dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blob74b20e3ab8c6c6acbe8f59a97b3dbfa110b6c04d
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct *work);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq *s)
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 return !trace_seq_has_overflowed(s);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event *event)
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
154 static void rb_event_set_padding(struct ring_buffer_event *event)
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
164 unsigned length;
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
199 /* not hit */
200 return 0;
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
210 unsigned len = 0;
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
217 return len + rb_event_length(event);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 unsigned length;
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 return rb_event_data(event);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
318 * The counter is 20 bits, and the state data is 12.
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
323 static void rb_init_page(struct buffer_data_page *bpage)
325 local_set(&bpage->commit, 0);
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
332 * Returns the amount of data on the page, including buffer page header.
334 size_t ring_buffer_page_len(void *page)
336 struct buffer_data_page *bpage = page;
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
346 static void free_buffer_page(struct buffer_page *bpage)
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
353 * We need to fit the time_stamp delta into 27 bits.
355 static inline int test_time_stamp(u64 delta)
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
367 int ring_buffer_print_page_header(struct trace_seq *s)
369 struct buffer_data_page field;
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)is_signed_type(long));
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
394 return !trace_seq_has_overflowed(s);
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
407 * Structure to hold event state and handle nested events.
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
424 * See trace_recursive_lock() comment below for more details.
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
435 * head_page == tail_page && head == tail then buffer is empty.
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 unsigned long nr_pages;
445 unsigned int current_context;
446 struct list_head *pages;
447 struct buffer_page *head_page; /* read from head */
448 struct buffer_page *tail_page; /* write to tail */
449 struct buffer_page *commit_page; /* committed pages */
450 struct buffer_page *reader_page;
451 unsigned long lost_events;
452 unsigned long last_overrun;
453 local_t entries_bytes;
454 local_t entries;
455 local_t overrun;
456 local_t commit_overrun;
457 local_t dropped_events;
458 local_t committing;
459 local_t commits;
460 unsigned long read;
461 unsigned long read_bytes;
462 u64 write_stamp;
463 u64 read_stamp;
464 /* ring buffer pages to update, > 0 to add, < 0 to remove */
465 long nr_pages_to_update;
466 struct list_head new_pages; /* new pages to add */
467 struct work_struct update_pages_work;
468 struct completion update_done;
470 struct rb_irq_work irq_work;
473 struct ring_buffer {
474 unsigned flags;
475 int cpus;
476 atomic_t record_disabled;
477 atomic_t resize_disabled;
478 cpumask_var_t cpumask;
480 struct lock_class_key *reader_lock_key;
482 struct mutex mutex;
484 struct ring_buffer_per_cpu **buffers;
486 #ifdef CONFIG_HOTPLUG_CPU
487 struct notifier_block cpu_notify;
488 #endif
489 u64 (*clock)(void);
491 struct rb_irq_work irq_work;
494 struct ring_buffer_iter {
495 struct ring_buffer_per_cpu *cpu_buffer;
496 unsigned long head;
497 struct buffer_page *head_page;
498 struct buffer_page *cache_reader_page;
499 unsigned long cache_read;
500 u64 read_stamp;
504 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
506 * Schedules a delayed work to wake up any task that is blocked on the
507 * ring buffer waiters queue.
509 static void rb_wake_up_waiters(struct irq_work *work)
511 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
513 wake_up_all(&rbwork->waiters);
514 if (rbwork->wakeup_full) {
515 rbwork->wakeup_full = false;
516 wake_up_all(&rbwork->full_waiters);
521 * ring_buffer_wait - wait for input to the ring buffer
522 * @buffer: buffer to wait on
523 * @cpu: the cpu buffer to wait on
524 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
526 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
527 * as data is added to any of the @buffer's cpu buffers. Otherwise
528 * it will wait for data to be added to a specific cpu buffer.
530 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
532 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
533 DEFINE_WAIT(wait);
534 struct rb_irq_work *work;
535 int ret = 0;
538 * Depending on what the caller is waiting for, either any
539 * data in any cpu buffer, or a specific buffer, put the
540 * caller on the appropriate wait queue.
542 if (cpu == RING_BUFFER_ALL_CPUS) {
543 work = &buffer->irq_work;
544 /* Full only makes sense on per cpu reads */
545 full = false;
546 } else {
547 if (!cpumask_test_cpu(cpu, buffer->cpumask))
548 return -ENODEV;
549 cpu_buffer = buffer->buffers[cpu];
550 work = &cpu_buffer->irq_work;
554 while (true) {
555 if (full)
556 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
557 else
558 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
561 * The events can happen in critical sections where
562 * checking a work queue can cause deadlocks.
563 * After adding a task to the queue, this flag is set
564 * only to notify events to try to wake up the queue
565 * using irq_work.
567 * We don't clear it even if the buffer is no longer
568 * empty. The flag only causes the next event to run
569 * irq_work to do the work queue wake up. The worse
570 * that can happen if we race with !trace_empty() is that
571 * an event will cause an irq_work to try to wake up
572 * an empty queue.
574 * There's no reason to protect this flag either, as
575 * the work queue and irq_work logic will do the necessary
576 * synchronization for the wake ups. The only thing
577 * that is necessary is that the wake up happens after
578 * a task has been queued. It's OK for spurious wake ups.
580 if (full)
581 work->full_waiters_pending = true;
582 else
583 work->waiters_pending = true;
585 if (signal_pending(current)) {
586 ret = -EINTR;
587 break;
590 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
591 break;
593 if (cpu != RING_BUFFER_ALL_CPUS &&
594 !ring_buffer_empty_cpu(buffer, cpu)) {
595 unsigned long flags;
596 bool pagebusy;
598 if (!full)
599 break;
601 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
602 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
603 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
605 if (!pagebusy)
606 break;
609 schedule();
612 if (full)
613 finish_wait(&work->full_waiters, &wait);
614 else
615 finish_wait(&work->waiters, &wait);
617 return ret;
621 * ring_buffer_poll_wait - poll on buffer input
622 * @buffer: buffer to wait on
623 * @cpu: the cpu buffer to wait on
624 * @filp: the file descriptor
625 * @poll_table: The poll descriptor
627 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
628 * as data is added to any of the @buffer's cpu buffers. Otherwise
629 * it will wait for data to be added to a specific cpu buffer.
631 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
632 * zero otherwise.
634 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
635 struct file *filp, poll_table *poll_table)
637 struct ring_buffer_per_cpu *cpu_buffer;
638 struct rb_irq_work *work;
640 if (cpu == RING_BUFFER_ALL_CPUS)
641 work = &buffer->irq_work;
642 else {
643 if (!cpumask_test_cpu(cpu, buffer->cpumask))
644 return -EINVAL;
646 cpu_buffer = buffer->buffers[cpu];
647 work = &cpu_buffer->irq_work;
650 poll_wait(filp, &work->waiters, poll_table);
651 work->waiters_pending = true;
653 * There's a tight race between setting the waiters_pending and
654 * checking if the ring buffer is empty. Once the waiters_pending bit
655 * is set, the next event will wake the task up, but we can get stuck
656 * if there's only a single event in.
658 * FIXME: Ideally, we need a memory barrier on the writer side as well,
659 * but adding a memory barrier to all events will cause too much of a
660 * performance hit in the fast path. We only need a memory barrier when
661 * the buffer goes from empty to having content. But as this race is
662 * extremely small, and it's not a problem if another event comes in, we
663 * will fix it later.
665 smp_mb();
667 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
668 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
669 return POLLIN | POLLRDNORM;
670 return 0;
673 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
674 #define RB_WARN_ON(b, cond) \
675 ({ \
676 int _____ret = unlikely(cond); \
677 if (_____ret) { \
678 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
679 struct ring_buffer_per_cpu *__b = \
680 (void *)b; \
681 atomic_inc(&__b->buffer->record_disabled); \
682 } else \
683 atomic_inc(&b->record_disabled); \
684 WARN_ON(1); \
686 _____ret; \
689 /* Up this if you want to test the TIME_EXTENTS and normalization */
690 #define DEBUG_SHIFT 0
692 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
694 /* shift to debug/test normalization and TIME_EXTENTS */
695 return buffer->clock() << DEBUG_SHIFT;
698 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
700 u64 time;
702 preempt_disable_notrace();
703 time = rb_time_stamp(buffer);
704 preempt_enable_no_resched_notrace();
706 return time;
708 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
710 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
711 int cpu, u64 *ts)
713 /* Just stupid testing the normalize function and deltas */
714 *ts >>= DEBUG_SHIFT;
716 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
719 * Making the ring buffer lockless makes things tricky.
720 * Although writes only happen on the CPU that they are on,
721 * and they only need to worry about interrupts. Reads can
722 * happen on any CPU.
724 * The reader page is always off the ring buffer, but when the
725 * reader finishes with a page, it needs to swap its page with
726 * a new one from the buffer. The reader needs to take from
727 * the head (writes go to the tail). But if a writer is in overwrite
728 * mode and wraps, it must push the head page forward.
730 * Here lies the problem.
732 * The reader must be careful to replace only the head page, and
733 * not another one. As described at the top of the file in the
734 * ASCII art, the reader sets its old page to point to the next
735 * page after head. It then sets the page after head to point to
736 * the old reader page. But if the writer moves the head page
737 * during this operation, the reader could end up with the tail.
739 * We use cmpxchg to help prevent this race. We also do something
740 * special with the page before head. We set the LSB to 1.
742 * When the writer must push the page forward, it will clear the
743 * bit that points to the head page, move the head, and then set
744 * the bit that points to the new head page.
746 * We also don't want an interrupt coming in and moving the head
747 * page on another writer. Thus we use the second LSB to catch
748 * that too. Thus:
750 * head->list->prev->next bit 1 bit 0
751 * ------- -------
752 * Normal page 0 0
753 * Points to head page 0 1
754 * New head page 1 0
756 * Note we can not trust the prev pointer of the head page, because:
758 * +----+ +-----+ +-----+
759 * | |------>| T |---X--->| N |
760 * | |<------| | | |
761 * +----+ +-----+ +-----+
762 * ^ ^ |
763 * | +-----+ | |
764 * +----------| R |----------+ |
765 * | |<-----------+
766 * +-----+
768 * Key: ---X--> HEAD flag set in pointer
769 * T Tail page
770 * R Reader page
771 * N Next page
773 * (see __rb_reserve_next() to see where this happens)
775 * What the above shows is that the reader just swapped out
776 * the reader page with a page in the buffer, but before it
777 * could make the new header point back to the new page added
778 * it was preempted by a writer. The writer moved forward onto
779 * the new page added by the reader and is about to move forward
780 * again.
782 * You can see, it is legitimate for the previous pointer of
783 * the head (or any page) not to point back to itself. But only
784 * temporarially.
787 #define RB_PAGE_NORMAL 0UL
788 #define RB_PAGE_HEAD 1UL
789 #define RB_PAGE_UPDATE 2UL
792 #define RB_FLAG_MASK 3UL
794 /* PAGE_MOVED is not part of the mask */
795 #define RB_PAGE_MOVED 4UL
798 * rb_list_head - remove any bit
800 static struct list_head *rb_list_head(struct list_head *list)
802 unsigned long val = (unsigned long)list;
804 return (struct list_head *)(val & ~RB_FLAG_MASK);
808 * rb_is_head_page - test if the given page is the head page
810 * Because the reader may move the head_page pointer, we can
811 * not trust what the head page is (it may be pointing to
812 * the reader page). But if the next page is a header page,
813 * its flags will be non zero.
815 static inline int
816 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
817 struct buffer_page *page, struct list_head *list)
819 unsigned long val;
821 val = (unsigned long)list->next;
823 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
824 return RB_PAGE_MOVED;
826 return val & RB_FLAG_MASK;
830 * rb_is_reader_page
832 * The unique thing about the reader page, is that, if the
833 * writer is ever on it, the previous pointer never points
834 * back to the reader page.
836 static bool rb_is_reader_page(struct buffer_page *page)
838 struct list_head *list = page->list.prev;
840 return rb_list_head(list->next) != &page->list;
844 * rb_set_list_to_head - set a list_head to be pointing to head.
846 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
847 struct list_head *list)
849 unsigned long *ptr;
851 ptr = (unsigned long *)&list->next;
852 *ptr |= RB_PAGE_HEAD;
853 *ptr &= ~RB_PAGE_UPDATE;
857 * rb_head_page_activate - sets up head page
859 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
861 struct buffer_page *head;
863 head = cpu_buffer->head_page;
864 if (!head)
865 return;
868 * Set the previous list pointer to have the HEAD flag.
870 rb_set_list_to_head(cpu_buffer, head->list.prev);
873 static void rb_list_head_clear(struct list_head *list)
875 unsigned long *ptr = (unsigned long *)&list->next;
877 *ptr &= ~RB_FLAG_MASK;
881 * rb_head_page_dactivate - clears head page ptr (for free list)
883 static void
884 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
886 struct list_head *hd;
888 /* Go through the whole list and clear any pointers found. */
889 rb_list_head_clear(cpu_buffer->pages);
891 list_for_each(hd, cpu_buffer->pages)
892 rb_list_head_clear(hd);
895 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
896 struct buffer_page *head,
897 struct buffer_page *prev,
898 int old_flag, int new_flag)
900 struct list_head *list;
901 unsigned long val = (unsigned long)&head->list;
902 unsigned long ret;
904 list = &prev->list;
906 val &= ~RB_FLAG_MASK;
908 ret = cmpxchg((unsigned long *)&list->next,
909 val | old_flag, val | new_flag);
911 /* check if the reader took the page */
912 if ((ret & ~RB_FLAG_MASK) != val)
913 return RB_PAGE_MOVED;
915 return ret & RB_FLAG_MASK;
918 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
919 struct buffer_page *head,
920 struct buffer_page *prev,
921 int old_flag)
923 return rb_head_page_set(cpu_buffer, head, prev,
924 old_flag, RB_PAGE_UPDATE);
927 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
928 struct buffer_page *head,
929 struct buffer_page *prev,
930 int old_flag)
932 return rb_head_page_set(cpu_buffer, head, prev,
933 old_flag, RB_PAGE_HEAD);
936 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
937 struct buffer_page *head,
938 struct buffer_page *prev,
939 int old_flag)
941 return rb_head_page_set(cpu_buffer, head, prev,
942 old_flag, RB_PAGE_NORMAL);
945 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
946 struct buffer_page **bpage)
948 struct list_head *p = rb_list_head((*bpage)->list.next);
950 *bpage = list_entry(p, struct buffer_page, list);
953 static struct buffer_page *
954 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
956 struct buffer_page *head;
957 struct buffer_page *page;
958 struct list_head *list;
959 int i;
961 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
962 return NULL;
964 /* sanity check */
965 list = cpu_buffer->pages;
966 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
967 return NULL;
969 page = head = cpu_buffer->head_page;
971 * It is possible that the writer moves the header behind
972 * where we started, and we miss in one loop.
973 * A second loop should grab the header, but we'll do
974 * three loops just because I'm paranoid.
