4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
56 #include <linux/nospec.h>
58 #include <linux/kmsg_dump.h>
59 /* Move somewhere else to avoid recompiling? */
60 #include <generated/utsrelease.h>
62 #include <asm/uaccess.h>
64 #include <asm/unistd.h>
66 #ifndef SET_UNALIGN_CTL
67 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
69 #ifndef GET_UNALIGN_CTL
70 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
73 # define SET_FPEMU_CTL(a, b) (-EINVAL)
76 # define GET_FPEMU_CTL(a, b) (-EINVAL)
79 # define SET_FPEXC_CTL(a, b) (-EINVAL)
82 # define GET_FPEXC_CTL(a, b) (-EINVAL)
85 # define GET_ENDIAN(a, b) (-EINVAL)
88 # define SET_ENDIAN(a, b) (-EINVAL)
91 # define GET_TSC_CTL(a) (-EINVAL)
94 # define SET_TSC_CTL(a) (-EINVAL)
96 #ifndef MPX_ENABLE_MANAGEMENT
97 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
99 #ifndef MPX_DISABLE_MANAGEMENT
100 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
103 # define GET_FP_MODE(a) (-EINVAL)
106 # define SET_FP_MODE(a,b) (-EINVAL)
110 * this is where the system-wide overflow UID and GID are defined, for
111 * architectures that now have 32-bit UID/GID but didn't in the past
114 int overflowuid
= DEFAULT_OVERFLOWUID
;
115 int overflowgid
= DEFAULT_OVERFLOWGID
;
117 EXPORT_SYMBOL(overflowuid
);
118 EXPORT_SYMBOL(overflowgid
);
121 * the same as above, but for filesystems which can only store a 16-bit
122 * UID and GID. as such, this is needed on all architectures
125 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
126 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
128 EXPORT_SYMBOL(fs_overflowuid
);
129 EXPORT_SYMBOL(fs_overflowgid
);
132 * Returns true if current's euid is same as p's uid or euid,
133 * or has CAP_SYS_NICE to p's user_ns.
135 * Called with rcu_read_lock, creds are safe
137 static bool set_one_prio_perm(struct task_struct
*p
)
139 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
141 if (uid_eq(pcred
->uid
, cred
->euid
) ||
142 uid_eq(pcred
->euid
, cred
->euid
))
144 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
150 * set the priority of a task
151 * - the caller must hold the RCU read lock
153 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
157 if (!set_one_prio_perm(p
)) {
161 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
165 no_nice
= security_task_setnice(p
, niceval
);
172 set_user_nice(p
, niceval
);
177 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
179 struct task_struct
*g
, *p
;
180 struct user_struct
*user
;
181 const struct cred
*cred
= current_cred();
186 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
189 /* normalize: avoid signed division (rounding problems) */
191 if (niceval
< MIN_NICE
)
193 if (niceval
> MAX_NICE
)
197 read_lock(&tasklist_lock
);
201 p
= find_task_by_vpid(who
);
205 error
= set_one_prio(p
, niceval
, error
);
209 pgrp
= find_vpid(who
);
211 pgrp
= task_pgrp(current
);
212 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
213 error
= set_one_prio(p
, niceval
, error
);
214 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
217 uid
= make_kuid(cred
->user_ns
, who
);
221 else if (!uid_eq(uid
, cred
->uid
)) {
222 user
= find_user(uid
);
224 goto out_unlock
; /* No processes for this user */
226 do_each_thread(g
, p
) {
227 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
228 error
= set_one_prio(p
, niceval
, error
);
229 } while_each_thread(g
, p
);
230 if (!uid_eq(uid
, cred
->uid
))
231 free_uid(user
); /* For find_user() */
235 read_unlock(&tasklist_lock
);
242 * Ugh. To avoid negative return values, "getpriority()" will
243 * not return the normal nice-value, but a negated value that
244 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245 * to stay compatible.
247 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
249 struct task_struct
*g
, *p
;
250 struct user_struct
*user
;
251 const struct cred
*cred
= current_cred();
252 long niceval
, retval
= -ESRCH
;
256 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
260 read_lock(&tasklist_lock
);
264 p
= find_task_by_vpid(who
);
268 niceval
= nice_to_rlimit(task_nice(p
));
269 if (niceval
> retval
)
275 pgrp
= find_vpid(who
);
277 pgrp
= task_pgrp(current
);
278 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
279 niceval
= nice_to_rlimit(task_nice(p
));
280 if (niceval
> retval
)
282 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
285 uid
= make_kuid(cred
->user_ns
, who
);
289 else if (!uid_eq(uid
, cred
->uid
)) {
290 user
= find_user(uid
);
292 goto out_unlock
; /* No processes for this user */
294 do_each_thread(g
, p
) {
295 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
296 niceval
= nice_to_rlimit(task_nice(p
));
297 if (niceval
> retval
)
300 } while_each_thread(g
, p
);
301 if (!uid_eq(uid
, cred
->uid
))
302 free_uid(user
); /* for find_user() */
306 read_unlock(&tasklist_lock
);
313 * Unprivileged users may change the real gid to the effective gid
314 * or vice versa. (BSD-style)
316 * If you set the real gid at all, or set the effective gid to a value not
317 * equal to the real gid, then the saved gid is set to the new effective gid.
319 * This makes it possible for a setgid program to completely drop its
320 * privileges, which is often a useful assertion to make when you are doing
321 * a security audit over a program.
323 * The general idea is that a program which uses just setregid() will be
324 * 100% compatible with BSD. A program which uses just setgid() will be
325 * 100% compatible with POSIX with saved IDs.
327 * SMP: There are not races, the GIDs are checked only by filesystem
328 * operations (as far as semantic preservation is concerned).
330 #ifdef CONFIG_MULTIUSER
331 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
333 struct user_namespace
*ns
= current_user_ns();
334 const struct cred
*old
;
339 krgid
= make_kgid(ns
, rgid
);
340 kegid
= make_kgid(ns
, egid
);
342 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
344 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
347 new = prepare_creds();
350 old
= current_cred();
353 if (rgid
!= (gid_t
) -1) {
354 if (gid_eq(old
->gid
, krgid
) ||
355 gid_eq(old
->egid
, krgid
) ||
356 ns_capable(old
->user_ns
, CAP_SETGID
))
361 if (egid
!= (gid_t
) -1) {
362 if (gid_eq(old
->gid
, kegid
) ||
363 gid_eq(old
->egid
, kegid
) ||
364 gid_eq(old
->sgid
, kegid
) ||
365 ns_capable(old
->user_ns
, CAP_SETGID
))
371 if (rgid
!= (gid_t
) -1 ||
372 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
373 new->sgid
= new->egid
;
374 new->fsgid
= new->egid
;
376 return commit_creds(new);
384 * setgid() is implemented like SysV w/ SAVED_IDS
386 * SMP: Same implicit races as above.
388 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
390 struct user_namespace
*ns
= current_user_ns();
391 const struct cred
*old
;
396 kgid
= make_kgid(ns
, gid
);
397 if (!gid_valid(kgid
))
400 new = prepare_creds();
403 old
= current_cred();
406 if (ns_capable(old
->user_ns
, CAP_SETGID
))
407 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
408 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
409 new->egid
= new->fsgid
= kgid
;
413 return commit_creds(new);
421 * change the user struct in a credentials set to match the new UID
423 static int set_user(struct cred
*new)
425 struct user_struct
*new_user
;
427 new_user
= alloc_uid(new->uid
);
432 * We don't fail in case of NPROC limit excess here because too many
433 * poorly written programs don't check set*uid() return code, assuming
434 * it never fails if called by root. We may still enforce NPROC limit
435 * for programs doing set*uid()+execve() by harmlessly deferring the
436 * failure to the execve() stage.
438 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
439 new_user
!= INIT_USER
)
440 current
->flags
|= PF_NPROC_EXCEEDED
;
442 current
->flags
&= ~PF_NPROC_EXCEEDED
;
445 new->user
= new_user
;
450 * Unprivileged users may change the real uid to the effective uid
451 * or vice versa. (BSD-style)
453 * If you set the real uid at all, or set the effective uid to a value not
454 * equal to the real uid, then the saved uid is set to the new effective uid.
456 * This makes it possible for a setuid program to completely drop its
457 * privileges, which is often a useful assertion to make when you are doing
458 * a security audit over a program.
460 * The general idea is that a program which uses just setreuid() will be
461 * 100% compatible with BSD. A program which uses just setuid() will be
462 * 100% compatible with POSIX with saved IDs.
464 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
466 struct user_namespace
*ns
= current_user_ns();
467 const struct cred
*old
;
472 kruid
= make_kuid(ns
, ruid
);
473 keuid
= make_kuid(ns
, euid
);
475 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
477 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
480 new = prepare_creds();
483 old
= current_cred();
486 if (ruid
!= (uid_t
) -1) {
488 if (!uid_eq(old
->uid
, kruid
) &&
489 !uid_eq(old
->euid
, kruid
) &&
490 !ns_capable(old
->user_ns
, CAP_SETUID
))
494 if (euid
!= (uid_t
) -1) {
496 if (!uid_eq(old
->uid
, keuid
) &&
497 !uid_eq(old
->euid
, keuid
) &&
498 !uid_eq(old
->suid
, keuid
) &&
499 !ns_capable(old
->user_ns
, CAP_SETUID
))
503 if (!uid_eq(new->uid
, old
->uid
)) {
504 retval
= set_user(new);
508 if (ruid
!= (uid_t
) -1 ||
509 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
510 new->suid
= new->euid
;
511 new->fsuid
= new->euid
;
513 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
517 return commit_creds(new);
525 * setuid() is implemented like SysV with SAVED_IDS
527 * Note that SAVED_ID's is deficient in that a setuid root program
528 * like sendmail, for example, cannot set its uid to be a normal
529 * user and then switch back, because if you're root, setuid() sets
530 * the saved uid too. If you don't like this, blame the bright people
531 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
532 * will allow a root program to temporarily drop privileges and be able to
533 * regain them by swapping the real and effective uid.
535 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
537 struct user_namespace
*ns
= current_user_ns();
538 const struct cred
*old
;
543 kuid
= make_kuid(ns
, uid
);
544 if (!uid_valid(kuid
))
547 new = prepare_creds();
550 old
= current_cred();
553 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
554 new->suid
= new->uid
= kuid
;
555 if (!uid_eq(kuid
, old
->uid
)) {
556 retval
= set_user(new);
560 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
564 new->fsuid
= new->euid
= kuid
;
566 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
570 return commit_creds(new);
579 * This function implements a generic ability to update ruid, euid,
580 * and suid. This allows you to implement the 4.4 compatible seteuid().
582 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
584 struct user_namespace
*ns
= current_user_ns();
585 const struct cred
*old
;
588 kuid_t kruid
, keuid
, ksuid
;
590 kruid
= make_kuid(ns
, ruid
);
591 keuid
= make_kuid(ns
, euid
);
592 ksuid
= make_kuid(ns
, suid
);
594 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
597 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
600 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
603 new = prepare_creds();
607 old
= current_cred();
610 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
611 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
612 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
614 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
615 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
617 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
618 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
622 if (ruid
!= (uid_t
) -1) {
624 if (!uid_eq(kruid
, old
->uid
)) {
625 retval
= set_user(new);
630 if (euid
!= (uid_t
) -1)
632 if (suid
!= (uid_t
) -1)
634 new->fsuid
= new->euid
;
636 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
640 return commit_creds(new);
647 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
649 const struct cred
*cred
= current_cred();
651 uid_t ruid
, euid
, suid
;
653 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
654 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
655 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
657 retval
= put_user(ruid
, ruidp
);
659 retval
= put_user(euid
, euidp
);
661 return put_user(suid
, suidp
);
667 * Same as above, but for rgid, egid, sgid.
669 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
671 struct user_namespace
*ns
= current_user_ns();
672 const struct cred
*old
;
675 kgid_t krgid
, kegid
, ksgid
;
677 krgid
= make_kgid(ns
, rgid
);
678 kegid
= make_kgid(ns
, egid
);
679 ksgid
= make_kgid(ns
, sgid
);
681 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
683 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
685 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
688 new = prepare_creds();
691 old
= current_cred();
694 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
695 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
696 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
698 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
699 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
701 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
702 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
706 if (rgid
!= (gid_t
) -1)
708 if (egid
!= (gid_t
) -1)
710 if (sgid
!= (gid_t
) -1)
712 new->fsgid
= new->egid
;
714 return commit_creds(new);
721 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
723 const struct cred
*cred
= current_cred();
725 gid_t rgid
, egid
, sgid
;
727 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
728 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
729 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
731 retval
= put_user(rgid
, rgidp
);
733 retval
= put_user(egid
, egidp
);
735 retval
= put_user(sgid
, sgidp
);
743 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
744 * is used for "access()" and for the NFS daemon (letting nfsd stay at
745 * whatever uid it wants to). It normally shadows "euid", except when
746 * explicitly set by setfsuid() or for access..
748 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
750 const struct cred
*old
;
755 old
= current_cred();
756 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
758 kuid
= make_kuid(old
->user_ns
, uid
);
759 if (!uid_valid(kuid
))
762 new = prepare_creds();
766 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
767 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
768 ns_capable(old
->user_ns
, CAP_SETUID
)) {
769 if (!uid_eq(kuid
, old
->fsuid
)) {
771 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
785 * Samma på svenska..
787 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
789 const struct cred
*old
;
794 old
= current_cred();
795 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
797 kgid
= make_kgid(old
->user_ns
, gid
);
798 if (!gid_valid(kgid
))
801 new = prepare_creds();
805 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
806 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
807 ns_capable(old
->user_ns
, CAP_SETGID
)) {
808 if (!gid_eq(kgid
, old
->fsgid
)) {
821 #endif /* CONFIG_MULTIUSER */
824 * sys_getpid - return the thread group id of the current process
826 * Note, despite the name, this returns the tgid not the pid. The tgid and
827 * the pid are identical unless CLONE_THREAD was specified on clone() in
828 * which case the tgid is the same in all threads of the same group.
830 * This is SMP safe as current->tgid does not change.
832 SYSCALL_DEFINE0(getpid
)
834 return task_tgid_vnr(current
);
837 /* Thread ID - the internal kernel "pid" */
838 SYSCALL_DEFINE0(gettid
)
840 return task_pid_vnr(current
);
844 * Accessing ->real_parent is not SMP-safe, it could
845 * change from under us. However, we can use a stale
846 * value of ->real_parent under rcu_read_lock(), see
847 * release_task()->call_rcu(delayed_put_task_struct).
849 SYSCALL_DEFINE0(getppid
)
854 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
860 SYSCALL_DEFINE0(getuid
)
862 /* Only we change this so SMP safe */
863 return from_kuid_munged(current_user_ns(), current_uid());
866 SYSCALL_DEFINE0(geteuid
)
868 /* Only we change this so SMP safe */
869 return from_kuid_munged(current_user_ns(), current_euid());
872 SYSCALL_DEFINE0(getgid
)
874 /* Only we change this so SMP safe */
875 return from_kgid_munged(current_user_ns(), current_gid());
878 SYSCALL_DEFINE0(getegid
)
880 /* Only we change this so SMP safe */
881 return from_kgid_munged(current_user_ns(), current_egid());
884 void do_sys_times(struct tms
*tms
)
886 cputime_t tgutime
, tgstime
, cutime
, cstime
;
888 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
889 cutime
= current
->signal
->cutime
;
890 cstime
= current
->signal
->cstime
;
891 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
892 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
893 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
894 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
897 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
903 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
906 force_successful_syscall_return();
907 return (long) jiffies_64_to_clock_t(get_jiffies_64());
911 * This needs some heavy checking ...
912 * I just haven't the stomach for it. I also don't fully
913 * understand sessions/pgrp etc. Let somebody who does explain it.
915 * OK, I think I have the protection semantics right.... this is really
916 * only important on a multi-user system anyway, to make sure one user
917 * can't send a signal to a process owned by another. -TYT, 12/12/91
919 * !PF_FORKNOEXEC check to conform completely to POSIX.
921 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
923 struct task_struct
*p
;
924 struct task_struct
*group_leader
= current
->group_leader
;
929 pid
= task_pid_vnr(group_leader
);
936 /* From this point forward we keep holding onto the tasklist lock
937 * so that our parent does not change from under us. -DaveM
939 write_lock_irq(&tasklist_lock
);
942 p
= find_task_by_vpid(pid
);
947 if (!thread_group_leader(p
))
950 if (same_thread_group(p
->real_parent
, group_leader
)) {
952 if (task_session(p
) != task_session(group_leader
))
955 if (!(p
->flags
& PF_FORKNOEXEC
))
959 if (p
!= group_leader
)
964 if (p
->signal
->leader
)
969 struct task_struct
*g
;
971 pgrp
= find_vpid(pgid
);
972 g
= pid_task(pgrp
, PIDTYPE_PGID
);
973 if (!g
|| task_session(g
) != task_session(group_leader
))
977 err
= security_task_setpgid(p
, pgid
);
981 if (task_pgrp(p
) != pgrp
)
982 change_pid(p
, PIDTYPE_PGID
, pgrp
);
986 /* All paths lead to here, thus we are safe. -DaveM */
987 write_unlock_irq(&tasklist_lock
);
992 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
994 struct task_struct
*p
;
1000 grp
= task_pgrp(current
);
1003 p
= find_task_by_vpid(pid
);
1010 retval
= security_task_getpgid(p
);
1014 retval
= pid_vnr(grp
);
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1022 SYSCALL_DEFINE0(getpgrp
)
1024 return sys_getpgid(0);
1029 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1031 struct task_struct
*p
;
1037 sid
= task_session(current
);
1040 p
= find_task_by_vpid(pid
);
1043 sid
= task_session(p
);
1047 retval
= security_task_getsid(p
);
1051 retval
= pid_vnr(sid
);
1057 static void set_special_pids(struct pid
*pid
)
1059 struct task_struct
*curr
= current
->group_leader
;
1061 if (task_session(curr
) != pid
)
1062 change_pid(curr
, PIDTYPE_SID
, pid
);
1064 if (task_pgrp(curr
) != pid
)
1065 change_pid(curr
, PIDTYPE_PGID
, pid
);
1068 SYSCALL_DEFINE0(setsid
)
1070 struct task_struct
*group_leader
= current
->group_leader
;
1071 struct pid
*sid
= task_pid(group_leader
);
1072 pid_t session
= pid_vnr(sid
);
1075 write_lock_irq(&tasklist_lock
);
1076 /* Fail if I am already a session leader */
1077 if (group_leader
->signal
->leader
)
1080 /* Fail if a process group id already exists that equals the
1081 * proposed session id.
1083 if (pid_task(sid
, PIDTYPE_PGID
))
1086 group_leader
->signal
->leader
= 1;
1087 set_special_pids(sid
);
1089 proc_clear_tty(group_leader
);
1093 write_unlock_irq(&tasklist_lock
);
1095 proc_sid_connector(group_leader
);
1096 sched_autogroup_create_attach(group_leader
);
1101 DECLARE_RWSEM(uts_sem
);
1103 #ifdef COMPAT_UTS_MACHINE
1104 #define override_architecture(name) \
1105 (personality(current->personality) == PER_LINUX32 && \
1106 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1107 sizeof(COMPAT_UTS_MACHINE)))
1109 #define override_architecture(name) 0
1113 * Work around broken programs that cannot handle "Linux 3.0".
1114 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1115 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1117 static int override_release(char __user
*release
, size_t len
)
1121 if (current
->personality
& UNAME26
) {
1122 const char *rest
= UTS_RELEASE
;
1123 char buf
[65] = { 0 };
1129 if (*rest
== '.' && ++ndots
>= 3)
1131 if (!isdigit(*rest
) && *rest
!= '.')
1135 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1136 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1137 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1138 ret
= copy_to_user(release
, buf
, copy
+ 1);
1143 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1145 struct new_utsname tmp
;
1147 down_read(&uts_sem
);
1148 memcpy(&tmp
, utsname(), sizeof(tmp
));
1150 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1153 if (override_release(name
->release
, sizeof(name
->release
)))
1155 if (override_architecture(name
))
1160 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1164 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1166 struct old_utsname tmp
;
1171 down_read(&uts_sem
);
1172 memcpy(&tmp
, utsname(), sizeof(tmp
));
1174 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1177 if (override_release(name
->release
, sizeof(name
->release
)))
1179 if (override_architecture(name
))
1184 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1186 struct oldold_utsname tmp
= {};
1191 down_read(&uts_sem
);
1192 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1193 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1194 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1195 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1196 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1198 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1201 if (override_architecture(name
))
1203 if (override_release(name
->release
, sizeof(name
->release
)))
1209 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1212 char tmp
[__NEW_UTS_LEN
];
1214 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1217 if (len
< 0 || len
> __NEW_UTS_LEN
)
1220 if (!copy_from_user(tmp
, name
, len
)) {
1221 struct new_utsname
*u
;
1223 down_write(&uts_sem
);
1225 memcpy(u
->nodename
, tmp
, len
);
1226 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1228 uts_proc_notify(UTS_PROC_HOSTNAME
);
1234 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1236 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1239 struct new_utsname
*u
;
1240 char tmp
[__NEW_UTS_LEN
+ 1];
1244 down_read(&uts_sem
);
1246 i
= 1 + strlen(u
->nodename
);
1249 memcpy(tmp
, u
->nodename
, i
);
1251 if (copy_to_user(name
, tmp
, i
))
1259 * Only setdomainname; getdomainname can be implemented by calling
1262 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1265 char tmp
[__NEW_UTS_LEN
];
1267 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1269 if (len
< 0 || len
> __NEW_UTS_LEN
)
1273 if (!copy_from_user(tmp
, name
, len
)) {
1274 struct new_utsname
*u
;
1276 down_write(&uts_sem
);
1278 memcpy(u
->domainname
, tmp
, len
);
1279 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1281 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1287 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1289 struct rlimit value
;
1292 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1294 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1299 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1302 * Back compatibility for getrlimit. Needed for some apps.
1304 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1305 struct rlimit __user
*, rlim
)
1308 if (resource
>= RLIM_NLIMITS
)
1311 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1312 task_lock(current
->group_leader
);
1313 x
= current
->signal
->rlim
[resource
];
1314 task_unlock(current
->group_leader
);
1315 if (x
.rlim_cur
> 0x7FFFFFFF)
1316 x
.rlim_cur
= 0x7FFFFFFF;
1317 if (x
.rlim_max
> 0x7FFFFFFF)
1318 x
.rlim_max
= 0x7FFFFFFF;
1319 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1324 static inline bool rlim64_is_infinity(__u64 rlim64
)
1326 #if BITS_PER_LONG < 64
1327 return rlim64
>= ULONG_MAX
;
1329 return rlim64
== RLIM64_INFINITY
;
1333 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1335 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1336 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1338 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1339 if (rlim
->rlim_max
== RLIM_INFINITY
)
1340 rlim64
->rlim_max
= RLIM64_INFINITY
;
1342 rlim64
->rlim_max
= rlim
->rlim_max
;
1345 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1347 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1348 rlim
->rlim_cur
= RLIM_INFINITY
;
1350 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1351 if (rlim64_is_infinity(rlim64
->rlim_max
))
1352 rlim
->rlim_max
= RLIM_INFINITY
;
1354 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1357 /* make sure you are allowed to change @tsk limits before calling this */
1358 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1359 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1361 struct rlimit
*rlim
;
1364 if (resource
>= RLIM_NLIMITS
)
1367 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1369 if (resource
== RLIMIT_NOFILE
&&
1370 new_rlim
->rlim_max
> sysctl_nr_open
)
1374 /* protect tsk->signal and tsk->sighand from disappearing */
1375 read_lock(&tasklist_lock
);
1376 if (!tsk
->sighand
) {
1381 rlim
= tsk
->signal
->rlim
+ resource
;
1382 task_lock(tsk
->group_leader
);
1384 /* Keep the capable check against init_user_ns until
1385 cgroups can contain all limits */
1386 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1387 !capable(CAP_SYS_RESOURCE
))
1390 retval
= security_task_setrlimit(tsk
->group_leader
,
1391 resource
, new_rlim
);
1392 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1394 * The caller is asking for an immediate RLIMIT_CPU
1395 * expiry. But we use the zero value to mean "it was
1396 * never set". So let's cheat and make it one second
1399 new_rlim
->rlim_cur
= 1;
1408 task_unlock(tsk
->group_leader
);
1411 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1412 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1413 * very long-standing error, and fixing it now risks breakage of
1414 * applications, so we live with it
1416 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1417 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1418 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1420 read_unlock(&tasklist_lock
);
1424 /* rcu lock must be held */
1425 static int check_prlimit_permission(struct task_struct
*task
)
1427 const struct cred
*cred
= current_cred(), *tcred
;
1429 if (current
== task
)
1432 tcred
= __task_cred(task
);
1433 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1434 uid_eq(cred
->uid
, tcred
->suid
) &&
1435 uid_eq(cred
->uid
, tcred
->uid
) &&
1436 gid_eq(cred
->gid
, tcred
->egid
) &&
1437 gid_eq(cred
->gid
, tcred
->sgid
) &&
1438 gid_eq(cred
->gid
, tcred
->gid
))
1440 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1446 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1447 const struct rlimit64 __user
*, new_rlim
,
1448 struct rlimit64 __user
*, old_rlim
)
1450 struct rlimit64 old64
, new64
;
1451 struct rlimit old
, new;
1452 struct task_struct
*tsk
;
1456 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1458 rlim64_to_rlim(&new64
, &new);
1462 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1467 ret
= check_prlimit_permission(tsk
);
1472 get_task_struct(tsk
);
1475 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1476 old_rlim
? &old
: NULL
);
1478 if (!ret
&& old_rlim
) {
1479 rlim_to_rlim64(&old
, &old64
);
1480 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1484 put_task_struct(tsk
);
1488 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1490 struct rlimit new_rlim
;
1492 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1494 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1498 * It would make sense to put struct rusage in the task_struct,
1499 * except that would make the task_struct be *really big*. After
1500 * task_struct gets moved into malloc'ed memory, it would
1501 * make sense to do this. It will make moving the rest of the information
1502 * a lot simpler! (Which we're not doing right now because we're not
1503 * measuring them yet).
1505 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1506 * races with threads incrementing their own counters. But since word
1507 * reads are atomic, we either get new values or old values and we don't
1508 * care which for the sums. We always take the siglock to protect reading
1509 * the c* fields from p->signal from races with exit.c updating those
1510 * fields when reaping, so a sample either gets all the additions of a
1511 * given child after it's reaped, or none so this sample is before reaping.
1514 * We need to take the siglock for CHILDEREN, SELF and BOTH
1515 * for the cases current multithreaded, non-current single threaded
1516 * non-current multithreaded. Thread traversal is now safe with
1518 * Strictly speaking, we donot need to take the siglock if we are current and
1519 * single threaded, as no one else can take our signal_struct away, no one
1520 * else can reap the children to update signal->c* counters, and no one else
1521 * can race with the signal-> fields. If we do not take any lock, the
1522 * signal-> fields could be read out of order while another thread was just
1523 * exiting. So we should place a read memory barrier when we avoid the lock.
1524 * On the writer side, write memory barrier is implied in __exit_signal
1525 * as __exit_signal releases the siglock spinlock after updating the signal->
1526 * fields. But we don't do this yet to keep things simple.
1530 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1532 r
->ru_nvcsw
+= t
->nvcsw
;
1533 r
->ru_nivcsw
+= t
->nivcsw
;
1534 r
->ru_minflt
+= t
->min_flt
;
1535 r
->ru_majflt
+= t
->maj_flt
;
1536 r
->ru_inblock
+= task_io_get_inblock(t
);
1537 r
->ru_oublock
+= task_io_get_oublock(t
);
1540 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1542 struct task_struct
*t
;
1543 unsigned long flags
;
1544 cputime_t tgutime
, tgstime
, utime
, stime
;
1545 unsigned long maxrss
= 0;
1547 memset((char *)r
, 0, sizeof (*r
));
1550 if (who
== RUSAGE_THREAD
) {
1551 task_cputime_adjusted(current
, &utime
, &stime
);
1552 accumulate_thread_rusage(p
, r
);
1553 maxrss
= p
->signal
->maxrss
;
1557 if (!lock_task_sighand(p
, &flags
))
1562 case RUSAGE_CHILDREN
:
1563 utime
= p
->signal
->cutime
;
1564 stime
= p
->signal
->cstime
;
1565 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1566 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1567 r
->ru_minflt
= p
->signal
->cmin_flt
;
1568 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1569 r
->ru_inblock
= p
->signal
->cinblock
;
1570 r
->ru_oublock
= p
->signal
->coublock
;
1571 maxrss
= p
->signal
->cmaxrss
;
1573 if (who
== RUSAGE_CHILDREN
)
1577 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1580 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1581 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1582 r
->ru_minflt
+= p
->signal
->min_flt
;
1583 r
->ru_majflt
+= p
->signal
->maj_flt
;
1584 r
->ru_inblock
+= p
->signal
->inblock
;
1585 r
->ru_oublock
+= p
->signal
->oublock
;
1586 if (maxrss
< p
->signal
->maxrss
)
1587 maxrss
= p
->signal
->maxrss
;
1590 accumulate_thread_rusage(t
, r
);
1591 } while_each_thread(p
, t
);
1597 unlock_task_sighand(p
, &flags
);
1600 cputime_to_timeval(utime
, &r
->ru_utime
);
1601 cputime_to_timeval(stime
, &r
->ru_stime
);
1603 if (who
!= RUSAGE_CHILDREN
) {
1604 struct mm_struct
*mm
= get_task_mm(p
);
1607 setmax_mm_hiwater_rss(&maxrss
, mm
);
1611 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1614 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1618 k_getrusage(p
, who
, &r
);
1619 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1622 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1624 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1625 who
!= RUSAGE_THREAD
)
1627 return getrusage(current
, who
, ru
);
1630 #ifdef CONFIG_COMPAT
1631 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1635 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1636 who
!= RUSAGE_THREAD
)
1639 k_getrusage(current
, who
, &r
);
1640 return put_compat_rusage(&r
, ru
);
1644 SYSCALL_DEFINE1(umask
, int, mask
)
1646 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1650 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1653 struct file
*old_exe
, *exe_file
;
1654 struct inode
*inode
;
1661 inode
= file_inode(exe
.file
);
1664 * Because the original mm->exe_file points to executable file, make
1665 * sure that this one is executable as well, to avoid breaking an
1669 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1672 err
= inode_permission(inode
, MAY_EXEC
);
1677 * Forbid mm->exe_file change if old file still mapped.
1679 exe_file
= get_mm_exe_file(mm
);
1682 struct vm_area_struct
*vma
;
1684 down_read(&mm
->mmap_sem
);
1685 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1688 if (path_equal(&vma
->vm_file
->f_path
,
1693 up_read(&mm
->mmap_sem
);
1698 * The symlink can be changed only once, just to disallow arbitrary
1699 * transitions malicious software might bring in. This means one
1700 * could make a snapshot over all processes running and monitor
1701 * /proc/pid/exe changes to notice unusual activity if needed.
1704 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1708 /* set the new file, lockless */
1710 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1717 up_read(&mm
->mmap_sem
);
1723 * WARNING: we don't require any capability here so be very careful
1724 * in what is allowed for modification from userspace.
1726 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1728 unsigned long mmap_max_addr
= TASK_SIZE
;
1729 struct mm_struct
*mm
= current
->mm
;
1730 int error
= -EINVAL
, i
;
1732 static const unsigned char offsets
[] = {
1733 offsetof(struct prctl_mm_map
, start_code
),
1734 offsetof(struct prctl_mm_map
, end_code
),
1735 offsetof(struct prctl_mm_map
, start_data
),
1736 offsetof(struct prctl_mm_map
, end_data
),
1737 offsetof(struct prctl_mm_map
, start_brk
),
1738 offsetof(struct prctl_mm_map
, brk
),
1739 offsetof(struct prctl_mm_map
, start_stack
),
1740 offsetof(struct prctl_mm_map
, arg_start
),
1741 offsetof(struct prctl_mm_map
, arg_end
),
1742 offsetof(struct prctl_mm_map
, env_start
),
1743 offsetof(struct prctl_mm_map
, env_end
),
1747 * Make sure the members are not somewhere outside
1748 * of allowed address space.
1750 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1751 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1753 if ((unsigned long)val
>= mmap_max_addr
||
1754 (unsigned long)val
< mmap_min_addr
)
1759 * Make sure the pairs are ordered.
1761 #define __prctl_check_order(__m1, __op, __m2) \
1762 ((unsigned long)prctl_map->__m1 __op \
1763 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1764 error
= __prctl_check_order(start_code
, <, end_code
);
1765 error
|= __prctl_check_order(start_data
, <, end_data
);
1766 error
|= __prctl_check_order(start_brk
, <=, brk
);
1767 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1768 error
|= __prctl_check_order(env_start
, <=, env_end
);
1771 #undef __prctl_check_order
1776 * @brk should be after @end_data in traditional maps.
1778 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1779 prctl_map
->brk
<= prctl_map
->end_data
)
1783 * Neither we should allow to override limits if they set.
1785 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1786 prctl_map
->start_brk
, prctl_map
->end_data
,
1787 prctl_map
->start_data
))
1791 * Someone is trying to cheat the auxv vector.
1793 if (prctl_map
->auxv_size
) {
1794 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1799 * Finally, make sure the caller has the rights to
1800 * change /proc/pid/exe link: only local root should
1803 if (prctl_map
->exe_fd
!= (u32
)-1) {
1804 struct user_namespace
*ns
= current_user_ns();
1805 const struct cred
*cred
= current_cred();
1807 if (!uid_eq(cred
->uid
, make_kuid(ns
, 0)) ||
1808 !gid_eq(cred
->gid
, make_kgid(ns
, 0)))
1817 #ifdef CONFIG_CHECKPOINT_RESTORE
1818 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1820 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1821 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1822 struct mm_struct
*mm
= current
->mm
;
1825 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1826 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1828 if (opt
== PR_SET_MM_MAP_SIZE
)
1829 return put_user((unsigned int)sizeof(prctl_map
),
1830 (unsigned int __user
*)addr
);
1832 if (data_size
!= sizeof(prctl_map
))
1835 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1838 error
= validate_prctl_map(&prctl_map
);
1842 if (prctl_map
.auxv_size
) {
1843 memset(user_auxv
, 0, sizeof(user_auxv
));
1844 if (copy_from_user(user_auxv
,
1845 (const void __user
*)prctl_map
.auxv
,
1846 prctl_map
.auxv_size
))
1849 /* Last entry must be AT_NULL as specification requires */
1850 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1851 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1854 if (prctl_map
.exe_fd
!= (u32
)-1) {
1855 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
1860 down_write(&mm
->mmap_sem
);
1863 * We don't validate if these members are pointing to
1864 * real present VMAs because application may have correspond
1865 * VMAs already unmapped and kernel uses these members for statistics
1866 * output in procfs mostly, except
1868 * - @start_brk/@brk which are used in do_brk but kernel lookups
1869 * for VMAs when updating these memvers so anything wrong written
1870 * here cause kernel to swear at userspace program but won't lead
1871 * to any problem in kernel itself
1874 mm
->start_code
= prctl_map
.start_code
;
1875 mm
->end_code
= prctl_map
.end_code
;
1876 mm
->start_data
= prctl_map
.start_data
;
1877 mm
->end_data
= prctl_map
.end_data
;
1878 mm
->start_brk
= prctl_map
.start_brk
;
1879 mm
->brk
= prctl_map
.brk
;
1880 mm
->start_stack
= prctl_map
.start_stack
;
1881 mm
->arg_start
= prctl_map
.arg_start
;
1882 mm
->arg_end
= prctl_map
.arg_end
;
1883 mm
->env_start
= prctl_map
.env_start
;
1884 mm
->env_end
= prctl_map
.env_end
;
1887 * Note this update of @saved_auxv is lockless thus
1888 * if someone reads this member in procfs while we're
1889 * updating -- it may get partly updated results. It's
1890 * known and acceptable trade off: we leave it as is to
1891 * not introduce additional locks here making the kernel
1894 if (prctl_map
.auxv_size
)
1895 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
1897 up_write(&mm
->mmap_sem
);
1900 #endif /* CONFIG_CHECKPOINT_RESTORE */
1902 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
1906 * This doesn't move the auxiliary vector itself since it's pinned to
1907 * mm_struct, but it permits filling the vector with new values. It's
1908 * up to the caller to provide sane values here, otherwise userspace
1909 * tools which use this vector might be unhappy.
1911 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1913 if (len
> sizeof(user_auxv
))
1916 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
1919 /* Make sure the last entry is always AT_NULL */
1920 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
1921 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
1923 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1926 memcpy(mm
->saved_auxv
, user_auxv
, len
);
1927 task_unlock(current
);
1932 static int prctl_set_mm(int opt
, unsigned long addr
,
1933 unsigned long arg4
, unsigned long arg5
)
1935 struct mm_struct
*mm
= current
->mm
;
1936 struct prctl_mm_map prctl_map
;
1937 struct vm_area_struct
*vma
;
1940 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
1941 opt
!= PR_SET_MM_MAP
&&
1942 opt
!= PR_SET_MM_MAP_SIZE
)))
1945 #ifdef CONFIG_CHECKPOINT_RESTORE
1946 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
1947 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
1950 if (!capable(CAP_SYS_RESOURCE
))
1953 if (opt
== PR_SET_MM_EXE_FILE
)
1954 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
1956 if (opt
== PR_SET_MM_AUXV
)
1957 return prctl_set_auxv(mm
, addr
, arg4
);
1959 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1964 down_write(&mm
->mmap_sem
);
1965 vma
= find_vma(mm
, addr
);
1967 prctl_map
.start_code
= mm
->start_code
;
1968 prctl_map
.end_code
= mm
->end_code
;
1969 prctl_map
.start_data
= mm
->start_data
;
1970 prctl_map
.end_data
= mm
->end_data
;
1971 prctl_map
.start_brk
= mm
->start_brk
;
1972 prctl_map
.brk
= mm
->brk
;
1973 prctl_map
.start_stack
= mm
->start_stack
;
1974 prctl_map
.arg_start
= mm
->arg_start
;
1975 prctl_map
.arg_end
= mm
->arg_end
;
1976 prctl_map
.env_start
= mm
->env_start
;
1977 prctl_map
.env_end
= mm
->env_end
;
1978 prctl_map
.auxv
= NULL
;
1979 prctl_map
.auxv_size
= 0;
1980 prctl_map
.exe_fd
= -1;
1983 case PR_SET_MM_START_CODE
:
1984 prctl_map
.start_code
= addr
;
1986 case PR_SET_MM_END_CODE
:
1987 prctl_map
.end_code
= addr
;
1989 case PR_SET_MM_START_DATA
:
1990 prctl_map
.start_data
= addr
;
1992 case PR_SET_MM_END_DATA
:
1993 prctl_map
.end_data
= addr
;
1995 case PR_SET_MM_START_STACK
:
1996 prctl_map
.start_stack
= addr
;
1998 case PR_SET_MM_START_BRK
:
1999 prctl_map
.start_brk
= addr
;
2002 prctl_map
.brk
= addr
;
2004 case PR_SET_MM_ARG_START
:
2005 prctl_map
.arg_start
= addr
;
2007 case PR_SET_MM_ARG_END
:
2008 prctl_map
.arg_end
= addr
;
2010 case PR_SET_MM_ENV_START
:
2011 prctl_map
.env_start
= addr
;
2013 case PR_SET_MM_ENV_END
:
2014 prctl_map
.env_end
= addr
;
2020 error
= validate_prctl_map(&prctl_map
);
2026 * If command line arguments and environment
2027 * are placed somewhere else on stack, we can
2028 * set them up here, ARG_START/END to setup
2029 * command line argumets and ENV_START/END
2032 case PR_SET_MM_START_STACK
:
2033 case PR_SET_MM_ARG_START
:
2034 case PR_SET_MM_ARG_END
:
2035 case PR_SET_MM_ENV_START
:
2036 case PR_SET_MM_ENV_END
:
2043 mm
->start_code
= prctl_map
.start_code
;
2044 mm
->end_code
= prctl_map
.end_code
;
2045 mm
->start_data
= prctl_map
.start_data
;
2046 mm
->end_data
= prctl_map
.end_data
;
2047 mm
->start_brk
= prctl_map
.start_brk
;
2048 mm
->brk
= prctl_map
.brk
;
2049 mm
->start_stack
= prctl_map
.start_stack
;
2050 mm
->arg_start
= prctl_map
.arg_start
;
2051 mm
->arg_end
= prctl_map
.arg_end
;
2052 mm
->env_start
= prctl_map
.env_start
;
2053 mm
->env_end
= prctl_map
.env_end
;
2057 up_write(&mm
->mmap_sem
);
2061 #ifdef CONFIG_CHECKPOINT_RESTORE
2062 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2064 return put_user(me
->clear_child_tid
, tid_addr
);
2067 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2073 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2078 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2084 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2085 unsigned long, arg4
, unsigned long, arg5
)
2087 struct task_struct
*me
= current
;
2088 unsigned char comm
[sizeof(me
->comm
)];
2091 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2092 if (error
!= -ENOSYS
)
2097 case PR_SET_PDEATHSIG
:
2098 if (!valid_signal(arg2
)) {
2102 me
->pdeath_signal
= arg2
;
2104 case PR_GET_PDEATHSIG
:
2105 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2107 case PR_GET_DUMPABLE
:
2108 error
= get_dumpable(me
->mm
);
2110 case PR_SET_DUMPABLE
:
2111 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2115 set_dumpable(me
->mm
, arg2
);
2118 case PR_SET_UNALIGN
:
2119 error
= SET_UNALIGN_CTL(me
, arg2
);
2121 case PR_GET_UNALIGN
:
2122 error
= GET_UNALIGN_CTL(me
, arg2
);
2125 error
= SET_FPEMU_CTL(me
, arg2
);
2128 error
= GET_FPEMU_CTL(me
, arg2
);
2131 error
= SET_FPEXC_CTL(me
, arg2
);
2134 error
= GET_FPEXC_CTL(me
, arg2
);
2137 error
= PR_TIMING_STATISTICAL
;
2140 if (arg2
!= PR_TIMING_STATISTICAL
)
2144 comm
[sizeof(me
->comm
) - 1] = 0;
2145 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2146 sizeof(me
->comm
) - 1) < 0)
2148 set_task_comm(me
, comm
);
2149 proc_comm_connector(me
);
2152 get_task_comm(comm
, me
);
2153 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2157 error
= GET_ENDIAN(me
, arg2
);
2160 error
= SET_ENDIAN(me
, arg2
);
2162 case PR_GET_SECCOMP
:
2163 error
= prctl_get_seccomp();
2165 case PR_SET_SECCOMP
:
2166 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2169 error
= GET_TSC_CTL(arg2
);
2172 error
= SET_TSC_CTL(arg2
);
2174 case PR_TASK_PERF_EVENTS_DISABLE
:
2175 error
= perf_event_task_disable();
2177 case PR_TASK_PERF_EVENTS_ENABLE
:
2178 error
= perf_event_task_enable();
2180 case PR_GET_TIMERSLACK
:
2181 error
= current
->timer_slack_ns
;
2183 case PR_SET_TIMERSLACK
:
2185 current
->timer_slack_ns
=
2186 current
->default_timer_slack_ns
;
2188 current
->timer_slack_ns
= arg2
;
2194 case PR_MCE_KILL_CLEAR
:
2197 current
->flags
&= ~PF_MCE_PROCESS
;
2199 case PR_MCE_KILL_SET
:
2200 current
->flags
|= PF_MCE_PROCESS
;
2201 if (arg3
== PR_MCE_KILL_EARLY
)
2202 current
->flags
|= PF_MCE_EARLY
;
2203 else if (arg3
== PR_MCE_KILL_LATE
)
2204 current
->flags
&= ~PF_MCE_EARLY
;
2205 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2207 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2215 case PR_MCE_KILL_GET
:
2216 if (arg2
| arg3
| arg4
| arg5
)
2218 if (current
->flags
& PF_MCE_PROCESS
)
2219 error
= (current
->flags
& PF_MCE_EARLY
) ?
2220 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2222 error
= PR_MCE_KILL_DEFAULT
;
2225 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2227 case PR_GET_TID_ADDRESS
:
2228 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2230 case PR_SET_CHILD_SUBREAPER
:
2231 me
->signal
->is_child_subreaper
= !!arg2
;
2233 case PR_GET_CHILD_SUBREAPER
:
2234 error
= put_user(me
->signal
->is_child_subreaper
,
2235 (int __user
*)arg2
);
2237 case PR_SET_NO_NEW_PRIVS
:
2238 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2241 task_set_no_new_privs(current
);
2243 case PR_GET_NO_NEW_PRIVS
:
2244 if (arg2
|| arg3
|| arg4
|| arg5
)
2246 return task_no_new_privs(current
) ? 1 : 0;
2247 case PR_GET_THP_DISABLE
:
2248 if (arg2
|| arg3
|| arg4
|| arg5
)
2250 error
= !!(me
->mm
->def_flags
& VM_NOHUGEPAGE
);
2252 case PR_SET_THP_DISABLE
:
2253 if (arg3
|| arg4
|| arg5
)
2255 down_write(&me
->mm
->mmap_sem
);
2257 me
->mm
->def_flags
|= VM_NOHUGEPAGE
;
2259 me
->mm
->def_flags
&= ~VM_NOHUGEPAGE
;
2260 up_write(&me
->mm
->mmap_sem
);
2262 case PR_MPX_ENABLE_MANAGEMENT
:
2263 if (arg2
|| arg3
|| arg4
|| arg5
)
2265 error
= MPX_ENABLE_MANAGEMENT();
2267 case PR_MPX_DISABLE_MANAGEMENT
:
2268 if (arg2
|| arg3
|| arg4
|| arg5
)
2270 error
= MPX_DISABLE_MANAGEMENT();
2272 case PR_SET_FP_MODE
:
2273 error
= SET_FP_MODE(me
, arg2
);
2275 case PR_GET_FP_MODE
:
2276 error
= GET_FP_MODE(me
);
2278 case PR_GET_SPECULATION_CTRL
:
2279 if (arg3
|| arg4
|| arg5
)
2281 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2283 case PR_SET_SPECULATION_CTRL
:
2286 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2295 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2296 struct getcpu_cache __user
*, unused
)
2299 int cpu
= raw_smp_processor_id();
2302 err
|= put_user(cpu
, cpup
);
2304 err
|= put_user(cpu_to_node(cpu
), nodep
);
2305 return err
? -EFAULT
: 0;
2309 * do_sysinfo - fill in sysinfo struct
2310 * @info: pointer to buffer to fill
2312 static int do_sysinfo(struct sysinfo
*info
)
2314 unsigned long mem_total
, sav_total
;
2315 unsigned int mem_unit
, bitcount
;
2318 memset(info
, 0, sizeof(struct sysinfo
));
2320 get_monotonic_boottime(&tp
);
2321 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2323 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2325 info
->procs
= nr_threads
;
2331 * If the sum of all the available memory (i.e. ram + swap)
2332 * is less than can be stored in a 32 bit unsigned long then
2333 * we can be binary compatible with 2.2.x kernels. If not,
2334 * well, in that case 2.2.x was broken anyways...
2336 * -Erik Andersen <andersee@debian.org>
2339 mem_total
= info
->totalram
+ info
->totalswap
;
2340 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2343 mem_unit
= info
->mem_unit
;
2344 while (mem_unit
> 1) {
2347 sav_total
= mem_total
;
2349 if (mem_total
< sav_total
)
2354 * If mem_total did not overflow, multiply all memory values by
2355 * info->mem_unit and set it to 1. This leaves things compatible
2356 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2361 info
->totalram
<<= bitcount
;
2362 info
->freeram
<<= bitcount
;
2363 info
->sharedram
<<= bitcount
;
2364 info
->bufferram
<<= bitcount
;
2365 info
->totalswap
<<= bitcount
;
2366 info
->freeswap
<<= bitcount
;
2367 info
->totalhigh
<<= bitcount
;
2368 info
->freehigh
<<= bitcount
;
2374 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2380 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2386 #ifdef CONFIG_COMPAT
2387 struct compat_sysinfo
{
2401 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2404 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2410 /* Check to see if any memory value is too large for 32-bit and scale
2413 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2416 while (s
.mem_unit
< PAGE_SIZE
) {
2421 s
.totalram
>>= bitcount
;
2422 s
.freeram
>>= bitcount
;
2423 s
.sharedram
>>= bitcount
;
2424 s
.bufferram
>>= bitcount
;
2425 s
.totalswap
>>= bitcount
;
2426 s
.freeswap
>>= bitcount
;
2427 s
.totalhigh
>>= bitcount
;
2428 s
.freehigh
>>= bitcount
;
2431 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2432 __put_user(s
.uptime
, &info
->uptime
) ||
2433 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2434 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2435 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2436 __put_user(s
.totalram
, &info
->totalram
) ||
2437 __put_user(s
.freeram
, &info
->freeram
) ||
2438 __put_user(s
.sharedram
, &info
->sharedram
) ||
2439 __put_user(s
.bufferram
, &info
->bufferram
) ||
2440 __put_user(s
.totalswap
, &info
->totalswap
) ||
2441 __put_user(s
.freeswap
, &info
->freeswap
) ||
2442 __put_user(s
.procs
, &info
->procs
) ||
2443 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2444 __put_user(s
.freehigh
, &info
->freehigh
) ||
2445 __put_user(s
.mem_unit
, &info
->mem_unit
))
2450 #endif /* CONFIG_COMPAT */