dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / mm / memory.c
blob5aee9ec8b8c6a522508fc8a402f847b0d4168211
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
73 #include "internal.h"
75 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
95 void * high_memory;
97 EXPORT_SYMBOL(high_memory);
100 * Randomize the address space (stacks, mmaps, brk, etc.).
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
108 #else
110 #endif
112 static int __init disable_randmaps(char *s)
114 randomize_va_space = 0;
115 return 1;
117 __setup("norandmaps", disable_randmaps);
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
122 EXPORT_SYMBOL(zero_pfn);
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127 static int __init init_zero_pfn(void)
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
132 core_initcall(init_zero_pfn);
135 #if defined(SPLIT_RSS_COUNTING)
137 void sync_mm_rss(struct mm_struct *mm)
139 int i;
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
147 current->rss_stat.events = 0;
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 struct task_struct *task = current;
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct *task)
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169 sync_mm_rss(task->mm);
171 #else /* SPLIT_RSS_COUNTING */
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 static void check_sync_rss_stat(struct task_struct *task)
180 #endif /* SPLIT_RSS_COUNTING */
182 #ifdef HAVE_GENERIC_MMU_GATHER
184 static bool tlb_next_batch(struct mmu_gather *tlb)
186 struct mmu_gather_batch *batch;
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
191 return true;
194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195 return false;
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
199 return false;
201 tlb->batch_count++;
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
206 tlb->active->next = batch;
207 tlb->active = batch;
209 return true;
212 /* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 tlb->mm = mm;
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
223 tlb->need_flush_all = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
234 __tlb_reset_range(tlb);
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 if (!tlb->end)
240 return;
242 tlb_flush(tlb);
243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
246 #endif
247 __tlb_reset_range(tlb);
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 struct mmu_gather_batch *batch;
254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
258 tlb->active = &tlb->local;
261 void tlb_flush_mmu(struct mmu_gather *tlb)
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
267 /* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 struct mmu_gather_batch *batch, *next;
275 tlb_flush_mmu(tlb);
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
284 tlb->local.next = NULL;
287 /* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 struct mmu_gather_batch *batch;
297 VM_BUG_ON(!tlb->end);
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
304 batch = tlb->active;
306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 return batch->max - batch->nr;
311 #endif /* HAVE_GENERIC_MMU_GATHER */
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316 * See the comment near struct mmu_table_batch.
319 static void tlb_remove_table_smp_sync(void *arg)
321 /* Simply deliver the interrupt */
324 static void tlb_remove_table_one(void *table)
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
337 static void tlb_remove_table_rcu(struct rcu_head *head)
339 struct mmu_table_batch *batch;
340 int i;
342 batch = container_of(head, struct mmu_table_batch, rcu);
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
347 free_page((unsigned long)batch);
350 void tlb_table_flush(struct mmu_gather *tlb)
352 struct mmu_table_batch **batch = &tlb->batch;
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 struct mmu_table_batch **batch = &tlb->batch;
364 if (*batch == NULL) {
365 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
366 if (*batch == NULL) {
367 tlb_remove_table_one(table);
368 return;
370 (*batch)->nr = 0;
372 (*batch)->tables[(*batch)->nr++] = table;
373 if ((*batch)->nr == MAX_TABLE_BATCH)
374 tlb_table_flush(tlb);
377 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
380 * Note: this doesn't free the actual pages themselves. That
381 * has been handled earlier when unmapping all the memory regions.
383 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
384 unsigned long addr)
386 pgtable_t token = pmd_pgtable(*pmd);
387 pmd_clear(pmd);
388 pte_free_tlb(tlb, token, addr);
389 atomic_long_dec(&tlb->mm->nr_ptes);
392 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
393 unsigned long addr, unsigned long end,
394 unsigned long floor, unsigned long ceiling)
396 pmd_t *pmd;
397 unsigned long next;
398 unsigned long start;
400 start = addr;
401 pmd = pmd_offset(pud, addr);
402 do {
403 next = pmd_addr_end(addr, end);
404 if (pmd_none_or_clear_bad(pmd))
405 continue;
406 free_pte_range(tlb, pmd, addr);
407 } while (pmd++, addr = next, addr != end);
409 start &= PUD_MASK;
410 if (start < floor)
411 return;
412 if (ceiling) {
413 ceiling &= PUD_MASK;
414 if (!ceiling)
415 return;
417 if (end - 1 > ceiling - 1)
418 return;
420 pmd = pmd_offset(pud, start);
421 pud_clear(pud);
422 pmd_free_tlb(tlb, pmd, start);
423 mm_dec_nr_pmds(tlb->mm);
426 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
427 unsigned long addr, unsigned long end,
428 unsigned long floor, unsigned long ceiling)
430 pud_t *pud;
431 unsigned long next;
432 unsigned long start;
434 start = addr;
435 pud = pud_offset(pgd, addr);
436 do {
437 next = pud_addr_end(addr, end);
438 if (pud_none_or_clear_bad(pud))
439 continue;
440 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
441 } while (pud++, addr = next, addr != end);
443 start &= PGDIR_MASK;
444 if (start < floor)
445 return;
446 if (ceiling) {
447 ceiling &= PGDIR_MASK;
448 if (!ceiling)
449 return;
451 if (end - 1 > ceiling - 1)
452 return;
454 pud = pud_offset(pgd, start);
455 pgd_clear(pgd);
456 pud_free_tlb(tlb, pud, start);
460 * This function frees user-level page tables of a process.
462 void free_pgd_range(struct mmu_gather *tlb,
463 unsigned long addr, unsigned long end,
464 unsigned long floor, unsigned long ceiling)
466 pgd_t *pgd;
467 unsigned long next;
470 * The next few lines have given us lots of grief...
472 * Why are we testing PMD* at this top level? Because often
473 * there will be no work to do at all, and we'd prefer not to
474 * go all the way down to the bottom just to discover that.
476 * Why all these "- 1"s? Because 0 represents both the bottom
477 * of the address space and the top of it (using -1 for the
478 * top wouldn't help much: the masks would do the wrong thing).
479 * The rule is that addr 0 and floor 0 refer to the bottom of
480 * the address space, but end 0 and ceiling 0 refer to the top
481 * Comparisons need to use "end - 1" and "ceiling - 1" (though
482 * that end 0 case should be mythical).
484 * Wherever addr is brought up or ceiling brought down, we must
485 * be careful to reject "the opposite 0" before it confuses the
486 * subsequent tests. But what about where end is brought down
487 * by PMD_SIZE below? no, end can't go down to 0 there.
489 * Whereas we round start (addr) and ceiling down, by different
490 * masks at different levels, in order to test whether a table
491 * now has no other vmas using it, so can be freed, we don't
492 * bother to round floor or end up - the tests don't need that.
495 addr &= PMD_MASK;
496 if (addr < floor) {
497 addr += PMD_SIZE;
498 if (!addr)
499 return;
501 if (ceiling) {
502 ceiling &= PMD_MASK;
503 if (!ceiling)
504 return;
506 if (end - 1 > ceiling - 1)
507 end -= PMD_SIZE;
508 if (addr > end - 1)
509 return;
511 pgd = pgd_offset(tlb->mm, addr);
512 do {
513 next = pgd_addr_end(addr, end);
514 if (pgd_none_or_clear_bad(pgd))
515 continue;
516 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
517 } while (pgd++, addr = next, addr != end);
520 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
521 unsigned long floor, unsigned long ceiling)
523 while (vma) {
524 struct vm_area_struct *next = vma->vm_next;
525 unsigned long addr = vma->vm_start;
528 * Hide vma from rmap and truncate_pagecache before freeing
529 * pgtables
531 unlink_anon_vmas(vma);
532 unlink_file_vma(vma);
534 if (is_vm_hugetlb_page(vma)) {
535 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
536 floor, next? next->vm_start: ceiling);
537 } else {
539 * Optimization: gather nearby vmas into one call down
541 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
542 && !is_vm_hugetlb_page(next)) {
543 vma = next;
544 next = vma->vm_next;
545 unlink_anon_vmas(vma);
546 unlink_file_vma(vma);
548 free_pgd_range(tlb, addr, vma->vm_end,
549 floor, next? next->vm_start: ceiling);
551 vma = next;
555 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
556 pmd_t *pmd, unsigned long address)
558 spinlock_t *ptl;
559 pgtable_t new = pte_alloc_one(mm, address);
560 int wait_split_huge_page;
561 if (!new)
562 return -ENOMEM;
565 * Ensure all pte setup (eg. pte page lock and page clearing) are
566 * visible before the pte is made visible to other CPUs by being
567 * put into page tables.
569 * The other side of the story is the pointer chasing in the page
570 * table walking code (when walking the page table without locking;
571 * ie. most of the time). Fortunately, these data accesses consist
572 * of a chain of data-dependent loads, meaning most CPUs (alpha
573 * being the notable exception) will already guarantee loads are
574 * seen in-order. See the alpha page table accessors for the
575 * smp_read_barrier_depends() barriers in page table walking code.
577 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
579 ptl = pmd_lock(mm, pmd);
580 wait_split_huge_page = 0;
581 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
582 atomic_long_inc(&mm->nr_ptes);
583 pmd_populate(mm, pmd, new);
584 new = NULL;
585 } else if (unlikely(pmd_trans_splitting(*pmd)))
586 wait_split_huge_page = 1;
587 spin_unlock(ptl);
588 if (new)
589 pte_free(mm, new);
590 if (wait_split_huge_page)
591 wait_split_huge_page(vma->anon_vma, pmd);
592 return 0;
595 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
597 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
598 if (!new)
599 return -ENOMEM;
601 smp_wmb(); /* See comment in __pte_alloc */
603 spin_lock(&init_mm.page_table_lock);
604 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
605 pmd_populate_kernel(&init_mm, pmd, new);
606 new = NULL;
607 } else
608 VM_BUG_ON(pmd_trans_splitting(*pmd));
609 spin_unlock(&init_mm.page_table_lock);
610 if (new)
611 pte_free_kernel(&init_mm, new);
612 return 0;
615 static inline void init_rss_vec(int *rss)
617 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
620 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
622 int i;
624 if (current->mm == mm)
625 sync_mm_rss(mm);
626 for (i = 0; i < NR_MM_COUNTERS; i++)
627 if (rss[i])
628 add_mm_counter(mm, i, rss[i]);
632 * This function is called to print an error when a bad pte
633 * is found. For example, we might have a PFN-mapped pte in
634 * a region that doesn't allow it.
636 * The calling function must still handle the error.
638 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
639 pte_t pte, struct page *page)
641 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
642 pud_t *pud = pud_offset(pgd, addr);
643 pmd_t *pmd = pmd_offset(pud, addr);
644 struct address_space *mapping;
645 pgoff_t index;
646 static unsigned long resume;
647 static unsigned long nr_shown;
648 static unsigned long nr_unshown;
651 * Allow a burst of 60 reports, then keep quiet for that minute;
652 * or allow a steady drip of one report per second.
654 if (nr_shown == 60) {
655 if (time_before(jiffies, resume)) {
656 nr_unshown++;
657 return;
659 if (nr_unshown) {
660 printk(KERN_ALERT
661 "BUG: Bad page map: %lu messages suppressed\n",
662 nr_unshown);
663 nr_unshown = 0;
665 nr_shown = 0;
667 if (nr_shown++ == 0)
668 resume = jiffies + 60 * HZ;
670 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
671 index = linear_page_index(vma, addr);
673 printk(KERN_ALERT
674 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
675 current->comm,
676 (long long)pte_val(pte), (long long)pmd_val(*pmd));
677 if (page)
678 dump_page(page, "bad pte");
679 printk(KERN_ALERT
680 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686 vma->vm_file,
687 vma->vm_ops ? vma->vm_ops->fault : NULL,
688 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689 mapping ? mapping->a_ops->readpage : NULL);
690 dump_stack();
691 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
695 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697 * "Special" mappings do not wish to be associated with a "struct page" (either
698 * it doesn't exist, or it exists but they don't want to touch it). In this
699 * case, NULL is returned here. "Normal" mappings do have a struct page.
701 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702 * pte bit, in which case this function is trivial. Secondly, an architecture
703 * may not have a spare pte bit, which requires a more complicated scheme,
704 * described below.
706 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707 * special mapping (even if there are underlying and valid "struct pages").
708 * COWed pages of a VM_PFNMAP are always normal.
710 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713 * mapping will always honor the rule
715 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717 * And for normal mappings this is false.
719 * This restricts such mappings to be a linear translation from virtual address
720 * to pfn. To get around this restriction, we allow arbitrary mappings so long
721 * as the vma is not a COW mapping; in that case, we know that all ptes are
722 * special (because none can have been COWed).
725 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728 * page" backing, however the difference is that _all_ pages with a struct
729 * page (that is, those where pfn_valid is true) are refcounted and considered
730 * normal pages by the VM. The disadvantage is that pages are refcounted
731 * (which can be slower and simply not an option for some PFNMAP users). The
732 * advantage is that we don't have to follow the strict linearity rule of
733 * PFNMAP mappings in order to support COWable mappings.
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742 pte_t pte)
744 unsigned long pfn = pte_pfn(pte);
746 if (HAVE_PTE_SPECIAL) {
747 if (likely(!pte_special(pte)))
748 goto check_pfn;
749 if (vma->vm_ops && vma->vm_ops->find_special_page)
750 return vma->vm_ops->find_special_page(vma, addr);
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
753 if (!is_zero_pfn(pfn))
754 print_bad_pte(vma, addr, pte, NULL);
755 return NULL;
758 /* !HAVE_PTE_SPECIAL case follows: */
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
775 if (is_zero_pfn(pfn))
776 return NULL;
777 check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist.
787 out:
788 return pfn_to_page(pfn);
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
793 pmd_t pmd)
795 unsigned long pfn = pmd_pfn(pmd);
798 * There is no pmd_special() but there may be special pmds, e.g.
799 * in a direct-access (dax) mapping, so let's just replicate the
800 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
802 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
803 if (vma->vm_flags & VM_MIXEDMAP) {
804 if (!pfn_valid(pfn))
805 return NULL;
806 goto out;
807 } else {
808 unsigned long off;
809 off = (addr - vma->vm_start) >> PAGE_SHIFT;
810 if (pfn == vma->vm_pgoff + off)
811 return NULL;
812 if (!is_cow_mapping(vma->vm_flags))
813 return NULL;
817 if (is_zero_pfn(pfn))
818 return NULL;
819 if (unlikely(pfn > highest_memmap_pfn))
820 return NULL;
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
826 out:
827 return pfn_to_page(pfn);
829 #endif
832 * copy one vm_area from one task to the other. Assumes the page tables
833 * already present in the new task to be cleared in the whole range
834 * covered by this vma.
837 static inline unsigned long
838 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
839 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
840 unsigned long addr, int *rss)
842 unsigned long vm_flags = vma->vm_flags;
843 pte_t pte = *src_pte;
844 struct page *page;
846 /* pte contains position in swap or file, so copy. */
847 if (unlikely(!pte_present(pte))) {
848 swp_entry_t entry = pte_to_swp_entry(pte);
850 if (likely(!non_swap_entry(entry))) {
851 if (swap_duplicate(entry) < 0)
852 return entry.val;
854 /* make sure dst_mm is on swapoff's mmlist. */
855 if (unlikely(list_empty(&dst_mm->mmlist))) {
856 spin_lock(&mmlist_lock);
857 if (list_empty(&dst_mm->mmlist))
858 list_add(&dst_mm->mmlist,
859 &src_mm->mmlist);
860 spin_unlock(&mmlist_lock);
862 rss[MM_SWAPENTS]++;
863 } else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
866 if (PageAnon(page))
867 rss[MM_ANONPAGES]++;
868 else
869 rss[MM_FILEPAGES]++;
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
874 * COW mappings require pages in both
875 * parent and child to be set to read.
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 if (pte_swp_soft_dirty(*src_pte))
880 pte = pte_swp_mksoft_dirty(pte);
881 set_pte_at(src_mm, addr, src_pte, pte);
884 goto out_set_pte;
888 * If it's a COW mapping, write protect it both
889 * in the parent and the child
891 if (is_cow_mapping(vm_flags)) {
892 ptep_set_wrprotect(src_mm, addr, src_pte);
893 pte = pte_wrprotect(pte);
897 * If it's a shared mapping, mark it clean in
898 * the child
900 if (vm_flags & VM_SHARED)
901 pte = pte_mkclean(pte);
902 pte = pte_mkold(pte);
904 page = vm_normal_page(vma, addr, pte);
905 if (page) {
906 get_page(page);
907 page_dup_rmap(page);
908 if (PageAnon(page))
909 rss[MM_ANONPAGES]++;
910 else
911 rss[MM_FILEPAGES]++;
914 out_set_pte:
915 set_pte_at(dst_mm, addr, dst_pte, pte);
916 return 0;
919 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
920 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
921 unsigned long addr, unsigned long end)
923 pte_t *orig_src_pte, *orig_dst_pte;
924 pte_t *src_pte, *dst_pte;
925 spinlock_t *src_ptl, *dst_ptl;
926 int progress = 0;
927 int rss[NR_MM_COUNTERS];
928 swp_entry_t entry = (swp_entry_t){0};
930 again:
931 init_rss_vec(rss);
933 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
934 if (!dst_pte)
935 return -ENOMEM;
936 src_pte = pte_offset_map(src_pmd, addr);
937 src_ptl = pte_lockptr(src_mm, src_pmd);
938 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
939 orig_src_pte = src_pte;
940 orig_dst_pte = dst_pte;
941 arch_enter_lazy_mmu_mode();
943 do {
945 * We are holding two locks at this point - either of them
946 * could generate latencies in another task on another CPU.
948 if (progress >= 32) {
949 progress = 0;
950 if (need_resched() ||
951 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
952 break;
954 if (pte_none(*src_pte)) {
955 progress++;
956 continue;
958 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
959 vma, addr, rss);
960 if (entry.val)
961 break;
962 progress += 8;
963 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
965 arch_leave_lazy_mmu_mode();
966 spin_unlock(src_ptl);
967 pte_unmap(orig_src_pte);
968 add_mm_rss_vec(dst_mm, rss);
969 pte_unmap_unlock(orig_dst_pte, dst_ptl);
970 cond_resched();
972 if (entry.val) {
973 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
974 return -ENOMEM;
975 progress = 0;
977 if (addr != end)
978 goto again;
979 return 0;
982 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
984 unsigned long addr, unsigned long end)
986 pmd_t *src_pmd, *dst_pmd;
987 unsigned long next;
989 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
990 if (!dst_pmd)
991 return -ENOMEM;
992 src_pmd = pmd_offset(src_pud, addr);
993 do {
994 next = pmd_addr_end(addr, end);
995 if (pmd_trans_huge(*src_pmd)) {
996 int err;
997 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
998 err = copy_huge_pmd(dst_mm, src_mm,
999 dst_pmd, src_pmd, addr, vma);
1000 if (err == -ENOMEM)
1001 return -ENOMEM;
1002 if (!err)
1003 continue;
1004 /* fall through */
1006 if (pmd_none_or_clear_bad(src_pmd))
1007 continue;
1008 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1009 vma, addr, next))
1010 return -ENOMEM;
1011 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1012 return 0;
1015 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1017 unsigned long addr, unsigned long end)
1019 pud_t *src_pud, *dst_pud;
1020 unsigned long next;
1022 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1023 if (!dst_pud)
1024 return -ENOMEM;
1025 src_pud = pud_offset(src_pgd, addr);
1026 do {
1027 next = pud_addr_end(addr, end);
1028 if (pud_none_or_clear_bad(src_pud))
1029 continue;
1030 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1031 vma, addr, next))
1032 return -ENOMEM;
1033 } while (dst_pud++, src_pud++, addr = next, addr != end);
1034 return 0;
1037 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038 struct vm_area_struct *vma)
1040 pgd_t *src_pgd, *dst_pgd;
1041 unsigned long next;
1042 unsigned long addr = vma->vm_start;
1043 unsigned long end = vma->vm_end;
1044 unsigned long mmun_start; /* For mmu_notifiers */
1045 unsigned long mmun_end; /* For mmu_notifiers */
1046 bool is_cow;
1047 int ret;
1050 * Don't copy ptes where a page fault will fill them correctly.
1051 * Fork becomes much lighter when there are big shared or private
1052 * readonly mappings. The tradeoff is that copy_page_range is more
1053 * efficient than faulting.
1055 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1056 !vma->anon_vma)
1057 return 0;
1059 if (is_vm_hugetlb_page(vma))
1060 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1062 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1064 * We do not free on error cases below as remove_vma
1065 * gets called on error from higher level routine
1067 ret = track_pfn_copy(vma);
1068 if (ret)
1069 return ret;
1073 * We need to invalidate the secondary MMU mappings only when
1074 * there could be a permission downgrade on the ptes of the
1075 * parent mm. And a permission downgrade will only happen if
1076 * is_cow_mapping() returns true.
1078 is_cow = is_cow_mapping(vma->vm_flags);
1079 mmun_start = addr;
1080 mmun_end = end;
1081 if (is_cow)
1082 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083 mmun_end);
1085 ret = 0;
1086 dst_pgd = pgd_offset(dst_mm, addr);
1087 src_pgd = pgd_offset(src_mm, addr);
1088 do {
1089 next = pgd_addr_end(addr, end);
1090 if (pgd_none_or_clear_bad(src_pgd))
1091 continue;
1092 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 vma, addr, next))) {
1094 ret = -ENOMEM;
1095 break;
1097 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1099 if (is_cow)
1100 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101 return ret;
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105 struct vm_area_struct *vma, pmd_t *pmd,
1106 unsigned long addr, unsigned long end,
1107 struct zap_details *details)
1109 struct mm_struct *mm = tlb->mm;
1110 int force_flush = 0;
1111 int rss[NR_MM_COUNTERS];
1112 spinlock_t *ptl;
1113 pte_t *start_pte;
1114 pte_t *pte;
1115 swp_entry_t entry;
1117 again:
1118 init_rss_vec(rss);
1119 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 pte = start_pte;
1121 flush_tlb_batched_pending(mm);
1122 arch_enter_lazy_mmu_mode();
1123 do {
1124 pte_t ptent = *pte;
1125 if (pte_none(ptent)) {
1126 continue;
1129 if (pte_present(ptent)) {
1130 struct page *page;
1132 page = vm_normal_page(vma, addr, ptent);
1133 if (unlikely(details) && page) {
1135 * unmap_shared_mapping_pages() wants to
1136 * invalidate cache without truncating:
1137 * unmap shared but keep private pages.
1139 if (details->check_mapping &&
1140 details->check_mapping != page->mapping)
1141 continue;
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 tlb->fullmm);
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent)) {
1152 force_flush = 1;
1153 set_page_dirty(page);
1155 if (pte_young(ptent) &&
1156 likely(!(vma->vm_flags & VM_SEQ_READ)))
1157 mark_page_accessed(page);
1158 rss[MM_FILEPAGES]--;
1160 page_remove_rmap(page);
1161 if (unlikely(page_mapcount(page) < 0))
1162 print_bad_pte(vma, addr, ptent, page);
1163 if (unlikely(!__tlb_remove_page(tlb, page))) {
1164 force_flush = 1;
1165 addr += PAGE_SIZE;
1166 break;
1168 continue;
1170 /* If details->check_mapping, we leave swap entries. */
1171 if (unlikely(details))
1172 continue;
1174 entry = pte_to_swp_entry(ptent);
1175 if (!non_swap_entry(entry))
1176 rss[MM_SWAPENTS]--;
1177 else if (is_migration_entry(entry)) {
1178 struct page *page;
1180 page = migration_entry_to_page(entry);
1182 if (PageAnon(page))
1183 rss[MM_ANONPAGES]--;
1184 else
1185 rss[MM_FILEPAGES]--;
1187 if (unlikely(!free_swap_and_cache(entry)))
1188 print_bad_pte(vma, addr, ptent, NULL);
1189 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1190 } while (pte++, addr += PAGE_SIZE, addr != end);
1192 add_mm_rss_vec(mm, rss);
1193 arch_leave_lazy_mmu_mode();
1195 /* Do the actual TLB flush before dropping ptl */
1196 if (force_flush)
1197 tlb_flush_mmu_tlbonly(tlb);
1198 pte_unmap_unlock(start_pte, ptl);
1201 * If we forced a TLB flush (either due to running out of
1202 * batch buffers or because we needed to flush dirty TLB
1203 * entries before releasing the ptl), free the batched
1204 * memory too. Restart if we didn't do everything.
1206 if (force_flush) {
1207 force_flush = 0;
1208 tlb_flush_mmu_free(tlb);
1210 if (addr != end)
1211 goto again;
1214 return addr;
1217 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1218 struct vm_area_struct *vma, pud_t *pud,
1219 unsigned long addr, unsigned long end,
1220 struct zap_details *details)
1222 pmd_t *pmd;
1223 unsigned long next;
1225 pmd = pmd_offset(pud, addr);
1226 do {
1227 next = pmd_addr_end(addr, end);
1228 if (pmd_trans_huge(*pmd)) {
1229 if (next - addr != HPAGE_PMD_SIZE) {
1230 #ifdef CONFIG_DEBUG_VM
1231 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1232 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1233 __func__, addr, end,
1234 vma->vm_start,
1235 vma->vm_end);
1236 BUG();
1238 #endif
1239 split_huge_page_pmd(vma, addr, pmd);
1240 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241 goto next;
1242 /* fall through */
1245 * Here there can be other concurrent MADV_DONTNEED or
1246 * trans huge page faults running, and if the pmd is
1247 * none or trans huge it can change under us. This is
1248 * because MADV_DONTNEED holds the mmap_sem in read
1249 * mode.
1251 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252 goto next;
1253 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254 next:
1255 cond_resched();
1256 } while (pmd++, addr = next, addr != end);
1258 return addr;
1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, pgd_t *pgd,
1263 unsigned long addr, unsigned long end,
1264 struct zap_details *details)
1266 pud_t *pud;
1267 unsigned long next;
1269 pud = pud_offset(pgd, addr);
1270 do {
1271 next = pud_addr_end(addr, end);
1272 if (pud_none_or_clear_bad(pud))
1273 continue;
1274 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275 } while (pud++, addr = next, addr != end);
1277 return addr;
1280 static void unmap_page_range(struct mmu_gather *tlb,
1281 struct vm_area_struct *vma,
1282 unsigned long addr, unsigned long end,
1283 struct zap_details *details)
1285 pgd_t *pgd;
1286 unsigned long next;
1288 if (details && !details->check_mapping)
1289 details = NULL;
1291 BUG_ON(addr >= end);
1292 tlb_start_vma(tlb, vma);
1293 pgd = pgd_offset(vma->vm_mm, addr);
1294 do {
1295 next = pgd_addr_end(addr, end);
1296 if (pgd_none_or_clear_bad(pgd))
1297 continue;
1298 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299 } while (pgd++, addr = next, addr != end);
1300 tlb_end_vma(tlb, vma);
1304 static void unmap_single_vma(struct mmu_gather *tlb,
1305 struct vm_area_struct *vma, unsigned long start_addr,
1306 unsigned long end_addr,
1307 struct zap_details *details)
1309 unsigned long start = max(vma->vm_start, start_addr);
1310 unsigned long end;
1312 if (start >= vma->vm_end)
1313 return;
1314 end = min(vma->vm_end, end_addr);
1315 if (end <= vma->vm_start)
1316 return;
1318 if (vma->vm_file)
1319 uprobe_munmap(vma, start, end);
1321 if (unlikely(vma->vm_flags & VM_PFNMAP))
1322 untrack_pfn(vma, 0, 0);
1324 if (start != end) {
1325 if (unlikely(is_vm_hugetlb_page(vma))) {
1327 * It is undesirable to test vma->vm_file as it
1328 * should be non-null for valid hugetlb area.
1329 * However, vm_file will be NULL in the error
1330 * cleanup path of mmap_region. When
1331 * hugetlbfs ->mmap method fails,
1332 * mmap_region() nullifies vma->vm_file
1333 * before calling this function to clean up.
1334 * Since no pte has actually been setup, it is
1335 * safe to do nothing in this case.
1337 if (vma->vm_file) {
1338 i_mmap_lock_write(vma->vm_file->f_mapping);
1339 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1340 i_mmap_unlock_write(vma->vm_file->f_mapping);
1342 } else
1343 unmap_page_range(tlb, vma, start, end, details);
1348 * unmap_vmas - unmap a range of memory covered by a list of vma's
1349 * @tlb: address of the caller's struct mmu_gather
1350 * @vma: the starting vma
1351 * @start_addr: virtual address at which to start unmapping
1352 * @end_addr: virtual address at which to end unmapping
1354 * Unmap all pages in the vma list.
1356 * Only addresses between `start' and `end' will be unmapped.
1358 * The VMA list must be sorted in ascending virtual address order.
1360 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1361 * range after unmap_vmas() returns. So the only responsibility here is to
1362 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1363 * drops the lock and schedules.
1365 void unmap_vmas(struct mmu_gather *tlb,
1366 struct vm_area_struct *vma, unsigned long start_addr,
1367 unsigned long end_addr)
1369 struct mm_struct *mm = vma->vm_mm;
1371 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1372 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1373 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1374 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1378 * zap_page_range - remove user pages in a given range
1379 * @vma: vm_area_struct holding the applicable pages
1380 * @start: starting address of pages to zap
1381 * @size: number of bytes to zap
1382 * @details: details of shared cache invalidation
1384 * Caller must protect the VMA list
1386 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1387 unsigned long size, struct zap_details *details)
1389 struct mm_struct *mm = vma->vm_mm;
1390 struct mmu_gather tlb;
1391 unsigned long end = start + size;
1393 lru_add_drain();
1394 tlb_gather_mmu(&tlb, mm, start, end);
1395 update_hiwater_rss(mm);
1396 mmu_notifier_invalidate_range_start(mm, start, end);
1397 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1398 unmap_single_vma(&tlb, vma, start, end, details);
1399 mmu_notifier_invalidate_range_end(mm, start, end);
1400 tlb_finish_mmu(&tlb, start, end);
1404 * zap_page_range_single - remove user pages in a given range
1405 * @vma: vm_area_struct holding the applicable pages
1406 * @address: starting address of pages to zap
1407 * @size: number of bytes to zap
1408 * @details: details of shared cache invalidation
1410 * The range must fit into one VMA.
1412 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1413 unsigned long size, struct zap_details *details)
1415 struct mm_struct *mm = vma->vm_mm;
1416 struct mmu_gather tlb;
1417 unsigned long end = address + size;
1419 lru_add_drain();
1420 tlb_gather_mmu(&tlb, mm, address, end);
1421 update_hiwater_rss(mm);
1422 mmu_notifier_invalidate_range_start(mm, address, end);
1423 unmap_single_vma(&tlb, vma, address, end, details);
1424 mmu_notifier_invalidate_range_end(mm, address, end);
1425 tlb_finish_mmu(&tlb, address, end);
1429 * zap_vma_ptes - remove ptes mapping the vma
1430 * @vma: vm_area_struct holding ptes to be zapped
1431 * @address: starting address of pages to zap
1432 * @size: number of bytes to zap
1434 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1436 * The entire address range must be fully contained within the vma.
1438 * Returns 0 if successful.
1440 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1441 unsigned long size)
1443 if (address < vma->vm_start || address + size > vma->vm_end ||
1444 !(vma->vm_flags & VM_PFNMAP))
1445 return -1;
1446 zap_page_range_single(vma, address, size, NULL);
1447 return 0;
1449 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1451 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1452 spinlock_t **ptl)
1454 pgd_t * pgd = pgd_offset(mm, addr);
1455 pud_t * pud = pud_alloc(mm, pgd, addr);
1456 if (pud) {
1457 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1458 if (pmd) {
1459 VM_BUG_ON(pmd_trans_huge(*pmd));
1460 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1463 return NULL;
1467 * This is the old fallback for page remapping.
1469 * For historical reasons, it only allows reserved pages. Only
1470 * old drivers should use this, and they needed to mark their
1471 * pages reserved for the old functions anyway.
1473 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1474 struct page *page, pgprot_t prot)
1476 struct mm_struct *mm = vma->vm_mm;
1477 int retval;
1478 pte_t *pte;
1479 spinlock_t *ptl;
1481 retval = -EINVAL;
1482 if (PageAnon(page))
1483 goto out;
1484 retval = -ENOMEM;
1485 flush_dcache_page(page);
1486 pte = get_locked_pte(mm, addr, &ptl);
1487 if (!pte)
1488 goto out;
1489 retval = -EBUSY;
1490 if (!pte_none(*pte))
1491 goto out_unlock;
1493 /* Ok, finally just insert the thing.. */
1494 get_page(page);
1495 inc_mm_counter_fast(mm, MM_FILEPAGES);
1496 page_add_file_rmap(page);
1497 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1499 retval = 0;
1500 pte_unmap_unlock(pte, ptl);
1501 return retval;
1502 out_unlock:
1503 pte_unmap_unlock(pte, ptl);
1504 out:
1505 return retval;
1509 * vm_insert_page - insert single page into user vma
1510 * @vma: user vma to map to
1511 * @addr: target user address of this page
1512 * @page: source kernel page
1514 * This allows drivers to insert individual pages they've allocated
1515 * into a user vma.
1517 * The page has to be a nice clean _individual_ kernel allocation.
1518 * If you allocate a compound page, you need to have marked it as
1519 * such (__GFP_COMP), or manually just split the page up yourself
1520 * (see split_page()).
1522 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1523 * took an arbitrary page protection parameter. This doesn't allow
1524 * that. Your vma protection will have to be set up correctly, which
1525 * means that if you want a shared writable mapping, you'd better
1526 * ask for a shared writable mapping!
1528 * The page does not need to be reserved.
1530 * Usually this function is called from f_op->mmap() handler
1531 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1532 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1533 * function from other places, for example from page-fault handler.
1535 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1536 struct page *page)
1538 if (addr < vma->vm_start || addr >= vma->vm_end)
1539 return -EFAULT;
1540 if (!page_count(page))
1541 return -EINVAL;
1542 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1543 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1544 BUG_ON(vma->vm_flags & VM_PFNMAP);
1545 vma->vm_flags |= VM_MIXEDMAP;
1547 return insert_page(vma, addr, page, vma->vm_page_prot);
1549 EXPORT_SYMBOL(vm_insert_page);
1551 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 unsigned long pfn, pgprot_t prot)
1554 struct mm_struct *mm = vma->vm_mm;
1555 int retval;
1556 pte_t *pte, entry;
1557 spinlock_t *ptl;
1559 retval = -ENOMEM;
1560 pte = get_locked_pte(mm, addr, &ptl);
1561 if (!pte)
1562 goto out;
1563 retval = -EBUSY;
1564 if (!pte_none(*pte))
1565 goto out_unlock;
1567 /* Ok, finally just insert the thing.. */
1568 entry = pte_mkspecial(pfn_pte(pfn, prot));
1569 set_pte_at(mm, addr, pte, entry);
1570 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1572 retval = 0;
1573 out_unlock:
1574 pte_unmap_unlock(pte, ptl);
1575 out:
1576 return retval;
1580 * vm_insert_pfn - insert single pfn into user vma
1581 * @vma: user vma to map to
1582 * @addr: target user address of this page
1583 * @pfn: source kernel pfn
1585 * Similar to vm_insert_page, this allows drivers to insert individual pages
1586 * they've allocated into a user vma. Same comments apply.
1588 * This function should only be called from a vm_ops->fault handler, and
1589 * in that case the handler should return NULL.
1591 * vma cannot be a COW mapping.
1593 * As this is called only for pages that do not currently exist, we
1594 * do not need to flush old virtual caches or the TLB.
1596 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597 unsigned long pfn)
1599 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1601 EXPORT_SYMBOL(vm_insert_pfn);
1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 * @pgprot: pgprot flags for the inserted page
1610 * This is exactly like vm_insert_pfn, except that it allows drivers to
1611 * to override pgprot on a per-page basis.
1613 * This only makes sense for IO mappings, and it makes no sense for
1614 * cow mappings. In general, using multiple vmas is preferable;
1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616 * impractical.
1618 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619 unsigned long pfn, pgprot_t pgprot)
1621 int ret;
1623 * Technically, architectures with pte_special can avoid all these
1624 * restrictions (same for remap_pfn_range). However we would like
1625 * consistency in testing and feature parity among all, so we should
1626 * try to keep these invariants in place for everybody.
1628 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630 (VM_PFNMAP|VM_MIXEDMAP));
1631 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1634 if (addr < vma->vm_start || addr >= vma->vm_end)
1635 return -EFAULT;
1636 if (track_pfn_insert(vma, &pgprot, pfn))
1637 return -EINVAL;
1639 if (!pfn_modify_allowed(pfn, pgprot))
1640 return -EACCES;
1642 ret = insert_pfn(vma, addr, pfn, pgprot);
1644 return ret;
1646 EXPORT_SYMBOL(vm_insert_pfn_prot);
1648 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1649 unsigned long pfn)
1651 pgprot_t pgprot = vma->vm_page_prot;
1653 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1655 if (addr < vma->vm_start || addr >= vma->vm_end)
1656 return -EFAULT;
1657 if (track_pfn_insert(vma, &pgprot, pfn))
1658 return -EINVAL;
1660 if (!pfn_modify_allowed(pfn, pgprot))
1661 return -EACCES;
1664 * If we don't have pte special, then we have to use the pfn_valid()
1665 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1666 * refcount the page if pfn_valid is true (hence insert_page rather
1667 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1668 * without pte special, it would there be refcounted as a normal page.
1670 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1671 struct page *page;
1673 page = pfn_to_page(pfn);
1674 return insert_page(vma, addr, page, pgprot);
1676 return insert_pfn(vma, addr, pfn, pgprot);
1678 EXPORT_SYMBOL(vm_insert_mixed);
1681 * maps a range of physical memory into the requested pages. the old
1682 * mappings are removed. any references to nonexistent pages results
1683 * in null mappings (currently treated as "copy-on-access")
1685 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1686 unsigned long addr, unsigned long end,
1687 unsigned long pfn, pgprot_t prot)
1689 pte_t *pte;
1690 spinlock_t *ptl;
1691 int err = 0;
1693 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1694 if (!pte)
1695 return -ENOMEM;
1696 arch_enter_lazy_mmu_mode();
1697 do {
1698 BUG_ON(!pte_none(*pte));
1699 if (!pfn_modify_allowed(pfn, prot)) {
1700 err = -EACCES;
1701 break;
1703 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1704 pfn++;
1705 } while (pte++, addr += PAGE_SIZE, addr != end);
1706 arch_leave_lazy_mmu_mode();
1707 pte_unmap_unlock(pte - 1, ptl);
1708 return err;
1711 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1712 unsigned long addr, unsigned long end,
1713 unsigned long pfn, pgprot_t prot)
1715 pmd_t *pmd;
1716 unsigned long next;
1717 int err;
1719 pfn -= addr >> PAGE_SHIFT;
1720 pmd = pmd_alloc(mm, pud, addr);
1721 if (!pmd)
1722 return -ENOMEM;
1723 VM_BUG_ON(pmd_trans_huge(*pmd));
1724 do {
1725 next = pmd_addr_end(addr, end);
1726 err = remap_pte_range(mm, pmd, addr, next,
1727 pfn + (addr >> PAGE_SHIFT), prot);
1728 if (err)
1729 return err;
1730 } while (pmd++, addr = next, addr != end);
1731 return 0;
1734 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1735 unsigned long addr, unsigned long end,
1736 unsigned long pfn, pgprot_t prot)
1738 pud_t *pud;
1739 unsigned long next;
1740 int err;
1742 pfn -= addr >> PAGE_SHIFT;
1743 pud = pud_alloc(mm, pgd, addr);
1744 if (!pud)
1745 return -ENOMEM;
1746 do {
1747 next = pud_addr_end(addr, end);
1748 err = remap_pmd_range(mm, pud, addr, next,
1749 pfn + (addr >> PAGE_SHIFT), prot);
1750 if (err)
1751 return err;
1752 } while (pud++, addr = next, addr != end);
1753 return 0;
1757 * remap_pfn_range - remap kernel memory to userspace
1758 * @vma: user vma to map to
1759 * @addr: target user address to start at
1760 * @pfn: physical address of kernel memory
1761 * @size: size of map area
1762 * @prot: page protection flags for this mapping
1764 * Note: this is only safe if the mm semaphore is held when called.
1766 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1767 unsigned long pfn, unsigned long size, pgprot_t prot)
1769 pgd_t *pgd;
1770 unsigned long next;
1771 unsigned long end = addr + PAGE_ALIGN(size);
1772 struct mm_struct *mm = vma->vm_mm;
1773 int err;
1776 * Physically remapped pages are special. Tell the
1777 * rest of the world about it:
1778 * VM_IO tells people not to look at these pages
1779 * (accesses can have side effects).
1780 * VM_PFNMAP tells the core MM that the base pages are just
1781 * raw PFN mappings, and do not have a "struct page" associated
1782 * with them.
1783 * VM_DONTEXPAND
1784 * Disable vma merging and expanding with mremap().
1785 * VM_DONTDUMP
1786 * Omit vma from core dump, even when VM_IO turned off.
1788 * There's a horrible special case to handle copy-on-write
1789 * behaviour that some programs depend on. We mark the "original"
1790 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1791 * See vm_normal_page() for details.
1793 if (is_cow_mapping(vma->vm_flags)) {
1794 if (addr != vma->vm_start || end != vma->vm_end)
1795 return -EINVAL;
1796 vma->vm_pgoff = pfn;
1799 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1800 if (err)
1801 return -EINVAL;
1803 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1805 BUG_ON(addr >= end);
1806 pfn -= addr >> PAGE_SHIFT;
1807 pgd = pgd_offset(mm, addr);
1808 flush_cache_range(vma, addr, end);
1809 do {
1810 next = pgd_addr_end(addr, end);
1811 err = remap_pud_range(mm, pgd, addr, next,
1812 pfn + (addr >> PAGE_SHIFT), prot);
1813 if (err)
1814 break;
1815 } while (pgd++, addr = next, addr != end);
1817 if (err)
1818 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1820 return err;
1822 EXPORT_SYMBOL(remap_pfn_range);
1825 * vm_iomap_memory - remap memory to userspace
1826 * @vma: user vma to map to
1827 * @start: start of area
1828 * @len: size of area
1830 * This is a simplified io_remap_pfn_range() for common driver use. The
1831 * driver just needs to give us the physical memory range to be mapped,
1832 * we'll figure out the rest from the vma information.
1834 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1835 * whatever write-combining details or similar.
1837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1839 unsigned long vm_len, pfn, pages;
1841 /* Check that the physical memory area passed in looks valid */
1842 if (start + len < start)
1843 return -EINVAL;
1845 * You *really* shouldn't map things that aren't page-aligned,
1846 * but we've historically allowed it because IO memory might
1847 * just have smaller alignment.
1849 len += start & ~PAGE_MASK;
1850 pfn = start >> PAGE_SHIFT;
1851 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1852 if (pfn + pages < pfn)
1853 return -EINVAL;
1855 /* We start the mapping 'vm_pgoff' pages into the area */
1856 if (vma->vm_pgoff > pages)
1857 return -EINVAL;
1858 pfn += vma->vm_pgoff;
1859 pages -= vma->vm_pgoff;
1861 /* Can we fit all of the mapping? */
1862 vm_len = vma->vm_end - vma->vm_start;
1863 if (vm_len >> PAGE_SHIFT > pages)
1864 return -EINVAL;
1866 /* Ok, let it rip */
1867 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1869 EXPORT_SYMBOL(vm_iomap_memory);
1871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1872 unsigned long addr, unsigned long end,
1873 pte_fn_t fn, void *data)
1875 pte_t *pte;
1876 int err;
1877 pgtable_t token;
1878 spinlock_t *uninitialized_var(ptl);
1880 pte = (mm == &init_mm) ?
1881 pte_alloc_kernel(pmd, addr) :
1882 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1883 if (!pte)
1884 return -ENOMEM;
1886 BUG_ON(pmd_huge(*pmd));
1888 arch_enter_lazy_mmu_mode();
1890 token = pmd_pgtable(*pmd);
1892 do {
1893 err = fn(pte++, token, addr, data);
1894 if (err)
1895 break;
1896 } while (addr += PAGE_SIZE, addr != end);
1898 arch_leave_lazy_mmu_mode();
1900 if (mm != &init_mm)
1901 pte_unmap_unlock(pte-1, ptl);
1902 return err;
1905 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1906 unsigned long addr, unsigned long end,
1907 pte_fn_t fn, void *data)
1909 pmd_t *pmd;
1910 unsigned long next;
1911 int err;
1913 BUG_ON(pud_huge(*pud));
1915 pmd = pmd_alloc(mm, pud, addr);
1916 if (!pmd)
1917 return -ENOMEM;
1918 do {
1919 next = pmd_addr_end(addr, end);
1920 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1921 if (err)
1922 break;
1923 } while (pmd++, addr = next, addr != end);
1924 return err;
1927 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1928 unsigned long addr, unsigned long end,
1929 pte_fn_t fn, void *data)
1931 pud_t *pud;
1932 unsigned long next;
1933 int err;
1935 pud = pud_alloc(mm, pgd, addr);
1936 if (!pud)
1937 return -ENOMEM;
1938 do {
1939 next = pud_addr_end(addr, end);
1940 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1941 if (err)
1942 break;
1943 } while (pud++, addr = next, addr != end);
1944 return err;
1948 * Scan a region of virtual memory, filling in page tables as necessary
1949 * and calling a provided function on each leaf page table.
1951 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1952 unsigned long size, pte_fn_t fn, void *data)
1954 pgd_t *pgd;
1955 unsigned long next;
1956 unsigned long end = addr + size;
1957 int err;
1959 BUG_ON(addr >= end);
1960 pgd = pgd_offset(mm, addr);
1961 do {
1962 next = pgd_addr_end(addr, end);
1963 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1964 if (err)
1965 break;
1966 } while (pgd++, addr = next, addr != end);
1968 return err;
1970 EXPORT_SYMBOL_GPL(apply_to_page_range);
1973 * handle_pte_fault chooses page fault handler according to an entry which was
1974 * read non-atomically. Before making any commitment, on those architectures
1975 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1976 * parts, do_swap_page must check under lock before unmapping the pte and
1977 * proceeding (but do_wp_page is only called after already making such a check;
1978 * and do_anonymous_page can safely check later on).
1980 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1981 pte_t *page_table, pte_t orig_pte)
1983 int same = 1;
1984 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1985 if (sizeof(pte_t) > sizeof(unsigned long)) {
1986 spinlock_t *ptl = pte_lockptr(mm, pmd);
1987 spin_lock(ptl);
1988 same = pte_same(*page_table, orig_pte);
1989 spin_unlock(ptl);
1991 #endif
1992 pte_unmap(page_table);
1993 return same;
1996 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1998 debug_dma_assert_idle(src);
2001 * If the source page was a PFN mapping, we don't have
2002 * a "struct page" for it. We do a best-effort copy by
2003 * just copying from the original user address. If that
2004 * fails, we just zero-fill it. Live with it.
2006 if (unlikely(!src)) {
2007 void *kaddr = kmap_atomic(dst);
2008 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2011 * This really shouldn't fail, because the page is there
2012 * in the page tables. But it might just be unreadable,
2013 * in which case we just give up and fill the result with
2014 * zeroes.
2016 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2017 clear_page(kaddr);
2018 kunmap_atomic(kaddr);
2019 flush_dcache_page(dst);
2020 } else
2021 copy_user_highpage(dst, src, va, vma);
2024 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2026 struct file *vm_file = vma->vm_file;
2028 if (vm_file)
2029 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2032 * Special mappings (e.g. VDSO) do not have any file so fake
2033 * a default GFP_KERNEL for them.
2035 return GFP_KERNEL;
2039 * Notify the address space that the page is about to become writable so that
2040 * it can prohibit this or wait for the page to get into an appropriate state.
2042 * We do this without the lock held, so that it can sleep if it needs to.
2044 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2045 unsigned long address)
2047 struct vm_fault vmf;
2048 int ret;
2050 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2051 vmf.pgoff = page->index;
2052 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2053 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2054 vmf.page = page;
2055 vmf.cow_page = NULL;
2057 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2058 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2059 return ret;
2060 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2061 lock_page(page);
2062 if (!page->mapping) {
2063 unlock_page(page);
2064 return 0; /* retry */
2066 ret |= VM_FAULT_LOCKED;
2067 } else
2068 VM_BUG_ON_PAGE(!PageLocked(page), page);
2069 return ret;
2073 * Handle write page faults for pages that can be reused in the current vma
2075 * This can happen either due to the mapping being with the VM_SHARED flag,
2076 * or due to us being the last reference standing to the page. In either
2077 * case, all we need to do here is to mark the page as writable and update
2078 * any related book-keeping.
2080 static inline int wp_page_reuse(struct mm_struct *mm,
2081 struct vm_area_struct *vma, unsigned long address,
2082 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2083 struct page *page, int page_mkwrite,
2084 int dirty_shared)
2085 __releases(ptl)
2087 pte_t entry;
2089 * Clear the pages cpupid information as the existing
2090 * information potentially belongs to a now completely
2091 * unrelated process.
2093 if (page)
2094 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2096 flush_cache_page(vma, address, pte_pfn(orig_pte));
2097 entry = pte_mkyoung(orig_pte);
2098 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2099 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2100 update_mmu_cache(vma, address, page_table);
2101 pte_unmap_unlock(page_table, ptl);
2103 if (dirty_shared) {
2104 struct address_space *mapping;
2105 int dirtied;
2107 if (!page_mkwrite)
2108 lock_page(page);
2110 dirtied = set_page_dirty(page);
2111 VM_BUG_ON_PAGE(PageAnon(page), page);
2112 mapping = page->mapping;
2113 unlock_page(page);
2114 page_cache_release(page);
2116 if ((dirtied || page_mkwrite) && mapping) {
2118 * Some device drivers do not set page.mapping
2119 * but still dirty their pages
2121 balance_dirty_pages_ratelimited(mapping);
2124 if (!page_mkwrite)
2125 file_update_time(vma->vm_file);
2128 return VM_FAULT_WRITE;
2132 * Handle the case of a page which we actually need to copy to a new page.
2134 * Called with mmap_sem locked and the old page referenced, but
2135 * without the ptl held.
2137 * High level logic flow:
2139 * - Allocate a page, copy the content of the old page to the new one.
2140 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2141 * - Take the PTL. If the pte changed, bail out and release the allocated page
2142 * - If the pte is still the way we remember it, update the page table and all
2143 * relevant references. This includes dropping the reference the page-table
2144 * held to the old page, as well as updating the rmap.
2145 * - In any case, unlock the PTL and drop the reference we took to the old page.
2147 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2148 unsigned long address, pte_t *page_table, pmd_t *pmd,
2149 pte_t orig_pte, struct page *old_page)
2151 struct page *new_page = NULL;
2152 spinlock_t *ptl = NULL;
2153 pte_t entry;
2154 int page_copied = 0;
2155 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2156 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2157 struct mem_cgroup *memcg;
2159 if (unlikely(anon_vma_prepare(vma)))
2160 goto oom;
2162 if (is_zero_pfn(pte_pfn(orig_pte))) {
2163 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2164 if (!new_page)
2165 goto oom;
2166 } else {
2167 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2168 if (!new_page)
2169 goto oom;
2170 cow_user_page(new_page, old_page, address, vma);
2173 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2174 goto oom_free_new;
2176 __SetPageUptodate(new_page);
2178 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2181 * Re-check the pte - we dropped the lock
2183 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2184 if (likely(pte_same(*page_table, orig_pte))) {
2185 if (old_page) {
2186 if (!PageAnon(old_page)) {
2187 dec_mm_counter_fast(mm, MM_FILEPAGES);
2188 inc_mm_counter_fast(mm, MM_ANONPAGES);
2190 } else {
2191 inc_mm_counter_fast(mm, MM_ANONPAGES);
2193 flush_cache_page(vma, address, pte_pfn(orig_pte));
2194 entry = mk_pte(new_page, vma->vm_page_prot);
2195 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2197 * Clear the pte entry and flush it first, before updating the
2198 * pte with the new entry. This will avoid a race condition
2199 * seen in the presence of one thread doing SMC and another
2200 * thread doing COW.
2202 ptep_clear_flush_notify(vma, address, page_table);
2203 page_add_new_anon_rmap(new_page, vma, address);
2204 mem_cgroup_commit_charge(new_page, memcg, false);
2205 lru_cache_add_active_or_unevictable(new_page, vma);
2207 * We call the notify macro here because, when using secondary
2208 * mmu page tables (such as kvm shadow page tables), we want the
2209 * new page to be mapped directly into the secondary page table.
2211 set_pte_at_notify(mm, address, page_table, entry);
2212 update_mmu_cache(vma, address, page_table);
2213 if (old_page) {
2215 * Only after switching the pte to the new page may
2216 * we remove the mapcount here. Otherwise another
2217 * process may come and find the rmap count decremented
2218 * before the pte is switched to the new page, and
2219 * "reuse" the old page writing into it while our pte
2220 * here still points into it and can be read by other
2221 * threads.
2223 * The critical issue is to order this
2224 * page_remove_rmap with the ptp_clear_flush above.
2225 * Those stores are ordered by (if nothing else,)
2226 * the barrier present in the atomic_add_negative
2227 * in page_remove_rmap.
2229 * Then the TLB flush in ptep_clear_flush ensures that
2230 * no process can access the old page before the
2231 * decremented mapcount is visible. And the old page
2232 * cannot be reused until after the decremented
2233 * mapcount is visible. So transitively, TLBs to
2234 * old page will be flushed before it can be reused.
2236 page_remove_rmap(old_page);
2239 /* Free the old page.. */
2240 new_page = old_page;
2241 page_copied = 1;
2242 } else {
2243 mem_cgroup_cancel_charge(new_page, memcg);
2246 if (new_page)
2247 page_cache_release(new_page);
2249 pte_unmap_unlock(page_table, ptl);
2250 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2251 if (old_page) {
2253 * Don't let another task, with possibly unlocked vma,
2254 * keep the mlocked page.
2256 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2257 lock_page(old_page); /* LRU manipulation */
2258 munlock_vma_page(old_page);
2259 unlock_page(old_page);
2261 page_cache_release(old_page);
2263 return page_copied ? VM_FAULT_WRITE : 0;
2264 oom_free_new:
2265 page_cache_release(new_page);
2266 oom:
2267 if (old_page)
2268 page_cache_release(old_page);
2269 return VM_FAULT_OOM;
2273 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2274 * mapping
2276 static int wp_pfn_shared(struct mm_struct *mm,
2277 struct vm_area_struct *vma, unsigned long address,
2278 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2279 pmd_t *pmd)
2281 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2282 struct vm_fault vmf = {
2283 .page = NULL,
2284 .pgoff = linear_page_index(vma, address),
2285 .virtual_address = (void __user *)(address & PAGE_MASK),
2286 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2288 int ret;
2290 pte_unmap_unlock(page_table, ptl);
2291 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2292 if (ret & VM_FAULT_ERROR)
2293 return ret;
2294 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2296 * We might have raced with another page fault while we
2297 * released the pte_offset_map_lock.
2299 if (!pte_same(*page_table, orig_pte)) {
2300 pte_unmap_unlock(page_table, ptl);
2301 return 0;
2304 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2305 NULL, 0, 0);
2308 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2309 unsigned long address, pte_t *page_table,
2310 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2311 struct page *old_page)
2312 __releases(ptl)
2314 int page_mkwrite = 0;
2316 page_cache_get(old_page);
2319 * Only catch write-faults on shared writable pages,
2320 * read-only shared pages can get COWed by
2321 * get_user_pages(.write=1, .force=1).
2323 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2324 int tmp;
2326 pte_unmap_unlock(page_table, ptl);
2327 tmp = do_page_mkwrite(vma, old_page, address);
2328 if (unlikely(!tmp || (tmp &
2329 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2330 page_cache_release(old_page);
2331 return tmp;
2334 * Since we dropped the lock we need to revalidate
2335 * the PTE as someone else may have changed it. If
2336 * they did, we just return, as we can count on the
2337 * MMU to tell us if they didn't also make it writable.
2339 page_table = pte_offset_map_lock(mm, pmd, address,
2340 &ptl);
2341 if (!pte_same(*page_table, orig_pte)) {
2342 unlock_page(old_page);
2343 pte_unmap_unlock(page_table, ptl);
2344 page_cache_release(old_page);
2345 return 0;
2347 page_mkwrite = 1;
2350 return wp_page_reuse(mm, vma, address, page_table, ptl,
2351 orig_pte, old_page, page_mkwrite, 1);
2355 * This routine handles present pages, when users try to write
2356 * to a shared page. It is done by copying the page to a new address
2357 * and decrementing the shared-page counter for the old page.
2359 * Note that this routine assumes that the protection checks have been
2360 * done by the caller (the low-level page fault routine in most cases).
2361 * Thus we can safely just mark it writable once we've done any necessary
2362 * COW.
2364 * We also mark the page dirty at this point even though the page will
2365 * change only once the write actually happens. This avoids a few races,
2366 * and potentially makes it more efficient.
2368 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2369 * but allow concurrent faults), with pte both mapped and locked.
2370 * We return with mmap_sem still held, but pte unmapped and unlocked.
2372 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2373 unsigned long address, pte_t *page_table, pmd_t *pmd,
2374 spinlock_t *ptl, pte_t orig_pte)
2375 __releases(ptl)
2377 struct page *old_page;
2379 old_page = vm_normal_page(vma, address, orig_pte);
2380 if (!old_page) {
2382 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2383 * VM_PFNMAP VMA.
2385 * We should not cow pages in a shared writeable mapping.
2386 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2388 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2389 (VM_WRITE|VM_SHARED))
2390 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2391 orig_pte, pmd);
2393 pte_unmap_unlock(page_table, ptl);
2394 return wp_page_copy(mm, vma, address, page_table, pmd,
2395 orig_pte, old_page);
2399 * Take out anonymous pages first, anonymous shared vmas are
2400 * not dirty accountable.
2402 if (PageAnon(old_page) && !PageKsm(old_page)) {
2403 if (!trylock_page(old_page)) {
2404 page_cache_get(old_page);
2405 pte_unmap_unlock(page_table, ptl);
2406 lock_page(old_page);
2407 page_table = pte_offset_map_lock(mm, pmd, address,
2408 &ptl);
2409 if (!pte_same(*page_table, orig_pte)) {
2410 unlock_page(old_page);
2411 pte_unmap_unlock(page_table, ptl);
2412 page_cache_release(old_page);
2413 return 0;
2415 page_cache_release(old_page);
2417 if (reuse_swap_page(old_page)) {
2419 * The page is all ours. Move it to our anon_vma so
2420 * the rmap code will not search our parent or siblings.
2421 * Protected against the rmap code by the page lock.
2423 page_move_anon_rmap(old_page, vma, address);
2424 unlock_page(old_page);
2425 return wp_page_reuse(mm, vma, address, page_table, ptl,
2426 orig_pte, old_page, 0, 0);
2428 unlock_page(old_page);
2429 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2430 (VM_WRITE|VM_SHARED))) {
2431 return wp_page_shared(mm, vma, address, page_table, pmd,
2432 ptl, orig_pte, old_page);
2436 * Ok, we need to copy. Oh, well..
2438 page_cache_get(old_page);
2440 pte_unmap_unlock(page_table, ptl);
2441 return wp_page_copy(mm, vma, address, page_table, pmd,
2442 orig_pte, old_page);
2445 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2446 unsigned long start_addr, unsigned long end_addr,
2447 struct zap_details *details)
2449 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2452 static inline void unmap_mapping_range_tree(struct rb_root *root,
2453 struct zap_details *details)
2455 struct vm_area_struct *vma;
2456 pgoff_t vba, vea, zba, zea;
2458 vma_interval_tree_foreach(vma, root,
2459 details->first_index, details->last_index) {
2461 vba = vma->vm_pgoff;
2462 vea = vba + vma_pages(vma) - 1;
2463 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2464 zba = details->first_index;
2465 if (zba < vba)
2466 zba = vba;
2467 zea = details->last_index;
2468 if (zea > vea)
2469 zea = vea;
2471 unmap_mapping_range_vma(vma,
2472 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2473 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2474 details);
2479 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2480 * address_space corresponding to the specified page range in the underlying
2481 * file.
2483 * @mapping: the address space containing mmaps to be unmapped.
2484 * @holebegin: byte in first page to unmap, relative to the start of
2485 * the underlying file. This will be rounded down to a PAGE_SIZE
2486 * boundary. Note that this is different from truncate_pagecache(), which
2487 * must keep the partial page. In contrast, we must get rid of
2488 * partial pages.
2489 * @holelen: size of prospective hole in bytes. This will be rounded
2490 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2491 * end of the file.
2492 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2493 * but 0 when invalidating pagecache, don't throw away private data.
2495 void unmap_mapping_range(struct address_space *mapping,
2496 loff_t const holebegin, loff_t const holelen, int even_cows)
2498 struct zap_details details;
2499 pgoff_t hba = holebegin >> PAGE_SHIFT;
2500 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2502 /* Check for overflow. */
2503 if (sizeof(holelen) > sizeof(hlen)) {
2504 long long holeend =
2505 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2506 if (holeend & ~(long long)ULONG_MAX)
2507 hlen = ULONG_MAX - hba + 1;
2510 details.check_mapping = even_cows? NULL: mapping;
2511 details.first_index = hba;
2512 details.last_index = hba + hlen - 1;
2513 if (details.last_index < details.first_index)
2514 details.last_index = ULONG_MAX;
2517 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2518 i_mmap_lock_write(mapping);
2519 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2520 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2521 i_mmap_unlock_write(mapping);
2523 EXPORT_SYMBOL(unmap_mapping_range);
2526 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527 * but allow concurrent faults), and pte mapped but not yet locked.
2528 * We return with pte unmapped and unlocked.
2530 * We return with the mmap_sem locked or unlocked in the same cases
2531 * as does filemap_fault().
2533 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2534 unsigned long address, pte_t *page_table, pmd_t *pmd,
2535 unsigned int flags, pte_t orig_pte)
2537 spinlock_t *ptl;
2538 struct page *page, *swapcache;
2539 struct mem_cgroup *memcg;
2540 swp_entry_t entry;
2541 pte_t pte;
2542 int locked;
2543 int exclusive = 0;
2544 int ret = 0;
2546 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2547 goto out;
2549 entry = pte_to_swp_entry(orig_pte);
2550 if (unlikely(non_swap_entry(entry))) {
2551 if (is_migration_entry(entry)) {
2552 migration_entry_wait(mm, pmd, address);
2553 } else if (is_hwpoison_entry(entry)) {
2554 ret = VM_FAULT_HWPOISON;
2555 } else {
2556 print_bad_pte(vma, address, orig_pte, NULL);
2557 ret = VM_FAULT_SIGBUS;
2559 goto out;
2561 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562 page = lookup_swap_cache(entry);
2563 if (!page) {
2564 page = swapin_readahead(entry,
2565 GFP_HIGHUSER_MOVABLE, vma, address);
2566 if (!page) {
2568 * Back out if somebody else faulted in this pte
2569 * while we released the pte lock.
2571 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2572 if (likely(pte_same(*page_table, orig_pte)))
2573 ret = VM_FAULT_OOM;
2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 goto unlock;
2578 /* Had to read the page from swap area: Major fault */
2579 ret = VM_FAULT_MAJOR;
2580 count_vm_event(PGMAJFAULT);
2581 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2582 } else if (PageHWPoison(page)) {
2584 * hwpoisoned dirty swapcache pages are kept for killing
2585 * owner processes (which may be unknown at hwpoison time)
2587 ret = VM_FAULT_HWPOISON;
2588 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2589 swapcache = page;
2590 goto out_release;
2593 swapcache = page;
2594 locked = lock_page_or_retry(page, mm, flags);
2596 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2597 if (!locked) {
2598 ret |= VM_FAULT_RETRY;
2599 goto out_release;
2603 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2604 * release the swapcache from under us. The page pin, and pte_same
2605 * test below, are not enough to exclude that. Even if it is still
2606 * swapcache, we need to check that the page's swap has not changed.
2608 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2609 goto out_page;
2611 page = ksm_might_need_to_copy(page, vma, address);
2612 if (unlikely(!page)) {
2613 ret = VM_FAULT_OOM;
2614 page = swapcache;
2615 goto out_page;
2618 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2619 ret = VM_FAULT_OOM;
2620 goto out_page;
2624 * Back out if somebody else already faulted in this pte.
2626 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2627 if (unlikely(!pte_same(*page_table, orig_pte)))
2628 goto out_nomap;
2630 if (unlikely(!PageUptodate(page))) {
2631 ret = VM_FAULT_SIGBUS;
2632 goto out_nomap;
2636 * The page isn't present yet, go ahead with the fault.
2638 * Be careful about the sequence of operations here.
2639 * To get its accounting right, reuse_swap_page() must be called
2640 * while the page is counted on swap but not yet in mapcount i.e.
2641 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2642 * must be called after the swap_free(), or it will never succeed.
2645 inc_mm_counter_fast(mm, MM_ANONPAGES);
2646 dec_mm_counter_fast(mm, MM_SWAPENTS);
2647 pte = mk_pte(page, vma->vm_page_prot);
2648 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2649 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2650 flags &= ~FAULT_FLAG_WRITE;
2651 ret |= VM_FAULT_WRITE;
2652 exclusive = 1;
2654 flush_icache_page(vma, page);
2655 if (pte_swp_soft_dirty(orig_pte))
2656 pte = pte_mksoft_dirty(pte);
2657 set_pte_at(mm, address, page_table, pte);
2658 if (page == swapcache) {
2659 do_page_add_anon_rmap(page, vma, address, exclusive);
2660 mem_cgroup_commit_charge(page, memcg, true);
2661 } else { /* ksm created a completely new copy */
2662 page_add_new_anon_rmap(page, vma, address);
2663 mem_cgroup_commit_charge(page, memcg, false);
2664 lru_cache_add_active_or_unevictable(page, vma);
2667 swap_free(entry);
2668 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2669 try_to_free_swap(page);
2670 unlock_page(page);
2671 if (page != swapcache) {
2673 * Hold the lock to avoid the swap entry to be reused
2674 * until we take the PT lock for the pte_same() check
2675 * (to avoid false positives from pte_same). For
2676 * further safety release the lock after the swap_free
2677 * so that the swap count won't change under a
2678 * parallel locked swapcache.
2680 unlock_page(swapcache);
2681 page_cache_release(swapcache);
2684 if (flags & FAULT_FLAG_WRITE) {
2685 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2686 if (ret & VM_FAULT_ERROR)
2687 ret &= VM_FAULT_ERROR;
2688 goto out;
2691 /* No need to invalidate - it was non-present before */
2692 update_mmu_cache(vma, address, page_table);
2693 unlock:
2694 pte_unmap_unlock(page_table, ptl);
2695 out:
2696 return ret;
2697 out_nomap:
2698 mem_cgroup_cancel_charge(page, memcg);
2699 pte_unmap_unlock(page_table, ptl);
2700 out_page:
2701 unlock_page(page);
2702 out_release:
2703 page_cache_release(page);
2704 if (page != swapcache) {
2705 unlock_page(swapcache);
2706 page_cache_release(swapcache);
2708 return ret;
2712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713 * but allow concurrent faults), and pte mapped but not yet locked.
2714 * We return with mmap_sem still held, but pte unmapped and unlocked.
2716 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2717 unsigned long address, pte_t *page_table, pmd_t *pmd,
2718 unsigned int flags)
2720 struct mem_cgroup *memcg;
2721 struct page *page;
2722 spinlock_t *ptl;
2723 pte_t entry;
2725 pte_unmap(page_table);
2727 /* File mapping without ->vm_ops ? */
2728 if (vma->vm_flags & VM_SHARED)
2729 return VM_FAULT_SIGBUS;
2731 /* Use the zero-page for reads */
2732 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2733 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2734 vma->vm_page_prot));
2735 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2736 if (!pte_none(*page_table))
2737 goto unlock;
2738 /* Deliver the page fault to userland, check inside PT lock */
2739 if (userfaultfd_missing(vma)) {
2740 pte_unmap_unlock(page_table, ptl);
2741 return handle_userfault(vma, address, flags,
2742 VM_UFFD_MISSING);
2744 goto setpte;
2747 /* Allocate our own private page. */
2748 if (unlikely(anon_vma_prepare(vma)))
2749 goto oom;
2750 page = alloc_zeroed_user_highpage_movable(vma, address);
2751 if (!page)
2752 goto oom;
2754 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2755 goto oom_free_page;
2758 * The memory barrier inside __SetPageUptodate makes sure that
2759 * preceeding stores to the page contents become visible before
2760 * the set_pte_at() write.
2762 __SetPageUptodate(page);
2764 entry = mk_pte(page, vma->vm_page_prot);
2765 if (vma->vm_flags & VM_WRITE)
2766 entry = pte_mkwrite(pte_mkdirty(entry));
2768 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2769 if (!pte_none(*page_table))
2770 goto release;
2772 /* Deliver the page fault to userland, check inside PT lock */
2773 if (userfaultfd_missing(vma)) {
2774 pte_unmap_unlock(page_table, ptl);
2775 mem_cgroup_cancel_charge(page, memcg);
2776 page_cache_release(page);
2777 return handle_userfault(vma, address, flags,
2778 VM_UFFD_MISSING);
2781 inc_mm_counter_fast(mm, MM_ANONPAGES);
2782 page_add_new_anon_rmap(page, vma, address);
2783 mem_cgroup_commit_charge(page, memcg, false);
2784 lru_cache_add_active_or_unevictable(page, vma);
2785 setpte:
2786 set_pte_at(mm, address, page_table, entry);
2788 /* No need to invalidate - it was non-present before */
2789 update_mmu_cache(vma, address, page_table);
2790 unlock:
2791 pte_unmap_unlock(page_table, ptl);
2792 return 0;
2793 release:
2794 mem_cgroup_cancel_charge(page, memcg);
2795 page_cache_release(page);
2796 goto unlock;
2797 oom_free_page:
2798 page_cache_release(page);
2799 oom:
2800 return VM_FAULT_OOM;
2804 * The mmap_sem must have been held on entry, and may have been
2805 * released depending on flags and vma->vm_ops->fault() return value.
2806 * See filemap_fault() and __lock_page_retry().
2808 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2809 pgoff_t pgoff, unsigned int flags,
2810 struct page *cow_page, struct page **page)
2812 struct vm_fault vmf;
2813 int ret;
2815 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2816 vmf.pgoff = pgoff;
2817 vmf.flags = flags;
2818 vmf.page = NULL;
2819 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2820 vmf.cow_page = cow_page;
2822 ret = vma->vm_ops->fault(vma, &vmf);
2823 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2824 return ret;
2825 if (!vmf.page)
2826 goto out;
2828 if (unlikely(PageHWPoison(vmf.page))) {
2829 if (ret & VM_FAULT_LOCKED)
2830 unlock_page(vmf.page);
2831 page_cache_release(vmf.page);
2832 return VM_FAULT_HWPOISON;
2835 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2836 lock_page(vmf.page);
2837 else
2838 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2840 out:
2841 *page = vmf.page;
2842 return ret;
2846 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2848 * @vma: virtual memory area
2849 * @address: user virtual address
2850 * @page: page to map
2851 * @pte: pointer to target page table entry
2852 * @write: true, if new entry is writable
2853 * @anon: true, if it's anonymous page
2855 * Caller must hold page table lock relevant for @pte.
2857 * Target users are page handler itself and implementations of
2858 * vm_ops->map_pages.
2860 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2861 struct page *page, pte_t *pte, bool write, bool anon)
2863 pte_t entry;
2865 flush_icache_page(vma, page);
2866 entry = mk_pte(page, vma->vm_page_prot);
2867 if (write)
2868 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2869 if (anon) {
2870 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2871 page_add_new_anon_rmap(page, vma, address);
2872 } else {
2873 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2874 page_add_file_rmap(page);
2876 set_pte_at(vma->vm_mm, address, pte, entry);
2878 /* no need to invalidate: a not-present page won't be cached */
2879 update_mmu_cache(vma, address, pte);
2882 static unsigned long fault_around_bytes __read_mostly =
2883 rounddown_pow_of_two(65536);
2885 #ifdef CONFIG_DEBUG_FS
2886 static int fault_around_bytes_get(void *data, u64 *val)
2888 *val = fault_around_bytes;
2889 return 0;
2893 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2894 * rounded down to nearest page order. It's what do_fault_around() expects to
2895 * see.
2897 static int fault_around_bytes_set(void *data, u64 val)
2899 if (val / PAGE_SIZE > PTRS_PER_PTE)
2900 return -EINVAL;
2901 if (val > PAGE_SIZE)
2902 fault_around_bytes = rounddown_pow_of_two(val);
2903 else
2904 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2905 return 0;
2907 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2908 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2910 static int __init fault_around_debugfs(void)
2912 void *ret;
2914 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2915 &fault_around_bytes_fops);
2916 if (!ret)
2917 pr_warn("Failed to create fault_around_bytes in debugfs");
2918 return 0;
2920 late_initcall(fault_around_debugfs);
2921 #endif
2924 * do_fault_around() tries to map few pages around the fault address. The hope
2925 * is that the pages will be needed soon and this will lower the number of
2926 * faults to handle.
2928 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2929 * not ready to be mapped: not up-to-date, locked, etc.
2931 * This function is called with the page table lock taken. In the split ptlock
2932 * case the page table lock only protects only those entries which belong to
2933 * the page table corresponding to the fault address.
2935 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2936 * only once.
2938 * fault_around_pages() defines how many pages we'll try to map.
2939 * do_fault_around() expects it to return a power of two less than or equal to
2940 * PTRS_PER_PTE.
2942 * The virtual address of the area that we map is naturally aligned to the
2943 * fault_around_pages() value (and therefore to page order). This way it's
2944 * easier to guarantee that we don't cross page table boundaries.
2946 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2947 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2949 unsigned long start_addr, nr_pages, mask;
2950 pgoff_t max_pgoff;
2951 struct vm_fault vmf;
2952 int off;
2954 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2955 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2957 start_addr = max(address & mask, vma->vm_start);
2958 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2959 pte -= off;
2960 pgoff -= off;
2963 * max_pgoff is either end of page table or end of vma
2964 * or fault_around_pages() from pgoff, depending what is nearest.
2966 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2967 PTRS_PER_PTE - 1;
2968 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2969 pgoff + nr_pages - 1);
2971 /* Check if it makes any sense to call ->map_pages */
2972 while (!pte_none(*pte)) {
2973 if (++pgoff > max_pgoff)
2974 return;
2975 start_addr += PAGE_SIZE;
2976 if (start_addr >= vma->vm_end)
2977 return;
2978 pte++;
2981 vmf.virtual_address = (void __user *) start_addr;
2982 vmf.pte = pte;
2983 vmf.pgoff = pgoff;
2984 vmf.max_pgoff = max_pgoff;
2985 vmf.flags = flags;
2986 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2987 vma->vm_ops->map_pages(vma, &vmf);
2990 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2991 unsigned long address, pmd_t *pmd,
2992 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2994 struct page *fault_page;
2995 spinlock_t *ptl;
2996 pte_t *pte;
2997 int ret = 0;
3000 * Let's call ->map_pages() first and use ->fault() as fallback
3001 * if page by the offset is not ready to be mapped (cold cache or
3002 * something).
3004 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3005 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3006 do_fault_around(vma, address, pte, pgoff, flags);
3007 if (!pte_same(*pte, orig_pte))
3008 goto unlock_out;
3009 pte_unmap_unlock(pte, ptl);
3012 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3013 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3014 return ret;
3016 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017 if (unlikely(!pte_same(*pte, orig_pte))) {
3018 pte_unmap_unlock(pte, ptl);
3019 unlock_page(fault_page);
3020 page_cache_release(fault_page);
3021 return ret;
3023 do_set_pte(vma, address, fault_page, pte, false, false);
3024 unlock_page(fault_page);
3025 unlock_out:
3026 pte_unmap_unlock(pte, ptl);
3027 return ret;
3030 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3031 unsigned long address, pmd_t *pmd,
3032 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3034 struct page *fault_page, *new_page;
3035 struct mem_cgroup *memcg;
3036 spinlock_t *ptl;
3037 pte_t *pte;
3038 int ret;
3040 if (unlikely(anon_vma_prepare(vma)))
3041 return VM_FAULT_OOM;
3043 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3044 if (!new_page)
3045 return VM_FAULT_OOM;
3047 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3048 page_cache_release(new_page);
3049 return VM_FAULT_OOM;
3052 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3053 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3054 goto uncharge_out;
3056 if (fault_page)
3057 copy_user_highpage(new_page, fault_page, address, vma);
3058 __SetPageUptodate(new_page);
3060 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3061 if (unlikely(!pte_same(*pte, orig_pte))) {
3062 pte_unmap_unlock(pte, ptl);
3063 if (fault_page) {
3064 unlock_page(fault_page);
3065 page_cache_release(fault_page);
3066 } else {
3068 * The fault handler has no page to lock, so it holds
3069 * i_mmap_lock for read to protect against truncate.
3071 i_mmap_unlock_read(vma->vm_file->f_mapping);
3073 goto uncharge_out;
3075 do_set_pte(vma, address, new_page, pte, true, true);
3076 mem_cgroup_commit_charge(new_page, memcg, false);
3077 lru_cache_add_active_or_unevictable(new_page, vma);
3078 pte_unmap_unlock(pte, ptl);
3079 if (fault_page) {
3080 unlock_page(fault_page);
3081 page_cache_release(fault_page);
3082 } else {
3084 * The fault handler has no page to lock, so it holds
3085 * i_mmap_lock for read to protect against truncate.
3087 i_mmap_unlock_read(vma->vm_file->f_mapping);
3089 return ret;
3090 uncharge_out:
3091 mem_cgroup_cancel_charge(new_page, memcg);
3092 page_cache_release(new_page);
3093 return ret;
3096 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3097 unsigned long address, pmd_t *pmd,
3098 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3100 struct page *fault_page;
3101 struct address_space *mapping;
3102 spinlock_t *ptl;
3103 pte_t *pte;
3104 int dirtied = 0;
3105 int ret, tmp;
3107 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3108 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3109 return ret;
3112 * Check if the backing address space wants to know that the page is
3113 * about to become writable
3115 if (vma->vm_ops->page_mkwrite) {
3116 unlock_page(fault_page);
3117 tmp = do_page_mkwrite(vma, fault_page, address);
3118 if (unlikely(!tmp ||
3119 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3120 page_cache_release(fault_page);
3121 return tmp;
3125 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3126 if (unlikely(!pte_same(*pte, orig_pte))) {
3127 pte_unmap_unlock(pte, ptl);
3128 unlock_page(fault_page);
3129 page_cache_release(fault_page);
3130 return ret;
3132 do_set_pte(vma, address, fault_page, pte, true, false);
3133 pte_unmap_unlock(pte, ptl);
3135 if (set_page_dirty(fault_page))
3136 dirtied = 1;
3138 * Take a local copy of the address_space - page.mapping may be zeroed
3139 * by truncate after unlock_page(). The address_space itself remains
3140 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3141 * release semantics to prevent the compiler from undoing this copying.
3143 mapping = fault_page->mapping;
3144 unlock_page(fault_page);
3145 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3147 * Some device drivers do not set page.mapping but still
3148 * dirty their pages
3150 balance_dirty_pages_ratelimited(mapping);
3153 if (!vma->vm_ops->page_mkwrite)
3154 file_update_time(vma->vm_file);
3156 return ret;
3160 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161 * but allow concurrent faults).
3162 * The mmap_sem may have been released depending on flags and our
3163 * return value. See filemap_fault() and __lock_page_or_retry().
3165 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3166 unsigned long address, pte_t *page_table, pmd_t *pmd,
3167 unsigned int flags, pte_t orig_pte)
3169 pgoff_t pgoff = (((address & PAGE_MASK)
3170 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3172 pte_unmap(page_table);
3173 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3174 if (!vma->vm_ops->fault)
3175 return VM_FAULT_SIGBUS;
3176 if (!(flags & FAULT_FLAG_WRITE))
3177 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3178 orig_pte);
3179 if (!(vma->vm_flags & VM_SHARED))
3180 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3181 orig_pte);
3182 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3185 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3186 unsigned long addr, int page_nid,
3187 int *flags)
3189 get_page(page);
3191 count_vm_numa_event(NUMA_HINT_FAULTS);
3192 if (page_nid == numa_node_id()) {
3193 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3194 *flags |= TNF_FAULT_LOCAL;
3197 return mpol_misplaced(page, vma, addr);
3200 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3201 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3203 struct page *page = NULL;
3204 spinlock_t *ptl;
3205 int page_nid = -1;
3206 int last_cpupid;
3207 int target_nid;
3208 bool migrated = false;
3209 bool was_writable = pte_write(pte);
3210 int flags = 0;
3212 /* A PROT_NONE fault should not end up here */
3213 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3216 * The "pte" at this point cannot be used safely without
3217 * validation through pte_unmap_same(). It's of NUMA type but
3218 * the pfn may be screwed if the read is non atomic.
3220 * We can safely just do a "set_pte_at()", because the old
3221 * page table entry is not accessible, so there would be no
3222 * concurrent hardware modifications to the PTE.
3224 ptl = pte_lockptr(mm, pmd);
3225 spin_lock(ptl);
3226 if (unlikely(!pte_same(*ptep, pte))) {
3227 pte_unmap_unlock(ptep, ptl);
3228 goto out;
3231 /* Make it present again */
3232 pte = pte_modify(pte, vma->vm_page_prot);
3233 pte = pte_mkyoung(pte);
3234 if (was_writable)
3235 pte = pte_mkwrite(pte);
3236 set_pte_at(mm, addr, ptep, pte);
3237 update_mmu_cache(vma, addr, ptep);
3239 page = vm_normal_page(vma, addr, pte);
3240 if (!page) {
3241 pte_unmap_unlock(ptep, ptl);
3242 return 0;
3246 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3247 * much anyway since they can be in shared cache state. This misses
3248 * the case where a mapping is writable but the process never writes
3249 * to it but pte_write gets cleared during protection updates and
3250 * pte_dirty has unpredictable behaviour between PTE scan updates,
3251 * background writeback, dirty balancing and application behaviour.
3253 if (!(vma->vm_flags & VM_WRITE))
3254 flags |= TNF_NO_GROUP;
3257 * Flag if the page is shared between multiple address spaces. This
3258 * is later used when determining whether to group tasks together
3260 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3261 flags |= TNF_SHARED;
3263 last_cpupid = page_cpupid_last(page);
3264 page_nid = page_to_nid(page);
3265 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3266 pte_unmap_unlock(ptep, ptl);
3267 if (target_nid == -1) {
3268 put_page(page);
3269 goto out;
3272 /* Migrate to the requested node */
3273 migrated = migrate_misplaced_page(page, vma, target_nid);
3274 if (migrated) {
3275 page_nid = target_nid;
3276 flags |= TNF_MIGRATED;
3277 } else
3278 flags |= TNF_MIGRATE_FAIL;
3280 out:
3281 if (page_nid != -1)
3282 task_numa_fault(last_cpupid, page_nid, 1, flags);
3283 return 0;
3286 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3287 unsigned long address, pmd_t *pmd, unsigned int flags)
3289 if (vma_is_anonymous(vma))
3290 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3291 if (vma->vm_ops->pmd_fault)
3292 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3293 return VM_FAULT_FALLBACK;
3296 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3297 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3298 unsigned int flags)
3300 if (vma_is_anonymous(vma))
3301 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3302 if (vma->vm_ops->pmd_fault)
3303 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3304 return VM_FAULT_FALLBACK;
3308 * These routines also need to handle stuff like marking pages dirty
3309 * and/or accessed for architectures that don't do it in hardware (most
3310 * RISC architectures). The early dirtying is also good on the i386.
3312 * There is also a hook called "update_mmu_cache()" that architectures
3313 * with external mmu caches can use to update those (ie the Sparc or
3314 * PowerPC hashed page tables that act as extended TLBs).
3316 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3317 * but allow concurrent faults), and pte mapped but not yet locked.
3318 * We return with pte unmapped and unlocked.
3320 * The mmap_sem may have been released depending on flags and our
3321 * return value. See filemap_fault() and __lock_page_or_retry().
3323 static int handle_pte_fault(struct mm_struct *mm,
3324 struct vm_area_struct *vma, unsigned long address,
3325 pte_t *pte, pmd_t *pmd, unsigned int flags)
3327 pte_t entry;
3328 spinlock_t *ptl;
3331 * some architectures can have larger ptes than wordsize,
3332 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3333 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3334 * The code below just needs a consistent view for the ifs and
3335 * we later double check anyway with the ptl lock held. So here
3336 * a barrier will do.
3338 entry = *pte;
3339 barrier();
3340 if (!pte_present(entry)) {
3341 if (pte_none(entry)) {
3342 if (vma_is_anonymous(vma))
3343 return do_anonymous_page(mm, vma, address,
3344 pte, pmd, flags);
3345 else
3346 return do_fault(mm, vma, address, pte, pmd,
3347 flags, entry);
3349 return do_swap_page(mm, vma, address,
3350 pte, pmd, flags, entry);
3353 if (pte_protnone(entry))
3354 return do_numa_page(mm, vma, address, entry, pte, pmd);
3356 ptl = pte_lockptr(mm, pmd);
3357 spin_lock(ptl);
3358 if (unlikely(!pte_same(*pte, entry)))
3359 goto unlock;
3360 if (flags & FAULT_FLAG_WRITE) {
3361 if (!pte_write(entry))
3362 return do_wp_page(mm, vma, address,
3363 pte, pmd, ptl, entry);
3364 entry = pte_mkdirty(entry);
3366 entry = pte_mkyoung(entry);
3367 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3368 update_mmu_cache(vma, address, pte);
3369 } else {
3371 * This is needed only for protection faults but the arch code
3372 * is not yet telling us if this is a protection fault or not.
3373 * This still avoids useless tlb flushes for .text page faults
3374 * with threads.
3376 if (flags & FAULT_FLAG_WRITE)
3377 flush_tlb_fix_spurious_fault(vma, address);
3379 unlock:
3380 pte_unmap_unlock(pte, ptl);
3381 return 0;
3385 * By the time we get here, we already hold the mm semaphore
3387 * The mmap_sem may have been released depending on flags and our
3388 * return value. See filemap_fault() and __lock_page_or_retry().
3390 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3391 unsigned long address, unsigned int flags)
3393 pgd_t *pgd;
3394 pud_t *pud;
3395 pmd_t *pmd;
3396 pte_t *pte;
3398 if (unlikely(is_vm_hugetlb_page(vma)))
3399 return hugetlb_fault(mm, vma, address, flags);
3401 pgd = pgd_offset(mm, address);
3402 pud = pud_alloc(mm, pgd, address);
3403 if (!pud)
3404 return VM_FAULT_OOM;
3405 pmd = pmd_alloc(mm, pud, address);
3406 if (!pmd)
3407 return VM_FAULT_OOM;
3408 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3409 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3410 if (!(ret & VM_FAULT_FALLBACK))
3411 return ret;
3412 } else {
3413 pmd_t orig_pmd = *pmd;
3414 int ret;
3416 barrier();
3417 if (pmd_trans_huge(orig_pmd)) {
3418 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3421 * If the pmd is splitting, return and retry the
3422 * the fault. Alternative: wait until the split
3423 * is done, and goto retry.
3425 if (pmd_trans_splitting(orig_pmd))
3426 return 0;
3428 if (pmd_protnone(orig_pmd))
3429 return do_huge_pmd_numa_page(mm, vma, address,
3430 orig_pmd, pmd);
3432 if (dirty && !pmd_write(orig_pmd)) {
3433 ret = wp_huge_pmd(mm, vma, address, pmd,
3434 orig_pmd, flags);
3435 if (!(ret & VM_FAULT_FALLBACK))
3436 return ret;
3437 } else {
3438 huge_pmd_set_accessed(mm, vma, address, pmd,
3439 orig_pmd, dirty);
3440 return 0;
3446 * Use __pte_alloc instead of pte_alloc_map, because we can't
3447 * run pte_offset_map on the pmd, if an huge pmd could
3448 * materialize from under us from a different thread.
3450 if (unlikely(pmd_none(*pmd)) &&
3451 unlikely(__pte_alloc(mm, vma, pmd, address)))
3452 return VM_FAULT_OOM;
3454 * If a huge pmd materialized under us just retry later. Use
3455 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3456 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3457 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3458 * in a different thread of this mm, in turn leading to a misleading
3459 * pmd_trans_huge() retval. All we have to ensure is that it is a
3460 * regular pmd that we can walk with pte_offset_map() and we can do that
3461 * through an atomic read in C, which is what pmd_trans_unstable()
3462 * provides.
3464 if (unlikely(pmd_trans_unstable(pmd)))
3465 return 0;
3467 * A regular pmd is established and it can't morph into a huge pmd
3468 * from under us anymore at this point because we hold the mmap_sem
3469 * read mode and khugepaged takes it in write mode. So now it's
3470 * safe to run pte_offset_map().
3472 pte = pte_offset_map(pmd, address);
3474 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3478 * By the time we get here, we already hold the mm semaphore
3480 * The mmap_sem may have been released depending on flags and our
3481 * return value. See filemap_fault() and __lock_page_or_retry().
3483 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3484 unsigned long address, unsigned int flags)
3486 int ret;
3488 __set_current_state(TASK_RUNNING);
3490 count_vm_event(PGFAULT);
3491 mem_cgroup_count_vm_event(mm, PGFAULT);
3493 /* do counter updates before entering really critical section. */
3494 check_sync_rss_stat(current);
3497 * Enable the memcg OOM handling for faults triggered in user
3498 * space. Kernel faults are handled more gracefully.
3500 if (flags & FAULT_FLAG_USER)
3501 mem_cgroup_oom_enable();
3503 ret = __handle_mm_fault(mm, vma, address, flags);
3505 if (flags & FAULT_FLAG_USER) {
3506 mem_cgroup_oom_disable();
3508 * The task may have entered a memcg OOM situation but
3509 * if the allocation error was handled gracefully (no
3510 * VM_FAULT_OOM), there is no need to kill anything.
3511 * Just clean up the OOM state peacefully.
3513 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3514 mem_cgroup_oom_synchronize(false);
3517 return ret;
3519 EXPORT_SYMBOL_GPL(handle_mm_fault);
3521 #ifndef __PAGETABLE_PUD_FOLDED
3523 * Allocate page upper directory.
3524 * We've already handled the fast-path in-line.
3526 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3528 pud_t *new = pud_alloc_one(mm, address);
3529 if (!new)
3530 return -ENOMEM;
3532 smp_wmb(); /* See comment in __pte_alloc */
3534 spin_lock(&mm->page_table_lock);
3535 if (pgd_present(*pgd)) /* Another has populated it */
3536 pud_free(mm, new);
3537 else
3538 pgd_populate(mm, pgd, new);
3539 spin_unlock(&mm->page_table_lock);
3540 return 0;
3542 #endif /* __PAGETABLE_PUD_FOLDED */
3544 #ifndef __PAGETABLE_PMD_FOLDED
3546 * Allocate page middle directory.
3547 * We've already handled the fast-path in-line.
3549 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3551 pmd_t *new = pmd_alloc_one(mm, address);
3552 if (!new)
3553 return -ENOMEM;
3555 smp_wmb(); /* See comment in __pte_alloc */
3557 spin_lock(&mm->page_table_lock);
3558 #ifndef __ARCH_HAS_4LEVEL_HACK
3559 if (!pud_present(*pud)) {
3560 mm_inc_nr_pmds(mm);
3561 pud_populate(mm, pud, new);
3562 } else /* Another has populated it */
3563 pmd_free(mm, new);
3564 #else
3565 if (!pgd_present(*pud)) {
3566 mm_inc_nr_pmds(mm);
3567 pgd_populate(mm, pud, new);
3568 } else /* Another has populated it */
3569 pmd_free(mm, new);
3570 #endif /* __ARCH_HAS_4LEVEL_HACK */
3571 spin_unlock(&mm->page_table_lock);
3572 return 0;
3574 #endif /* __PAGETABLE_PMD_FOLDED */
3576 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3577 pte_t **ptepp, spinlock_t **ptlp)
3579 pgd_t *pgd;
3580 pud_t *pud;
3581 pmd_t *pmd;
3582 pte_t *ptep;
3584 pgd = pgd_offset(mm, address);
3585 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3586 goto out;
3588 pud = pud_offset(pgd, address);
3589 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3590 goto out;
3592 pmd = pmd_offset(pud, address);
3593 VM_BUG_ON(pmd_trans_huge(*pmd));
3594 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3595 goto out;
3597 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3598 if (pmd_huge(*pmd))
3599 goto out;
3601 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3602 if (!ptep)
3603 goto out;
3604 if (!pte_present(*ptep))
3605 goto unlock;
3606 *ptepp = ptep;
3607 return 0;
3608 unlock:
3609 pte_unmap_unlock(ptep, *ptlp);
3610 out:
3611 return -EINVAL;
3614 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3615 pte_t **ptepp, spinlock_t **ptlp)
3617 int res;
3619 /* (void) is needed to make gcc happy */
3620 (void) __cond_lock(*ptlp,
3621 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3622 return res;
3626 * follow_pfn - look up PFN at a user virtual address
3627 * @vma: memory mapping
3628 * @address: user virtual address
3629 * @pfn: location to store found PFN
3631 * Only IO mappings and raw PFN mappings are allowed.
3633 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3635 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3636 unsigned long *pfn)
3638 int ret = -EINVAL;
3639 spinlock_t *ptl;
3640 pte_t *ptep;
3642 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3643 return ret;
3645 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3646 if (ret)
3647 return ret;
3648 *pfn = pte_pfn(*ptep);
3649 pte_unmap_unlock(ptep, ptl);
3650 return 0;
3652 EXPORT_SYMBOL(follow_pfn);
3654 #ifdef CONFIG_HAVE_IOREMAP_PROT
3655 int follow_phys(struct vm_area_struct *vma,
3656 unsigned long address, unsigned int flags,
3657 unsigned long *prot, resource_size_t *phys)
3659 int ret = -EINVAL;
3660 pte_t *ptep, pte;
3661 spinlock_t *ptl;
3663 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3664 goto out;
3666 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3667 goto out;
3668 pte = *ptep;
3670 if ((flags & FOLL_WRITE) && !pte_write(pte))
3671 goto unlock;
3673 *prot = pgprot_val(pte_pgprot(pte));
3674 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3676 ret = 0;
3677 unlock:
3678 pte_unmap_unlock(ptep, ptl);
3679 out:
3680 return ret;
3683 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3684 void *buf, int len, int write)
3686 resource_size_t phys_addr;
3687 unsigned long prot = 0;
3688 void __iomem *maddr;
3689 int offset = addr & (PAGE_SIZE-1);
3691 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3692 return -EINVAL;
3694 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3695 if (!maddr)
3696 return -ENOMEM;
3698 if (write)
3699 memcpy_toio(maddr + offset, buf, len);
3700 else
3701 memcpy_fromio(buf, maddr + offset, len);
3702 iounmap(maddr);
3704 return len;
3706 EXPORT_SYMBOL_GPL(generic_access_phys);
3707 #endif
3710 * Access another process' address space as given in mm. If non-NULL, use the
3711 * given task for page fault accounting.
3713 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3714 unsigned long addr, void *buf, int len, int write)
3716 struct vm_area_struct *vma;
3717 void *old_buf = buf;
3719 down_read(&mm->mmap_sem);
3720 /* ignore errors, just check how much was successfully transferred */
3721 while (len) {
3722 int bytes, ret, offset;
3723 void *maddr;
3724 struct page *page = NULL;
3726 ret = get_user_pages(tsk, mm, addr, 1,
3727 write, 1, &page, &vma);
3728 if (ret <= 0) {
3729 #ifndef CONFIG_HAVE_IOREMAP_PROT
3730 break;
3731 #else
3733 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3734 * we can access using slightly different code.
3736 vma = find_vma(mm, addr);
3737 if (!vma || vma->vm_start > addr)
3738 break;
3739 if (vma->vm_ops && vma->vm_ops->access)
3740 ret = vma->vm_ops->access(vma, addr, buf,
3741 len, write);
3742 if (ret <= 0)
3743 break;
3744 bytes = ret;
3745 #endif
3746 } else {
3747 bytes = len;
3748 offset = addr & (PAGE_SIZE-1);
3749 if (bytes > PAGE_SIZE-offset)
3750 bytes = PAGE_SIZE-offset;
3752 maddr = kmap(page);
3753 if (write) {
3754 copy_to_user_page(vma, page, addr,
3755 maddr + offset, buf, bytes);
3756 set_page_dirty_lock(page);
3757 } else {
3758 copy_from_user_page(vma, page, addr,
3759 buf, maddr + offset, bytes);
3761 kunmap(page);
3762 page_cache_release(page);
3764 len -= bytes;
3765 buf += bytes;
3766 addr += bytes;
3768 up_read(&mm->mmap_sem);
3770 return buf - old_buf;
3774 * access_remote_vm - access another process' address space
3775 * @mm: the mm_struct of the target address space
3776 * @addr: start address to access
3777 * @buf: source or destination buffer
3778 * @len: number of bytes to transfer
3779 * @write: whether the access is a write
3781 * The caller must hold a reference on @mm.
3783 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3784 void *buf, int len, int write)
3786 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3790 * Access another process' address space.
3791 * Source/target buffer must be kernel space,
3792 * Do not walk the page table directly, use get_user_pages
3794 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3795 void *buf, int len, int write)
3797 struct mm_struct *mm;
3798 int ret;
3800 mm = get_task_mm(tsk);
3801 if (!mm)
3802 return 0;
3804 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3805 mmput(mm);
3807 return ret;
3811 * Print the name of a VMA.
3813 void print_vma_addr(char *prefix, unsigned long ip)
3815 struct mm_struct *mm = current->mm;
3816 struct vm_area_struct *vma;
3819 * Do not print if we are in atomic
3820 * contexts (in exception stacks, etc.):
3822 if (preempt_count())
3823 return;
3825 down_read(&mm->mmap_sem);
3826 vma = find_vma(mm, ip);
3827 if (vma && vma->vm_file) {
3828 struct file *f = vma->vm_file;
3829 char *buf = (char *)__get_free_page(GFP_KERNEL);
3830 if (buf) {
3831 char *p;
3833 p = file_path(f, buf, PAGE_SIZE);
3834 if (IS_ERR(p))
3835 p = "?";
3836 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3837 vma->vm_start,
3838 vma->vm_end - vma->vm_start);
3839 free_page((unsigned long)buf);
3842 up_read(&mm->mmap_sem);
3845 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3846 void __might_fault(const char *file, int line)
3849 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3850 * holding the mmap_sem, this is safe because kernel memory doesn't
3851 * get paged out, therefore we'll never actually fault, and the
3852 * below annotations will generate false positives.
3854 if (segment_eq(get_fs(), KERNEL_DS))
3855 return;
3856 if (pagefault_disabled())
3857 return;
3858 __might_sleep(file, line, 0);
3859 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3860 if (current->mm)
3861 might_lock_read(&current->mm->mmap_sem);
3862 #endif
3864 EXPORT_SYMBOL(__might_fault);
3865 #endif
3867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3868 static void clear_gigantic_page(struct page *page,
3869 unsigned long addr,
3870 unsigned int pages_per_huge_page)
3872 int i;
3873 struct page *p = page;
3875 might_sleep();
3876 for (i = 0; i < pages_per_huge_page;
3877 i++, p = mem_map_next(p, page, i)) {
3878 cond_resched();
3879 clear_user_highpage(p, addr + i * PAGE_SIZE);
3882 void clear_huge_page(struct page *page,
3883 unsigned long addr, unsigned int pages_per_huge_page)
3885 int i;
3887 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3888 clear_gigantic_page(page, addr, pages_per_huge_page);
3889 return;
3892 might_sleep();
3893 for (i = 0; i < pages_per_huge_page; i++) {
3894 cond_resched();
3895 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3899 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3900 unsigned long addr,
3901 struct vm_area_struct *vma,
3902 unsigned int pages_per_huge_page)
3904 int i;
3905 struct page *dst_base = dst;
3906 struct page *src_base = src;
3908 for (i = 0; i < pages_per_huge_page; ) {
3909 cond_resched();
3910 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3912 i++;
3913 dst = mem_map_next(dst, dst_base, i);
3914 src = mem_map_next(src, src_base, i);
3918 void copy_user_huge_page(struct page *dst, struct page *src,
3919 unsigned long addr, struct vm_area_struct *vma,
3920 unsigned int pages_per_huge_page)
3922 int i;
3924 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3925 copy_user_gigantic_page(dst, src, addr, vma,
3926 pages_per_huge_page);
3927 return;
3930 might_sleep();
3931 for (i = 0; i < pages_per_huge_page; i++) {
3932 cond_resched();
3933 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3936 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3938 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3940 static struct kmem_cache *page_ptl_cachep;
3942 void __init ptlock_cache_init(void)
3944 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3945 SLAB_PANIC, NULL);
3948 bool ptlock_alloc(struct page *page)
3950 spinlock_t *ptl;
3952 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3953 if (!ptl)
3954 return false;
3955 page->ptl = ptl;
3956 return true;
3959 void ptlock_free(struct page *page)
3961 kmem_cache_free(page_ptl_cachep, page->ptl);
3963 #endif