4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
75 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr
;
84 EXPORT_SYMBOL(max_mapnr
);
85 EXPORT_SYMBOL(mem_map
);
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
97 EXPORT_SYMBOL(high_memory
);
100 * Randomize the address space (stacks, mmaps, brk, etc.).
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
105 int randomize_va_space __read_mostly
=
106 #ifdef CONFIG_COMPAT_BRK
112 static int __init
disable_randmaps(char *s
)
114 randomize_va_space
= 0;
117 __setup("norandmaps", disable_randmaps
);
119 unsigned long zero_pfn __read_mostly
;
120 unsigned long highest_memmap_pfn __read_mostly
;
122 EXPORT_SYMBOL(zero_pfn
);
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127 static int __init
init_zero_pfn(void)
129 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
132 core_initcall(init_zero_pfn
);
135 #if defined(SPLIT_RSS_COUNTING)
137 void sync_mm_rss(struct mm_struct
*mm
)
141 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
142 if (current
->rss_stat
.count
[i
]) {
143 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
144 current
->rss_stat
.count
[i
] = 0;
147 current
->rss_stat
.events
= 0;
150 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
152 struct task_struct
*task
= current
;
154 if (likely(task
->mm
== mm
))
155 task
->rss_stat
.count
[member
] += val
;
157 add_mm_counter(mm
, member
, val
);
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct
*task
)
166 if (unlikely(task
!= current
))
168 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
169 sync_mm_rss(task
->mm
);
171 #else /* SPLIT_RSS_COUNTING */
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 static void check_sync_rss_stat(struct task_struct
*task
)
180 #endif /* SPLIT_RSS_COUNTING */
182 #ifdef HAVE_GENERIC_MMU_GATHER
184 static bool tlb_next_batch(struct mmu_gather
*tlb
)
186 struct mmu_gather_batch
*batch
;
190 tlb
->active
= batch
->next
;
194 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
197 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
204 batch
->max
= MAX_GATHER_BATCH
;
206 tlb
->active
->next
= batch
;
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
217 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
221 /* Is it from 0 to ~0? */
222 tlb
->fullmm
= !(start
| (end
+1));
223 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 __tlb_reset_range(tlb
);
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
243 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb
);
247 __tlb_reset_range(tlb
);
250 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
252 struct mmu_gather_batch
*batch
;
254 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
255 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
258 tlb
->active
= &tlb
->local
;
261 void tlb_flush_mmu(struct mmu_gather
*tlb
)
263 tlb_flush_mmu_tlbonly(tlb
);
264 tlb_flush_mmu_free(tlb
);
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
271 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
273 struct mmu_gather_batch
*batch
, *next
;
277 /* keep the page table cache within bounds */
280 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
282 free_pages((unsigned long)batch
, 0);
284 tlb
->local
.next
= NULL
;
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
293 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
295 struct mmu_gather_batch
*batch
;
297 VM_BUG_ON(!tlb
->end
);
300 batch
->pages
[batch
->nr
++] = page
;
301 if (batch
->nr
== batch
->max
) {
302 if (!tlb_next_batch(tlb
))
306 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
308 return batch
->max
- batch
->nr
;
311 #endif /* HAVE_GENERIC_MMU_GATHER */
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316 * See the comment near struct mmu_table_batch.
319 static void tlb_remove_table_smp_sync(void *arg
)
321 /* Simply deliver the interrupt */
324 static void tlb_remove_table_one(void *table
)
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
333 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
334 __tlb_remove_table(table
);
337 static void tlb_remove_table_rcu(struct rcu_head
*head
)
339 struct mmu_table_batch
*batch
;
342 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
344 for (i
= 0; i
< batch
->nr
; i
++)
345 __tlb_remove_table(batch
->tables
[i
]);
347 free_page((unsigned long)batch
);
350 void tlb_table_flush(struct mmu_gather
*tlb
)
352 struct mmu_table_batch
**batch
= &tlb
->batch
;
355 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
360 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
362 struct mmu_table_batch
**batch
= &tlb
->batch
;
364 if (*batch
== NULL
) {
365 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
366 if (*batch
== NULL
) {
367 tlb_remove_table_one(table
);
372 (*batch
)->tables
[(*batch
)->nr
++] = table
;
373 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
374 tlb_table_flush(tlb
);
377 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
380 * Note: this doesn't free the actual pages themselves. That
381 * has been handled earlier when unmapping all the memory regions.
383 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
386 pgtable_t token
= pmd_pgtable(*pmd
);
388 pte_free_tlb(tlb
, token
, addr
);
389 atomic_long_dec(&tlb
->mm
->nr_ptes
);
392 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
393 unsigned long addr
, unsigned long end
,
394 unsigned long floor
, unsigned long ceiling
)
401 pmd
= pmd_offset(pud
, addr
);
403 next
= pmd_addr_end(addr
, end
);
404 if (pmd_none_or_clear_bad(pmd
))
406 free_pte_range(tlb
, pmd
, addr
);
407 } while (pmd
++, addr
= next
, addr
!= end
);
417 if (end
- 1 > ceiling
- 1)
420 pmd
= pmd_offset(pud
, start
);
422 pmd_free_tlb(tlb
, pmd
, start
);
423 mm_dec_nr_pmds(tlb
->mm
);
426 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
427 unsigned long addr
, unsigned long end
,
428 unsigned long floor
, unsigned long ceiling
)
435 pud
= pud_offset(pgd
, addr
);
437 next
= pud_addr_end(addr
, end
);
438 if (pud_none_or_clear_bad(pud
))
440 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
441 } while (pud
++, addr
= next
, addr
!= end
);
447 ceiling
&= PGDIR_MASK
;
451 if (end
- 1 > ceiling
- 1)
454 pud
= pud_offset(pgd
, start
);
456 pud_free_tlb(tlb
, pud
, start
);
460 * This function frees user-level page tables of a process.
462 void free_pgd_range(struct mmu_gather
*tlb
,
463 unsigned long addr
, unsigned long end
,
464 unsigned long floor
, unsigned long ceiling
)
470 * The next few lines have given us lots of grief...
472 * Why are we testing PMD* at this top level? Because often
473 * there will be no work to do at all, and we'd prefer not to
474 * go all the way down to the bottom just to discover that.
476 * Why all these "- 1"s? Because 0 represents both the bottom
477 * of the address space and the top of it (using -1 for the
478 * top wouldn't help much: the masks would do the wrong thing).
479 * The rule is that addr 0 and floor 0 refer to the bottom of
480 * the address space, but end 0 and ceiling 0 refer to the top
481 * Comparisons need to use "end - 1" and "ceiling - 1" (though
482 * that end 0 case should be mythical).
484 * Wherever addr is brought up or ceiling brought down, we must
485 * be careful to reject "the opposite 0" before it confuses the
486 * subsequent tests. But what about where end is brought down
487 * by PMD_SIZE below? no, end can't go down to 0 there.
489 * Whereas we round start (addr) and ceiling down, by different
490 * masks at different levels, in order to test whether a table
491 * now has no other vmas using it, so can be freed, we don't
492 * bother to round floor or end up - the tests don't need that.
506 if (end
- 1 > ceiling
- 1)
511 pgd
= pgd_offset(tlb
->mm
, addr
);
513 next
= pgd_addr_end(addr
, end
);
514 if (pgd_none_or_clear_bad(pgd
))
516 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
517 } while (pgd
++, addr
= next
, addr
!= end
);
520 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
521 unsigned long floor
, unsigned long ceiling
)
524 struct vm_area_struct
*next
= vma
->vm_next
;
525 unsigned long addr
= vma
->vm_start
;
528 * Hide vma from rmap and truncate_pagecache before freeing
531 unlink_anon_vmas(vma
);
532 unlink_file_vma(vma
);
534 if (is_vm_hugetlb_page(vma
)) {
535 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
536 floor
, next
? next
->vm_start
: ceiling
);
539 * Optimization: gather nearby vmas into one call down
541 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
542 && !is_vm_hugetlb_page(next
)) {
545 unlink_anon_vmas(vma
);
546 unlink_file_vma(vma
);
548 free_pgd_range(tlb
, addr
, vma
->vm_end
,
549 floor
, next
? next
->vm_start
: ceiling
);
555 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
556 pmd_t
*pmd
, unsigned long address
)
559 pgtable_t
new = pte_alloc_one(mm
, address
);
560 int wait_split_huge_page
;
565 * Ensure all pte setup (eg. pte page lock and page clearing) are
566 * visible before the pte is made visible to other CPUs by being
567 * put into page tables.
569 * The other side of the story is the pointer chasing in the page
570 * table walking code (when walking the page table without locking;
571 * ie. most of the time). Fortunately, these data accesses consist
572 * of a chain of data-dependent loads, meaning most CPUs (alpha
573 * being the notable exception) will already guarantee loads are
574 * seen in-order. See the alpha page table accessors for the
575 * smp_read_barrier_depends() barriers in page table walking code.
577 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
579 ptl
= pmd_lock(mm
, pmd
);
580 wait_split_huge_page
= 0;
581 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
582 atomic_long_inc(&mm
->nr_ptes
);
583 pmd_populate(mm
, pmd
, new);
585 } else if (unlikely(pmd_trans_splitting(*pmd
)))
586 wait_split_huge_page
= 1;
590 if (wait_split_huge_page
)
591 wait_split_huge_page(vma
->anon_vma
, pmd
);
595 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
597 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
601 smp_wmb(); /* See comment in __pte_alloc */
603 spin_lock(&init_mm
.page_table_lock
);
604 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
605 pmd_populate_kernel(&init_mm
, pmd
, new);
608 VM_BUG_ON(pmd_trans_splitting(*pmd
));
609 spin_unlock(&init_mm
.page_table_lock
);
611 pte_free_kernel(&init_mm
, new);
615 static inline void init_rss_vec(int *rss
)
617 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
620 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
624 if (current
->mm
== mm
)
626 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
628 add_mm_counter(mm
, i
, rss
[i
]);
632 * This function is called to print an error when a bad pte
633 * is found. For example, we might have a PFN-mapped pte in
634 * a region that doesn't allow it.
636 * The calling function must still handle the error.
638 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
639 pte_t pte
, struct page
*page
)
641 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
642 pud_t
*pud
= pud_offset(pgd
, addr
);
643 pmd_t
*pmd
= pmd_offset(pud
, addr
);
644 struct address_space
*mapping
;
646 static unsigned long resume
;
647 static unsigned long nr_shown
;
648 static unsigned long nr_unshown
;
651 * Allow a burst of 60 reports, then keep quiet for that minute;
652 * or allow a steady drip of one report per second.
654 if (nr_shown
== 60) {
655 if (time_before(jiffies
, resume
)) {
661 "BUG: Bad page map: %lu messages suppressed\n",
668 resume
= jiffies
+ 60 * HZ
;
670 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
671 index
= linear_page_index(vma
, addr
);
674 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
676 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
678 dump_page(page
, "bad pte");
680 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
683 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
688 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
689 mapping
? mapping
->a_ops
->readpage
: NULL
);
691 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
695 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697 * "Special" mappings do not wish to be associated with a "struct page" (either
698 * it doesn't exist, or it exists but they don't want to touch it). In this
699 * case, NULL is returned here. "Normal" mappings do have a struct page.
701 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702 * pte bit, in which case this function is trivial. Secondly, an architecture
703 * may not have a spare pte bit, which requires a more complicated scheme,
706 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707 * special mapping (even if there are underlying and valid "struct pages").
708 * COWed pages of a VM_PFNMAP are always normal.
710 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713 * mapping will always honor the rule
715 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717 * And for normal mappings this is false.
719 * This restricts such mappings to be a linear translation from virtual address
720 * to pfn. To get around this restriction, we allow arbitrary mappings so long
721 * as the vma is not a COW mapping; in that case, we know that all ptes are
722 * special (because none can have been COWed).
725 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728 * page" backing, however the difference is that _all_ pages with a struct
729 * page (that is, those where pfn_valid is true) are refcounted and considered
730 * normal pages by the VM. The disadvantage is that pages are refcounted
731 * (which can be slower and simply not an option for some PFNMAP users). The
732 * advantage is that we don't have to follow the strict linearity rule of
733 * PFNMAP mappings in order to support COWable mappings.
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
739 # define HAVE_PTE_SPECIAL 0
741 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
744 unsigned long pfn
= pte_pfn(pte
);
746 if (HAVE_PTE_SPECIAL
) {
747 if (likely(!pte_special(pte
)))
749 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
750 return vma
->vm_ops
->find_special_page(vma
, addr
);
751 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
753 if (!is_zero_pfn(pfn
))
754 print_bad_pte(vma
, addr
, pte
, NULL
);
758 /* !HAVE_PTE_SPECIAL case follows: */
760 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
761 if (vma
->vm_flags
& VM_MIXEDMAP
) {
767 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
768 if (pfn
== vma
->vm_pgoff
+ off
)
770 if (!is_cow_mapping(vma
->vm_flags
))
775 if (is_zero_pfn(pfn
))
778 if (unlikely(pfn
> highest_memmap_pfn
)) {
779 print_bad_pte(vma
, addr
, pte
, NULL
);
784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist.
788 return pfn_to_page(pfn
);
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
792 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
795 unsigned long pfn
= pmd_pfn(pmd
);
798 * There is no pmd_special() but there may be special pmds, e.g.
799 * in a direct-access (dax) mapping, so let's just replicate the
800 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
802 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
803 if (vma
->vm_flags
& VM_MIXEDMAP
) {
809 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
810 if (pfn
== vma
->vm_pgoff
+ off
)
812 if (!is_cow_mapping(vma
->vm_flags
))
817 if (is_zero_pfn(pfn
))
819 if (unlikely(pfn
> highest_memmap_pfn
))
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
827 return pfn_to_page(pfn
);
832 * copy one vm_area from one task to the other. Assumes the page tables
833 * already present in the new task to be cleared in the whole range
834 * covered by this vma.
837 static inline unsigned long
838 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
839 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
840 unsigned long addr
, int *rss
)
842 unsigned long vm_flags
= vma
->vm_flags
;
843 pte_t pte
= *src_pte
;
846 /* pte contains position in swap or file, so copy. */
847 if (unlikely(!pte_present(pte
))) {
848 swp_entry_t entry
= pte_to_swp_entry(pte
);
850 if (likely(!non_swap_entry(entry
))) {
851 if (swap_duplicate(entry
) < 0)
854 /* make sure dst_mm is on swapoff's mmlist. */
855 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
856 spin_lock(&mmlist_lock
);
857 if (list_empty(&dst_mm
->mmlist
))
858 list_add(&dst_mm
->mmlist
,
860 spin_unlock(&mmlist_lock
);
863 } else if (is_migration_entry(entry
)) {
864 page
= migration_entry_to_page(entry
);
871 if (is_write_migration_entry(entry
) &&
872 is_cow_mapping(vm_flags
)) {
874 * COW mappings require pages in both
875 * parent and child to be set to read.
877 make_migration_entry_read(&entry
);
878 pte
= swp_entry_to_pte(entry
);
879 if (pte_swp_soft_dirty(*src_pte
))
880 pte
= pte_swp_mksoft_dirty(pte
);
881 set_pte_at(src_mm
, addr
, src_pte
, pte
);
888 * If it's a COW mapping, write protect it both
889 * in the parent and the child
891 if (is_cow_mapping(vm_flags
)) {
892 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
893 pte
= pte_wrprotect(pte
);
897 * If it's a shared mapping, mark it clean in
900 if (vm_flags
& VM_SHARED
)
901 pte
= pte_mkclean(pte
);
902 pte
= pte_mkold(pte
);
904 page
= vm_normal_page(vma
, addr
, pte
);
915 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
919 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
920 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
921 unsigned long addr
, unsigned long end
)
923 pte_t
*orig_src_pte
, *orig_dst_pte
;
924 pte_t
*src_pte
, *dst_pte
;
925 spinlock_t
*src_ptl
, *dst_ptl
;
927 int rss
[NR_MM_COUNTERS
];
928 swp_entry_t entry
= (swp_entry_t
){0};
933 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
936 src_pte
= pte_offset_map(src_pmd
, addr
);
937 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
938 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
939 orig_src_pte
= src_pte
;
940 orig_dst_pte
= dst_pte
;
941 arch_enter_lazy_mmu_mode();
945 * We are holding two locks at this point - either of them
946 * could generate latencies in another task on another CPU.
948 if (progress
>= 32) {
950 if (need_resched() ||
951 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
954 if (pte_none(*src_pte
)) {
958 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
963 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
965 arch_leave_lazy_mmu_mode();
966 spin_unlock(src_ptl
);
967 pte_unmap(orig_src_pte
);
968 add_mm_rss_vec(dst_mm
, rss
);
969 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
973 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
982 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
983 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
984 unsigned long addr
, unsigned long end
)
986 pmd_t
*src_pmd
, *dst_pmd
;
989 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
992 src_pmd
= pmd_offset(src_pud
, addr
);
994 next
= pmd_addr_end(addr
, end
);
995 if (pmd_trans_huge(*src_pmd
)) {
997 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
998 err
= copy_huge_pmd(dst_mm
, src_mm
,
999 dst_pmd
, src_pmd
, addr
, vma
);
1006 if (pmd_none_or_clear_bad(src_pmd
))
1008 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1011 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1015 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1016 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1017 unsigned long addr
, unsigned long end
)
1019 pud_t
*src_pud
, *dst_pud
;
1022 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1025 src_pud
= pud_offset(src_pgd
, addr
);
1027 next
= pud_addr_end(addr
, end
);
1028 if (pud_none_or_clear_bad(src_pud
))
1030 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1033 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1037 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1038 struct vm_area_struct
*vma
)
1040 pgd_t
*src_pgd
, *dst_pgd
;
1042 unsigned long addr
= vma
->vm_start
;
1043 unsigned long end
= vma
->vm_end
;
1044 unsigned long mmun_start
; /* For mmu_notifiers */
1045 unsigned long mmun_end
; /* For mmu_notifiers */
1050 * Don't copy ptes where a page fault will fill them correctly.
1051 * Fork becomes much lighter when there are big shared or private
1052 * readonly mappings. The tradeoff is that copy_page_range is more
1053 * efficient than faulting.
1055 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1059 if (is_vm_hugetlb_page(vma
))
1060 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1062 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1064 * We do not free on error cases below as remove_vma
1065 * gets called on error from higher level routine
1067 ret
= track_pfn_copy(vma
);
1073 * We need to invalidate the secondary MMU mappings only when
1074 * there could be a permission downgrade on the ptes of the
1075 * parent mm. And a permission downgrade will only happen if
1076 * is_cow_mapping() returns true.
1078 is_cow
= is_cow_mapping(vma
->vm_flags
);
1082 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1086 dst_pgd
= pgd_offset(dst_mm
, addr
);
1087 src_pgd
= pgd_offset(src_mm
, addr
);
1089 next
= pgd_addr_end(addr
, end
);
1090 if (pgd_none_or_clear_bad(src_pgd
))
1092 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1093 vma
, addr
, next
))) {
1097 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1100 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1104 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1105 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1106 unsigned long addr
, unsigned long end
,
1107 struct zap_details
*details
)
1109 struct mm_struct
*mm
= tlb
->mm
;
1110 int force_flush
= 0;
1111 int rss
[NR_MM_COUNTERS
];
1119 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1121 flush_tlb_batched_pending(mm
);
1122 arch_enter_lazy_mmu_mode();
1125 if (pte_none(ptent
)) {
1129 if (pte_present(ptent
)) {
1132 page
= vm_normal_page(vma
, addr
, ptent
);
1133 if (unlikely(details
) && page
) {
1135 * unmap_shared_mapping_pages() wants to
1136 * invalidate cache without truncating:
1137 * unmap shared but keep private pages.
1139 if (details
->check_mapping
&&
1140 details
->check_mapping
!= page
->mapping
)
1143 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1145 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1146 if (unlikely(!page
))
1149 rss
[MM_ANONPAGES
]--;
1151 if (pte_dirty(ptent
)) {
1153 set_page_dirty(page
);
1155 if (pte_young(ptent
) &&
1156 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1157 mark_page_accessed(page
);
1158 rss
[MM_FILEPAGES
]--;
1160 page_remove_rmap(page
);
1161 if (unlikely(page_mapcount(page
) < 0))
1162 print_bad_pte(vma
, addr
, ptent
, page
);
1163 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1170 /* If details->check_mapping, we leave swap entries. */
1171 if (unlikely(details
))
1174 entry
= pte_to_swp_entry(ptent
);
1175 if (!non_swap_entry(entry
))
1177 else if (is_migration_entry(entry
)) {
1180 page
= migration_entry_to_page(entry
);
1183 rss
[MM_ANONPAGES
]--;
1185 rss
[MM_FILEPAGES
]--;
1187 if (unlikely(!free_swap_and_cache(entry
)))
1188 print_bad_pte(vma
, addr
, ptent
, NULL
);
1189 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1190 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1192 add_mm_rss_vec(mm
, rss
);
1193 arch_leave_lazy_mmu_mode();
1195 /* Do the actual TLB flush before dropping ptl */
1197 tlb_flush_mmu_tlbonly(tlb
);
1198 pte_unmap_unlock(start_pte
, ptl
);
1201 * If we forced a TLB flush (either due to running out of
1202 * batch buffers or because we needed to flush dirty TLB
1203 * entries before releasing the ptl), free the batched
1204 * memory too. Restart if we didn't do everything.
1208 tlb_flush_mmu_free(tlb
);
1217 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1218 struct vm_area_struct
*vma
, pud_t
*pud
,
1219 unsigned long addr
, unsigned long end
,
1220 struct zap_details
*details
)
1225 pmd
= pmd_offset(pud
, addr
);
1227 next
= pmd_addr_end(addr
, end
);
1228 if (pmd_trans_huge(*pmd
)) {
1229 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1230 #ifdef CONFIG_DEBUG_VM
1231 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1232 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1233 __func__
, addr
, end
,
1239 split_huge_page_pmd(vma
, addr
, pmd
);
1240 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1245 * Here there can be other concurrent MADV_DONTNEED or
1246 * trans huge page faults running, and if the pmd is
1247 * none or trans huge it can change under us. This is
1248 * because MADV_DONTNEED holds the mmap_sem in read
1251 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1253 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1256 } while (pmd
++, addr
= next
, addr
!= end
);
1261 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1262 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1263 unsigned long addr
, unsigned long end
,
1264 struct zap_details
*details
)
1269 pud
= pud_offset(pgd
, addr
);
1271 next
= pud_addr_end(addr
, end
);
1272 if (pud_none_or_clear_bad(pud
))
1274 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1275 } while (pud
++, addr
= next
, addr
!= end
);
1280 static void unmap_page_range(struct mmu_gather
*tlb
,
1281 struct vm_area_struct
*vma
,
1282 unsigned long addr
, unsigned long end
,
1283 struct zap_details
*details
)
1288 if (details
&& !details
->check_mapping
)
1291 BUG_ON(addr
>= end
);
1292 tlb_start_vma(tlb
, vma
);
1293 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1295 next
= pgd_addr_end(addr
, end
);
1296 if (pgd_none_or_clear_bad(pgd
))
1298 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1299 } while (pgd
++, addr
= next
, addr
!= end
);
1300 tlb_end_vma(tlb
, vma
);
1304 static void unmap_single_vma(struct mmu_gather
*tlb
,
1305 struct vm_area_struct
*vma
, unsigned long start_addr
,
1306 unsigned long end_addr
,
1307 struct zap_details
*details
)
1309 unsigned long start
= max(vma
->vm_start
, start_addr
);
1312 if (start
>= vma
->vm_end
)
1314 end
= min(vma
->vm_end
, end_addr
);
1315 if (end
<= vma
->vm_start
)
1319 uprobe_munmap(vma
, start
, end
);
1321 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1322 untrack_pfn(vma
, 0, 0);
1325 if (unlikely(is_vm_hugetlb_page(vma
))) {
1327 * It is undesirable to test vma->vm_file as it
1328 * should be non-null for valid hugetlb area.
1329 * However, vm_file will be NULL in the error
1330 * cleanup path of mmap_region. When
1331 * hugetlbfs ->mmap method fails,
1332 * mmap_region() nullifies vma->vm_file
1333 * before calling this function to clean up.
1334 * Since no pte has actually been setup, it is
1335 * safe to do nothing in this case.
1338 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1339 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1340 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1343 unmap_page_range(tlb
, vma
, start
, end
, details
);
1348 * unmap_vmas - unmap a range of memory covered by a list of vma's
1349 * @tlb: address of the caller's struct mmu_gather
1350 * @vma: the starting vma
1351 * @start_addr: virtual address at which to start unmapping
1352 * @end_addr: virtual address at which to end unmapping
1354 * Unmap all pages in the vma list.
1356 * Only addresses between `start' and `end' will be unmapped.
1358 * The VMA list must be sorted in ascending virtual address order.
1360 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1361 * range after unmap_vmas() returns. So the only responsibility here is to
1362 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1363 * drops the lock and schedules.
1365 void unmap_vmas(struct mmu_gather
*tlb
,
1366 struct vm_area_struct
*vma
, unsigned long start_addr
,
1367 unsigned long end_addr
)
1369 struct mm_struct
*mm
= vma
->vm_mm
;
1371 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1372 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1373 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1374 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1378 * zap_page_range - remove user pages in a given range
1379 * @vma: vm_area_struct holding the applicable pages
1380 * @start: starting address of pages to zap
1381 * @size: number of bytes to zap
1382 * @details: details of shared cache invalidation
1384 * Caller must protect the VMA list
1386 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1387 unsigned long size
, struct zap_details
*details
)
1389 struct mm_struct
*mm
= vma
->vm_mm
;
1390 struct mmu_gather tlb
;
1391 unsigned long end
= start
+ size
;
1394 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1395 update_hiwater_rss(mm
);
1396 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1397 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1398 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1399 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1400 tlb_finish_mmu(&tlb
, start
, end
);
1404 * zap_page_range_single - remove user pages in a given range
1405 * @vma: vm_area_struct holding the applicable pages
1406 * @address: starting address of pages to zap
1407 * @size: number of bytes to zap
1408 * @details: details of shared cache invalidation
1410 * The range must fit into one VMA.
1412 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1413 unsigned long size
, struct zap_details
*details
)
1415 struct mm_struct
*mm
= vma
->vm_mm
;
1416 struct mmu_gather tlb
;
1417 unsigned long end
= address
+ size
;
1420 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1421 update_hiwater_rss(mm
);
1422 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1423 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1424 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1425 tlb_finish_mmu(&tlb
, address
, end
);
1429 * zap_vma_ptes - remove ptes mapping the vma
1430 * @vma: vm_area_struct holding ptes to be zapped
1431 * @address: starting address of pages to zap
1432 * @size: number of bytes to zap
1434 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1436 * The entire address range must be fully contained within the vma.
1438 * Returns 0 if successful.
1440 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1443 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1444 !(vma
->vm_flags
& VM_PFNMAP
))
1446 zap_page_range_single(vma
, address
, size
, NULL
);
1449 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1451 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1454 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1455 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1457 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1459 VM_BUG_ON(pmd_trans_huge(*pmd
));
1460 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1467 * This is the old fallback for page remapping.
1469 * For historical reasons, it only allows reserved pages. Only
1470 * old drivers should use this, and they needed to mark their
1471 * pages reserved for the old functions anyway.
1473 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1474 struct page
*page
, pgprot_t prot
)
1476 struct mm_struct
*mm
= vma
->vm_mm
;
1485 flush_dcache_page(page
);
1486 pte
= get_locked_pte(mm
, addr
, &ptl
);
1490 if (!pte_none(*pte
))
1493 /* Ok, finally just insert the thing.. */
1495 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1496 page_add_file_rmap(page
);
1497 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1500 pte_unmap_unlock(pte
, ptl
);
1503 pte_unmap_unlock(pte
, ptl
);
1509 * vm_insert_page - insert single page into user vma
1510 * @vma: user vma to map to
1511 * @addr: target user address of this page
1512 * @page: source kernel page
1514 * This allows drivers to insert individual pages they've allocated
1517 * The page has to be a nice clean _individual_ kernel allocation.
1518 * If you allocate a compound page, you need to have marked it as
1519 * such (__GFP_COMP), or manually just split the page up yourself
1520 * (see split_page()).
1522 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1523 * took an arbitrary page protection parameter. This doesn't allow
1524 * that. Your vma protection will have to be set up correctly, which
1525 * means that if you want a shared writable mapping, you'd better
1526 * ask for a shared writable mapping!
1528 * The page does not need to be reserved.
1530 * Usually this function is called from f_op->mmap() handler
1531 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1532 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1533 * function from other places, for example from page-fault handler.
1535 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1538 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1540 if (!page_count(page
))
1542 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1543 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1544 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1545 vma
->vm_flags
|= VM_MIXEDMAP
;
1547 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1549 EXPORT_SYMBOL(vm_insert_page
);
1551 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1552 unsigned long pfn
, pgprot_t prot
)
1554 struct mm_struct
*mm
= vma
->vm_mm
;
1560 pte
= get_locked_pte(mm
, addr
, &ptl
);
1564 if (!pte_none(*pte
))
1567 /* Ok, finally just insert the thing.. */
1568 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1569 set_pte_at(mm
, addr
, pte
, entry
);
1570 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1574 pte_unmap_unlock(pte
, ptl
);
1580 * vm_insert_pfn - insert single pfn into user vma
1581 * @vma: user vma to map to
1582 * @addr: target user address of this page
1583 * @pfn: source kernel pfn
1585 * Similar to vm_insert_page, this allows drivers to insert individual pages
1586 * they've allocated into a user vma. Same comments apply.
1588 * This function should only be called from a vm_ops->fault handler, and
1589 * in that case the handler should return NULL.
1591 * vma cannot be a COW mapping.
1593 * As this is called only for pages that do not currently exist, we
1594 * do not need to flush old virtual caches or the TLB.
1596 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1599 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1601 EXPORT_SYMBOL(vm_insert_pfn
);
1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 * @pgprot: pgprot flags for the inserted page
1610 * This is exactly like vm_insert_pfn, except that it allows drivers to
1611 * to override pgprot on a per-page basis.
1613 * This only makes sense for IO mappings, and it makes no sense for
1614 * cow mappings. In general, using multiple vmas is preferable;
1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1618 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1619 unsigned long pfn
, pgprot_t pgprot
)
1623 * Technically, architectures with pte_special can avoid all these
1624 * restrictions (same for remap_pfn_range). However we would like
1625 * consistency in testing and feature parity among all, so we should
1626 * try to keep these invariants in place for everybody.
1628 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1629 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1630 (VM_PFNMAP
|VM_MIXEDMAP
));
1631 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1632 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1634 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1636 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1639 if (!pfn_modify_allowed(pfn
, pgprot
))
1642 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1646 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1648 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1651 pgprot_t pgprot
= vma
->vm_page_prot
;
1653 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1655 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1657 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1660 if (!pfn_modify_allowed(pfn
, pgprot
))
1664 * If we don't have pte special, then we have to use the pfn_valid()
1665 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1666 * refcount the page if pfn_valid is true (hence insert_page rather
1667 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1668 * without pte special, it would there be refcounted as a normal page.
1670 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1673 page
= pfn_to_page(pfn
);
1674 return insert_page(vma
, addr
, page
, pgprot
);
1676 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1678 EXPORT_SYMBOL(vm_insert_mixed
);
1681 * maps a range of physical memory into the requested pages. the old
1682 * mappings are removed. any references to nonexistent pages results
1683 * in null mappings (currently treated as "copy-on-access")
1685 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1686 unsigned long addr
, unsigned long end
,
1687 unsigned long pfn
, pgprot_t prot
)
1693 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1696 arch_enter_lazy_mmu_mode();
1698 BUG_ON(!pte_none(*pte
));
1699 if (!pfn_modify_allowed(pfn
, prot
)) {
1703 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1705 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1706 arch_leave_lazy_mmu_mode();
1707 pte_unmap_unlock(pte
- 1, ptl
);
1711 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1712 unsigned long addr
, unsigned long end
,
1713 unsigned long pfn
, pgprot_t prot
)
1719 pfn
-= addr
>> PAGE_SHIFT
;
1720 pmd
= pmd_alloc(mm
, pud
, addr
);
1723 VM_BUG_ON(pmd_trans_huge(*pmd
));
1725 next
= pmd_addr_end(addr
, end
);
1726 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1727 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1730 } while (pmd
++, addr
= next
, addr
!= end
);
1734 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1735 unsigned long addr
, unsigned long end
,
1736 unsigned long pfn
, pgprot_t prot
)
1742 pfn
-= addr
>> PAGE_SHIFT
;
1743 pud
= pud_alloc(mm
, pgd
, addr
);
1747 next
= pud_addr_end(addr
, end
);
1748 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1749 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1752 } while (pud
++, addr
= next
, addr
!= end
);
1757 * remap_pfn_range - remap kernel memory to userspace
1758 * @vma: user vma to map to
1759 * @addr: target user address to start at
1760 * @pfn: physical address of kernel memory
1761 * @size: size of map area
1762 * @prot: page protection flags for this mapping
1764 * Note: this is only safe if the mm semaphore is held when called.
1766 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1767 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1771 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1772 struct mm_struct
*mm
= vma
->vm_mm
;
1776 * Physically remapped pages are special. Tell the
1777 * rest of the world about it:
1778 * VM_IO tells people not to look at these pages
1779 * (accesses can have side effects).
1780 * VM_PFNMAP tells the core MM that the base pages are just
1781 * raw PFN mappings, and do not have a "struct page" associated
1784 * Disable vma merging and expanding with mremap().
1786 * Omit vma from core dump, even when VM_IO turned off.
1788 * There's a horrible special case to handle copy-on-write
1789 * behaviour that some programs depend on. We mark the "original"
1790 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1791 * See vm_normal_page() for details.
1793 if (is_cow_mapping(vma
->vm_flags
)) {
1794 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1796 vma
->vm_pgoff
= pfn
;
1799 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1803 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1805 BUG_ON(addr
>= end
);
1806 pfn
-= addr
>> PAGE_SHIFT
;
1807 pgd
= pgd_offset(mm
, addr
);
1808 flush_cache_range(vma
, addr
, end
);
1810 next
= pgd_addr_end(addr
, end
);
1811 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1812 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1815 } while (pgd
++, addr
= next
, addr
!= end
);
1818 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1822 EXPORT_SYMBOL(remap_pfn_range
);
1825 * vm_iomap_memory - remap memory to userspace
1826 * @vma: user vma to map to
1827 * @start: start of area
1828 * @len: size of area
1830 * This is a simplified io_remap_pfn_range() for common driver use. The
1831 * driver just needs to give us the physical memory range to be mapped,
1832 * we'll figure out the rest from the vma information.
1834 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1835 * whatever write-combining details or similar.
1837 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1839 unsigned long vm_len
, pfn
, pages
;
1841 /* Check that the physical memory area passed in looks valid */
1842 if (start
+ len
< start
)
1845 * You *really* shouldn't map things that aren't page-aligned,
1846 * but we've historically allowed it because IO memory might
1847 * just have smaller alignment.
1849 len
+= start
& ~PAGE_MASK
;
1850 pfn
= start
>> PAGE_SHIFT
;
1851 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1852 if (pfn
+ pages
< pfn
)
1855 /* We start the mapping 'vm_pgoff' pages into the area */
1856 if (vma
->vm_pgoff
> pages
)
1858 pfn
+= vma
->vm_pgoff
;
1859 pages
-= vma
->vm_pgoff
;
1861 /* Can we fit all of the mapping? */
1862 vm_len
= vma
->vm_end
- vma
->vm_start
;
1863 if (vm_len
>> PAGE_SHIFT
> pages
)
1866 /* Ok, let it rip */
1867 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1869 EXPORT_SYMBOL(vm_iomap_memory
);
1871 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1872 unsigned long addr
, unsigned long end
,
1873 pte_fn_t fn
, void *data
)
1878 spinlock_t
*uninitialized_var(ptl
);
1880 pte
= (mm
== &init_mm
) ?
1881 pte_alloc_kernel(pmd
, addr
) :
1882 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1886 BUG_ON(pmd_huge(*pmd
));
1888 arch_enter_lazy_mmu_mode();
1890 token
= pmd_pgtable(*pmd
);
1893 err
= fn(pte
++, token
, addr
, data
);
1896 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1898 arch_leave_lazy_mmu_mode();
1901 pte_unmap_unlock(pte
-1, ptl
);
1905 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1906 unsigned long addr
, unsigned long end
,
1907 pte_fn_t fn
, void *data
)
1913 BUG_ON(pud_huge(*pud
));
1915 pmd
= pmd_alloc(mm
, pud
, addr
);
1919 next
= pmd_addr_end(addr
, end
);
1920 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1923 } while (pmd
++, addr
= next
, addr
!= end
);
1927 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1928 unsigned long addr
, unsigned long end
,
1929 pte_fn_t fn
, void *data
)
1935 pud
= pud_alloc(mm
, pgd
, addr
);
1939 next
= pud_addr_end(addr
, end
);
1940 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1943 } while (pud
++, addr
= next
, addr
!= end
);
1948 * Scan a region of virtual memory, filling in page tables as necessary
1949 * and calling a provided function on each leaf page table.
1951 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1952 unsigned long size
, pte_fn_t fn
, void *data
)
1956 unsigned long end
= addr
+ size
;
1959 BUG_ON(addr
>= end
);
1960 pgd
= pgd_offset(mm
, addr
);
1962 next
= pgd_addr_end(addr
, end
);
1963 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1966 } while (pgd
++, addr
= next
, addr
!= end
);
1970 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1973 * handle_pte_fault chooses page fault handler according to an entry which was
1974 * read non-atomically. Before making any commitment, on those architectures
1975 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1976 * parts, do_swap_page must check under lock before unmapping the pte and
1977 * proceeding (but do_wp_page is only called after already making such a check;
1978 * and do_anonymous_page can safely check later on).
1980 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1981 pte_t
*page_table
, pte_t orig_pte
)
1984 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1985 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1986 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1988 same
= pte_same(*page_table
, orig_pte
);
1992 pte_unmap(page_table
);
1996 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1998 debug_dma_assert_idle(src
);
2001 * If the source page was a PFN mapping, we don't have
2002 * a "struct page" for it. We do a best-effort copy by
2003 * just copying from the original user address. If that
2004 * fails, we just zero-fill it. Live with it.
2006 if (unlikely(!src
)) {
2007 void *kaddr
= kmap_atomic(dst
);
2008 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2011 * This really shouldn't fail, because the page is there
2012 * in the page tables. But it might just be unreadable,
2013 * in which case we just give up and fill the result with
2016 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2018 kunmap_atomic(kaddr
);
2019 flush_dcache_page(dst
);
2021 copy_user_highpage(dst
, src
, va
, vma
);
2024 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2026 struct file
*vm_file
= vma
->vm_file
;
2029 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2032 * Special mappings (e.g. VDSO) do not have any file so fake
2033 * a default GFP_KERNEL for them.
2039 * Notify the address space that the page is about to become writable so that
2040 * it can prohibit this or wait for the page to get into an appropriate state.
2042 * We do this without the lock held, so that it can sleep if it needs to.
2044 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2045 unsigned long address
)
2047 struct vm_fault vmf
;
2050 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2051 vmf
.pgoff
= page
->index
;
2052 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2053 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2055 vmf
.cow_page
= NULL
;
2057 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2058 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2060 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2062 if (!page
->mapping
) {
2064 return 0; /* retry */
2066 ret
|= VM_FAULT_LOCKED
;
2068 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2073 * Handle write page faults for pages that can be reused in the current vma
2075 * This can happen either due to the mapping being with the VM_SHARED flag,
2076 * or due to us being the last reference standing to the page. In either
2077 * case, all we need to do here is to mark the page as writable and update
2078 * any related book-keeping.
2080 static inline int wp_page_reuse(struct mm_struct
*mm
,
2081 struct vm_area_struct
*vma
, unsigned long address
,
2082 pte_t
*page_table
, spinlock_t
*ptl
, pte_t orig_pte
,
2083 struct page
*page
, int page_mkwrite
,
2089 * Clear the pages cpupid information as the existing
2090 * information potentially belongs to a now completely
2091 * unrelated process.
2094 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2096 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2097 entry
= pte_mkyoung(orig_pte
);
2098 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2099 if (ptep_set_access_flags(vma
, address
, page_table
, entry
, 1))
2100 update_mmu_cache(vma
, address
, page_table
);
2101 pte_unmap_unlock(page_table
, ptl
);
2104 struct address_space
*mapping
;
2110 dirtied
= set_page_dirty(page
);
2111 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2112 mapping
= page
->mapping
;
2114 page_cache_release(page
);
2116 if ((dirtied
|| page_mkwrite
) && mapping
) {
2118 * Some device drivers do not set page.mapping
2119 * but still dirty their pages
2121 balance_dirty_pages_ratelimited(mapping
);
2125 file_update_time(vma
->vm_file
);
2128 return VM_FAULT_WRITE
;
2132 * Handle the case of a page which we actually need to copy to a new page.
2134 * Called with mmap_sem locked and the old page referenced, but
2135 * without the ptl held.
2137 * High level logic flow:
2139 * - Allocate a page, copy the content of the old page to the new one.
2140 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2141 * - Take the PTL. If the pte changed, bail out and release the allocated page
2142 * - If the pte is still the way we remember it, update the page table and all
2143 * relevant references. This includes dropping the reference the page-table
2144 * held to the old page, as well as updating the rmap.
2145 * - In any case, unlock the PTL and drop the reference we took to the old page.
2147 static int wp_page_copy(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2148 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2149 pte_t orig_pte
, struct page
*old_page
)
2151 struct page
*new_page
= NULL
;
2152 spinlock_t
*ptl
= NULL
;
2154 int page_copied
= 0;
2155 const unsigned long mmun_start
= address
& PAGE_MASK
; /* For mmu_notifiers */
2156 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
; /* For mmu_notifiers */
2157 struct mem_cgroup
*memcg
;
2159 if (unlikely(anon_vma_prepare(vma
)))
2162 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2163 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2167 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2170 cow_user_page(new_page
, old_page
, address
, vma
);
2173 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2176 __SetPageUptodate(new_page
);
2178 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2181 * Re-check the pte - we dropped the lock
2183 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2184 if (likely(pte_same(*page_table
, orig_pte
))) {
2186 if (!PageAnon(old_page
)) {
2187 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2188 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2191 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2193 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2194 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2195 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2197 * Clear the pte entry and flush it first, before updating the
2198 * pte with the new entry. This will avoid a race condition
2199 * seen in the presence of one thread doing SMC and another
2202 ptep_clear_flush_notify(vma
, address
, page_table
);
2203 page_add_new_anon_rmap(new_page
, vma
, address
);
2204 mem_cgroup_commit_charge(new_page
, memcg
, false);
2205 lru_cache_add_active_or_unevictable(new_page
, vma
);
2207 * We call the notify macro here because, when using secondary
2208 * mmu page tables (such as kvm shadow page tables), we want the
2209 * new page to be mapped directly into the secondary page table.
2211 set_pte_at_notify(mm
, address
, page_table
, entry
);
2212 update_mmu_cache(vma
, address
, page_table
);
2215 * Only after switching the pte to the new page may
2216 * we remove the mapcount here. Otherwise another
2217 * process may come and find the rmap count decremented
2218 * before the pte is switched to the new page, and
2219 * "reuse" the old page writing into it while our pte
2220 * here still points into it and can be read by other
2223 * The critical issue is to order this
2224 * page_remove_rmap with the ptp_clear_flush above.
2225 * Those stores are ordered by (if nothing else,)
2226 * the barrier present in the atomic_add_negative
2227 * in page_remove_rmap.
2229 * Then the TLB flush in ptep_clear_flush ensures that
2230 * no process can access the old page before the
2231 * decremented mapcount is visible. And the old page
2232 * cannot be reused until after the decremented
2233 * mapcount is visible. So transitively, TLBs to
2234 * old page will be flushed before it can be reused.
2236 page_remove_rmap(old_page
);
2239 /* Free the old page.. */
2240 new_page
= old_page
;
2243 mem_cgroup_cancel_charge(new_page
, memcg
);
2247 page_cache_release(new_page
);
2249 pte_unmap_unlock(page_table
, ptl
);
2250 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2253 * Don't let another task, with possibly unlocked vma,
2254 * keep the mlocked page.
2256 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2257 lock_page(old_page
); /* LRU manipulation */
2258 munlock_vma_page(old_page
);
2259 unlock_page(old_page
);
2261 page_cache_release(old_page
);
2263 return page_copied
? VM_FAULT_WRITE
: 0;
2265 page_cache_release(new_page
);
2268 page_cache_release(old_page
);
2269 return VM_FAULT_OOM
;
2273 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2276 static int wp_pfn_shared(struct mm_struct
*mm
,
2277 struct vm_area_struct
*vma
, unsigned long address
,
2278 pte_t
*page_table
, spinlock_t
*ptl
, pte_t orig_pte
,
2281 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2282 struct vm_fault vmf
= {
2284 .pgoff
= linear_page_index(vma
, address
),
2285 .virtual_address
= (void __user
*)(address
& PAGE_MASK
),
2286 .flags
= FAULT_FLAG_WRITE
| FAULT_FLAG_MKWRITE
,
2290 pte_unmap_unlock(page_table
, ptl
);
2291 ret
= vma
->vm_ops
->pfn_mkwrite(vma
, &vmf
);
2292 if (ret
& VM_FAULT_ERROR
)
2294 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2296 * We might have raced with another page fault while we
2297 * released the pte_offset_map_lock.
2299 if (!pte_same(*page_table
, orig_pte
)) {
2300 pte_unmap_unlock(page_table
, ptl
);
2304 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
, orig_pte
,
2308 static int wp_page_shared(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2309 unsigned long address
, pte_t
*page_table
,
2310 pmd_t
*pmd
, spinlock_t
*ptl
, pte_t orig_pte
,
2311 struct page
*old_page
)
2314 int page_mkwrite
= 0;
2316 page_cache_get(old_page
);
2319 * Only catch write-faults on shared writable pages,
2320 * read-only shared pages can get COWed by
2321 * get_user_pages(.write=1, .force=1).
2323 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2326 pte_unmap_unlock(page_table
, ptl
);
2327 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2328 if (unlikely(!tmp
|| (tmp
&
2329 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2330 page_cache_release(old_page
);
2334 * Since we dropped the lock we need to revalidate
2335 * the PTE as someone else may have changed it. If
2336 * they did, we just return, as we can count on the
2337 * MMU to tell us if they didn't also make it writable.
2339 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2341 if (!pte_same(*page_table
, orig_pte
)) {
2342 unlock_page(old_page
);
2343 pte_unmap_unlock(page_table
, ptl
);
2344 page_cache_release(old_page
);
2350 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
,
2351 orig_pte
, old_page
, page_mkwrite
, 1);
2355 * This routine handles present pages, when users try to write
2356 * to a shared page. It is done by copying the page to a new address
2357 * and decrementing the shared-page counter for the old page.
2359 * Note that this routine assumes that the protection checks have been
2360 * done by the caller (the low-level page fault routine in most cases).
2361 * Thus we can safely just mark it writable once we've done any necessary
2364 * We also mark the page dirty at this point even though the page will
2365 * change only once the write actually happens. This avoids a few races,
2366 * and potentially makes it more efficient.
2368 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2369 * but allow concurrent faults), with pte both mapped and locked.
2370 * We return with mmap_sem still held, but pte unmapped and unlocked.
2372 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2373 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2374 spinlock_t
*ptl
, pte_t orig_pte
)
2377 struct page
*old_page
;
2379 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2382 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2385 * We should not cow pages in a shared writeable mapping.
2386 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2388 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2389 (VM_WRITE
|VM_SHARED
))
2390 return wp_pfn_shared(mm
, vma
, address
, page_table
, ptl
,
2393 pte_unmap_unlock(page_table
, ptl
);
2394 return wp_page_copy(mm
, vma
, address
, page_table
, pmd
,
2395 orig_pte
, old_page
);
2399 * Take out anonymous pages first, anonymous shared vmas are
2400 * not dirty accountable.
2402 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2403 if (!trylock_page(old_page
)) {
2404 page_cache_get(old_page
);
2405 pte_unmap_unlock(page_table
, ptl
);
2406 lock_page(old_page
);
2407 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2409 if (!pte_same(*page_table
, orig_pte
)) {
2410 unlock_page(old_page
);
2411 pte_unmap_unlock(page_table
, ptl
);
2412 page_cache_release(old_page
);
2415 page_cache_release(old_page
);
2417 if (reuse_swap_page(old_page
)) {
2419 * The page is all ours. Move it to our anon_vma so
2420 * the rmap code will not search our parent or siblings.
2421 * Protected against the rmap code by the page lock.
2423 page_move_anon_rmap(old_page
, vma
, address
);
2424 unlock_page(old_page
);
2425 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
,
2426 orig_pte
, old_page
, 0, 0);
2428 unlock_page(old_page
);
2429 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2430 (VM_WRITE
|VM_SHARED
))) {
2431 return wp_page_shared(mm
, vma
, address
, page_table
, pmd
,
2432 ptl
, orig_pte
, old_page
);
2436 * Ok, we need to copy. Oh, well..
2438 page_cache_get(old_page
);
2440 pte_unmap_unlock(page_table
, ptl
);
2441 return wp_page_copy(mm
, vma
, address
, page_table
, pmd
,
2442 orig_pte
, old_page
);
2445 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2446 unsigned long start_addr
, unsigned long end_addr
,
2447 struct zap_details
*details
)
2449 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2452 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2453 struct zap_details
*details
)
2455 struct vm_area_struct
*vma
;
2456 pgoff_t vba
, vea
, zba
, zea
;
2458 vma_interval_tree_foreach(vma
, root
,
2459 details
->first_index
, details
->last_index
) {
2461 vba
= vma
->vm_pgoff
;
2462 vea
= vba
+ vma_pages(vma
) - 1;
2463 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2464 zba
= details
->first_index
;
2467 zea
= details
->last_index
;
2471 unmap_mapping_range_vma(vma
,
2472 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2473 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2479 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2480 * address_space corresponding to the specified page range in the underlying
2483 * @mapping: the address space containing mmaps to be unmapped.
2484 * @holebegin: byte in first page to unmap, relative to the start of
2485 * the underlying file. This will be rounded down to a PAGE_SIZE
2486 * boundary. Note that this is different from truncate_pagecache(), which
2487 * must keep the partial page. In contrast, we must get rid of
2489 * @holelen: size of prospective hole in bytes. This will be rounded
2490 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2492 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2493 * but 0 when invalidating pagecache, don't throw away private data.
2495 void unmap_mapping_range(struct address_space
*mapping
,
2496 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2498 struct zap_details details
;
2499 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2500 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2502 /* Check for overflow. */
2503 if (sizeof(holelen
) > sizeof(hlen
)) {
2505 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2506 if (holeend
& ~(long long)ULONG_MAX
)
2507 hlen
= ULONG_MAX
- hba
+ 1;
2510 details
.check_mapping
= even_cows
? NULL
: mapping
;
2511 details
.first_index
= hba
;
2512 details
.last_index
= hba
+ hlen
- 1;
2513 if (details
.last_index
< details
.first_index
)
2514 details
.last_index
= ULONG_MAX
;
2517 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2518 i_mmap_lock_write(mapping
);
2519 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2520 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2521 i_mmap_unlock_write(mapping
);
2523 EXPORT_SYMBOL(unmap_mapping_range
);
2526 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527 * but allow concurrent faults), and pte mapped but not yet locked.
2528 * We return with pte unmapped and unlocked.
2530 * We return with the mmap_sem locked or unlocked in the same cases
2531 * as does filemap_fault().
2533 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2534 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2535 unsigned int flags
, pte_t orig_pte
)
2538 struct page
*page
, *swapcache
;
2539 struct mem_cgroup
*memcg
;
2546 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2549 entry
= pte_to_swp_entry(orig_pte
);
2550 if (unlikely(non_swap_entry(entry
))) {
2551 if (is_migration_entry(entry
)) {
2552 migration_entry_wait(mm
, pmd
, address
);
2553 } else if (is_hwpoison_entry(entry
)) {
2554 ret
= VM_FAULT_HWPOISON
;
2556 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2557 ret
= VM_FAULT_SIGBUS
;
2561 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2562 page
= lookup_swap_cache(entry
);
2564 page
= swapin_readahead(entry
,
2565 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2568 * Back out if somebody else faulted in this pte
2569 * while we released the pte lock.
2571 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2572 if (likely(pte_same(*page_table
, orig_pte
)))
2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2578 /* Had to read the page from swap area: Major fault */
2579 ret
= VM_FAULT_MAJOR
;
2580 count_vm_event(PGMAJFAULT
);
2581 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2582 } else if (PageHWPoison(page
)) {
2584 * hwpoisoned dirty swapcache pages are kept for killing
2585 * owner processes (which may be unknown at hwpoison time)
2587 ret
= VM_FAULT_HWPOISON
;
2588 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2594 locked
= lock_page_or_retry(page
, mm
, flags
);
2596 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2598 ret
|= VM_FAULT_RETRY
;
2603 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2604 * release the swapcache from under us. The page pin, and pte_same
2605 * test below, are not enough to exclude that. Even if it is still
2606 * swapcache, we need to check that the page's swap has not changed.
2608 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2611 page
= ksm_might_need_to_copy(page
, vma
, address
);
2612 if (unlikely(!page
)) {
2618 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2624 * Back out if somebody else already faulted in this pte.
2626 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2627 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2630 if (unlikely(!PageUptodate(page
))) {
2631 ret
= VM_FAULT_SIGBUS
;
2636 * The page isn't present yet, go ahead with the fault.
2638 * Be careful about the sequence of operations here.
2639 * To get its accounting right, reuse_swap_page() must be called
2640 * while the page is counted on swap but not yet in mapcount i.e.
2641 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2642 * must be called after the swap_free(), or it will never succeed.
2645 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2646 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2647 pte
= mk_pte(page
, vma
->vm_page_prot
);
2648 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2649 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2650 flags
&= ~FAULT_FLAG_WRITE
;
2651 ret
|= VM_FAULT_WRITE
;
2654 flush_icache_page(vma
, page
);
2655 if (pte_swp_soft_dirty(orig_pte
))
2656 pte
= pte_mksoft_dirty(pte
);
2657 set_pte_at(mm
, address
, page_table
, pte
);
2658 if (page
== swapcache
) {
2659 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2660 mem_cgroup_commit_charge(page
, memcg
, true);
2661 } else { /* ksm created a completely new copy */
2662 page_add_new_anon_rmap(page
, vma
, address
);
2663 mem_cgroup_commit_charge(page
, memcg
, false);
2664 lru_cache_add_active_or_unevictable(page
, vma
);
2668 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2669 try_to_free_swap(page
);
2671 if (page
!= swapcache
) {
2673 * Hold the lock to avoid the swap entry to be reused
2674 * until we take the PT lock for the pte_same() check
2675 * (to avoid false positives from pte_same). For
2676 * further safety release the lock after the swap_free
2677 * so that the swap count won't change under a
2678 * parallel locked swapcache.
2680 unlock_page(swapcache
);
2681 page_cache_release(swapcache
);
2684 if (flags
& FAULT_FLAG_WRITE
) {
2685 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2686 if (ret
& VM_FAULT_ERROR
)
2687 ret
&= VM_FAULT_ERROR
;
2691 /* No need to invalidate - it was non-present before */
2692 update_mmu_cache(vma
, address
, page_table
);
2694 pte_unmap_unlock(page_table
, ptl
);
2698 mem_cgroup_cancel_charge(page
, memcg
);
2699 pte_unmap_unlock(page_table
, ptl
);
2703 page_cache_release(page
);
2704 if (page
!= swapcache
) {
2705 unlock_page(swapcache
);
2706 page_cache_release(swapcache
);
2712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713 * but allow concurrent faults), and pte mapped but not yet locked.
2714 * We return with mmap_sem still held, but pte unmapped and unlocked.
2716 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2717 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2720 struct mem_cgroup
*memcg
;
2725 pte_unmap(page_table
);
2727 /* File mapping without ->vm_ops ? */
2728 if (vma
->vm_flags
& VM_SHARED
)
2729 return VM_FAULT_SIGBUS
;
2731 /* Use the zero-page for reads */
2732 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
)) {
2733 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2734 vma
->vm_page_prot
));
2735 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2736 if (!pte_none(*page_table
))
2738 /* Deliver the page fault to userland, check inside PT lock */
2739 if (userfaultfd_missing(vma
)) {
2740 pte_unmap_unlock(page_table
, ptl
);
2741 return handle_userfault(vma
, address
, flags
,
2747 /* Allocate our own private page. */
2748 if (unlikely(anon_vma_prepare(vma
)))
2750 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2754 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2758 * The memory barrier inside __SetPageUptodate makes sure that
2759 * preceeding stores to the page contents become visible before
2760 * the set_pte_at() write.
2762 __SetPageUptodate(page
);
2764 entry
= mk_pte(page
, vma
->vm_page_prot
);
2765 if (vma
->vm_flags
& VM_WRITE
)
2766 entry
= pte_mkwrite(pte_mkdirty(entry
));
2768 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2769 if (!pte_none(*page_table
))
2772 /* Deliver the page fault to userland, check inside PT lock */
2773 if (userfaultfd_missing(vma
)) {
2774 pte_unmap_unlock(page_table
, ptl
);
2775 mem_cgroup_cancel_charge(page
, memcg
);
2776 page_cache_release(page
);
2777 return handle_userfault(vma
, address
, flags
,
2781 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2782 page_add_new_anon_rmap(page
, vma
, address
);
2783 mem_cgroup_commit_charge(page
, memcg
, false);
2784 lru_cache_add_active_or_unevictable(page
, vma
);
2786 set_pte_at(mm
, address
, page_table
, entry
);
2788 /* No need to invalidate - it was non-present before */
2789 update_mmu_cache(vma
, address
, page_table
);
2791 pte_unmap_unlock(page_table
, ptl
);
2794 mem_cgroup_cancel_charge(page
, memcg
);
2795 page_cache_release(page
);
2798 page_cache_release(page
);
2800 return VM_FAULT_OOM
;
2804 * The mmap_sem must have been held on entry, and may have been
2805 * released depending on flags and vma->vm_ops->fault() return value.
2806 * See filemap_fault() and __lock_page_retry().
2808 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2809 pgoff_t pgoff
, unsigned int flags
,
2810 struct page
*cow_page
, struct page
**page
)
2812 struct vm_fault vmf
;
2815 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2819 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2820 vmf
.cow_page
= cow_page
;
2822 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2823 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2828 if (unlikely(PageHWPoison(vmf
.page
))) {
2829 if (ret
& VM_FAULT_LOCKED
)
2830 unlock_page(vmf
.page
);
2831 page_cache_release(vmf
.page
);
2832 return VM_FAULT_HWPOISON
;
2835 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2836 lock_page(vmf
.page
);
2838 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2846 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2848 * @vma: virtual memory area
2849 * @address: user virtual address
2850 * @page: page to map
2851 * @pte: pointer to target page table entry
2852 * @write: true, if new entry is writable
2853 * @anon: true, if it's anonymous page
2855 * Caller must hold page table lock relevant for @pte.
2857 * Target users are page handler itself and implementations of
2858 * vm_ops->map_pages.
2860 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2861 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2865 flush_icache_page(vma
, page
);
2866 entry
= mk_pte(page
, vma
->vm_page_prot
);
2868 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2870 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2871 page_add_new_anon_rmap(page
, vma
, address
);
2873 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2874 page_add_file_rmap(page
);
2876 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2878 /* no need to invalidate: a not-present page won't be cached */
2879 update_mmu_cache(vma
, address
, pte
);
2882 static unsigned long fault_around_bytes __read_mostly
=
2883 rounddown_pow_of_two(65536);
2885 #ifdef CONFIG_DEBUG_FS
2886 static int fault_around_bytes_get(void *data
, u64
*val
)
2888 *val
= fault_around_bytes
;
2893 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2894 * rounded down to nearest page order. It's what do_fault_around() expects to
2897 static int fault_around_bytes_set(void *data
, u64 val
)
2899 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2901 if (val
> PAGE_SIZE
)
2902 fault_around_bytes
= rounddown_pow_of_two(val
);
2904 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2907 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2908 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2910 static int __init
fault_around_debugfs(void)
2914 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2915 &fault_around_bytes_fops
);
2917 pr_warn("Failed to create fault_around_bytes in debugfs");
2920 late_initcall(fault_around_debugfs
);
2924 * do_fault_around() tries to map few pages around the fault address. The hope
2925 * is that the pages will be needed soon and this will lower the number of
2928 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2929 * not ready to be mapped: not up-to-date, locked, etc.
2931 * This function is called with the page table lock taken. In the split ptlock
2932 * case the page table lock only protects only those entries which belong to
2933 * the page table corresponding to the fault address.
2935 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2938 * fault_around_pages() defines how many pages we'll try to map.
2939 * do_fault_around() expects it to return a power of two less than or equal to
2942 * The virtual address of the area that we map is naturally aligned to the
2943 * fault_around_pages() value (and therefore to page order). This way it's
2944 * easier to guarantee that we don't cross page table boundaries.
2946 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2947 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2949 unsigned long start_addr
, nr_pages
, mask
;
2951 struct vm_fault vmf
;
2954 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2955 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2957 start_addr
= max(address
& mask
, vma
->vm_start
);
2958 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2963 * max_pgoff is either end of page table or end of vma
2964 * or fault_around_pages() from pgoff, depending what is nearest.
2966 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2968 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2969 pgoff
+ nr_pages
- 1);
2971 /* Check if it makes any sense to call ->map_pages */
2972 while (!pte_none(*pte
)) {
2973 if (++pgoff
> max_pgoff
)
2975 start_addr
+= PAGE_SIZE
;
2976 if (start_addr
>= vma
->vm_end
)
2981 vmf
.virtual_address
= (void __user
*) start_addr
;
2984 vmf
.max_pgoff
= max_pgoff
;
2986 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2987 vma
->vm_ops
->map_pages(vma
, &vmf
);
2990 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2991 unsigned long address
, pmd_t
*pmd
,
2992 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2994 struct page
*fault_page
;
3000 * Let's call ->map_pages() first and use ->fault() as fallback
3001 * if page by the offset is not ready to be mapped (cold cache or
3004 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3005 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3006 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
3007 if (!pte_same(*pte
, orig_pte
))
3009 pte_unmap_unlock(pte
, ptl
);
3012 ret
= __do_fault(vma
, address
, pgoff
, flags
, NULL
, &fault_page
);
3013 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3016 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3017 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3018 pte_unmap_unlock(pte
, ptl
);
3019 unlock_page(fault_page
);
3020 page_cache_release(fault_page
);
3023 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
3024 unlock_page(fault_page
);
3026 pte_unmap_unlock(pte
, ptl
);
3030 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3031 unsigned long address
, pmd_t
*pmd
,
3032 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3034 struct page
*fault_page
, *new_page
;
3035 struct mem_cgroup
*memcg
;
3040 if (unlikely(anon_vma_prepare(vma
)))
3041 return VM_FAULT_OOM
;
3043 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3045 return VM_FAULT_OOM
;
3047 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
3048 page_cache_release(new_page
);
3049 return VM_FAULT_OOM
;
3052 ret
= __do_fault(vma
, address
, pgoff
, flags
, new_page
, &fault_page
);
3053 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3057 copy_user_highpage(new_page
, fault_page
, address
, vma
);
3058 __SetPageUptodate(new_page
);
3060 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3061 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3062 pte_unmap_unlock(pte
, ptl
);
3064 unlock_page(fault_page
);
3065 page_cache_release(fault_page
);
3068 * The fault handler has no page to lock, so it holds
3069 * i_mmap_lock for read to protect against truncate.
3071 i_mmap_unlock_read(vma
->vm_file
->f_mapping
);
3075 do_set_pte(vma
, address
, new_page
, pte
, true, true);
3076 mem_cgroup_commit_charge(new_page
, memcg
, false);
3077 lru_cache_add_active_or_unevictable(new_page
, vma
);
3078 pte_unmap_unlock(pte
, ptl
);
3080 unlock_page(fault_page
);
3081 page_cache_release(fault_page
);
3084 * The fault handler has no page to lock, so it holds
3085 * i_mmap_lock for read to protect against truncate.
3087 i_mmap_unlock_read(vma
->vm_file
->f_mapping
);
3091 mem_cgroup_cancel_charge(new_page
, memcg
);
3092 page_cache_release(new_page
);
3096 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3097 unsigned long address
, pmd_t
*pmd
,
3098 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3100 struct page
*fault_page
;
3101 struct address_space
*mapping
;
3107 ret
= __do_fault(vma
, address
, pgoff
, flags
, NULL
, &fault_page
);
3108 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3112 * Check if the backing address space wants to know that the page is
3113 * about to become writable
3115 if (vma
->vm_ops
->page_mkwrite
) {
3116 unlock_page(fault_page
);
3117 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
3118 if (unlikely(!tmp
||
3119 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3120 page_cache_release(fault_page
);
3125 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3126 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3127 pte_unmap_unlock(pte
, ptl
);
3128 unlock_page(fault_page
);
3129 page_cache_release(fault_page
);
3132 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3133 pte_unmap_unlock(pte
, ptl
);
3135 if (set_page_dirty(fault_page
))
3138 * Take a local copy of the address_space - page.mapping may be zeroed
3139 * by truncate after unlock_page(). The address_space itself remains
3140 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3141 * release semantics to prevent the compiler from undoing this copying.
3143 mapping
= fault_page
->mapping
;
3144 unlock_page(fault_page
);
3145 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3147 * Some device drivers do not set page.mapping but still
3150 balance_dirty_pages_ratelimited(mapping
);
3153 if (!vma
->vm_ops
->page_mkwrite
)
3154 file_update_time(vma
->vm_file
);
3160 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161 * but allow concurrent faults).
3162 * The mmap_sem may have been released depending on flags and our
3163 * return value. See filemap_fault() and __lock_page_or_retry().
3165 static int do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3166 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3167 unsigned int flags
, pte_t orig_pte
)
3169 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3170 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3172 pte_unmap(page_table
);
3173 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3174 if (!vma
->vm_ops
->fault
)
3175 return VM_FAULT_SIGBUS
;
3176 if (!(flags
& FAULT_FLAG_WRITE
))
3177 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3179 if (!(vma
->vm_flags
& VM_SHARED
))
3180 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3182 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3185 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3186 unsigned long addr
, int page_nid
,
3191 count_vm_numa_event(NUMA_HINT_FAULTS
);
3192 if (page_nid
== numa_node_id()) {
3193 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3194 *flags
|= TNF_FAULT_LOCAL
;
3197 return mpol_misplaced(page
, vma
, addr
);
3200 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3201 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3203 struct page
*page
= NULL
;
3208 bool migrated
= false;
3209 bool was_writable
= pte_write(pte
);
3212 /* A PROT_NONE fault should not end up here */
3213 BUG_ON(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)));
3216 * The "pte" at this point cannot be used safely without
3217 * validation through pte_unmap_same(). It's of NUMA type but
3218 * the pfn may be screwed if the read is non atomic.
3220 * We can safely just do a "set_pte_at()", because the old
3221 * page table entry is not accessible, so there would be no
3222 * concurrent hardware modifications to the PTE.
3224 ptl
= pte_lockptr(mm
, pmd
);
3226 if (unlikely(!pte_same(*ptep
, pte
))) {
3227 pte_unmap_unlock(ptep
, ptl
);
3231 /* Make it present again */
3232 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3233 pte
= pte_mkyoung(pte
);
3235 pte
= pte_mkwrite(pte
);
3236 set_pte_at(mm
, addr
, ptep
, pte
);
3237 update_mmu_cache(vma
, addr
, ptep
);
3239 page
= vm_normal_page(vma
, addr
, pte
);
3241 pte_unmap_unlock(ptep
, ptl
);
3246 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3247 * much anyway since they can be in shared cache state. This misses
3248 * the case where a mapping is writable but the process never writes
3249 * to it but pte_write gets cleared during protection updates and
3250 * pte_dirty has unpredictable behaviour between PTE scan updates,
3251 * background writeback, dirty balancing and application behaviour.
3253 if (!(vma
->vm_flags
& VM_WRITE
))
3254 flags
|= TNF_NO_GROUP
;
3257 * Flag if the page is shared between multiple address spaces. This
3258 * is later used when determining whether to group tasks together
3260 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3261 flags
|= TNF_SHARED
;
3263 last_cpupid
= page_cpupid_last(page
);
3264 page_nid
= page_to_nid(page
);
3265 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3266 pte_unmap_unlock(ptep
, ptl
);
3267 if (target_nid
== -1) {
3272 /* Migrate to the requested node */
3273 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3275 page_nid
= target_nid
;
3276 flags
|= TNF_MIGRATED
;
3278 flags
|= TNF_MIGRATE_FAIL
;
3282 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3286 static int create_huge_pmd(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3287 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
3289 if (vma_is_anonymous(vma
))
3290 return do_huge_pmd_anonymous_page(mm
, vma
, address
, pmd
, flags
);
3291 if (vma
->vm_ops
->pmd_fault
)
3292 return vma
->vm_ops
->pmd_fault(vma
, address
, pmd
, flags
);
3293 return VM_FAULT_FALLBACK
;
3296 static int wp_huge_pmd(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3297 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
,
3300 if (vma_is_anonymous(vma
))
3301 return do_huge_pmd_wp_page(mm
, vma
, address
, pmd
, orig_pmd
);
3302 if (vma
->vm_ops
->pmd_fault
)
3303 return vma
->vm_ops
->pmd_fault(vma
, address
, pmd
, flags
);
3304 return VM_FAULT_FALLBACK
;
3308 * These routines also need to handle stuff like marking pages dirty
3309 * and/or accessed for architectures that don't do it in hardware (most
3310 * RISC architectures). The early dirtying is also good on the i386.
3312 * There is also a hook called "update_mmu_cache()" that architectures
3313 * with external mmu caches can use to update those (ie the Sparc or
3314 * PowerPC hashed page tables that act as extended TLBs).
3316 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3317 * but allow concurrent faults), and pte mapped but not yet locked.
3318 * We return with pte unmapped and unlocked.
3320 * The mmap_sem may have been released depending on flags and our
3321 * return value. See filemap_fault() and __lock_page_or_retry().
3323 static int handle_pte_fault(struct mm_struct
*mm
,
3324 struct vm_area_struct
*vma
, unsigned long address
,
3325 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3331 * some architectures can have larger ptes than wordsize,
3332 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3333 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3334 * The code below just needs a consistent view for the ifs and
3335 * we later double check anyway with the ptl lock held. So here
3336 * a barrier will do.
3340 if (!pte_present(entry
)) {
3341 if (pte_none(entry
)) {
3342 if (vma_is_anonymous(vma
))
3343 return do_anonymous_page(mm
, vma
, address
,
3346 return do_fault(mm
, vma
, address
, pte
, pmd
,
3349 return do_swap_page(mm
, vma
, address
,
3350 pte
, pmd
, flags
, entry
);
3353 if (pte_protnone(entry
))
3354 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3356 ptl
= pte_lockptr(mm
, pmd
);
3358 if (unlikely(!pte_same(*pte
, entry
)))
3360 if (flags
& FAULT_FLAG_WRITE
) {
3361 if (!pte_write(entry
))
3362 return do_wp_page(mm
, vma
, address
,
3363 pte
, pmd
, ptl
, entry
);
3364 entry
= pte_mkdirty(entry
);
3366 entry
= pte_mkyoung(entry
);
3367 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3368 update_mmu_cache(vma
, address
, pte
);
3371 * This is needed only for protection faults but the arch code
3372 * is not yet telling us if this is a protection fault or not.
3373 * This still avoids useless tlb flushes for .text page faults
3376 if (flags
& FAULT_FLAG_WRITE
)
3377 flush_tlb_fix_spurious_fault(vma
, address
);
3380 pte_unmap_unlock(pte
, ptl
);
3385 * By the time we get here, we already hold the mm semaphore
3387 * The mmap_sem may have been released depending on flags and our
3388 * return value. See filemap_fault() and __lock_page_or_retry().
3390 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3391 unsigned long address
, unsigned int flags
)
3398 if (unlikely(is_vm_hugetlb_page(vma
)))
3399 return hugetlb_fault(mm
, vma
, address
, flags
);
3401 pgd
= pgd_offset(mm
, address
);
3402 pud
= pud_alloc(mm
, pgd
, address
);
3404 return VM_FAULT_OOM
;
3405 pmd
= pmd_alloc(mm
, pud
, address
);
3407 return VM_FAULT_OOM
;
3408 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3409 int ret
= create_huge_pmd(mm
, vma
, address
, pmd
, flags
);
3410 if (!(ret
& VM_FAULT_FALLBACK
))
3413 pmd_t orig_pmd
= *pmd
;
3417 if (pmd_trans_huge(orig_pmd
)) {
3418 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3421 * If the pmd is splitting, return and retry the
3422 * the fault. Alternative: wait until the split
3423 * is done, and goto retry.
3425 if (pmd_trans_splitting(orig_pmd
))
3428 if (pmd_protnone(orig_pmd
))
3429 return do_huge_pmd_numa_page(mm
, vma
, address
,
3432 if (dirty
&& !pmd_write(orig_pmd
)) {
3433 ret
= wp_huge_pmd(mm
, vma
, address
, pmd
,
3435 if (!(ret
& VM_FAULT_FALLBACK
))
3438 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3446 * Use __pte_alloc instead of pte_alloc_map, because we can't
3447 * run pte_offset_map on the pmd, if an huge pmd could
3448 * materialize from under us from a different thread.
3450 if (unlikely(pmd_none(*pmd
)) &&
3451 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3452 return VM_FAULT_OOM
;
3454 * If a huge pmd materialized under us just retry later. Use
3455 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3456 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3457 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3458 * in a different thread of this mm, in turn leading to a misleading
3459 * pmd_trans_huge() retval. All we have to ensure is that it is a
3460 * regular pmd that we can walk with pte_offset_map() and we can do that
3461 * through an atomic read in C, which is what pmd_trans_unstable()
3464 if (unlikely(pmd_trans_unstable(pmd
)))
3467 * A regular pmd is established and it can't morph into a huge pmd
3468 * from under us anymore at this point because we hold the mmap_sem
3469 * read mode and khugepaged takes it in write mode. So now it's
3470 * safe to run pte_offset_map().
3472 pte
= pte_offset_map(pmd
, address
);
3474 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3478 * By the time we get here, we already hold the mm semaphore
3480 * The mmap_sem may have been released depending on flags and our
3481 * return value. See filemap_fault() and __lock_page_or_retry().
3483 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3484 unsigned long address
, unsigned int flags
)
3488 __set_current_state(TASK_RUNNING
);
3490 count_vm_event(PGFAULT
);
3491 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3493 /* do counter updates before entering really critical section. */
3494 check_sync_rss_stat(current
);
3497 * Enable the memcg OOM handling for faults triggered in user
3498 * space. Kernel faults are handled more gracefully.
3500 if (flags
& FAULT_FLAG_USER
)
3501 mem_cgroup_oom_enable();
3503 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3505 if (flags
& FAULT_FLAG_USER
) {
3506 mem_cgroup_oom_disable();
3508 * The task may have entered a memcg OOM situation but
3509 * if the allocation error was handled gracefully (no
3510 * VM_FAULT_OOM), there is no need to kill anything.
3511 * Just clean up the OOM state peacefully.
3513 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3514 mem_cgroup_oom_synchronize(false);
3519 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3521 #ifndef __PAGETABLE_PUD_FOLDED
3523 * Allocate page upper directory.
3524 * We've already handled the fast-path in-line.
3526 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3528 pud_t
*new = pud_alloc_one(mm
, address
);
3532 smp_wmb(); /* See comment in __pte_alloc */
3534 spin_lock(&mm
->page_table_lock
);
3535 if (pgd_present(*pgd
)) /* Another has populated it */
3538 pgd_populate(mm
, pgd
, new);
3539 spin_unlock(&mm
->page_table_lock
);
3542 #endif /* __PAGETABLE_PUD_FOLDED */
3544 #ifndef __PAGETABLE_PMD_FOLDED
3546 * Allocate page middle directory.
3547 * We've already handled the fast-path in-line.
3549 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3551 pmd_t
*new = pmd_alloc_one(mm
, address
);
3555 smp_wmb(); /* See comment in __pte_alloc */
3557 spin_lock(&mm
->page_table_lock
);
3558 #ifndef __ARCH_HAS_4LEVEL_HACK
3559 if (!pud_present(*pud
)) {
3561 pud_populate(mm
, pud
, new);
3562 } else /* Another has populated it */
3565 if (!pgd_present(*pud
)) {
3567 pgd_populate(mm
, pud
, new);
3568 } else /* Another has populated it */
3570 #endif /* __ARCH_HAS_4LEVEL_HACK */
3571 spin_unlock(&mm
->page_table_lock
);
3574 #endif /* __PAGETABLE_PMD_FOLDED */
3576 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3577 pte_t
**ptepp
, spinlock_t
**ptlp
)
3584 pgd
= pgd_offset(mm
, address
);
3585 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3588 pud
= pud_offset(pgd
, address
);
3589 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3592 pmd
= pmd_offset(pud
, address
);
3593 VM_BUG_ON(pmd_trans_huge(*pmd
));
3594 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3597 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3601 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3604 if (!pte_present(*ptep
))
3609 pte_unmap_unlock(ptep
, *ptlp
);
3614 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3615 pte_t
**ptepp
, spinlock_t
**ptlp
)
3619 /* (void) is needed to make gcc happy */
3620 (void) __cond_lock(*ptlp
,
3621 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3626 * follow_pfn - look up PFN at a user virtual address
3627 * @vma: memory mapping
3628 * @address: user virtual address
3629 * @pfn: location to store found PFN
3631 * Only IO mappings and raw PFN mappings are allowed.
3633 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3635 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3642 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3645 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3648 *pfn
= pte_pfn(*ptep
);
3649 pte_unmap_unlock(ptep
, ptl
);
3652 EXPORT_SYMBOL(follow_pfn
);
3654 #ifdef CONFIG_HAVE_IOREMAP_PROT
3655 int follow_phys(struct vm_area_struct
*vma
,
3656 unsigned long address
, unsigned int flags
,
3657 unsigned long *prot
, resource_size_t
*phys
)
3663 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3666 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3670 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3673 *prot
= pgprot_val(pte_pgprot(pte
));
3674 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3678 pte_unmap_unlock(ptep
, ptl
);
3683 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3684 void *buf
, int len
, int write
)
3686 resource_size_t phys_addr
;
3687 unsigned long prot
= 0;
3688 void __iomem
*maddr
;
3689 int offset
= addr
& (PAGE_SIZE
-1);
3691 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3694 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3699 memcpy_toio(maddr
+ offset
, buf
, len
);
3701 memcpy_fromio(buf
, maddr
+ offset
, len
);
3706 EXPORT_SYMBOL_GPL(generic_access_phys
);
3710 * Access another process' address space as given in mm. If non-NULL, use the
3711 * given task for page fault accounting.
3713 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3714 unsigned long addr
, void *buf
, int len
, int write
)
3716 struct vm_area_struct
*vma
;
3717 void *old_buf
= buf
;
3719 down_read(&mm
->mmap_sem
);
3720 /* ignore errors, just check how much was successfully transferred */
3722 int bytes
, ret
, offset
;
3724 struct page
*page
= NULL
;
3726 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3727 write
, 1, &page
, &vma
);
3729 #ifndef CONFIG_HAVE_IOREMAP_PROT
3733 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3734 * we can access using slightly different code.
3736 vma
= find_vma(mm
, addr
);
3737 if (!vma
|| vma
->vm_start
> addr
)
3739 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3740 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3748 offset
= addr
& (PAGE_SIZE
-1);
3749 if (bytes
> PAGE_SIZE
-offset
)
3750 bytes
= PAGE_SIZE
-offset
;
3754 copy_to_user_page(vma
, page
, addr
,
3755 maddr
+ offset
, buf
, bytes
);
3756 set_page_dirty_lock(page
);
3758 copy_from_user_page(vma
, page
, addr
,
3759 buf
, maddr
+ offset
, bytes
);
3762 page_cache_release(page
);
3768 up_read(&mm
->mmap_sem
);
3770 return buf
- old_buf
;
3774 * access_remote_vm - access another process' address space
3775 * @mm: the mm_struct of the target address space
3776 * @addr: start address to access
3777 * @buf: source or destination buffer
3778 * @len: number of bytes to transfer
3779 * @write: whether the access is a write
3781 * The caller must hold a reference on @mm.
3783 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3784 void *buf
, int len
, int write
)
3786 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3790 * Access another process' address space.
3791 * Source/target buffer must be kernel space,
3792 * Do not walk the page table directly, use get_user_pages
3794 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3795 void *buf
, int len
, int write
)
3797 struct mm_struct
*mm
;
3800 mm
= get_task_mm(tsk
);
3804 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3811 * Print the name of a VMA.
3813 void print_vma_addr(char *prefix
, unsigned long ip
)
3815 struct mm_struct
*mm
= current
->mm
;
3816 struct vm_area_struct
*vma
;
3819 * Do not print if we are in atomic
3820 * contexts (in exception stacks, etc.):
3822 if (preempt_count())
3825 down_read(&mm
->mmap_sem
);
3826 vma
= find_vma(mm
, ip
);
3827 if (vma
&& vma
->vm_file
) {
3828 struct file
*f
= vma
->vm_file
;
3829 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3833 p
= file_path(f
, buf
, PAGE_SIZE
);
3836 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3838 vma
->vm_end
- vma
->vm_start
);
3839 free_page((unsigned long)buf
);
3842 up_read(&mm
->mmap_sem
);
3845 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3846 void __might_fault(const char *file
, int line
)
3849 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3850 * holding the mmap_sem, this is safe because kernel memory doesn't
3851 * get paged out, therefore we'll never actually fault, and the
3852 * below annotations will generate false positives.
3854 if (segment_eq(get_fs(), KERNEL_DS
))
3856 if (pagefault_disabled())
3858 __might_sleep(file
, line
, 0);
3859 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861 might_lock_read(¤t
->mm
->mmap_sem
);
3864 EXPORT_SYMBOL(__might_fault
);
3867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3868 static void clear_gigantic_page(struct page
*page
,
3870 unsigned int pages_per_huge_page
)
3873 struct page
*p
= page
;
3876 for (i
= 0; i
< pages_per_huge_page
;
3877 i
++, p
= mem_map_next(p
, page
, i
)) {
3879 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3882 void clear_huge_page(struct page
*page
,
3883 unsigned long addr
, unsigned int pages_per_huge_page
)
3887 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3888 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3893 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3895 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3899 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3901 struct vm_area_struct
*vma
,
3902 unsigned int pages_per_huge_page
)
3905 struct page
*dst_base
= dst
;
3906 struct page
*src_base
= src
;
3908 for (i
= 0; i
< pages_per_huge_page
; ) {
3910 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3913 dst
= mem_map_next(dst
, dst_base
, i
);
3914 src
= mem_map_next(src
, src_base
, i
);
3918 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3919 unsigned long addr
, struct vm_area_struct
*vma
,
3920 unsigned int pages_per_huge_page
)
3924 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3925 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3926 pages_per_huge_page
);
3931 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3933 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3936 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3938 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3940 static struct kmem_cache
*page_ptl_cachep
;
3942 void __init
ptlock_cache_init(void)
3944 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3948 bool ptlock_alloc(struct page
*page
)
3952 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3959 void ptlock_free(struct page
*page
)
3961 kmem_cache_free(page_ptl_cachep
, page
->ptl
);