6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 static void unmap_region(struct mm_struct
*mm
,
62 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
63 unsigned long start
, unsigned long end
);
65 /* description of effects of mapping type and prot in current implementation.
66 * this is due to the limited x86 page protection hardware. The expected
67 * behavior is in parens:
70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
72 * w: (no) no w: (no) no w: (yes) yes w: (no) no
73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
76 * w: (no) no w: (no) no w: (copy) copy w: (no) no
77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
80 pgprot_t protection_map
[16] = {
81 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
82 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
85 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
87 return __pgprot(pgprot_val(protection_map
[vm_flags
&
88 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
89 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
91 EXPORT_SYMBOL(vm_get_page_prot
);
93 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
95 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct
*vma
)
101 unsigned long vm_flags
= vma
->vm_flags
;
103 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
104 if (vma_wants_writenotify(vma
)) {
105 vm_flags
&= ~VM_SHARED
;
106 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
112 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly
;
115 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
119 * Make sure vm_committed_as in one cacheline and not cacheline shared with
120 * other variables. It can be updated by several CPUs frequently.
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
125 * The global memory commitment made in the system can be a metric
126 * that can be used to drive ballooning decisions when Linux is hosted
127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128 * balancing memory across competing virtual machines that are hosted.
129 * Several metrics drive this policy engine including the guest reported
132 unsigned long vm_memory_committed(void)
134 return percpu_counter_read_positive(&vm_committed_as
);
136 EXPORT_SYMBOL_GPL(vm_memory_committed
);
139 * Check that a process has enough memory to allocate a new virtual
140 * mapping. 0 means there is enough memory for the allocation to
141 * succeed and -ENOMEM implies there is not.
143 * We currently support three overcommit policies, which are set via the
144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147 * Additional code 2002 Jul 20 by Robert Love.
149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
151 * Note this is a helper function intended to be used by LSMs which
152 * wish to use this logic.
154 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
156 long free
, allowed
, reserve
;
158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
159 -(s64
)vm_committed_as_batch
* num_online_cpus(),
160 "memory commitment underflow");
162 vm_acct_memory(pages
);
165 * Sometimes we want to use more memory than we have
167 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
170 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
171 free
= global_page_state(NR_FREE_PAGES
);
172 free
+= global_page_state(NR_FILE_PAGES
);
175 * shmem pages shouldn't be counted as free in this
176 * case, they can't be purged, only swapped out, and
177 * that won't affect the overall amount of available
178 * memory in the system.
180 free
-= global_page_state(NR_SHMEM
);
182 free
+= get_nr_swap_pages();
185 * Any slabs which are created with the
186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 * which are reclaimable, under pressure. The dentry
188 * cache and most inode caches should fall into this
190 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
193 * Leave reserved pages. The pages are not for anonymous pages.
195 if (free
<= totalreserve_pages
)
198 free
-= totalreserve_pages
;
201 * Reserve some for root
204 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
212 allowed
= vm_commit_limit();
214 * Reserve some for root
217 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
220 * Don't let a single process grow so big a user can't recover
223 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
224 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
227 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
230 vm_unacct_memory(pages
);
236 * Requires inode->i_mapping->i_mmap_rwsem
238 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
239 struct file
*file
, struct address_space
*mapping
)
241 if (vma
->vm_flags
& VM_DENYWRITE
)
242 atomic_inc(&file_inode(file
)->i_writecount
);
243 if (vma
->vm_flags
& VM_SHARED
)
244 mapping_unmap_writable(mapping
);
246 flush_dcache_mmap_lock(mapping
);
247 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
248 flush_dcache_mmap_unlock(mapping
);
252 * Unlink a file-based vm structure from its interval tree, to hide
253 * vma from rmap and vmtruncate before freeing its page tables.
255 void unlink_file_vma(struct vm_area_struct
*vma
)
257 struct file
*file
= vma
->vm_file
;
260 struct address_space
*mapping
= file
->f_mapping
;
261 i_mmap_lock_write(mapping
);
262 __remove_shared_vm_struct(vma
, file
, mapping
);
263 i_mmap_unlock_write(mapping
);
268 * Close a vm structure and free it, returning the next.
270 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
272 struct vm_area_struct
*next
= vma
->vm_next
;
275 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
276 vma
->vm_ops
->close(vma
);
279 mpol_put(vma_policy(vma
));
280 kmem_cache_free(vm_area_cachep
, vma
);
284 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
286 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
288 unsigned long retval
;
289 unsigned long newbrk
, oldbrk
;
290 struct mm_struct
*mm
= current
->mm
;
291 struct vm_area_struct
*next
;
292 unsigned long min_brk
;
295 down_write(&mm
->mmap_sem
);
297 #ifdef CONFIG_COMPAT_BRK
299 * CONFIG_COMPAT_BRK can still be overridden by setting
300 * randomize_va_space to 2, which will still cause mm->start_brk
301 * to be arbitrarily shifted
303 if (current
->brk_randomized
)
304 min_brk
= mm
->start_brk
;
306 min_brk
= mm
->end_data
;
308 min_brk
= mm
->start_brk
;
314 * Check against rlimit here. If this check is done later after the test
315 * of oldbrk with newbrk then it can escape the test and let the data
316 * segment grow beyond its set limit the in case where the limit is
317 * not page aligned -Ram Gupta
319 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
320 mm
->end_data
, mm
->start_data
))
323 newbrk
= PAGE_ALIGN(brk
);
324 oldbrk
= PAGE_ALIGN(mm
->brk
);
325 if (oldbrk
== newbrk
)
328 /* Always allow shrinking brk. */
329 if (brk
<= mm
->brk
) {
330 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
335 /* Check against existing mmap mappings. */
336 next
= find_vma(mm
, oldbrk
);
337 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
340 /* Ok, looks good - let it rip. */
341 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
346 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
347 up_write(&mm
->mmap_sem
);
349 mm_populate(oldbrk
, newbrk
- oldbrk
);
354 up_write(&mm
->mmap_sem
);
358 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
360 unsigned long max
, prev_end
, subtree_gap
;
363 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
364 * allow two stack_guard_gaps between them here, and when choosing
365 * an unmapped area; whereas when expanding we only require one.
366 * That's a little inconsistent, but keeps the code here simpler.
368 max
= vm_start_gap(vma
);
370 prev_end
= vm_end_gap(vma
->vm_prev
);
376 if (vma
->vm_rb
.rb_left
) {
377 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
378 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
379 if (subtree_gap
> max
)
382 if (vma
->vm_rb
.rb_right
) {
383 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
384 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
385 if (subtree_gap
> max
)
391 #ifdef CONFIG_DEBUG_VM_RB
392 static int browse_rb(struct rb_root
*root
)
394 int i
= 0, j
, bug
= 0;
395 struct rb_node
*nd
, *pn
= NULL
;
396 unsigned long prev
= 0, pend
= 0;
398 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
399 struct vm_area_struct
*vma
;
400 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
401 if (vma
->vm_start
< prev
) {
402 pr_emerg("vm_start %lx < prev %lx\n",
403 vma
->vm_start
, prev
);
406 if (vma
->vm_start
< pend
) {
407 pr_emerg("vm_start %lx < pend %lx\n",
408 vma
->vm_start
, pend
);
411 if (vma
->vm_start
> vma
->vm_end
) {
412 pr_emerg("vm_start %lx > vm_end %lx\n",
413 vma
->vm_start
, vma
->vm_end
);
416 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
417 pr_emerg("free gap %lx, correct %lx\n",
419 vma_compute_subtree_gap(vma
));
424 prev
= vma
->vm_start
;
428 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
431 pr_emerg("backwards %d, forwards %d\n", j
, i
);
437 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
441 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
442 struct vm_area_struct
*vma
;
443 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
444 VM_BUG_ON_VMA(vma
!= ignore
&&
445 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
450 static void validate_mm(struct mm_struct
*mm
)
454 unsigned long highest_address
= 0;
455 struct vm_area_struct
*vma
= mm
->mmap
;
458 struct anon_vma
*anon_vma
= vma
->anon_vma
;
459 struct anon_vma_chain
*avc
;
462 anon_vma_lock_read(anon_vma
);
463 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
464 anon_vma_interval_tree_verify(avc
);
465 anon_vma_unlock_read(anon_vma
);
468 highest_address
= vm_end_gap(vma
);
472 if (i
!= mm
->map_count
) {
473 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
476 if (highest_address
!= mm
->highest_vm_end
) {
477 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
478 mm
->highest_vm_end
, highest_address
);
481 i
= browse_rb(&mm
->mm_rb
);
482 if (i
!= mm
->map_count
) {
484 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
487 VM_BUG_ON_MM(bug
, mm
);
490 #define validate_mm_rb(root, ignore) do { } while (0)
491 #define validate_mm(mm) do { } while (0)
494 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
495 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
498 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
499 * vma->vm_prev->vm_end values changed, without modifying the vma's position
502 static void vma_gap_update(struct vm_area_struct
*vma
)
505 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
506 * function that does exacltly what we want.
508 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
511 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
512 struct rb_root
*root
)
514 /* All rb_subtree_gap values must be consistent prior to insertion */
515 validate_mm_rb(root
, NULL
);
517 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
520 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
523 * All rb_subtree_gap values must be consistent prior to erase,
524 * with the possible exception of the vma being erased.
526 validate_mm_rb(root
, vma
);
529 * Note rb_erase_augmented is a fairly large inline function,
530 * so make sure we instantiate it only once with our desired
531 * augmented rbtree callbacks.
533 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
537 * vma has some anon_vma assigned, and is already inserted on that
538 * anon_vma's interval trees.
540 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
541 * vma must be removed from the anon_vma's interval trees using
542 * anon_vma_interval_tree_pre_update_vma().
544 * After the update, the vma will be reinserted using
545 * anon_vma_interval_tree_post_update_vma().
547 * The entire update must be protected by exclusive mmap_sem and by
548 * the root anon_vma's mutex.
551 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
553 struct anon_vma_chain
*avc
;
555 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
556 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
560 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
562 struct anon_vma_chain
*avc
;
564 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
565 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
568 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
569 unsigned long end
, struct vm_area_struct
**pprev
,
570 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
572 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
574 __rb_link
= &mm
->mm_rb
.rb_node
;
575 rb_prev
= __rb_parent
= NULL
;
578 struct vm_area_struct
*vma_tmp
;
580 __rb_parent
= *__rb_link
;
581 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
583 if (vma_tmp
->vm_end
> addr
) {
584 /* Fail if an existing vma overlaps the area */
585 if (vma_tmp
->vm_start
< end
)
587 __rb_link
= &__rb_parent
->rb_left
;
589 rb_prev
= __rb_parent
;
590 __rb_link
= &__rb_parent
->rb_right
;
596 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
597 *rb_link
= __rb_link
;
598 *rb_parent
= __rb_parent
;
602 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
603 unsigned long addr
, unsigned long end
)
605 unsigned long nr_pages
= 0;
606 struct vm_area_struct
*vma
;
608 /* Find first overlaping mapping */
609 vma
= find_vma_intersection(mm
, addr
, end
);
613 nr_pages
= (min(end
, vma
->vm_end
) -
614 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
616 /* Iterate over the rest of the overlaps */
617 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
618 unsigned long overlap_len
;
620 if (vma
->vm_start
> end
)
623 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
624 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
630 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
631 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
633 /* Update tracking information for the gap following the new vma. */
635 vma_gap_update(vma
->vm_next
);
637 mm
->highest_vm_end
= vm_end_gap(vma
);
640 * vma->vm_prev wasn't known when we followed the rbtree to find the
641 * correct insertion point for that vma. As a result, we could not
642 * update the vma vm_rb parents rb_subtree_gap values on the way down.
643 * So, we first insert the vma with a zero rb_subtree_gap value
644 * (to be consistent with what we did on the way down), and then
645 * immediately update the gap to the correct value. Finally we
646 * rebalance the rbtree after all augmented values have been set.
648 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
649 vma
->rb_subtree_gap
= 0;
651 vma_rb_insert(vma
, &mm
->mm_rb
);
654 static void __vma_link_file(struct vm_area_struct
*vma
)
660 struct address_space
*mapping
= file
->f_mapping
;
662 if (vma
->vm_flags
& VM_DENYWRITE
)
663 atomic_dec(&file_inode(file
)->i_writecount
);
664 if (vma
->vm_flags
& VM_SHARED
)
665 atomic_inc(&mapping
->i_mmap_writable
);
667 flush_dcache_mmap_lock(mapping
);
668 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
669 flush_dcache_mmap_unlock(mapping
);
674 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
675 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
676 struct rb_node
*rb_parent
)
678 __vma_link_list(mm
, vma
, prev
, rb_parent
);
679 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
682 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
683 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
684 struct rb_node
*rb_parent
)
686 struct address_space
*mapping
= NULL
;
689 mapping
= vma
->vm_file
->f_mapping
;
690 i_mmap_lock_write(mapping
);
693 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
694 __vma_link_file(vma
);
697 i_mmap_unlock_write(mapping
);
704 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
705 * mm's list and rbtree. It has already been inserted into the interval tree.
707 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
709 struct vm_area_struct
*prev
;
710 struct rb_node
**rb_link
, *rb_parent
;
712 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
713 &prev
, &rb_link
, &rb_parent
))
715 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
720 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
721 struct vm_area_struct
*prev
)
723 struct vm_area_struct
*next
;
725 vma_rb_erase(vma
, &mm
->mm_rb
);
726 prev
->vm_next
= next
= vma
->vm_next
;
728 next
->vm_prev
= prev
;
731 vmacache_invalidate(mm
);
735 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736 * is already present in an i_mmap tree without adjusting the tree.
737 * The following helper function should be used when such adjustments
738 * are necessary. The "insert" vma (if any) is to be inserted
739 * before we drop the necessary locks.
741 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
742 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
744 struct mm_struct
*mm
= vma
->vm_mm
;
745 struct vm_area_struct
*next
= vma
->vm_next
;
746 struct vm_area_struct
*importer
= NULL
;
747 struct address_space
*mapping
= NULL
;
748 struct rb_root
*root
= NULL
;
749 struct anon_vma
*anon_vma
= NULL
;
750 struct file
*file
= vma
->vm_file
;
751 bool start_changed
= false, end_changed
= false;
752 long adjust_next
= 0;
755 if (next
&& !insert
) {
756 struct vm_area_struct
*exporter
= NULL
;
758 if (end
>= next
->vm_end
) {
760 * vma expands, overlapping all the next, and
761 * perhaps the one after too (mprotect case 6).
763 again
: remove_next
= 1 + (end
> next
->vm_end
);
767 } else if (end
> next
->vm_start
) {
769 * vma expands, overlapping part of the next:
770 * mprotect case 5 shifting the boundary up.
772 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
775 } else if (end
< vma
->vm_end
) {
777 * vma shrinks, and !insert tells it's not
778 * split_vma inserting another: so it must be
779 * mprotect case 4 shifting the boundary down.
781 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
787 * Easily overlooked: when mprotect shifts the boundary,
788 * make sure the expanding vma has anon_vma set if the
789 * shrinking vma had, to cover any anon pages imported.
791 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
794 importer
->anon_vma
= exporter
->anon_vma
;
795 error
= anon_vma_clone(importer
, exporter
);
802 mapping
= file
->f_mapping
;
803 root
= &mapping
->i_mmap
;
804 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
807 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
809 i_mmap_lock_write(mapping
);
812 * Put into interval tree now, so instantiated pages
813 * are visible to arm/parisc __flush_dcache_page
814 * throughout; but we cannot insert into address
815 * space until vma start or end is updated.
817 __vma_link_file(insert
);
821 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
823 anon_vma
= vma
->anon_vma
;
824 if (!anon_vma
&& adjust_next
)
825 anon_vma
= next
->anon_vma
;
827 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
828 anon_vma
!= next
->anon_vma
, next
);
829 anon_vma_lock_write(anon_vma
);
830 anon_vma_interval_tree_pre_update_vma(vma
);
832 anon_vma_interval_tree_pre_update_vma(next
);
836 flush_dcache_mmap_lock(mapping
);
837 vma_interval_tree_remove(vma
, root
);
839 vma_interval_tree_remove(next
, root
);
842 if (start
!= vma
->vm_start
) {
843 vma
->vm_start
= start
;
844 start_changed
= true;
846 if (end
!= vma
->vm_end
) {
850 vma
->vm_pgoff
= pgoff
;
852 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
853 next
->vm_pgoff
+= adjust_next
;
858 vma_interval_tree_insert(next
, root
);
859 vma_interval_tree_insert(vma
, root
);
860 flush_dcache_mmap_unlock(mapping
);
865 * vma_merge has merged next into vma, and needs
866 * us to remove next before dropping the locks.
868 __vma_unlink(mm
, next
, vma
);
870 __remove_shared_vm_struct(next
, file
, mapping
);
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
877 __insert_vm_struct(mm
, insert
);
883 mm
->highest_vm_end
= vm_end_gap(vma
);
884 else if (!adjust_next
)
885 vma_gap_update(next
);
890 anon_vma_interval_tree_post_update_vma(vma
);
892 anon_vma_interval_tree_post_update_vma(next
);
893 anon_vma_unlock_write(anon_vma
);
896 i_mmap_unlock_write(mapping
);
907 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
911 anon_vma_merge(vma
, next
);
913 mpol_put(vma_policy(next
));
914 kmem_cache_free(vm_area_cachep
, next
);
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
921 if (remove_next
== 2)
924 vma_gap_update(next
);
926 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
937 * If the vma has a ->close operation then the driver probably needs to release
938 * per-vma resources, so we don't attempt to merge those.
940 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
941 struct file
*file
, unsigned long vm_flags
,
942 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
945 * VM_SOFTDIRTY should not prevent from VMA merging, if we
946 * match the flags but dirty bit -- the caller should mark
947 * merged VMA as dirty. If dirty bit won't be excluded from
948 * comparison, we increase pressue on the memory system forcing
949 * the kernel to generate new VMAs when old one could be
952 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
954 if (vma
->vm_file
!= file
)
956 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
958 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
963 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
964 struct anon_vma
*anon_vma2
,
965 struct vm_area_struct
*vma
)
968 * The list_is_singular() test is to avoid merging VMA cloned from
969 * parents. This can improve scalability caused by anon_vma lock.
971 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
972 list_is_singular(&vma
->anon_vma_chain
)))
974 return anon_vma1
== anon_vma2
;
978 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
979 * in front of (at a lower virtual address and file offset than) the vma.
981 * We cannot merge two vmas if they have differently assigned (non-NULL)
982 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
984 * We don't check here for the merged mmap wrapping around the end of pagecache
985 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
986 * wrap, nor mmaps which cover the final page at index -1UL.
989 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
990 struct anon_vma
*anon_vma
, struct file
*file
,
992 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
994 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
995 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
996 if (vma
->vm_pgoff
== vm_pgoff
)
1003 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1004 * beyond (at a higher virtual address and file offset than) the vma.
1006 * We cannot merge two vmas if they have differently assigned (non-NULL)
1007 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1010 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1011 struct anon_vma
*anon_vma
, struct file
*file
,
1013 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1015 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1016 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1018 vm_pglen
= vma_pages(vma
);
1019 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1026 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1027 * whether that can be merged with its predecessor or its successor.
1028 * Or both (it neatly fills a hole).
1030 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1031 * certain not to be mapped by the time vma_merge is called; but when
1032 * called for mprotect, it is certain to be already mapped (either at
1033 * an offset within prev, or at the start of next), and the flags of
1034 * this area are about to be changed to vm_flags - and the no-change
1035 * case has already been eliminated.
1037 * The following mprotect cases have to be considered, where AAAA is
1038 * the area passed down from mprotect_fixup, never extending beyond one
1039 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1041 * AAAA AAAA AAAA AAAA
1042 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1043 * cannot merge might become might become might become
1044 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1045 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1046 * mremap move: PPPPNNNNNNNN 8
1048 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1049 * might become case 1 below case 2 below case 3 below
1051 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1052 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1054 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1055 struct vm_area_struct
*prev
, unsigned long addr
,
1056 unsigned long end
, unsigned long vm_flags
,
1057 struct anon_vma
*anon_vma
, struct file
*file
,
1058 pgoff_t pgoff
, struct mempolicy
*policy
,
1059 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1061 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1062 struct vm_area_struct
*area
, *next
;
1066 * We later require that vma->vm_flags == vm_flags,
1067 * so this tests vma->vm_flags & VM_SPECIAL, too.
1069 if (vm_flags
& VM_SPECIAL
)
1073 next
= prev
->vm_next
;
1077 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1078 next
= next
->vm_next
;
1081 * Can it merge with the predecessor?
1083 if (prev
&& prev
->vm_end
== addr
&&
1084 mpol_equal(vma_policy(prev
), policy
) &&
1085 can_vma_merge_after(prev
, vm_flags
,
1086 anon_vma
, file
, pgoff
,
1087 vm_userfaultfd_ctx
)) {
1089 * OK, it can. Can we now merge in the successor as well?
1091 if (next
&& end
== next
->vm_start
&&
1092 mpol_equal(policy
, vma_policy(next
)) &&
1093 can_vma_merge_before(next
, vm_flags
,
1096 vm_userfaultfd_ctx
) &&
1097 is_mergeable_anon_vma(prev
->anon_vma
,
1098 next
->anon_vma
, NULL
)) {
1100 err
= vma_adjust(prev
, prev
->vm_start
,
1101 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1102 } else /* cases 2, 5, 7 */
1103 err
= vma_adjust(prev
, prev
->vm_start
,
1104 end
, prev
->vm_pgoff
, NULL
);
1107 khugepaged_enter_vma_merge(prev
, vm_flags
);
1112 * Can this new request be merged in front of next?
1114 if (next
&& end
== next
->vm_start
&&
1115 mpol_equal(policy
, vma_policy(next
)) &&
1116 can_vma_merge_before(next
, vm_flags
,
1117 anon_vma
, file
, pgoff
+pglen
,
1118 vm_userfaultfd_ctx
)) {
1119 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1120 err
= vma_adjust(prev
, prev
->vm_start
,
1121 addr
, prev
->vm_pgoff
, NULL
);
1122 else /* cases 3, 8 */
1123 err
= vma_adjust(area
, addr
, next
->vm_end
,
1124 next
->vm_pgoff
- pglen
, NULL
);
1127 khugepaged_enter_vma_merge(area
, vm_flags
);
1135 * Rough compatbility check to quickly see if it's even worth looking
1136 * at sharing an anon_vma.
1138 * They need to have the same vm_file, and the flags can only differ
1139 * in things that mprotect may change.
1141 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1142 * we can merge the two vma's. For example, we refuse to merge a vma if
1143 * there is a vm_ops->close() function, because that indicates that the
1144 * driver is doing some kind of reference counting. But that doesn't
1145 * really matter for the anon_vma sharing case.
1147 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1149 return a
->vm_end
== b
->vm_start
&&
1150 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1151 a
->vm_file
== b
->vm_file
&&
1152 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1153 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1157 * Do some basic sanity checking to see if we can re-use the anon_vma
1158 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1159 * the same as 'old', the other will be the new one that is trying
1160 * to share the anon_vma.
1162 * NOTE! This runs with mm_sem held for reading, so it is possible that
1163 * the anon_vma of 'old' is concurrently in the process of being set up
1164 * by another page fault trying to merge _that_. But that's ok: if it
1165 * is being set up, that automatically means that it will be a singleton
1166 * acceptable for merging, so we can do all of this optimistically. But
1167 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1169 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1170 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1171 * is to return an anon_vma that is "complex" due to having gone through
1174 * We also make sure that the two vma's are compatible (adjacent,
1175 * and with the same memory policies). That's all stable, even with just
1176 * a read lock on the mm_sem.
1178 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1180 if (anon_vma_compatible(a
, b
)) {
1181 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1183 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1190 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1191 * neighbouring vmas for a suitable anon_vma, before it goes off
1192 * to allocate a new anon_vma. It checks because a repetitive
1193 * sequence of mprotects and faults may otherwise lead to distinct
1194 * anon_vmas being allocated, preventing vma merge in subsequent
1197 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1199 struct anon_vma
*anon_vma
;
1200 struct vm_area_struct
*near
;
1202 near
= vma
->vm_next
;
1206 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1210 near
= vma
->vm_prev
;
1214 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1219 * There's no absolute need to look only at touching neighbours:
1220 * we could search further afield for "compatible" anon_vmas.
1221 * But it would probably just be a waste of time searching,
1222 * or lead to too many vmas hanging off the same anon_vma.
1223 * We're trying to allow mprotect remerging later on,
1224 * not trying to minimize memory used for anon_vmas.
1229 #ifdef CONFIG_PROC_FS
1230 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1231 struct file
*file
, long pages
)
1233 const unsigned long stack_flags
1234 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1236 mm
->total_vm
+= pages
;
1239 mm
->shared_vm
+= pages
;
1240 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1241 mm
->exec_vm
+= pages
;
1242 } else if (flags
& stack_flags
)
1243 mm
->stack_vm
+= pages
;
1245 #endif /* CONFIG_PROC_FS */
1248 * If a hint addr is less than mmap_min_addr change hint to be as
1249 * low as possible but still greater than mmap_min_addr
1251 static inline unsigned long round_hint_to_min(unsigned long hint
)
1254 if (((void *)hint
!= NULL
) &&
1255 (hint
< mmap_min_addr
))
1256 return PAGE_ALIGN(mmap_min_addr
);
1260 static inline int mlock_future_check(struct mm_struct
*mm
,
1261 unsigned long flags
,
1264 unsigned long locked
, lock_limit
;
1266 /* mlock MCL_FUTURE? */
1267 if (flags
& VM_LOCKED
) {
1268 locked
= len
>> PAGE_SHIFT
;
1269 locked
+= mm
->locked_vm
;
1270 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1271 lock_limit
>>= PAGE_SHIFT
;
1272 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1278 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1280 if (S_ISREG(inode
->i_mode
))
1281 return MAX_LFS_FILESIZE
;
1283 if (S_ISBLK(inode
->i_mode
))
1284 return MAX_LFS_FILESIZE
;
1286 /* Special "we do even unsigned file positions" case */
1287 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1290 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1294 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1295 unsigned long pgoff
, unsigned long len
)
1297 u64 maxsize
= file_mmap_size_max(file
, inode
);
1299 if (maxsize
&& len
> maxsize
)
1302 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1308 * The caller must hold down_write(¤t->mm->mmap_sem).
1310 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1311 unsigned long len
, unsigned long prot
,
1312 unsigned long flags
, vm_flags_t vm_flags
,
1313 unsigned long pgoff
, unsigned long *populate
)
1315 struct mm_struct
*mm
= current
->mm
;
1323 * Does the application expect PROT_READ to imply PROT_EXEC?
1325 * (the exception is when the underlying filesystem is noexec
1326 * mounted, in which case we dont add PROT_EXEC.)
1328 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1329 if (!(file
&& path_noexec(&file
->f_path
)))
1332 if (!(flags
& MAP_FIXED
))
1333 addr
= round_hint_to_min(addr
);
1335 /* Careful about overflows.. */
1336 len
= PAGE_ALIGN(len
);
1340 /* offset overflow? */
1341 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1344 /* Too many mappings? */
1345 if (mm
->map_count
> sysctl_max_map_count
)
1348 /* Obtain the address to map to. we verify (or select) it and ensure
1349 * that it represents a valid section of the address space.
1351 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1352 if (offset_in_page(addr
))
1355 /* Do simple checking here so the lower-level routines won't have
1356 * to. we assume access permissions have been handled by the open
1357 * of the memory object, so we don't do any here.
1359 vm_flags
|= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1360 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1362 if (flags
& MAP_LOCKED
)
1363 if (!can_do_mlock())
1366 if (mlock_future_check(mm
, vm_flags
, len
))
1370 struct inode
*inode
= file_inode(file
);
1372 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1375 switch (flags
& MAP_TYPE
) {
1377 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1381 * Make sure we don't allow writing to an append-only
1384 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1388 * Make sure there are no mandatory locks on the file.
1390 if (locks_verify_locked(file
))
1393 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1394 if (!(file
->f_mode
& FMODE_WRITE
))
1395 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1399 if (!(file
->f_mode
& FMODE_READ
))
1401 if (path_noexec(&file
->f_path
)) {
1402 if (vm_flags
& VM_EXEC
)
1404 vm_flags
&= ~VM_MAYEXEC
;
1407 if (!file
->f_op
->mmap
)
1409 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1417 switch (flags
& MAP_TYPE
) {
1419 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1425 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1429 * Set pgoff according to addr for anon_vma.
1431 pgoff
= addr
>> PAGE_SHIFT
;
1439 * Set 'VM_NORESERVE' if we should not account for the
1440 * memory use of this mapping.
1442 if (flags
& MAP_NORESERVE
) {
1443 /* We honor MAP_NORESERVE if allowed to overcommit */
1444 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1445 vm_flags
|= VM_NORESERVE
;
1447 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1448 if (file
&& is_file_hugepages(file
))
1449 vm_flags
|= VM_NORESERVE
;
1452 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1453 if (!IS_ERR_VALUE(addr
) &&
1454 ((vm_flags
& VM_LOCKED
) ||
1455 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1460 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1461 unsigned long, prot
, unsigned long, flags
,
1462 unsigned long, fd
, unsigned long, pgoff
)
1464 struct file
*file
= NULL
;
1465 unsigned long retval
;
1467 if (!(flags
& MAP_ANONYMOUS
)) {
1468 audit_mmap_fd(fd
, flags
);
1472 if (is_file_hugepages(file
))
1473 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1475 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1477 } else if (flags
& MAP_HUGETLB
) {
1478 struct user_struct
*user
= NULL
;
1481 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1485 len
= ALIGN(len
, huge_page_size(hs
));
1487 * VM_NORESERVE is used because the reservations will be
1488 * taken when vm_ops->mmap() is called
1489 * A dummy user value is used because we are not locking
1490 * memory so no accounting is necessary
1492 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1494 &user
, HUGETLB_ANONHUGE_INODE
,
1495 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1497 return PTR_ERR(file
);
1500 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1502 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct
{
1514 unsigned long flags
;
1516 unsigned long offset
;
1519 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1521 struct mmap_arg_struct a
;
1523 if (copy_from_user(&a
, arg
, sizeof(a
)))
1525 if (offset_in_page(a
.offset
))
1528 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1529 a
.offset
>> PAGE_SHIFT
);
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1534 * Some shared mappigns will want the pages marked read-only
1535 * to track write events. If so, we'll downgrade vm_page_prot
1536 * to the private version (using protection_map[] without the
1539 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1541 vm_flags_t vm_flags
= vma
->vm_flags
;
1542 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1544 /* If it was private or non-writable, the write bit is already clear */
1545 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1548 /* The backer wishes to know when pages are first written to? */
1549 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1552 /* The open routine did something to the protections that pgprot_modify
1553 * won't preserve? */
1554 if (pgprot_val(vma
->vm_page_prot
) !=
1555 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1558 /* Do we need to track softdirty? */
1559 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1562 /* Specialty mapping? */
1563 if (vm_flags
& VM_PFNMAP
)
1566 /* Can the mapping track the dirty pages? */
1567 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1568 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1572 * We account for memory if it's a private writeable mapping,
1573 * not hugepages and VM_NORESERVE wasn't set.
1575 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1578 * hugetlb has its own accounting separate from the core VM
1579 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1581 if (file
&& is_file_hugepages(file
))
1584 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1587 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1588 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1590 struct mm_struct
*mm
= current
->mm
;
1591 struct vm_area_struct
*vma
, *prev
;
1593 struct rb_node
**rb_link
, *rb_parent
;
1594 unsigned long charged
= 0;
1596 /* Check against address space limit. */
1597 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
)) {
1598 unsigned long nr_pages
;
1601 * MAP_FIXED may remove pages of mappings that intersects with
1602 * requested mapping. Account for the pages it would unmap.
1604 if (!(vm_flags
& MAP_FIXED
))
1607 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1609 if (!may_expand_vm(mm
, (len
>> PAGE_SHIFT
) - nr_pages
))
1613 /* Clear old maps */
1614 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1616 if (do_munmap(mm
, addr
, len
))
1621 * Private writable mapping: check memory availability
1623 if (accountable_mapping(file
, vm_flags
)) {
1624 charged
= len
>> PAGE_SHIFT
;
1625 if (security_vm_enough_memory_mm(mm
, charged
))
1627 vm_flags
|= VM_ACCOUNT
;
1631 * Can we just expand an old mapping?
1633 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1634 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1639 * Determine the object being mapped and call the appropriate
1640 * specific mapper. the address has already been validated, but
1641 * not unmapped, but the maps are removed from the list.
1643 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1650 vma
->vm_start
= addr
;
1651 vma
->vm_end
= addr
+ len
;
1652 vma
->vm_flags
= vm_flags
;
1653 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1654 vma
->vm_pgoff
= pgoff
;
1655 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1658 if (vm_flags
& VM_DENYWRITE
) {
1659 error
= deny_write_access(file
);
1663 if (vm_flags
& VM_SHARED
) {
1664 error
= mapping_map_writable(file
->f_mapping
);
1666 goto allow_write_and_free_vma
;
1669 /* ->mmap() can change vma->vm_file, but must guarantee that
1670 * vma_link() below can deny write-access if VM_DENYWRITE is set
1671 * and map writably if VM_SHARED is set. This usually means the
1672 * new file must not have been exposed to user-space, yet.
1674 vma
->vm_file
= get_file(file
);
1675 error
= file
->f_op
->mmap(file
, vma
);
1677 goto unmap_and_free_vma
;
1679 /* Can addr have changed??
1681 * Answer: Yes, several device drivers can do it in their
1682 * f_op->mmap method. -DaveM
1683 * Bug: If addr is changed, prev, rb_link, rb_parent should
1684 * be updated for vma_link()
1686 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1688 addr
= vma
->vm_start
;
1689 vm_flags
= vma
->vm_flags
;
1690 } else if (vm_flags
& VM_SHARED
) {
1691 error
= shmem_zero_setup(vma
);
1696 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1697 /* Once vma denies write, undo our temporary denial count */
1699 if (vm_flags
& VM_SHARED
)
1700 mapping_unmap_writable(file
->f_mapping
);
1701 if (vm_flags
& VM_DENYWRITE
)
1702 allow_write_access(file
);
1704 file
= vma
->vm_file
;
1706 perf_event_mmap(vma
);
1708 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1709 if (vm_flags
& VM_LOCKED
) {
1710 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1711 vma
== get_gate_vma(current
->mm
)))
1712 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1714 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1721 * New (or expanded) vma always get soft dirty status.
1722 * Otherwise user-space soft-dirty page tracker won't
1723 * be able to distinguish situation when vma area unmapped,
1724 * then new mapped in-place (which must be aimed as
1725 * a completely new data area).
1727 vma
->vm_flags
|= VM_SOFTDIRTY
;
1729 vma_set_page_prot(vma
);
1734 vma
->vm_file
= NULL
;
1737 /* Undo any partial mapping done by a device driver. */
1738 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1740 if (vm_flags
& VM_SHARED
)
1741 mapping_unmap_writable(file
->f_mapping
);
1742 allow_write_and_free_vma
:
1743 if (vm_flags
& VM_DENYWRITE
)
1744 allow_write_access(file
);
1746 kmem_cache_free(vm_area_cachep
, vma
);
1749 vm_unacct_memory(charged
);
1753 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1756 * We implement the search by looking for an rbtree node that
1757 * immediately follows a suitable gap. That is,
1758 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1759 * - gap_end = vma->vm_start >= info->low_limit + length;
1760 * - gap_end - gap_start >= length
1763 struct mm_struct
*mm
= current
->mm
;
1764 struct vm_area_struct
*vma
;
1765 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1767 /* Adjust search length to account for worst case alignment overhead */
1768 length
= info
->length
+ info
->align_mask
;
1769 if (length
< info
->length
)
1772 /* Adjust search limits by the desired length */
1773 if (info
->high_limit
< length
)
1775 high_limit
= info
->high_limit
- length
;
1777 if (info
->low_limit
> high_limit
)
1779 low_limit
= info
->low_limit
+ length
;
1781 /* Check if rbtree root looks promising */
1782 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1784 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1785 if (vma
->rb_subtree_gap
< length
)
1789 /* Visit left subtree if it looks promising */
1790 gap_end
= vm_start_gap(vma
);
1791 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1792 struct vm_area_struct
*left
=
1793 rb_entry(vma
->vm_rb
.rb_left
,
1794 struct vm_area_struct
, vm_rb
);
1795 if (left
->rb_subtree_gap
>= length
) {
1801 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1803 /* Check if current node has a suitable gap */
1804 if (gap_start
> high_limit
)
1806 if (gap_end
>= low_limit
&&
1807 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1810 /* Visit right subtree if it looks promising */
1811 if (vma
->vm_rb
.rb_right
) {
1812 struct vm_area_struct
*right
=
1813 rb_entry(vma
->vm_rb
.rb_right
,
1814 struct vm_area_struct
, vm_rb
);
1815 if (right
->rb_subtree_gap
>= length
) {
1821 /* Go back up the rbtree to find next candidate node */
1823 struct rb_node
*prev
= &vma
->vm_rb
;
1824 if (!rb_parent(prev
))
1826 vma
= rb_entry(rb_parent(prev
),
1827 struct vm_area_struct
, vm_rb
);
1828 if (prev
== vma
->vm_rb
.rb_left
) {
1829 gap_start
= vm_end_gap(vma
->vm_prev
);
1830 gap_end
= vm_start_gap(vma
);
1837 /* Check highest gap, which does not precede any rbtree node */
1838 gap_start
= mm
->highest_vm_end
;
1839 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1840 if (gap_start
> high_limit
)
1844 /* We found a suitable gap. Clip it with the original low_limit. */
1845 if (gap_start
< info
->low_limit
)
1846 gap_start
= info
->low_limit
;
1848 /* Adjust gap address to the desired alignment */
1849 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1851 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1852 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1856 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1858 struct mm_struct
*mm
= current
->mm
;
1859 struct vm_area_struct
*vma
;
1860 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1862 /* Adjust search length to account for worst case alignment overhead */
1863 length
= info
->length
+ info
->align_mask
;
1864 if (length
< info
->length
)
1868 * Adjust search limits by the desired length.
1869 * See implementation comment at top of unmapped_area().
1871 gap_end
= info
->high_limit
;
1872 if (gap_end
< length
)
1874 high_limit
= gap_end
- length
;
1876 if (info
->low_limit
> high_limit
)
1878 low_limit
= info
->low_limit
+ length
;
1880 /* Check highest gap, which does not precede any rbtree node */
1881 gap_start
= mm
->highest_vm_end
;
1882 if (gap_start
<= high_limit
)
1885 /* Check if rbtree root looks promising */
1886 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1888 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1889 if (vma
->rb_subtree_gap
< length
)
1893 /* Visit right subtree if it looks promising */
1894 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1895 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1896 struct vm_area_struct
*right
=
1897 rb_entry(vma
->vm_rb
.rb_right
,
1898 struct vm_area_struct
, vm_rb
);
1899 if (right
->rb_subtree_gap
>= length
) {
1906 /* Check if current node has a suitable gap */
1907 gap_end
= vm_start_gap(vma
);
1908 if (gap_end
< low_limit
)
1910 if (gap_start
<= high_limit
&&
1911 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1914 /* Visit left subtree if it looks promising */
1915 if (vma
->vm_rb
.rb_left
) {
1916 struct vm_area_struct
*left
=
1917 rb_entry(vma
->vm_rb
.rb_left
,
1918 struct vm_area_struct
, vm_rb
);
1919 if (left
->rb_subtree_gap
>= length
) {
1925 /* Go back up the rbtree to find next candidate node */
1927 struct rb_node
*prev
= &vma
->vm_rb
;
1928 if (!rb_parent(prev
))
1930 vma
= rb_entry(rb_parent(prev
),
1931 struct vm_area_struct
, vm_rb
);
1932 if (prev
== vma
->vm_rb
.rb_right
) {
1933 gap_start
= vma
->vm_prev
?
1934 vm_end_gap(vma
->vm_prev
) : 0;
1941 /* We found a suitable gap. Clip it with the original high_limit. */
1942 if (gap_end
> info
->high_limit
)
1943 gap_end
= info
->high_limit
;
1946 /* Compute highest gap address at the desired alignment */
1947 gap_end
-= info
->length
;
1948 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1950 VM_BUG_ON(gap_end
< info
->low_limit
);
1951 VM_BUG_ON(gap_end
< gap_start
);
1955 /* Get an address range which is currently unmapped.
1956 * For shmat() with addr=0.
1958 * Ugly calling convention alert:
1959 * Return value with the low bits set means error value,
1961 * if (ret & ~PAGE_MASK)
1964 * This function "knows" that -ENOMEM has the bits set.
1966 #ifndef HAVE_ARCH_UNMAPPED_AREA
1968 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1969 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1971 struct mm_struct
*mm
= current
->mm
;
1972 struct vm_area_struct
*vma
, *prev
;
1973 struct vm_unmapped_area_info info
;
1975 if (len
> TASK_SIZE
- mmap_min_addr
)
1978 if (flags
& MAP_FIXED
)
1982 addr
= PAGE_ALIGN(addr
);
1983 vma
= find_vma_prev(mm
, addr
, &prev
);
1984 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1985 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
1986 (!prev
|| addr
>= vm_end_gap(prev
)))
1992 info
.low_limit
= mm
->mmap_base
;
1993 info
.high_limit
= TASK_SIZE
;
1994 info
.align_mask
= 0;
1995 return vm_unmapped_area(&info
);
2000 * This mmap-allocator allocates new areas top-down from below the
2001 * stack's low limit (the base):
2003 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2005 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2006 const unsigned long len
, const unsigned long pgoff
,
2007 const unsigned long flags
)
2009 struct vm_area_struct
*vma
, *prev
;
2010 struct mm_struct
*mm
= current
->mm
;
2011 unsigned long addr
= addr0
;
2012 struct vm_unmapped_area_info info
;
2014 /* requested length too big for entire address space */
2015 if (len
> TASK_SIZE
- mmap_min_addr
)
2018 if (flags
& MAP_FIXED
)
2021 /* requesting a specific address */
2023 addr
= PAGE_ALIGN(addr
);
2024 vma
= find_vma_prev(mm
, addr
, &prev
);
2025 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2026 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2027 (!prev
|| addr
>= vm_end_gap(prev
)))
2031 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2033 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2034 info
.high_limit
= mm
->mmap_base
;
2035 info
.align_mask
= 0;
2036 addr
= vm_unmapped_area(&info
);
2039 * A failed mmap() very likely causes application failure,
2040 * so fall back to the bottom-up function here. This scenario
2041 * can happen with large stack limits and large mmap()
2044 if (offset_in_page(addr
)) {
2045 VM_BUG_ON(addr
!= -ENOMEM
);
2047 info
.low_limit
= TASK_UNMAPPED_BASE
;
2048 info
.high_limit
= TASK_SIZE
;
2049 addr
= vm_unmapped_area(&info
);
2057 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2058 unsigned long pgoff
, unsigned long flags
)
2060 unsigned long (*get_area
)(struct file
*, unsigned long,
2061 unsigned long, unsigned long, unsigned long);
2063 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2067 /* Careful about overflows.. */
2068 if (len
> TASK_SIZE
)
2071 get_area
= current
->mm
->get_unmapped_area
;
2072 if (file
&& file
->f_op
->get_unmapped_area
)
2073 get_area
= file
->f_op
->get_unmapped_area
;
2074 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2075 if (IS_ERR_VALUE(addr
))
2078 if (addr
> TASK_SIZE
- len
)
2080 if (offset_in_page(addr
))
2083 addr
= arch_rebalance_pgtables(addr
, len
);
2084 error
= security_mmap_addr(addr
);
2085 return error
? error
: addr
;
2088 EXPORT_SYMBOL(get_unmapped_area
);
2090 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2091 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2093 struct rb_node
*rb_node
;
2094 struct vm_area_struct
*vma
;
2096 /* Check the cache first. */
2097 vma
= vmacache_find(mm
, addr
);
2101 rb_node
= mm
->mm_rb
.rb_node
;
2104 struct vm_area_struct
*tmp
;
2106 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2108 if (tmp
->vm_end
> addr
) {
2110 if (tmp
->vm_start
<= addr
)
2112 rb_node
= rb_node
->rb_left
;
2114 rb_node
= rb_node
->rb_right
;
2118 vmacache_update(addr
, vma
);
2122 EXPORT_SYMBOL(find_vma
);
2125 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2127 struct vm_area_struct
*
2128 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2129 struct vm_area_struct
**pprev
)
2131 struct vm_area_struct
*vma
;
2133 vma
= find_vma(mm
, addr
);
2135 *pprev
= vma
->vm_prev
;
2137 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2140 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2141 rb_node
= rb_node
->rb_right
;
2148 * Verify that the stack growth is acceptable and
2149 * update accounting. This is shared with both the
2150 * grow-up and grow-down cases.
2152 static int acct_stack_growth(struct vm_area_struct
*vma
,
2153 unsigned long size
, unsigned long grow
)
2155 struct mm_struct
*mm
= vma
->vm_mm
;
2156 struct rlimit
*rlim
= current
->signal
->rlim
;
2157 unsigned long new_start
;
2159 /* address space limit tests */
2160 if (!may_expand_vm(mm
, grow
))
2163 /* Stack limit test */
2164 if (size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2167 /* mlock limit tests */
2168 if (vma
->vm_flags
& VM_LOCKED
) {
2169 unsigned long locked
;
2170 unsigned long limit
;
2171 locked
= mm
->locked_vm
+ grow
;
2172 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2173 limit
>>= PAGE_SHIFT
;
2174 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2178 /* Check to ensure the stack will not grow into a hugetlb-only region */
2179 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2181 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2185 * Overcommit.. This must be the final test, as it will
2186 * update security statistics.
2188 if (security_vm_enough_memory_mm(mm
, grow
))
2194 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2196 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2197 * vma is the last one with address > vma->vm_end. Have to extend vma.
2199 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2201 struct mm_struct
*mm
= vma
->vm_mm
;
2202 struct vm_area_struct
*next
;
2203 unsigned long gap_addr
;
2206 if (!(vma
->vm_flags
& VM_GROWSUP
))
2209 /* Guard against exceeding limits of the address space. */
2210 address
&= PAGE_MASK
;
2211 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2213 address
+= PAGE_SIZE
;
2215 /* Enforce stack_guard_gap */
2216 gap_addr
= address
+ stack_guard_gap
;
2218 /* Guard against overflow */
2219 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2220 gap_addr
= TASK_SIZE
;
2222 next
= vma
->vm_next
;
2223 if (next
&& next
->vm_start
< gap_addr
&&
2224 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2225 if (!(next
->vm_flags
& VM_GROWSUP
))
2227 /* Check that both stack segments have the same anon_vma? */
2230 /* We must make sure the anon_vma is allocated. */
2231 if (unlikely(anon_vma_prepare(vma
)))
2235 * vma->vm_start/vm_end cannot change under us because the caller
2236 * is required to hold the mmap_sem in read mode. We need the
2237 * anon_vma lock to serialize against concurrent expand_stacks.
2239 anon_vma_lock_write(vma
->anon_vma
);
2241 /* Somebody else might have raced and expanded it already */
2242 if (address
> vma
->vm_end
) {
2243 unsigned long size
, grow
;
2245 size
= address
- vma
->vm_start
;
2246 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2249 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2250 error
= acct_stack_growth(vma
, size
, grow
);
2253 * vma_gap_update() doesn't support concurrent
2254 * updates, but we only hold a shared mmap_sem
2255 * lock here, so we need to protect against
2256 * concurrent vma expansions.
2257 * anon_vma_lock_write() doesn't help here, as
2258 * we don't guarantee that all growable vmas
2259 * in a mm share the same root anon vma.
2260 * So, we reuse mm->page_table_lock to guard
2261 * against concurrent vma expansions.
2263 spin_lock(&mm
->page_table_lock
);
2264 if (vma
->vm_flags
& VM_LOCKED
)
2265 mm
->locked_vm
+= grow
;
2266 vm_stat_account(mm
, vma
->vm_flags
,
2267 vma
->vm_file
, grow
);
2268 anon_vma_interval_tree_pre_update_vma(vma
);
2269 vma
->vm_end
= address
;
2270 anon_vma_interval_tree_post_update_vma(vma
);
2272 vma_gap_update(vma
->vm_next
);
2274 mm
->highest_vm_end
= vm_end_gap(vma
);
2275 spin_unlock(&mm
->page_table_lock
);
2277 perf_event_mmap(vma
);
2281 anon_vma_unlock_write(vma
->anon_vma
);
2282 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2286 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2289 * vma is the first one with address < vma->vm_start. Have to extend vma.
2291 int expand_downwards(struct vm_area_struct
*vma
,
2292 unsigned long address
)
2294 struct mm_struct
*mm
= vma
->vm_mm
;
2295 struct vm_area_struct
*prev
;
2296 unsigned long gap_addr
;
2299 address
&= PAGE_MASK
;
2300 error
= security_mmap_addr(address
);
2304 /* Enforce stack_guard_gap */
2305 gap_addr
= address
- stack_guard_gap
;
2306 if (gap_addr
> address
)
2308 prev
= vma
->vm_prev
;
2309 if (prev
&& prev
->vm_end
> gap_addr
&&
2310 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2311 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2313 /* Check that both stack segments have the same anon_vma? */
2316 /* We must make sure the anon_vma is allocated. */
2317 if (unlikely(anon_vma_prepare(vma
)))
2321 * vma->vm_start/vm_end cannot change under us because the caller
2322 * is required to hold the mmap_sem in read mode. We need the
2323 * anon_vma lock to serialize against concurrent expand_stacks.
2325 anon_vma_lock_write(vma
->anon_vma
);
2327 /* Somebody else might have raced and expanded it already */
2328 if (address
< vma
->vm_start
) {
2329 unsigned long size
, grow
;
2331 size
= vma
->vm_end
- address
;
2332 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2335 if (grow
<= vma
->vm_pgoff
) {
2336 error
= acct_stack_growth(vma
, size
, grow
);
2339 * vma_gap_update() doesn't support concurrent
2340 * updates, but we only hold a shared mmap_sem
2341 * lock here, so we need to protect against
2342 * concurrent vma expansions.
2343 * anon_vma_lock_write() doesn't help here, as
2344 * we don't guarantee that all growable vmas
2345 * in a mm share the same root anon vma.
2346 * So, we reuse mm->page_table_lock to guard
2347 * against concurrent vma expansions.
2349 spin_lock(&mm
->page_table_lock
);
2350 if (vma
->vm_flags
& VM_LOCKED
)
2351 mm
->locked_vm
+= grow
;
2352 vm_stat_account(mm
, vma
->vm_flags
,
2353 vma
->vm_file
, grow
);
2354 anon_vma_interval_tree_pre_update_vma(vma
);
2355 vma
->vm_start
= address
;
2356 vma
->vm_pgoff
-= grow
;
2357 anon_vma_interval_tree_post_update_vma(vma
);
2358 vma_gap_update(vma
);
2359 spin_unlock(&mm
->page_table_lock
);
2361 perf_event_mmap(vma
);
2365 anon_vma_unlock_write(vma
->anon_vma
);
2366 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2371 /* enforced gap between the expanding stack and other mappings. */
2372 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2374 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2379 val
= simple_strtoul(p
, &endptr
, 10);
2381 stack_guard_gap
= val
<< PAGE_SHIFT
;
2385 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2387 #ifdef CONFIG_STACK_GROWSUP
2388 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2390 return expand_upwards(vma
, address
);
2393 struct vm_area_struct
*
2394 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2396 struct vm_area_struct
*vma
, *prev
;
2399 vma
= find_vma_prev(mm
, addr
, &prev
);
2400 if (vma
&& (vma
->vm_start
<= addr
))
2402 if (!prev
|| expand_stack(prev
, addr
))
2404 if (prev
->vm_flags
& VM_LOCKED
)
2405 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2409 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2411 return expand_downwards(vma
, address
);
2414 struct vm_area_struct
*
2415 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2417 struct vm_area_struct
*vma
;
2418 unsigned long start
;
2421 vma
= find_vma(mm
, addr
);
2424 if (vma
->vm_start
<= addr
)
2426 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2428 start
= vma
->vm_start
;
2429 if (expand_stack(vma
, addr
))
2431 if (vma
->vm_flags
& VM_LOCKED
)
2432 populate_vma_page_range(vma
, addr
, start
, NULL
);
2437 EXPORT_SYMBOL_GPL(find_extend_vma
);
2440 * Ok - we have the memory areas we should free on the vma list,
2441 * so release them, and do the vma updates.
2443 * Called with the mm semaphore held.
2445 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2447 unsigned long nr_accounted
= 0;
2449 /* Update high watermark before we lower total_vm */
2450 update_hiwater_vm(mm
);
2452 long nrpages
= vma_pages(vma
);
2454 if (vma
->vm_flags
& VM_ACCOUNT
)
2455 nr_accounted
+= nrpages
;
2456 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2457 vma
= remove_vma(vma
);
2459 vm_unacct_memory(nr_accounted
);
2464 * Get rid of page table information in the indicated region.
2466 * Called with the mm semaphore held.
2468 static void unmap_region(struct mm_struct
*mm
,
2469 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2470 unsigned long start
, unsigned long end
)
2472 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2473 struct mmu_gather tlb
;
2476 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2477 update_hiwater_rss(mm
);
2478 unmap_vmas(&tlb
, vma
, start
, end
);
2479 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2480 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2481 tlb_finish_mmu(&tlb
, start
, end
);
2485 * Create a list of vma's touched by the unmap, removing them from the mm's
2486 * vma list as we go..
2489 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2490 struct vm_area_struct
*prev
, unsigned long end
)
2492 struct vm_area_struct
**insertion_point
;
2493 struct vm_area_struct
*tail_vma
= NULL
;
2495 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2496 vma
->vm_prev
= NULL
;
2498 vma_rb_erase(vma
, &mm
->mm_rb
);
2502 } while (vma
&& vma
->vm_start
< end
);
2503 *insertion_point
= vma
;
2505 vma
->vm_prev
= prev
;
2506 vma_gap_update(vma
);
2508 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2509 tail_vma
->vm_next
= NULL
;
2511 /* Kill the cache */
2512 vmacache_invalidate(mm
);
2516 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2517 * munmap path where it doesn't make sense to fail.
2519 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2520 unsigned long addr
, int new_below
)
2522 struct vm_area_struct
*new;
2525 if (is_vm_hugetlb_page(vma
) && (addr
&
2526 ~(huge_page_mask(hstate_vma(vma
)))))
2529 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2533 /* most fields are the same, copy all, and then fixup */
2536 INIT_LIST_HEAD(&new->anon_vma_chain
);
2541 new->vm_start
= addr
;
2542 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2545 err
= vma_dup_policy(vma
, new);
2549 err
= anon_vma_clone(new, vma
);
2554 get_file(new->vm_file
);
2556 if (new->vm_ops
&& new->vm_ops
->open
)
2557 new->vm_ops
->open(new);
2560 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2561 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2563 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2569 /* Clean everything up if vma_adjust failed. */
2570 if (new->vm_ops
&& new->vm_ops
->close
)
2571 new->vm_ops
->close(new);
2574 unlink_anon_vmas(new);
2576 mpol_put(vma_policy(new));
2578 kmem_cache_free(vm_area_cachep
, new);
2583 * Split a vma into two pieces at address 'addr', a new vma is allocated
2584 * either for the first part or the tail.
2586 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2587 unsigned long addr
, int new_below
)
2589 if (mm
->map_count
>= sysctl_max_map_count
)
2592 return __split_vma(mm
, vma
, addr
, new_below
);
2595 /* Munmap is split into 2 main parts -- this part which finds
2596 * what needs doing, and the areas themselves, which do the
2597 * work. This now handles partial unmappings.
2598 * Jeremy Fitzhardinge <jeremy@goop.org>
2600 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2603 struct vm_area_struct
*vma
, *prev
, *last
;
2605 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2608 len
= PAGE_ALIGN(len
);
2612 /* Find the first overlapping VMA */
2613 vma
= find_vma(mm
, start
);
2616 prev
= vma
->vm_prev
;
2617 /* we have start < vma->vm_end */
2619 /* if it doesn't overlap, we have nothing.. */
2621 if (vma
->vm_start
>= end
)
2625 * If we need to split any vma, do it now to save pain later.
2627 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2628 * unmapped vm_area_struct will remain in use: so lower split_vma
2629 * places tmp vma above, and higher split_vma places tmp vma below.
2631 if (start
> vma
->vm_start
) {
2635 * Make sure that map_count on return from munmap() will
2636 * not exceed its limit; but let map_count go just above
2637 * its limit temporarily, to help free resources as expected.
2639 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2642 error
= __split_vma(mm
, vma
, start
, 0);
2648 /* Does it split the last one? */
2649 last
= find_vma(mm
, end
);
2650 if (last
&& end
> last
->vm_start
) {
2651 int error
= __split_vma(mm
, last
, end
, 1);
2655 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2658 * unlock any mlock()ed ranges before detaching vmas
2660 if (mm
->locked_vm
) {
2661 struct vm_area_struct
*tmp
= vma
;
2662 while (tmp
&& tmp
->vm_start
< end
) {
2663 if (tmp
->vm_flags
& VM_LOCKED
) {
2664 mm
->locked_vm
-= vma_pages(tmp
);
2665 munlock_vma_pages_all(tmp
);
2672 * Remove the vma's, and unmap the actual pages
2674 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2675 unmap_region(mm
, vma
, prev
, start
, end
);
2677 arch_unmap(mm
, vma
, start
, end
);
2679 /* Fix up all other VM information */
2680 remove_vma_list(mm
, vma
);
2685 int vm_munmap(unsigned long start
, size_t len
)
2688 struct mm_struct
*mm
= current
->mm
;
2690 down_write(&mm
->mmap_sem
);
2691 ret
= do_munmap(mm
, start
, len
);
2692 up_write(&mm
->mmap_sem
);
2695 EXPORT_SYMBOL(vm_munmap
);
2697 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2699 profile_munmap(addr
);
2700 return vm_munmap(addr
, len
);
2705 * Emulation of deprecated remap_file_pages() syscall.
2707 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2708 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2711 struct mm_struct
*mm
= current
->mm
;
2712 struct vm_area_struct
*vma
;
2713 unsigned long populate
= 0;
2714 unsigned long ret
= -EINVAL
;
2717 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2718 "See Documentation/vm/remap_file_pages.txt.\n",
2719 current
->comm
, current
->pid
);
2723 start
= start
& PAGE_MASK
;
2724 size
= size
& PAGE_MASK
;
2726 if (start
+ size
<= start
)
2729 /* Does pgoff wrap? */
2730 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2733 down_write(&mm
->mmap_sem
);
2734 vma
= find_vma(mm
, start
);
2736 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2739 if (start
< vma
->vm_start
)
2742 if (start
+ size
> vma
->vm_end
) {
2743 struct vm_area_struct
*next
;
2745 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2746 /* hole between vmas ? */
2747 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2750 if (next
->vm_file
!= vma
->vm_file
)
2753 if (next
->vm_flags
!= vma
->vm_flags
)
2756 if (start
+ size
<= next
->vm_end
)
2764 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2765 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2766 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2768 flags
&= MAP_NONBLOCK
;
2769 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2770 if (vma
->vm_flags
& VM_LOCKED
) {
2771 struct vm_area_struct
*tmp
;
2772 flags
|= MAP_LOCKED
;
2774 /* drop PG_Mlocked flag for over-mapped range */
2775 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2776 tmp
= tmp
->vm_next
) {
2777 munlock_vma_pages_range(tmp
,
2778 max(tmp
->vm_start
, start
),
2779 min(tmp
->vm_end
, start
+ size
));
2783 file
= get_file(vma
->vm_file
);
2784 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2785 prot
, flags
, pgoff
, &populate
);
2788 up_write(&mm
->mmap_sem
);
2790 mm_populate(ret
, populate
);
2791 if (!IS_ERR_VALUE(ret
))
2796 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2798 #ifdef CONFIG_DEBUG_VM
2799 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2801 up_read(&mm
->mmap_sem
);
2807 * this is really a simplified "do_mmap". it only handles
2808 * anonymous maps. eventually we may be able to do some
2809 * brk-specific accounting here.
2811 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2813 struct mm_struct
*mm
= current
->mm
;
2814 struct vm_area_struct
*vma
, *prev
;
2815 unsigned long flags
;
2816 struct rb_node
**rb_link
, *rb_parent
;
2817 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2820 len
= PAGE_ALIGN(len
);
2824 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2826 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2827 if (offset_in_page(error
))
2830 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2835 * mm->mmap_sem is required to protect against another thread
2836 * changing the mappings in case we sleep.
2838 verify_mm_writelocked(mm
);
2841 * Clear old maps. this also does some error checking for us
2843 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2845 if (do_munmap(mm
, addr
, len
))
2849 /* Check against address space limits *after* clearing old maps... */
2850 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2853 if (mm
->map_count
> sysctl_max_map_count
)
2856 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2859 /* Can we just expand an old private anonymous mapping? */
2860 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2861 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2866 * create a vma struct for an anonymous mapping
2868 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2870 vm_unacct_memory(len
>> PAGE_SHIFT
);
2874 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2876 vma
->vm_start
= addr
;
2877 vma
->vm_end
= addr
+ len
;
2878 vma
->vm_pgoff
= pgoff
;
2879 vma
->vm_flags
= flags
;
2880 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2881 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2883 perf_event_mmap(vma
);
2884 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2885 if (flags
& VM_LOCKED
)
2886 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2887 vma
->vm_flags
|= VM_SOFTDIRTY
;
2891 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2893 struct mm_struct
*mm
= current
->mm
;
2897 down_write(&mm
->mmap_sem
);
2898 ret
= do_brk(addr
, len
);
2899 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2900 up_write(&mm
->mmap_sem
);
2902 mm_populate(addr
, len
);
2905 EXPORT_SYMBOL(vm_brk
);
2907 /* Release all mmaps. */
2908 void exit_mmap(struct mm_struct
*mm
)
2910 struct mmu_gather tlb
;
2911 struct vm_area_struct
*vma
;
2912 unsigned long nr_accounted
= 0;
2914 /* mm's last user has gone, and its about to be pulled down */
2915 mmu_notifier_release(mm
);
2917 if (mm
->locked_vm
) {
2920 if (vma
->vm_flags
& VM_LOCKED
)
2921 munlock_vma_pages_all(vma
);
2929 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2934 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2935 /* update_hiwater_rss(mm) here? but nobody should be looking */
2936 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2937 unmap_vmas(&tlb
, vma
, 0, -1);
2939 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2940 tlb_finish_mmu(&tlb
, 0, -1);
2943 * Walk the list again, actually closing and freeing it,
2944 * with preemption enabled, without holding any MM locks.
2947 if (vma
->vm_flags
& VM_ACCOUNT
)
2948 nr_accounted
+= vma_pages(vma
);
2949 vma
= remove_vma(vma
);
2951 vm_unacct_memory(nr_accounted
);
2954 /* Insert vm structure into process list sorted by address
2955 * and into the inode's i_mmap tree. If vm_file is non-NULL
2956 * then i_mmap_rwsem is taken here.
2958 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2960 struct vm_area_struct
*prev
;
2961 struct rb_node
**rb_link
, *rb_parent
;
2963 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2964 &prev
, &rb_link
, &rb_parent
))
2966 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2967 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2971 * The vm_pgoff of a purely anonymous vma should be irrelevant
2972 * until its first write fault, when page's anon_vma and index
2973 * are set. But now set the vm_pgoff it will almost certainly
2974 * end up with (unless mremap moves it elsewhere before that
2975 * first wfault), so /proc/pid/maps tells a consistent story.
2977 * By setting it to reflect the virtual start address of the
2978 * vma, merges and splits can happen in a seamless way, just
2979 * using the existing file pgoff checks and manipulations.
2980 * Similarly in do_mmap_pgoff and in do_brk.
2982 if (vma_is_anonymous(vma
)) {
2983 BUG_ON(vma
->anon_vma
);
2984 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2987 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2992 * Copy the vma structure to a new location in the same mm,
2993 * prior to moving page table entries, to effect an mremap move.
2995 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2996 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2997 bool *need_rmap_locks
)
2999 struct vm_area_struct
*vma
= *vmap
;
3000 unsigned long vma_start
= vma
->vm_start
;
3001 struct mm_struct
*mm
= vma
->vm_mm
;
3002 struct vm_area_struct
*new_vma
, *prev
;
3003 struct rb_node
**rb_link
, *rb_parent
;
3004 bool faulted_in_anon_vma
= true;
3007 * If anonymous vma has not yet been faulted, update new pgoff
3008 * to match new location, to increase its chance of merging.
3010 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3011 pgoff
= addr
>> PAGE_SHIFT
;
3012 faulted_in_anon_vma
= false;
3015 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3016 return NULL
; /* should never get here */
3017 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3018 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3019 vma
->vm_userfaultfd_ctx
);
3022 * Source vma may have been merged into new_vma
3024 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3025 vma_start
< new_vma
->vm_end
)) {
3027 * The only way we can get a vma_merge with
3028 * self during an mremap is if the vma hasn't
3029 * been faulted in yet and we were allowed to
3030 * reset the dst vma->vm_pgoff to the
3031 * destination address of the mremap to allow
3032 * the merge to happen. mremap must change the
3033 * vm_pgoff linearity between src and dst vmas
3034 * (in turn preventing a vma_merge) to be
3035 * safe. It is only safe to keep the vm_pgoff
3036 * linear if there are no pages mapped yet.
3038 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3039 *vmap
= vma
= new_vma
;
3041 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3043 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
3047 new_vma
->vm_start
= addr
;
3048 new_vma
->vm_end
= addr
+ len
;
3049 new_vma
->vm_pgoff
= pgoff
;
3050 if (vma_dup_policy(vma
, new_vma
))
3052 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
3053 if (anon_vma_clone(new_vma
, vma
))
3054 goto out_free_mempol
;
3055 if (new_vma
->vm_file
)
3056 get_file(new_vma
->vm_file
);
3057 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3058 new_vma
->vm_ops
->open(new_vma
);
3059 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3060 *need_rmap_locks
= false;
3065 mpol_put(vma_policy(new_vma
));
3067 kmem_cache_free(vm_area_cachep
, new_vma
);
3073 * Return true if the calling process may expand its vm space by the passed
3076 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
3078 unsigned long cur
= mm
->total_vm
; /* pages */
3081 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
3083 if (cur
+ npages
> lim
)
3088 static int special_mapping_fault(struct vm_area_struct
*vma
,
3089 struct vm_fault
*vmf
);
3092 * Having a close hook prevents vma merging regardless of flags.
3094 static void special_mapping_close(struct vm_area_struct
*vma
)
3098 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3100 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3103 static const struct vm_operations_struct special_mapping_vmops
= {
3104 .close
= special_mapping_close
,
3105 .fault
= special_mapping_fault
,
3106 .name
= special_mapping_name
,
3109 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3110 .close
= special_mapping_close
,
3111 .fault
= special_mapping_fault
,
3114 static int special_mapping_fault(struct vm_area_struct
*vma
,
3115 struct vm_fault
*vmf
)
3118 struct page
**pages
;
3120 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
3121 pages
= vma
->vm_private_data
;
3123 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
3126 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3130 struct page
*page
= *pages
;
3136 return VM_FAULT_SIGBUS
;
3139 static struct vm_area_struct
*__install_special_mapping(
3140 struct mm_struct
*mm
,
3141 unsigned long addr
, unsigned long len
,
3142 unsigned long vm_flags
, void *priv
,
3143 const struct vm_operations_struct
*ops
)
3146 struct vm_area_struct
*vma
;
3148 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3149 if (unlikely(vma
== NULL
))
3150 return ERR_PTR(-ENOMEM
);
3152 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3154 vma
->vm_start
= addr
;
3155 vma
->vm_end
= addr
+ len
;
3157 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3158 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3161 vma
->vm_private_data
= priv
;
3163 ret
= insert_vm_struct(mm
, vma
);
3167 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3169 perf_event_mmap(vma
);
3174 kmem_cache_free(vm_area_cachep
, vma
);
3175 return ERR_PTR(ret
);
3179 * Called with mm->mmap_sem held for writing.
3180 * Insert a new vma covering the given region, with the given flags.
3181 * Its pages are supplied by the given array of struct page *.
3182 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3183 * The region past the last page supplied will always produce SIGBUS.
3184 * The array pointer and the pages it points to are assumed to stay alive
3185 * for as long as this mapping might exist.
3187 struct vm_area_struct
*_install_special_mapping(
3188 struct mm_struct
*mm
,
3189 unsigned long addr
, unsigned long len
,
3190 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3192 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3193 &special_mapping_vmops
);
3196 int install_special_mapping(struct mm_struct
*mm
,
3197 unsigned long addr
, unsigned long len
,
3198 unsigned long vm_flags
, struct page
**pages
)
3200 struct vm_area_struct
*vma
= __install_special_mapping(
3201 mm
, addr
, len
, vm_flags
, (void *)pages
,
3202 &legacy_special_mapping_vmops
);
3204 return PTR_ERR_OR_ZERO(vma
);
3207 static DEFINE_MUTEX(mm_all_locks_mutex
);
3209 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3211 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3213 * The LSB of head.next can't change from under us
3214 * because we hold the mm_all_locks_mutex.
3216 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3218 * We can safely modify head.next after taking the
3219 * anon_vma->root->rwsem. If some other vma in this mm shares
3220 * the same anon_vma we won't take it again.
3222 * No need of atomic instructions here, head.next
3223 * can't change from under us thanks to the
3224 * anon_vma->root->rwsem.
3226 if (__test_and_set_bit(0, (unsigned long *)
3227 &anon_vma
->root
->rb_root
.rb_node
))
3232 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3234 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3236 * AS_MM_ALL_LOCKS can't change from under us because
3237 * we hold the mm_all_locks_mutex.
3239 * Operations on ->flags have to be atomic because
3240 * even if AS_MM_ALL_LOCKS is stable thanks to the
3241 * mm_all_locks_mutex, there may be other cpus
3242 * changing other bitflags in parallel to us.
3244 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3246 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3251 * This operation locks against the VM for all pte/vma/mm related
3252 * operations that could ever happen on a certain mm. This includes
3253 * vmtruncate, try_to_unmap, and all page faults.
3255 * The caller must take the mmap_sem in write mode before calling
3256 * mm_take_all_locks(). The caller isn't allowed to release the
3257 * mmap_sem until mm_drop_all_locks() returns.
3259 * mmap_sem in write mode is required in order to block all operations
3260 * that could modify pagetables and free pages without need of
3261 * altering the vma layout. It's also needed in write mode to avoid new
3262 * anon_vmas to be associated with existing vmas.
3264 * A single task can't take more than one mm_take_all_locks() in a row
3265 * or it would deadlock.
3267 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3268 * mapping->flags avoid to take the same lock twice, if more than one
3269 * vma in this mm is backed by the same anon_vma or address_space.
3271 * We can take all the locks in random order because the VM code
3272 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3273 * takes more than one of them in a row. Secondly we're protected
3274 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3276 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3277 * that may have to take thousand of locks.
3279 * mm_take_all_locks() can fail if it's interrupted by signals.
3281 int mm_take_all_locks(struct mm_struct
*mm
)
3283 struct vm_area_struct
*vma
;
3284 struct anon_vma_chain
*avc
;
3286 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3288 mutex_lock(&mm_all_locks_mutex
);
3290 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3291 if (signal_pending(current
))
3293 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3294 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3297 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3298 if (signal_pending(current
))
3301 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3302 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3308 mm_drop_all_locks(mm
);
3312 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3314 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3316 * The LSB of head.next can't change to 0 from under
3317 * us because we hold the mm_all_locks_mutex.
3319 * We must however clear the bitflag before unlocking
3320 * the vma so the users using the anon_vma->rb_root will
3321 * never see our bitflag.
3323 * No need of atomic instructions here, head.next
3324 * can't change from under us until we release the
3325 * anon_vma->root->rwsem.
3327 if (!__test_and_clear_bit(0, (unsigned long *)
3328 &anon_vma
->root
->rb_root
.rb_node
))
3330 anon_vma_unlock_write(anon_vma
);
3334 static void vm_unlock_mapping(struct address_space
*mapping
)
3336 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3338 * AS_MM_ALL_LOCKS can't change to 0 from under us
3339 * because we hold the mm_all_locks_mutex.
3341 i_mmap_unlock_write(mapping
);
3342 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3349 * The mmap_sem cannot be released by the caller until
3350 * mm_drop_all_locks() returns.
3352 void mm_drop_all_locks(struct mm_struct
*mm
)
3354 struct vm_area_struct
*vma
;
3355 struct anon_vma_chain
*avc
;
3357 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3358 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3360 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3362 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3363 vm_unlock_anon_vma(avc
->anon_vma
);
3364 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3365 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3368 mutex_unlock(&mm_all_locks_mutex
);
3372 * initialise the VMA slab
3374 void __init
mmap_init(void)
3378 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3383 * Initialise sysctl_user_reserve_kbytes.
3385 * This is intended to prevent a user from starting a single memory hogging
3386 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3389 * The default value is min(3% of free memory, 128MB)
3390 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3392 static int init_user_reserve(void)
3394 unsigned long free_kbytes
;
3396 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3398 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3401 subsys_initcall(init_user_reserve
);
3404 * Initialise sysctl_admin_reserve_kbytes.
3406 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3407 * to log in and kill a memory hogging process.
3409 * Systems with more than 256MB will reserve 8MB, enough to recover
3410 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3411 * only reserve 3% of free pages by default.
3413 static int init_admin_reserve(void)
3415 unsigned long free_kbytes
;
3417 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3419 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3422 subsys_initcall(init_admin_reserve
);
3425 * Reinititalise user and admin reserves if memory is added or removed.
3427 * The default user reserve max is 128MB, and the default max for the
3428 * admin reserve is 8MB. These are usually, but not always, enough to
3429 * enable recovery from a memory hogging process using login/sshd, a shell,
3430 * and tools like top. It may make sense to increase or even disable the
3431 * reserve depending on the existence of swap or variations in the recovery
3432 * tools. So, the admin may have changed them.
3434 * If memory is added and the reserves have been eliminated or increased above
3435 * the default max, then we'll trust the admin.
3437 * If memory is removed and there isn't enough free memory, then we
3438 * need to reset the reserves.
3440 * Otherwise keep the reserve set by the admin.
3442 static int reserve_mem_notifier(struct notifier_block
*nb
,
3443 unsigned long action
, void *data
)
3445 unsigned long tmp
, free_kbytes
;
3449 /* Default max is 128MB. Leave alone if modified by operator. */
3450 tmp
= sysctl_user_reserve_kbytes
;
3451 if (0 < tmp
&& tmp
< (1UL << 17))
3452 init_user_reserve();
3454 /* Default max is 8MB. Leave alone if modified by operator. */
3455 tmp
= sysctl_admin_reserve_kbytes
;
3456 if (0 < tmp
&& tmp
< (1UL << 13))
3457 init_admin_reserve();
3461 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3463 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3464 init_user_reserve();
3465 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3466 sysctl_user_reserve_kbytes
);
3469 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3470 init_admin_reserve();
3471 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3472 sysctl_admin_reserve_kbytes
);
3481 static struct notifier_block reserve_mem_nb
= {
3482 .notifier_call
= reserve_mem_notifier
,
3485 static int __meminit
init_reserve_notifier(void)
3487 if (register_hotmemory_notifier(&reserve_mem_nb
))
3488 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3492 subsys_initcall(init_reserve_notifier
);