2 * Generic waiting primitives.
4 * (C) 2004 Nadia Yvette Chambers, Oracle
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
14 void __init_waitqueue_head(wait_queue_head_t
*q
, const char *name
, struct lock_class_key
*key
)
16 spin_lock_init(&q
->lock
);
17 lockdep_set_class_and_name(&q
->lock
, key
, name
);
18 INIT_LIST_HEAD(&q
->task_list
);
21 EXPORT_SYMBOL(__init_waitqueue_head
);
23 void add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
27 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
28 spin_lock_irqsave(&q
->lock
, flags
);
29 __add_wait_queue(q
, wait
);
30 spin_unlock_irqrestore(&q
->lock
, flags
);
32 EXPORT_SYMBOL(add_wait_queue
);
34 void add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
38 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
39 spin_lock_irqsave(&q
->lock
, flags
);
40 __add_wait_queue_tail(q
, wait
);
41 spin_unlock_irqrestore(&q
->lock
, flags
);
43 EXPORT_SYMBOL(add_wait_queue_exclusive
);
45 void remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
49 spin_lock_irqsave(&q
->lock
, flags
);
50 __remove_wait_queue(q
, wait
);
51 spin_unlock_irqrestore(&q
->lock
, flags
);
53 EXPORT_SYMBOL(remove_wait_queue
);
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
65 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
66 int nr_exclusive
, int wake_flags
, void *key
)
68 wait_queue_t
*curr
, *next
;
70 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
71 unsigned flags
= curr
->flags
;
73 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
74 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
80 * __wake_up - wake up threads blocked on a waitqueue.
82 * @mode: which threads
83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
84 * @key: is directly passed to the wakeup function
86 * It may be assumed that this function implies a write memory barrier before
87 * changing the task state if and only if any tasks are woken up.
89 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
90 int nr_exclusive
, void *key
)
94 spin_lock_irqsave(&q
->lock
, flags
);
95 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
96 spin_unlock_irqrestore(&q
->lock
, flags
);
98 EXPORT_SYMBOL(__wake_up
);
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
103 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
, int nr
)
105 __wake_up_common(q
, mode
, nr
, 0, NULL
);
107 EXPORT_SYMBOL_GPL(__wake_up_locked
);
109 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
111 __wake_up_common(q
, mode
, 1, 0, key
);
113 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
127 * On UP it can prevent extra preemption.
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
132 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
133 int nr_exclusive
, void *key
)
136 int wake_flags
= 1; /* XXX WF_SYNC */
141 if (unlikely(nr_exclusive
!= 1))
144 spin_lock_irqsave(&q
->lock
, flags
);
145 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
146 spin_unlock_irqrestore(&q
->lock
, flags
);
148 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
151 * __wake_up_sync - see __wake_up_sync_key()
153 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
155 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
157 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
172 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
176 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
177 spin_lock_irqsave(&q
->lock
, flags
);
178 if (list_empty(&wait
->task_list
))
179 __add_wait_queue(q
, wait
);
180 set_current_state(state
);
181 spin_unlock_irqrestore(&q
->lock
, flags
);
183 EXPORT_SYMBOL(prepare_to_wait
);
186 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
190 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
191 spin_lock_irqsave(&q
->lock
, flags
);
192 if (list_empty(&wait
->task_list
))
193 __add_wait_queue_tail(q
, wait
);
194 set_current_state(state
);
195 spin_unlock_irqrestore(&q
->lock
, flags
);
197 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
199 long prepare_to_wait_event(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
203 if (signal_pending_state(state
, current
))
206 wait
->private = current
;
207 wait
->func
= autoremove_wake_function
;
209 spin_lock_irqsave(&q
->lock
, flags
);
210 if (list_empty(&wait
->task_list
)) {
211 if (wait
->flags
& WQ_FLAG_EXCLUSIVE
)
212 __add_wait_queue_tail(q
, wait
);
214 __add_wait_queue(q
, wait
);
216 set_current_state(state
);
217 spin_unlock_irqrestore(&q
->lock
, flags
);
221 EXPORT_SYMBOL(prepare_to_wait_event
);
224 * finish_wait - clean up after waiting in a queue
225 * @q: waitqueue waited on
226 * @wait: wait descriptor
228 * Sets current thread back to running state and removes
229 * the wait descriptor from the given waitqueue if still
232 void finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
236 __set_current_state(TASK_RUNNING
);
238 * We can check for list emptiness outside the lock
240 * - we use the "careful" check that verifies both
241 * the next and prev pointers, so that there cannot
242 * be any half-pending updates in progress on other
243 * CPU's that we haven't seen yet (and that might
244 * still change the stack area.
246 * - all other users take the lock (ie we can only
247 * have _one_ other CPU that looks at or modifies
250 if (!list_empty_careful(&wait
->task_list
)) {
251 spin_lock_irqsave(&q
->lock
, flags
);
252 list_del_init(&wait
->task_list
);
253 spin_unlock_irqrestore(&q
->lock
, flags
);
256 EXPORT_SYMBOL(finish_wait
);
259 * abort_exclusive_wait - abort exclusive waiting in a queue
260 * @q: waitqueue waited on
261 * @wait: wait descriptor
262 * @mode: runstate of the waiter to be woken
263 * @key: key to identify a wait bit queue or %NULL
265 * Sets current thread back to running state and removes
266 * the wait descriptor from the given waitqueue if still
269 * Wakes up the next waiter if the caller is concurrently
270 * woken up through the queue.
272 * This prevents waiter starvation where an exclusive waiter
273 * aborts and is woken up concurrently and no one wakes up
276 void abort_exclusive_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
,
277 unsigned int mode
, void *key
)
281 __set_current_state(TASK_RUNNING
);
282 spin_lock_irqsave(&q
->lock
, flags
);
283 if (!list_empty(&wait
->task_list
))
284 list_del_init(&wait
->task_list
);
285 else if (waitqueue_active(q
))
286 __wake_up_locked_key(q
, mode
, key
);
287 spin_unlock_irqrestore(&q
->lock
, flags
);
289 EXPORT_SYMBOL(abort_exclusive_wait
);
291 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
293 int ret
= default_wake_function(wait
, mode
, sync
, key
);
296 list_del_init(&wait
->task_list
);
299 EXPORT_SYMBOL(autoremove_wake_function
);
301 static inline bool is_kthread_should_stop(void)
303 return (current
->flags
& PF_KTHREAD
) && kthread_should_stop();
307 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
309 * add_wait_queue(&wq, &wait);
314 * p->state = mode; condition = true;
315 * smp_mb(); // A smp_wmb(); // C
316 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
317 * schedule() try_to_wake_up();
318 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
319 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
320 * smp_mb() // B smp_wmb(); // C
321 * wait->flags |= WQ_FLAG_WOKEN;
323 * remove_wait_queue(&wq, &wait);
326 long wait_woken(wait_queue_t
*wait
, unsigned mode
, long timeout
)
328 set_current_state(mode
); /* A */
330 * The above implies an smp_mb(), which matches with the smp_wmb() from
331 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
332 * also observe all state before the wakeup.
334 if (!(wait
->flags
& WQ_FLAG_WOKEN
) && !is_kthread_should_stop())
335 timeout
= schedule_timeout(timeout
);
336 __set_current_state(TASK_RUNNING
);
339 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
340 * woken_wake_function() such that we must either observe the wait
341 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
344 smp_store_mb(wait
->flags
, wait
->flags
& ~WQ_FLAG_WOKEN
); /* B */
348 EXPORT_SYMBOL(wait_woken
);
350 int woken_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
353 * Although this function is called under waitqueue lock, LOCK
354 * doesn't imply write barrier and the users expects write
355 * barrier semantics on wakeup functions. The following
356 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
357 * and is paired with smp_store_mb() in wait_woken().
360 wait
->flags
|= WQ_FLAG_WOKEN
;
362 return default_wake_function(wait
, mode
, sync
, key
);
364 EXPORT_SYMBOL(woken_wake_function
);
366 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
368 struct wait_bit_key
*key
= arg
;
369 struct wait_bit_queue
*wait_bit
370 = container_of(wait
, struct wait_bit_queue
, wait
);
372 if (wait_bit
->key
.flags
!= key
->flags
||
373 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
374 test_bit(key
->bit_nr
, key
->flags
))
377 return autoremove_wake_function(wait
, mode
, sync
, key
);
379 EXPORT_SYMBOL(wake_bit_function
);
382 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
383 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
384 * permitted return codes. Nonzero return codes halt waiting and return.
387 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
388 wait_bit_action_f
*action
, unsigned mode
)
393 prepare_to_wait(wq
, &q
->wait
, mode
);
394 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
395 ret
= (*action
)(&q
->key
, mode
);
396 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
397 finish_wait(wq
, &q
->wait
);
400 EXPORT_SYMBOL(__wait_on_bit
);
402 int __sched
out_of_line_wait_on_bit(void *word
, int bit
,
403 wait_bit_action_f
*action
, unsigned mode
)
405 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
406 DEFINE_WAIT_BIT(wait
, word
, bit
);
408 return __wait_on_bit(wq
, &wait
, action
, mode
);
410 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
412 int __sched
out_of_line_wait_on_bit_timeout(
413 void *word
, int bit
, wait_bit_action_f
*action
,
414 unsigned mode
, unsigned long timeout
)
416 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
417 DEFINE_WAIT_BIT(wait
, word
, bit
);
419 wait
.key
.timeout
= jiffies
+ timeout
;
420 return __wait_on_bit(wq
, &wait
, action
, mode
);
422 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout
);
425 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
426 wait_bit_action_f
*action
, unsigned mode
)
431 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
432 if (!test_bit(q
->key
.bit_nr
, q
->key
.flags
))
434 ret
= action(&q
->key
, mode
);
437 abort_exclusive_wait(wq
, &q
->wait
, mode
, &q
->key
);
439 } while (test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
));
440 finish_wait(wq
, &q
->wait
);
443 EXPORT_SYMBOL(__wait_on_bit_lock
);
445 int __sched
out_of_line_wait_on_bit_lock(void *word
, int bit
,
446 wait_bit_action_f
*action
, unsigned mode
)
448 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
449 DEFINE_WAIT_BIT(wait
, word
, bit
);
451 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
453 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
455 void __wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
457 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
458 if (waitqueue_active(wq
))
459 __wake_up(wq
, TASK_NORMAL
, 1, &key
);
461 EXPORT_SYMBOL(__wake_up_bit
);
464 * wake_up_bit - wake up a waiter on a bit
465 * @word: the word being waited on, a kernel virtual address
466 * @bit: the bit of the word being waited on
468 * There is a standard hashed waitqueue table for generic use. This
469 * is the part of the hashtable's accessor API that wakes up waiters
470 * on a bit. For instance, if one were to have waiters on a bitflag,
471 * one would call wake_up_bit() after clearing the bit.
473 * In order for this to function properly, as it uses waitqueue_active()
474 * internally, some kind of memory barrier must be done prior to calling
475 * this. Typically, this will be smp_mb__after_atomic(), but in some
476 * cases where bitflags are manipulated non-atomically under a lock, one
477 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
478 * because spin_unlock() does not guarantee a memory barrier.
480 void wake_up_bit(void *word
, int bit
)
482 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
484 EXPORT_SYMBOL(wake_up_bit
);
486 wait_queue_head_t
*bit_waitqueue(void *word
, int bit
)
488 const int shift
= BITS_PER_LONG
== 32 ? 5 : 6;
489 const struct zone
*zone
= page_zone(virt_to_page(word
));
490 unsigned long val
= (unsigned long)word
<< shift
| bit
;
492 return &zone
->wait_table
[hash_long(val
, zone
->wait_table_bits
)];
494 EXPORT_SYMBOL(bit_waitqueue
);
497 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
498 * index (we're keying off bit -1, but that would produce a horrible hash
501 static inline wait_queue_head_t
*atomic_t_waitqueue(atomic_t
*p
)
503 if (BITS_PER_LONG
== 64) {
504 unsigned long q
= (unsigned long)p
;
505 return bit_waitqueue((void *)(q
& ~1), q
& 1);
507 return bit_waitqueue(p
, 0);
510 static int wake_atomic_t_function(wait_queue_t
*wait
, unsigned mode
, int sync
,
513 struct wait_bit_key
*key
= arg
;
514 struct wait_bit_queue
*wait_bit
515 = container_of(wait
, struct wait_bit_queue
, wait
);
516 atomic_t
*val
= key
->flags
;
518 if (wait_bit
->key
.flags
!= key
->flags
||
519 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
520 atomic_read(val
) != 0)
522 return autoremove_wake_function(wait
, mode
, sync
, key
);
526 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
527 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
528 * return codes halt waiting and return.
531 int __wait_on_atomic_t(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
532 int (*action
)(atomic_t
*), unsigned mode
)
538 prepare_to_wait(wq
, &q
->wait
, mode
);
540 if (atomic_read(val
) == 0)
542 ret
= (*action
)(val
);
543 } while (!ret
&& atomic_read(val
) != 0);
544 finish_wait(wq
, &q
->wait
);
548 #define DEFINE_WAIT_ATOMIC_T(name, p) \
549 struct wait_bit_queue name = { \
550 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
552 .private = current, \
553 .func = wake_atomic_t_function, \
555 LIST_HEAD_INIT((name).wait.task_list), \
559 __sched
int out_of_line_wait_on_atomic_t(atomic_t
*p
, int (*action
)(atomic_t
*),
562 wait_queue_head_t
*wq
= atomic_t_waitqueue(p
);
563 DEFINE_WAIT_ATOMIC_T(wait
, p
);
565 return __wait_on_atomic_t(wq
, &wait
, action
, mode
);
567 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t
);
570 * wake_up_atomic_t - Wake up a waiter on a atomic_t
571 * @p: The atomic_t being waited on, a kernel virtual address
573 * Wake up anyone waiting for the atomic_t to go to zero.
575 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
576 * check is done by the waiter's wake function, not the by the waker itself).
578 void wake_up_atomic_t(atomic_t
*p
)
580 __wake_up_bit(atomic_t_waitqueue(p
), p
, WAIT_ATOMIC_T_BIT_NR
);
582 EXPORT_SYMBOL(wake_up_atomic_t
);
584 __sched
int bit_wait(struct wait_bit_key
*word
, int mode
)
587 if (signal_pending_state(mode
, current
))
591 EXPORT_SYMBOL(bit_wait
);
593 __sched
int bit_wait_io(struct wait_bit_key
*word
, int mode
)
596 if (signal_pending_state(mode
, current
))
600 EXPORT_SYMBOL(bit_wait_io
);
602 __sched
int bit_wait_timeout(struct wait_bit_key
*word
, int mode
)
604 unsigned long now
= READ_ONCE(jiffies
);
605 if (time_after_eq(now
, word
->timeout
))
607 schedule_timeout(word
->timeout
- now
);
608 if (signal_pending_state(mode
, current
))
612 EXPORT_SYMBOL_GPL(bit_wait_timeout
);
614 __sched
int bit_wait_io_timeout(struct wait_bit_key
*word
, int mode
)
616 unsigned long now
= READ_ONCE(jiffies
);
617 if (time_after_eq(now
, word
->timeout
))
619 io_schedule_timeout(word
->timeout
- now
);
620 if (signal_pending_state(mode
, current
))
624 EXPORT_SYMBOL_GPL(bit_wait_io_timeout
);