dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / mm / gup.c
blobb599526db9f7e1a31a864ec30119951217bbfe68
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
19 #include "internal.h"
21 static struct page *no_page_table(struct vm_area_struct *vma,
22 unsigned int flags)
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
33 return ERR_PTR(-EFAULT);
34 return NULL;
37 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
38 pte_t *pte, unsigned int flags)
40 /* No page to get reference */
41 if (flags & FOLL_GET)
42 return -EFAULT;
44 if (flags & FOLL_TOUCH) {
45 pte_t entry = *pte;
47 if (flags & FOLL_WRITE)
48 entry = pte_mkdirty(entry);
49 entry = pte_mkyoung(entry);
51 if (!pte_same(*pte, entry)) {
52 set_pte_at(vma->vm_mm, address, pte, entry);
53 update_mmu_cache(vma, address, pte);
57 /* Proper page table entry exists, but no corresponding struct page */
58 return -EEXIST;
62 * FOLL_FORCE can write to even unwritable pte's, but only
63 * after we've gone through a COW cycle and they are dirty.
65 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
67 return pte_write(pte) ||
68 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 static struct page *follow_page_pte(struct vm_area_struct *vma,
72 unsigned long address, pmd_t *pmd, unsigned int flags)
74 struct mm_struct *mm = vma->vm_mm;
75 struct page *page;
76 spinlock_t *ptl;
77 pte_t *ptep, pte;
79 retry:
80 if (unlikely(pmd_bad(*pmd)))
81 return no_page_table(vma, flags);
83 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
84 pte = *ptep;
85 if (!pte_present(pte)) {
86 swp_entry_t entry;
88 * KSM's break_ksm() relies upon recognizing a ksm page
89 * even while it is being migrated, so for that case we
90 * need migration_entry_wait().
92 if (likely(!(flags & FOLL_MIGRATION)))
93 goto no_page;
94 if (pte_none(pte))
95 goto no_page;
96 entry = pte_to_swp_entry(pte);
97 if (!is_migration_entry(entry))
98 goto no_page;
99 pte_unmap_unlock(ptep, ptl);
100 migration_entry_wait(mm, pmd, address);
101 goto retry;
103 if ((flags & FOLL_NUMA) && pte_protnone(pte))
104 goto no_page;
105 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
106 pte_unmap_unlock(ptep, ptl);
107 return NULL;
110 page = vm_normal_page(vma, address, pte);
111 if (unlikely(!page)) {
112 if (flags & FOLL_DUMP) {
113 /* Avoid special (like zero) pages in core dumps */
114 page = ERR_PTR(-EFAULT);
115 goto out;
118 if (is_zero_pfn(pte_pfn(pte))) {
119 page = pte_page(pte);
120 } else {
121 int ret;
123 ret = follow_pfn_pte(vma, address, ptep, flags);
124 page = ERR_PTR(ret);
125 goto out;
129 if (flags & FOLL_GET)
130 get_page_foll(page);
131 if (flags & FOLL_TOUCH) {
132 if ((flags & FOLL_WRITE) &&
133 !pte_dirty(pte) && !PageDirty(page))
134 set_page_dirty(page);
136 * pte_mkyoung() would be more correct here, but atomic care
137 * is needed to avoid losing the dirty bit: it is easier to use
138 * mark_page_accessed().
140 mark_page_accessed(page);
142 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
144 * The preliminary mapping check is mainly to avoid the
145 * pointless overhead of lock_page on the ZERO_PAGE
146 * which might bounce very badly if there is contention.
148 * If the page is already locked, we don't need to
149 * handle it now - vmscan will handle it later if and
150 * when it attempts to reclaim the page.
152 if (page->mapping && trylock_page(page)) {
153 lru_add_drain(); /* push cached pages to LRU */
155 * Because we lock page here, and migration is
156 * blocked by the pte's page reference, and we
157 * know the page is still mapped, we don't even
158 * need to check for file-cache page truncation.
160 mlock_vma_page(page);
161 unlock_page(page);
164 out:
165 pte_unmap_unlock(ptep, ptl);
166 return page;
167 no_page:
168 pte_unmap_unlock(ptep, ptl);
169 if (!pte_none(pte))
170 return NULL;
171 return no_page_table(vma, flags);
175 * follow_page_mask - look up a page descriptor from a user-virtual address
176 * @vma: vm_area_struct mapping @address
177 * @address: virtual address to look up
178 * @flags: flags modifying lookup behaviour
179 * @page_mask: on output, *page_mask is set according to the size of the page
181 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
183 * Returns the mapped (struct page *), %NULL if no mapping exists, or
184 * an error pointer if there is a mapping to something not represented
185 * by a page descriptor (see also vm_normal_page()).
187 struct page *follow_page_mask(struct vm_area_struct *vma,
188 unsigned long address, unsigned int flags,
189 unsigned int *page_mask)
191 pgd_t *pgd;
192 pud_t *pud;
193 pmd_t *pmd;
194 spinlock_t *ptl;
195 struct page *page;
196 struct mm_struct *mm = vma->vm_mm;
198 *page_mask = 0;
200 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
201 if (!IS_ERR(page)) {
202 BUG_ON(flags & FOLL_GET);
203 return page;
206 pgd = pgd_offset(mm, address);
207 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
208 return no_page_table(vma, flags);
210 pud = pud_offset(pgd, address);
211 if (pud_none(*pud))
212 return no_page_table(vma, flags);
213 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
214 page = follow_huge_pud(mm, address, pud, flags);
215 if (page)
216 return page;
217 return no_page_table(vma, flags);
219 if (unlikely(pud_bad(*pud)))
220 return no_page_table(vma, flags);
222 pmd = pmd_offset(pud, address);
223 if (pmd_none(*pmd))
224 return no_page_table(vma, flags);
225 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
226 page = follow_huge_pmd(mm, address, pmd, flags);
227 if (page)
228 return page;
229 return no_page_table(vma, flags);
231 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
232 return no_page_table(vma, flags);
233 if (pmd_trans_huge(*pmd)) {
234 if (flags & FOLL_SPLIT) {
235 split_huge_page_pmd(vma, address, pmd);
236 return follow_page_pte(vma, address, pmd, flags);
238 ptl = pmd_lock(mm, pmd);
239 if (likely(pmd_trans_huge(*pmd))) {
240 if (unlikely(pmd_trans_splitting(*pmd))) {
241 spin_unlock(ptl);
242 wait_split_huge_page(vma->anon_vma, pmd);
243 } else {
244 page = follow_trans_huge_pmd(vma, address,
245 pmd, flags);
246 spin_unlock(ptl);
247 *page_mask = HPAGE_PMD_NR - 1;
248 return page;
250 } else
251 spin_unlock(ptl);
253 return follow_page_pte(vma, address, pmd, flags);
256 static int get_gate_page(struct mm_struct *mm, unsigned long address,
257 unsigned int gup_flags, struct vm_area_struct **vma,
258 struct page **page)
260 pgd_t *pgd;
261 pud_t *pud;
262 pmd_t *pmd;
263 pte_t *pte;
264 int ret = -EFAULT;
266 /* user gate pages are read-only */
267 if (gup_flags & FOLL_WRITE)
268 return -EFAULT;
269 if (address > TASK_SIZE)
270 pgd = pgd_offset_k(address);
271 else
272 pgd = pgd_offset_gate(mm, address);
273 BUG_ON(pgd_none(*pgd));
274 pud = pud_offset(pgd, address);
275 BUG_ON(pud_none(*pud));
276 pmd = pmd_offset(pud, address);
277 if (pmd_none(*pmd))
278 return -EFAULT;
279 VM_BUG_ON(pmd_trans_huge(*pmd));
280 pte = pte_offset_map(pmd, address);
281 if (pte_none(*pte))
282 goto unmap;
283 *vma = get_gate_vma(mm);
284 if (!page)
285 goto out;
286 *page = vm_normal_page(*vma, address, *pte);
287 if (!*page) {
288 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
289 goto unmap;
290 *page = pte_page(*pte);
292 get_page(*page);
293 out:
294 ret = 0;
295 unmap:
296 pte_unmap(pte);
297 return ret;
301 * mmap_sem must be held on entry. If @nonblocking != NULL and
302 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
303 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
305 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
306 unsigned long address, unsigned int *flags, int *nonblocking)
308 struct mm_struct *mm = vma->vm_mm;
309 unsigned int fault_flags = 0;
310 int ret;
312 /* mlock all present pages, but do not fault in new pages */
313 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
314 return -ENOENT;
315 if (*flags & FOLL_WRITE)
316 fault_flags |= FAULT_FLAG_WRITE;
317 if (nonblocking)
318 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
319 if (*flags & FOLL_NOWAIT)
320 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
321 if (*flags & FOLL_TRIED) {
322 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
323 fault_flags |= FAULT_FLAG_TRIED;
326 ret = handle_mm_fault(mm, vma, address, fault_flags);
327 if (ret & VM_FAULT_ERROR) {
328 if (ret & VM_FAULT_OOM)
329 return -ENOMEM;
330 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
331 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
332 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
333 return -EFAULT;
334 BUG();
337 if (tsk) {
338 if (ret & VM_FAULT_MAJOR)
339 tsk->maj_flt++;
340 else
341 tsk->min_flt++;
344 if (ret & VM_FAULT_RETRY) {
345 if (nonblocking)
346 *nonblocking = 0;
347 return -EBUSY;
351 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
352 * necessary, even if maybe_mkwrite decided not to set pte_write. We
353 * can thus safely do subsequent page lookups as if they were reads.
354 * But only do so when looping for pte_write is futile: in some cases
355 * userspace may also be wanting to write to the gotten user page,
356 * which a read fault here might prevent (a readonly page might get
357 * reCOWed by userspace write).
359 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
360 *flags |= FOLL_COW;
361 return 0;
364 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
366 vm_flags_t vm_flags = vma->vm_flags;
368 if (vm_flags & (VM_IO | VM_PFNMAP))
369 return -EFAULT;
371 if (gup_flags & FOLL_WRITE) {
372 if (!(vm_flags & VM_WRITE)) {
373 if (!(gup_flags & FOLL_FORCE))
374 return -EFAULT;
376 * We used to let the write,force case do COW in a
377 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
378 * set a breakpoint in a read-only mapping of an
379 * executable, without corrupting the file (yet only
380 * when that file had been opened for writing!).
381 * Anon pages in shared mappings are surprising: now
382 * just reject it.
384 if (!is_cow_mapping(vm_flags)) {
385 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
386 return -EFAULT;
389 } else if (!(vm_flags & VM_READ)) {
390 if (!(gup_flags & FOLL_FORCE))
391 return -EFAULT;
393 * Is there actually any vma we can reach here which does not
394 * have VM_MAYREAD set?
396 if (!(vm_flags & VM_MAYREAD))
397 return -EFAULT;
399 return 0;
403 * __get_user_pages() - pin user pages in memory
404 * @tsk: task_struct of target task
405 * @mm: mm_struct of target mm
406 * @start: starting user address
407 * @nr_pages: number of pages from start to pin
408 * @gup_flags: flags modifying pin behaviour
409 * @pages: array that receives pointers to the pages pinned.
410 * Should be at least nr_pages long. Or NULL, if caller
411 * only intends to ensure the pages are faulted in.
412 * @vmas: array of pointers to vmas corresponding to each page.
413 * Or NULL if the caller does not require them.
414 * @nonblocking: whether waiting for disk IO or mmap_sem contention
416 * Returns number of pages pinned. This may be fewer than the number
417 * requested. If nr_pages is 0 or negative, returns 0. If no pages
418 * were pinned, returns -errno. Each page returned must be released
419 * with a put_page() call when it is finished with. vmas will only
420 * remain valid while mmap_sem is held.
422 * Must be called with mmap_sem held. It may be released. See below.
424 * __get_user_pages walks a process's page tables and takes a reference to
425 * each struct page that each user address corresponds to at a given
426 * instant. That is, it takes the page that would be accessed if a user
427 * thread accesses the given user virtual address at that instant.
429 * This does not guarantee that the page exists in the user mappings when
430 * __get_user_pages returns, and there may even be a completely different
431 * page there in some cases (eg. if mmapped pagecache has been invalidated
432 * and subsequently re faulted). However it does guarantee that the page
433 * won't be freed completely. And mostly callers simply care that the page
434 * contains data that was valid *at some point in time*. Typically, an IO
435 * or similar operation cannot guarantee anything stronger anyway because
436 * locks can't be held over the syscall boundary.
438 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
439 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
440 * appropriate) must be called after the page is finished with, and
441 * before put_page is called.
443 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
444 * or mmap_sem contention, and if waiting is needed to pin all pages,
445 * *@nonblocking will be set to 0. Further, if @gup_flags does not
446 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
447 * this case.
449 * A caller using such a combination of @nonblocking and @gup_flags
450 * must therefore hold the mmap_sem for reading only, and recognize
451 * when it's been released. Otherwise, it must be held for either
452 * reading or writing and will not be released.
454 * In most cases, get_user_pages or get_user_pages_fast should be used
455 * instead of __get_user_pages. __get_user_pages should be used only if
456 * you need some special @gup_flags.
458 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
459 unsigned long start, unsigned long nr_pages,
460 unsigned int gup_flags, struct page **pages,
461 struct vm_area_struct **vmas, int *nonblocking)
463 long i = 0;
464 unsigned int page_mask;
465 struct vm_area_struct *vma = NULL;
467 if (!nr_pages)
468 return 0;
470 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
473 * If FOLL_FORCE is set then do not force a full fault as the hinting
474 * fault information is unrelated to the reference behaviour of a task
475 * using the address space
477 if (!(gup_flags & FOLL_FORCE))
478 gup_flags |= FOLL_NUMA;
480 do {
481 struct page *page;
482 unsigned int foll_flags = gup_flags;
483 unsigned int page_increm;
485 /* first iteration or cross vma bound */
486 if (!vma || start >= vma->vm_end) {
487 vma = find_extend_vma(mm, start);
488 if (!vma && in_gate_area(mm, start)) {
489 int ret;
490 ret = get_gate_page(mm, start & PAGE_MASK,
491 gup_flags, &vma,
492 pages ? &pages[i] : NULL);
493 if (ret)
494 return i ? : ret;
495 page_mask = 0;
496 goto next_page;
499 if (!vma || check_vma_flags(vma, gup_flags))
500 return i ? : -EFAULT;
501 if (is_vm_hugetlb_page(vma)) {
502 i = follow_hugetlb_page(mm, vma, pages, vmas,
503 &start, &nr_pages, i,
504 gup_flags);
505 continue;
508 retry:
510 * If we have a pending SIGKILL, don't keep faulting pages and
511 * potentially allocating memory.
513 if (unlikely(fatal_signal_pending(current)))
514 return i ? i : -ERESTARTSYS;
515 cond_resched();
516 page = follow_page_mask(vma, start, foll_flags, &page_mask);
517 if (!page) {
518 int ret;
519 ret = faultin_page(tsk, vma, start, &foll_flags,
520 nonblocking);
521 switch (ret) {
522 case 0:
523 goto retry;
524 case -EFAULT:
525 case -ENOMEM:
526 case -EHWPOISON:
527 return i ? i : ret;
528 case -EBUSY:
529 return i;
530 case -ENOENT:
531 goto next_page;
533 BUG();
534 } else if (PTR_ERR(page) == -EEXIST) {
536 * Proper page table entry exists, but no corresponding
537 * struct page.
539 goto next_page;
540 } else if (IS_ERR(page)) {
541 return i ? i : PTR_ERR(page);
543 if (pages) {
544 pages[i] = page;
545 flush_anon_page(vma, page, start);
546 flush_dcache_page(page);
547 page_mask = 0;
549 next_page:
550 if (vmas) {
551 vmas[i] = vma;
552 page_mask = 0;
554 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
555 if (page_increm > nr_pages)
556 page_increm = nr_pages;
557 i += page_increm;
558 start += page_increm * PAGE_SIZE;
559 nr_pages -= page_increm;
560 } while (nr_pages);
561 return i;
563 EXPORT_SYMBOL(__get_user_pages);
566 * fixup_user_fault() - manually resolve a user page fault
567 * @tsk: the task_struct to use for page fault accounting, or
568 * NULL if faults are not to be recorded.
569 * @mm: mm_struct of target mm
570 * @address: user address
571 * @fault_flags:flags to pass down to handle_mm_fault()
573 * This is meant to be called in the specific scenario where for locking reasons
574 * we try to access user memory in atomic context (within a pagefault_disable()
575 * section), this returns -EFAULT, and we want to resolve the user fault before
576 * trying again.
578 * Typically this is meant to be used by the futex code.
580 * The main difference with get_user_pages() is that this function will
581 * unconditionally call handle_mm_fault() which will in turn perform all the
582 * necessary SW fixup of the dirty and young bits in the PTE, while
583 * handle_mm_fault() only guarantees to update these in the struct page.
585 * This is important for some architectures where those bits also gate the
586 * access permission to the page because they are maintained in software. On
587 * such architectures, gup() will not be enough to make a subsequent access
588 * succeed.
590 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
592 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
593 unsigned long address, unsigned int fault_flags)
595 struct vm_area_struct *vma;
596 vm_flags_t vm_flags;
597 int ret;
599 vma = find_extend_vma(mm, address);
600 if (!vma || address < vma->vm_start)
601 return -EFAULT;
603 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
604 if (!(vm_flags & vma->vm_flags))
605 return -EFAULT;
607 ret = handle_mm_fault(mm, vma, address, fault_flags);
608 if (ret & VM_FAULT_ERROR) {
609 if (ret & VM_FAULT_OOM)
610 return -ENOMEM;
611 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
612 return -EHWPOISON;
613 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
614 return -EFAULT;
615 BUG();
617 if (tsk) {
618 if (ret & VM_FAULT_MAJOR)
619 tsk->maj_flt++;
620 else
621 tsk->min_flt++;
623 return 0;
626 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
627 struct mm_struct *mm,
628 unsigned long start,
629 unsigned long nr_pages,
630 int write, int force,
631 struct page **pages,
632 struct vm_area_struct **vmas,
633 int *locked, bool notify_drop,
634 unsigned int flags)
636 long ret, pages_done;
637 bool lock_dropped;
639 if (locked) {
640 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
641 BUG_ON(vmas);
642 /* check caller initialized locked */
643 BUG_ON(*locked != 1);
646 if (pages)
647 flags |= FOLL_GET;
648 if (write)
649 flags |= FOLL_WRITE;
650 if (force)
651 flags |= FOLL_FORCE;
653 pages_done = 0;
654 lock_dropped = false;
655 for (;;) {
656 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
657 vmas, locked);
658 if (!locked)
659 /* VM_FAULT_RETRY couldn't trigger, bypass */
660 return ret;
662 /* VM_FAULT_RETRY cannot return errors */
663 if (!*locked) {
664 BUG_ON(ret < 0);
665 BUG_ON(ret >= nr_pages);
668 if (!pages)
669 /* If it's a prefault don't insist harder */
670 return ret;
672 if (ret > 0) {
673 nr_pages -= ret;
674 pages_done += ret;
675 if (!nr_pages)
676 break;
678 if (*locked) {
679 /* VM_FAULT_RETRY didn't trigger */
680 if (!pages_done)
681 pages_done = ret;
682 break;
684 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
685 pages += ret;
686 start += ret << PAGE_SHIFT;
689 * Repeat on the address that fired VM_FAULT_RETRY
690 * without FAULT_FLAG_ALLOW_RETRY but with
691 * FAULT_FLAG_TRIED.
693 *locked = 1;
694 lock_dropped = true;
695 down_read(&mm->mmap_sem);
696 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
697 pages, NULL, NULL);
698 if (ret != 1) {
699 BUG_ON(ret > 1);
700 if (!pages_done)
701 pages_done = ret;
702 break;
704 nr_pages--;
705 pages_done++;
706 if (!nr_pages)
707 break;
708 pages++;
709 start += PAGE_SIZE;
711 if (notify_drop && lock_dropped && *locked) {
713 * We must let the caller know we temporarily dropped the lock
714 * and so the critical section protected by it was lost.
716 up_read(&mm->mmap_sem);
717 *locked = 0;
719 return pages_done;
723 * We can leverage the VM_FAULT_RETRY functionality in the page fault
724 * paths better by using either get_user_pages_locked() or
725 * get_user_pages_unlocked().
727 * get_user_pages_locked() is suitable to replace the form:
729 * down_read(&mm->mmap_sem);
730 * do_something()
731 * get_user_pages(tsk, mm, ..., pages, NULL);
732 * up_read(&mm->mmap_sem);
734 * to:
736 * int locked = 1;
737 * down_read(&mm->mmap_sem);
738 * do_something()
739 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
740 * if (locked)
741 * up_read(&mm->mmap_sem);
743 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
744 unsigned long start, unsigned long nr_pages,
745 int write, int force, struct page **pages,
746 int *locked)
748 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
749 pages, NULL, locked, true, FOLL_TOUCH);
751 EXPORT_SYMBOL(get_user_pages_locked);
754 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
755 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
757 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
758 * caller if required (just like with __get_user_pages). "FOLL_GET",
759 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
760 * according to the parameters "pages", "write", "force"
761 * respectively.
763 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
764 unsigned long start, unsigned long nr_pages,
765 int write, int force, struct page **pages,
766 unsigned int gup_flags)
768 long ret;
769 int locked = 1;
770 down_read(&mm->mmap_sem);
771 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
772 pages, NULL, &locked, false, gup_flags);
773 if (locked)
774 up_read(&mm->mmap_sem);
775 return ret;
777 EXPORT_SYMBOL(__get_user_pages_unlocked);
780 * get_user_pages_unlocked() is suitable to replace the form:
782 * down_read(&mm->mmap_sem);
783 * get_user_pages(tsk, mm, ..., pages, NULL);
784 * up_read(&mm->mmap_sem);
786 * with:
788 * get_user_pages_unlocked(tsk, mm, ..., pages);
790 * It is functionally equivalent to get_user_pages_fast so
791 * get_user_pages_fast should be used instead, if the two parameters
792 * "tsk" and "mm" are respectively equal to current and current->mm,
793 * or if "force" shall be set to 1 (get_user_pages_fast misses the
794 * "force" parameter).
796 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
797 unsigned long start, unsigned long nr_pages,
798 int write, int force, struct page **pages)
800 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
801 force, pages, FOLL_TOUCH);
803 EXPORT_SYMBOL(get_user_pages_unlocked);
806 * get_user_pages() - pin user pages in memory
807 * @tsk: the task_struct to use for page fault accounting, or
808 * NULL if faults are not to be recorded.
809 * @mm: mm_struct of target mm
810 * @start: starting user address
811 * @nr_pages: number of pages from start to pin
812 * @write: whether pages will be written to by the caller
813 * @force: whether to force access even when user mapping is currently
814 * protected (but never forces write access to shared mapping).
815 * @pages: array that receives pointers to the pages pinned.
816 * Should be at least nr_pages long. Or NULL, if caller
817 * only intends to ensure the pages are faulted in.
818 * @vmas: array of pointers to vmas corresponding to each page.
819 * Or NULL if the caller does not require them.
821 * Returns number of pages pinned. This may be fewer than the number
822 * requested. If nr_pages is 0 or negative, returns 0. If no pages
823 * were pinned, returns -errno. Each page returned must be released
824 * with a put_page() call when it is finished with. vmas will only
825 * remain valid while mmap_sem is held.
827 * Must be called with mmap_sem held for read or write.
829 * get_user_pages walks a process's page tables and takes a reference to
830 * each struct page that each user address corresponds to at a given
831 * instant. That is, it takes the page that would be accessed if a user
832 * thread accesses the given user virtual address at that instant.
834 * This does not guarantee that the page exists in the user mappings when
835 * get_user_pages returns, and there may even be a completely different
836 * page there in some cases (eg. if mmapped pagecache has been invalidated
837 * and subsequently re faulted). However it does guarantee that the page
838 * won't be freed completely. And mostly callers simply care that the page
839 * contains data that was valid *at some point in time*. Typically, an IO
840 * or similar operation cannot guarantee anything stronger anyway because
841 * locks can't be held over the syscall boundary.
843 * If write=0, the page must not be written to. If the page is written to,
844 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
845 * after the page is finished with, and before put_page is called.
847 * get_user_pages is typically used for fewer-copy IO operations, to get a
848 * handle on the memory by some means other than accesses via the user virtual
849 * addresses. The pages may be submitted for DMA to devices or accessed via
850 * their kernel linear mapping (via the kmap APIs). Care should be taken to
851 * use the correct cache flushing APIs.
853 * See also get_user_pages_fast, for performance critical applications.
855 * get_user_pages should be phased out in favor of
856 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
857 * should use get_user_pages because it cannot pass
858 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
860 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
861 unsigned long start, unsigned long nr_pages, int write,
862 int force, struct page **pages, struct vm_area_struct **vmas)
864 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
865 pages, vmas, NULL, false, FOLL_TOUCH);
867 EXPORT_SYMBOL(get_user_pages);
870 * populate_vma_page_range() - populate a range of pages in the vma.
871 * @vma: target vma
872 * @start: start address
873 * @end: end address
874 * @nonblocking:
876 * This takes care of mlocking the pages too if VM_LOCKED is set.
878 * return 0 on success, negative error code on error.
880 * vma->vm_mm->mmap_sem must be held.
882 * If @nonblocking is NULL, it may be held for read or write and will
883 * be unperturbed.
885 * If @nonblocking is non-NULL, it must held for read only and may be
886 * released. If it's released, *@nonblocking will be set to 0.
888 long populate_vma_page_range(struct vm_area_struct *vma,
889 unsigned long start, unsigned long end, int *nonblocking)
891 struct mm_struct *mm = vma->vm_mm;
892 unsigned long nr_pages = (end - start) / PAGE_SIZE;
893 int gup_flags;
895 VM_BUG_ON(start & ~PAGE_MASK);
896 VM_BUG_ON(end & ~PAGE_MASK);
897 VM_BUG_ON_VMA(start < vma->vm_start, vma);
898 VM_BUG_ON_VMA(end > vma->vm_end, vma);
899 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
901 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
902 if (vma->vm_flags & VM_LOCKONFAULT)
903 gup_flags &= ~FOLL_POPULATE;
906 * We want to touch writable mappings with a write fault in order
907 * to break COW, except for shared mappings because these don't COW
908 * and we would not want to dirty them for nothing.
910 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
911 gup_flags |= FOLL_WRITE;
914 * We want mlock to succeed for regions that have any permissions
915 * other than PROT_NONE.
917 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
918 gup_flags |= FOLL_FORCE;
921 * We made sure addr is within a VMA, so the following will
922 * not result in a stack expansion that recurses back here.
924 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
925 NULL, NULL, nonblocking);
929 * __mm_populate - populate and/or mlock pages within a range of address space.
931 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
932 * flags. VMAs must be already marked with the desired vm_flags, and
933 * mmap_sem must not be held.
935 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
937 struct mm_struct *mm = current->mm;
938 unsigned long end, nstart, nend;
939 struct vm_area_struct *vma = NULL;
940 int locked = 0;
941 long ret = 0;
943 VM_BUG_ON(start & ~PAGE_MASK);
944 VM_BUG_ON(len != PAGE_ALIGN(len));
945 end = start + len;
947 for (nstart = start; nstart < end; nstart = nend) {
949 * We want to fault in pages for [nstart; end) address range.
950 * Find first corresponding VMA.
952 if (!locked) {
953 locked = 1;
954 down_read(&mm->mmap_sem);
955 vma = find_vma(mm, nstart);
956 } else if (nstart >= vma->vm_end)
957 vma = vma->vm_next;
958 if (!vma || vma->vm_start >= end)
959 break;
961 * Set [nstart; nend) to intersection of desired address
962 * range with the first VMA. Also, skip undesirable VMA types.
964 nend = min(end, vma->vm_end);
965 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
966 continue;
967 if (nstart < vma->vm_start)
968 nstart = vma->vm_start;
970 * Now fault in a range of pages. populate_vma_page_range()
971 * double checks the vma flags, so that it won't mlock pages
972 * if the vma was already munlocked.
974 ret = populate_vma_page_range(vma, nstart, nend, &locked);
975 if (ret < 0) {
976 if (ignore_errors) {
977 ret = 0;
978 continue; /* continue at next VMA */
980 break;
982 nend = nstart + ret * PAGE_SIZE;
983 ret = 0;
985 if (locked)
986 up_read(&mm->mmap_sem);
987 return ret; /* 0 or negative error code */
991 * get_dump_page() - pin user page in memory while writing it to core dump
992 * @addr: user address
994 * Returns struct page pointer of user page pinned for dump,
995 * to be freed afterwards by page_cache_release() or put_page().
997 * Returns NULL on any kind of failure - a hole must then be inserted into
998 * the corefile, to preserve alignment with its headers; and also returns
999 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1000 * allowing a hole to be left in the corefile to save diskspace.
1002 * Called without mmap_sem, but after all other threads have been killed.
1004 #ifdef CONFIG_ELF_CORE
1005 struct page *get_dump_page(unsigned long addr)
1007 struct vm_area_struct *vma;
1008 struct page *page;
1010 if (__get_user_pages(current, current->mm, addr, 1,
1011 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1012 NULL) < 1)
1013 return NULL;
1014 flush_cache_page(vma, addr, page_to_pfn(page));
1015 return page;
1017 #endif /* CONFIG_ELF_CORE */
1020 * Generic RCU Fast GUP
1022 * get_user_pages_fast attempts to pin user pages by walking the page
1023 * tables directly and avoids taking locks. Thus the walker needs to be
1024 * protected from page table pages being freed from under it, and should
1025 * block any THP splits.
1027 * One way to achieve this is to have the walker disable interrupts, and
1028 * rely on IPIs from the TLB flushing code blocking before the page table
1029 * pages are freed. This is unsuitable for architectures that do not need
1030 * to broadcast an IPI when invalidating TLBs.
1032 * Another way to achieve this is to batch up page table containing pages
1033 * belonging to more than one mm_user, then rcu_sched a callback to free those
1034 * pages. Disabling interrupts will allow the fast_gup walker to both block
1035 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1036 * (which is a relatively rare event). The code below adopts this strategy.
1038 * Before activating this code, please be aware that the following assumptions
1039 * are currently made:
1041 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1042 * pages containing page tables.
1044 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1045 * pmdp_splitting_flush.
1047 * *) ptes can be read atomically by the architecture.
1049 * *) access_ok is sufficient to validate userspace address ranges.
1051 * The last two assumptions can be relaxed by the addition of helper functions.
1053 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1055 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1057 #ifdef __HAVE_ARCH_PTE_SPECIAL
1058 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1059 int write, struct page **pages, int *nr)
1061 pte_t *ptep, *ptem;
1062 int ret = 0;
1064 ptem = ptep = pte_offset_map(&pmd, addr);
1065 do {
1067 * In the line below we are assuming that the pte can be read
1068 * atomically. If this is not the case for your architecture,
1069 * please wrap this in a helper function!
1071 * for an example see gup_get_pte in arch/x86/mm/gup.c
1073 pte_t pte = READ_ONCE(*ptep);
1074 struct page *page;
1077 * Similar to the PMD case below, NUMA hinting must take slow
1078 * path using the pte_protnone check.
1080 if (!pte_present(pte) || pte_special(pte) ||
1081 pte_protnone(pte) || (write && !pte_write(pte)))
1082 goto pte_unmap;
1084 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1085 page = pte_page(pte);
1087 if (!page_cache_get_speculative(page))
1088 goto pte_unmap;
1090 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1091 put_page(page);
1092 goto pte_unmap;
1095 pages[*nr] = page;
1096 (*nr)++;
1098 } while (ptep++, addr += PAGE_SIZE, addr != end);
1100 ret = 1;
1102 pte_unmap:
1103 pte_unmap(ptem);
1104 return ret;
1106 #else
1109 * If we can't determine whether or not a pte is special, then fail immediately
1110 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1111 * to be special.
1113 * For a futex to be placed on a THP tail page, get_futex_key requires a
1114 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1115 * useful to have gup_huge_pmd even if we can't operate on ptes.
1117 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1118 int write, struct page **pages, int *nr)
1120 return 0;
1122 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1124 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1125 unsigned long end, int write, struct page **pages, int *nr)
1127 struct page *head, *page, *tail;
1128 int refs;
1130 if (write && !pmd_write(orig))
1131 return 0;
1133 refs = 0;
1134 head = pmd_page(orig);
1135 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1136 tail = page;
1137 do {
1138 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1139 pages[*nr] = page;
1140 (*nr)++;
1141 page++;
1142 refs++;
1143 } while (addr += PAGE_SIZE, addr != end);
1145 if (!page_cache_add_speculative(head, refs)) {
1146 *nr -= refs;
1147 return 0;
1150 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1151 *nr -= refs;
1152 while (refs--)
1153 put_page(head);
1154 return 0;
1158 * Any tail pages need their mapcount reference taken before we
1159 * return. (This allows the THP code to bump their ref count when
1160 * they are split into base pages).
1162 while (refs--) {
1163 if (PageTail(tail))
1164 get_huge_page_tail(tail);
1165 tail++;
1168 return 1;
1171 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1172 unsigned long end, int write, struct page **pages, int *nr)
1174 struct page *head, *page, *tail;
1175 int refs;
1177 if (write && !pud_write(orig))
1178 return 0;
1180 refs = 0;
1181 head = pud_page(orig);
1182 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1183 tail = page;
1184 do {
1185 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1186 pages[*nr] = page;
1187 (*nr)++;
1188 page++;
1189 refs++;
1190 } while (addr += PAGE_SIZE, addr != end);
1192 if (!page_cache_add_speculative(head, refs)) {
1193 *nr -= refs;
1194 return 0;
1197 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1198 *nr -= refs;
1199 while (refs--)
1200 put_page(head);
1201 return 0;
1204 while (refs--) {
1205 if (PageTail(tail))
1206 get_huge_page_tail(tail);
1207 tail++;
1210 return 1;
1213 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1214 unsigned long end, int write,
1215 struct page **pages, int *nr)
1217 int refs;
1218 struct page *head, *page, *tail;
1220 if (write && !pgd_write(orig))
1221 return 0;
1223 refs = 0;
1224 head = pgd_page(orig);
1225 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1226 tail = page;
1227 do {
1228 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1229 pages[*nr] = page;
1230 (*nr)++;
1231 page++;
1232 refs++;
1233 } while (addr += PAGE_SIZE, addr != end);
1235 if (!page_cache_add_speculative(head, refs)) {
1236 *nr -= refs;
1237 return 0;
1240 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1241 *nr -= refs;
1242 while (refs--)
1243 put_page(head);
1244 return 0;
1247 while (refs--) {
1248 if (PageTail(tail))
1249 get_huge_page_tail(tail);
1250 tail++;
1253 return 1;
1256 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1257 int write, struct page **pages, int *nr)
1259 unsigned long next;
1260 pmd_t *pmdp;
1262 pmdp = pmd_offset(&pud, addr);
1263 do {
1264 pmd_t pmd = READ_ONCE(*pmdp);
1266 next = pmd_addr_end(addr, end);
1267 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1268 return 0;
1270 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1272 * NUMA hinting faults need to be handled in the GUP
1273 * slowpath for accounting purposes and so that they
1274 * can be serialised against THP migration.
1276 if (pmd_protnone(pmd))
1277 return 0;
1279 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1280 pages, nr))
1281 return 0;
1283 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1285 * architecture have different format for hugetlbfs
1286 * pmd format and THP pmd format
1288 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1289 PMD_SHIFT, next, write, pages, nr))
1290 return 0;
1291 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1292 return 0;
1293 } while (pmdp++, addr = next, addr != end);
1295 return 1;
1298 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1299 int write, struct page **pages, int *nr)
1301 unsigned long next;
1302 pud_t *pudp;
1304 pudp = pud_offset(&pgd, addr);
1305 do {
1306 pud_t pud = READ_ONCE(*pudp);
1308 next = pud_addr_end(addr, end);
1309 if (pud_none(pud))
1310 return 0;
1311 if (unlikely(pud_huge(pud))) {
1312 if (!gup_huge_pud(pud, pudp, addr, next, write,
1313 pages, nr))
1314 return 0;
1315 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1316 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1317 PUD_SHIFT, next, write, pages, nr))
1318 return 0;
1319 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1320 return 0;
1321 } while (pudp++, addr = next, addr != end);
1323 return 1;
1327 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1328 * the regular GUP. It will only return non-negative values.
1330 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1331 struct page **pages)
1333 struct mm_struct *mm = current->mm;
1334 unsigned long addr, len, end;
1335 unsigned long next, flags;
1336 pgd_t *pgdp;
1337 int nr = 0;
1339 start &= PAGE_MASK;
1340 addr = start;
1341 len = (unsigned long) nr_pages << PAGE_SHIFT;
1342 end = start + len;
1344 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1345 start, len)))
1346 return 0;
1349 * Disable interrupts. We use the nested form as we can already have
1350 * interrupts disabled by get_futex_key.
1352 * With interrupts disabled, we block page table pages from being
1353 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1354 * for more details.
1356 * We do not adopt an rcu_read_lock(.) here as we also want to
1357 * block IPIs that come from THPs splitting.
1360 local_irq_save(flags);
1361 pgdp = pgd_offset(mm, addr);
1362 do {
1363 pgd_t pgd = READ_ONCE(*pgdp);
1365 next = pgd_addr_end(addr, end);
1366 if (pgd_none(pgd))
1367 break;
1368 if (unlikely(pgd_huge(pgd))) {
1369 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1370 pages, &nr))
1371 break;
1372 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1373 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1374 PGDIR_SHIFT, next, write, pages, &nr))
1375 break;
1376 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1377 break;
1378 } while (pgdp++, addr = next, addr != end);
1379 local_irq_restore(flags);
1381 return nr;
1385 * get_user_pages_fast() - pin user pages in memory
1386 * @start: starting user address
1387 * @nr_pages: number of pages from start to pin
1388 * @write: whether pages will be written to
1389 * @pages: array that receives pointers to the pages pinned.
1390 * Should be at least nr_pages long.
1392 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1393 * If not successful, it will fall back to taking the lock and
1394 * calling get_user_pages().
1396 * Returns number of pages pinned. This may be fewer than the number
1397 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1398 * were pinned, returns -errno.
1400 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1401 struct page **pages)
1403 struct mm_struct *mm = current->mm;
1404 int nr, ret;
1406 start &= PAGE_MASK;
1407 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1408 ret = nr;
1410 if (nr < nr_pages) {
1411 /* Try to get the remaining pages with get_user_pages */
1412 start += nr << PAGE_SHIFT;
1413 pages += nr;
1415 ret = get_user_pages_unlocked(current, mm, start,
1416 nr_pages - nr, write, 0, pages);
1418 /* Have to be a bit careful with return values */
1419 if (nr > 0) {
1420 if (ret < 0)
1421 ret = nr;
1422 else
1423 ret += nr;
1427 return ret;
1430 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */