1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
21 static struct page
*no_page_table(struct vm_area_struct
*vma
,
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
33 return ERR_PTR(-EFAULT
);
37 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
38 pte_t
*pte
, unsigned int flags
)
40 /* No page to get reference */
44 if (flags
& FOLL_TOUCH
) {
47 if (flags
& FOLL_WRITE
)
48 entry
= pte_mkdirty(entry
);
49 entry
= pte_mkyoung(entry
);
51 if (!pte_same(*pte
, entry
)) {
52 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
53 update_mmu_cache(vma
, address
, pte
);
57 /* Proper page table entry exists, but no corresponding struct page */
62 * FOLL_FORCE can write to even unwritable pte's, but only
63 * after we've gone through a COW cycle and they are dirty.
65 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
67 return pte_write(pte
) ||
68 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
71 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
72 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
74 struct mm_struct
*mm
= vma
->vm_mm
;
80 if (unlikely(pmd_bad(*pmd
)))
81 return no_page_table(vma
, flags
);
83 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
85 if (!pte_present(pte
)) {
88 * KSM's break_ksm() relies upon recognizing a ksm page
89 * even while it is being migrated, so for that case we
90 * need migration_entry_wait().
92 if (likely(!(flags
& FOLL_MIGRATION
)))
96 entry
= pte_to_swp_entry(pte
);
97 if (!is_migration_entry(entry
))
99 pte_unmap_unlock(ptep
, ptl
);
100 migration_entry_wait(mm
, pmd
, address
);
103 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
105 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
106 pte_unmap_unlock(ptep
, ptl
);
110 page
= vm_normal_page(vma
, address
, pte
);
111 if (unlikely(!page
)) {
112 if (flags
& FOLL_DUMP
) {
113 /* Avoid special (like zero) pages in core dumps */
114 page
= ERR_PTR(-EFAULT
);
118 if (is_zero_pfn(pte_pfn(pte
))) {
119 page
= pte_page(pte
);
123 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
129 if (flags
& FOLL_GET
)
131 if (flags
& FOLL_TOUCH
) {
132 if ((flags
& FOLL_WRITE
) &&
133 !pte_dirty(pte
) && !PageDirty(page
))
134 set_page_dirty(page
);
136 * pte_mkyoung() would be more correct here, but atomic care
137 * is needed to avoid losing the dirty bit: it is easier to use
138 * mark_page_accessed().
140 mark_page_accessed(page
);
142 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
144 * The preliminary mapping check is mainly to avoid the
145 * pointless overhead of lock_page on the ZERO_PAGE
146 * which might bounce very badly if there is contention.
148 * If the page is already locked, we don't need to
149 * handle it now - vmscan will handle it later if and
150 * when it attempts to reclaim the page.
152 if (page
->mapping
&& trylock_page(page
)) {
153 lru_add_drain(); /* push cached pages to LRU */
155 * Because we lock page here, and migration is
156 * blocked by the pte's page reference, and we
157 * know the page is still mapped, we don't even
158 * need to check for file-cache page truncation.
160 mlock_vma_page(page
);
165 pte_unmap_unlock(ptep
, ptl
);
168 pte_unmap_unlock(ptep
, ptl
);
171 return no_page_table(vma
, flags
);
175 * follow_page_mask - look up a page descriptor from a user-virtual address
176 * @vma: vm_area_struct mapping @address
177 * @address: virtual address to look up
178 * @flags: flags modifying lookup behaviour
179 * @page_mask: on output, *page_mask is set according to the size of the page
181 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
183 * Returns the mapped (struct page *), %NULL if no mapping exists, or
184 * an error pointer if there is a mapping to something not represented
185 * by a page descriptor (see also vm_normal_page()).
187 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
188 unsigned long address
, unsigned int flags
,
189 unsigned int *page_mask
)
196 struct mm_struct
*mm
= vma
->vm_mm
;
200 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
202 BUG_ON(flags
& FOLL_GET
);
206 pgd
= pgd_offset(mm
, address
);
207 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
208 return no_page_table(vma
, flags
);
210 pud
= pud_offset(pgd
, address
);
212 return no_page_table(vma
, flags
);
213 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
214 page
= follow_huge_pud(mm
, address
, pud
, flags
);
217 return no_page_table(vma
, flags
);
219 if (unlikely(pud_bad(*pud
)))
220 return no_page_table(vma
, flags
);
222 pmd
= pmd_offset(pud
, address
);
224 return no_page_table(vma
, flags
);
225 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
226 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
229 return no_page_table(vma
, flags
);
231 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
232 return no_page_table(vma
, flags
);
233 if (pmd_trans_huge(*pmd
)) {
234 if (flags
& FOLL_SPLIT
) {
235 split_huge_page_pmd(vma
, address
, pmd
);
236 return follow_page_pte(vma
, address
, pmd
, flags
);
238 ptl
= pmd_lock(mm
, pmd
);
239 if (likely(pmd_trans_huge(*pmd
))) {
240 if (unlikely(pmd_trans_splitting(*pmd
))) {
242 wait_split_huge_page(vma
->anon_vma
, pmd
);
244 page
= follow_trans_huge_pmd(vma
, address
,
247 *page_mask
= HPAGE_PMD_NR
- 1;
253 return follow_page_pte(vma
, address
, pmd
, flags
);
256 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
257 unsigned int gup_flags
, struct vm_area_struct
**vma
,
266 /* user gate pages are read-only */
267 if (gup_flags
& FOLL_WRITE
)
269 if (address
> TASK_SIZE
)
270 pgd
= pgd_offset_k(address
);
272 pgd
= pgd_offset_gate(mm
, address
);
273 BUG_ON(pgd_none(*pgd
));
274 pud
= pud_offset(pgd
, address
);
275 BUG_ON(pud_none(*pud
));
276 pmd
= pmd_offset(pud
, address
);
279 VM_BUG_ON(pmd_trans_huge(*pmd
));
280 pte
= pte_offset_map(pmd
, address
);
283 *vma
= get_gate_vma(mm
);
286 *page
= vm_normal_page(*vma
, address
, *pte
);
288 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
290 *page
= pte_page(*pte
);
301 * mmap_sem must be held on entry. If @nonblocking != NULL and
302 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
303 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
305 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
306 unsigned long address
, unsigned int *flags
, int *nonblocking
)
308 struct mm_struct
*mm
= vma
->vm_mm
;
309 unsigned int fault_flags
= 0;
312 /* mlock all present pages, but do not fault in new pages */
313 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
315 if (*flags
& FOLL_WRITE
)
316 fault_flags
|= FAULT_FLAG_WRITE
;
318 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
319 if (*flags
& FOLL_NOWAIT
)
320 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
321 if (*flags
& FOLL_TRIED
) {
322 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
323 fault_flags
|= FAULT_FLAG_TRIED
;
326 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
327 if (ret
& VM_FAULT_ERROR
) {
328 if (ret
& VM_FAULT_OOM
)
330 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
331 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
332 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
338 if (ret
& VM_FAULT_MAJOR
)
344 if (ret
& VM_FAULT_RETRY
) {
351 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
352 * necessary, even if maybe_mkwrite decided not to set pte_write. We
353 * can thus safely do subsequent page lookups as if they were reads.
354 * But only do so when looping for pte_write is futile: in some cases
355 * userspace may also be wanting to write to the gotten user page,
356 * which a read fault here might prevent (a readonly page might get
357 * reCOWed by userspace write).
359 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
364 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
366 vm_flags_t vm_flags
= vma
->vm_flags
;
368 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
371 if (gup_flags
& FOLL_WRITE
) {
372 if (!(vm_flags
& VM_WRITE
)) {
373 if (!(gup_flags
& FOLL_FORCE
))
376 * We used to let the write,force case do COW in a
377 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
378 * set a breakpoint in a read-only mapping of an
379 * executable, without corrupting the file (yet only
380 * when that file had been opened for writing!).
381 * Anon pages in shared mappings are surprising: now
384 if (!is_cow_mapping(vm_flags
)) {
385 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
389 } else if (!(vm_flags
& VM_READ
)) {
390 if (!(gup_flags
& FOLL_FORCE
))
393 * Is there actually any vma we can reach here which does not
394 * have VM_MAYREAD set?
396 if (!(vm_flags
& VM_MAYREAD
))
403 * __get_user_pages() - pin user pages in memory
404 * @tsk: task_struct of target task
405 * @mm: mm_struct of target mm
406 * @start: starting user address
407 * @nr_pages: number of pages from start to pin
408 * @gup_flags: flags modifying pin behaviour
409 * @pages: array that receives pointers to the pages pinned.
410 * Should be at least nr_pages long. Or NULL, if caller
411 * only intends to ensure the pages are faulted in.
412 * @vmas: array of pointers to vmas corresponding to each page.
413 * Or NULL if the caller does not require them.
414 * @nonblocking: whether waiting for disk IO or mmap_sem contention
416 * Returns number of pages pinned. This may be fewer than the number
417 * requested. If nr_pages is 0 or negative, returns 0. If no pages
418 * were pinned, returns -errno. Each page returned must be released
419 * with a put_page() call when it is finished with. vmas will only
420 * remain valid while mmap_sem is held.
422 * Must be called with mmap_sem held. It may be released. See below.
424 * __get_user_pages walks a process's page tables and takes a reference to
425 * each struct page that each user address corresponds to at a given
426 * instant. That is, it takes the page that would be accessed if a user
427 * thread accesses the given user virtual address at that instant.
429 * This does not guarantee that the page exists in the user mappings when
430 * __get_user_pages returns, and there may even be a completely different
431 * page there in some cases (eg. if mmapped pagecache has been invalidated
432 * and subsequently re faulted). However it does guarantee that the page
433 * won't be freed completely. And mostly callers simply care that the page
434 * contains data that was valid *at some point in time*. Typically, an IO
435 * or similar operation cannot guarantee anything stronger anyway because
436 * locks can't be held over the syscall boundary.
438 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
439 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
440 * appropriate) must be called after the page is finished with, and
441 * before put_page is called.
443 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
444 * or mmap_sem contention, and if waiting is needed to pin all pages,
445 * *@nonblocking will be set to 0. Further, if @gup_flags does not
446 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
449 * A caller using such a combination of @nonblocking and @gup_flags
450 * must therefore hold the mmap_sem for reading only, and recognize
451 * when it's been released. Otherwise, it must be held for either
452 * reading or writing and will not be released.
454 * In most cases, get_user_pages or get_user_pages_fast should be used
455 * instead of __get_user_pages. __get_user_pages should be used only if
456 * you need some special @gup_flags.
458 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
459 unsigned long start
, unsigned long nr_pages
,
460 unsigned int gup_flags
, struct page
**pages
,
461 struct vm_area_struct
**vmas
, int *nonblocking
)
464 unsigned int page_mask
;
465 struct vm_area_struct
*vma
= NULL
;
470 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
473 * If FOLL_FORCE is set then do not force a full fault as the hinting
474 * fault information is unrelated to the reference behaviour of a task
475 * using the address space
477 if (!(gup_flags
& FOLL_FORCE
))
478 gup_flags
|= FOLL_NUMA
;
482 unsigned int foll_flags
= gup_flags
;
483 unsigned int page_increm
;
485 /* first iteration or cross vma bound */
486 if (!vma
|| start
>= vma
->vm_end
) {
487 vma
= find_extend_vma(mm
, start
);
488 if (!vma
&& in_gate_area(mm
, start
)) {
490 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
492 pages
? &pages
[i
] : NULL
);
499 if (!vma
|| check_vma_flags(vma
, gup_flags
))
500 return i
? : -EFAULT
;
501 if (is_vm_hugetlb_page(vma
)) {
502 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
503 &start
, &nr_pages
, i
,
510 * If we have a pending SIGKILL, don't keep faulting pages and
511 * potentially allocating memory.
513 if (unlikely(fatal_signal_pending(current
)))
514 return i
? i
: -ERESTARTSYS
;
516 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
519 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
534 } else if (PTR_ERR(page
) == -EEXIST
) {
536 * Proper page table entry exists, but no corresponding
540 } else if (IS_ERR(page
)) {
541 return i
? i
: PTR_ERR(page
);
545 flush_anon_page(vma
, page
, start
);
546 flush_dcache_page(page
);
554 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
555 if (page_increm
> nr_pages
)
556 page_increm
= nr_pages
;
558 start
+= page_increm
* PAGE_SIZE
;
559 nr_pages
-= page_increm
;
563 EXPORT_SYMBOL(__get_user_pages
);
566 * fixup_user_fault() - manually resolve a user page fault
567 * @tsk: the task_struct to use for page fault accounting, or
568 * NULL if faults are not to be recorded.
569 * @mm: mm_struct of target mm
570 * @address: user address
571 * @fault_flags:flags to pass down to handle_mm_fault()
573 * This is meant to be called in the specific scenario where for locking reasons
574 * we try to access user memory in atomic context (within a pagefault_disable()
575 * section), this returns -EFAULT, and we want to resolve the user fault before
578 * Typically this is meant to be used by the futex code.
580 * The main difference with get_user_pages() is that this function will
581 * unconditionally call handle_mm_fault() which will in turn perform all the
582 * necessary SW fixup of the dirty and young bits in the PTE, while
583 * handle_mm_fault() only guarantees to update these in the struct page.
585 * This is important for some architectures where those bits also gate the
586 * access permission to the page because they are maintained in software. On
587 * such architectures, gup() will not be enough to make a subsequent access
590 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
592 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
593 unsigned long address
, unsigned int fault_flags
)
595 struct vm_area_struct
*vma
;
599 vma
= find_extend_vma(mm
, address
);
600 if (!vma
|| address
< vma
->vm_start
)
603 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
604 if (!(vm_flags
& vma
->vm_flags
))
607 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
608 if (ret
& VM_FAULT_ERROR
) {
609 if (ret
& VM_FAULT_OOM
)
611 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
613 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
618 if (ret
& VM_FAULT_MAJOR
)
626 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
627 struct mm_struct
*mm
,
629 unsigned long nr_pages
,
630 int write
, int force
,
632 struct vm_area_struct
**vmas
,
633 int *locked
, bool notify_drop
,
636 long ret
, pages_done
;
640 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
642 /* check caller initialized locked */
643 BUG_ON(*locked
!= 1);
654 lock_dropped
= false;
656 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
659 /* VM_FAULT_RETRY couldn't trigger, bypass */
662 /* VM_FAULT_RETRY cannot return errors */
665 BUG_ON(ret
>= nr_pages
);
669 /* If it's a prefault don't insist harder */
679 /* VM_FAULT_RETRY didn't trigger */
684 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
686 start
+= ret
<< PAGE_SHIFT
;
689 * Repeat on the address that fired VM_FAULT_RETRY
690 * without FAULT_FLAG_ALLOW_RETRY but with
695 down_read(&mm
->mmap_sem
);
696 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
711 if (notify_drop
&& lock_dropped
&& *locked
) {
713 * We must let the caller know we temporarily dropped the lock
714 * and so the critical section protected by it was lost.
716 up_read(&mm
->mmap_sem
);
723 * We can leverage the VM_FAULT_RETRY functionality in the page fault
724 * paths better by using either get_user_pages_locked() or
725 * get_user_pages_unlocked().
727 * get_user_pages_locked() is suitable to replace the form:
729 * down_read(&mm->mmap_sem);
731 * get_user_pages(tsk, mm, ..., pages, NULL);
732 * up_read(&mm->mmap_sem);
737 * down_read(&mm->mmap_sem);
739 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
741 * up_read(&mm->mmap_sem);
743 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
744 unsigned long start
, unsigned long nr_pages
,
745 int write
, int force
, struct page
**pages
,
748 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
749 pages
, NULL
, locked
, true, FOLL_TOUCH
);
751 EXPORT_SYMBOL(get_user_pages_locked
);
754 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
755 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
757 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
758 * caller if required (just like with __get_user_pages). "FOLL_GET",
759 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
760 * according to the parameters "pages", "write", "force"
763 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
764 unsigned long start
, unsigned long nr_pages
,
765 int write
, int force
, struct page
**pages
,
766 unsigned int gup_flags
)
770 down_read(&mm
->mmap_sem
);
771 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
772 pages
, NULL
, &locked
, false, gup_flags
);
774 up_read(&mm
->mmap_sem
);
777 EXPORT_SYMBOL(__get_user_pages_unlocked
);
780 * get_user_pages_unlocked() is suitable to replace the form:
782 * down_read(&mm->mmap_sem);
783 * get_user_pages(tsk, mm, ..., pages, NULL);
784 * up_read(&mm->mmap_sem);
788 * get_user_pages_unlocked(tsk, mm, ..., pages);
790 * It is functionally equivalent to get_user_pages_fast so
791 * get_user_pages_fast should be used instead, if the two parameters
792 * "tsk" and "mm" are respectively equal to current and current->mm,
793 * or if "force" shall be set to 1 (get_user_pages_fast misses the
794 * "force" parameter).
796 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
797 unsigned long start
, unsigned long nr_pages
,
798 int write
, int force
, struct page
**pages
)
800 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
801 force
, pages
, FOLL_TOUCH
);
803 EXPORT_SYMBOL(get_user_pages_unlocked
);
806 * get_user_pages() - pin user pages in memory
807 * @tsk: the task_struct to use for page fault accounting, or
808 * NULL if faults are not to be recorded.
809 * @mm: mm_struct of target mm
810 * @start: starting user address
811 * @nr_pages: number of pages from start to pin
812 * @write: whether pages will be written to by the caller
813 * @force: whether to force access even when user mapping is currently
814 * protected (but never forces write access to shared mapping).
815 * @pages: array that receives pointers to the pages pinned.
816 * Should be at least nr_pages long. Or NULL, if caller
817 * only intends to ensure the pages are faulted in.
818 * @vmas: array of pointers to vmas corresponding to each page.
819 * Or NULL if the caller does not require them.
821 * Returns number of pages pinned. This may be fewer than the number
822 * requested. If nr_pages is 0 or negative, returns 0. If no pages
823 * were pinned, returns -errno. Each page returned must be released
824 * with a put_page() call when it is finished with. vmas will only
825 * remain valid while mmap_sem is held.
827 * Must be called with mmap_sem held for read or write.
829 * get_user_pages walks a process's page tables and takes a reference to
830 * each struct page that each user address corresponds to at a given
831 * instant. That is, it takes the page that would be accessed if a user
832 * thread accesses the given user virtual address at that instant.
834 * This does not guarantee that the page exists in the user mappings when
835 * get_user_pages returns, and there may even be a completely different
836 * page there in some cases (eg. if mmapped pagecache has been invalidated
837 * and subsequently re faulted). However it does guarantee that the page
838 * won't be freed completely. And mostly callers simply care that the page
839 * contains data that was valid *at some point in time*. Typically, an IO
840 * or similar operation cannot guarantee anything stronger anyway because
841 * locks can't be held over the syscall boundary.
843 * If write=0, the page must not be written to. If the page is written to,
844 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
845 * after the page is finished with, and before put_page is called.
847 * get_user_pages is typically used for fewer-copy IO operations, to get a
848 * handle on the memory by some means other than accesses via the user virtual
849 * addresses. The pages may be submitted for DMA to devices or accessed via
850 * their kernel linear mapping (via the kmap APIs). Care should be taken to
851 * use the correct cache flushing APIs.
853 * See also get_user_pages_fast, for performance critical applications.
855 * get_user_pages should be phased out in favor of
856 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
857 * should use get_user_pages because it cannot pass
858 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
860 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
861 unsigned long start
, unsigned long nr_pages
, int write
,
862 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
864 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
865 pages
, vmas
, NULL
, false, FOLL_TOUCH
);
867 EXPORT_SYMBOL(get_user_pages
);
870 * populate_vma_page_range() - populate a range of pages in the vma.
872 * @start: start address
876 * This takes care of mlocking the pages too if VM_LOCKED is set.
878 * return 0 on success, negative error code on error.
880 * vma->vm_mm->mmap_sem must be held.
882 * If @nonblocking is NULL, it may be held for read or write and will
885 * If @nonblocking is non-NULL, it must held for read only and may be
886 * released. If it's released, *@nonblocking will be set to 0.
888 long populate_vma_page_range(struct vm_area_struct
*vma
,
889 unsigned long start
, unsigned long end
, int *nonblocking
)
891 struct mm_struct
*mm
= vma
->vm_mm
;
892 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
895 VM_BUG_ON(start
& ~PAGE_MASK
);
896 VM_BUG_ON(end
& ~PAGE_MASK
);
897 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
898 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
899 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
901 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
902 if (vma
->vm_flags
& VM_LOCKONFAULT
)
903 gup_flags
&= ~FOLL_POPULATE
;
906 * We want to touch writable mappings with a write fault in order
907 * to break COW, except for shared mappings because these don't COW
908 * and we would not want to dirty them for nothing.
910 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
911 gup_flags
|= FOLL_WRITE
;
914 * We want mlock to succeed for regions that have any permissions
915 * other than PROT_NONE.
917 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
918 gup_flags
|= FOLL_FORCE
;
921 * We made sure addr is within a VMA, so the following will
922 * not result in a stack expansion that recurses back here.
924 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
925 NULL
, NULL
, nonblocking
);
929 * __mm_populate - populate and/or mlock pages within a range of address space.
931 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
932 * flags. VMAs must be already marked with the desired vm_flags, and
933 * mmap_sem must not be held.
935 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
937 struct mm_struct
*mm
= current
->mm
;
938 unsigned long end
, nstart
, nend
;
939 struct vm_area_struct
*vma
= NULL
;
943 VM_BUG_ON(start
& ~PAGE_MASK
);
944 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
947 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
949 * We want to fault in pages for [nstart; end) address range.
950 * Find first corresponding VMA.
954 down_read(&mm
->mmap_sem
);
955 vma
= find_vma(mm
, nstart
);
956 } else if (nstart
>= vma
->vm_end
)
958 if (!vma
|| vma
->vm_start
>= end
)
961 * Set [nstart; nend) to intersection of desired address
962 * range with the first VMA. Also, skip undesirable VMA types.
964 nend
= min(end
, vma
->vm_end
);
965 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
967 if (nstart
< vma
->vm_start
)
968 nstart
= vma
->vm_start
;
970 * Now fault in a range of pages. populate_vma_page_range()
971 * double checks the vma flags, so that it won't mlock pages
972 * if the vma was already munlocked.
974 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
978 continue; /* continue at next VMA */
982 nend
= nstart
+ ret
* PAGE_SIZE
;
986 up_read(&mm
->mmap_sem
);
987 return ret
; /* 0 or negative error code */
991 * get_dump_page() - pin user page in memory while writing it to core dump
992 * @addr: user address
994 * Returns struct page pointer of user page pinned for dump,
995 * to be freed afterwards by page_cache_release() or put_page().
997 * Returns NULL on any kind of failure - a hole must then be inserted into
998 * the corefile, to preserve alignment with its headers; and also returns
999 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1000 * allowing a hole to be left in the corefile to save diskspace.
1002 * Called without mmap_sem, but after all other threads have been killed.
1004 #ifdef CONFIG_ELF_CORE
1005 struct page
*get_dump_page(unsigned long addr
)
1007 struct vm_area_struct
*vma
;
1010 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1011 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1014 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1017 #endif /* CONFIG_ELF_CORE */
1020 * Generic RCU Fast GUP
1022 * get_user_pages_fast attempts to pin user pages by walking the page
1023 * tables directly and avoids taking locks. Thus the walker needs to be
1024 * protected from page table pages being freed from under it, and should
1025 * block any THP splits.
1027 * One way to achieve this is to have the walker disable interrupts, and
1028 * rely on IPIs from the TLB flushing code blocking before the page table
1029 * pages are freed. This is unsuitable for architectures that do not need
1030 * to broadcast an IPI when invalidating TLBs.
1032 * Another way to achieve this is to batch up page table containing pages
1033 * belonging to more than one mm_user, then rcu_sched a callback to free those
1034 * pages. Disabling interrupts will allow the fast_gup walker to both block
1035 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1036 * (which is a relatively rare event). The code below adopts this strategy.
1038 * Before activating this code, please be aware that the following assumptions
1039 * are currently made:
1041 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1042 * pages containing page tables.
1044 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1045 * pmdp_splitting_flush.
1047 * *) ptes can be read atomically by the architecture.
1049 * *) access_ok is sufficient to validate userspace address ranges.
1051 * The last two assumptions can be relaxed by the addition of helper functions.
1053 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1055 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1057 #ifdef __HAVE_ARCH_PTE_SPECIAL
1058 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1059 int write
, struct page
**pages
, int *nr
)
1064 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1067 * In the line below we are assuming that the pte can be read
1068 * atomically. If this is not the case for your architecture,
1069 * please wrap this in a helper function!
1071 * for an example see gup_get_pte in arch/x86/mm/gup.c
1073 pte_t pte
= READ_ONCE(*ptep
);
1077 * Similar to the PMD case below, NUMA hinting must take slow
1078 * path using the pte_protnone check.
1080 if (!pte_present(pte
) || pte_special(pte
) ||
1081 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1084 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1085 page
= pte_page(pte
);
1087 if (!page_cache_get_speculative(page
))
1090 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1098 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1109 * If we can't determine whether or not a pte is special, then fail immediately
1110 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1113 * For a futex to be placed on a THP tail page, get_futex_key requires a
1114 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1115 * useful to have gup_huge_pmd even if we can't operate on ptes.
1117 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1118 int write
, struct page
**pages
, int *nr
)
1122 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1124 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1125 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1127 struct page
*head
, *page
, *tail
;
1130 if (write
&& !pmd_write(orig
))
1134 head
= pmd_page(orig
);
1135 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1138 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1143 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1145 if (!page_cache_add_speculative(head
, refs
)) {
1150 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1158 * Any tail pages need their mapcount reference taken before we
1159 * return. (This allows the THP code to bump their ref count when
1160 * they are split into base pages).
1164 get_huge_page_tail(tail
);
1171 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1172 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1174 struct page
*head
, *page
, *tail
;
1177 if (write
&& !pud_write(orig
))
1181 head
= pud_page(orig
);
1182 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1185 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1190 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1192 if (!page_cache_add_speculative(head
, refs
)) {
1197 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1206 get_huge_page_tail(tail
);
1213 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1214 unsigned long end
, int write
,
1215 struct page
**pages
, int *nr
)
1218 struct page
*head
, *page
, *tail
;
1220 if (write
&& !pgd_write(orig
))
1224 head
= pgd_page(orig
);
1225 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1228 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1233 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1235 if (!page_cache_add_speculative(head
, refs
)) {
1240 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1249 get_huge_page_tail(tail
);
1256 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1257 int write
, struct page
**pages
, int *nr
)
1262 pmdp
= pmd_offset(&pud
, addr
);
1264 pmd_t pmd
= READ_ONCE(*pmdp
);
1266 next
= pmd_addr_end(addr
, end
);
1267 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
1270 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1272 * NUMA hinting faults need to be handled in the GUP
1273 * slowpath for accounting purposes and so that they
1274 * can be serialised against THP migration.
1276 if (pmd_protnone(pmd
))
1279 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1283 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1285 * architecture have different format for hugetlbfs
1286 * pmd format and THP pmd format
1288 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1289 PMD_SHIFT
, next
, write
, pages
, nr
))
1291 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1293 } while (pmdp
++, addr
= next
, addr
!= end
);
1298 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1299 int write
, struct page
**pages
, int *nr
)
1304 pudp
= pud_offset(&pgd
, addr
);
1306 pud_t pud
= READ_ONCE(*pudp
);
1308 next
= pud_addr_end(addr
, end
);
1311 if (unlikely(pud_huge(pud
))) {
1312 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1315 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1316 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1317 PUD_SHIFT
, next
, write
, pages
, nr
))
1319 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1321 } while (pudp
++, addr
= next
, addr
!= end
);
1327 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1328 * the regular GUP. It will only return non-negative values.
1330 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1331 struct page
**pages
)
1333 struct mm_struct
*mm
= current
->mm
;
1334 unsigned long addr
, len
, end
;
1335 unsigned long next
, flags
;
1341 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1344 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1349 * Disable interrupts. We use the nested form as we can already have
1350 * interrupts disabled by get_futex_key.
1352 * With interrupts disabled, we block page table pages from being
1353 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1356 * We do not adopt an rcu_read_lock(.) here as we also want to
1357 * block IPIs that come from THPs splitting.
1360 local_irq_save(flags
);
1361 pgdp
= pgd_offset(mm
, addr
);
1363 pgd_t pgd
= READ_ONCE(*pgdp
);
1365 next
= pgd_addr_end(addr
, end
);
1368 if (unlikely(pgd_huge(pgd
))) {
1369 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1372 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1373 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1374 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1376 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1378 } while (pgdp
++, addr
= next
, addr
!= end
);
1379 local_irq_restore(flags
);
1385 * get_user_pages_fast() - pin user pages in memory
1386 * @start: starting user address
1387 * @nr_pages: number of pages from start to pin
1388 * @write: whether pages will be written to
1389 * @pages: array that receives pointers to the pages pinned.
1390 * Should be at least nr_pages long.
1392 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1393 * If not successful, it will fall back to taking the lock and
1394 * calling get_user_pages().
1396 * Returns number of pages pinned. This may be fewer than the number
1397 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1398 * were pinned, returns -errno.
1400 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1401 struct page
**pages
)
1403 struct mm_struct
*mm
= current
->mm
;
1407 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1410 if (nr
< nr_pages
) {
1411 /* Try to get the remaining pages with get_user_pages */
1412 start
+= nr
<< PAGE_SHIFT
;
1415 ret
= get_user_pages_unlocked(current
, mm
, start
,
1416 nr_pages
- nr
, write
, 0, pages
);
1418 /* Have to be a bit careful with return values */
1430 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */