dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / mm / ksm.c
blob0b496edc704b1bfa7c1dc422dc12c55c311452ec
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
75 * KSM solves this problem by several techniques:
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
116 * There is only the one ksm_scan instance of this cursor structure.
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
250 static int __init ksm_slab_init(void)
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
264 return 0;
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
274 static void __init ksm_slab_free(void)
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
282 static inline struct rmap_item *alloc_rmap_item(void)
284 struct rmap_item *rmap_item;
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
293 static inline void free_rmap_item(struct rmap_item *rmap_item)
295 ksm_rmap_items--;
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
300 static inline struct stable_node *alloc_stable_node(void)
302 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
305 static inline void free_stable_node(struct stable_node *stable_node)
307 kmem_cache_free(stable_node_cache, stable_node);
310 static inline struct mm_slot *alloc_mm_slot(void)
312 if (!mm_slot_cache) /* initialization failed */
313 return NULL;
314 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
317 static inline void free_mm_slot(struct mm_slot *mm_slot)
319 kmem_cache_free(mm_slot_cache, mm_slot);
322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
324 struct mm_slot *slot;
326 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327 if (slot->mm == mm)
328 return slot;
330 return NULL;
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 struct mm_slot *mm_slot)
336 mm_slot->mm = mm;
337 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
341 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342 * page tables after it has passed through ksm_exit() - which, if necessary,
343 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
344 * a special flag: they can just back out as soon as mm_users goes to zero.
345 * ksm_test_exit() is used throughout to make this test for exit: in some
346 * places for correctness, in some places just to avoid unnecessary work.
348 static inline bool ksm_test_exit(struct mm_struct *mm)
350 return atomic_read(&mm->mm_users) == 0;
354 * We use break_ksm to break COW on a ksm page: it's a stripped down
356 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357 * put_page(page);
359 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360 * in case the application has unmapped and remapped mm,addr meanwhile.
361 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
362 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
366 struct page *page;
367 int ret = 0;
369 do {
370 cond_resched();
371 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 if (IS_ERR_OR_NULL(page))
373 break;
374 if (PageKsm(page))
375 ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 FAULT_FLAG_WRITE);
377 else
378 ret = VM_FAULT_WRITE;
379 put_page(page);
380 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
382 * We must loop because handle_mm_fault() may back out if there's
383 * any difficulty e.g. if pte accessed bit gets updated concurrently.
385 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 * COW has been broken, even if the vma does not permit VM_WRITE;
387 * but note that a concurrent fault might break PageKsm for us.
389 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 * backing file, which also invalidates anonymous pages: that's
391 * okay, that truncation will have unmapped the PageKsm for us.
393 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 * to user; and ksmd, having no mm, would never be chosen for that.
398 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 * even ksmd can fail in this way - though it's usually breaking ksm
401 * just to undo a merge it made a moment before, so unlikely to oom.
403 * That's a pity: we might therefore have more kernel pages allocated
404 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 * will retry to break_cow on each pass, so should recover the page
406 * in due course. The important thing is to not let VM_MERGEABLE
407 * be cleared while any such pages might remain in the area.
409 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 unsigned long addr)
415 struct vm_area_struct *vma;
416 if (ksm_test_exit(mm))
417 return NULL;
418 vma = find_vma(mm, addr);
419 if (!vma || vma->vm_start > addr)
420 return NULL;
421 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 return NULL;
423 return vma;
426 static void break_cow(struct rmap_item *rmap_item)
428 struct mm_struct *mm = rmap_item->mm;
429 unsigned long addr = rmap_item->address;
430 struct vm_area_struct *vma;
433 * It is not an accident that whenever we want to break COW
434 * to undo, we also need to drop a reference to the anon_vma.
436 put_anon_vma(rmap_item->anon_vma);
438 down_read(&mm->mmap_sem);
439 vma = find_mergeable_vma(mm, addr);
440 if (vma)
441 break_ksm(vma, addr);
442 up_read(&mm->mmap_sem);
445 static struct page *page_trans_compound_anon(struct page *page)
447 if (PageTransCompound(page)) {
448 struct page *head = compound_head(page);
450 * head may actually be splitted and freed from under
451 * us but it's ok here.
453 if (PageAnon(head))
454 return head;
456 return NULL;
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
461 struct mm_struct *mm = rmap_item->mm;
462 unsigned long addr = rmap_item->address;
463 struct vm_area_struct *vma;
464 struct page *page;
466 down_read(&mm->mmap_sem);
467 vma = find_mergeable_vma(mm, addr);
468 if (!vma)
469 goto out;
471 page = follow_page(vma, addr, FOLL_GET);
472 if (IS_ERR_OR_NULL(page))
473 goto out;
474 if (PageAnon(page) || page_trans_compound_anon(page)) {
475 flush_anon_page(vma, page, addr);
476 flush_dcache_page(page);
477 } else {
478 put_page(page);
479 out:
480 page = NULL;
482 up_read(&mm->mmap_sem);
483 return page;
487 * This helper is used for getting right index into array of tree roots.
488 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490 * every node has its own stable and unstable tree.
492 static inline int get_kpfn_nid(unsigned long kpfn)
494 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
499 struct rmap_item *rmap_item;
501 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502 if (rmap_item->hlist.next)
503 ksm_pages_sharing--;
504 else
505 ksm_pages_shared--;
506 put_anon_vma(rmap_item->anon_vma);
507 rmap_item->address &= PAGE_MASK;
508 cond_resched();
511 if (stable_node->head == &migrate_nodes)
512 list_del(&stable_node->list);
513 else
514 rb_erase(&stable_node->node,
515 root_stable_tree + NUMA(stable_node->nid));
516 free_stable_node(stable_node);
520 * get_ksm_page: checks if the page indicated by the stable node
521 * is still its ksm page, despite having held no reference to it.
522 * In which case we can trust the content of the page, and it
523 * returns the gotten page; but if the page has now been zapped,
524 * remove the stale node from the stable tree and return NULL.
525 * But beware, the stable node's page might be being migrated.
527 * You would expect the stable_node to hold a reference to the ksm page.
528 * But if it increments the page's count, swapping out has to wait for
529 * ksmd to come around again before it can free the page, which may take
530 * seconds or even minutes: much too unresponsive. So instead we use a
531 * "keyhole reference": access to the ksm page from the stable node peeps
532 * out through its keyhole to see if that page still holds the right key,
533 * pointing back to this stable node. This relies on freeing a PageAnon
534 * page to reset its page->mapping to NULL, and relies on no other use of
535 * a page to put something that might look like our key in page->mapping.
536 * is on its way to being freed; but it is an anomaly to bear in mind.
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
540 struct page *page;
541 void *expected_mapping;
542 unsigned long kpfn;
544 expected_mapping = (void *)stable_node +
545 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547 kpfn = READ_ONCE(stable_node->kpfn);
548 page = pfn_to_page(kpfn);
551 * page is computed from kpfn, so on most architectures reading
552 * page->mapping is naturally ordered after reading node->kpfn,
553 * but on Alpha we need to be more careful.
555 smp_read_barrier_depends();
556 if (READ_ONCE(page->mapping) != expected_mapping)
557 goto stale;
560 * We cannot do anything with the page while its refcount is 0.
561 * Usually 0 means free, or tail of a higher-order page: in which
562 * case this node is no longer referenced, and should be freed;
563 * however, it might mean that the page is under page_freeze_refs().
564 * The __remove_mapping() case is easy, again the node is now stale;
565 * but if page is swapcache in migrate_page_move_mapping(), it might
566 * still be our page, in which case it's essential to keep the node.
568 while (!get_page_unless_zero(page)) {
570 * Another check for page->mapping != expected_mapping would
571 * work here too. We have chosen the !PageSwapCache test to
572 * optimize the common case, when the page is or is about to
573 * be freed: PageSwapCache is cleared (under spin_lock_irq)
574 * in the freeze_refs section of __remove_mapping(); but Anon
575 * page->mapping reset to NULL later, in free_pages_prepare().
577 if (!PageSwapCache(page))
578 goto stale;
579 cpu_relax();
582 if (READ_ONCE(page->mapping) != expected_mapping) {
583 put_page(page);
584 goto stale;
587 if (lock_it) {
588 lock_page(page);
589 if (READ_ONCE(page->mapping) != expected_mapping) {
590 unlock_page(page);
591 put_page(page);
592 goto stale;
595 return page;
597 stale:
599 * We come here from above when page->mapping or !PageSwapCache
600 * suggests that the node is stale; but it might be under migration.
601 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602 * before checking whether node->kpfn has been changed.
604 smp_rmb();
605 if (READ_ONCE(stable_node->kpfn) != kpfn)
606 goto again;
607 remove_node_from_stable_tree(stable_node);
608 return NULL;
612 * Removing rmap_item from stable or unstable tree.
613 * This function will clean the information from the stable/unstable tree.
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
617 if (rmap_item->address & STABLE_FLAG) {
618 struct stable_node *stable_node;
619 struct page *page;
621 stable_node = rmap_item->head;
622 page = get_ksm_page(stable_node, true);
623 if (!page)
624 goto out;
626 hlist_del(&rmap_item->hlist);
627 unlock_page(page);
628 put_page(page);
630 if (!hlist_empty(&stable_node->hlist))
631 ksm_pages_sharing--;
632 else
633 ksm_pages_shared--;
635 put_anon_vma(rmap_item->anon_vma);
636 rmap_item->address &= PAGE_MASK;
638 } else if (rmap_item->address & UNSTABLE_FLAG) {
639 unsigned char age;
641 * Usually ksmd can and must skip the rb_erase, because
642 * root_unstable_tree was already reset to RB_ROOT.
643 * But be careful when an mm is exiting: do the rb_erase
644 * if this rmap_item was inserted by this scan, rather
645 * than left over from before.
647 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
648 BUG_ON(age > 1);
649 if (!age)
650 rb_erase(&rmap_item->node,
651 root_unstable_tree + NUMA(rmap_item->nid));
652 ksm_pages_unshared--;
653 rmap_item->address &= PAGE_MASK;
655 out:
656 cond_resched(); /* we're called from many long loops */
659 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
660 struct rmap_item **rmap_list)
662 while (*rmap_list) {
663 struct rmap_item *rmap_item = *rmap_list;
664 *rmap_list = rmap_item->rmap_list;
665 remove_rmap_item_from_tree(rmap_item);
666 free_rmap_item(rmap_item);
671 * Though it's very tempting to unmerge rmap_items from stable tree rather
672 * than check every pte of a given vma, the locking doesn't quite work for
673 * that - an rmap_item is assigned to the stable tree after inserting ksm
674 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
675 * rmap_items from parent to child at fork time (so as not to waste time
676 * if exit comes before the next scan reaches it).
678 * Similarly, although we'd like to remove rmap_items (so updating counts
679 * and freeing memory) when unmerging an area, it's easier to leave that
680 * to the next pass of ksmd - consider, for example, how ksmd might be
681 * in cmp_and_merge_page on one of the rmap_items we would be removing.
683 static int unmerge_ksm_pages(struct vm_area_struct *vma,
684 unsigned long start, unsigned long end)
686 unsigned long addr;
687 int err = 0;
689 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
690 if (ksm_test_exit(vma->vm_mm))
691 break;
692 if (signal_pending(current))
693 err = -ERESTARTSYS;
694 else
695 err = break_ksm(vma, addr);
697 return err;
700 #ifdef CONFIG_SYSFS
702 * Only called through the sysfs control interface:
704 static int remove_stable_node(struct stable_node *stable_node)
706 struct page *page;
707 int err;
709 page = get_ksm_page(stable_node, true);
710 if (!page) {
712 * get_ksm_page did remove_node_from_stable_tree itself.
714 return 0;
717 if (WARN_ON_ONCE(page_mapped(page))) {
719 * This should not happen: but if it does, just refuse to let
720 * merge_across_nodes be switched - there is no need to panic.
722 err = -EBUSY;
723 } else {
725 * The stable node did not yet appear stale to get_ksm_page(),
726 * since that allows for an unmapped ksm page to be recognized
727 * right up until it is freed; but the node is safe to remove.
728 * This page might be in a pagevec waiting to be freed,
729 * or it might be PageSwapCache (perhaps under writeback),
730 * or it might have been removed from swapcache a moment ago.
732 set_page_stable_node(page, NULL);
733 remove_node_from_stable_tree(stable_node);
734 err = 0;
737 unlock_page(page);
738 put_page(page);
739 return err;
742 static int remove_all_stable_nodes(void)
744 struct stable_node *stable_node;
745 struct list_head *this, *next;
746 int nid;
747 int err = 0;
749 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
750 while (root_stable_tree[nid].rb_node) {
751 stable_node = rb_entry(root_stable_tree[nid].rb_node,
752 struct stable_node, node);
753 if (remove_stable_node(stable_node)) {
754 err = -EBUSY;
755 break; /* proceed to next nid */
757 cond_resched();
760 list_for_each_safe(this, next, &migrate_nodes) {
761 stable_node = list_entry(this, struct stable_node, list);
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
766 return err;
769 static int unmerge_and_remove_all_rmap_items(void)
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
798 spin_lock(&ksm_mmlist_lock);
799 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
800 struct mm_slot, mm_list);
801 if (ksm_test_exit(mm)) {
802 hash_del(&mm_slot->link);
803 list_del(&mm_slot->mm_list);
804 spin_unlock(&ksm_mmlist_lock);
806 free_mm_slot(mm_slot);
807 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
808 up_read(&mm->mmap_sem);
809 mmdrop(mm);
810 } else {
811 spin_unlock(&ksm_mmlist_lock);
812 up_read(&mm->mmap_sem);
816 /* Clean up stable nodes, but don't worry if some are still busy */
817 remove_all_stable_nodes();
818 ksm_scan.seqnr = 0;
819 return 0;
821 error:
822 up_read(&mm->mmap_sem);
823 spin_lock(&ksm_mmlist_lock);
824 ksm_scan.mm_slot = &ksm_mm_head;
825 spin_unlock(&ksm_mmlist_lock);
826 return err;
828 #endif /* CONFIG_SYSFS */
830 static u32 calc_checksum(struct page *page)
832 u32 checksum;
833 void *addr = kmap_atomic(page);
834 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835 kunmap_atomic(addr);
836 return checksum;
839 static int memcmp_pages(struct page *page1, struct page *page2)
841 char *addr1, *addr2;
842 int ret;
844 addr1 = kmap_atomic(page1);
845 addr2 = kmap_atomic(page2);
846 ret = memcmp(addr1, addr2, PAGE_SIZE);
847 kunmap_atomic(addr2);
848 kunmap_atomic(addr1);
849 return ret;
852 static inline int pages_identical(struct page *page1, struct page *page2)
854 return !memcmp_pages(page1, page2);
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858 pte_t *orig_pte)
860 struct mm_struct *mm = vma->vm_mm;
861 unsigned long addr;
862 pte_t *ptep;
863 spinlock_t *ptl;
864 int swapped;
865 int err = -EFAULT;
866 unsigned long mmun_start; /* For mmu_notifiers */
867 unsigned long mmun_end; /* For mmu_notifiers */
869 addr = page_address_in_vma(page, vma);
870 if (addr == -EFAULT)
871 goto out;
873 BUG_ON(PageTransCompound(page));
875 mmun_start = addr;
876 mmun_end = addr + PAGE_SIZE;
877 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879 ptep = page_check_address(page, mm, addr, &ptl, 0);
880 if (!ptep)
881 goto out_mn;
883 if (pte_write(*ptep) || pte_dirty(*ptep)) {
884 pte_t entry;
886 swapped = PageSwapCache(page);
887 flush_cache_page(vma, addr, page_to_pfn(page));
889 * Ok this is tricky, when get_user_pages_fast() run it doesn't
890 * take any lock, therefore the check that we are going to make
891 * with the pagecount against the mapcount is racey and
892 * O_DIRECT can happen right after the check.
893 * So we clear the pte and flush the tlb before the check
894 * this assure us that no O_DIRECT can happen after the check
895 * or in the middle of the check.
897 entry = ptep_clear_flush_notify(vma, addr, ptep);
899 * Check that no O_DIRECT or similar I/O is in progress on the
900 * page
902 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903 set_pte_at(mm, addr, ptep, entry);
904 goto out_unlock;
906 if (pte_dirty(entry))
907 set_page_dirty(page);
908 entry = pte_mkclean(pte_wrprotect(entry));
909 set_pte_at_notify(mm, addr, ptep, entry);
911 *orig_pte = *ptep;
912 err = 0;
914 out_unlock:
915 pte_unmap_unlock(ptep, ptl);
916 out_mn:
917 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919 return err;
923 * replace_page - replace page in vma by new ksm page
924 * @vma: vma that holds the pte pointing to page
925 * @page: the page we are replacing by kpage
926 * @kpage: the ksm page we replace page by
927 * @orig_pte: the original value of the pte
929 * Returns 0 on success, -EFAULT on failure.
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932 struct page *kpage, pte_t orig_pte)
934 struct mm_struct *mm = vma->vm_mm;
935 pmd_t *pmd;
936 pte_t *ptep;
937 spinlock_t *ptl;
938 unsigned long addr;
939 int err = -EFAULT;
940 unsigned long mmun_start; /* For mmu_notifiers */
941 unsigned long mmun_end; /* For mmu_notifiers */
943 addr = page_address_in_vma(page, vma);
944 if (addr == -EFAULT)
945 goto out;
947 pmd = mm_find_pmd(mm, addr);
948 if (!pmd)
949 goto out;
951 mmun_start = addr;
952 mmun_end = addr + PAGE_SIZE;
953 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
956 if (!pte_same(*ptep, orig_pte)) {
957 pte_unmap_unlock(ptep, ptl);
958 goto out_mn;
961 get_page(kpage);
962 page_add_anon_rmap(kpage, vma, addr);
964 flush_cache_page(vma, addr, pte_pfn(*ptep));
965 ptep_clear_flush_notify(vma, addr, ptep);
966 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
968 page_remove_rmap(page);
969 if (!page_mapped(page))
970 try_to_free_swap(page);
971 put_page(page);
973 pte_unmap_unlock(ptep, ptl);
974 err = 0;
975 out_mn:
976 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
977 out:
978 return err;
981 static int page_trans_compound_anon_split(struct page *page)
983 int ret = 0;
984 struct page *transhuge_head = page_trans_compound_anon(page);
985 if (transhuge_head) {
986 /* Get the reference on the head to split it. */
987 if (get_page_unless_zero(transhuge_head)) {
989 * Recheck we got the reference while the head
990 * was still anonymous.
992 if (PageAnon(transhuge_head))
993 ret = split_huge_page(transhuge_head);
994 else
996 * Retry later if split_huge_page run
997 * from under us.
999 ret = 1;
1000 put_page(transhuge_head);
1001 } else
1002 /* Retry later if split_huge_page run from under us. */
1003 ret = 1;
1005 return ret;
1009 * try_to_merge_one_page - take two pages and merge them into one
1010 * @vma: the vma that holds the pte pointing to page
1011 * @page: the PageAnon page that we want to replace with kpage
1012 * @kpage: the PageKsm page that we want to map instead of page,
1013 * or NULL the first time when we want to use page as kpage.
1015 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1017 static int try_to_merge_one_page(struct vm_area_struct *vma,
1018 struct page *page, struct page *kpage)
1020 pte_t orig_pte = __pte(0);
1021 int err = -EFAULT;
1023 if (page == kpage) /* ksm page forked */
1024 return 0;
1026 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1027 goto out;
1028 BUG_ON(PageTransCompound(page));
1029 if (!PageAnon(page))
1030 goto out;
1033 * We need the page lock to read a stable PageSwapCache in
1034 * write_protect_page(). We use trylock_page() instead of
1035 * lock_page() because we don't want to wait here - we
1036 * prefer to continue scanning and merging different pages,
1037 * then come back to this page when it is unlocked.
1039 if (!trylock_page(page))
1040 goto out;
1042 * If this anonymous page is mapped only here, its pte may need
1043 * to be write-protected. If it's mapped elsewhere, all of its
1044 * ptes are necessarily already write-protected. But in either
1045 * case, we need to lock and check page_count is not raised.
1047 if (write_protect_page(vma, page, &orig_pte) == 0) {
1048 if (!kpage) {
1050 * While we hold page lock, upgrade page from
1051 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1052 * stable_tree_insert() will update stable_node.
1054 set_page_stable_node(page, NULL);
1055 mark_page_accessed(page);
1056 err = 0;
1057 } else if (pages_identical(page, kpage))
1058 err = replace_page(vma, page, kpage, orig_pte);
1061 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1062 munlock_vma_page(page);
1063 if (!PageMlocked(kpage)) {
1064 unlock_page(page);
1065 lock_page(kpage);
1066 mlock_vma_page(kpage);
1067 page = kpage; /* for final unlock */
1071 unlock_page(page);
1072 out:
1073 return err;
1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078 * but no new kernel page is allocated: kpage must already be a ksm page.
1080 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083 struct page *page, struct page *kpage)
1085 struct mm_struct *mm = rmap_item->mm;
1086 struct vm_area_struct *vma;
1087 int err = -EFAULT;
1089 down_read(&mm->mmap_sem);
1090 vma = find_mergeable_vma(mm, rmap_item->address);
1091 if (!vma)
1092 goto out;
1094 err = try_to_merge_one_page(vma, page, kpage);
1095 if (err)
1096 goto out;
1098 /* Unstable nid is in union with stable anon_vma: remove first */
1099 remove_rmap_item_from_tree(rmap_item);
1101 /* Must get reference to anon_vma while still holding mmap_sem */
1102 rmap_item->anon_vma = vma->anon_vma;
1103 get_anon_vma(vma->anon_vma);
1104 out:
1105 up_read(&mm->mmap_sem);
1106 return err;
1110 * try_to_merge_two_pages - take two identical pages and prepare them
1111 * to be merged into one page.
1113 * This function returns the kpage if we successfully merged two identical
1114 * pages into one ksm page, NULL otherwise.
1116 * Note that this function upgrades page to ksm page: if one of the pages
1117 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120 struct page *page,
1121 struct rmap_item *tree_rmap_item,
1122 struct page *tree_page)
1124 int err;
1126 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127 if (!err) {
1128 err = try_to_merge_with_ksm_page(tree_rmap_item,
1129 tree_page, page);
1131 * If that fails, we have a ksm page with only one pte
1132 * pointing to it: so break it.
1134 if (err)
1135 break_cow(rmap_item);
1137 return err ? NULL : page;
1141 * stable_tree_search - search for page inside the stable tree
1143 * This function checks if there is a page inside the stable tree
1144 * with identical content to the page that we are scanning right now.
1146 * This function returns the stable tree node of identical content if found,
1147 * NULL otherwise.
1149 static struct page *stable_tree_search(struct page *page)
1151 int nid;
1152 struct rb_root *root;
1153 struct rb_node **new;
1154 struct rb_node *parent;
1155 struct stable_node *stable_node;
1156 struct stable_node *page_node;
1158 page_node = page_stable_node(page);
1159 if (page_node && page_node->head != &migrate_nodes) {
1160 /* ksm page forked */
1161 get_page(page);
1162 return page;
1165 nid = get_kpfn_nid(page_to_pfn(page));
1166 root = root_stable_tree + nid;
1167 again:
1168 new = &root->rb_node;
1169 parent = NULL;
1171 while (*new) {
1172 struct page *tree_page;
1173 int ret;
1175 cond_resched();
1176 stable_node = rb_entry(*new, struct stable_node, node);
1177 tree_page = get_ksm_page(stable_node, false);
1178 if (!tree_page) {
1180 * If we walked over a stale stable_node,
1181 * get_ksm_page() will call rb_erase() and it
1182 * may rebalance the tree from under us. So
1183 * restart the search from scratch. Returning
1184 * NULL would be safe too, but we'd generate
1185 * false negative insertions just because some
1186 * stable_node was stale.
1188 goto again;
1191 ret = memcmp_pages(page, tree_page);
1192 put_page(tree_page);
1194 parent = *new;
1195 if (ret < 0)
1196 new = &parent->rb_left;
1197 else if (ret > 0)
1198 new = &parent->rb_right;
1199 else {
1201 * Lock and unlock the stable_node's page (which
1202 * might already have been migrated) so that page
1203 * migration is sure to notice its raised count.
1204 * It would be more elegant to return stable_node
1205 * than kpage, but that involves more changes.
1207 tree_page = get_ksm_page(stable_node, true);
1208 if (tree_page) {
1209 unlock_page(tree_page);
1210 if (get_kpfn_nid(stable_node->kpfn) !=
1211 NUMA(stable_node->nid)) {
1212 put_page(tree_page);
1213 goto replace;
1215 return tree_page;
1218 * There is now a place for page_node, but the tree may
1219 * have been rebalanced, so re-evaluate parent and new.
1221 if (page_node)
1222 goto again;
1223 return NULL;
1227 if (!page_node)
1228 return NULL;
1230 list_del(&page_node->list);
1231 DO_NUMA(page_node->nid = nid);
1232 rb_link_node(&page_node->node, parent, new);
1233 rb_insert_color(&page_node->node, root);
1234 get_page(page);
1235 return page;
1237 replace:
1238 if (page_node) {
1239 list_del(&page_node->list);
1240 DO_NUMA(page_node->nid = nid);
1241 rb_replace_node(&stable_node->node, &page_node->node, root);
1242 get_page(page);
1243 } else {
1244 rb_erase(&stable_node->node, root);
1245 page = NULL;
1247 stable_node->head = &migrate_nodes;
1248 list_add(&stable_node->list, stable_node->head);
1249 return page;
1253 * stable_tree_insert - insert stable tree node pointing to new ksm page
1254 * into the stable tree.
1256 * This function returns the stable tree node just allocated on success,
1257 * NULL otherwise.
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1261 int nid;
1262 unsigned long kpfn;
1263 struct rb_root *root;
1264 struct rb_node **new;
1265 struct rb_node *parent;
1266 struct stable_node *stable_node;
1268 kpfn = page_to_pfn(kpage);
1269 nid = get_kpfn_nid(kpfn);
1270 root = root_stable_tree + nid;
1271 again:
1272 parent = NULL;
1273 new = &root->rb_node;
1275 while (*new) {
1276 struct page *tree_page;
1277 int ret;
1279 cond_resched();
1280 stable_node = rb_entry(*new, struct stable_node, node);
1281 tree_page = get_ksm_page(stable_node, false);
1282 if (!tree_page) {
1284 * If we walked over a stale stable_node,
1285 * get_ksm_page() will call rb_erase() and it
1286 * may rebalance the tree from under us. So
1287 * restart the search from scratch. Returning
1288 * NULL would be safe too, but we'd generate
1289 * false negative insertions just because some
1290 * stable_node was stale.
1292 goto again;
1295 ret = memcmp_pages(kpage, tree_page);
1296 put_page(tree_page);
1298 parent = *new;
1299 if (ret < 0)
1300 new = &parent->rb_left;
1301 else if (ret > 0)
1302 new = &parent->rb_right;
1303 else {
1305 * It is not a bug that stable_tree_search() didn't
1306 * find this node: because at that time our page was
1307 * not yet write-protected, so may have changed since.
1309 return NULL;
1313 stable_node = alloc_stable_node();
1314 if (!stable_node)
1315 return NULL;
1317 INIT_HLIST_HEAD(&stable_node->hlist);
1318 stable_node->kpfn = kpfn;
1319 set_page_stable_node(kpage, stable_node);
1320 DO_NUMA(stable_node->nid = nid);
1321 rb_link_node(&stable_node->node, parent, new);
1322 rb_insert_color(&stable_node->node, root);
1324 return stable_node;
1328 * unstable_tree_search_insert - search for identical page,
1329 * else insert rmap_item into the unstable tree.
1331 * This function searches for a page in the unstable tree identical to the
1332 * page currently being scanned; and if no identical page is found in the
1333 * tree, we insert rmap_item as a new object into the unstable tree.
1335 * This function returns pointer to rmap_item found to be identical
1336 * to the currently scanned page, NULL otherwise.
1338 * This function does both searching and inserting, because they share
1339 * the same walking algorithm in an rbtree.
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343 struct page *page,
1344 struct page **tree_pagep)
1346 struct rb_node **new;
1347 struct rb_root *root;
1348 struct rb_node *parent = NULL;
1349 int nid;
1351 nid = get_kpfn_nid(page_to_pfn(page));
1352 root = root_unstable_tree + nid;
1353 new = &root->rb_node;
1355 while (*new) {
1356 struct rmap_item *tree_rmap_item;
1357 struct page *tree_page;
1358 int ret;
1360 cond_resched();
1361 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362 tree_page = get_mergeable_page(tree_rmap_item);
1363 if (!tree_page)
1364 return NULL;
1367 * Don't substitute a ksm page for a forked page.
1369 if (page == tree_page) {
1370 put_page(tree_page);
1371 return NULL;
1374 ret = memcmp_pages(page, tree_page);
1376 parent = *new;
1377 if (ret < 0) {
1378 put_page(tree_page);
1379 new = &parent->rb_left;
1380 } else if (ret > 0) {
1381 put_page(tree_page);
1382 new = &parent->rb_right;
1383 } else if (!ksm_merge_across_nodes &&
1384 page_to_nid(tree_page) != nid) {
1386 * If tree_page has been migrated to another NUMA node,
1387 * it will be flushed out and put in the right unstable
1388 * tree next time: only merge with it when across_nodes.
1390 put_page(tree_page);
1391 return NULL;
1392 } else {
1393 *tree_pagep = tree_page;
1394 return tree_rmap_item;
1398 rmap_item->address |= UNSTABLE_FLAG;
1399 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400 DO_NUMA(rmap_item->nid = nid);
1401 rb_link_node(&rmap_item->node, parent, new);
1402 rb_insert_color(&rmap_item->node, root);
1404 ksm_pages_unshared++;
1405 return NULL;
1409 * stable_tree_append - add another rmap_item to the linked list of
1410 * rmap_items hanging off a given node of the stable tree, all sharing
1411 * the same ksm page.
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414 struct stable_node *stable_node)
1416 rmap_item->head = stable_node;
1417 rmap_item->address |= STABLE_FLAG;
1418 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1420 if (rmap_item->hlist.next)
1421 ksm_pages_sharing++;
1422 else
1423 ksm_pages_shared++;
1427 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428 * if not, compare checksum to previous and if it's the same, see if page can
1429 * be inserted into the unstable tree, or merged with a page already there and
1430 * both transferred to the stable tree.
1432 * @page: the page that we are searching identical page to.
1433 * @rmap_item: the reverse mapping into the virtual address of this page
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1437 struct rmap_item *tree_rmap_item;
1438 struct page *tree_page = NULL;
1439 struct stable_node *stable_node;
1440 struct page *kpage;
1441 unsigned int checksum;
1442 int err;
1444 stable_node = page_stable_node(page);
1445 if (stable_node) {
1446 if (stable_node->head != &migrate_nodes &&
1447 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448 rb_erase(&stable_node->node,
1449 root_stable_tree + NUMA(stable_node->nid));
1450 stable_node->head = &migrate_nodes;
1451 list_add(&stable_node->list, stable_node->head);
1453 if (stable_node->head != &migrate_nodes &&
1454 rmap_item->head == stable_node)
1455 return;
1458 /* We first start with searching the page inside the stable tree */
1459 kpage = stable_tree_search(page);
1460 if (kpage == page && rmap_item->head == stable_node) {
1461 put_page(kpage);
1462 return;
1465 remove_rmap_item_from_tree(rmap_item);
1467 if (kpage) {
1468 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469 if (!err) {
1471 * The page was successfully merged:
1472 * add its rmap_item to the stable tree.
1474 lock_page(kpage);
1475 stable_tree_append(rmap_item, page_stable_node(kpage));
1476 unlock_page(kpage);
1478 put_page(kpage);
1479 return;
1483 * If the hash value of the page has changed from the last time
1484 * we calculated it, this page is changing frequently: therefore we
1485 * don't want to insert it in the unstable tree, and we don't want
1486 * to waste our time searching for something identical to it there.
1488 checksum = calc_checksum(page);
1489 if (rmap_item->oldchecksum != checksum) {
1490 rmap_item->oldchecksum = checksum;
1491 return;
1494 tree_rmap_item =
1495 unstable_tree_search_insert(rmap_item, page, &tree_page);
1496 if (tree_rmap_item) {
1497 bool split;
1499 kpage = try_to_merge_two_pages(rmap_item, page,
1500 tree_rmap_item, tree_page);
1502 * If both pages we tried to merge belong to the same compound
1503 * page, then we actually ended up increasing the reference
1504 * count of the same compound page twice, and split_huge_page
1505 * failed.
1506 * Here we set a flag if that happened, and we use it later to
1507 * try split_huge_page again. Since we call put_page right
1508 * afterwards, the reference count will be correct and
1509 * split_huge_page should succeed.
1511 split = PageTransCompound(page)
1512 && compound_head(page) == compound_head(tree_page);
1513 put_page(tree_page);
1514 if (kpage) {
1516 * The pages were successfully merged: insert new
1517 * node in the stable tree and add both rmap_items.
1519 lock_page(kpage);
1520 stable_node = stable_tree_insert(kpage);
1521 if (stable_node) {
1522 stable_tree_append(tree_rmap_item, stable_node);
1523 stable_tree_append(rmap_item, stable_node);
1525 unlock_page(kpage);
1528 * If we fail to insert the page into the stable tree,
1529 * we will have 2 virtual addresses that are pointing
1530 * to a ksm page left outside the stable tree,
1531 * in which case we need to break_cow on both.
1533 if (!stable_node) {
1534 break_cow(tree_rmap_item);
1535 break_cow(rmap_item);
1537 } else if (split) {
1539 * We are here if we tried to merge two pages and
1540 * failed because they both belonged to the same
1541 * compound page. We will split the page now, but no
1542 * merging will take place.
1543 * We do not want to add the cost of a full lock; if
1544 * the page is locked, it is better to skip it and
1545 * perhaps try again later.
1547 if (!trylock_page(page))
1548 return;
1549 split_huge_page(page);
1550 unlock_page(page);
1555 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1556 struct rmap_item **rmap_list,
1557 unsigned long addr)
1559 struct rmap_item *rmap_item;
1561 while (*rmap_list) {
1562 rmap_item = *rmap_list;
1563 if ((rmap_item->address & PAGE_MASK) == addr)
1564 return rmap_item;
1565 if (rmap_item->address > addr)
1566 break;
1567 *rmap_list = rmap_item->rmap_list;
1568 remove_rmap_item_from_tree(rmap_item);
1569 free_rmap_item(rmap_item);
1572 rmap_item = alloc_rmap_item();
1573 if (rmap_item) {
1574 /* It has already been zeroed */
1575 rmap_item->mm = mm_slot->mm;
1576 rmap_item->address = addr;
1577 rmap_item->rmap_list = *rmap_list;
1578 *rmap_list = rmap_item;
1580 return rmap_item;
1583 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1585 struct mm_struct *mm;
1586 struct mm_slot *slot;
1587 struct vm_area_struct *vma;
1588 struct rmap_item *rmap_item;
1589 int nid;
1591 if (list_empty(&ksm_mm_head.mm_list))
1592 return NULL;
1594 slot = ksm_scan.mm_slot;
1595 if (slot == &ksm_mm_head) {
1597 * A number of pages can hang around indefinitely on per-cpu
1598 * pagevecs, raised page count preventing write_protect_page
1599 * from merging them. Though it doesn't really matter much,
1600 * it is puzzling to see some stuck in pages_volatile until
1601 * other activity jostles them out, and they also prevented
1602 * LTP's KSM test from succeeding deterministically; so drain
1603 * them here (here rather than on entry to ksm_do_scan(),
1604 * so we don't IPI too often when pages_to_scan is set low).
1606 lru_add_drain_all();
1609 * Whereas stale stable_nodes on the stable_tree itself
1610 * get pruned in the regular course of stable_tree_search(),
1611 * those moved out to the migrate_nodes list can accumulate:
1612 * so prune them once before each full scan.
1614 if (!ksm_merge_across_nodes) {
1615 struct stable_node *stable_node;
1616 struct list_head *this, *next;
1617 struct page *page;
1619 list_for_each_safe(this, next, &migrate_nodes) {
1620 stable_node = list_entry(this,
1621 struct stable_node, list);
1622 page = get_ksm_page(stable_node, false);
1623 if (page)
1624 put_page(page);
1625 cond_resched();
1629 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1630 root_unstable_tree[nid] = RB_ROOT;
1632 spin_lock(&ksm_mmlist_lock);
1633 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1634 ksm_scan.mm_slot = slot;
1635 spin_unlock(&ksm_mmlist_lock);
1637 * Although we tested list_empty() above, a racing __ksm_exit
1638 * of the last mm on the list may have removed it since then.
1640 if (slot == &ksm_mm_head)
1641 return NULL;
1642 next_mm:
1643 ksm_scan.address = 0;
1644 ksm_scan.rmap_list = &slot->rmap_list;
1647 mm = slot->mm;
1648 down_read(&mm->mmap_sem);
1649 if (ksm_test_exit(mm))
1650 vma = NULL;
1651 else
1652 vma = find_vma(mm, ksm_scan.address);
1654 for (; vma; vma = vma->vm_next) {
1655 if (!(vma->vm_flags & VM_MERGEABLE))
1656 continue;
1657 if (ksm_scan.address < vma->vm_start)
1658 ksm_scan.address = vma->vm_start;
1659 if (!vma->anon_vma)
1660 ksm_scan.address = vma->vm_end;
1662 while (ksm_scan.address < vma->vm_end) {
1663 if (ksm_test_exit(mm))
1664 break;
1665 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1666 if (IS_ERR_OR_NULL(*page)) {
1667 ksm_scan.address += PAGE_SIZE;
1668 cond_resched();
1669 continue;
1671 if (PageAnon(*page) ||
1672 page_trans_compound_anon(*page)) {
1673 flush_anon_page(vma, *page, ksm_scan.address);
1674 flush_dcache_page(*page);
1675 rmap_item = get_next_rmap_item(slot,
1676 ksm_scan.rmap_list, ksm_scan.address);
1677 if (rmap_item) {
1678 ksm_scan.rmap_list =
1679 &rmap_item->rmap_list;
1680 ksm_scan.address += PAGE_SIZE;
1681 } else
1682 put_page(*page);
1683 up_read(&mm->mmap_sem);
1684 return rmap_item;
1686 put_page(*page);
1687 ksm_scan.address += PAGE_SIZE;
1688 cond_resched();
1692 if (ksm_test_exit(mm)) {
1693 ksm_scan.address = 0;
1694 ksm_scan.rmap_list = &slot->rmap_list;
1697 * Nuke all the rmap_items that are above this current rmap:
1698 * because there were no VM_MERGEABLE vmas with such addresses.
1700 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1702 spin_lock(&ksm_mmlist_lock);
1703 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1704 struct mm_slot, mm_list);
1705 if (ksm_scan.address == 0) {
1707 * We've completed a full scan of all vmas, holding mmap_sem
1708 * throughout, and found no VM_MERGEABLE: so do the same as
1709 * __ksm_exit does to remove this mm from all our lists now.
1710 * This applies either when cleaning up after __ksm_exit
1711 * (but beware: we can reach here even before __ksm_exit),
1712 * or when all VM_MERGEABLE areas have been unmapped (and
1713 * mmap_sem then protects against race with MADV_MERGEABLE).
1715 hash_del(&slot->link);
1716 list_del(&slot->mm_list);
1717 spin_unlock(&ksm_mmlist_lock);
1719 free_mm_slot(slot);
1720 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1721 up_read(&mm->mmap_sem);
1722 mmdrop(mm);
1723 } else {
1724 spin_unlock(&ksm_mmlist_lock);
1725 up_read(&mm->mmap_sem);
1728 /* Repeat until we've completed scanning the whole list */
1729 slot = ksm_scan.mm_slot;
1730 if (slot != &ksm_mm_head)
1731 goto next_mm;
1733 ksm_scan.seqnr++;
1734 return NULL;
1738 * ksm_do_scan - the ksm scanner main worker function.
1739 * @scan_npages - number of pages we want to scan before we return.
1741 static void ksm_do_scan(unsigned int scan_npages)
1743 struct rmap_item *rmap_item;
1744 struct page *uninitialized_var(page);
1746 while (scan_npages-- && likely(!freezing(current))) {
1747 cond_resched();
1748 rmap_item = scan_get_next_rmap_item(&page);
1749 if (!rmap_item)
1750 return;
1751 cmp_and_merge_page(page, rmap_item);
1752 put_page(page);
1756 static int ksmd_should_run(void)
1758 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1761 static int ksm_scan_thread(void *nothing)
1763 set_freezable();
1764 set_user_nice(current, 5);
1766 while (!kthread_should_stop()) {
1767 mutex_lock(&ksm_thread_mutex);
1768 wait_while_offlining();
1769 if (ksmd_should_run())
1770 ksm_do_scan(ksm_thread_pages_to_scan);
1771 mutex_unlock(&ksm_thread_mutex);
1773 try_to_freeze();
1775 if (ksmd_should_run()) {
1776 schedule_timeout_interruptible(
1777 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1778 } else {
1779 wait_event_freezable(ksm_thread_wait,
1780 ksmd_should_run() || kthread_should_stop());
1783 return 0;
1786 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1787 unsigned long end, int advice, unsigned long *vm_flags)
1789 struct mm_struct *mm = vma->vm_mm;
1790 int err;
1792 switch (advice) {
1793 case MADV_MERGEABLE:
1795 * Be somewhat over-protective for now!
1797 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1798 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1799 VM_HUGETLB | VM_MIXEDMAP))
1800 return 0; /* just ignore the advice */
1802 #ifdef VM_SAO
1803 if (*vm_flags & VM_SAO)
1804 return 0;
1805 #endif
1807 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1808 err = __ksm_enter(mm);
1809 if (err)
1810 return err;
1813 *vm_flags |= VM_MERGEABLE;
1814 break;
1816 case MADV_UNMERGEABLE:
1817 if (!(*vm_flags & VM_MERGEABLE))
1818 return 0; /* just ignore the advice */
1820 if (vma->anon_vma) {
1821 err = unmerge_ksm_pages(vma, start, end);
1822 if (err)
1823 return err;
1826 *vm_flags &= ~VM_MERGEABLE;
1827 break;
1830 return 0;
1833 int __ksm_enter(struct mm_struct *mm)
1835 struct mm_slot *mm_slot;
1836 int needs_wakeup;
1838 mm_slot = alloc_mm_slot();
1839 if (!mm_slot)
1840 return -ENOMEM;
1842 /* Check ksm_run too? Would need tighter locking */
1843 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1845 spin_lock(&ksm_mmlist_lock);
1846 insert_to_mm_slots_hash(mm, mm_slot);
1848 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1849 * insert just behind the scanning cursor, to let the area settle
1850 * down a little; when fork is followed by immediate exec, we don't
1851 * want ksmd to waste time setting up and tearing down an rmap_list.
1853 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1854 * scanning cursor, otherwise KSM pages in newly forked mms will be
1855 * missed: then we might as well insert at the end of the list.
1857 if (ksm_run & KSM_RUN_UNMERGE)
1858 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1859 else
1860 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1861 spin_unlock(&ksm_mmlist_lock);
1863 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1864 atomic_inc(&mm->mm_count);
1866 if (needs_wakeup)
1867 wake_up_interruptible(&ksm_thread_wait);
1869 return 0;
1872 void __ksm_exit(struct mm_struct *mm)
1874 struct mm_slot *mm_slot;
1875 int easy_to_free = 0;
1878 * This process is exiting: if it's straightforward (as is the
1879 * case when ksmd was never running), free mm_slot immediately.
1880 * But if it's at the cursor or has rmap_items linked to it, use
1881 * mmap_sem to synchronize with any break_cows before pagetables
1882 * are freed, and leave the mm_slot on the list for ksmd to free.
1883 * Beware: ksm may already have noticed it exiting and freed the slot.
1886 spin_lock(&ksm_mmlist_lock);
1887 mm_slot = get_mm_slot(mm);
1888 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1889 if (!mm_slot->rmap_list) {
1890 hash_del(&mm_slot->link);
1891 list_del(&mm_slot->mm_list);
1892 easy_to_free = 1;
1893 } else {
1894 list_move(&mm_slot->mm_list,
1895 &ksm_scan.mm_slot->mm_list);
1898 spin_unlock(&ksm_mmlist_lock);
1900 if (easy_to_free) {
1901 free_mm_slot(mm_slot);
1902 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1903 mmdrop(mm);
1904 } else if (mm_slot) {
1905 down_write(&mm->mmap_sem);
1906 up_write(&mm->mmap_sem);
1910 struct page *ksm_might_need_to_copy(struct page *page,
1911 struct vm_area_struct *vma, unsigned long address)
1913 struct anon_vma *anon_vma = page_anon_vma(page);
1914 struct page *new_page;
1916 if (PageKsm(page)) {
1917 if (page_stable_node(page) &&
1918 !(ksm_run & KSM_RUN_UNMERGE))
1919 return page; /* no need to copy it */
1920 } else if (!anon_vma) {
1921 return page; /* no need to copy it */
1922 } else if (anon_vma->root == vma->anon_vma->root &&
1923 page->index == linear_page_index(vma, address)) {
1924 return page; /* still no need to copy it */
1926 if (!PageUptodate(page))
1927 return page; /* let do_swap_page report the error */
1929 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1930 if (new_page) {
1931 copy_user_highpage(new_page, page, address, vma);
1933 SetPageDirty(new_page);
1934 __SetPageUptodate(new_page);
1935 __set_page_locked(new_page);
1938 return new_page;
1941 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1943 struct stable_node *stable_node;
1944 struct rmap_item *rmap_item;
1945 int ret = SWAP_AGAIN;
1946 int search_new_forks = 0;
1948 VM_BUG_ON_PAGE(!PageKsm(page), page);
1951 * Rely on the page lock to protect against concurrent modifications
1952 * to that page's node of the stable tree.
1954 VM_BUG_ON_PAGE(!PageLocked(page), page);
1956 stable_node = page_stable_node(page);
1957 if (!stable_node)
1958 return ret;
1959 again:
1960 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1961 struct anon_vma *anon_vma = rmap_item->anon_vma;
1962 struct anon_vma_chain *vmac;
1963 struct vm_area_struct *vma;
1965 cond_resched();
1966 anon_vma_lock_read(anon_vma);
1967 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1968 0, ULONG_MAX) {
1969 cond_resched();
1970 vma = vmac->vma;
1971 if (rmap_item->address < vma->vm_start ||
1972 rmap_item->address >= vma->vm_end)
1973 continue;
1975 * Initially we examine only the vma which covers this
1976 * rmap_item; but later, if there is still work to do,
1977 * we examine covering vmas in other mms: in case they
1978 * were forked from the original since ksmd passed.
1980 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1981 continue;
1983 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1984 continue;
1986 ret = rwc->rmap_one(page, vma,
1987 rmap_item->address, rwc->arg);
1988 if (ret != SWAP_AGAIN) {
1989 anon_vma_unlock_read(anon_vma);
1990 goto out;
1992 if (rwc->done && rwc->done(page)) {
1993 anon_vma_unlock_read(anon_vma);
1994 goto out;
1997 anon_vma_unlock_read(anon_vma);
1999 if (!search_new_forks++)
2000 goto again;
2001 out:
2002 return ret;
2005 #ifdef CONFIG_MIGRATION
2006 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2008 struct stable_node *stable_node;
2010 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2011 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2012 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2014 stable_node = page_stable_node(newpage);
2015 if (stable_node) {
2016 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2017 stable_node->kpfn = page_to_pfn(newpage);
2019 * newpage->mapping was set in advance; now we need smp_wmb()
2020 * to make sure that the new stable_node->kpfn is visible
2021 * to get_ksm_page() before it can see that oldpage->mapping
2022 * has gone stale (or that PageSwapCache has been cleared).
2024 smp_wmb();
2025 set_page_stable_node(oldpage, NULL);
2028 #endif /* CONFIG_MIGRATION */
2030 #ifdef CONFIG_MEMORY_HOTREMOVE
2031 static void wait_while_offlining(void)
2033 while (ksm_run & KSM_RUN_OFFLINE) {
2034 mutex_unlock(&ksm_thread_mutex);
2035 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2036 TASK_UNINTERRUPTIBLE);
2037 mutex_lock(&ksm_thread_mutex);
2041 static void ksm_check_stable_tree(unsigned long start_pfn,
2042 unsigned long end_pfn)
2044 struct stable_node *stable_node;
2045 struct list_head *this, *next;
2046 struct rb_node *node;
2047 int nid;
2049 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2050 node = rb_first(root_stable_tree + nid);
2051 while (node) {
2052 stable_node = rb_entry(node, struct stable_node, node);
2053 if (stable_node->kpfn >= start_pfn &&
2054 stable_node->kpfn < end_pfn) {
2056 * Don't get_ksm_page, page has already gone:
2057 * which is why we keep kpfn instead of page*
2059 remove_node_from_stable_tree(stable_node);
2060 node = rb_first(root_stable_tree + nid);
2061 } else
2062 node = rb_next(node);
2063 cond_resched();
2066 list_for_each_safe(this, next, &migrate_nodes) {
2067 stable_node = list_entry(this, struct stable_node, list);
2068 if (stable_node->kpfn >= start_pfn &&
2069 stable_node->kpfn < end_pfn)
2070 remove_node_from_stable_tree(stable_node);
2071 cond_resched();
2075 static int ksm_memory_callback(struct notifier_block *self,
2076 unsigned long action, void *arg)
2078 struct memory_notify *mn = arg;
2080 switch (action) {
2081 case MEM_GOING_OFFLINE:
2083 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2084 * and remove_all_stable_nodes() while memory is going offline:
2085 * it is unsafe for them to touch the stable tree at this time.
2086 * But unmerge_ksm_pages(), rmap lookups and other entry points
2087 * which do not need the ksm_thread_mutex are all safe.
2089 mutex_lock(&ksm_thread_mutex);
2090 ksm_run |= KSM_RUN_OFFLINE;
2091 mutex_unlock(&ksm_thread_mutex);
2092 break;
2094 case MEM_OFFLINE:
2096 * Most of the work is done by page migration; but there might
2097 * be a few stable_nodes left over, still pointing to struct
2098 * pages which have been offlined: prune those from the tree,
2099 * otherwise get_ksm_page() might later try to access a
2100 * non-existent struct page.
2102 ksm_check_stable_tree(mn->start_pfn,
2103 mn->start_pfn + mn->nr_pages);
2104 /* fallthrough */
2106 case MEM_CANCEL_OFFLINE:
2107 mutex_lock(&ksm_thread_mutex);
2108 ksm_run &= ~KSM_RUN_OFFLINE;
2109 mutex_unlock(&ksm_thread_mutex);
2111 smp_mb(); /* wake_up_bit advises this */
2112 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2113 break;
2115 return NOTIFY_OK;
2117 #else
2118 static void wait_while_offlining(void)
2121 #endif /* CONFIG_MEMORY_HOTREMOVE */
2123 #ifdef CONFIG_SYSFS
2125 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2128 #define KSM_ATTR_RO(_name) \
2129 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2130 #define KSM_ATTR(_name) \
2131 static struct kobj_attribute _name##_attr = \
2132 __ATTR(_name, 0644, _name##_show, _name##_store)
2134 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2135 struct kobj_attribute *attr, char *buf)
2137 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2140 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2141 struct kobj_attribute *attr,
2142 const char *buf, size_t count)
2144 unsigned long msecs;
2145 int err;
2147 err = kstrtoul(buf, 10, &msecs);
2148 if (err || msecs > UINT_MAX)
2149 return -EINVAL;
2151 ksm_thread_sleep_millisecs = msecs;
2153 return count;
2155 KSM_ATTR(sleep_millisecs);
2157 static ssize_t pages_to_scan_show(struct kobject *kobj,
2158 struct kobj_attribute *attr, char *buf)
2160 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2163 static ssize_t pages_to_scan_store(struct kobject *kobj,
2164 struct kobj_attribute *attr,
2165 const char *buf, size_t count)
2167 int err;
2168 unsigned long nr_pages;
2170 err = kstrtoul(buf, 10, &nr_pages);
2171 if (err || nr_pages > UINT_MAX)
2172 return -EINVAL;
2174 ksm_thread_pages_to_scan = nr_pages;
2176 return count;
2178 KSM_ATTR(pages_to_scan);
2180 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2181 char *buf)
2183 return sprintf(buf, "%lu\n", ksm_run);
2186 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2187 const char *buf, size_t count)
2189 int err;
2190 unsigned long flags;
2192 err = kstrtoul(buf, 10, &flags);
2193 if (err || flags > UINT_MAX)
2194 return -EINVAL;
2195 if (flags > KSM_RUN_UNMERGE)
2196 return -EINVAL;
2199 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2200 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2201 * breaking COW to free the pages_shared (but leaves mm_slots
2202 * on the list for when ksmd may be set running again).
2205 mutex_lock(&ksm_thread_mutex);
2206 wait_while_offlining();
2207 if (ksm_run != flags) {
2208 ksm_run = flags;
2209 if (flags & KSM_RUN_UNMERGE) {
2210 set_current_oom_origin();
2211 err = unmerge_and_remove_all_rmap_items();
2212 clear_current_oom_origin();
2213 if (err) {
2214 ksm_run = KSM_RUN_STOP;
2215 count = err;
2219 mutex_unlock(&ksm_thread_mutex);
2221 if (flags & KSM_RUN_MERGE)
2222 wake_up_interruptible(&ksm_thread_wait);
2224 return count;
2226 KSM_ATTR(run);
2228 #ifdef CONFIG_NUMA
2229 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2230 struct kobj_attribute *attr, char *buf)
2232 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2235 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2236 struct kobj_attribute *attr,
2237 const char *buf, size_t count)
2239 int err;
2240 unsigned long knob;
2242 err = kstrtoul(buf, 10, &knob);
2243 if (err)
2244 return err;
2245 if (knob > 1)
2246 return -EINVAL;
2248 mutex_lock(&ksm_thread_mutex);
2249 wait_while_offlining();
2250 if (ksm_merge_across_nodes != knob) {
2251 if (ksm_pages_shared || remove_all_stable_nodes())
2252 err = -EBUSY;
2253 else if (root_stable_tree == one_stable_tree) {
2254 struct rb_root *buf;
2256 * This is the first time that we switch away from the
2257 * default of merging across nodes: must now allocate
2258 * a buffer to hold as many roots as may be needed.
2259 * Allocate stable and unstable together:
2260 * MAXSMP NODES_SHIFT 10 will use 16kB.
2262 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2263 GFP_KERNEL);
2264 /* Let us assume that RB_ROOT is NULL is zero */
2265 if (!buf)
2266 err = -ENOMEM;
2267 else {
2268 root_stable_tree = buf;
2269 root_unstable_tree = buf + nr_node_ids;
2270 /* Stable tree is empty but not the unstable */
2271 root_unstable_tree[0] = one_unstable_tree[0];
2274 if (!err) {
2275 ksm_merge_across_nodes = knob;
2276 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2279 mutex_unlock(&ksm_thread_mutex);
2281 return err ? err : count;
2283 KSM_ATTR(merge_across_nodes);
2284 #endif
2286 static ssize_t pages_shared_show(struct kobject *kobj,
2287 struct kobj_attribute *attr, char *buf)
2289 return sprintf(buf, "%lu\n", ksm_pages_shared);
2291 KSM_ATTR_RO(pages_shared);
2293 static ssize_t pages_sharing_show(struct kobject *kobj,
2294 struct kobj_attribute *attr, char *buf)
2296 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2298 KSM_ATTR_RO(pages_sharing);
2300 static ssize_t pages_unshared_show(struct kobject *kobj,
2301 struct kobj_attribute *attr, char *buf)
2303 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2305 KSM_ATTR_RO(pages_unshared);
2307 static ssize_t pages_volatile_show(struct kobject *kobj,
2308 struct kobj_attribute *attr, char *buf)
2310 long ksm_pages_volatile;
2312 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2313 - ksm_pages_sharing - ksm_pages_unshared;
2315 * It was not worth any locking to calculate that statistic,
2316 * but it might therefore sometimes be negative: conceal that.
2318 if (ksm_pages_volatile < 0)
2319 ksm_pages_volatile = 0;
2320 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2322 KSM_ATTR_RO(pages_volatile);
2324 static ssize_t full_scans_show(struct kobject *kobj,
2325 struct kobj_attribute *attr, char *buf)
2327 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2329 KSM_ATTR_RO(full_scans);
2331 static struct attribute *ksm_attrs[] = {
2332 &sleep_millisecs_attr.attr,
2333 &pages_to_scan_attr.attr,
2334 &run_attr.attr,
2335 &pages_shared_attr.attr,
2336 &pages_sharing_attr.attr,
2337 &pages_unshared_attr.attr,
2338 &pages_volatile_attr.attr,
2339 &full_scans_attr.attr,
2340 #ifdef CONFIG_NUMA
2341 &merge_across_nodes_attr.attr,
2342 #endif
2343 NULL,
2346 static struct attribute_group ksm_attr_group = {
2347 .attrs = ksm_attrs,
2348 .name = "ksm",
2350 #endif /* CONFIG_SYSFS */
2352 static int __init ksm_init(void)
2354 struct task_struct *ksm_thread;
2355 int err;
2357 err = ksm_slab_init();
2358 if (err)
2359 goto out;
2361 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2362 if (IS_ERR(ksm_thread)) {
2363 pr_err("ksm: creating kthread failed\n");
2364 err = PTR_ERR(ksm_thread);
2365 goto out_free;
2368 #ifdef CONFIG_SYSFS
2369 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2370 if (err) {
2371 pr_err("ksm: register sysfs failed\n");
2372 kthread_stop(ksm_thread);
2373 goto out_free;
2375 #else
2376 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2378 #endif /* CONFIG_SYSFS */
2380 #ifdef CONFIG_MEMORY_HOTREMOVE
2381 /* There is no significance to this priority 100 */
2382 hotplug_memory_notifier(ksm_memory_callback, 100);
2383 #endif
2384 return 0;
2386 out_free:
2387 ksm_slab_free();
2388 out:
2389 return err;
2391 subsys_initcall(ksm_init);