976 for (i = 0; i < 3; i++) {
977 do {
978 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
979 cpu_buffer->head_page = page;
980 return page;
982 rb_inc_page(cpu_buffer, &page);
983 } while (page != head);
986 RB_WARN_ON(cpu_buffer, 1);
988 return NULL;
991 static int rb_head_page_replace(struct buffer_page *old,
992 struct buffer_page *new)
994 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
995 unsigned long val;
996 unsigned long ret;
998 val = *ptr & ~RB_FLAG_MASK;
999 val |= RB_PAGE_HEAD;
1001 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1003 return ret == val;
1007 * rb_tail_page_update - move the tail page forward
1009 * Returns 1 if moved tail page, 0 if someone else did.
1011 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1012 struct buffer_page *tail_page,
1013 struct buffer_page *next_page)
1015 struct buffer_page *old_tail;
1016 unsigned long old_entries;
1017 unsigned long old_write;
1018 int ret = 0;
1021 * The tail page now needs to be moved forward.
1023 * We need to reset the tail page, but without messing
1024 * with possible erasing of data brought in by interrupts
1025 * that have moved the tail page and are currently on it.
1027 * We add a counter to the write field to denote this.
1029 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1030 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1033 * Just make sure we have seen our old_write and synchronize
1034 * with any interrupts that come in.
1036 barrier();
1039 * If the tail page is still the same as what we think
1040 * it is, then it is up to us to update the tail
1041 * pointer.
1043 if (tail_page == cpu_buffer->tail_page) {
1044 /* Zero the write counter */
1045 unsigned long val = old_write & ~RB_WRITE_MASK;
1046 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1049 * This will only succeed if an interrupt did
1050 * not come in and change it. In which case, we
1051 * do not want to modify it.
1053 * We add (void) to let the compiler know that we do not care
1054 * about the return value of these functions. We use the
1055 * cmpxchg to only update if an interrupt did not already
1056 * do it for us. If the cmpxchg fails, we don't care.
1058 (void)local_cmpxchg(&next_page->write, old_write, val);
1059 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1062 * No need to worry about races with clearing out the commit.
1063 * it only can increment when a commit takes place. But that
1064 * only happens in the outer most nested commit.
1066 local_set(&next_page->page->commit, 0);
1068 old_tail = cmpxchg(&cpu_buffer->tail_page,
1069 tail_page, next_page);
1071 if (old_tail == tail_page)
1072 ret = 1;
1075 return ret;
1078 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1079 struct buffer_page *bpage)
1081 unsigned long val = (unsigned long)bpage;
1083 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1084 return 1;
1086 return 0;
1090 * rb_check_list - make sure a pointer to a list has the last bits zero
1092 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1093 struct list_head *list)
1095 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1096 return 1;
1097 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1098 return 1;
1099 return 0;
1103 * rb_check_pages - integrity check of buffer pages
1104 * @cpu_buffer: CPU buffer with pages to test
1106 * As a safety measure we check to make sure the data pages have not
1107 * been corrupted.
1109 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1111 struct list_head *head = cpu_buffer->pages;
1112 struct buffer_page *bpage, *tmp;
1114 /* Reset the head page if it exists */
1115 if (cpu_buffer->head_page)
1116 rb_set_head_page(cpu_buffer);
1118 rb_head_page_deactivate(cpu_buffer);
1120 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1123 return -1;
1125 if (rb_check_list(cpu_buffer, head))
1126 return -1;
1128 list_for_each_entry_safe(bpage, tmp, head, list) {
1129 if (RB_WARN_ON(cpu_buffer,
1130 bpage->list.next->prev != &bpage->list))
1131 return -1;
1132 if (RB_WARN_ON(cpu_buffer,
1133 bpage->list.prev->next != &bpage->list))
1134 return -1;
1135 if (rb_check_list(cpu_buffer, &bpage->list))
1136 return -1;
1139 rb_head_page_activate(cpu_buffer);
1141 return 0;
1144 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1146 struct buffer_page *bpage, *tmp;
1147 long i;
1149 for (i = 0; i < nr_pages; i++) {
1150 struct page *page;
1152 * __GFP_NORETRY flag makes sure that the allocation fails
1153 * gracefully without invoking oom-killer and the system is
1154 * not destabilized.
1156 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1157 GFP_KERNEL | __GFP_NORETRY,
1158 cpu_to_node(cpu));
1159 if (!bpage)
1160 goto free_pages;
1162 list_add(&bpage->list, pages);
1164 page = alloc_pages_node(cpu_to_node(cpu),
1165 GFP_KERNEL | __GFP_NORETRY, 0);
1166 if (!page)
1167 goto free_pages;
1168 bpage->page = page_address(page);
1169 rb_init_page(bpage->page);
1172 return 0;
1174 free_pages:
1175 list_for_each_entry_safe(bpage, tmp, pages, list) {
1176 list_del_init(&bpage->list);
1177 free_buffer_page(bpage);
1180 return -ENOMEM;
1183 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1184 unsigned long nr_pages)
1186 LIST_HEAD(pages);
1188 WARN_ON(!nr_pages);
1190 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1191 return -ENOMEM;
1194 * The ring buffer page list is a circular list that does not
1195 * start and end with a list head. All page list items point to
1196 * other pages.
1198 cpu_buffer->pages = pages.next;
1199 list_del(&pages);
1201 cpu_buffer->nr_pages = nr_pages;
1203 rb_check_pages(cpu_buffer);
1205 return 0;
1208 static struct ring_buffer_per_cpu *
1209 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1211 struct ring_buffer_per_cpu *cpu_buffer;
1212 struct buffer_page *bpage;
1213 struct page *page;
1214 int ret;
1216 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217 GFP_KERNEL, cpu_to_node(cpu));
1218 if (!cpu_buffer)
1219 return NULL;
1221 cpu_buffer->cpu = cpu;
1222 cpu_buffer->buffer = buffer;
1223 raw_spin_lock_init(&cpu_buffer->reader_lock);
1224 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1225 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1226 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1227 init_completion(&cpu_buffer->update_done);
1228 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1229 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1230 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1232 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1233 GFP_KERNEL, cpu_to_node(cpu));
1234 if (!bpage)
1235 goto fail_free_buffer;
1237 rb_check_bpage(cpu_buffer, bpage);
1239 cpu_buffer->reader_page = bpage;
1240 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1241 if (!page)
1242 goto fail_free_reader;
1243 bpage->page = page_address(page);
1244 rb_init_page(bpage->page);
1246 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1247 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1249 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1250 if (ret < 0)
1251 goto fail_free_reader;
1253 cpu_buffer->head_page
1254 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1255 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1257 rb_head_page_activate(cpu_buffer);
1259 return cpu_buffer;
1261 fail_free_reader:
1262 free_buffer_page(cpu_buffer->reader_page);
1264 fail_free_buffer:
1265 kfree(cpu_buffer);
1266 return NULL;
1269 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1271 struct list_head *head = cpu_buffer->pages;
1272 struct buffer_page *bpage, *tmp;
1274 free_buffer_page(cpu_buffer->reader_page);
1276 rb_head_page_deactivate(cpu_buffer);
1278 if (head) {
1279 list_for_each_entry_safe(bpage, tmp, head, list) {
1280 list_del_init(&bpage->list);
1281 free_buffer_page(bpage);
1283 bpage = list_entry(head, struct buffer_page, list);
1284 free_buffer_page(bpage);
1287 kfree(cpu_buffer);
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 static int rb_cpu_notify(struct notifier_block *self,
1292 unsigned long action, void *hcpu);
1293 #endif
1296 * __ring_buffer_alloc - allocate a new ring_buffer
1297 * @size: the size in bytes per cpu that is needed.
1298 * @flags: attributes to set for the ring buffer.
1300 * Currently the only flag that is available is the RB_FL_OVERWRITE
1301 * flag. This flag means that the buffer will overwrite old data
1302 * when the buffer wraps. If this flag is not set, the buffer will
1303 * drop data when the tail hits the head.
1305 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1306 struct lock_class_key *key)
1308 struct ring_buffer *buffer;
1309 long nr_pages;
1310 int bsize;
1311 int cpu;
1313 /* keep it in its own cache line */
1314 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1315 GFP_KERNEL);
1316 if (!buffer)
1317 return NULL;
1319 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1320 goto fail_free_buffer;
1322 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1323 buffer->flags = flags;
1324 buffer->clock = trace_clock_local;
1325 buffer->reader_lock_key = key;
1327 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1328 init_waitqueue_head(&buffer->irq_work.waiters);
1330 /* need at least two pages */
1331 if (nr_pages < 2)
1332 nr_pages = 2;
1335 * In case of non-hotplug cpu, if the ring-buffer is allocated
1336 * in early initcall, it will not be notified of secondary cpus.
1337 * In that off case, we need to allocate for all possible cpus.
1339 #ifdef CONFIG_HOTPLUG_CPU
1340 cpu_notifier_register_begin();
1341 cpumask_copy(buffer->cpumask, cpu_online_mask);
1342 #else
1343 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1344 #endif
1345 buffer->cpus = nr_cpu_ids;
1347 bsize = sizeof(void *) * nr_cpu_ids;
1348 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1349 GFP_KERNEL);
1350 if (!buffer->buffers)
1351 goto fail_free_cpumask;
1353 for_each_buffer_cpu(buffer, cpu) {
1354 buffer->buffers[cpu] =
1355 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1356 if (!buffer->buffers[cpu])
1357 goto fail_free_buffers;
1360 #ifdef CONFIG_HOTPLUG_CPU
1361 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1362 buffer->cpu_notify.priority = 0;
1363 __register_cpu_notifier(&buffer->cpu_notify);
1364 cpu_notifier_register_done();
1365 #endif
1367 mutex_init(&buffer->mutex);
1369 return buffer;
1371 fail_free_buffers:
1372 for_each_buffer_cpu(buffer, cpu) {
1373 if (buffer->buffers[cpu])
1374 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376 kfree(buffer->buffers);
1378 fail_free_cpumask:
1379 free_cpumask_var(buffer->cpumask);
1380 #ifdef CONFIG_HOTPLUG_CPU
1381 cpu_notifier_register_done();
1382 #endif
1384 fail_free_buffer:
1385 kfree(buffer);
1386 return NULL;
1388 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1391 * ring_buffer_free - free a ring buffer.
1392 * @buffer: the buffer to free.
1394 void
1395 ring_buffer_free(struct ring_buffer *buffer)
1397 int cpu;
1399 #ifdef CONFIG_HOTPLUG_CPU
1400 cpu_notifier_register_begin();
1401 __unregister_cpu_notifier(&buffer->cpu_notify);
1402 #endif
1404 for_each_buffer_cpu(buffer, cpu)
1405 rb_free_cpu_buffer(buffer->buffers[cpu]);
1407 #ifdef CONFIG_HOTPLUG_CPU
1408 cpu_notifier_register_done();
1409 #endif
1411 kfree(buffer->buffers);
1412 free_cpumask_var(buffer->cpumask);
1414 kfree(buffer);
1416 EXPORT_SYMBOL_GPL(ring_buffer_free);
1418 void ring_buffer_set_clock(struct ring_buffer *buffer,
1419 u64 (*clock)(void))
1421 buffer->clock = clock;
1424 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1426 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1428 return local_read(&bpage->entries) & RB_WRITE_MASK;
1431 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1433 return local_read(&bpage->write) & RB_WRITE_MASK;
1436 static int
1437 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1439 struct list_head *tail_page, *to_remove, *next_page;
1440 struct buffer_page *to_remove_page, *tmp_iter_page;
1441 struct buffer_page *last_page, *first_page;
1442 unsigned long nr_removed;
1443 unsigned long head_bit;
1444 int page_entries;
1446 head_bit = 0;
1448 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1449 atomic_inc(&cpu_buffer->record_disabled);
1451 * We don't race with the readers since we have acquired the reader
1452 * lock. We also don't race with writers after disabling recording.
1453 * This makes it easy to figure out the first and the last page to be
1454 * removed from the list. We unlink all the pages in between including
1455 * the first and last pages. This is done in a busy loop so that we
1456 * lose the least number of traces.
1457 * The pages are freed after we restart recording and unlock readers.
1459 tail_page = &cpu_buffer->tail_page->list;
1462 * tail page might be on reader page, we remove the next page
1463 * from the ring buffer
1465 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1466 tail_page = rb_list_head(tail_page->next);
1467 to_remove = tail_page;
1469 /* start of pages to remove */
1470 first_page = list_entry(rb_list_head(to_remove->next),
1471 struct buffer_page, list);
1473 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1474 to_remove = rb_list_head(to_remove)->next;
1475 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1478 next_page = rb_list_head(to_remove)->next;
1481 * Now we remove all pages between tail_page and next_page.
1482 * Make sure that we have head_bit value preserved for the
1483 * next page
1485 tail_page->next = (struct list_head *)((unsigned long)next_page |
1486 head_bit);
1487 next_page = rb_list_head(next_page);
1488 next_page->prev = tail_page;
1490 /* make sure pages points to a valid page in the ring buffer */
1491 cpu_buffer->pages = next_page;
1493 /* update head page */
1494 if (head_bit)
1495 cpu_buffer->head_page = list_entry(next_page,
1496 struct buffer_page, list);
1499 * change read pointer to make sure any read iterators reset
1500 * themselves
1502 cpu_buffer->read = 0;
1504 /* pages are removed, resume tracing and then free the pages */
1505 atomic_dec(&cpu_buffer->record_disabled);
1506 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1508 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1510 /* last buffer page to remove */
1511 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1512 list);
1513 tmp_iter_page = first_page;
1515 do {
1516 cond_resched();
1518 to_remove_page = tmp_iter_page;
1519 rb_inc_page(cpu_buffer, &tmp_iter_page);
1521 /* update the counters */
1522 page_entries = rb_page_entries(to_remove_page);
1523 if (page_entries) {
1525 * If something was added to this page, it was full
1526 * since it is not the tail page. So we deduct the
1527 * bytes consumed in ring buffer from here.
1528 * Increment overrun to account for the lost events.
1530 local_add(page_entries, &cpu_buffer->overrun);
1531 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1535 * We have already removed references to this list item, just
1536 * free up the buffer_page and its page
1538 free_buffer_page(to_remove_page);
1539 nr_removed--;
1541 } while (to_remove_page != last_page);
1543 RB_WARN_ON(cpu_buffer, nr_removed);
1545 return nr_removed == 0;
1548 static int
1549 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1551 struct list_head *pages = &cpu_buffer->new_pages;
1552 int retries, success;
1554 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1556 * We are holding the reader lock, so the reader page won't be swapped
1557 * in the ring buffer. Now we are racing with the writer trying to
1558 * move head page and the tail page.
1559 * We are going to adapt the reader page update process where:
1560 * 1. We first splice the start and end of list of new pages between
1561 * the head page and its previous page.
1562 * 2. We cmpxchg the prev_page->next to point from head page to the
1563 * start of new pages list.
1564 * 3. Finally, we update the head->prev to the end of new list.
1566 * We will try this process 10 times, to make sure that we don't keep
1567 * spinning.
1569 retries = 10;
1570 success = 0;
1571 while (retries--) {
1572 struct list_head *head_page, *prev_page, *r;
1573 struct list_head *last_page, *first_page;
1574 struct list_head *head_page_with_bit;
1576 head_page = &rb_set_head_page(cpu_buffer)->list;
1577 if (!head_page)
1578 break;
1579 prev_page = head_page->prev;
1581 first_page = pages->next;
1582 last_page = pages->prev;
1584 head_page_with_bit = (struct list_head *)
1585 ((unsigned long)head_page | RB_PAGE_HEAD);
1587 last_page->next = head_page_with_bit;
1588 first_page->prev = prev_page;
1590 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1592 if (r == head_page_with_bit) {
1594 * yay, we replaced the page pointer to our new list,
1595 * now, we just have to update to head page's prev
1596 * pointer to point to end of list
1598 head_page->prev = last_page;
1599 success = 1;
1600 break;
1604 if (success)
1605 INIT_LIST_HEAD(pages);
1607 * If we weren't successful in adding in new pages, warn and stop
1608 * tracing
1610 RB_WARN_ON(cpu_buffer, !success);
1611 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1613 /* free pages if they weren't inserted */
1614 if (!success) {
1615 struct buffer_page *bpage, *tmp;
1616 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1617 list) {
1618 list_del_init(&bpage->list);
1619 free_buffer_page(bpage);
1622 return success;
1625 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1627 int success;
1629 if (cpu_buffer->nr_pages_to_update > 0)
1630 success = rb_insert_pages(cpu_buffer);
1631 else
1632 success = rb_remove_pages(cpu_buffer,
1633 -cpu_buffer->nr_pages_to_update);
1635 if (success)
1636 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1639 static void update_pages_handler(struct work_struct *work)
1641 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1642 struct ring_buffer_per_cpu, update_pages_work);
1643 rb_update_pages(cpu_buffer);
1644 complete(&cpu_buffer->update_done);
1648 * ring_buffer_resize - resize the ring buffer
1649 * @buffer: the buffer to resize.
1650 * @size: the new size.
1651 * @cpu_id: the cpu buffer to resize
1653 * Minimum size is 2 * BUF_PAGE_SIZE.
1655 * Returns 0 on success and < 0 on failure.
1657 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1658 int cpu_id)
1660 struct ring_buffer_per_cpu *cpu_buffer;
1661 unsigned long nr_pages;
1662 int cpu, err = 0;
1665 * Always succeed at resizing a non-existent buffer:
1667 if (!buffer)
1668 return size;
1670 /* Make sure the requested buffer exists */
1671 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1672 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1673 return size;
1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1677 /* we need a minimum of two pages */
1678 if (nr_pages < 2)
1679 nr_pages = 2;
1681 size = nr_pages * BUF_PAGE_SIZE;
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
1691 /* prevent another thread from changing buffer sizes */
1692 mutex_lock(&buffer->mutex);
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
1702 * nothing more to do for removing pages or no update
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712 &cpu_buffer->new_pages, cpu)) {
1713 /* not enough memory for new pages */
1714 err = -ENOMEM;
1715 goto out_err;
1719 get_online_cpus();
1721 * Fire off all the required work handlers
1722 * We can't schedule on offline CPUs, but it's not necessary
1723 * since we can change their buffer sizes without any race.
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
1727 if (!cpu_buffer->nr_pages_to_update)
1728 continue;
1730 /* Can't run something on an offline CPU. */
1731 if (!cpu_online(cpu)) {
1732 rb_update_pages(cpu_buffer);
1733 cpu_buffer->nr_pages_to_update = 0;
1734 } else {
1735 schedule_work_on(cpu,
1736 &cpu_buffer->update_pages_work);
1740 /* wait for all the updates to complete */
1741 for_each_buffer_cpu(buffer, cpu) {
1742 cpu_buffer = buffer->buffers[cpu];
1743 if (!cpu_buffer->nr_pages_to_update)
1744 continue;
1746 if (cpu_online(cpu))
1747 wait_for_completion(&cpu_buffer->update_done);
1748 cpu_buffer->nr_pages_to_update = 0;
1751 put_online_cpus();
1752 } else {
1753 /* Make sure this CPU has been intitialized */
1754 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1755 goto out;
1757 cpu_buffer = buffer->buffers[cpu_id];
1759 if (nr_pages == cpu_buffer->nr_pages)
1760 goto out;
1762 cpu_buffer->nr_pages_to_update = nr_pages -
1763 cpu_buffer->nr_pages;
1765 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1766 if (cpu_buffer->nr_pages_to_update > 0 &&
1767 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1768 &cpu_buffer->new_pages, cpu_id)) {
1769 err = -ENOMEM;
1770 goto out_err;
1773 get_online_cpus();
1775 /* Can't run something on an offline CPU. */
1776 if (!cpu_online(cpu_id))
1777 rb_update_pages(cpu_buffer);
1778 else {
1779 schedule_work_on(cpu_id,
1780 &cpu_buffer->update_pages_work);
1781 wait_for_completion(&cpu_buffer->update_done);
1784 cpu_buffer->nr_pages_to_update = 0;
1785 put_online_cpus();
1788 out:
1790 * The ring buffer resize can happen with the ring buffer
1791 * enabled, so that the update disturbs the tracing as little
1792 * as possible. But if the buffer is disabled, we do not need
1793 * to worry about that, and we can take the time to verify
1794 * that the buffer is not corrupt.
1796 if (atomic_read(&buffer->record_disabled)) {
1797 atomic_inc(&buffer->record_disabled);
1799 * Even though the buffer was disabled, we must make sure
1800 * that it is truly disabled before calling rb_check_pages.
1801 * There could have been a race between checking
1802 * record_disable and incrementing it.
1804 synchronize_sched();
1805 for_each_buffer_cpu(buffer, cpu) {
1806 cpu_buffer = buffer->buffers[cpu];
1807 rb_check_pages(cpu_buffer);
1809 atomic_dec(&buffer->record_disabled);
1812 mutex_unlock(&buffer->mutex);
1813 return size;
1815 out_err:
1816 for_each_buffer_cpu(buffer, cpu) {
1817 struct buffer_page *bpage, *tmp;
1819 cpu_buffer = buffer->buffers[cpu];
1820 cpu_buffer->nr_pages_to_update = 0;
1822 if (list_empty(&cpu_buffer->new_pages))
1823 continue;
1825 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1826 list) {
1827 list_del_init(&bpage->list);
1828 free_buffer_page(bpage);
1831 mutex_unlock(&buffer->mutex);
1832 return err;
1834 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1836 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1838 mutex_lock(&buffer->mutex);
1839 if (val)
1840 buffer->flags |= RB_FL_OVERWRITE;
1841 else
1842 buffer->flags &= ~RB_FL_OVERWRITE;
1843 mutex_unlock(&buffer->mutex);
1845 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1847 static inline void *
1848 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1850 return bpage->data + index;
1853 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1855 return bpage->page->data + index;
1858 static inline struct ring_buffer_event *
1859 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1861 return __rb_page_index(cpu_buffer->reader_page,
1862 cpu_buffer->reader_page->read);
1865 static inline struct ring_buffer_event *
1866 rb_iter_head_event(struct ring_buffer_iter *iter)
1868 return __rb_page_index(iter->head_page, iter->head);
1871 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1873 return local_read(&bpage->page->commit);
1876 /* Size is determined by what has been committed */
1877 static inline unsigned rb_page_size(struct buffer_page *bpage)
1879 return rb_page_commit(bpage);
1882 static inline unsigned
1883 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1885 return rb_page_commit(cpu_buffer->commit_page);
1888 static inline unsigned
1889 rb_event_index(struct ring_buffer_event *event)
1891 unsigned long addr = (unsigned long)event;
1893 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1896 static void rb_inc_iter(struct ring_buffer_iter *iter)
1898 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1901 * The iterator could be on the reader page (it starts there).
1902 * But the head could have moved, since the reader was
1903 * found. Check for this case and assign the iterator
1904 * to the head page instead of next.
1906 if (iter->head_page == cpu_buffer->reader_page)
1907 iter->head_page = rb_set_head_page(cpu_buffer);
1908 else
1909 rb_inc_page(cpu_buffer, &iter->head_page);
1911 iter->read_stamp = iter->head_page->page->time_stamp;
1912 iter->head = 0;
1916 * rb_handle_head_page - writer hit the head page
1918 * Returns: +1 to retry page
1919 * 0 to continue
1920 * -1 on error
1922 static int
1923 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1924 struct buffer_page *tail_page,
1925 struct buffer_page *next_page)
1927 struct buffer_page *new_head;
1928 int entries;
1929 int type;
1930 int ret;
1932 entries = rb_page_entries(next_page);
1935 * The hard part is here. We need to move the head
1936 * forward, and protect against both readers on
1937 * other CPUs and writers coming in via interrupts.
1939 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1940 RB_PAGE_HEAD);
1943 * type can be one of four:
1944 * NORMAL - an interrupt already moved it for us
1945 * HEAD - we are the first to get here.
1946 * UPDATE - we are the interrupt interrupting
1947 * a current move.
1948 * MOVED - a reader on another CPU moved the next
1949 * pointer to its reader page. Give up
1950 * and try again.
1953 switch (type) {
1954 case RB_PAGE_HEAD:
1956 * We changed the head to UPDATE, thus
1957 * it is our responsibility to update
1958 * the counters.
1960 local_add(entries, &cpu_buffer->overrun);
1961 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1964 * The entries will be zeroed out when we move the
1965 * tail page.
1968 /* still more to do */
1969 break;
1971 case RB_PAGE_UPDATE:
1973 * This is an interrupt that interrupt the
1974 * previous update. Still more to do.
1976 break;
1977 case RB_PAGE_NORMAL:
1979 * An interrupt came in before the update
1980 * and processed this for us.
1981 * Nothing left to do.
1983 return 1;
1984 case RB_PAGE_MOVED:
1986 * The reader is on another CPU and just did
1987 * a swap with our next_page.
1988 * Try again.
1990 return 1;
1991 default:
1992 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1993 return -1;
1997 * Now that we are here, the old head pointer is
1998 * set to UPDATE. This will keep the reader from
1999 * swapping the head page with the reader page.
2000 * The reader (on another CPU) will spin till
2001 * we are finished.
2003 * We just need to protect against interrupts
2004 * doing the job. We will set the next pointer
2005 * to HEAD. After that, we set the old pointer
2006 * to NORMAL, but only if it was HEAD before.
2007 * otherwise we are an interrupt, and only
2008 * want the outer most commit to reset it.
2010 new_head = next_page;
2011 rb_inc_page(cpu_buffer, &new_head);
2013 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2014 RB_PAGE_NORMAL);
2017 * Valid returns are:
2018 * HEAD - an interrupt came in and already set it.
2019 * NORMAL - One of two things:
2020 * 1) We really set it.
2021 * 2) A bunch of interrupts came in and moved
2022 * the page forward again.
2024 switch (ret) {
2025 case RB_PAGE_HEAD:
2026 case RB_PAGE_NORMAL:
2027 /* OK */
2028 break;
2029 default:
2030 RB_WARN_ON(cpu_buffer, 1);
2031 return -1;
2035 * It is possible that an interrupt came in,
2036 * set the head up, then more interrupts came in
2037 * and moved it again. When we get back here,
2038 * the page would have been set to NORMAL but we
2039 * just set it back to HEAD.
2041 * How do you detect this? Well, if that happened
2042 * the tail page would have moved.
2044 if (ret == RB_PAGE_NORMAL) {
2046 * If the tail had moved passed next, then we need
2047 * to reset the pointer.
2049 if (cpu_buffer->tail_page != tail_page &&
2050 cpu_buffer->tail_page != next_page)
2051 rb_head_page_set_normal(cpu_buffer, new_head,
2052 next_page,
2053 RB_PAGE_HEAD);
2057 * If this was the outer most commit (the one that
2058 * changed the original pointer from HEAD to UPDATE),
2059 * then it is up to us to reset it to NORMAL.
2061 if (type == RB_PAGE_HEAD) {
2062 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2063 tail_page,
2064 RB_PAGE_UPDATE);
2065 if (RB_WARN_ON(cpu_buffer,
2066 ret != RB_PAGE_UPDATE))
2067 return -1;
2070 return 0;
2073 static inline void
2074 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2075 unsigned long tail, struct rb_event_info *info)
2077 struct buffer_page *tail_page = info->tail_page;
2078 struct ring_buffer_event *event;
2079 unsigned long length = info->length;
2082 * Only the event that crossed the page boundary
2083 * must fill the old tail_page with padding.
2085 if (tail >= BUF_PAGE_SIZE) {
2087 * If the page was filled, then we still need
2088 * to update the real_end. Reset it to zero
2089 * and the reader will ignore it.
2091 if (tail == BUF_PAGE_SIZE)
2092 tail_page->real_end = 0;
2094 local_sub(length, &tail_page->write);
2095 return;
2098 event = __rb_page_index(tail_page, tail);
2099 kmemcheck_annotate_bitfield(event, bitfield);
2101 /* account for padding bytes */
2102 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2105 * Save the original length to the meta data.
2106 * This will be used by the reader to add lost event
2107 * counter.
2109 tail_page->real_end = tail;
2112 * If this event is bigger than the minimum size, then
2113 * we need to be careful that we don't subtract the
2114 * write counter enough to allow another writer to slip
2115 * in on this page.
2116 * We put in a discarded commit instead, to make sure
2117 * that this space is not used again.
2119 * If we are less than the minimum size, we don't need to
2120 * worry about it.
2122 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2123 /* No room for any events */
2125 /* Mark the rest of the page with padding */
2126 rb_event_set_padding(event);
2128 /* Set the write back to the previous setting */
2129 local_sub(length, &tail_page->write);
2130 return;
2133 /* Put in a discarded event */
2134 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2135 event->type_len = RINGBUF_TYPE_PADDING;
2136 /* time delta must be non zero */
2137 event->time_delta = 1;
2139 /* Set write to end of buffer */
2140 length = (tail + length) - BUF_PAGE_SIZE;
2141 local_sub(length, &tail_page->write);
2145 * This is the slow path, force gcc not to inline it.
2147 static noinline struct ring_buffer_event *
2148 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2149 unsigned long tail, struct rb_event_info *info)
2151 struct buffer_page *tail_page = info->tail_page;
2152 struct buffer_page *commit_page = cpu_buffer->commit_page;
2153 struct ring_buffer *buffer = cpu_buffer->buffer;
2154 struct buffer_page *next_page;
2155 int ret;
2156 u64 ts;
2158 next_page = tail_page;
2160 rb_inc_page(cpu_buffer, &next_page);
2163 * If for some reason, we had an interrupt storm that made
2164 * it all the way around the buffer, bail, and warn
2165 * about it.
2167 if (unlikely(next_page == commit_page)) {
2168 local_inc(&cpu_buffer->commit_overrun);
2169 goto out_reset;
2173 * This is where the fun begins!
2175 * We are fighting against races between a reader that
2176 * could be on another CPU trying to swap its reader
2177 * page with the buffer head.
2179 * We are also fighting against interrupts coming in and
2180 * moving the head or tail on us as well.
2182 * If the next page is the head page then we have filled
2183 * the buffer, unless the commit page is still on the
2184 * reader page.
2186 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2189 * If the commit is not on the reader page, then
2190 * move the header page.
2192 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2194 * If we are not in overwrite mode,
2195 * this is easy, just stop here.
2197 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2198 local_inc(&cpu_buffer->dropped_events);
2199 goto out_reset;
2202 ret = rb_handle_head_page(cpu_buffer,
2203 tail_page,
2204 next_page);
2205 if (ret < 0)
2206 goto out_reset;
2207 if (ret)
2208 goto out_again;
2209 } else {
2211 * We need to be careful here too. The
2212 * commit page could still be on the reader
2213 * page. We could have a small buffer, and
2214 * have filled up the buffer with events
2215 * from interrupts and such, and wrapped.
2217 * Note, if the tail page is also the on the
2218 * reader_page, we let it move out.
2220 if (unlikely((cpu_buffer->commit_page !=
2221 cpu_buffer->tail_page) &&
2222 (cpu_buffer->commit_page ==
2223 cpu_buffer->reader_page))) {
2224 local_inc(&cpu_buffer->commit_overrun);
2225 goto out_reset;
2230 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2231 if (ret) {
2233 * Nested commits always have zero deltas, so
2234 * just reread the time stamp
2236 ts = rb_time_stamp(buffer);
2237 next_page->page->time_stamp = ts;
2240 out_again:
2242 rb_reset_tail(cpu_buffer, tail, info);
2244 /* fail and let the caller try again */
2245 return ERR_PTR(-EAGAIN);
2247 out_reset:
2248 /* reset write */
2249 rb_reset_tail(cpu_buffer, tail, info);
2251 return NULL;
2254 /* Slow path, do not inline */
2255 static noinline struct ring_buffer_event *
2256 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2258 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2260 /* Not the first event on the page? */
2261 if (rb_event_index(event)) {
2262 event->time_delta = delta & TS_MASK;
2263 event->array[0] = delta >> TS_SHIFT;
2264 } else {
2265 /* nope, just zero it */
2266 event->time_delta = 0;
2267 event->array[0] = 0;
2270 return skip_time_extend(event);
2273 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2274 struct ring_buffer_event *event);
2277 * rb_update_event - update event type and data
2278 * @event: the event to update
2279 * @type: the type of event
2280 * @length: the size of the event field in the ring buffer
2282 * Update the type and data fields of the event. The length
2283 * is the actual size that is written to the ring buffer,
2284 * and with this, we can determine what to place into the
2285 * data field.
2287 static void
2288 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2289 struct ring_buffer_event *event,
2290 struct rb_event_info *info)
2292 unsigned length = info->length;
2293 u64 delta = info->delta;
2295 /* Only a commit updates the timestamp */
2296 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2297 delta = 0;
2300 * If we need to add a timestamp, then we
2301 * add it to the start of the resevered space.
2303 if (unlikely(info->add_timestamp)) {
2304 event = rb_add_time_stamp(event, delta);
2305 length -= RB_LEN_TIME_EXTEND;
2306 delta = 0;
2309 event->time_delta = delta;
2310 length -= RB_EVNT_HDR_SIZE;
2311 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2312 event->type_len = 0;
2313 event->array[0] = length;
2314 } else
2315 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2318 static unsigned rb_calculate_event_length(unsigned length)
2320 struct ring_buffer_event event; /* Used only for sizeof array */
2322 /* zero length can cause confusions */
2323 if (!length)
2324 length++;
2326 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2327 length += sizeof(event.array[0]);
2329 length += RB_EVNT_HDR_SIZE;
2330 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2333 * In case the time delta is larger than the 27 bits for it
2334 * in the header, we need to add a timestamp. If another
2335 * event comes in when trying to discard this one to increase
2336 * the length, then the timestamp will be added in the allocated
2337 * space of this event. If length is bigger than the size needed
2338 * for the TIME_EXTEND, then padding has to be used. The events
2339 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2340 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2341 * As length is a multiple of 4, we only need to worry if it
2342 * is 12 (RB_LEN_TIME_EXTEND + 4).
2344 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2345 length += RB_ALIGNMENT;
2347 return length;
2350 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2351 static inline bool sched_clock_stable(void)
2353 return true;
2355 #endif
2357 static inline int
2358 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2359 struct ring_buffer_event *event)
2361 unsigned long new_index, old_index;
2362 struct buffer_page *bpage;
2363 unsigned long index;
2364 unsigned long addr;
2366 new_index = rb_event_index(event);
2367 old_index = new_index + rb_event_ts_length(event);
2368 addr = (unsigned long)event;
2369 addr &= PAGE_MASK;
2371 bpage = cpu_buffer->tail_page;
2373 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2374 unsigned long write_mask =
2375 local_read(&bpage->write) & ~RB_WRITE_MASK;
2376 unsigned long event_length = rb_event_length(event);
2378 * This is on the tail page. It is possible that
2379 * a write could come in and move the tail page
2380 * and write to the next page. That is fine
2381 * because we just shorten what is on this page.
2383 old_index += write_mask;
2384 new_index += write_mask;
2385 index = local_cmpxchg(&bpage->write, old_index, new_index);
2386 if (index == old_index) {
2387 /* update counters */
2388 local_sub(event_length, &cpu_buffer->entries_bytes);
2389 return 1;
2393 /* could not discard */
2394 return 0;
2397 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2399 local_inc(&cpu_buffer->committing);
2400 local_inc(&cpu_buffer->commits);
2403 static void
2404 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2406 unsigned long max_count;
2409 * We only race with interrupts and NMIs on this CPU.
2410 * If we own the commit event, then we can commit
2411 * all others that interrupted us, since the interruptions
2412 * are in stack format (they finish before they come
2413 * back to us). This allows us to do a simple loop to
2414 * assign the commit to the tail.
2416 again:
2417 max_count = cpu_buffer->nr_pages * 100;
2419 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2420 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2421 return;
2422 if (RB_WARN_ON(cpu_buffer,
2423 rb_is_reader_page(cpu_buffer->tail_page)))
2424 return;
2425 local_set(&cpu_buffer->commit_page->page->commit,
2426 rb_page_write(cpu_buffer->commit_page));
2427 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2428 cpu_buffer->write_stamp =
2429 cpu_buffer->commit_page->page->time_stamp;
2430 /* add barrier to keep gcc from optimizing too much */
2431 barrier();
2433 while (rb_commit_index(cpu_buffer) !=
2434 rb_page_write(cpu_buffer->commit_page)) {
2436 local_set(&cpu_buffer->commit_page->page->commit,
2437 rb_page_write(cpu_buffer->commit_page));
2438 RB_WARN_ON(cpu_buffer,
2439 local_read(&cpu_buffer->commit_page->page->commit) &
2440 ~RB_WRITE_MASK);
2441 barrier();
2444 /* again, keep gcc from optimizing */
2445 barrier();
2448 * If an interrupt came in just after the first while loop
2449 * and pushed the tail page forward, we will be left with
2450 * a dangling commit that will never go forward.
2452 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2453 goto again;
2456 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2458 unsigned long commits;
2460 if (RB_WARN_ON(cpu_buffer,
2461 !local_read(&cpu_buffer->committing)))
2462 return;
2464 again:
2465 commits = local_read(&cpu_buffer->commits);
2466 /* synchronize with interrupts */
2467 barrier();
2468 if (local_read(&cpu_buffer->committing) == 1)
2469 rb_set_commit_to_write(cpu_buffer);
2471 local_dec(&cpu_buffer->committing);
2473 /* synchronize with interrupts */
2474 barrier();
2477 * Need to account for interrupts coming in between the
2478 * updating of the commit page and the clearing of the
2479 * committing counter.
2481 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2482 !local_read(&cpu_buffer->committing)) {
2483 local_inc(&cpu_buffer->committing);
2484 goto again;
2488 static inline void rb_event_discard(struct ring_buffer_event *event)
2490 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2491 event = skip_time_extend(event);
2493 /* array[0] holds the actual length for the discarded event */
2494 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2495 event->type_len = RINGBUF_TYPE_PADDING;
2496 /* time delta must be non zero */
2497 if (!event->time_delta)
2498 event->time_delta = 1;
2501 static inline bool
2502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 struct ring_buffer_event *event)
2505 unsigned long addr = (unsigned long)event;
2506 unsigned long index;
2508 index = rb_event_index(event);
2509 addr &= PAGE_MASK;
2511 return cpu_buffer->commit_page->page == (void *)addr &&
2512 rb_commit_index(cpu_buffer) == index;
2515 static void
2516 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2517 struct ring_buffer_event *event)
2519 u64 delta;
2522 * The event first in the commit queue updates the
2523 * time stamp.
2525 if (rb_event_is_commit(cpu_buffer, event)) {
2527 * A commit event that is first on a page
2528 * updates the write timestamp with the page stamp
2530 if (!rb_event_index(event))
2531 cpu_buffer->write_stamp =
2532 cpu_buffer->commit_page->page->time_stamp;
2533 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2534 delta = event->array[0];
2535 delta <<= TS_SHIFT;
2536 delta += event->time_delta;
2537 cpu_buffer->write_stamp += delta;
2538 } else
2539 cpu_buffer->write_stamp += event->time_delta;
2543 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2544 struct ring_buffer_event *event)
2546 local_inc(&cpu_buffer->entries);
2547 rb_update_write_stamp(cpu_buffer, event);
2548 rb_end_commit(cpu_buffer);
2551 static __always_inline void
2552 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2554 bool pagebusy;
2556 if (buffer->irq_work.waiters_pending) {
2557 buffer->irq_work.waiters_pending = false;
2558 /* irq_work_queue() supplies it's own memory barriers */
2559 irq_work_queue(&buffer->irq_work.work);
2562 if (cpu_buffer->irq_work.waiters_pending) {
2563 cpu_buffer->irq_work.waiters_pending = false;
2564 /* irq_work_queue() supplies it's own memory barriers */
2565 irq_work_queue(&cpu_buffer->irq_work.work);
2568 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2570 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2571 cpu_buffer->irq_work.wakeup_full = true;
2572 cpu_buffer->irq_work.full_waiters_pending = false;
2573 /* irq_work_queue() supplies it's own memory barriers */
2574 irq_work_queue(&cpu_buffer->irq_work.work);
2579 * The lock and unlock are done within a preempt disable section.
2580 * The current_context per_cpu variable can only be modified
2581 * by the current task between lock and unlock. But it can
2582 * be modified more than once via an interrupt. To pass this
2583 * information from the lock to the unlock without having to
2584 * access the 'in_interrupt()' functions again (which do show
2585 * a bit of overhead in something as critical as function tracing,
2586 * we use a bitmask trick.
2588 * bit 0 = NMI context
2589 * bit 1 = IRQ context
2590 * bit 2 = SoftIRQ context
2591 * bit 3 = normal context.
2593 * This works because this is the order of contexts that can
2594 * preempt other contexts. A SoftIRQ never preempts an IRQ
2595 * context.
2597 * When the context is determined, the corresponding bit is
2598 * checked and set (if it was set, then a recursion of that context
2599 * happened).
2601 * On unlock, we need to clear this bit. To do so, just subtract
2602 * 1 from the current_context and AND it to itself.
2604 * (binary)
2605 * 101 - 1 = 100
2606 * 101 & 100 = 100 (clearing bit zero)
2608 * 1010 - 1 = 1001
2609 * 1010 & 1001 = 1000 (clearing bit 1)
2611 * The least significant bit can be cleared this way, and it
2612 * just so happens that it is the same bit corresponding to
2613 * the current context.
2616 static __always_inline int
2617 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2619 unsigned int val = cpu_buffer->current_context;
2620 int bit;
2622 if (in_interrupt()) {
2623 if (in_nmi())
2624 bit = RB_CTX_NMI;
2625 else if (in_irq())
2626 bit = RB_CTX_IRQ;
2627 else
2628 bit = RB_CTX_SOFTIRQ;
2629 } else
2630 bit = RB_CTX_NORMAL;
2632 if (unlikely(val & (1 << bit)))
2633 return 1;
2635 val |= (1 << bit);
2636 cpu_buffer->current_context = val;
2638 return 0;
2641 static __always_inline void
2642 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2644 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2648 * ring_buffer_unlock_commit - commit a reserved
2649 * @buffer: The buffer to commit to
2650 * @event: The event pointer to commit.
2652 * This commits the data to the ring buffer, and releases any locks held.
2654 * Must be paired with ring_buffer_lock_reserve.
2656 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2657 struct ring_buffer_event *event)
2659 struct ring_buffer_per_cpu *cpu_buffer;
2660 int cpu = raw_smp_processor_id();
2662 cpu_buffer = buffer->buffers[cpu];
2664 rb_commit(cpu_buffer, event);
2666 rb_wakeups(buffer, cpu_buffer);
2668 trace_recursive_unlock(cpu_buffer);
2670 preempt_enable_notrace();
2672 return 0;
2674 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2676 static noinline void
2677 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2678 struct rb_event_info *info)
2680 WARN_ONCE(info->delta > (1ULL << 59),
2681 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2682 (unsigned long long)info->delta,
2683 (unsigned long long)info->ts,
2684 (unsigned long long)cpu_buffer->write_stamp,
2685 sched_clock_stable() ? "" :
2686 "If you just came from a suspend/resume,\n"
2687 "please switch to the trace global clock:\n"
2688 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2689 info->add_timestamp = 1;
2692 static struct ring_buffer_event *
2693 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2694 struct rb_event_info *info)
2696 struct ring_buffer_event *event;
2697 struct buffer_page *tail_page;
2698 unsigned long tail, write;
2701 * If the time delta since the last event is too big to
2702 * hold in the time field of the event, then we append a
2703 * TIME EXTEND event ahead of the data event.
2705 if (unlikely(info->add_timestamp))
2706 info->length += RB_LEN_TIME_EXTEND;
2708 tail_page = info->tail_page = cpu_buffer->tail_page;
2709 write = local_add_return(info->length, &tail_page->write);
2711 /* set write to only the index of the write */
2712 write &= RB_WRITE_MASK;
2713 tail = write - info->length;
2716 * If this is the first commit on the page, then it has the same
2717 * timestamp as the page itself.
2719 if (!tail)
2720 info->delta = 0;
2722 /* See if we shot pass the end of this buffer page */
2723 if (unlikely(write > BUF_PAGE_SIZE))
2724 return rb_move_tail(cpu_buffer, tail, info);
2726 /* We reserved something on the buffer */
2728 event = __rb_page_index(tail_page, tail);
2729 kmemcheck_annotate_bitfield(event, bitfield);
2730 rb_update_event(cpu_buffer, event, info);
2732 local_inc(&tail_page->entries);
2735 * If this is the first commit on the page, then update
2736 * its timestamp.
2738 if (!tail)
2739 tail_page->page->time_stamp = info->ts;
2741 /* account for these added bytes */
2742 local_add(info->length, &cpu_buffer->entries_bytes);
2744 return event;
2747 static struct ring_buffer_event *
2748 rb_reserve_next_event(struct ring_buffer *buffer,
2749 struct ring_buffer_per_cpu *cpu_buffer,
2750 unsigned long length)
2752 struct ring_buffer_event *event;
2753 struct rb_event_info info;
2754 int nr_loops = 0;
2755 u64 diff;
2757 rb_start_commit(cpu_buffer);
2759 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2761 * Due to the ability to swap a cpu buffer from a buffer
2762 * it is possible it was swapped before we committed.
2763 * (committing stops a swap). We check for it here and
2764 * if it happened, we have to fail the write.
2766 barrier();
2767 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2768 local_dec(&cpu_buffer->committing);
2769 local_dec(&cpu_buffer->commits);
2770 return NULL;
2772 #endif
2774 info.length = rb_calculate_event_length(length);
2775 again:
2776 info.add_timestamp = 0;
2777 info.delta = 0;
2780 * We allow for interrupts to reenter here and do a trace.
2781 * If one does, it will cause this original code to loop
2782 * back here. Even with heavy interrupts happening, this
2783 * should only happen a few times in a row. If this happens
2784 * 1000 times in a row, there must be either an interrupt
2785 * storm or we have something buggy.
2786 * Bail!
2788 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2789 goto out_fail;
2791 info.ts = rb_time_stamp(cpu_buffer->buffer);
2792 diff = info.ts - cpu_buffer->write_stamp;
2794 /* make sure this diff is calculated here */
2795 barrier();
2797 /* Did the write stamp get updated already? */
2798 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2799 info.delta = diff;
2800 if (unlikely(test_time_stamp(info.delta)))
2801 rb_handle_timestamp(cpu_buffer, &info);
2804 event = __rb_reserve_next(cpu_buffer, &info);
2806 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2807 if (info.add_timestamp)
2808 info.length -= RB_LEN_TIME_EXTEND;
2809 goto again;
2812 if (!event)
2813 goto out_fail;
2815 return event;
2817 out_fail:
2818 rb_end_commit(cpu_buffer);
2819 return NULL;
2823 * ring_buffer_lock_reserve - reserve a part of the buffer
2824 * @buffer: the ring buffer to reserve from
2825 * @length: the length of the data to reserve (excluding event header)
2827 * Returns a reseverd event on the ring buffer to copy directly to.
2828 * The user of this interface will need to get the body to write into
2829 * and can use the ring_buffer_event_data() interface.
2831 * The length is the length of the data needed, not the event length
2832 * which also includes the event header.
2834 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2835 * If NULL is returned, then nothing has been allocated or locked.
2837 struct ring_buffer_event *
2838 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2840 struct ring_buffer_per_cpu *cpu_buffer;
2841 struct ring_buffer_event *event;
2842 int cpu;
2844 /* If we are tracing schedule, we don't want to recurse */
2845 preempt_disable_notrace();
2847 if (unlikely(atomic_read(&buffer->record_disabled)))
2848 goto out;
2850 cpu = raw_smp_processor_id();
2852 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2853 goto out;
2855 cpu_buffer = buffer->buffers[cpu];
2857 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2858 goto out;
2860 if (unlikely(length > BUF_MAX_DATA_SIZE))
2861 goto out;
2863 if (unlikely(trace_recursive_lock(cpu_buffer)))
2864 goto out;
2866 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2867 if (!event)
2868 goto out_unlock;
2870 return event;
2872 out_unlock:
2873 trace_recursive_unlock(cpu_buffer);
2874 out:
2875 preempt_enable_notrace();
2876 return NULL;
2878 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2881 * Decrement the entries to the page that an event is on.
2882 * The event does not even need to exist, only the pointer
2883 * to the page it is on. This may only be called before the commit
2884 * takes place.
2886 static inline void
2887 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2888 struct ring_buffer_event *event)
2890 unsigned long addr = (unsigned long)event;
2891 struct buffer_page *bpage = cpu_buffer->commit_page;
2892 struct buffer_page *start;
2894 addr &= PAGE_MASK;
2896 /* Do the likely case first */
2897 if (likely(bpage->page == (void *)addr)) {
2898 local_dec(&bpage->entries);
2899 return;
2903 * Because the commit page may be on the reader page we
2904 * start with the next page and check the end loop there.
2906 rb_inc_page(cpu_buffer, &bpage);
2907 start = bpage;
2908 do {
2909 if (bpage->page == (void *)addr) {
2910 local_dec(&bpage->entries);
2911 return;
2913 rb_inc_page(cpu_buffer, &bpage);
2914 } while (bpage != start);
2916 /* commit not part of this buffer?? */
2917 RB_WARN_ON(cpu_buffer, 1);
2921 * ring_buffer_commit_discard - discard an event that has not been committed
2922 * @buffer: the ring buffer
2923 * @event: non committed event to discard
2925 * Sometimes an event that is in the ring buffer needs to be ignored.
2926 * This function lets the user discard an event in the ring buffer
2927 * and then that event will not be read later.
2929 * This function only works if it is called before the the item has been
2930 * committed. It will try to free the event from the ring buffer
2931 * if another event has not been added behind it.
2933 * If another event has been added behind it, it will set the event
2934 * up as discarded, and perform the commit.
2936 * If this function is called, do not call ring_buffer_unlock_commit on
2937 * the event.
2939 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2940 struct ring_buffer_event *event)
2942 struct ring_buffer_per_cpu *cpu_buffer;
2943 int cpu;
2945 /* The event is discarded regardless */
2946 rb_event_discard(event);
2948 cpu = smp_processor_id();
2949 cpu_buffer = buffer->buffers[cpu];
2952 * This must only be called if the event has not been
2953 * committed yet. Thus we can assume that preemption
2954 * is still disabled.
2956 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2958 rb_decrement_entry(cpu_buffer, event);
2959 if (rb_try_to_discard(cpu_buffer, event))
2960 goto out;
2963 * The commit is still visible by the reader, so we
2964 * must still update the timestamp.
2966 rb_update_write_stamp(cpu_buffer, event);
2967 out:
2968 rb_end_commit(cpu_buffer);
2970 trace_recursive_unlock(cpu_buffer);
2972 preempt_enable_notrace();
2975 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2978 * ring_buffer_write - write data to the buffer without reserving
2979 * @buffer: The ring buffer to write to.
2980 * @length: The length of the data being written (excluding the event header)
2981 * @data: The data to write to the buffer.
2983 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2984 * one function. If you already have the data to write to the buffer, it
2985 * may be easier to simply call this function.
2987 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2988 * and not the length of the event which would hold the header.
2990 int ring_buffer_write(struct ring_buffer *buffer,
2991 unsigned long length,
2992 void *data)
2994 struct ring_buffer_per_cpu *cpu_buffer;
2995 struct ring_buffer_event *event;
2996 void *body;
2997 int ret = -EBUSY;
2998 int cpu;
3000 preempt_disable_notrace();
3002 if (atomic_read(&buffer->record_disabled))
3003 goto out;
3005 cpu = raw_smp_processor_id();
3007 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3008 goto out;
3010 cpu_buffer = buffer->buffers[cpu];
3012 if (atomic_read(&cpu_buffer->record_disabled))
3013 goto out;
3015 if (length > BUF_MAX_DATA_SIZE)
3016 goto out;
3018 if (unlikely(trace_recursive_lock(cpu_buffer)))
3019 goto out;
3021 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3022 if (!event)
3023 goto out_unlock;
3025 body = rb_event_data(event);
3027 memcpy(body, data, length);
3029 rb_commit(cpu_buffer, event);
3031 rb_wakeups(buffer, cpu_buffer);
3033 ret = 0;
3035 out_unlock:
3036 trace_recursive_unlock(cpu_buffer);
3038 out:
3039 preempt_enable_notrace();
3041 return ret;
3043 EXPORT_SYMBOL_GPL(ring_buffer_write);
3045 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3047 struct buffer_page *reader = cpu_buffer->reader_page;
3048 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3049 struct buffer_page *commit = cpu_buffer->commit_page;
3051 /* In case of error, head will be NULL */
3052 if (unlikely(!head))
3053 return true;
3055 return reader->read == rb_page_commit(reader) &&
3056 (commit == reader ||
3057 (commit == head &&
3058 head->read == rb_page_commit(commit)));
3062 * ring_buffer_record_disable - stop all writes into the buffer
3063 * @buffer: The ring buffer to stop writes to.
3065 * This prevents all writes to the buffer. Any attempt to write
3066 * to the buffer after this will fail and return NULL.
3068 * The caller should call synchronize_sched() after this.
3070 void ring_buffer_record_disable(struct ring_buffer *buffer)
3072 atomic_inc(&buffer->record_disabled);
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3077 * ring_buffer_record_enable - enable writes to the buffer
3078 * @buffer: The ring buffer to enable writes
3080 * Note, multiple disables will need the same number of enables
3081 * to truly enable the writing (much like preempt_disable).
3083 void ring_buffer_record_enable(struct ring_buffer *buffer)
3085 atomic_dec(&buffer->record_disabled);
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3090 * ring_buffer_record_off - stop all writes into the buffer
3091 * @buffer: The ring buffer to stop writes to.
3093 * This prevents all writes to the buffer. Any attempt to write
3094 * to the buffer after this will fail and return NULL.
3096 * This is different than ring_buffer_record_disable() as
3097 * it works like an on/off switch, where as the disable() version
3098 * must be paired with a enable().
3100 void ring_buffer_record_off(struct ring_buffer *buffer)
3102 unsigned int rd;
3103 unsigned int new_rd;
3105 do {
3106 rd = atomic_read(&buffer->record_disabled);
3107 new_rd = rd | RB_BUFFER_OFF;
3108 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3113 * ring_buffer_record_on - restart writes into the buffer
3114 * @buffer: The ring buffer to start writes to.
3116 * This enables all writes to the buffer that was disabled by
3117 * ring_buffer_record_off().
3119 * This is different than ring_buffer_record_enable() as
3120 * it works like an on/off switch, where as the enable() version
3121 * must be paired with a disable().
3123 void ring_buffer_record_on(struct ring_buffer *buffer)
3125 unsigned int rd;
3126 unsigned int new_rd;
3128 do {
3129 rd = atomic_read(&buffer->record_disabled);
3130 new_rd = rd & ~RB_BUFFER_OFF;
3131 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3133 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3136 * ring_buffer_record_is_on - return true if the ring buffer can write
3137 * @buffer: The ring buffer to see if write is enabled
3139 * Returns true if the ring buffer is in a state that it accepts writes.
3141 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3143 return !atomic_read(&buffer->record_disabled);
3147 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3148 * @buffer: The ring buffer to see if write is set enabled
3150 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3151 * Note that this does NOT mean it is in a writable state.
3153 * It may return true when the ring buffer has been disabled by
3154 * ring_buffer_record_disable(), as that is a temporary disabling of
3155 * the ring buffer.
3157 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3159 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3163 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3164 * @buffer: The ring buffer to stop writes to.
3165 * @cpu: The CPU buffer to stop
3167 * This prevents all writes to the buffer. Any attempt to write
3168 * to the buffer after this will fail and return NULL.
3170 * The caller should call synchronize_sched() after this.
3172 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3174 struct ring_buffer_per_cpu *cpu_buffer;
3176 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3177 return;
3179 cpu_buffer = buffer->buffers[cpu];
3180 atomic_inc(&cpu_buffer->record_disabled);
3182 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3185 * ring_buffer_record_enable_cpu - enable writes to the buffer
3186 * @buffer: The ring buffer to enable writes
3187 * @cpu: The CPU to enable.
3189 * Note, multiple disables will need the same number of enables
3190 * to truly enable the writing (much like preempt_disable).
3192 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3194 struct ring_buffer_per_cpu *cpu_buffer;
3196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3197 return;
3199 cpu_buffer = buffer->buffers[cpu];
3200 atomic_dec(&cpu_buffer->record_disabled);
3202 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3205 * The total entries in the ring buffer is the running counter
3206 * of entries entered into the ring buffer, minus the sum of
3207 * the entries read from the ring buffer and the number of
3208 * entries that were overwritten.
3210 static inline unsigned long
3211 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3213 return local_read(&cpu_buffer->entries) -
3214 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3218 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3219 * @buffer: The ring buffer
3220 * @cpu: The per CPU buffer to read from.
3222 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3224 unsigned long flags;
3225 struct ring_buffer_per_cpu *cpu_buffer;
3226 struct buffer_page *bpage;
3227 u64 ret = 0;
3229 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230 return 0;
3232 cpu_buffer = buffer->buffers[cpu];
3233 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3235 * if the tail is on reader_page, oldest time stamp is on the reader
3236 * page
3238 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3239 bpage = cpu_buffer->reader_page;
3240 else
3241 bpage = rb_set_head_page(cpu_buffer);
3242 if (bpage)
3243 ret = bpage->page->time_stamp;
3244 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3246 return ret;
3248 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3251 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3252 * @buffer: The ring buffer
3253 * @cpu: The per CPU buffer to read from.
3255 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3257 struct ring_buffer_per_cpu *cpu_buffer;
3258 unsigned long ret;
3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 return 0;
3263 cpu_buffer = buffer->buffers[cpu];
3264 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3266 return ret;
3268 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3271 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the entries from.
3275 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3277 struct ring_buffer_per_cpu *cpu_buffer;
3279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280 return 0;
3282 cpu_buffer = buffer->buffers[cpu];
3284 return rb_num_of_entries(cpu_buffer);
3286 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3289 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3290 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3291 * @buffer: The ring buffer
3292 * @cpu: The per CPU buffer to get the number of overruns from
3294 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3296 struct ring_buffer_per_cpu *cpu_buffer;
3297 unsigned long ret;
3299 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300 return 0;
3302 cpu_buffer = buffer->buffers[cpu];
3303 ret = local_read(&cpu_buffer->overrun);
3305 return ret;
3307 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3310 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3311 * commits failing due to the buffer wrapping around while there are uncommitted
3312 * events, such as during an interrupt storm.
3313 * @buffer: The ring buffer
3314 * @cpu: The per CPU buffer to get the number of overruns from
3316 unsigned long
3317 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320 unsigned long ret;
3322 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323 return 0;
3325 cpu_buffer = buffer->buffers[cpu];
3326 ret = local_read(&cpu_buffer->commit_overrun);
3328 return ret;
3330 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3333 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3334 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3335 * @buffer: The ring buffer
3336 * @cpu: The per CPU buffer to get the number of overruns from
3338 unsigned long
3339 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 unsigned long ret;
3344 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345 return 0;
3347 cpu_buffer = buffer->buffers[cpu];
3348 ret = local_read(&cpu_buffer->dropped_events);
3350 return ret;
3352 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3355 * ring_buffer_read_events_cpu - get the number of events successfully read
3356 * @buffer: The ring buffer
3357 * @cpu: The per CPU buffer to get the number of events read
3359 unsigned long
3360 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3362 struct ring_buffer_per_cpu *cpu_buffer;
3364 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3365 return 0;
3367 cpu_buffer = buffer->buffers[cpu];
3368 return cpu_buffer->read;
3370 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3373 * ring_buffer_entries - get the number of entries in a buffer
3374 * @buffer: The ring buffer
3376 * Returns the total number of entries in the ring buffer
3377 * (all CPU entries)
3379 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3381 struct ring_buffer_per_cpu *cpu_buffer;
3382 unsigned long entries = 0;
3383 int cpu;
3385 /* if you care about this being correct, lock the buffer */
3386 for_each_buffer_cpu(buffer, cpu) {
3387 cpu_buffer = buffer->buffers[cpu];
3388 entries += rb_num_of_entries(cpu_buffer);
3391 return entries;
3393 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3396 * ring_buffer_overruns - get the number of overruns in buffer
3397 * @buffer: The ring buffer
3399 * Returns the total number of overruns in the ring buffer
3400 * (all CPU entries)
3402 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3404 struct ring_buffer_per_cpu *cpu_buffer;
3405 unsigned long overruns = 0;
3406 int cpu;
3408 /* if you care about this being correct, lock the buffer */
3409 for_each_buffer_cpu(buffer, cpu) {
3410 cpu_buffer = buffer->buffers[cpu];
3411 overruns += local_read(&cpu_buffer->overrun);
3414 return overruns;
3416 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3418 static void rb_iter_reset(struct ring_buffer_iter *iter)
3420 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3422 /* Iterator usage is expected to have record disabled */
3423 iter->head_page = cpu_buffer->reader_page;
3424 iter->head = cpu_buffer->reader_page->read;
3426 iter->cache_reader_page = iter->head_page;
3427 iter->cache_read = cpu_buffer->read;
3429 if (iter->head)
3430 iter->read_stamp = cpu_buffer->read_stamp;
3431 else
3432 iter->read_stamp = iter->head_page->page->time_stamp;
3436 * ring_buffer_iter_reset - reset an iterator
3437 * @iter: The iterator to reset
3439 * Resets the iterator, so that it will start from the beginning
3440 * again.
3442 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3444 struct ring_buffer_per_cpu *cpu_buffer;
3445 unsigned long flags;
3447 if (!iter)
3448 return;
3450 cpu_buffer = iter->cpu_buffer;
3452 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3453 rb_iter_reset(iter);
3454 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3456 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3459 * ring_buffer_iter_empty - check if an iterator has no more to read
3460 * @iter: The iterator to check
3462 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3464 struct ring_buffer_per_cpu *cpu_buffer;
3465 struct buffer_page *reader;
3466 struct buffer_page *head_page;
3467 struct buffer_page *commit_page;
3468 unsigned commit;
3470 cpu_buffer = iter->cpu_buffer;
3472 /* Remember, trace recording is off when iterator is in use */
3473 reader = cpu_buffer->reader_page;
3474 head_page = cpu_buffer->head_page;
3475 commit_page = cpu_buffer->commit_page;
3476 commit = rb_page_commit(commit_page);
3478 return ((iter->head_page == commit_page && iter->head == commit) ||
3479 (iter->head_page == reader && commit_page == head_page &&
3480 head_page->read == commit &&
3481 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3483 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3485 static void
3486 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3487 struct ring_buffer_event *event)
3489 u64 delta;
3491 switch (event->type_len) {
3492 case RINGBUF_TYPE_PADDING:
3493 return;
3495 case RINGBUF_TYPE_TIME_EXTEND:
3496 delta = event->array[0];
3497 delta <<= TS_SHIFT;
3498 delta += event->time_delta;
3499 cpu_buffer->read_stamp += delta;
3500 return;
3502 case RINGBUF_TYPE_TIME_STAMP:
3503 /* FIXME: not implemented */
3504 return;
3506 case RINGBUF_TYPE_DATA:
3507 cpu_buffer->read_stamp += event->time_delta;
3508 return;
3510 default:
3511 BUG();
3513 return;
3516 static void
3517 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3518 struct ring_buffer_event *event)
3520 u64 delta;
3522 switch (event->type_len) {
3523 case RINGBUF_TYPE_PADDING:
3524 return;
3526 case RINGBUF_TYPE_TIME_EXTEND:
3527 delta = event->array[0];
3528 delta <<= TS_SHIFT;
3529 delta += event->time_delta;
3530 iter->read_stamp += delta;
3531 return;
3533 case RINGBUF_TYPE_TIME_STAMP:
3534 /* FIXME: not implemented */
3535 return;
3537 case RINGBUF_TYPE_DATA:
3538 iter->read_stamp += event->time_delta;
3539 return;
3541 default:
3542 BUG();
3544 return;
3547 static struct buffer_page *
3548 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3550 struct buffer_page *reader = NULL;
3551 unsigned long overwrite;
3552 unsigned long flags;
3553 int nr_loops = 0;
3554 int ret;
3556 local_irq_save(flags);
3557 arch_spin_lock(&cpu_buffer->lock);
3559 again:
3561 * This should normally only loop twice. But because the
3562 * start of the reader inserts an empty page, it causes
3563 * a case where we will loop three times. There should be no
3564 * reason to loop four times (that I know of).
3566 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3567 reader = NULL;
3568 goto out;
3571 reader = cpu_buffer->reader_page;
3573 /* If there's more to read, return this page */
3574 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3575 goto out;
3577 /* Never should we have an index greater than the size */
3578 if (RB_WARN_ON(cpu_buffer,
3579 cpu_buffer->reader_page->read > rb_page_size(reader)))
3580 goto out;
3582 /* check if we caught up to the tail */
3583 reader = NULL;
3584 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3585 goto out;
3587 /* Don't bother swapping if the ring buffer is empty */
3588 if (rb_num_of_entries(cpu_buffer) == 0)
3589 goto out;
3592 * Reset the reader page to size zero.
3594 local_set(&cpu_buffer->reader_page->write, 0);
3595 local_set(&cpu_buffer->reader_page->entries, 0);
3596 local_set(&cpu_buffer->reader_page->page->commit, 0);
3597 cpu_buffer->reader_page->real_end = 0;
3599 spin:
3601 * Splice the empty reader page into the list around the head.
3603 reader = rb_set_head_page(cpu_buffer);
3604 if (!reader)
3605 goto out;
3606 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3607 cpu_buffer->reader_page->list.prev = reader->list.prev;
3610 * cpu_buffer->pages just needs to point to the buffer, it
3611 * has no specific buffer page to point to. Lets move it out
3612 * of our way so we don't accidentally swap it.
3614 cpu_buffer->pages = reader->list.prev;
3616 /* The reader page will be pointing to the new head */
3617 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3620 * We want to make sure we read the overruns after we set up our
3621 * pointers to the next object. The writer side does a
3622 * cmpxchg to cross pages which acts as the mb on the writer
3623 * side. Note, the reader will constantly fail the swap
3624 * while the writer is updating the pointers, so this
3625 * guarantees that the overwrite recorded here is the one we
3626 * want to compare with the last_overrun.
3628 smp_mb();
3629 overwrite = local_read(&(cpu_buffer->overrun));
3632 * Here's the tricky part.
3634 * We need to move the pointer past the header page.
3635 * But we can only do that if a writer is not currently
3636 * moving it. The page before the header page has the
3637 * flag bit '1' set if it is pointing to the page we want.
3638 * but if the writer is in the process of moving it
3639 * than it will be '2' or already moved '0'.
3642 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3645 * If we did not convert it, then we must try again.
3647 if (!ret)
3648 goto spin;
3651 * Yeah! We succeeded in replacing the page.
3653 * Now make the new head point back to the reader page.
3655 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3656 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3658 /* Finally update the reader page to the new head */
3659 cpu_buffer->reader_page = reader;
3660 cpu_buffer->reader_page->read = 0;
3662 if (overwrite != cpu_buffer->last_overrun) {
3663 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3664 cpu_buffer->last_overrun = overwrite;
3667 goto again;
3669 out:
3670 /* Update the read_stamp on the first event */
3671 if (reader && reader->read == 0)
3672 cpu_buffer->read_stamp = reader->page->time_stamp;
3674 arch_spin_unlock(&cpu_buffer->lock);
3675 local_irq_restore(flags);
3677 return reader;
3680 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3682 struct ring_buffer_event *event;
3683 struct buffer_page *reader;
3684 unsigned length;
3686 reader = rb_get_reader_page(cpu_buffer);
3688 /* This function should not be called when buffer is empty */
3689 if (RB_WARN_ON(cpu_buffer, !reader))
3690 return;
3692 event = rb_reader_event(cpu_buffer);
3694 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3695 cpu_buffer->read++;
3697 rb_update_read_stamp(cpu_buffer, event);
3699 length = rb_event_length(event);
3700 cpu_buffer->reader_page->read += length;
3703 static void rb_advance_iter(struct ring_buffer_iter *iter)
3705 struct ring_buffer_per_cpu *cpu_buffer;
3706 struct ring_buffer_event *event;
3707 unsigned length;
3709 cpu_buffer = iter->cpu_buffer;
3712 * Check if we are at the end of the buffer.
3714 if (iter->head >= rb_page_size(iter->head_page)) {
3715 /* discarded commits can make the page empty */
3716 if (iter->head_page == cpu_buffer->commit_page)
3717 return;
3718 rb_inc_iter(iter);
3719 return;
3722 event = rb_iter_head_event(iter);
3724 length = rb_event_length(event);
3727 * This should not be called to advance the header if we are
3728 * at the tail of the buffer.
3730 if (RB_WARN_ON(cpu_buffer,
3731 (iter->head_page == cpu_buffer->commit_page) &&
3732 (iter->head + length > rb_commit_index(cpu_buffer))))
3733 return;
3735 rb_update_iter_read_stamp(iter, event);
3737 iter->head += length;
3739 /* check for end of page padding */
3740 if ((iter->head >= rb_page_size(iter->head_page)) &&
3741 (iter->head_page != cpu_buffer->commit_page))
3742 rb_inc_iter(iter);
3745 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3747 return cpu_buffer->lost_events;
3750 static struct ring_buffer_event *
3751 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3752 unsigned long *lost_events)
3754 struct ring_buffer_event *event;
3755 struct buffer_page *reader;
3756 int nr_loops = 0;
3758 again:
3760 * We repeat when a time extend is encountered.
3761 * Since the time extend is always attached to a data event,
3762 * we should never loop more than once.
3763 * (We never hit the following condition more than twice).
3765 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3766 return NULL;
3768 reader = rb_get_reader_page(cpu_buffer);
3769 if (!reader)
3770 return NULL;
3772 event = rb_reader_event(cpu_buffer);
3774 switch (event->type_len) {
3775 case RINGBUF_TYPE_PADDING:
3776 if (rb_null_event(event))
3777 RB_WARN_ON(cpu_buffer, 1);
3779 * Because the writer could be discarding every
3780 * event it creates (which would probably be bad)
3781 * if we were to go back to "again" then we may never
3782 * catch up, and will trigger the warn on, or lock
3783 * the box. Return the padding, and we will release
3784 * the current locks, and try again.
3786 return event;
3788 case RINGBUF_TYPE_TIME_EXTEND:
3789 /* Internal data, OK to advance */
3790 rb_advance_reader(cpu_buffer);
3791 goto again;
3793 case RINGBUF_TYPE_TIME_STAMP:
3794 /* FIXME: not implemented */
3795 rb_advance_reader(cpu_buffer);
3796 goto again;
3798 case RINGBUF_TYPE_DATA:
3799 if (ts) {
3800 *ts = cpu_buffer->read_stamp + event->time_delta;
3801 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3802 cpu_buffer->cpu, ts);
3804 if (lost_events)
3805 *lost_events = rb_lost_events(cpu_buffer);
3806 return event;
3808 default:
3809 BUG();
3812 return NULL;
3814 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3816 static struct ring_buffer_event *
3817 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3819 struct ring_buffer *buffer;
3820 struct ring_buffer_per_cpu *cpu_buffer;
3821 struct ring_buffer_event *event;
3822 int nr_loops = 0;
3824 cpu_buffer = iter->cpu_buffer;
3825 buffer = cpu_buffer->buffer;
3828 * Check if someone performed a consuming read to
3829 * the buffer. A consuming read invalidates the iterator
3830 * and we need to reset the iterator in this case.
3832 if (unlikely(iter->cache_read != cpu_buffer->read ||
3833 iter->cache_reader_page != cpu_buffer->reader_page))
3834 rb_iter_reset(iter);
3836 again:
3837 if (ring_buffer_iter_empty(iter))
3838 return NULL;
3841 * We repeat when a time extend is encountered or we hit
3842 * the end of the page. Since the time extend is always attached
3843 * to a data event, we should never loop more than three times.
3844 * Once for going to next page, once on time extend, and
3845 * finally once to get the event.
3846 * (We never hit the following condition more than thrice).
3848 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3849 return NULL;
3851 if (rb_per_cpu_empty(cpu_buffer))
3852 return NULL;
3854 if (iter->head >= rb_page_size(iter->head_page)) {
3855 rb_inc_iter(iter);
3856 goto again;
3859 event = rb_iter_head_event(iter);
3861 switch (event->type_len) {
3862 case RINGBUF_TYPE_PADDING:
3863 if (rb_null_event(event)) {
3864 rb_inc_iter(iter);
3865 goto again;
3867 rb_advance_iter(iter);
3868 return event;
3870 case RINGBUF_TYPE_TIME_EXTEND:
3871 /* Internal data, OK to advance */
3872 rb_advance_iter(iter);
3873 goto again;
3875 case RINGBUF_TYPE_TIME_STAMP:
3876 /* FIXME: not implemented */
3877 rb_advance_iter(iter);
3878 goto again;
3880 case RINGBUF_TYPE_DATA:
3881 if (ts) {
3882 *ts = iter->read_stamp + event->time_delta;
3883 ring_buffer_normalize_time_stamp(buffer,
3884 cpu_buffer->cpu, ts);
3886 return event;
3888 default:
3889 BUG();
3892 return NULL;
3894 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3896 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3898 if (likely(!in_nmi())) {
3899 raw_spin_lock(&cpu_buffer->reader_lock);
3900 return true;
3904 * If an NMI die dumps out the content of the ring buffer
3905 * trylock must be used to prevent a deadlock if the NMI
3906 * preempted a task that holds the ring buffer locks. If
3907 * we get the lock then all is fine, if not, then continue
3908 * to do the read, but this can corrupt the ring buffer,
3909 * so it must be permanently disabled from future writes.
3910 * Reading from NMI is a oneshot deal.
3912 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3913 return true;
3915 /* Continue without locking, but disable the ring buffer */
3916 atomic_inc(&cpu_buffer->record_disabled);
3917 return false;
3920 static inline void
3921 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3923 if (likely(locked))
3924 raw_spin_unlock(&cpu_buffer->reader_lock);
3925 return;
3929 * ring_buffer_peek - peek at the next event to be read
3930 * @buffer: The ring buffer to read
3931 * @cpu: The cpu to peak at
3932 * @ts: The timestamp counter of this event.
3933 * @lost_events: a variable to store if events were lost (may be NULL)
3935 * This will return the event that will be read next, but does
3936 * not consume the data.
3938 struct ring_buffer_event *
3939 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3940 unsigned long *lost_events)
3942 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3943 struct ring_buffer_event *event;
3944 unsigned long flags;
3945 bool dolock;
3947 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3948 return NULL;
3950 again:
3951 local_irq_save(flags);
3952 dolock = rb_reader_lock(cpu_buffer);
3953 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3954 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3955 rb_advance_reader(cpu_buffer);
3956 rb_reader_unlock(cpu_buffer, dolock);
3957 local_irq_restore(flags);
3959 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3960 goto again;
3962 return event;
3966 * ring_buffer_iter_peek - peek at the next event to be read
3967 * @iter: The ring buffer iterator
3968 * @ts: The timestamp counter of this event.
3970 * This will return the event that will be read next, but does
3971 * not increment the iterator.
3973 struct ring_buffer_event *
3974 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3976 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3977 struct ring_buffer_event *event;
3978 unsigned long flags;
3980 again:
3981 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3982 event = rb_iter_peek(iter, ts);
3983 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3985 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3986 goto again;
3988 return event;
3992 * ring_buffer_consume - return an event and consume it
3993 * @buffer: The ring buffer to get the next event from
3994 * @cpu: the cpu to read the buffer from
3995 * @ts: a variable to store the timestamp (may be NULL)
3996 * @lost_events: a variable to store if events were lost (may be NULL)
3998 * Returns the next event in the ring buffer, and that event is consumed.
3999 * Meaning, that sequential reads will keep returning a different event,
4000 * and eventually empty the ring buffer if the producer is slower.
4002 struct ring_buffer_event *
4003 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4004 unsigned long *lost_events)
4006 struct ring_buffer_per_cpu *cpu_buffer;
4007 struct ring_buffer_event *event = NULL;
4008 unsigned long flags;
4009 bool dolock;
4011 again:
4012 /* might be called in atomic */
4013 preempt_disable();
4015 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4016 goto out;
4018 cpu_buffer = buffer->buffers[cpu];
4019 local_irq_save(flags);
4020 dolock = rb_reader_lock(cpu_buffer);
4022 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4023 if (event) {
4024 cpu_buffer->lost_events = 0;
4025 rb_advance_reader(cpu_buffer);
4028 rb_reader_unlock(cpu_buffer, dolock);
4029 local_irq_restore(flags);
4031 out:
4032 preempt_enable();
4034 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4035 goto again;
4037 return event;
4039 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4042 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4043 * @buffer: The ring buffer to read from
4044 * @cpu: The cpu buffer to iterate over
4046 * This performs the initial preparations necessary to iterate
4047 * through the buffer. Memory is allocated, buffer recording
4048 * is disabled, and the iterator pointer is returned to the caller.
4050 * Disabling buffer recordng prevents the reading from being
4051 * corrupted. This is not a consuming read, so a producer is not
4052 * expected.
4054 * After a sequence of ring_buffer_read_prepare calls, the user is
4055 * expected to make at least one call to ring_buffer_read_prepare_sync.
4056 * Afterwards, ring_buffer_read_start is invoked to get things going
4057 * for real.
4059 * This overall must be paired with ring_buffer_read_finish.
4061 struct ring_buffer_iter *
4062 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4064 struct ring_buffer_per_cpu *cpu_buffer;
4065 struct ring_buffer_iter *iter;
4067 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4068 return NULL;
4070 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4071 if (!iter)
4072 return NULL;
4074 cpu_buffer = buffer->buffers[cpu];
4076 iter->cpu_buffer = cpu_buffer;
4078 atomic_inc(&buffer->resize_disabled);
4079 atomic_inc(&cpu_buffer->record_disabled);
4081 return iter;
4083 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4086 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4088 * All previously invoked ring_buffer_read_prepare calls to prepare
4089 * iterators will be synchronized. Afterwards, read_buffer_read_start
4090 * calls on those iterators are allowed.
4092 void
4093 ring_buffer_read_prepare_sync(void)
4095 synchronize_sched();
4097 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4100 * ring_buffer_read_start - start a non consuming read of the buffer
4101 * @iter: The iterator returned by ring_buffer_read_prepare
4103 * This finalizes the startup of an iteration through the buffer.
4104 * The iterator comes from a call to ring_buffer_read_prepare and
4105 * an intervening ring_buffer_read_prepare_sync must have been
4106 * performed.
4108 * Must be paired with ring_buffer_read_finish.
4110 void
4111 ring_buffer_read_start(struct ring_buffer_iter *iter)
4113 struct ring_buffer_per_cpu *cpu_buffer;
4114 unsigned long flags;
4116 if (!iter)
4117 return;
4119 cpu_buffer = iter->cpu_buffer;
4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122 arch_spin_lock(&cpu_buffer->lock);
4123 rb_iter_reset(iter);
4124 arch_spin_unlock(&cpu_buffer->lock);
4125 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4127 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4130 * ring_buffer_read_finish - finish reading the iterator of the buffer
4131 * @iter: The iterator retrieved by ring_buffer_start
4133 * This re-enables the recording to the buffer, and frees the
4134 * iterator.
4136 void
4137 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4139 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4140 unsigned long flags;
4143 * Ring buffer is disabled from recording, here's a good place
4144 * to check the integrity of the ring buffer.
4145 * Must prevent readers from trying to read, as the check
4146 * clears the HEAD page and readers require it.
4148 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4149 rb_check_pages(cpu_buffer);
4150 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4152 atomic_dec(&cpu_buffer->record_disabled);
4153 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4154 kfree(iter);
4156 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4159 * ring_buffer_read - read the next item in the ring buffer by the iterator
4160 * @iter: The ring buffer iterator
4161 * @ts: The time stamp of the event read.
4163 * This reads the next event in the ring buffer and increments the iterator.
4165 struct ring_buffer_event *
4166 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4168 struct ring_buffer_event *event;
4169 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4170 unsigned long flags;
4172 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4173 again:
4174 event = rb_iter_peek(iter, ts);
4175 if (!event)
4176 goto out;
4178 if (event->type_len == RINGBUF_TYPE_PADDING)
4179 goto again;
4181 rb_advance_iter(iter);
4182 out:
4183 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4185 return event;
4187 EXPORT_SYMBOL_GPL(ring_buffer_read);
4190 * ring_buffer_size - return the size of the ring buffer (in bytes)
4191 * @buffer: The ring buffer.
4193 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4196 * Earlier, this method returned
4197 * BUF_PAGE_SIZE * buffer->nr_pages
4198 * Since the nr_pages field is now removed, we have converted this to
4199 * return the per cpu buffer value.
4201 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4202 return 0;
4204 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4206 EXPORT_SYMBOL_GPL(ring_buffer_size);
4208 static void
4209 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4211 rb_head_page_deactivate(cpu_buffer);
4213 cpu_buffer->head_page
4214 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4215 local_set(&cpu_buffer->head_page->write, 0);
4216 local_set(&cpu_buffer->head_page->entries, 0);
4217 local_set(&cpu_buffer->head_page->page->commit, 0);
4219 cpu_buffer->head_page->read = 0;
4221 cpu_buffer->tail_page = cpu_buffer->head_page;
4222 cpu_buffer->commit_page = cpu_buffer->head_page;
4224 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4225 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4226 local_set(&cpu_buffer->reader_page->write, 0);
4227 local_set(&cpu_buffer->reader_page->entries, 0);
4228 local_set(&cpu_buffer->reader_page->page->commit, 0);
4229 cpu_buffer->reader_page->read = 0;
4231 local_set(&cpu_buffer->entries_bytes, 0);
4232 local_set(&cpu_buffer->overrun, 0);
4233 local_set(&cpu_buffer->commit_overrun, 0);
4234 local_set(&cpu_buffer->dropped_events, 0);
4235 local_set(&cpu_buffer->entries, 0);
4236 local_set(&cpu_buffer->committing, 0);
4237 local_set(&cpu_buffer->commits, 0);
4238 cpu_buffer->read = 0;
4239 cpu_buffer->read_bytes = 0;
4241 cpu_buffer->write_stamp = 0;
4242 cpu_buffer->read_stamp = 0;
4244 cpu_buffer->lost_events = 0;
4245 cpu_buffer->last_overrun = 0;
4247 rb_head_page_activate(cpu_buffer);
4251 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4252 * @buffer: The ring buffer to reset a per cpu buffer of
4253 * @cpu: The CPU buffer to be reset
4255 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4257 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4258 unsigned long flags;
4260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261 return;
4263 atomic_inc(&buffer->resize_disabled);
4264 atomic_inc(&cpu_buffer->record_disabled);
4266 /* Make sure all commits have finished */
4267 synchronize_sched();
4269 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4271 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4272 goto out;
4274 arch_spin_lock(&cpu_buffer->lock);
4276 rb_reset_cpu(cpu_buffer);
4278 arch_spin_unlock(&cpu_buffer->lock);
4280 out:
4281 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4283 atomic_dec(&cpu_buffer->record_disabled);
4284 atomic_dec(&buffer->resize_disabled);
4286 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4289 * ring_buffer_reset - reset a ring buffer
4290 * @buffer: The ring buffer to reset all cpu buffers
4292 void ring_buffer_reset(struct ring_buffer *buffer)
4294 int cpu;
4296 for_each_buffer_cpu(buffer, cpu)
4297 ring_buffer_reset_cpu(buffer, cpu);
4299 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4302 * rind_buffer_empty - is the ring buffer empty?
4303 * @buffer: The ring buffer to test
4305 bool ring_buffer_empty(struct ring_buffer *buffer)
4307 struct ring_buffer_per_cpu *cpu_buffer;
4308 unsigned long flags;
4309 bool dolock;
4310 int cpu;
4311 int ret;
4313 /* yes this is racy, but if you don't like the race, lock the buffer */
4314 for_each_buffer_cpu(buffer, cpu) {
4315 cpu_buffer = buffer->buffers[cpu];
4316 local_irq_save(flags);
4317 dolock = rb_reader_lock(cpu_buffer);
4318 ret = rb_per_cpu_empty(cpu_buffer);
4319 rb_reader_unlock(cpu_buffer, dolock);
4320 local_irq_restore(flags);
4322 if (!ret)
4323 return false;
4326 return true;
4328 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4331 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4332 * @buffer: The ring buffer
4333 * @cpu: The CPU buffer to test
4335 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4337 struct ring_buffer_per_cpu *cpu_buffer;
4338 unsigned long flags;
4339 bool dolock;
4340 int ret;
4342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343 return true;
4345 cpu_buffer = buffer->buffers[cpu];
4346 local_irq_save(flags);
4347 dolock = rb_reader_lock(cpu_buffer);
4348 ret = rb_per_cpu_empty(cpu_buffer);
4349 rb_reader_unlock(cpu_buffer, dolock);
4350 local_irq_restore(flags);
4352 return ret;
4354 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4356 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4358 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4359 * @buffer_a: One buffer to swap with
4360 * @buffer_b: The other buffer to swap with
4362 * This function is useful for tracers that want to take a "snapshot"
4363 * of a CPU buffer and has another back up buffer lying around.
4364 * it is expected that the tracer handles the cpu buffer not being
4365 * used at the moment.
4367 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4368 struct ring_buffer *buffer_b, int cpu)
4370 struct ring_buffer_per_cpu *cpu_buffer_a;
4371 struct ring_buffer_per_cpu *cpu_buffer_b;
4372 int ret = -EINVAL;
4374 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4375 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4376 goto out;
4378 cpu_buffer_a = buffer_a->buffers[cpu];
4379 cpu_buffer_b = buffer_b->buffers[cpu];
4381 /* At least make sure the two buffers are somewhat the same */
4382 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4383 goto out;
4385 ret = -EAGAIN;
4387 if (atomic_read(&buffer_a->record_disabled))
4388 goto out;
4390 if (atomic_read(&buffer_b->record_disabled))
4391 goto out;
4393 if (atomic_read(&cpu_buffer_a->record_disabled))
4394 goto out;
4396 if (atomic_read(&cpu_buffer_b->record_disabled))
4397 goto out;
4400 * We can't do a synchronize_sched here because this
4401 * function can be called in atomic context.
4402 * Normally this will be called from the same CPU as cpu.
4403 * If not it's up to the caller to protect this.
4405 atomic_inc(&cpu_buffer_a->record_disabled);
4406 atomic_inc(&cpu_buffer_b->record_disabled);
4408 ret = -EBUSY;
4409 if (local_read(&cpu_buffer_a->committing))
4410 goto out_dec;
4411 if (local_read(&cpu_buffer_b->committing))
4412 goto out_dec;
4414 buffer_a->buffers[cpu] = cpu_buffer_b;
4415 buffer_b->buffers[cpu] = cpu_buffer_a;
4417 cpu_buffer_b->buffer = buffer_a;
4418 cpu_buffer_a->buffer = buffer_b;
4420 ret = 0;
4422 out_dec:
4423 atomic_dec(&cpu_buffer_a->record_disabled);
4424 atomic_dec(&cpu_buffer_b->record_disabled);
4425 out:
4426 return ret;
4428 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4429 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4432 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4433 * @buffer: the buffer to allocate for.
4434 * @cpu: the cpu buffer to allocate.
4436 * This function is used in conjunction with ring_buffer_read_page.
4437 * When reading a full page from the ring buffer, these functions
4438 * can be used to speed up the process. The calling function should
4439 * allocate a few pages first with this function. Then when it
4440 * needs to get pages from the ring buffer, it passes the result
4441 * of this function into ring_buffer_read_page, which will swap
4442 * the page that was allocated, with the read page of the buffer.
4444 * Returns:
4445 * The page allocated, or NULL on error.
4447 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4449 struct buffer_data_page *bpage;
4450 struct page *page;
4452 page = alloc_pages_node(cpu_to_node(cpu),
4453 GFP_KERNEL | __GFP_NORETRY, 0);
4454 if (!page)
4455 return NULL;
4457 bpage = page_address(page);
4459 rb_init_page(bpage);
4461 return bpage;
4463 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4466 * ring_buffer_free_read_page - free an allocated read page
4467 * @buffer: the buffer the page was allocate for
4468 * @data: the page to free
4470 * Free a page allocated from ring_buffer_alloc_read_page.
4472 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4474 free_page((unsigned long)data);
4476 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4479 * ring_buffer_read_page - extract a page from the ring buffer
4480 * @buffer: buffer to extract from
4481 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4482 * @len: amount to extract
4483 * @cpu: the cpu of the buffer to extract
4484 * @full: should the extraction only happen when the page is full.
4486 * This function will pull out a page from the ring buffer and consume it.
4487 * @data_page must be the address of the variable that was returned
4488 * from ring_buffer_alloc_read_page. This is because the page might be used
4489 * to swap with a page in the ring buffer.
4491 * for example:
4492 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4493 * if (!rpage)
4494 * return error;
4495 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4496 * if (ret >= 0)
4497 * process_page(rpage, ret);
4499 * When @full is set, the function will not return true unless
4500 * the writer is off the reader page.
4502 * Note: it is up to the calling functions to handle sleeps and wakeups.
4503 * The ring buffer can be used anywhere in the kernel and can not
4504 * blindly call wake_up. The layer that uses the ring buffer must be
4505 * responsible for that.
4507 * Returns:
4508 * >=0 if data has been transferred, returns the offset of consumed data.
4509 * <0 if no data has been transferred.
4511 int ring_buffer_read_page(struct ring_buffer *buffer,
4512 void **data_page, size_t len, int cpu, int full)
4514 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4515 struct ring_buffer_event *event;
4516 struct buffer_data_page *bpage;
4517 struct buffer_page *reader;
4518 unsigned long missed_events;
4519 unsigned long flags;
4520 unsigned int commit;
4521 unsigned int read;
4522 u64 save_timestamp;
4523 int ret = -1;
4525 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4526 goto out;
4529 * If len is not big enough to hold the page header, then
4530 * we can not copy anything.
4532 if (len <= BUF_PAGE_HDR_SIZE)
4533 goto out;
4535 len -= BUF_PAGE_HDR_SIZE;
4537 if (!data_page)
4538 goto out;
4540 bpage = *data_page;
4541 if (!bpage)
4542 goto out;
4544 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4546 reader = rb_get_reader_page(cpu_buffer);
4547 if (!reader)
4548 goto out_unlock;
4550 event = rb_reader_event(cpu_buffer);
4552 read = reader->read;
4553 commit = rb_page_commit(reader);
4555 /* Check if any events were dropped */
4556 missed_events = cpu_buffer->lost_events;
4559 * If this page has been partially read or
4560 * if len is not big enough to read the rest of the page or
4561 * a writer is still on the page, then
4562 * we must copy the data from the page to the buffer.
4563 * Otherwise, we can simply swap the page with the one passed in.
4565 if (read || (len < (commit - read)) ||
4566 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4567 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4568 unsigned int rpos = read;
4569 unsigned int pos = 0;
4570 unsigned int size;
4572 if (full)
4573 goto out_unlock;
4575 if (len > (commit - read))
4576 len = (commit - read);
4578 /* Always keep the time extend and data together */
4579 size = rb_event_ts_length(event);
4581 if (len < size)
4582 goto out_unlock;
4584 /* save the current timestamp, since the user will need it */
4585 save_timestamp = cpu_buffer->read_stamp;
4587 /* Need to copy one event at a time */
4588 do {
4589 /* We need the size of one event, because
4590 * rb_advance_reader only advances by one event,
4591 * whereas rb_event_ts_length may include the size of
4592 * one or two events.
4593 * We have already ensured there's enough space if this
4594 * is a time extend. */
4595 size = rb_event_length(event);
4596 memcpy(bpage->data + pos, rpage->data + rpos, size);
4598 len -= size;
4600 rb_advance_reader(cpu_buffer);
4601 rpos = reader->read;
4602 pos += size;
4604 if (rpos >= commit)
4605 break;
4607 event = rb_reader_event(cpu_buffer);
4608 /* Always keep the time extend and data together */
4609 size = rb_event_ts_length(event);
4610 } while (len >= size);
4612 /* update bpage */
4613 local_set(&bpage->commit, pos);
4614 bpage->time_stamp = save_timestamp;
4616 /* we copied everything to the beginning */
4617 read = 0;
4618 } else {
4619 /* update the entry counter */
4620 cpu_buffer->read += rb_page_entries(reader);
4621 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4623 /* swap the pages */
4624 rb_init_page(bpage);
4625 bpage = reader->page;
4626 reader->page = *data_page;
4627 local_set(&reader->write, 0);
4628 local_set(&reader->entries, 0);
4629 reader->read = 0;
4630 *data_page = bpage;
4633 * Use the real_end for the data size,
4634 * This gives us a chance to store the lost events
4635 * on the page.
4637 if (reader->real_end)
4638 local_set(&bpage->commit, reader->real_end);
4640 ret = read;
4642 cpu_buffer->lost_events = 0;
4644 commit = local_read(&bpage->commit);
4646 * Set a flag in the commit field if we lost events
4648 if (missed_events) {
4649 /* If there is room at the end of the page to save the
4650 * missed events, then record it there.
4652 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4653 memcpy(&bpage->data[commit], &missed_events,
4654 sizeof(missed_events));
4655 local_add(RB_MISSED_STORED, &bpage->commit);
4656 commit += sizeof(missed_events);
4658 local_add(RB_MISSED_EVENTS, &bpage->commit);
4662 * This page may be off to user land. Zero it out here.
4664 if (commit < BUF_PAGE_SIZE)
4665 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4667 out_unlock:
4668 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4670 out:
4671 return ret;
4673 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4675 #ifdef CONFIG_HOTPLUG_CPU
4676 static int rb_cpu_notify(struct notifier_block *self,
4677 unsigned long action, void *hcpu)
4679 struct ring_buffer *buffer =
4680 container_of(self, struct ring_buffer, cpu_notify);
4681 long cpu = (long)hcpu;
4682 long nr_pages_same;
4683 int cpu_i;
4684 unsigned long nr_pages;
4686 switch (action) {
4687 case CPU_UP_PREPARE:
4688 case CPU_UP_PREPARE_FROZEN:
4689 if (cpumask_test_cpu(cpu, buffer->cpumask))
4690 return NOTIFY_OK;
4692 nr_pages = 0;
4693 nr_pages_same = 1;
4694 /* check if all cpu sizes are same */
4695 for_each_buffer_cpu(buffer, cpu_i) {
4696 /* fill in the size from first enabled cpu */
4697 if (nr_pages == 0)
4698 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4699 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4700 nr_pages_same = 0;
4701 break;
4704 /* allocate minimum pages, user can later expand it */
4705 if (!nr_pages_same)
4706 nr_pages = 2;
4707 buffer->buffers[cpu] =
4708 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4709 if (!buffer->buffers[cpu]) {
4710 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4711 cpu);
4712 return NOTIFY_OK;
4714 smp_wmb();
4715 cpumask_set_cpu(cpu, buffer->cpumask);
4716 break;
4717 case CPU_DOWN_PREPARE:
4718 case CPU_DOWN_PREPARE_FROZEN:
4720 * Do nothing.
4721 * If we were to free the buffer, then the user would
4722 * lose any trace that was in the buffer.
4724 break;
4725 default:
4726 break;
4728 return NOTIFY_OK;
4730 #endif
4732 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4734 * This is a basic integrity check of the ring buffer.
4735 * Late in the boot cycle this test will run when configured in.
4736 * It will kick off a thread per CPU that will go into a loop
4737 * writing to the per cpu ring buffer various sizes of data.
4738 * Some of the data will be large items, some small.
4740 * Another thread is created that goes into a spin, sending out
4741 * IPIs to the other CPUs to also write into the ring buffer.
4742 * this is to test the nesting ability of the buffer.
4744 * Basic stats are recorded and reported. If something in the
4745 * ring buffer should happen that's not expected, a big warning
4746 * is displayed and all ring buffers are disabled.
4748 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4750 struct rb_test_data {
4751 struct ring_buffer *buffer;
4752 unsigned long events;
4753 unsigned long bytes_written;
4754 unsigned long bytes_alloc;
4755 unsigned long bytes_dropped;
4756 unsigned long events_nested;
4757 unsigned long bytes_written_nested;
4758 unsigned long bytes_alloc_nested;
4759 unsigned long bytes_dropped_nested;
4760 int min_size_nested;
4761 int max_size_nested;
4762 int max_size;
4763 int min_size;
4764 int cpu;
4765 int cnt;
4768 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4770 /* 1 meg per cpu */
4771 #define RB_TEST_BUFFER_SIZE 1048576
4773 static char rb_string[] __initdata =
4774 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4775 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4776 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4778 static bool rb_test_started __initdata;
4780 struct rb_item {
4781 int size;
4782 char str[];
4785 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4787 struct ring_buffer_event *event;
4788 struct rb_item *item;
4789 bool started;
4790 int event_len;
4791 int size;
4792 int len;
4793 int cnt;
4795 /* Have nested writes different that what is written */
4796 cnt = data->cnt + (nested ? 27 : 0);
4798 /* Multiply cnt by ~e, to make some unique increment */
4799 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4801 len = size + sizeof(struct rb_item);
4803 started = rb_test_started;
4804 /* read rb_test_started before checking buffer enabled */
4805 smp_rmb();
4807 event = ring_buffer_lock_reserve(data->buffer, len);
4808 if (!event) {
4809 /* Ignore dropped events before test starts. */
4810 if (started) {
4811 if (nested)
4812 data->bytes_dropped += len;
4813 else
4814 data->bytes_dropped_nested += len;
4816 return len;
4819 event_len = ring_buffer_event_length(event);
4821 if (RB_WARN_ON(data->buffer, event_len < len))
4822 goto out;
4824 item = ring_buffer_event_data(event);
4825 item->size = size;
4826 memcpy(item->str, rb_string, size);
4828 if (nested) {
4829 data->bytes_alloc_nested += event_len;
4830 data->bytes_written_nested += len;
4831 data->events_nested++;
4832 if (!data->min_size_nested || len < data->min_size_nested)
4833 data->min_size_nested = len;
4834 if (len > data->max_size_nested)
4835 data->max_size_nested = len;
4836 } else {
4837 data->bytes_alloc += event_len;
4838 data->bytes_written += len;
4839 data->events++;
4840 if (!data->min_size || len < data->min_size)
4841 data->max_size = len;
4842 if (len > data->max_size)
4843 data->max_size = len;
4846 out:
4847 ring_buffer_unlock_commit(data->buffer, event);
4849 return 0;
4852 static __init int rb_test(void *arg)
4854 struct rb_test_data *data = arg;
4856 while (!kthread_should_stop()) {
4857 rb_write_something(data, false);
4858 data->cnt++;
4860 set_current_state(TASK_INTERRUPTIBLE);
4861 /* Now sleep between a min of 100-300us and a max of 1ms */
4862 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4865 return 0;
4868 static __init void rb_ipi(void *ignore)
4870 struct rb_test_data *data;
4871 int cpu = smp_processor_id();
4873 data = &rb_data[cpu];
4874 rb_write_something(data, true);
4877 static __init int rb_hammer_test(void *arg)
4879 while (!kthread_should_stop()) {
4881 /* Send an IPI to all cpus to write data! */
4882 smp_call_function(rb_ipi, NULL, 1);
4883 /* No sleep, but for non preempt, let others run */
4884 schedule();
4887 return 0;
4890 static __init int test_ringbuffer(void)
4892 struct task_struct *rb_hammer;
4893 struct ring_buffer *buffer;
4894 int cpu;
4895 int ret = 0;
4897 pr_info("Running ring buffer tests...\n");
4899 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4900 if (WARN_ON(!buffer))
4901 return 0;
4903 /* Disable buffer so that threads can't write to it yet */
4904 ring_buffer_record_off(buffer);
4906 for_each_online_cpu(cpu) {
4907 rb_data[cpu].buffer = buffer;
4908 rb_data[cpu].cpu = cpu;
4909 rb_data[cpu].cnt = cpu;
4910 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4911 "rbtester/%d", cpu);
4912 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4913 pr_cont("FAILED\n");
4914 ret = PTR_ERR(rb_threads[cpu]);
4915 goto out_free;
4918 kthread_bind(rb_threads[cpu], cpu);
4919 wake_up_process(rb_threads[cpu]);
4922 /* Now create the rb hammer! */
4923 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4924 if (WARN_ON(IS_ERR(rb_hammer))) {
4925 pr_cont("FAILED\n");
4926 ret = PTR_ERR(rb_hammer);
4927 goto out_free;
4930 ring_buffer_record_on(buffer);
4932 * Show buffer is enabled before setting rb_test_started.
4933 * Yes there's a small race window where events could be
4934 * dropped and the thread wont catch it. But when a ring
4935 * buffer gets enabled, there will always be some kind of
4936 * delay before other CPUs see it. Thus, we don't care about
4937 * those dropped events. We care about events dropped after
4938 * the threads see that the buffer is active.
4940 smp_wmb();
4941 rb_test_started = true;
4943 set_current_state(TASK_INTERRUPTIBLE);
4944 /* Just run for 10 seconds */;
4945 schedule_timeout(10 * HZ);
4947 kthread_stop(rb_hammer);
4949 out_free:
4950 for_each_online_cpu(cpu) {
4951 if (!rb_threads[cpu])
4952 break;
4953 kthread_stop(rb_threads[cpu]);
4955 if (ret) {
4956 ring_buffer_free(buffer);
4957 return ret;
4960 /* Report! */
4961 pr_info("finished\n");
4962 for_each_online_cpu(cpu) {
4963 struct ring_buffer_event *event;
4964 struct rb_test_data *data = &rb_data[cpu];
4965 struct rb_item *item;
4966 unsigned long total_events;
4967 unsigned long total_dropped;
4968 unsigned long total_written;
4969 unsigned long total_alloc;
4970 unsigned long total_read = 0;
4971 unsigned long total_size = 0;
4972 unsigned long total_len = 0;
4973 unsigned long total_lost = 0;
4974 unsigned long lost;
4975 int big_event_size;
4976 int small_event_size;
4978 ret = -1;
4980 total_events = data->events + data->events_nested;
4981 total_written = data->bytes_written + data->bytes_written_nested;
4982 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4983 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4985 big_event_size = data->max_size + data->max_size_nested;
4986 small_event_size = data->min_size + data->min_size_nested;
4988 pr_info("CPU %d:\n", cpu);
4989 pr_info(" events: %ld\n", total_events);
4990 pr_info(" dropped bytes: %ld\n", total_dropped);
4991 pr_info(" alloced bytes: %ld\n", total_alloc);
4992 pr_info(" written bytes: %ld\n", total_written);
4993 pr_info(" biggest event: %d\n", big_event_size);
4994 pr_info(" smallest event: %d\n", small_event_size);
4996 if (RB_WARN_ON(buffer, total_dropped))
4997 break;
4999 ret = 0;
5001 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5002 total_lost += lost;
5003 item = ring_buffer_event_data(event);
5004 total_len += ring_buffer_event_length(event);
5005 total_size += item->size + sizeof(struct rb_item);
5006 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5007 pr_info("FAILED!\n");
5008 pr_info("buffer had: %.*s\n", item->size, item->str);
5009 pr_info("expected: %.*s\n", item->size, rb_string);
5010 RB_WARN_ON(buffer, 1);
5011 ret = -1;
5012 break;
5014 total_read++;
5016 if (ret)
5017 break;
5019 ret = -1;
5021 pr_info(" read events: %ld\n", total_read);
5022 pr_info(" lost events: %ld\n", total_lost);
5023 pr_info(" total events: %ld\n", total_lost + total_read);
5024 pr_info(" recorded len bytes: %ld\n", total_len);
5025 pr_info(" recorded size bytes: %ld\n", total_size);
5026 if (total_lost)
5027 pr_info(" With dropped events, record len and size may not match\n"
5028 " alloced and written from above\n");
5029 if (!total_lost) {
5030 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5031 total_size != total_written))
5032 break;
5034 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5035 break;
5037 ret = 0;
5039 if (!ret)
5040 pr_info("Ring buffer PASSED!\n");
5042 ring_buffer_free(buffer);
5043 return 0;
5046 late_initcall(test_ringbuffer);
5047 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */