dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / mm / huge_memory.c
blobc4ea57ee2fd1f124ae820cb3e0eb2cdb959efa8d
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
35 * By default transparent hugepage support is disabled in order that avoid
36 * to risk increase the memory footprint of applications without a guaranteed
37 * benefit. When transparent hugepage support is enabled, is for all mappings,
38 * and khugepaged scans all mappings.
39 * Defrag is invoked by khugepaged hugepage allocations and by page faults
40 * for all hugepage allocations.
42 unsigned long transparent_hugepage_flags __read_mostly =
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
44 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
45 #endif
46 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
47 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
48 #endif
49 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
50 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
51 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 static DEFINE_SPINLOCK(khugepaged_mm_lock);
63 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
65 * default collapse hugepages if there is at least one pte mapped like
66 * it would have happened if the vma was large enough during page
67 * fault.
69 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
71 static int khugepaged(void *none);
72 static int khugepaged_slab_init(void);
73 static void khugepaged_slab_exit(void);
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
78 static struct kmem_cache *mm_slot_cache __read_mostly;
80 /**
81 * struct mm_slot - hash lookup from mm to mm_slot
82 * @hash: hash collision list
83 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84 * @mm: the mm that this information is valid for
86 struct mm_slot {
87 struct hlist_node hash;
88 struct list_head mm_node;
89 struct mm_struct *mm;
92 /**
93 * struct khugepaged_scan - cursor for scanning
94 * @mm_head: the head of the mm list to scan
95 * @mm_slot: the current mm_slot we are scanning
96 * @address: the next address inside that to be scanned
98 * There is only the one khugepaged_scan instance of this cursor structure.
100 struct khugepaged_scan {
101 struct list_head mm_head;
102 struct mm_slot *mm_slot;
103 unsigned long address;
105 static struct khugepaged_scan khugepaged_scan = {
106 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
110 static void set_recommended_min_free_kbytes(void)
112 struct zone *zone;
113 int nr_zones = 0;
114 unsigned long recommended_min;
116 for_each_populated_zone(zone)
117 nr_zones++;
119 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
120 recommended_min = pageblock_nr_pages * nr_zones * 2;
123 * Make sure that on average at least two pageblocks are almost free
124 * of another type, one for a migratetype to fall back to and a
125 * second to avoid subsequent fallbacks of other types There are 3
126 * MIGRATE_TYPES we care about.
128 recommended_min += pageblock_nr_pages * nr_zones *
129 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
131 /* don't ever allow to reserve more than 5% of the lowmem */
132 recommended_min = min(recommended_min,
133 (unsigned long) nr_free_buffer_pages() / 20);
134 recommended_min <<= (PAGE_SHIFT-10);
136 if (recommended_min > min_free_kbytes) {
137 if (user_min_free_kbytes >= 0)
138 pr_info("raising min_free_kbytes from %d to %lu "
139 "to help transparent hugepage allocations\n",
140 min_free_kbytes, recommended_min);
142 min_free_kbytes = recommended_min;
144 setup_per_zone_wmarks();
147 static int start_stop_khugepaged(void)
149 int err = 0;
150 if (khugepaged_enabled()) {
151 if (!khugepaged_thread)
152 khugepaged_thread = kthread_run(khugepaged, NULL,
153 "khugepaged");
154 if (IS_ERR(khugepaged_thread)) {
155 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
158 goto fail;
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
169 fail:
170 return err;
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
176 struct page *get_huge_zero_page(void)
178 struct page *zero_page;
179 retry:
180 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
181 return READ_ONCE(huge_zero_page);
183 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
184 HPAGE_PMD_ORDER);
185 if (!zero_page) {
186 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
187 return NULL;
189 count_vm_event(THP_ZERO_PAGE_ALLOC);
190 preempt_disable();
191 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
192 preempt_enable();
193 __free_pages(zero_page, compound_order(zero_page));
194 goto retry;
197 /* We take additional reference here. It will be put back by shrinker */
198 atomic_set(&huge_zero_refcount, 2);
199 preempt_enable();
200 return READ_ONCE(huge_zero_page);
203 static void put_huge_zero_page(void)
206 * Counter should never go to zero here. Only shrinker can put
207 * last reference.
209 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 struct shrink_control *sc)
215 /* we can free zero page only if last reference remains */
216 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 struct shrink_control *sc)
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 struct page *zero_page = xchg(&huge_zero_page, NULL);
224 BUG_ON(zero_page == NULL);
225 __free_pages(zero_page, compound_order(zero_page));
226 return HPAGE_PMD_NR;
229 return 0;
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
238 #ifdef CONFIG_SYSFS
240 static ssize_t double_flag_show(struct kobject *kobj,
241 struct kobj_attribute *attr, char *buf,
242 enum transparent_hugepage_flag enabled,
243 enum transparent_hugepage_flag req_madv)
245 if (test_bit(enabled, &transparent_hugepage_flags)) {
246 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
247 return sprintf(buf, "[always] madvise never\n");
248 } else if (test_bit(req_madv, &transparent_hugepage_flags))
249 return sprintf(buf, "always [madvise] never\n");
250 else
251 return sprintf(buf, "always madvise [never]\n");
253 static ssize_t double_flag_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t count,
256 enum transparent_hugepage_flag enabled,
257 enum transparent_hugepage_flag req_madv)
259 if (!memcmp("always", buf,
260 min(sizeof("always")-1, count))) {
261 set_bit(enabled, &transparent_hugepage_flags);
262 clear_bit(req_madv, &transparent_hugepage_flags);
263 } else if (!memcmp("madvise", buf,
264 min(sizeof("madvise")-1, count))) {
265 clear_bit(enabled, &transparent_hugepage_flags);
266 set_bit(req_madv, &transparent_hugepage_flags);
267 } else if (!memcmp("never", buf,
268 min(sizeof("never")-1, count))) {
269 clear_bit(enabled, &transparent_hugepage_flags);
270 clear_bit(req_madv, &transparent_hugepage_flags);
271 } else
272 return -EINVAL;
274 return count;
277 static ssize_t enabled_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
280 return double_flag_show(kobj, attr, buf,
281 TRANSPARENT_HUGEPAGE_FLAG,
282 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
284 static ssize_t enabled_store(struct kobject *kobj,
285 struct kobj_attribute *attr,
286 const char *buf, size_t count)
288 ssize_t ret;
290 ret = double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
294 if (ret > 0) {
295 int err;
297 mutex_lock(&khugepaged_mutex);
298 err = start_stop_khugepaged();
299 mutex_unlock(&khugepaged_mutex);
301 if (err)
302 ret = err;
305 return ret;
307 static struct kobj_attribute enabled_attr =
308 __ATTR(enabled, 0644, enabled_show, enabled_store);
310 static ssize_t single_flag_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf,
312 enum transparent_hugepage_flag flag)
314 return sprintf(buf, "%d\n",
315 !!test_bit(flag, &transparent_hugepage_flags));
318 static ssize_t single_flag_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count,
321 enum transparent_hugepage_flag flag)
323 unsigned long value;
324 int ret;
326 ret = kstrtoul(buf, 10, &value);
327 if (ret < 0)
328 return ret;
329 if (value > 1)
330 return -EINVAL;
332 if (value)
333 set_bit(flag, &transparent_hugepage_flags);
334 else
335 clear_bit(flag, &transparent_hugepage_flags);
337 return count;
341 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
342 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
343 * memory just to allocate one more hugepage.
345 static ssize_t defrag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf)
348 return double_flag_show(kobj, attr, buf,
349 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
350 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
352 static ssize_t defrag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
356 return double_flag_store(kobj, attr, buf, count,
357 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
358 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 static struct kobj_attribute defrag_attr =
361 __ATTR(defrag, 0644, defrag_show, defrag_store);
363 static ssize_t use_zero_page_show(struct kobject *kobj,
364 struct kobj_attribute *attr, char *buf)
366 return single_flag_show(kobj, attr, buf,
367 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
369 static ssize_t use_zero_page_store(struct kobject *kobj,
370 struct kobj_attribute *attr, const char *buf, size_t count)
372 return single_flag_store(kobj, attr, buf, count,
373 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
375 static struct kobj_attribute use_zero_page_attr =
376 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
377 #ifdef CONFIG_DEBUG_VM
378 static ssize_t debug_cow_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
381 return single_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
384 static ssize_t debug_cow_store(struct kobject *kobj,
385 struct kobj_attribute *attr,
386 const char *buf, size_t count)
388 return single_flag_store(kobj, attr, buf, count,
389 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
391 static struct kobj_attribute debug_cow_attr =
392 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
393 #endif /* CONFIG_DEBUG_VM */
395 static struct attribute *hugepage_attr[] = {
396 &enabled_attr.attr,
397 &defrag_attr.attr,
398 &use_zero_page_attr.attr,
399 #ifdef CONFIG_DEBUG_VM
400 &debug_cow_attr.attr,
401 #endif
402 NULL,
405 static struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
409 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
410 struct kobj_attribute *attr,
411 char *buf)
413 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 const char *buf, size_t count)
420 unsigned long msecs;
421 int err;
423 err = kstrtoul(buf, 10, &msecs);
424 if (err || msecs > UINT_MAX)
425 return -EINVAL;
427 khugepaged_scan_sleep_millisecs = msecs;
428 wake_up_interruptible(&khugepaged_wait);
430 return count;
432 static struct kobj_attribute scan_sleep_millisecs_attr =
433 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
434 scan_sleep_millisecs_store);
436 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
440 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
447 unsigned long msecs;
448 int err;
450 err = kstrtoul(buf, 10, &msecs);
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
454 khugepaged_alloc_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
457 return count;
459 static struct kobj_attribute alloc_sleep_millisecs_attr =
460 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
461 alloc_sleep_millisecs_store);
463 static ssize_t pages_to_scan_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
467 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
469 static ssize_t pages_to_scan_store(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 const char *buf, size_t count)
473 int err;
474 unsigned long pages;
476 err = kstrtoul(buf, 10, &pages);
477 if (err || !pages || pages > UINT_MAX)
478 return -EINVAL;
480 khugepaged_pages_to_scan = pages;
482 return count;
484 static struct kobj_attribute pages_to_scan_attr =
485 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
486 pages_to_scan_store);
488 static ssize_t pages_collapsed_show(struct kobject *kobj,
489 struct kobj_attribute *attr,
490 char *buf)
492 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
494 static struct kobj_attribute pages_collapsed_attr =
495 __ATTR_RO(pages_collapsed);
497 static ssize_t full_scans_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
501 return sprintf(buf, "%u\n", khugepaged_full_scans);
503 static struct kobj_attribute full_scans_attr =
504 __ATTR_RO(full_scans);
506 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
507 struct kobj_attribute *attr, char *buf)
509 return single_flag_show(kobj, attr, buf,
510 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
512 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
513 struct kobj_attribute *attr,
514 const char *buf, size_t count)
516 return single_flag_store(kobj, attr, buf, count,
517 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
519 static struct kobj_attribute khugepaged_defrag_attr =
520 __ATTR(defrag, 0644, khugepaged_defrag_show,
521 khugepaged_defrag_store);
524 * max_ptes_none controls if khugepaged should collapse hugepages over
525 * any unmapped ptes in turn potentially increasing the memory
526 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
527 * reduce the available free memory in the system as it
528 * runs. Increasing max_ptes_none will instead potentially reduce the
529 * free memory in the system during the khugepaged scan.
531 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
535 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
537 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
538 struct kobj_attribute *attr,
539 const char *buf, size_t count)
541 int err;
542 unsigned long max_ptes_none;
544 err = kstrtoul(buf, 10, &max_ptes_none);
545 if (err || max_ptes_none > HPAGE_PMD_NR-1)
546 return -EINVAL;
548 khugepaged_max_ptes_none = max_ptes_none;
550 return count;
552 static struct kobj_attribute khugepaged_max_ptes_none_attr =
553 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
554 khugepaged_max_ptes_none_store);
556 static struct attribute *khugepaged_attr[] = {
557 &khugepaged_defrag_attr.attr,
558 &khugepaged_max_ptes_none_attr.attr,
559 &pages_to_scan_attr.attr,
560 &pages_collapsed_attr.attr,
561 &full_scans_attr.attr,
562 &scan_sleep_millisecs_attr.attr,
563 &alloc_sleep_millisecs_attr.attr,
564 NULL,
567 static struct attribute_group khugepaged_attr_group = {
568 .attrs = khugepaged_attr,
569 .name = "khugepaged",
572 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
574 int err;
576 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
577 if (unlikely(!*hugepage_kobj)) {
578 pr_err("failed to create transparent hugepage kobject\n");
579 return -ENOMEM;
582 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
583 if (err) {
584 pr_err("failed to register transparent hugepage group\n");
585 goto delete_obj;
588 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
589 if (err) {
590 pr_err("failed to register transparent hugepage group\n");
591 goto remove_hp_group;
594 return 0;
596 remove_hp_group:
597 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
598 delete_obj:
599 kobject_put(*hugepage_kobj);
600 return err;
603 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
605 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
606 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
607 kobject_put(hugepage_kobj);
609 #else
610 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
612 return 0;
615 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 #endif /* CONFIG_SYSFS */
620 static int __init hugepage_init(void)
622 int err;
623 struct kobject *hugepage_kobj;
625 if (!has_transparent_hugepage()) {
626 transparent_hugepage_flags = 0;
627 return -EINVAL;
630 err = hugepage_init_sysfs(&hugepage_kobj);
631 if (err)
632 goto err_sysfs;
634 err = khugepaged_slab_init();
635 if (err)
636 goto err_slab;
638 err = register_shrinker(&huge_zero_page_shrinker);
639 if (err)
640 goto err_hzp_shrinker;
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
648 transparent_hugepage_flags = 0;
649 return 0;
652 err = start_stop_khugepaged();
653 if (err)
654 goto err_khugepaged;
656 return 0;
657 err_khugepaged:
658 unregister_shrinker(&huge_zero_page_shrinker);
659 err_hzp_shrinker:
660 khugepaged_slab_exit();
661 err_slab:
662 hugepage_exit_sysfs(hugepage_kobj);
663 err_sysfs:
664 return err;
666 subsys_initcall(hugepage_init);
668 static int __init setup_transparent_hugepage(char *str)
670 int ret = 0;
671 if (!str)
672 goto out;
673 if (!strcmp(str, "always")) {
674 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "madvise")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 } else if (!strcmp(str, "never")) {
686 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
687 &transparent_hugepage_flags);
688 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
689 &transparent_hugepage_flags);
690 ret = 1;
692 out:
693 if (!ret)
694 pr_warn("transparent_hugepage= cannot parse, ignored\n");
695 return ret;
697 __setup("transparent_hugepage=", setup_transparent_hugepage);
699 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
701 if (likely(vma->vm_flags & VM_WRITE))
702 pmd = pmd_mkwrite(pmd);
703 return pmd;
706 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
708 pmd_t entry;
709 entry = mk_pmd(page, prot);
710 entry = pmd_mkhuge(entry);
711 return entry;
714 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
715 struct vm_area_struct *vma,
716 unsigned long address, pmd_t *pmd,
717 struct page *page, gfp_t gfp,
718 unsigned int flags)
720 struct mem_cgroup *memcg;
721 pgtable_t pgtable;
722 spinlock_t *ptl;
723 unsigned long haddr = address & HPAGE_PMD_MASK;
725 VM_BUG_ON_PAGE(!PageCompound(page), page);
727 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
728 put_page(page);
729 count_vm_event(THP_FAULT_FALLBACK);
730 return VM_FAULT_FALLBACK;
733 pgtable = pte_alloc_one(mm, haddr);
734 if (unlikely(!pgtable)) {
735 mem_cgroup_cancel_charge(page, memcg);
736 put_page(page);
737 return VM_FAULT_OOM;
740 clear_huge_page(page, haddr, HPAGE_PMD_NR);
742 * The memory barrier inside __SetPageUptodate makes sure that
743 * clear_huge_page writes become visible before the set_pmd_at()
744 * write.
746 __SetPageUptodate(page);
748 ptl = pmd_lock(mm, pmd);
749 if (unlikely(!pmd_none(*pmd))) {
750 spin_unlock(ptl);
751 mem_cgroup_cancel_charge(page, memcg);
752 put_page(page);
753 pte_free(mm, pgtable);
754 } else {
755 pmd_t entry;
757 /* Deliver the page fault to userland */
758 if (userfaultfd_missing(vma)) {
759 int ret;
761 spin_unlock(ptl);
762 mem_cgroup_cancel_charge(page, memcg);
763 put_page(page);
764 pte_free(mm, pgtable);
765 ret = handle_userfault(vma, address, flags,
766 VM_UFFD_MISSING);
767 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
768 return ret;
771 entry = mk_huge_pmd(page, vma->vm_page_prot);
772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773 page_add_new_anon_rmap(page, vma, haddr);
774 mem_cgroup_commit_charge(page, memcg, false);
775 lru_cache_add_active_or_unevictable(page, vma);
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 set_pmd_at(mm, haddr, pmd, entry);
778 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
779 atomic_long_inc(&mm->nr_ptes);
780 spin_unlock(ptl);
781 count_vm_event(THP_FAULT_ALLOC);
784 return 0;
787 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
789 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
792 /* Caller must hold page table lock. */
793 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795 struct page *zero_page)
797 pmd_t entry;
798 if (!pmd_none(*pmd))
799 return false;
800 entry = mk_pmd(zero_page, vma->vm_page_prot);
801 entry = pmd_mkhuge(entry);
802 pgtable_trans_huge_deposit(mm, pmd, pgtable);
803 set_pmd_at(mm, haddr, pmd, entry);
804 atomic_long_inc(&mm->nr_ptes);
805 return true;
808 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809 unsigned long address, pmd_t *pmd,
810 unsigned int flags)
812 gfp_t gfp;
813 struct page *page;
814 unsigned long haddr = address & HPAGE_PMD_MASK;
816 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
817 return VM_FAULT_FALLBACK;
818 if (unlikely(anon_vma_prepare(vma)))
819 return VM_FAULT_OOM;
820 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
821 return VM_FAULT_OOM;
822 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
823 transparent_hugepage_use_zero_page()) {
824 spinlock_t *ptl;
825 pgtable_t pgtable;
826 struct page *zero_page;
827 bool set;
828 int ret;
829 pgtable = pte_alloc_one(mm, haddr);
830 if (unlikely(!pgtable))
831 return VM_FAULT_OOM;
832 zero_page = get_huge_zero_page();
833 if (unlikely(!zero_page)) {
834 pte_free(mm, pgtable);
835 count_vm_event(THP_FAULT_FALLBACK);
836 return VM_FAULT_FALLBACK;
838 ptl = pmd_lock(mm, pmd);
839 ret = 0;
840 set = false;
841 if (pmd_none(*pmd)) {
842 if (userfaultfd_missing(vma)) {
843 spin_unlock(ptl);
844 ret = handle_userfault(vma, address, flags,
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 } else {
848 set_huge_zero_page(pgtable, mm, vma,
849 haddr, pmd,
850 zero_page);
851 spin_unlock(ptl);
852 set = true;
854 } else
855 spin_unlock(ptl);
856 if (!set) {
857 pte_free(mm, pgtable);
858 put_huge_zero_page();
860 return ret;
862 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
863 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
864 if (unlikely(!page)) {
865 count_vm_event(THP_FAULT_FALLBACK);
866 return VM_FAULT_FALLBACK;
868 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
869 flags);
872 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
873 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
875 struct mm_struct *mm = vma->vm_mm;
876 pmd_t entry;
877 spinlock_t *ptl;
879 ptl = pmd_lock(mm, pmd);
880 if (pmd_none(*pmd)) {
881 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
882 if (write) {
883 entry = pmd_mkyoung(pmd_mkdirty(entry));
884 entry = maybe_pmd_mkwrite(entry, vma);
886 set_pmd_at(mm, addr, pmd, entry);
887 update_mmu_cache_pmd(vma, addr, pmd);
889 spin_unlock(ptl);
892 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
893 pmd_t *pmd, unsigned long pfn, bool write)
895 pgprot_t pgprot = vma->vm_page_prot;
897 * If we had pmd_special, we could avoid all these restrictions,
898 * but we need to be consistent with PTEs and architectures that
899 * can't support a 'special' bit.
901 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
902 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
903 (VM_PFNMAP|VM_MIXEDMAP));
904 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
905 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
907 if (addr < vma->vm_start || addr >= vma->vm_end)
908 return VM_FAULT_SIGBUS;
909 if (track_pfn_insert(vma, &pgprot, pfn))
910 return VM_FAULT_SIGBUS;
911 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
912 return VM_FAULT_NOPAGE;
915 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
917 struct vm_area_struct *vma)
919 spinlock_t *dst_ptl, *src_ptl;
920 struct page *src_page;
921 pmd_t pmd;
922 pgtable_t pgtable;
923 int ret;
925 ret = -ENOMEM;
926 pgtable = pte_alloc_one(dst_mm, addr);
927 if (unlikely(!pgtable))
928 goto out;
930 dst_ptl = pmd_lock(dst_mm, dst_pmd);
931 src_ptl = pmd_lockptr(src_mm, src_pmd);
932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 ret = -EAGAIN;
935 pmd = *src_pmd;
936 if (unlikely(!pmd_trans_huge(pmd))) {
937 pte_free(dst_mm, pgtable);
938 goto out_unlock;
941 * When page table lock is held, the huge zero pmd should not be
942 * under splitting since we don't split the page itself, only pmd to
943 * a page table.
945 if (is_huge_zero_pmd(pmd)) {
946 struct page *zero_page;
948 * get_huge_zero_page() will never allocate a new page here,
949 * since we already have a zero page to copy. It just takes a
950 * reference.
952 zero_page = get_huge_zero_page();
953 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
954 zero_page);
955 ret = 0;
956 goto out_unlock;
959 if (unlikely(pmd_trans_splitting(pmd))) {
960 /* split huge page running from under us */
961 spin_unlock(src_ptl);
962 spin_unlock(dst_ptl);
963 pte_free(dst_mm, pgtable);
965 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
966 goto out;
968 src_page = pmd_page(pmd);
969 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970 get_page(src_page);
971 page_dup_rmap(src_page);
972 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
974 pmdp_set_wrprotect(src_mm, addr, src_pmd);
975 pmd = pmd_mkold(pmd_wrprotect(pmd));
976 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
977 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
978 atomic_long_inc(&dst_mm->nr_ptes);
980 ret = 0;
981 out_unlock:
982 spin_unlock(src_ptl);
983 spin_unlock(dst_ptl);
984 out:
985 return ret;
988 void huge_pmd_set_accessed(struct mm_struct *mm,
989 struct vm_area_struct *vma,
990 unsigned long address,
991 pmd_t *pmd, pmd_t orig_pmd,
992 int dirty)
994 spinlock_t *ptl;
995 pmd_t entry;
996 unsigned long haddr;
998 ptl = pmd_lock(mm, pmd);
999 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 goto unlock;
1002 entry = pmd_mkyoung(orig_pmd);
1003 haddr = address & HPAGE_PMD_MASK;
1004 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1005 update_mmu_cache_pmd(vma, address, pmd);
1007 unlock:
1008 spin_unlock(ptl);
1012 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1013 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1014 * the source page gets split and a tail freed before copy completes.
1015 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1017 static void get_user_huge_page(struct page *page)
1019 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1020 struct page *endpage = page + HPAGE_PMD_NR;
1022 atomic_add(HPAGE_PMD_NR, &page->_count);
1023 while (++page < endpage)
1024 get_huge_page_tail(page);
1025 } else {
1026 get_page(page);
1030 static void put_user_huge_page(struct page *page)
1032 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1033 struct page *endpage = page + HPAGE_PMD_NR;
1035 while (page < endpage)
1036 put_page(page++);
1037 } else {
1038 put_page(page);
1042 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1043 struct vm_area_struct *vma,
1044 unsigned long address,
1045 pmd_t *pmd, pmd_t orig_pmd,
1046 struct page *page,
1047 unsigned long haddr)
1049 struct mem_cgroup *memcg;
1050 spinlock_t *ptl;
1051 pgtable_t pgtable;
1052 pmd_t _pmd;
1053 int ret = 0, i;
1054 struct page **pages;
1055 unsigned long mmun_start; /* For mmu_notifiers */
1056 unsigned long mmun_end; /* For mmu_notifiers */
1058 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1059 GFP_KERNEL);
1060 if (unlikely(!pages)) {
1061 ret |= VM_FAULT_OOM;
1062 goto out;
1065 for (i = 0; i < HPAGE_PMD_NR; i++) {
1066 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1067 __GFP_OTHER_NODE,
1068 vma, address, page_to_nid(page));
1069 if (unlikely(!pages[i] ||
1070 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1071 &memcg))) {
1072 if (pages[i])
1073 put_page(pages[i]);
1074 while (--i >= 0) {
1075 memcg = (void *)page_private(pages[i]);
1076 set_page_private(pages[i], 0);
1077 mem_cgroup_cancel_charge(pages[i], memcg);
1078 put_page(pages[i]);
1080 kfree(pages);
1081 ret |= VM_FAULT_OOM;
1082 goto out;
1084 set_page_private(pages[i], (unsigned long)memcg);
1087 for (i = 0; i < HPAGE_PMD_NR; i++) {
1088 copy_user_highpage(pages[i], page + i,
1089 haddr + PAGE_SIZE * i, vma);
1090 __SetPageUptodate(pages[i]);
1091 cond_resched();
1094 mmun_start = haddr;
1095 mmun_end = haddr + HPAGE_PMD_SIZE;
1096 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1098 ptl = pmd_lock(mm, pmd);
1099 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1100 goto out_free_pages;
1101 VM_BUG_ON_PAGE(!PageHead(page), page);
1103 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1104 /* leave pmd empty until pte is filled */
1106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1107 pmd_populate(mm, &_pmd, pgtable);
1109 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1110 pte_t *pte, entry;
1111 entry = mk_pte(pages[i], vma->vm_page_prot);
1112 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1113 memcg = (void *)page_private(pages[i]);
1114 set_page_private(pages[i], 0);
1115 page_add_new_anon_rmap(pages[i], vma, haddr);
1116 mem_cgroup_commit_charge(pages[i], memcg, false);
1117 lru_cache_add_active_or_unevictable(pages[i], vma);
1118 pte = pte_offset_map(&_pmd, haddr);
1119 VM_BUG_ON(!pte_none(*pte));
1120 set_pte_at(mm, haddr, pte, entry);
1121 pte_unmap(pte);
1123 kfree(pages);
1125 smp_wmb(); /* make pte visible before pmd */
1126 pmd_populate(mm, pmd, pgtable);
1127 page_remove_rmap(page);
1128 spin_unlock(ptl);
1130 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1132 ret |= VM_FAULT_WRITE;
1133 put_page(page);
1135 out:
1136 return ret;
1138 out_free_pages:
1139 spin_unlock(ptl);
1140 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1141 for (i = 0; i < HPAGE_PMD_NR; i++) {
1142 memcg = (void *)page_private(pages[i]);
1143 set_page_private(pages[i], 0);
1144 mem_cgroup_cancel_charge(pages[i], memcg);
1145 put_page(pages[i]);
1147 kfree(pages);
1148 goto out;
1151 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1154 spinlock_t *ptl;
1155 int ret = 0;
1156 struct page *page = NULL, *new_page;
1157 struct mem_cgroup *memcg;
1158 unsigned long haddr;
1159 unsigned long mmun_start; /* For mmu_notifiers */
1160 unsigned long mmun_end; /* For mmu_notifiers */
1161 gfp_t huge_gfp; /* for allocation and charge */
1163 ptl = pmd_lockptr(mm, pmd);
1164 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1165 haddr = address & HPAGE_PMD_MASK;
1166 if (is_huge_zero_pmd(orig_pmd))
1167 goto alloc;
1168 spin_lock(ptl);
1169 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1170 goto out_unlock;
1172 page = pmd_page(orig_pmd);
1173 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1174 if (page_mapcount(page) == 1) {
1175 pmd_t entry;
1176 entry = pmd_mkyoung(orig_pmd);
1177 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1178 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1179 update_mmu_cache_pmd(vma, address, pmd);
1180 ret |= VM_FAULT_WRITE;
1181 goto out_unlock;
1183 get_user_huge_page(page);
1184 spin_unlock(ptl);
1185 alloc:
1186 if (transparent_hugepage_enabled(vma) &&
1187 !transparent_hugepage_debug_cow()) {
1188 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1189 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1190 } else
1191 new_page = NULL;
1193 if (unlikely(!new_page)) {
1194 if (!page) {
1195 split_huge_page_pmd(vma, address, pmd);
1196 ret |= VM_FAULT_FALLBACK;
1197 } else {
1198 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1199 pmd, orig_pmd, page, haddr);
1200 if (ret & VM_FAULT_OOM) {
1201 split_huge_page(page);
1202 ret |= VM_FAULT_FALLBACK;
1204 put_user_huge_page(page);
1206 count_vm_event(THP_FAULT_FALLBACK);
1207 goto out;
1210 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1211 put_page(new_page);
1212 if (page) {
1213 split_huge_page(page);
1214 put_user_huge_page(page);
1215 } else
1216 split_huge_page_pmd(vma, address, pmd);
1217 ret |= VM_FAULT_FALLBACK;
1218 count_vm_event(THP_FAULT_FALLBACK);
1219 goto out;
1222 count_vm_event(THP_FAULT_ALLOC);
1224 if (!page)
1225 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1226 else
1227 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1228 __SetPageUptodate(new_page);
1230 mmun_start = haddr;
1231 mmun_end = haddr + HPAGE_PMD_SIZE;
1232 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1234 spin_lock(ptl);
1235 if (page)
1236 put_user_huge_page(page);
1237 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1238 spin_unlock(ptl);
1239 mem_cgroup_cancel_charge(new_page, memcg);
1240 put_page(new_page);
1241 goto out_mn;
1242 } else {
1243 pmd_t entry;
1244 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1245 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1246 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1247 page_add_new_anon_rmap(new_page, vma, haddr);
1248 mem_cgroup_commit_charge(new_page, memcg, false);
1249 lru_cache_add_active_or_unevictable(new_page, vma);
1250 set_pmd_at(mm, haddr, pmd, entry);
1251 update_mmu_cache_pmd(vma, address, pmd);
1252 if (!page) {
1253 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1254 put_huge_zero_page();
1255 } else {
1256 VM_BUG_ON_PAGE(!PageHead(page), page);
1257 page_remove_rmap(page);
1258 put_page(page);
1260 ret |= VM_FAULT_WRITE;
1262 spin_unlock(ptl);
1263 out_mn:
1264 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1265 out:
1266 return ret;
1267 out_unlock:
1268 spin_unlock(ptl);
1269 return ret;
1273 * FOLL_FORCE can write to even unwritable pmd's, but only
1274 * after we've gone through a COW cycle and they are dirty.
1276 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1278 return pmd_write(pmd) ||
1279 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1282 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1283 unsigned long addr,
1284 pmd_t *pmd,
1285 unsigned int flags)
1287 struct mm_struct *mm = vma->vm_mm;
1288 struct page *page = NULL;
1290 assert_spin_locked(pmd_lockptr(mm, pmd));
1292 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1293 goto out;
1295 /* Avoid dumping huge zero page */
1296 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1297 return ERR_PTR(-EFAULT);
1299 /* Full NUMA hinting faults to serialise migration in fault paths */
1300 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1301 goto out;
1303 page = pmd_page(*pmd);
1304 VM_BUG_ON_PAGE(!PageHead(page), page);
1305 if (flags & FOLL_TOUCH) {
1306 pmd_t _pmd;
1307 _pmd = pmd_mkyoung(*pmd);
1308 if (flags & FOLL_WRITE)
1309 _pmd = pmd_mkdirty(_pmd);
1310 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1311 pmd, _pmd, flags & FOLL_WRITE))
1312 update_mmu_cache_pmd(vma, addr, pmd);
1314 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1315 if (page->mapping && trylock_page(page)) {
1316 lru_add_drain();
1317 if (page->mapping)
1318 mlock_vma_page(page);
1319 unlock_page(page);
1322 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1323 VM_BUG_ON_PAGE(!PageCompound(page), page);
1324 if (flags & FOLL_GET)
1325 get_page_foll(page);
1327 out:
1328 return page;
1331 /* NUMA hinting page fault entry point for trans huge pmds */
1332 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1333 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1335 spinlock_t *ptl;
1336 struct anon_vma *anon_vma = NULL;
1337 struct page *page;
1338 unsigned long haddr = addr & HPAGE_PMD_MASK;
1339 int page_nid = -1, this_nid = numa_node_id();
1340 int target_nid, last_cpupid = -1;
1341 bool page_locked;
1342 bool migrated = false;
1343 bool was_writable;
1344 int flags = 0;
1346 /* A PROT_NONE fault should not end up here */
1347 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1349 ptl = pmd_lock(mm, pmdp);
1350 if (unlikely(!pmd_same(pmd, *pmdp)))
1351 goto out_unlock;
1354 * If there are potential migrations, wait for completion and retry
1355 * without disrupting NUMA hinting information. Do not relock and
1356 * check_same as the page may no longer be mapped.
1358 if (unlikely(pmd_trans_migrating(*pmdp))) {
1359 page = pmd_page(*pmdp);
1360 if (!get_page_unless_zero(page))
1361 goto out_unlock;
1362 spin_unlock(ptl);
1363 wait_on_page_locked(page);
1364 put_page(page);
1365 goto out;
1368 page = pmd_page(pmd);
1369 BUG_ON(is_huge_zero_page(page));
1370 page_nid = page_to_nid(page);
1371 last_cpupid = page_cpupid_last(page);
1372 count_vm_numa_event(NUMA_HINT_FAULTS);
1373 if (page_nid == this_nid) {
1374 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1375 flags |= TNF_FAULT_LOCAL;
1378 /* See similar comment in do_numa_page for explanation */
1379 if (!(vma->vm_flags & VM_WRITE))
1380 flags |= TNF_NO_GROUP;
1383 * Acquire the page lock to serialise THP migrations but avoid dropping
1384 * page_table_lock if at all possible
1386 page_locked = trylock_page(page);
1387 target_nid = mpol_misplaced(page, vma, haddr);
1388 if (target_nid == -1) {
1389 /* If the page was locked, there are no parallel migrations */
1390 if (page_locked)
1391 goto clear_pmdnuma;
1394 /* Migration could have started since the pmd_trans_migrating check */
1395 if (!page_locked) {
1396 page_nid = -1;
1397 if (!get_page_unless_zero(page))
1398 goto out_unlock;
1399 spin_unlock(ptl);
1400 wait_on_page_locked(page);
1401 put_page(page);
1402 goto out;
1406 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1407 * to serialises splits
1409 get_page(page);
1410 spin_unlock(ptl);
1411 anon_vma = page_lock_anon_vma_read(page);
1413 /* Confirm the PMD did not change while page_table_lock was released */
1414 spin_lock(ptl);
1415 if (unlikely(!pmd_same(pmd, *pmdp))) {
1416 unlock_page(page);
1417 put_page(page);
1418 page_nid = -1;
1419 goto out_unlock;
1422 /* Bail if we fail to protect against THP splits for any reason */
1423 if (unlikely(!anon_vma)) {
1424 put_page(page);
1425 page_nid = -1;
1426 goto clear_pmdnuma;
1430 * Migrate the THP to the requested node, returns with page unlocked
1431 * and access rights restored.
1433 spin_unlock(ptl);
1434 migrated = migrate_misplaced_transhuge_page(mm, vma,
1435 pmdp, pmd, addr, page, target_nid);
1436 if (migrated) {
1437 flags |= TNF_MIGRATED;
1438 page_nid = target_nid;
1439 } else
1440 flags |= TNF_MIGRATE_FAIL;
1442 goto out;
1443 clear_pmdnuma:
1444 BUG_ON(!PageLocked(page));
1445 was_writable = pmd_write(pmd);
1446 pmd = pmd_modify(pmd, vma->vm_page_prot);
1447 pmd = pmd_mkyoung(pmd);
1448 if (was_writable)
1449 pmd = pmd_mkwrite(pmd);
1450 set_pmd_at(mm, haddr, pmdp, pmd);
1451 update_mmu_cache_pmd(vma, addr, pmdp);
1452 unlock_page(page);
1453 out_unlock:
1454 spin_unlock(ptl);
1456 out:
1457 if (anon_vma)
1458 page_unlock_anon_vma_read(anon_vma);
1460 if (page_nid != -1)
1461 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1463 return 0;
1466 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1467 pmd_t *pmd, unsigned long addr)
1469 pmd_t orig_pmd;
1470 spinlock_t *ptl;
1472 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1473 return 0;
1475 * For architectures like ppc64 we look at deposited pgtable
1476 * when calling pmdp_huge_get_and_clear. So do the
1477 * pgtable_trans_huge_withdraw after finishing pmdp related
1478 * operations.
1480 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1481 tlb->fullmm);
1482 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1483 if (vma_is_dax(vma)) {
1484 spin_unlock(ptl);
1485 if (is_huge_zero_pmd(orig_pmd))
1486 put_huge_zero_page();
1487 } else if (is_huge_zero_pmd(orig_pmd)) {
1488 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1489 atomic_long_dec(&tlb->mm->nr_ptes);
1490 spin_unlock(ptl);
1491 put_huge_zero_page();
1492 } else {
1493 struct page *page = pmd_page(orig_pmd);
1494 page_remove_rmap(page);
1495 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1496 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1497 VM_BUG_ON_PAGE(!PageHead(page), page);
1498 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1499 atomic_long_dec(&tlb->mm->nr_ptes);
1500 spin_unlock(ptl);
1501 tlb_remove_page(tlb, page);
1503 return 1;
1506 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1507 unsigned long old_addr,
1508 unsigned long new_addr, unsigned long old_end,
1509 pmd_t *old_pmd, pmd_t *new_pmd)
1511 spinlock_t *old_ptl, *new_ptl;
1512 int ret = 0;
1513 pmd_t pmd;
1515 struct mm_struct *mm = vma->vm_mm;
1517 if ((old_addr & ~HPAGE_PMD_MASK) ||
1518 (new_addr & ~HPAGE_PMD_MASK) ||
1519 old_end - old_addr < HPAGE_PMD_SIZE ||
1520 (new_vma->vm_flags & VM_NOHUGEPAGE))
1521 goto out;
1524 * The destination pmd shouldn't be established, free_pgtables()
1525 * should have release it.
1527 if (WARN_ON(!pmd_none(*new_pmd))) {
1528 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1529 goto out;
1533 * We don't have to worry about the ordering of src and dst
1534 * ptlocks because exclusive mmap_sem prevents deadlock.
1536 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1537 if (ret == 1) {
1538 new_ptl = pmd_lockptr(mm, new_pmd);
1539 if (new_ptl != old_ptl)
1540 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1541 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1542 VM_BUG_ON(!pmd_none(*new_pmd));
1544 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1545 pgtable_t pgtable;
1546 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1547 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1549 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1550 if (new_ptl != old_ptl)
1551 spin_unlock(new_ptl);
1552 spin_unlock(old_ptl);
1554 out:
1555 return ret;
1559 * Returns
1560 * - 0 if PMD could not be locked
1561 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1562 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1564 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1565 unsigned long addr, pgprot_t newprot, int prot_numa)
1567 struct mm_struct *mm = vma->vm_mm;
1568 spinlock_t *ptl;
1569 pmd_t entry;
1570 bool preserve_write;
1572 int ret = 0;
1574 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1575 return 0;
1577 preserve_write = prot_numa && pmd_write(*pmd);
1578 ret = 1;
1581 * Avoid trapping faults against the zero page. The read-only
1582 * data is likely to be read-cached on the local CPU and
1583 * local/remote hits to the zero page are not interesting.
1585 if (prot_numa && is_huge_zero_pmd(*pmd))
1586 goto unlock;
1588 if (prot_numa && pmd_protnone(*pmd))
1589 goto unlock;
1592 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1593 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1594 * which is also under down_read(mmap_sem):
1596 * CPU0: CPU1:
1597 * change_huge_pmd(prot_numa=1)
1598 * pmdp_huge_get_and_clear_notify()
1599 * madvise_dontneed()
1600 * zap_pmd_range()
1601 * pmd_trans_huge(*pmd) == 0 (without ptl)
1602 * // skip the pmd
1603 * set_pmd_at();
1604 * // pmd is re-established
1606 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1607 * which may break userspace.
1609 * pmdp_invalidate() is required to make sure we don't miss
1610 * dirty/young flags set by hardware.
1612 entry = *pmd;
1613 pmdp_invalidate(vma, addr, pmd);
1616 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1617 * corrupt them.
1619 if (pmd_dirty(*pmd))
1620 entry = pmd_mkdirty(entry);
1621 if (pmd_young(*pmd))
1622 entry = pmd_mkyoung(entry);
1624 entry = pmd_modify(entry, newprot);
1625 if (preserve_write)
1626 entry = pmd_mkwrite(entry);
1627 ret = HPAGE_PMD_NR;
1628 set_pmd_at(mm, addr, pmd, entry);
1629 BUG_ON(!preserve_write && pmd_write(entry));
1630 unlock:
1631 spin_unlock(ptl);
1632 return ret;
1636 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1637 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1639 * Note that if it returns 1, this routine returns without unlocking page
1640 * table locks. So callers must unlock them.
1642 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1643 spinlock_t **ptl)
1645 *ptl = pmd_lock(vma->vm_mm, pmd);
1646 if (likely(pmd_trans_huge(*pmd))) {
1647 if (unlikely(pmd_trans_splitting(*pmd))) {
1648 spin_unlock(*ptl);
1649 wait_split_huge_page(vma->anon_vma, pmd);
1650 return -1;
1651 } else {
1652 /* Thp mapped by 'pmd' is stable, so we can
1653 * handle it as it is. */
1654 return 1;
1657 spin_unlock(*ptl);
1658 return 0;
1662 * This function returns whether a given @page is mapped onto the @address
1663 * in the virtual space of @mm.
1665 * When it's true, this function returns *pmd with holding the page table lock
1666 * and passing it back to the caller via @ptl.
1667 * If it's false, returns NULL without holding the page table lock.
1669 pmd_t *page_check_address_pmd(struct page *page,
1670 struct mm_struct *mm,
1671 unsigned long address,
1672 enum page_check_address_pmd_flag flag,
1673 spinlock_t **ptl)
1675 pgd_t *pgd;
1676 pud_t *pud;
1677 pmd_t *pmd;
1679 if (address & ~HPAGE_PMD_MASK)
1680 return NULL;
1682 pgd = pgd_offset(mm, address);
1683 if (!pgd_present(*pgd))
1684 return NULL;
1685 pud = pud_offset(pgd, address);
1686 if (!pud_present(*pud))
1687 return NULL;
1688 pmd = pmd_offset(pud, address);
1690 *ptl = pmd_lock(mm, pmd);
1691 if (!pmd_present(*pmd))
1692 goto unlock;
1693 if (pmd_page(*pmd) != page)
1694 goto unlock;
1696 * split_vma() may create temporary aliased mappings. There is
1697 * no risk as long as all huge pmd are found and have their
1698 * splitting bit set before __split_huge_page_refcount
1699 * runs. Finding the same huge pmd more than once during the
1700 * same rmap walk is not a problem.
1702 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1703 pmd_trans_splitting(*pmd))
1704 goto unlock;
1705 if (pmd_trans_huge(*pmd)) {
1706 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1707 !pmd_trans_splitting(*pmd));
1708 return pmd;
1710 unlock:
1711 spin_unlock(*ptl);
1712 return NULL;
1715 static int __split_huge_page_splitting(struct page *page,
1716 struct vm_area_struct *vma,
1717 unsigned long address)
1719 struct mm_struct *mm = vma->vm_mm;
1720 spinlock_t *ptl;
1721 pmd_t *pmd;
1722 int ret = 0;
1723 /* For mmu_notifiers */
1724 const unsigned long mmun_start = address;
1725 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1727 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1728 pmd = page_check_address_pmd(page, mm, address,
1729 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1730 if (pmd) {
1732 * We can't temporarily set the pmd to null in order
1733 * to split it, the pmd must remain marked huge at all
1734 * times or the VM won't take the pmd_trans_huge paths
1735 * and it won't wait on the anon_vma->root->rwsem to
1736 * serialize against split_huge_page*.
1738 pmdp_splitting_flush(vma, address, pmd);
1740 ret = 1;
1741 spin_unlock(ptl);
1743 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1745 return ret;
1748 static void __split_huge_page_refcount(struct page *page,
1749 struct list_head *list)
1751 int i;
1752 struct zone *zone = page_zone(page);
1753 struct lruvec *lruvec;
1754 int tail_count = 0;
1756 /* prevent PageLRU to go away from under us, and freeze lru stats */
1757 spin_lock_irq(&zone->lru_lock);
1758 lruvec = mem_cgroup_page_lruvec(page, zone);
1760 compound_lock(page);
1761 /* complete memcg works before add pages to LRU */
1762 mem_cgroup_split_huge_fixup(page);
1764 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1765 struct page *page_tail = page + i;
1767 /* tail_page->_mapcount cannot change */
1768 BUG_ON(page_mapcount(page_tail) < 0);
1769 tail_count += page_mapcount(page_tail);
1770 /* check for overflow */
1771 BUG_ON(tail_count < 0);
1772 BUG_ON(atomic_read(&page_tail->_count) != 0);
1774 * tail_page->_count is zero and not changing from
1775 * under us. But get_page_unless_zero() may be running
1776 * from under us on the tail_page. If we used
1777 * atomic_set() below instead of atomic_add(), we
1778 * would then run atomic_set() concurrently with
1779 * get_page_unless_zero(), and atomic_set() is
1780 * implemented in C not using locked ops. spin_unlock
1781 * on x86 sometime uses locked ops because of PPro
1782 * errata 66, 92, so unless somebody can guarantee
1783 * atomic_set() here would be safe on all archs (and
1784 * not only on x86), it's safer to use atomic_add().
1786 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1787 &page_tail->_count);
1789 /* after clearing PageTail the gup refcount can be released */
1790 smp_mb__after_atomic();
1792 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1793 page_tail->flags |= (page->flags &
1794 ((1L << PG_referenced) |
1795 (1L << PG_swapbacked) |
1796 (1L << PG_mlocked) |
1797 (1L << PG_uptodate) |
1798 (1L << PG_active) |
1799 (1L << PG_unevictable)));
1800 page_tail->flags |= (1L << PG_dirty);
1802 clear_compound_head(page_tail);
1804 if (page_is_young(page))
1805 set_page_young(page_tail);
1806 if (page_is_idle(page))
1807 set_page_idle(page_tail);
1810 * __split_huge_page_splitting() already set the
1811 * splitting bit in all pmd that could map this
1812 * hugepage, that will ensure no CPU can alter the
1813 * mapcount on the head page. The mapcount is only
1814 * accounted in the head page and it has to be
1815 * transferred to all tail pages in the below code. So
1816 * for this code to be safe, the split the mapcount
1817 * can't change. But that doesn't mean userland can't
1818 * keep changing and reading the page contents while
1819 * we transfer the mapcount, so the pmd splitting
1820 * status is achieved setting a reserved bit in the
1821 * pmd, not by clearing the present bit.
1823 page_tail->_mapcount = page->_mapcount;
1825 BUG_ON(page_tail->mapping);
1826 page_tail->mapping = page->mapping;
1828 page_tail->index = page->index + i;
1829 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1831 BUG_ON(!PageAnon(page_tail));
1832 BUG_ON(!PageUptodate(page_tail));
1833 BUG_ON(!PageDirty(page_tail));
1834 BUG_ON(!PageSwapBacked(page_tail));
1836 lru_add_page_tail(page, page_tail, lruvec, list);
1838 atomic_sub(tail_count, &page->_count);
1839 BUG_ON(atomic_read(&page->_count) <= 0);
1841 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1843 ClearPageCompound(page);
1844 compound_unlock(page);
1845 spin_unlock_irq(&zone->lru_lock);
1847 for (i = 1; i < HPAGE_PMD_NR; i++) {
1848 struct page *page_tail = page + i;
1849 BUG_ON(page_count(page_tail) <= 0);
1851 * Tail pages may be freed if there wasn't any mapping
1852 * like if add_to_swap() is running on a lru page that
1853 * had its mapping zapped. And freeing these pages
1854 * requires taking the lru_lock so we do the put_page
1855 * of the tail pages after the split is complete.
1857 put_page(page_tail);
1861 * Only the head page (now become a regular page) is required
1862 * to be pinned by the caller.
1864 BUG_ON(page_count(page) <= 0);
1867 static int __split_huge_page_map(struct page *page,
1868 struct vm_area_struct *vma,
1869 unsigned long address)
1871 struct mm_struct *mm = vma->vm_mm;
1872 spinlock_t *ptl;
1873 pmd_t *pmd, _pmd;
1874 int ret = 0, i;
1875 pgtable_t pgtable;
1876 unsigned long haddr;
1878 pmd = page_check_address_pmd(page, mm, address,
1879 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1880 if (pmd) {
1881 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1882 pmd_populate(mm, &_pmd, pgtable);
1883 if (pmd_write(*pmd))
1884 BUG_ON(page_mapcount(page) != 1);
1886 haddr = address;
1887 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1888 pte_t *pte, entry;
1889 BUG_ON(PageCompound(page+i));
1891 * Note that NUMA hinting access restrictions are not
1892 * transferred to avoid any possibility of altering
1893 * permissions across VMAs.
1895 entry = mk_pte(page + i, vma->vm_page_prot);
1896 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1897 if (!pmd_write(*pmd))
1898 entry = pte_wrprotect(entry);
1899 if (!pmd_young(*pmd))
1900 entry = pte_mkold(entry);
1901 pte = pte_offset_map(&_pmd, haddr);
1902 BUG_ON(!pte_none(*pte));
1903 set_pte_at(mm, haddr, pte, entry);
1904 pte_unmap(pte);
1907 smp_wmb(); /* make pte visible before pmd */
1909 * Up to this point the pmd is present and huge and
1910 * userland has the whole access to the hugepage
1911 * during the split (which happens in place). If we
1912 * overwrite the pmd with the not-huge version
1913 * pointing to the pte here (which of course we could
1914 * if all CPUs were bug free), userland could trigger
1915 * a small page size TLB miss on the small sized TLB
1916 * while the hugepage TLB entry is still established
1917 * in the huge TLB. Some CPU doesn't like that. See
1918 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1919 * Erratum 383 on page 93. Intel should be safe but is
1920 * also warns that it's only safe if the permission
1921 * and cache attributes of the two entries loaded in
1922 * the two TLB is identical (which should be the case
1923 * here). But it is generally safer to never allow
1924 * small and huge TLB entries for the same virtual
1925 * address to be loaded simultaneously. So instead of
1926 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1927 * mark the current pmd notpresent (atomically because
1928 * here the pmd_trans_huge and pmd_trans_splitting
1929 * must remain set at all times on the pmd until the
1930 * split is complete for this pmd), then we flush the
1931 * SMP TLB and finally we write the non-huge version
1932 * of the pmd entry with pmd_populate.
1934 pmdp_invalidate(vma, address, pmd);
1935 pmd_populate(mm, pmd, pgtable);
1936 ret = 1;
1937 spin_unlock(ptl);
1940 return ret;
1943 /* must be called with anon_vma->root->rwsem held */
1944 static void __split_huge_page(struct page *page,
1945 struct anon_vma *anon_vma,
1946 struct list_head *list)
1948 int mapcount, mapcount2;
1949 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1950 struct anon_vma_chain *avc;
1952 BUG_ON(!PageHead(page));
1953 BUG_ON(PageTail(page));
1955 mapcount = 0;
1956 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1957 struct vm_area_struct *vma = avc->vma;
1958 unsigned long addr = vma_address(page, vma);
1959 BUG_ON(is_vma_temporary_stack(vma));
1960 mapcount += __split_huge_page_splitting(page, vma, addr);
1963 * It is critical that new vmas are added to the tail of the
1964 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1965 * and establishes a child pmd before
1966 * __split_huge_page_splitting() freezes the parent pmd (so if
1967 * we fail to prevent copy_huge_pmd() from running until the
1968 * whole __split_huge_page() is complete), we will still see
1969 * the newly established pmd of the child later during the
1970 * walk, to be able to set it as pmd_trans_splitting too.
1972 if (mapcount != page_mapcount(page)) {
1973 pr_err("mapcount %d page_mapcount %d\n",
1974 mapcount, page_mapcount(page));
1975 BUG();
1978 __split_huge_page_refcount(page, list);
1980 mapcount2 = 0;
1981 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1982 struct vm_area_struct *vma = avc->vma;
1983 unsigned long addr = vma_address(page, vma);
1984 BUG_ON(is_vma_temporary_stack(vma));
1985 mapcount2 += __split_huge_page_map(page, vma, addr);
1987 if (mapcount != mapcount2) {
1988 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1989 mapcount, mapcount2, page_mapcount(page));
1990 BUG();
1995 * Split a hugepage into normal pages. This doesn't change the position of head
1996 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1997 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1998 * from the hugepage.
1999 * Return 0 if the hugepage is split successfully otherwise return 1.
2001 int split_huge_page_to_list(struct page *page, struct list_head *list)
2003 struct anon_vma *anon_vma;
2004 int ret = 1;
2006 BUG_ON(is_huge_zero_page(page));
2007 BUG_ON(!PageAnon(page));
2010 * The caller does not necessarily hold an mmap_sem that would prevent
2011 * the anon_vma disappearing so we first we take a reference to it
2012 * and then lock the anon_vma for write. This is similar to
2013 * page_lock_anon_vma_read except the write lock is taken to serialise
2014 * against parallel split or collapse operations.
2016 anon_vma = page_get_anon_vma(page);
2017 if (!anon_vma)
2018 goto out;
2019 anon_vma_lock_write(anon_vma);
2021 ret = 0;
2022 if (!PageCompound(page))
2023 goto out_unlock;
2025 BUG_ON(!PageSwapBacked(page));
2026 __split_huge_page(page, anon_vma, list);
2027 count_vm_event(THP_SPLIT);
2029 BUG_ON(PageCompound(page));
2030 out_unlock:
2031 anon_vma_unlock_write(anon_vma);
2032 put_anon_vma(anon_vma);
2033 out:
2034 return ret;
2037 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2039 int hugepage_madvise(struct vm_area_struct *vma,
2040 unsigned long *vm_flags, int advice)
2042 switch (advice) {
2043 case MADV_HUGEPAGE:
2044 #ifdef CONFIG_S390
2046 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2047 * can't handle this properly after s390_enable_sie, so we simply
2048 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2050 if (mm_has_pgste(vma->vm_mm))
2051 return 0;
2052 #endif
2054 * Be somewhat over-protective like KSM for now!
2056 if (*vm_flags & VM_NO_THP)
2057 return -EINVAL;
2058 *vm_flags &= ~VM_NOHUGEPAGE;
2059 *vm_flags |= VM_HUGEPAGE;
2061 * If the vma become good for khugepaged to scan,
2062 * register it here without waiting a page fault that
2063 * may not happen any time soon.
2065 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2066 return -ENOMEM;
2067 break;
2068 case MADV_NOHUGEPAGE:
2070 * Be somewhat over-protective like KSM for now!
2072 if (*vm_flags & VM_NO_THP)
2073 return -EINVAL;
2074 *vm_flags &= ~VM_HUGEPAGE;
2075 *vm_flags |= VM_NOHUGEPAGE;
2077 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2078 * this vma even if we leave the mm registered in khugepaged if
2079 * it got registered before VM_NOHUGEPAGE was set.
2081 break;
2084 return 0;
2087 static int __init khugepaged_slab_init(void)
2089 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2090 sizeof(struct mm_slot),
2091 __alignof__(struct mm_slot), 0, NULL);
2092 if (!mm_slot_cache)
2093 return -ENOMEM;
2095 return 0;
2098 static void __init khugepaged_slab_exit(void)
2100 kmem_cache_destroy(mm_slot_cache);
2103 static inline struct mm_slot *alloc_mm_slot(void)
2105 if (!mm_slot_cache) /* initialization failed */
2106 return NULL;
2107 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2110 static inline void free_mm_slot(struct mm_slot *mm_slot)
2112 kmem_cache_free(mm_slot_cache, mm_slot);
2115 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2117 struct mm_slot *mm_slot;
2119 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2120 if (mm == mm_slot->mm)
2121 return mm_slot;
2123 return NULL;
2126 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2127 struct mm_slot *mm_slot)
2129 mm_slot->mm = mm;
2130 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2133 static inline int khugepaged_test_exit(struct mm_struct *mm)
2135 return atomic_read(&mm->mm_users) == 0;
2138 int __khugepaged_enter(struct mm_struct *mm)
2140 struct mm_slot *mm_slot;
2141 int wakeup;
2143 mm_slot = alloc_mm_slot();
2144 if (!mm_slot)
2145 return -ENOMEM;
2147 /* __khugepaged_exit() must not run from under us */
2148 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2149 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2150 free_mm_slot(mm_slot);
2151 return 0;
2154 spin_lock(&khugepaged_mm_lock);
2155 insert_to_mm_slots_hash(mm, mm_slot);
2157 * Insert just behind the scanning cursor, to let the area settle
2158 * down a little.
2160 wakeup = list_empty(&khugepaged_scan.mm_head);
2161 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2162 spin_unlock(&khugepaged_mm_lock);
2164 atomic_inc(&mm->mm_count);
2165 if (wakeup)
2166 wake_up_interruptible(&khugepaged_wait);
2168 return 0;
2171 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2172 unsigned long vm_flags)
2174 unsigned long hstart, hend;
2175 if (!vma->anon_vma)
2177 * Not yet faulted in so we will register later in the
2178 * page fault if needed.
2180 return 0;
2181 if (vma->vm_ops || (vm_flags & VM_NO_THP))
2182 /* khugepaged not yet working on file or special mappings */
2183 return 0;
2184 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2185 hend = vma->vm_end & HPAGE_PMD_MASK;
2186 if (hstart < hend)
2187 return khugepaged_enter(vma, vm_flags);
2188 return 0;
2191 void __khugepaged_exit(struct mm_struct *mm)
2193 struct mm_slot *mm_slot;
2194 int free = 0;
2196 spin_lock(&khugepaged_mm_lock);
2197 mm_slot = get_mm_slot(mm);
2198 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2199 hash_del(&mm_slot->hash);
2200 list_del(&mm_slot->mm_node);
2201 free = 1;
2203 spin_unlock(&khugepaged_mm_lock);
2205 if (free) {
2206 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2207 free_mm_slot(mm_slot);
2208 mmdrop(mm);
2209 } else if (mm_slot) {
2211 * This is required to serialize against
2212 * khugepaged_test_exit() (which is guaranteed to run
2213 * under mmap sem read mode). Stop here (after we
2214 * return all pagetables will be destroyed) until
2215 * khugepaged has finished working on the pagetables
2216 * under the mmap_sem.
2218 down_write(&mm->mmap_sem);
2219 up_write(&mm->mmap_sem);
2223 static void release_pte_page(struct page *page)
2225 /* 0 stands for page_is_file_cache(page) == false */
2226 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2227 unlock_page(page);
2228 putback_lru_page(page);
2231 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2233 while (--_pte >= pte) {
2234 pte_t pteval = *_pte;
2235 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2236 release_pte_page(pte_page(pteval));
2240 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2241 unsigned long address,
2242 pte_t *pte)
2244 struct page *page;
2245 pte_t *_pte;
2246 int none_or_zero = 0;
2247 bool referenced = false, writable = false;
2248 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2249 _pte++, address += PAGE_SIZE) {
2250 pte_t pteval = *_pte;
2251 if (pte_none(pteval) || (pte_present(pteval) &&
2252 is_zero_pfn(pte_pfn(pteval)))) {
2253 if (!userfaultfd_armed(vma) &&
2254 ++none_or_zero <= khugepaged_max_ptes_none)
2255 continue;
2256 else
2257 goto out;
2259 if (!pte_present(pteval))
2260 goto out;
2261 page = vm_normal_page(vma, address, pteval);
2262 if (unlikely(!page))
2263 goto out;
2265 VM_BUG_ON_PAGE(PageCompound(page), page);
2266 VM_BUG_ON_PAGE(!PageAnon(page), page);
2267 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2270 * We can do it before isolate_lru_page because the
2271 * page can't be freed from under us. NOTE: PG_lock
2272 * is needed to serialize against split_huge_page
2273 * when invoked from the VM.
2275 if (!trylock_page(page))
2276 goto out;
2279 * cannot use mapcount: can't collapse if there's a gup pin.
2280 * The page must only be referenced by the scanned process
2281 * and page swap cache.
2283 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2284 unlock_page(page);
2285 goto out;
2287 if (pte_write(pteval)) {
2288 writable = true;
2289 } else {
2290 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2291 unlock_page(page);
2292 goto out;
2295 * Page is not in the swap cache. It can be collapsed
2296 * into a THP.
2301 * Isolate the page to avoid collapsing an hugepage
2302 * currently in use by the VM.
2304 if (isolate_lru_page(page)) {
2305 unlock_page(page);
2306 goto out;
2308 /* 0 stands for page_is_file_cache(page) == false */
2309 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2310 VM_BUG_ON_PAGE(!PageLocked(page), page);
2311 VM_BUG_ON_PAGE(PageLRU(page), page);
2313 /* If there is no mapped pte young don't collapse the page */
2314 if (pte_young(pteval) ||
2315 page_is_young(page) || PageReferenced(page) ||
2316 mmu_notifier_test_young(vma->vm_mm, address))
2317 referenced = true;
2319 if (likely(referenced && writable))
2320 return 1;
2321 out:
2322 release_pte_pages(pte, _pte);
2323 return 0;
2326 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2327 struct vm_area_struct *vma,
2328 unsigned long address,
2329 spinlock_t *ptl)
2331 pte_t *_pte;
2332 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2333 pte_t pteval = *_pte;
2334 struct page *src_page;
2336 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2337 clear_user_highpage(page, address);
2338 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2339 if (is_zero_pfn(pte_pfn(pteval))) {
2341 * ptl mostly unnecessary.
2343 spin_lock(ptl);
2345 * paravirt calls inside pte_clear here are
2346 * superfluous.
2348 pte_clear(vma->vm_mm, address, _pte);
2349 spin_unlock(ptl);
2351 } else {
2352 src_page = pte_page(pteval);
2353 copy_user_highpage(page, src_page, address, vma);
2354 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2355 release_pte_page(src_page);
2357 * ptl mostly unnecessary, but preempt has to
2358 * be disabled to update the per-cpu stats
2359 * inside page_remove_rmap().
2361 spin_lock(ptl);
2363 * paravirt calls inside pte_clear here are
2364 * superfluous.
2366 pte_clear(vma->vm_mm, address, _pte);
2367 page_remove_rmap(src_page);
2368 spin_unlock(ptl);
2369 free_page_and_swap_cache(src_page);
2372 address += PAGE_SIZE;
2373 page++;
2377 static void khugepaged_alloc_sleep(void)
2379 DEFINE_WAIT(wait);
2381 add_wait_queue(&khugepaged_wait, &wait);
2382 freezable_schedule_timeout_interruptible(
2383 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2384 remove_wait_queue(&khugepaged_wait, &wait);
2387 static int khugepaged_node_load[MAX_NUMNODES];
2389 static bool khugepaged_scan_abort(int nid)
2391 int i;
2394 * If zone_reclaim_mode is disabled, then no extra effort is made to
2395 * allocate memory locally.
2397 if (!zone_reclaim_mode)
2398 return false;
2400 /* If there is a count for this node already, it must be acceptable */
2401 if (khugepaged_node_load[nid])
2402 return false;
2404 for (i = 0; i < MAX_NUMNODES; i++) {
2405 if (!khugepaged_node_load[i])
2406 continue;
2407 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2408 return true;
2410 return false;
2413 #ifdef CONFIG_NUMA
2414 static int khugepaged_find_target_node(void)
2416 static int last_khugepaged_target_node = NUMA_NO_NODE;
2417 int nid, target_node = 0, max_value = 0;
2419 /* find first node with max normal pages hit */
2420 for (nid = 0; nid < MAX_NUMNODES; nid++)
2421 if (khugepaged_node_load[nid] > max_value) {
2422 max_value = khugepaged_node_load[nid];
2423 target_node = nid;
2426 /* do some balance if several nodes have the same hit record */
2427 if (target_node <= last_khugepaged_target_node)
2428 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2429 nid++)
2430 if (max_value == khugepaged_node_load[nid]) {
2431 target_node = nid;
2432 break;
2435 last_khugepaged_target_node = target_node;
2436 return target_node;
2439 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2441 if (IS_ERR(*hpage)) {
2442 if (!*wait)
2443 return false;
2445 *wait = false;
2446 *hpage = NULL;
2447 khugepaged_alloc_sleep();
2448 } else if (*hpage) {
2449 put_page(*hpage);
2450 *hpage = NULL;
2453 return true;
2456 static struct page *
2457 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2458 unsigned long address, int node)
2460 VM_BUG_ON_PAGE(*hpage, *hpage);
2463 * Before allocating the hugepage, release the mmap_sem read lock.
2464 * The allocation can take potentially a long time if it involves
2465 * sync compaction, and we do not need to hold the mmap_sem during
2466 * that. We will recheck the vma after taking it again in write mode.
2468 up_read(&mm->mmap_sem);
2470 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2471 if (unlikely(!*hpage)) {
2472 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2473 *hpage = ERR_PTR(-ENOMEM);
2474 return NULL;
2477 count_vm_event(THP_COLLAPSE_ALLOC);
2478 return *hpage;
2480 #else
2481 static int khugepaged_find_target_node(void)
2483 return 0;
2486 static inline struct page *alloc_hugepage(int defrag)
2488 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2489 HPAGE_PMD_ORDER);
2492 static struct page *khugepaged_alloc_hugepage(bool *wait)
2494 struct page *hpage;
2496 do {
2497 hpage = alloc_hugepage(khugepaged_defrag());
2498 if (!hpage) {
2499 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2500 if (!*wait)
2501 return NULL;
2503 *wait = false;
2504 khugepaged_alloc_sleep();
2505 } else
2506 count_vm_event(THP_COLLAPSE_ALLOC);
2507 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2509 return hpage;
2512 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2514 if (!*hpage)
2515 *hpage = khugepaged_alloc_hugepage(wait);
2517 if (unlikely(!*hpage))
2518 return false;
2520 return true;
2523 static struct page *
2524 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2525 unsigned long address, int node)
2527 up_read(&mm->mmap_sem);
2528 VM_BUG_ON(!*hpage);
2530 return *hpage;
2532 #endif
2534 static bool hugepage_vma_check(struct vm_area_struct *vma)
2536 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2537 (vma->vm_flags & VM_NOHUGEPAGE))
2538 return false;
2540 if (!vma->anon_vma || vma->vm_ops)
2541 return false;
2542 if (is_vma_temporary_stack(vma))
2543 return false;
2544 return !(vma->vm_flags & VM_NO_THP);
2547 static void collapse_huge_page(struct mm_struct *mm,
2548 unsigned long address,
2549 struct page **hpage,
2550 struct vm_area_struct *vma,
2551 int node)
2553 pmd_t *pmd, _pmd;
2554 pte_t *pte;
2555 pgtable_t pgtable;
2556 struct page *new_page;
2557 spinlock_t *pmd_ptl, *pte_ptl;
2558 int isolated;
2559 unsigned long hstart, hend;
2560 struct mem_cgroup *memcg;
2561 unsigned long mmun_start; /* For mmu_notifiers */
2562 unsigned long mmun_end; /* For mmu_notifiers */
2563 gfp_t gfp;
2565 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2567 /* Only allocate from the target node */
2568 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2569 __GFP_THISNODE;
2571 /* release the mmap_sem read lock. */
2572 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2573 if (!new_page)
2574 return;
2576 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2577 gfp, &memcg)))
2578 return;
2581 * Prevent all access to pagetables with the exception of
2582 * gup_fast later hanlded by the ptep_clear_flush and the VM
2583 * handled by the anon_vma lock + PG_lock.
2585 down_write(&mm->mmap_sem);
2586 if (unlikely(khugepaged_test_exit(mm)))
2587 goto out;
2589 vma = find_vma(mm, address);
2590 if (!vma)
2591 goto out;
2592 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2593 hend = vma->vm_end & HPAGE_PMD_MASK;
2594 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2595 goto out;
2596 if (!hugepage_vma_check(vma))
2597 goto out;
2598 pmd = mm_find_pmd(mm, address);
2599 if (!pmd)
2600 goto out;
2602 anon_vma_lock_write(vma->anon_vma);
2604 pte = pte_offset_map(pmd, address);
2605 pte_ptl = pte_lockptr(mm, pmd);
2607 mmun_start = address;
2608 mmun_end = address + HPAGE_PMD_SIZE;
2609 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2610 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2612 * After this gup_fast can't run anymore. This also removes
2613 * any huge TLB entry from the CPU so we won't allow
2614 * huge and small TLB entries for the same virtual address
2615 * to avoid the risk of CPU bugs in that area.
2617 _pmd = pmdp_collapse_flush(vma, address, pmd);
2618 spin_unlock(pmd_ptl);
2619 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2621 spin_lock(pte_ptl);
2622 isolated = __collapse_huge_page_isolate(vma, address, pte);
2623 spin_unlock(pte_ptl);
2625 if (unlikely(!isolated)) {
2626 pte_unmap(pte);
2627 spin_lock(pmd_ptl);
2628 BUG_ON(!pmd_none(*pmd));
2630 * We can only use set_pmd_at when establishing
2631 * hugepmds and never for establishing regular pmds that
2632 * points to regular pagetables. Use pmd_populate for that
2634 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2635 spin_unlock(pmd_ptl);
2636 anon_vma_unlock_write(vma->anon_vma);
2637 goto out;
2641 * All pages are isolated and locked so anon_vma rmap
2642 * can't run anymore.
2644 anon_vma_unlock_write(vma->anon_vma);
2646 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2647 pte_unmap(pte);
2648 __SetPageUptodate(new_page);
2649 pgtable = pmd_pgtable(_pmd);
2651 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2652 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2655 * spin_lock() below is not the equivalent of smp_wmb(), so
2656 * this is needed to avoid the copy_huge_page writes to become
2657 * visible after the set_pmd_at() write.
2659 smp_wmb();
2661 spin_lock(pmd_ptl);
2662 BUG_ON(!pmd_none(*pmd));
2663 page_add_new_anon_rmap(new_page, vma, address);
2664 mem_cgroup_commit_charge(new_page, memcg, false);
2665 lru_cache_add_active_or_unevictable(new_page, vma);
2666 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2667 set_pmd_at(mm, address, pmd, _pmd);
2668 update_mmu_cache_pmd(vma, address, pmd);
2669 spin_unlock(pmd_ptl);
2671 *hpage = NULL;
2673 khugepaged_pages_collapsed++;
2674 out_up_write:
2675 up_write(&mm->mmap_sem);
2676 return;
2678 out:
2679 mem_cgroup_cancel_charge(new_page, memcg);
2680 goto out_up_write;
2683 static int khugepaged_scan_pmd(struct mm_struct *mm,
2684 struct vm_area_struct *vma,
2685 unsigned long address,
2686 struct page **hpage)
2688 pmd_t *pmd;
2689 pte_t *pte, *_pte;
2690 int ret = 0, none_or_zero = 0;
2691 struct page *page;
2692 unsigned long _address;
2693 spinlock_t *ptl;
2694 int node = NUMA_NO_NODE;
2695 bool writable = false, referenced = false;
2697 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2699 pmd = mm_find_pmd(mm, address);
2700 if (!pmd)
2701 goto out;
2703 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2704 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2705 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2706 _pte++, _address += PAGE_SIZE) {
2707 pte_t pteval = *_pte;
2708 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2709 if (!userfaultfd_armed(vma) &&
2710 ++none_or_zero <= khugepaged_max_ptes_none)
2711 continue;
2712 else
2713 goto out_unmap;
2715 if (!pte_present(pteval))
2716 goto out_unmap;
2717 if (pte_write(pteval))
2718 writable = true;
2720 page = vm_normal_page(vma, _address, pteval);
2721 if (unlikely(!page))
2722 goto out_unmap;
2724 * Record which node the original page is from and save this
2725 * information to khugepaged_node_load[].
2726 * Khupaged will allocate hugepage from the node has the max
2727 * hit record.
2729 node = page_to_nid(page);
2730 if (khugepaged_scan_abort(node))
2731 goto out_unmap;
2732 khugepaged_node_load[node]++;
2733 VM_BUG_ON_PAGE(PageCompound(page), page);
2734 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2735 goto out_unmap;
2737 * cannot use mapcount: can't collapse if there's a gup pin.
2738 * The page must only be referenced by the scanned process
2739 * and page swap cache.
2741 if (page_count(page) != 1 + !!PageSwapCache(page))
2742 goto out_unmap;
2743 if (pte_young(pteval) ||
2744 page_is_young(page) || PageReferenced(page) ||
2745 mmu_notifier_test_young(vma->vm_mm, address))
2746 referenced = true;
2748 if (referenced && writable)
2749 ret = 1;
2750 out_unmap:
2751 pte_unmap_unlock(pte, ptl);
2752 if (ret) {
2753 node = khugepaged_find_target_node();
2754 /* collapse_huge_page will return with the mmap_sem released */
2755 collapse_huge_page(mm, address, hpage, vma, node);
2757 out:
2758 return ret;
2761 static void collect_mm_slot(struct mm_slot *mm_slot)
2763 struct mm_struct *mm = mm_slot->mm;
2765 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2767 if (khugepaged_test_exit(mm)) {
2768 /* free mm_slot */
2769 hash_del(&mm_slot->hash);
2770 list_del(&mm_slot->mm_node);
2773 * Not strictly needed because the mm exited already.
2775 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2778 /* khugepaged_mm_lock actually not necessary for the below */
2779 free_mm_slot(mm_slot);
2780 mmdrop(mm);
2784 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2785 struct page **hpage)
2786 __releases(&khugepaged_mm_lock)
2787 __acquires(&khugepaged_mm_lock)
2789 struct mm_slot *mm_slot;
2790 struct mm_struct *mm;
2791 struct vm_area_struct *vma;
2792 int progress = 0;
2794 VM_BUG_ON(!pages);
2795 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2797 if (khugepaged_scan.mm_slot)
2798 mm_slot = khugepaged_scan.mm_slot;
2799 else {
2800 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2801 struct mm_slot, mm_node);
2802 khugepaged_scan.address = 0;
2803 khugepaged_scan.mm_slot = mm_slot;
2805 spin_unlock(&khugepaged_mm_lock);
2807 mm = mm_slot->mm;
2808 down_read(&mm->mmap_sem);
2809 if (unlikely(khugepaged_test_exit(mm)))
2810 vma = NULL;
2811 else
2812 vma = find_vma(mm, khugepaged_scan.address);
2814 progress++;
2815 for (; vma; vma = vma->vm_next) {
2816 unsigned long hstart, hend;
2818 cond_resched();
2819 if (unlikely(khugepaged_test_exit(mm))) {
2820 progress++;
2821 break;
2823 if (!hugepage_vma_check(vma)) {
2824 skip:
2825 progress++;
2826 continue;
2828 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2829 hend = vma->vm_end & HPAGE_PMD_MASK;
2830 if (hstart >= hend)
2831 goto skip;
2832 if (khugepaged_scan.address > hend)
2833 goto skip;
2834 if (khugepaged_scan.address < hstart)
2835 khugepaged_scan.address = hstart;
2836 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2838 while (khugepaged_scan.address < hend) {
2839 int ret;
2840 cond_resched();
2841 if (unlikely(khugepaged_test_exit(mm)))
2842 goto breakouterloop;
2844 VM_BUG_ON(khugepaged_scan.address < hstart ||
2845 khugepaged_scan.address + HPAGE_PMD_SIZE >
2846 hend);
2847 ret = khugepaged_scan_pmd(mm, vma,
2848 khugepaged_scan.address,
2849 hpage);
2850 /* move to next address */
2851 khugepaged_scan.address += HPAGE_PMD_SIZE;
2852 progress += HPAGE_PMD_NR;
2853 if (ret)
2854 /* we released mmap_sem so break loop */
2855 goto breakouterloop_mmap_sem;
2856 if (progress >= pages)
2857 goto breakouterloop;
2860 breakouterloop:
2861 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2862 breakouterloop_mmap_sem:
2864 spin_lock(&khugepaged_mm_lock);
2865 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2867 * Release the current mm_slot if this mm is about to die, or
2868 * if we scanned all vmas of this mm.
2870 if (khugepaged_test_exit(mm) || !vma) {
2872 * Make sure that if mm_users is reaching zero while
2873 * khugepaged runs here, khugepaged_exit will find
2874 * mm_slot not pointing to the exiting mm.
2876 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2877 khugepaged_scan.mm_slot = list_entry(
2878 mm_slot->mm_node.next,
2879 struct mm_slot, mm_node);
2880 khugepaged_scan.address = 0;
2881 } else {
2882 khugepaged_scan.mm_slot = NULL;
2883 khugepaged_full_scans++;
2886 collect_mm_slot(mm_slot);
2889 return progress;
2892 static int khugepaged_has_work(void)
2894 return !list_empty(&khugepaged_scan.mm_head) &&
2895 khugepaged_enabled();
2898 static int khugepaged_wait_event(void)
2900 return !list_empty(&khugepaged_scan.mm_head) ||
2901 kthread_should_stop();
2904 static void khugepaged_do_scan(void)
2906 struct page *hpage = NULL;
2907 unsigned int progress = 0, pass_through_head = 0;
2908 unsigned int pages = khugepaged_pages_to_scan;
2909 bool wait = true;
2911 barrier(); /* write khugepaged_pages_to_scan to local stack */
2913 while (progress < pages) {
2914 if (!khugepaged_prealloc_page(&hpage, &wait))
2915 break;
2917 cond_resched();
2919 if (unlikely(kthread_should_stop() || try_to_freeze()))
2920 break;
2922 spin_lock(&khugepaged_mm_lock);
2923 if (!khugepaged_scan.mm_slot)
2924 pass_through_head++;
2925 if (khugepaged_has_work() &&
2926 pass_through_head < 2)
2927 progress += khugepaged_scan_mm_slot(pages - progress,
2928 &hpage);
2929 else
2930 progress = pages;
2931 spin_unlock(&khugepaged_mm_lock);
2934 if (!IS_ERR_OR_NULL(hpage))
2935 put_page(hpage);
2938 static void khugepaged_wait_work(void)
2940 if (khugepaged_has_work()) {
2941 if (!khugepaged_scan_sleep_millisecs)
2942 return;
2944 wait_event_freezable_timeout(khugepaged_wait,
2945 kthread_should_stop(),
2946 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2947 return;
2950 if (khugepaged_enabled())
2951 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2954 static int khugepaged(void *none)
2956 struct mm_slot *mm_slot;
2958 set_freezable();
2959 set_user_nice(current, MAX_NICE);
2961 while (!kthread_should_stop()) {
2962 khugepaged_do_scan();
2963 khugepaged_wait_work();
2966 spin_lock(&khugepaged_mm_lock);
2967 mm_slot = khugepaged_scan.mm_slot;
2968 khugepaged_scan.mm_slot = NULL;
2969 if (mm_slot)
2970 collect_mm_slot(mm_slot);
2971 spin_unlock(&khugepaged_mm_lock);
2972 return 0;
2975 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2976 unsigned long haddr, pmd_t *pmd)
2978 struct mm_struct *mm = vma->vm_mm;
2979 pgtable_t pgtable;
2980 pmd_t _pmd;
2981 int i;
2983 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2984 /* leave pmd empty until pte is filled */
2986 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2987 pmd_populate(mm, &_pmd, pgtable);
2989 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2990 pte_t *pte, entry;
2991 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2992 entry = pte_mkspecial(entry);
2993 pte = pte_offset_map(&_pmd, haddr);
2994 VM_BUG_ON(!pte_none(*pte));
2995 set_pte_at(mm, haddr, pte, entry);
2996 pte_unmap(pte);
2998 smp_wmb(); /* make pte visible before pmd */
2999 pmd_populate(mm, pmd, pgtable);
3000 put_huge_zero_page();
3003 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3004 pmd_t *pmd)
3006 spinlock_t *ptl;
3007 struct page *page = NULL;
3008 struct mm_struct *mm = vma->vm_mm;
3009 unsigned long haddr = address & HPAGE_PMD_MASK;
3010 unsigned long mmun_start; /* For mmu_notifiers */
3011 unsigned long mmun_end; /* For mmu_notifiers */
3013 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3015 mmun_start = haddr;
3016 mmun_end = haddr + HPAGE_PMD_SIZE;
3017 again:
3018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3019 ptl = pmd_lock(mm, pmd);
3020 if (unlikely(!pmd_trans_huge(*pmd)))
3021 goto unlock;
3022 if (vma_is_dax(vma)) {
3023 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3024 if (is_huge_zero_pmd(_pmd))
3025 put_huge_zero_page();
3026 } else if (is_huge_zero_pmd(*pmd)) {
3027 __split_huge_zero_page_pmd(vma, haddr, pmd);
3028 } else {
3029 page = pmd_page(*pmd);
3030 VM_BUG_ON_PAGE(!page_count(page), page);
3031 get_page(page);
3033 unlock:
3034 spin_unlock(ptl);
3035 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3037 if (!page)
3038 return;
3040 split_huge_page(page);
3041 put_page(page);
3044 * We don't always have down_write of mmap_sem here: a racing
3045 * do_huge_pmd_wp_page() might have copied-on-write to another
3046 * huge page before our split_huge_page() got the anon_vma lock.
3048 if (unlikely(pmd_trans_huge(*pmd)))
3049 goto again;
3052 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3053 pmd_t *pmd)
3055 struct vm_area_struct *vma;
3057 vma = find_vma(mm, address);
3058 BUG_ON(vma == NULL);
3059 split_huge_page_pmd(vma, address, pmd);
3062 static void split_huge_page_address(struct mm_struct *mm,
3063 unsigned long address)
3065 pgd_t *pgd;
3066 pud_t *pud;
3067 pmd_t *pmd;
3069 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3071 pgd = pgd_offset(mm, address);
3072 if (!pgd_present(*pgd))
3073 return;
3075 pud = pud_offset(pgd, address);
3076 if (!pud_present(*pud))
3077 return;
3079 pmd = pmd_offset(pud, address);
3080 if (!pmd_present(*pmd))
3081 return;
3083 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3084 * materialize from under us.
3086 split_huge_page_pmd_mm(mm, address, pmd);
3089 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3090 unsigned long start,
3091 unsigned long end,
3092 long adjust_next)
3095 * If the new start address isn't hpage aligned and it could
3096 * previously contain an hugepage: check if we need to split
3097 * an huge pmd.
3099 if (start & ~HPAGE_PMD_MASK &&
3100 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3101 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3102 split_huge_page_address(vma->vm_mm, start);
3105 * If the new end address isn't hpage aligned and it could
3106 * previously contain an hugepage: check if we need to split
3107 * an huge pmd.
3109 if (end & ~HPAGE_PMD_MASK &&
3110 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3111 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3112 split_huge_page_address(vma->vm_mm, end);
3115 * If we're also updating the vma->vm_next->vm_start, if the new
3116 * vm_next->vm_start isn't page aligned and it could previously
3117 * contain an hugepage: check if we need to split an huge pmd.
3119 if (adjust_next > 0) {
3120 struct vm_area_struct *next = vma->vm_next;
3121 unsigned long nstart = next->vm_start;
3122 nstart += adjust_next << PAGE_SHIFT;
3123 if (nstart & ~HPAGE_PMD_MASK &&
3124 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3125 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3126 split_huge_page_address(next->vm_mm, nstart);