPU. Always updated under the runqueue lock:
614 unsigned long nr_uninterruptible;
616 struct task_struct *curr, *idle, *stop;
617 unsigned long next_balance;
618 struct mm_struct *prev_mm;
620 unsigned int clock_skip_update;
621 u64 clock;
622 u64 clock_task;
624 atomic_t nr_iowait;
626 #ifdef CONFIG_SMP
627 struct root_domain *rd;
628 struct sched_domain *sd;
630 unsigned long cpu_capacity;
631 unsigned long cpu_capacity_orig;
633 struct callback_head *balance_callback;
635 unsigned char idle_balance;
636 /* For active balancing */
637 int active_balance;
638 int push_cpu;
639 struct cpu_stop_work active_balance_work;
640 /* cpu of this runqueue: */
641 int cpu;
642 int online;
644 struct list_head cfs_tasks;
646 u64 rt_avg;
647 u64 age_stamp;
648 u64 idle_stamp;
649 u64 avg_idle;
651 /* This is used to determine avg_idle's max value */
652 u64 max_idle_balance_cost;
653 #endif
655 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
656 u64 prev_irq_time;
657 #endif
658 #ifdef CONFIG_PARAVIRT
659 u64 prev_steal_time;
660 #endif
661 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
662 u64 prev_steal_time_rq;
663 #endif
665 /* calc_load related fields */
666 unsigned long calc_load_update;
667 long calc_load_active;
669 #ifdef CONFIG_SCHED_HRTICK
670 #ifdef CONFIG_SMP
671 int hrtick_csd_pending;
672 struct call_single_data hrtick_csd;
673 #endif
674 struct hrtimer hrtick_timer;
675 #endif
677 #ifdef CONFIG_SCHEDSTATS
678 /* latency stats */
679 struct sched_info rq_sched_info;
680 unsigned long long rq_cpu_time;
681 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
683 /* sys_sched_yield() stats */
684 unsigned int yld_count;
686 /* schedule() stats */
687 unsigned int sched_count;
688 unsigned int sched_goidle;
690 /* try_to_wake_up() stats */
691 unsigned int ttwu_count;
692 unsigned int ttwu_local;
693 #endif
695 #ifdef CONFIG_SMP
696 struct llist_head wake_list;
697 #endif
699 #ifdef CONFIG_CPU_IDLE
700 /* Must be inspected within a rcu lock section */
701 struct cpuidle_state *idle_state;
702 #endif
705 static inline int cpu_of(struct rq *rq)
707 #ifdef CONFIG_SMP
708 return rq->cpu;
709 #else
710 return 0;
711 #endif
714 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
716 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
717 #define this_rq() this_cpu_ptr(&runqueues)
718 #define task_rq(p) cpu_rq(task_cpu(p))
719 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
720 #define raw_rq() raw_cpu_ptr(&runqueues)
722 static inline u64 __rq_clock_broken(struct rq *rq)
724 return READ_ONCE(rq->clock);
727 static inline u64 rq_clock(struct rq *rq)
729 lockdep_assert_held(&rq->lock);
730 return rq->clock;
733 static inline u64 rq_clock_task(struct rq *rq)
735 lockdep_assert_held(&rq->lock);
736 return rq->clock_task;
739 #define RQCF_REQ_SKIP 0x01
740 #define RQCF_ACT_SKIP 0x02
742 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
744 lockdep_assert_held(&rq->lock);
745 if (skip)
746 rq->clock_skip_update |= RQCF_REQ_SKIP;
747 else
748 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
751 #ifdef CONFIG_NUMA
752 enum numa_topology_type {
753 NUMA_DIRECT,
754 NUMA_GLUELESS_MESH,
755 NUMA_BACKPLANE,
757 extern enum numa_topology_type sched_numa_topology_type;
758 extern int sched_max_numa_distance;
759 extern bool find_numa_distance(int distance);
760 #endif
762 #ifdef CONFIG_NUMA_BALANCING
763 /* The regions in numa_faults array from task_struct */
764 enum numa_faults_stats {
765 NUMA_MEM = 0,
766 NUMA_CPU,
767 NUMA_MEMBUF,
768 NUMA_CPUBUF
770 extern void sched_setnuma(struct task_struct *p, int node);
771 extern int migrate_task_to(struct task_struct *p, int cpu);
772 extern int migrate_swap(struct task_struct *, struct task_struct *);
773 #endif /* CONFIG_NUMA_BALANCING */
775 #ifdef CONFIG_SMP
777 static inline void
778 queue_balance_callback(struct rq *rq,
779 struct callback_head *head,
780 void (*func)(struct rq *rq))
782 lockdep_assert_held(&rq->lock);
784 if (unlikely(head->next))
785 return;
787 head->func = (void (*)(struct callback_head *))func;
788 head->next = rq->balance_callback;
789 rq->balance_callback = head;
792 extern void sched_ttwu_pending(void);
794 #define rcu_dereference_check_sched_domain(p) \
795 rcu_dereference_check((p), \
796 lockdep_is_held(&sched_domains_mutex))
799 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
800 * See detach_destroy_domains: synchronize_sched for details.
802 * The domain tree of any CPU may only be accessed from within
803 * preempt-disabled sections.
805 #define for_each_domain(cpu, __sd) \
806 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
807 __sd; __sd = __sd->parent)
809 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
812 * highest_flag_domain - Return highest sched_domain containing flag.
813 * @cpu: The cpu whose highest level of sched domain is to
814 * be returned.
815 * @flag: The flag to check for the highest sched_domain
816 * for the given cpu.
818 * Returns the highest sched_domain of a cpu which contains the given flag.
820 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
822 struct sched_domain *sd, *hsd = NULL;
824 for_each_domain(cpu, sd) {
825 if (!(sd->flags & flag))
826 break;
827 hsd = sd;
830 return hsd;
833 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
835 struct sched_domain *sd;
837 for_each_domain(cpu, sd) {
838 if (sd->flags & flag)
839 break;
842 return sd;
845 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
846 DECLARE_PER_CPU(int, sd_llc_size);
847 DECLARE_PER_CPU(int, sd_llc_id);
848 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
849 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
850 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
852 struct sched_group_capacity {
853 atomic_t ref;
855 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
856 * for a single CPU.
858 unsigned int capacity;
859 unsigned long next_update;
860 int imbalance; /* XXX unrelated to capacity but shared group state */
862 * Number of busy cpus in this group.
864 atomic_t nr_busy_cpus;
866 unsigned long cpumask[0]; /* iteration mask */
869 struct sched_group {
870 struct sched_group *next; /* Must be a circular list */
871 atomic_t ref;
873 unsigned int group_weight;
874 struct sched_group_capacity *sgc;
877 * The CPUs this group covers.
879 * NOTE: this field is variable length. (Allocated dynamically
880 * by attaching extra space to the end of the structure,
881 * depending on how many CPUs the kernel has booted up with)
883 unsigned long cpumask[0];
886 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
888 return to_cpumask(sg->cpumask);
892 * cpumask masking which cpus in the group are allowed to iterate up the domain
893 * tree.
895 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
897 return to_cpumask(sg->sgc->cpumask);
901 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
902 * @group: The group whose first cpu is to be returned.
904 static inline unsigned int group_first_cpu(struct sched_group *group)
906 return cpumask_first(sched_group_cpus(group));
909 extern int group_balance_cpu(struct sched_group *sg);
911 #else
913 static inline void sched_ttwu_pending(void) { }
915 #endif /* CONFIG_SMP */
917 #include "stats.h"
918 #include "auto_group.h"
920 #ifdef CONFIG_CGROUP_SCHED
923 * Return the group to which this tasks belongs.
925 * We cannot use task_css() and friends because the cgroup subsystem
926 * changes that value before the cgroup_subsys::attach() method is called,
927 * therefore we cannot pin it and might observe the wrong value.
929 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
930 * core changes this before calling sched_move_task().
932 * Instead we use a 'copy' which is updated from sched_move_task() while
933 * holding both task_struct::pi_lock and rq::lock.
935 static inline struct task_group *task_group(struct task_struct *p)
937 return p->sched_task_group;
940 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
941 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
943 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
944 struct task_group *tg = task_group(p);
945 #endif
947 #ifdef CONFIG_FAIR_GROUP_SCHED
948 p->se.cfs_rq = tg->cfs_rq[cpu];
949 p->se.parent = tg->se[cpu];
950 #endif
952 #ifdef CONFIG_RT_GROUP_SCHED
953 p->rt.rt_rq = tg->rt_rq[cpu];
954 p->rt.parent = tg->rt_se[cpu];
955 #endif
958 #else /* CONFIG_CGROUP_SCHED */
960 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
961 static inline struct task_group *task_group(struct task_struct *p)
963 return NULL;
966 #endif /* CONFIG_CGROUP_SCHED */
968 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
970 set_task_rq(p, cpu);
971 #ifdef CONFIG_SMP
973 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
974 * successfuly executed on another CPU. We must ensure that updates of
975 * per-task data have been completed by this moment.
977 smp_wmb();
978 task_thread_info(p)->cpu = cpu;
979 p->wake_cpu = cpu;
980 #endif
984 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
986 #ifdef CONFIG_SCHED_DEBUG
987 # include <linux/static_key.h>
988 # define const_debug __read_mostly
989 #else
990 # define const_debug const
991 #endif
993 extern const_debug unsigned int sysctl_sched_features;
995 #define SCHED_FEAT(name, enabled) \
996 __SCHED_FEAT_##name ,
998 enum {
999 #include "features.h"
1000 __SCHED_FEAT_NR,
1003 #undef SCHED_FEAT
1005 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1006 #define SCHED_FEAT(name, enabled) \
1007 static __always_inline bool static_branch_##name(struct static_key *key) \
1009 return static_key_##enabled(key); \
1012 #include "features.h"
1014 #undef SCHED_FEAT
1016 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1017 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1018 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1019 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1020 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1022 extern struct static_key_false sched_numa_balancing;
1024 static inline u64 global_rt_period(void)
1026 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1029 static inline u64 global_rt_runtime(void)
1031 if (sysctl_sched_rt_runtime < 0)
1032 return RUNTIME_INF;
1034 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1037 static inline int task_current(struct rq *rq, struct task_struct *p)
1039 return rq->curr == p;
1042 static inline int task_running(struct rq *rq, struct task_struct *p)
1044 #ifdef CONFIG_SMP
1045 return p->on_cpu;
1046 #else
1047 return task_current(rq, p);
1048 #endif
1051 static inline int task_on_rq_queued(struct task_struct *p)
1053 return p->on_rq == TASK_ON_RQ_QUEUED;
1056 static inline int task_on_rq_migrating(struct task_struct *p)
1058 return p->on_rq == TASK_ON_RQ_MIGRATING;
1061 #ifndef prepare_arch_switch
1062 # define prepare_arch_switch(next) do { } while (0)
1063 #endif
1064 #ifndef finish_arch_post_lock_switch
1065 # define finish_arch_post_lock_switch() do { } while (0)
1066 #endif
1068 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1070 #ifdef CONFIG_SMP
1072 * We can optimise this out completely for !SMP, because the
1073 * SMP rebalancing from interrupt is the only thing that cares
1074 * here.
1076 next->on_cpu = 1;
1077 #endif
1080 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1082 #ifdef CONFIG_SMP
1084 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1085 * We must ensure this doesn't happen until the switch is completely
1086 * finished.
1088 * In particular, the load of prev->state in finish_task_switch() must
1089 * happen before this.
1091 * Pairs with the control dependency and rmb in try_to_wake_up().
1093 smp_store_release(&prev->on_cpu, 0);
1094 #endif
1095 #ifdef CONFIG_DEBUG_SPINLOCK
1096 /* this is a valid case when another task releases the spinlock */
1097 rq->lock.owner = current;
1098 #endif
1100 * If we are tracking spinlock dependencies then we have to
1101 * fix up the runqueue lock - which gets 'carried over' from
1102 * prev into current:
1104 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1106 raw_spin_unlock_irq(&rq->lock);
1110 * wake flags
1112 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1113 #define WF_FORK 0x02 /* child wakeup after fork */
1114 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1117 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1118 * of tasks with abnormal "nice" values across CPUs the contribution that
1119 * each task makes to its run queue's load is weighted according to its
1120 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1121 * scaled version of the new time slice allocation that they receive on time
1122 * slice expiry etc.
1125 #define WEIGHT_IDLEPRIO 3
1126 #define WMULT_IDLEPRIO 1431655765
1129 * Nice levels are multiplicative, with a gentle 10% change for every
1130 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1131 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1132 * that remained on nice 0.
1134 * The "10% effect" is relative and cumulative: from _any_ nice level,
1135 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1136 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1137 * If a task goes up by ~10% and another task goes down by ~10% then
1138 * the relative distance between them is ~25%.)
1140 static const int prio_to_weight[40] = {
1141 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1142 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1143 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1144 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1145 /* 0 */ 1024, 820, 655, 526, 423,
1146 /* 5 */ 335, 272, 215, 172, 137,
1147 /* 10 */ 110, 87, 70, 56, 45,
1148 /* 15 */ 36, 29, 23, 18, 15,
1152 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1154 * In cases where the weight does not change often, we can use the
1155 * precalculated inverse to speed up arithmetics by turning divisions
1156 * into multiplications:
1158 static const u32 prio_to_wmult[40] = {
1159 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1160 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1161 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1162 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1163 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1164 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1165 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1166 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1169 #define ENQUEUE_WAKEUP 0x01
1170 #define ENQUEUE_HEAD 0x02
1171 #ifdef CONFIG_SMP
1172 #define ENQUEUE_WAKING 0x04 /* sched_class::task_waking was called */
1173 #else
1174 #define ENQUEUE_WAKING 0x00
1175 #endif
1176 #define ENQUEUE_REPLENISH 0x08
1177 #define ENQUEUE_RESTORE 0x10
1179 #define DEQUEUE_SLEEP 0x01
1180 #define DEQUEUE_SAVE 0x02
1182 #define RETRY_TASK ((void *)-1UL)
1184 struct sched_class {
1185 const struct sched_class *next;
1187 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189 void (*yield_task) (struct rq *rq);
1190 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1192 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1195 * It is the responsibility of the pick_next_task() method that will
1196 * return the next task to call put_prev_task() on the @prev task or
1197 * something equivalent.
1199 * May return RETRY_TASK when it finds a higher prio class has runnable
1200 * tasks.
1202 struct task_struct * (*pick_next_task) (struct rq *rq,
1203 struct task_struct *prev);
1204 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1206 #ifdef CONFIG_SMP
1207 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1208 void (*migrate_task_rq)(struct task_struct *p);
1210 void (*task_waking) (struct task_struct *task);
1211 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1213 void (*set_cpus_allowed)(struct task_struct *p,
1214 const struct cpumask *newmask);
1216 void (*rq_online)(struct rq *rq);
1217 void (*rq_offline)(struct rq *rq);
1218 #endif
1220 void (*set_curr_task) (struct rq *rq);
1221 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222 void (*task_fork) (struct task_struct *p);
1223 void (*task_dead) (struct task_struct *p);
1226 * The switched_from() call is allowed to drop rq->lock, therefore we
1227 * cannot assume the switched_from/switched_to pair is serliazed by
1228 * rq->lock. They are however serialized by p->pi_lock.
1230 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1232 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233 int oldprio);
1235 unsigned int (*get_rr_interval) (struct rq *rq,
1236 struct task_struct *task);
1238 void (*update_curr) (struct rq *rq);
1240 #ifdef CONFIG_FAIR_GROUP_SCHED
1241 void (*task_move_group) (struct task_struct *p);
1242 #endif
1245 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1247 prev->sched_class->put_prev_task(rq, prev);
1250 #define sched_class_highest (&stop_sched_class)
1251 #define for_each_class(class) \
1252 for (class = sched_class_highest; class; class = class->next)
1254 extern const struct sched_class stop_sched_class;
1255 extern const struct sched_class dl_sched_class;
1256 extern const struct sched_class rt_sched_class;
1257 extern const struct sched_class fair_sched_class;
1258 extern const struct sched_class idle_sched_class;
1261 #ifdef CONFIG_SMP
1263 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1265 extern void trigger_load_balance(struct rq *rq);
1267 extern void idle_enter_fair(struct rq *this_rq);
1268 extern void idle_exit_fair(struct rq *this_rq);
1270 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1272 #else
1274 static inline void idle_enter_fair(struct rq *rq) { }
1275 static inline void idle_exit_fair(struct rq *rq) { }
1277 #endif
1279 #ifdef CONFIG_CPU_IDLE
1280 static inline void idle_set_state(struct rq *rq,
1281 struct cpuidle_state *idle_state)
1283 rq->idle_state = idle_state;
1286 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1288 WARN_ON(!rcu_read_lock_held());
1289 return rq->idle_state;
1291 #else
1292 static inline void idle_set_state(struct rq *rq,
1293 struct cpuidle_state *idle_state)
1297 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1299 return NULL;
1301 #endif
1303 extern void sysrq_sched_debug_show(void);
1304 extern void sched_init_granularity(void);
1305 extern void update_max_interval(void);
1307 extern void init_sched_dl_class(void);
1308 extern void init_sched_rt_class(void);
1309 extern void init_sched_fair_class(void);
1311 extern void resched_curr(struct rq *rq);
1312 extern void resched_cpu(int cpu);
1314 extern struct rt_bandwidth def_rt_bandwidth;
1315 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1317 extern struct dl_bandwidth def_dl_bandwidth;
1318 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1319 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1321 unsigned long to_ratio(u64 period, u64 runtime);
1323 extern void init_entity_runnable_average(struct sched_entity *se);
1325 static inline void add_nr_running(struct rq *rq, unsigned count)
1327 unsigned prev_nr = rq->nr_running;
1329 rq->nr_running = prev_nr + count;
1331 if (prev_nr < 2 && rq->nr_running >= 2) {
1332 #ifdef CONFIG_SMP
1333 if (!rq->rd->overload)
1334 rq->rd->overload = true;
1335 #endif
1337 #ifdef CONFIG_NO_HZ_FULL
1338 if (tick_nohz_full_cpu(rq->cpu)) {
1340 * Tick is needed if more than one task runs on a CPU.
1341 * Send the target an IPI to kick it out of nohz mode.
1343 * We assume that IPI implies full memory barrier and the
1344 * new value of rq->nr_running is visible on reception
1345 * from the target.
1347 tick_nohz_full_kick_cpu(rq->cpu);
1349 #endif
1353 static inline void sub_nr_running(struct rq *rq, unsigned count)
1355 rq->nr_running -= count;
1358 static inline void rq_last_tick_reset(struct rq *rq)
1360 #ifdef CONFIG_NO_HZ_FULL
1361 rq->last_sched_tick = jiffies;
1362 #endif
1365 extern void update_rq_clock(struct rq *rq);
1367 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1368 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1370 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1372 extern const_debug unsigned int sysctl_sched_time_avg;
1373 extern const_debug unsigned int sysctl_sched_nr_migrate;
1374 extern const_debug unsigned int sysctl_sched_migration_cost;
1376 static inline u64 sched_avg_period(void)
1378 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1381 #ifdef CONFIG_SCHED_HRTICK
1384 * Use hrtick when:
1385 * - enabled by features
1386 * - hrtimer is actually high res
1388 static inline int hrtick_enabled(struct rq *rq)
1390 if (!sched_feat(HRTICK))
1391 return 0;
1392 if (!cpu_active(cpu_of(rq)))
1393 return 0;
1394 return hrtimer_is_hres_active(&rq->hrtick_timer);
1397 void hrtick_start(struct rq *rq, u64 delay);
1399 #else
1401 static inline int hrtick_enabled(struct rq *rq)
1403 return 0;
1406 #endif /* CONFIG_SCHED_HRTICK */
1408 #ifdef CONFIG_SMP
1409 extern void sched_avg_update(struct rq *rq);
1411 #ifndef arch_scale_freq_capacity
1412 static __always_inline
1413 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1415 return SCHED_CAPACITY_SCALE;
1417 #endif
1419 #ifndef arch_scale_cpu_capacity
1420 static __always_inline
1421 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1423 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1424 return sd->smt_gain / sd->span_weight;
1426 return SCHED_CAPACITY_SCALE;
1428 #endif
1430 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1432 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1433 sched_avg_update(rq);
1435 #else
1436 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1437 static inline void sched_avg_update(struct rq *rq) { }
1438 #endif
1441 * __task_rq_lock - lock the rq @p resides on.
1443 static inline struct rq *__task_rq_lock(struct task_struct *p)
1444 __acquires(rq->lock)
1446 struct rq *rq;
1448 lockdep_assert_held(&p->pi_lock);
1450 for (;;) {
1451 rq = task_rq(p);
1452 raw_spin_lock(&rq->lock);
1453 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1454 lockdep_pin_lock(&rq->lock);
1455 return rq;
1457 raw_spin_unlock(&rq->lock);
1459 while (unlikely(task_on_rq_migrating(p)))
1460 cpu_relax();
1465 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1467 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1468 __acquires(p->pi_lock)
1469 __acquires(rq->lock)
1471 struct rq *rq;
1473 for (;;) {
1474 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1475 rq = task_rq(p);
1476 raw_spin_lock(&rq->lock);
1478 * move_queued_task() task_rq_lock()
1480 * ACQUIRE (rq->lock)
1481 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1482 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1483 * [S] ->cpu = new_cpu [L] task_rq()
1484 * [L] ->on_rq
1485 * RELEASE (rq->lock)
1487 * If we observe the old cpu in task_rq_lock, the acquire of
1488 * the old rq->lock will fully serialize against the stores.
1490 * If we observe the new cpu in task_rq_lock, the acquire will
1491 * pair with the WMB to ensure we must then also see migrating.
1493 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1494 lockdep_pin_lock(&rq->lock);
1495 return rq;
1497 raw_spin_unlock(&rq->lock);
1498 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1500 while (unlikely(task_on_rq_migrating(p)))
1501 cpu_relax();
1505 static inline void __task_rq_unlock(struct rq *rq)
1506 __releases(rq->lock)
1508 lockdep_unpin_lock(&rq->lock);
1509 raw_spin_unlock(&rq->lock);
1512 static inline void
1513 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1514 __releases(rq->lock)
1515 __releases(p->pi_lock)
1517 lockdep_unpin_lock(&rq->lock);
1518 raw_spin_unlock(&rq->lock);
1519 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1522 #ifdef CONFIG_SMP
1523 #ifdef CONFIG_PREEMPT
1525 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1528 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1529 * way at the expense of forcing extra atomic operations in all
1530 * invocations. This assures that the double_lock is acquired using the
1531 * same underlying policy as the spinlock_t on this architecture, which
1532 * reduces latency compared to the unfair variant below. However, it
1533 * also adds more overhead and therefore may reduce throughput.
1535 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1536 __releases(this_rq->lock)
1537 __acquires(busiest->lock)
1538 __acquires(this_rq->lock)
1540 raw_spin_unlock(&this_rq->lock);
1541 double_rq_lock(this_rq, busiest);
1543 return 1;
1546 #else
1548 * Unfair double_lock_balance: Optimizes throughput at the expense of
1549 * latency by eliminating extra atomic operations when the locks are
1550 * already in proper order on entry. This favors lower cpu-ids and will
1551 * grant the double lock to lower cpus over higher ids under contention,
1552 * regardless of entry order into the function.
1554 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1555 __releases(this_rq->lock)
1556 __acquires(busiest->lock)
1557 __acquires(this_rq->lock)
1559 int ret = 0;
1561 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1562 if (busiest < this_rq) {
1563 raw_spin_unlock(&this_rq->lock);
1564 raw_spin_lock(&busiest->lock);
1565 raw_spin_lock_nested(&this_rq->lock,
1566 SINGLE_DEPTH_NESTING);
1567 ret = 1;
1568 } else
1569 raw_spin_lock_nested(&busiest->lock,
1570 SINGLE_DEPTH_NESTING);
1572 return ret;
1575 #endif /* CONFIG_PREEMPT */
1578 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1580 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1582 if (unlikely(!irqs_disabled())) {
1583 /* printk() doesn't work good under rq->lock */
1584 raw_spin_unlock(&this_rq->lock);
1585 BUG_ON(1);
1588 return _double_lock_balance(this_rq, busiest);
1591 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(busiest->lock)
1594 raw_spin_unlock(&busiest->lock);
1595 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1598 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1600 if (l1 > l2)
1601 swap(l1, l2);
1603 spin_lock(l1);
1604 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1607 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1609 if (l1 > l2)
1610 swap(l1, l2);
1612 spin_lock_irq(l1);
1613 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1618 if (l1 > l2)
1619 swap(l1, l2);
1621 raw_spin_lock(l1);
1622 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1626 * double_rq_lock - safely lock two runqueues
1628 * Note this does not disable interrupts like task_rq_lock,
1629 * you need to do so manually before calling.
1631 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1632 __acquires(rq1->lock)
1633 __acquires(rq2->lock)
1635 BUG_ON(!irqs_disabled());
1636 if (rq1 == rq2) {
1637 raw_spin_lock(&rq1->lock);
1638 __acquire(rq2->lock); /* Fake it out ;) */
1639 } else {
1640 if (rq1 < rq2) {
1641 raw_spin_lock(&rq1->lock);
1642 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1643 } else {
1644 raw_spin_lock(&rq2->lock);
1645 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1651 * double_rq_unlock - safely unlock two runqueues
1653 * Note this does not restore interrupts like task_rq_unlock,
1654 * you need to do so manually after calling.
1656 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1657 __releases(rq1->lock)
1658 __releases(rq2->lock)
1660 raw_spin_unlock(&rq1->lock);
1661 if (rq1 != rq2)
1662 raw_spin_unlock(&rq2->lock);
1663 else
1664 __release(rq2->lock);
1667 #else /* CONFIG_SMP */
1670 * double_rq_lock - safely lock two runqueues
1672 * Note this does not disable interrupts like task_rq_lock,
1673 * you need to do so manually before calling.
1675 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1676 __acquires(rq1->lock)
1677 __acquires(rq2->lock)
1679 BUG_ON(!irqs_disabled());
1680 BUG_ON(rq1 != rq2);
1681 raw_spin_lock(&rq1->lock);
1682 __acquire(rq2->lock); /* Fake it out ;) */
1686 * double_rq_unlock - safely unlock two runqueues
1688 * Note this does not restore interrupts like task_rq_unlock,
1689 * you need to do so manually after calling.
1691 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1692 __releases(rq1->lock)
1693 __releases(rq2->lock)
1695 BUG_ON(rq1 != rq2);
1696 raw_spin_unlock(&rq1->lock);
1697 __release(rq2->lock);
1700 #endif
1702 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1703 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1705 #ifdef CONFIG_SCHED_DEBUG
1706 extern void print_cfs_stats(struct seq_file *m, int cpu);
1707 extern void print_rt_stats(struct seq_file *m, int cpu);
1708 extern void print_dl_stats(struct seq_file *m, int cpu);
1709 extern void
1710 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1712 #ifdef CONFIG_NUMA_BALANCING
1713 extern void
1714 show_numa_stats(struct task_struct *p, struct seq_file *m);
1715 extern void
1716 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1717 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1718 #endif /* CONFIG_NUMA_BALANCING */
1719 #endif /* CONFIG_SCHED_DEBUG */
1721 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1722 extern void init_rt_rq(struct rt_rq *rt_rq);
1723 extern void init_dl_rq(struct dl_rq *dl_rq);
1725 extern void cfs_bandwidth_usage_inc(void);
1726 extern void cfs_bandwidth_usage_dec(void);
1728 #ifdef CONFIG_NO_HZ_COMMON
1729 enum rq_nohz_flag_bits {
1730 NOHZ_TICK_STOPPED,
1731 NOHZ_BALANCE_KICK,
1734 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1735 #endif
1737 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1739 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1740 DECLARE_PER_CPU(u64, cpu_softirq_time);
1742 #ifndef CONFIG_64BIT
1743 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1745 static inline void irq_time_write_begin(void)
1747 __this_cpu_inc(irq_time_seq.sequence);
1748 smp_wmb();
1751 static inline void irq_time_write_end(void)
1753 smp_wmb();
1754 __this_cpu_inc(irq_time_seq.sequence);
1757 static inline u64 irq_time_read(int cpu)
1759 u64 irq_time;
1760 unsigned seq;
1762 do {
1763 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1764 irq_time = per_cpu(cpu_softirq_time, cpu) +
1765 per_cpu(cpu_hardirq_time, cpu);
1766 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1768 return irq_time;
1770 #else /* CONFIG_64BIT */
1771 static inline void irq_time_write_begin(void)
1775 static inline void irq_time_write_end(void)
1779 static inline u64 irq_time_read(int cpu)
1781 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1783 #endif /* CONFIG_64BIT */
1784 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */