4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
37 static void sum_vm_events(unsigned long *ret
)
42 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
44 for_each_online_cpu(cpu
) {
45 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
47 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
48 ret
[i
] += this->event
[i
];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret
)
63 EXPORT_SYMBOL_GPL(all_vm_events
);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu
)
73 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
76 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
77 count_vm_events(i
, fold_state
->event
[i
]);
78 fold_state
->event
[i
] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
90 EXPORT_SYMBOL(vm_stat
);
94 int calculate_pressure_threshold(struct zone
*zone
)
97 int watermark_distance
;
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
107 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
108 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
111 * Maximum threshold is 125
113 threshold
= min(125, threshold
);
118 int calculate_normal_threshold(struct zone
*zone
)
121 int mem
; /* memory in 128 MB units */
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
129 * Some sample thresholds:
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
153 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
155 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
158 * Maximum threshold is 125
160 threshold
= min(125, threshold
);
166 * Refresh the thresholds for each zone.
168 void refresh_zone_stat_thresholds(void)
174 for_each_populated_zone(zone
) {
175 unsigned long max_drift
, tolerate_drift
;
177 threshold
= calculate_normal_threshold(zone
);
179 for_each_online_cpu(cpu
)
180 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
188 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
189 max_drift
= num_online_cpus() * threshold
;
190 if (max_drift
> tolerate_drift
)
191 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
196 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
197 int (*calculate_pressure
)(struct zone
*))
204 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
205 zone
= &pgdat
->node_zones
[i
];
206 if (!zone
->percpu_drift_mark
)
209 threshold
= (*calculate_pressure
)(zone
);
210 for_each_online_cpu(cpu
)
211 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
221 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
224 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
225 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
229 x
= delta
+ __this_cpu_read(*p
);
231 t
= __this_cpu_read(pcp
->stat_threshold
);
233 if (unlikely(x
> t
|| x
< -t
)) {
234 zone_page_state_add(x
, zone
, item
);
237 __this_cpu_write(*p
, x
);
239 EXPORT_SYMBOL(__mod_zone_page_state
);
242 * Optimized increment and decrement functions.
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
254 * NOTE: These functions are very performance sensitive. Change only
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
264 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
266 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
267 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
270 v
= __this_cpu_inc_return(*p
);
271 t
= __this_cpu_read(pcp
->stat_threshold
);
272 if (unlikely(v
> t
)) {
273 s8 overstep
= t
>> 1;
275 zone_page_state_add(v
+ overstep
, zone
, item
);
276 __this_cpu_write(*p
, -overstep
);
280 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
282 __inc_zone_state(page_zone(page
), item
);
284 EXPORT_SYMBOL(__inc_zone_page_state
);
286 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
288 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
289 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
292 v
= __this_cpu_dec_return(*p
);
293 t
= __this_cpu_read(pcp
->stat_threshold
);
294 if (unlikely(v
< - t
)) {
295 s8 overstep
= t
>> 1;
297 zone_page_state_add(v
- overstep
, zone
, item
);
298 __this_cpu_write(*p
, overstep
);
302 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
304 __dec_zone_state(page_zone(page
), item
);
306 EXPORT_SYMBOL(__dec_zone_page_state
);
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
313 * mod_state() modifies the zone counter state through atomic per cpu
316 * Overstep mode specifies how overstep should handled:
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
321 static inline void mod_state(struct zone
*zone
, enum zone_stat_item item
,
322 long delta
, int overstep_mode
)
324 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
325 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
329 z
= 0; /* overflow to zone counters */
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
341 t
= this_cpu_read(pcp
->stat_threshold
);
343 o
= this_cpu_read(*p
);
346 if (n
> t
|| n
< -t
) {
347 int os
= overstep_mode
* (t
>> 1) ;
349 /* Overflow must be added to zone counters */
353 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
356 zone_page_state_add(z
, zone
, item
);
359 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
362 mod_state(zone
, item
, delta
, 0);
364 EXPORT_SYMBOL(mod_zone_page_state
);
366 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
368 mod_state(zone
, item
, 1, 1);
371 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
373 mod_state(page_zone(page
), item
, 1, 1);
375 EXPORT_SYMBOL(inc_zone_page_state
);
377 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
379 mod_state(page_zone(page
), item
, -1, -1);
381 EXPORT_SYMBOL(dec_zone_page_state
);
384 * Use interrupt disable to serialize counter updates
386 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
391 local_irq_save(flags
);
392 __mod_zone_page_state(zone
, item
, delta
);
393 local_irq_restore(flags
);
395 EXPORT_SYMBOL(mod_zone_page_state
);
397 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
401 local_irq_save(flags
);
402 __inc_zone_state(zone
, item
);
403 local_irq_restore(flags
);
406 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
411 zone
= page_zone(page
);
412 local_irq_save(flags
);
413 __inc_zone_state(zone
, item
);
414 local_irq_restore(flags
);
416 EXPORT_SYMBOL(inc_zone_page_state
);
418 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
422 local_irq_save(flags
);
423 __dec_zone_page_state(page
, item
);
424 local_irq_restore(flags
);
426 EXPORT_SYMBOL(dec_zone_page_state
);
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
434 static int fold_diff(int *diff
)
439 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
441 atomic_long_add(diff
[i
], &vm_stat
[i
]);
448 * Update the zone counters for the current cpu.
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
461 * The function returns the number of global counters updated.
463 static int refresh_cpu_vm_stats(void)
467 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
470 for_each_populated_zone(zone
) {
471 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
473 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
476 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
479 atomic_long_add(v
, &zone
->vm_stat
[i
]);
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p
->expire
, 3);
490 * Deal with draining the remote pageset of this
493 * Check if there are pages remaining in this pageset
494 * if not then there is nothing to expire.
496 if (!__this_cpu_read(p
->expire
) ||
497 !__this_cpu_read(p
->pcp
.count
))
501 * We never drain zones local to this processor.
503 if (zone_to_nid(zone
) == numa_node_id()) {
504 __this_cpu_write(p
->expire
, 0);
508 if (__this_cpu_dec_return(p
->expire
))
511 if (__this_cpu_read(p
->pcp
.count
)) {
512 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
517 changes
+= fold_diff(global_diff
);
522 * Fold the data for an offline cpu into the global array.
523 * There cannot be any access by the offline cpu and therefore
524 * synchronization is simplified.
526 void cpu_vm_stats_fold(int cpu
)
530 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
532 for_each_populated_zone(zone
) {
533 struct per_cpu_pageset
*p
;
535 p
= per_cpu_ptr(zone
->pageset
, cpu
);
537 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
538 if (p
->vm_stat_diff
[i
]) {
541 v
= p
->vm_stat_diff
[i
];
542 p
->vm_stat_diff
[i
] = 0;
543 atomic_long_add(v
, &zone
->vm_stat
[i
]);
548 fold_diff(global_diff
);
552 * this is only called if !populated_zone(zone), which implies no other users of
553 * pset->vm_stat_diff[] exsist.
555 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
559 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
560 if (pset
->vm_stat_diff
[i
]) {
561 int v
= pset
->vm_stat_diff
[i
];
562 pset
->vm_stat_diff
[i
] = 0;
563 atomic_long_add(v
, &zone
->vm_stat
[i
]);
564 atomic_long_add(v
, &vm_stat
[i
]);
571 * zonelist = the list of zones passed to the allocator
572 * z = the zone from which the allocation occurred.
574 * Must be called with interrupts disabled.
576 * When __GFP_OTHER_NODE is set assume the node of the preferred
577 * zone is the local node. This is useful for daemons who allocate
578 * memory on behalf of other processes.
580 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
582 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
583 __inc_zone_state(z
, NUMA_HIT
);
585 __inc_zone_state(z
, NUMA_MISS
);
586 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
588 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
589 preferred_zone
->node
: numa_node_id()))
590 __inc_zone_state(z
, NUMA_LOCAL
);
592 __inc_zone_state(z
, NUMA_OTHER
);
596 * Determine the per node value of a stat item.
598 unsigned long node_page_state(int node
, enum zone_stat_item item
)
600 struct zone
*zones
= NODE_DATA(node
)->node_zones
;
603 #ifdef CONFIG_ZONE_DMA
604 zone_page_state(&zones
[ZONE_DMA
], item
) +
606 #ifdef CONFIG_ZONE_DMA32
607 zone_page_state(&zones
[ZONE_DMA32
], item
) +
609 #ifdef CONFIG_HIGHMEM
610 zone_page_state(&zones
[ZONE_HIGHMEM
], item
) +
612 zone_page_state(&zones
[ZONE_NORMAL
], item
) +
613 zone_page_state(&zones
[ZONE_MOVABLE
], item
);
618 #ifdef CONFIG_COMPACTION
620 struct contig_page_info
{
621 unsigned long free_pages
;
622 unsigned long free_blocks_total
;
623 unsigned long free_blocks_suitable
;
627 * Calculate the number of free pages in a zone, how many contiguous
628 * pages are free and how many are large enough to satisfy an allocation of
629 * the target size. Note that this function makes no attempt to estimate
630 * how many suitable free blocks there *might* be if MOVABLE pages were
631 * migrated. Calculating that is possible, but expensive and can be
632 * figured out from userspace
634 static void fill_contig_page_info(struct zone
*zone
,
635 unsigned int suitable_order
,
636 struct contig_page_info
*info
)
640 info
->free_pages
= 0;
641 info
->free_blocks_total
= 0;
642 info
->free_blocks_suitable
= 0;
644 for (order
= 0; order
< MAX_ORDER
; order
++) {
645 unsigned long blocks
;
647 /* Count number of free blocks */
648 blocks
= zone
->free_area
[order
].nr_free
;
649 info
->free_blocks_total
+= blocks
;
651 /* Count free base pages */
652 info
->free_pages
+= blocks
<< order
;
654 /* Count the suitable free blocks */
655 if (order
>= suitable_order
)
656 info
->free_blocks_suitable
+= blocks
<<
657 (order
- suitable_order
);
662 * A fragmentation index only makes sense if an allocation of a requested
663 * size would fail. If that is true, the fragmentation index indicates
664 * whether external fragmentation or a lack of memory was the problem.
665 * The value can be used to determine if page reclaim or compaction
668 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
670 unsigned long requested
= 1UL << order
;
672 if (!info
->free_blocks_total
)
675 /* Fragmentation index only makes sense when a request would fail */
676 if (info
->free_blocks_suitable
)
680 * Index is between 0 and 1 so return within 3 decimal places
682 * 0 => allocation would fail due to lack of memory
683 * 1 => allocation would fail due to fragmentation
685 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
688 /* Same as __fragmentation index but allocs contig_page_info on stack */
689 int fragmentation_index(struct zone
*zone
, unsigned int order
)
691 struct contig_page_info info
;
693 fill_contig_page_info(zone
, order
, &info
);
694 return __fragmentation_index(order
, &info
);
698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
699 #ifdef CONFIG_ZONE_DMA
700 #define TEXT_FOR_DMA(xx) xx "_dma",
702 #define TEXT_FOR_DMA(xx)
705 #ifdef CONFIG_ZONE_DMA32
706 #define TEXT_FOR_DMA32(xx) xx "_dma32",
708 #define TEXT_FOR_DMA32(xx)
711 #ifdef CONFIG_HIGHMEM
712 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
714 #define TEXT_FOR_HIGHMEM(xx)
717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 TEXT_FOR_HIGHMEM(xx) xx "_movable",
720 const char * const vmstat_text
[] = {
721 /* enum zone_stat_item countes */
735 "nr_slab_reclaimable",
736 "nr_slab_unreclaimable",
737 "nr_page_table_pages",
743 "nr_vmscan_immediate_reclaim",
760 "workingset_refault",
761 "workingset_activate",
762 "workingset_nodereclaim",
763 "nr_anon_transparent_hugepages",
766 /* enum writeback_stat_item counters */
767 "nr_dirty_threshold",
768 "nr_dirty_background_threshold",
770 #ifdef CONFIG_VM_EVENT_COUNTERS
771 /* enum vm_event_item counters */
777 TEXTS_FOR_ZONES("pgalloc")
786 TEXTS_FOR_ZONES("pgrefill")
787 TEXTS_FOR_ZONES("pgsteal_kswapd")
788 TEXTS_FOR_ZONES("pgsteal_direct")
789 TEXTS_FOR_ZONES("pgscan_kswapd")
790 TEXTS_FOR_ZONES("pgscan_direct")
791 "pgscan_direct_throttle",
794 "zone_reclaim_failed",
799 "kswapd_low_wmark_hit_quickly",
800 "kswapd_high_wmark_hit_quickly",
809 #ifdef CONFIG_NUMA_BALANCING
811 "numa_huge_pte_updates",
813 "numa_hint_faults_local",
814 "numa_pages_migrated",
816 #ifdef CONFIG_MIGRATION
820 #ifdef CONFIG_COMPACTION
821 "compact_migrate_scanned",
822 "compact_free_scanned",
829 #ifdef CONFIG_HUGETLB_PAGE
830 "htlb_buddy_alloc_success",
831 "htlb_buddy_alloc_fail",
833 "unevictable_pgs_culled",
834 "unevictable_pgs_scanned",
835 "unevictable_pgs_rescued",
836 "unevictable_pgs_mlocked",
837 "unevictable_pgs_munlocked",
838 "unevictable_pgs_cleared",
839 "unevictable_pgs_stranded",
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
843 "thp_fault_fallback",
844 "thp_collapse_alloc",
845 "thp_collapse_alloc_failed",
847 "thp_zero_page_alloc",
848 "thp_zero_page_alloc_failed",
850 #ifdef CONFIG_MEMORY_BALLOON
853 #ifdef CONFIG_BALLOON_COMPACTION
856 #endif /* CONFIG_MEMORY_BALLOON */
857 #ifdef CONFIG_DEBUG_TLBFLUSH
859 "nr_tlb_remote_flush",
860 "nr_tlb_remote_flush_received",
861 #endif /* CONFIG_SMP */
862 "nr_tlb_local_flush_all",
863 "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867 "vmacache_find_calls",
868 "vmacache_find_hits",
869 "vmacache_full_flushes",
871 #endif /* CONFIG_VM_EVENTS_COUNTERS */
873 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
876 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
877 defined(CONFIG_PROC_FS)
878 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
883 for (pgdat
= first_online_pgdat();
885 pgdat
= next_online_pgdat(pgdat
))
891 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
893 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
896 return next_online_pgdat(pgdat
);
899 static void frag_stop(struct seq_file
*m
, void *arg
)
903 /* Walk all the zones in a node and print using a callback */
904 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
905 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
908 struct zone
*node_zones
= pgdat
->node_zones
;
911 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
912 if (!populated_zone(zone
))
915 spin_lock_irqsave(&zone
->lock
, flags
);
916 print(m
, pgdat
, zone
);
917 spin_unlock_irqrestore(&zone
->lock
, flags
);
922 #ifdef CONFIG_PROC_FS
923 static char * const migratetype_names
[MIGRATE_TYPES
] = {
931 #ifdef CONFIG_MEMORY_ISOLATION
936 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
941 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
942 for (order
= 0; order
< MAX_ORDER
; ++order
)
943 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
948 * This walks the free areas for each zone.
950 static int frag_show(struct seq_file
*m
, void *arg
)
952 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
953 walk_zones_in_node(m
, pgdat
, frag_show_print
);
957 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
958 pg_data_t
*pgdat
, struct zone
*zone
)
962 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
963 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
966 migratetype_names
[mtype
]);
967 for (order
= 0; order
< MAX_ORDER
; ++order
) {
968 unsigned long freecount
= 0;
969 struct free_area
*area
;
970 struct list_head
*curr
;
972 area
= &(zone
->free_area
[order
]);
974 list_for_each(curr
, &area
->free_list
[mtype
])
976 seq_printf(m
, "%6lu ", freecount
);
982 /* Print out the free pages at each order for each migatetype */
983 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
986 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
989 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
990 for (order
= 0; order
< MAX_ORDER
; ++order
)
991 seq_printf(m
, "%6d ", order
);
994 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
999 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
1000 pg_data_t
*pgdat
, struct zone
*zone
)
1004 unsigned long start_pfn
= zone
->zone_start_pfn
;
1005 unsigned long end_pfn
= zone_end_pfn(zone
);
1006 unsigned long count
[MIGRATE_TYPES
] = { 0, };
1008 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
1011 if (!pfn_valid(pfn
))
1014 page
= pfn_to_page(pfn
);
1016 /* Watch for unexpected holes punched in the memmap */
1017 if (!memmap_valid_within(pfn
, page
, zone
))
1020 mtype
= get_pageblock_migratetype(page
);
1022 if (mtype
< MIGRATE_TYPES
)
1027 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1028 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1029 seq_printf(m
, "%12lu ", count
[mtype
]);
1033 /* Print out the free pages at each order for each migratetype */
1034 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
1037 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1039 seq_printf(m
, "\n%-23s", "Number of blocks type ");
1040 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1041 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1043 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
1048 #ifdef CONFIG_PAGE_OWNER
1049 static void pagetypeinfo_showmixedcount_print(struct seq_file
*m
,
1054 struct page_ext
*page_ext
;
1055 unsigned long pfn
= zone
->zone_start_pfn
, block_end_pfn
;
1056 unsigned long end_pfn
= pfn
+ zone
->spanned_pages
;
1057 unsigned long count
[MIGRATE_TYPES
] = { 0, };
1058 int pageblock_mt
, page_mt
;
1061 /* Scan block by block. First and last block may be incomplete */
1062 pfn
= zone
->zone_start_pfn
;
1065 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1066 * a zone boundary, it will be double counted between zones. This does
1067 * not matter as the mixed block count will still be correct
1069 for (; pfn
< end_pfn
; ) {
1070 if (!pfn_valid(pfn
)) {
1071 pfn
= ALIGN(pfn
+ 1, MAX_ORDER_NR_PAGES
);
1075 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
1076 block_end_pfn
= min(block_end_pfn
, end_pfn
);
1078 page
= pfn_to_page(pfn
);
1079 pageblock_mt
= get_pfnblock_migratetype(page
, pfn
);
1081 for (; pfn
< block_end_pfn
; pfn
++) {
1082 if (!pfn_valid_within(pfn
))
1085 page
= pfn_to_page(pfn
);
1086 if (PageBuddy(page
)) {
1087 pfn
+= (1UL << page_order(page
)) - 1;
1091 if (PageReserved(page
))
1094 page_ext
= lookup_page_ext(page
);
1095 if (unlikely(!page_ext
))
1098 if (!test_bit(PAGE_EXT_OWNER
, &page_ext
->flags
))
1101 page_mt
= gfpflags_to_migratetype(page_ext
->gfp_mask
);
1102 if (pageblock_mt
!= page_mt
) {
1103 if (is_migrate_cma(pageblock_mt
))
1104 count
[MIGRATE_MOVABLE
]++;
1106 count
[pageblock_mt
]++;
1108 pfn
= block_end_pfn
;
1111 pfn
+= (1UL << page_ext
->order
) - 1;
1116 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1117 for (i
= 0; i
< MIGRATE_TYPES
; i
++)
1118 seq_printf(m
, "%12lu ", count
[i
]);
1121 #endif /* CONFIG_PAGE_OWNER */
1124 * Print out the number of pageblocks for each migratetype that contain pages
1125 * of other types. This gives an indication of how well fallbacks are being
1126 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1127 * to determine what is going on
1129 static void pagetypeinfo_showmixedcount(struct seq_file
*m
, pg_data_t
*pgdat
)
1131 #ifdef CONFIG_PAGE_OWNER
1134 if (!page_owner_inited
)
1137 drain_all_pages(NULL
);
1139 seq_printf(m
, "\n%-23s", "Number of mixed blocks ");
1140 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1141 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1144 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showmixedcount_print
);
1145 #endif /* CONFIG_PAGE_OWNER */
1149 * This prints out statistics in relation to grouping pages by mobility.
1150 * It is expensive to collect so do not constantly read the file.
1152 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
1154 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1156 /* check memoryless node */
1157 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1160 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1161 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1163 pagetypeinfo_showfree(m
, pgdat
);
1164 pagetypeinfo_showblockcount(m
, pgdat
);
1165 pagetypeinfo_showmixedcount(m
, pgdat
);
1170 static const struct seq_operations fragmentation_op
= {
1171 .start
= frag_start
,
1177 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1179 return seq_open(file
, &fragmentation_op
);
1182 static const struct file_operations fragmentation_file_operations
= {
1183 .open
= fragmentation_open
,
1185 .llseek
= seq_lseek
,
1186 .release
= seq_release
,
1189 static const struct seq_operations pagetypeinfo_op
= {
1190 .start
= frag_start
,
1193 .show
= pagetypeinfo_show
,
1196 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1198 return seq_open(file
, &pagetypeinfo_op
);
1201 static const struct file_operations pagetypeinfo_file_ops
= {
1202 .open
= pagetypeinfo_open
,
1204 .llseek
= seq_lseek
,
1205 .release
= seq_release
,
1208 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1212 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1222 zone_page_state(zone
, NR_FREE_PAGES
),
1223 min_wmark_pages(zone
),
1224 low_wmark_pages(zone
),
1225 high_wmark_pages(zone
),
1226 zone_page_state(zone
, NR_PAGES_SCANNED
),
1227 zone
->spanned_pages
,
1228 zone
->present_pages
,
1229 zone
->managed_pages
);
1231 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1232 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1233 zone_page_state(zone
, i
));
1236 "\n protection: (%ld",
1237 zone
->lowmem_reserve
[0]);
1238 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1239 seq_printf(m
, ", %ld", zone
->lowmem_reserve
[i
]);
1243 for_each_online_cpu(i
) {
1244 struct per_cpu_pageset
*pageset
;
1246 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1255 pageset
->pcp
.batch
);
1257 seq_printf(m
, "\n vm stats threshold: %d",
1258 pageset
->stat_threshold
);
1262 "\n all_unreclaimable: %u"
1264 "\n inactive_ratio: %u",
1265 !zone_reclaimable(zone
),
1266 zone
->zone_start_pfn
,
1267 zone
->inactive_ratio
);
1272 * Output information about zones in @pgdat.
1274 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1276 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1277 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1281 static const struct seq_operations zoneinfo_op
= {
1282 .start
= frag_start
, /* iterate over all zones. The same as in
1286 .show
= zoneinfo_show
,
1289 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1291 return seq_open(file
, &zoneinfo_op
);
1294 static const struct file_operations proc_zoneinfo_file_operations
= {
1295 .open
= zoneinfo_open
,
1297 .llseek
= seq_lseek
,
1298 .release
= seq_release
,
1301 enum writeback_stat_item
{
1303 NR_DIRTY_BG_THRESHOLD
,
1304 NR_VM_WRITEBACK_STAT_ITEMS
,
1307 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1310 int i
, stat_items_size
;
1312 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1314 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1315 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1317 #ifdef CONFIG_VM_EVENT_COUNTERS
1318 stat_items_size
+= sizeof(struct vm_event_state
);
1321 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1324 return ERR_PTR(-ENOMEM
);
1325 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1326 v
[i
] = global_page_state(i
);
1327 v
+= NR_VM_ZONE_STAT_ITEMS
;
1329 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1330 v
+ NR_DIRTY_THRESHOLD
);
1331 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1333 #ifdef CONFIG_VM_EVENT_COUNTERS
1335 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1338 return (unsigned long *)m
->private + *pos
;
1341 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1344 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1346 return (unsigned long *)m
->private + *pos
;
1349 static int vmstat_show(struct seq_file
*m
, void *arg
)
1351 unsigned long *l
= arg
;
1352 unsigned long off
= l
- (unsigned long *)m
->private;
1354 seq_puts(m
, vmstat_text
[off
]);
1355 seq_put_decimal_ull(m
, ' ', *l
);
1360 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1366 static const struct seq_operations vmstat_op
= {
1367 .start
= vmstat_start
,
1368 .next
= vmstat_next
,
1369 .stop
= vmstat_stop
,
1370 .show
= vmstat_show
,
1373 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1375 return seq_open(file
, &vmstat_op
);
1378 static const struct file_operations proc_vmstat_file_operations
= {
1379 .open
= vmstat_open
,
1381 .llseek
= seq_lseek
,
1382 .release
= seq_release
,
1384 #endif /* CONFIG_PROC_FS */
1387 static struct workqueue_struct
*vmstat_wq
;
1388 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1389 int sysctl_stat_interval __read_mostly
= HZ
;
1390 static cpumask_var_t cpu_stat_off
;
1392 static void vmstat_update(struct work_struct
*w
)
1394 if (refresh_cpu_vm_stats()) {
1396 * Counters were updated so we expect more updates
1397 * to occur in the future. Keep on running the
1398 * update worker thread.
1400 queue_delayed_work_on(smp_processor_id(), vmstat_wq
,
1401 this_cpu_ptr(&vmstat_work
),
1402 round_jiffies_relative(sysctl_stat_interval
));
1405 * We did not update any counters so the app may be in
1406 * a mode where it does not cause counter updates.
1407 * We may be uselessly running vmstat_update.
1408 * Defer the checking for differentials to the
1409 * shepherd thread on a different processor.
1413 * Shepherd work thread does not race since it never
1414 * changes the bit if its zero but the cpu
1415 * online / off line code may race if
1416 * worker threads are still allowed during
1417 * shutdown / startup.
1419 r
= cpumask_test_and_set_cpu(smp_processor_id(),
1426 * Check if the diffs for a certain cpu indicate that
1427 * an update is needed.
1429 static bool need_update(int cpu
)
1433 for_each_populated_zone(zone
) {
1434 struct per_cpu_pageset
*p
= per_cpu_ptr(zone
->pageset
, cpu
);
1436 BUILD_BUG_ON(sizeof(p
->vm_stat_diff
[0]) != 1);
1438 * The fast way of checking if there are any vmstat diffs.
1439 * This works because the diffs are byte sized items.
1441 if (memchr_inv(p
->vm_stat_diff
, 0, NR_VM_ZONE_STAT_ITEMS
))
1450 * Shepherd worker thread that checks the
1451 * differentials of processors that have their worker
1452 * threads for vm statistics updates disabled because of
1455 static void vmstat_shepherd(struct work_struct
*w
);
1457 static DECLARE_DELAYED_WORK(shepherd
, vmstat_shepherd
);
1459 static void vmstat_shepherd(struct work_struct
*w
)
1464 /* Check processors whose vmstat worker threads have been disabled */
1465 for_each_cpu(cpu
, cpu_stat_off
)
1466 if (need_update(cpu
) &&
1467 cpumask_test_and_clear_cpu(cpu
, cpu_stat_off
))
1469 queue_delayed_work_on(cpu
, vmstat_wq
,
1470 &per_cpu(vmstat_work
, cpu
), 0);
1474 schedule_delayed_work(&shepherd
,
1475 round_jiffies_relative(sysctl_stat_interval
));
1479 static void __init
start_shepherd_timer(void)
1483 for_each_possible_cpu(cpu
)
1484 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work
, cpu
),
1487 if (!alloc_cpumask_var(&cpu_stat_off
, GFP_KERNEL
))
1489 cpumask_copy(cpu_stat_off
, cpu_online_mask
);
1491 vmstat_wq
= alloc_workqueue("vmstat", WQ_FREEZABLE
|WQ_MEM_RECLAIM
, 0);
1492 schedule_delayed_work(&shepherd
,
1493 round_jiffies_relative(sysctl_stat_interval
));
1496 static void vmstat_cpu_dead(int node
)
1501 for_each_online_cpu(cpu
)
1502 if (cpu_to_node(cpu
) == node
)
1505 node_clear_state(node
, N_CPU
);
1511 * Use the cpu notifier to insure that the thresholds are recalculated
1514 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1515 unsigned long action
,
1518 long cpu
= (long)hcpu
;
1522 case CPU_ONLINE_FROZEN
:
1523 refresh_zone_stat_thresholds();
1524 node_set_state(cpu_to_node(cpu
), N_CPU
);
1525 cpumask_set_cpu(cpu
, cpu_stat_off
);
1527 case CPU_DOWN_PREPARE
:
1528 case CPU_DOWN_PREPARE_FROZEN
:
1529 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1530 cpumask_clear_cpu(cpu
, cpu_stat_off
);
1532 case CPU_DOWN_FAILED
:
1533 case CPU_DOWN_FAILED_FROZEN
:
1534 cpumask_set_cpu(cpu
, cpu_stat_off
);
1537 case CPU_DEAD_FROZEN
:
1538 refresh_zone_stat_thresholds();
1539 vmstat_cpu_dead(cpu_to_node(cpu
));
1547 static struct notifier_block vmstat_notifier
=
1548 { &vmstat_cpuup_callback
, NULL
, 0 };
1551 static int __init
setup_vmstat(void)
1554 cpu_notifier_register_begin();
1555 __register_cpu_notifier(&vmstat_notifier
);
1557 start_shepherd_timer();
1558 cpu_notifier_register_done();
1560 #ifdef CONFIG_PROC_FS
1561 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1562 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1563 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1564 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1568 module_init(setup_vmstat
)
1570 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1573 * Return an index indicating how much of the available free memory is
1574 * unusable for an allocation of the requested size.
1576 static int unusable_free_index(unsigned int order
,
1577 struct contig_page_info
*info
)
1579 /* No free memory is interpreted as all free memory is unusable */
1580 if (info
->free_pages
== 0)
1584 * Index should be a value between 0 and 1. Return a value to 3
1587 * 0 => no fragmentation
1588 * 1 => high fragmentation
1590 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1594 static void unusable_show_print(struct seq_file
*m
,
1595 pg_data_t
*pgdat
, struct zone
*zone
)
1599 struct contig_page_info info
;
1601 seq_printf(m
, "Node %d, zone %8s ",
1604 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1605 fill_contig_page_info(zone
, order
, &info
);
1606 index
= unusable_free_index(order
, &info
);
1607 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1614 * Display unusable free space index
1616 * The unusable free space index measures how much of the available free
1617 * memory cannot be used to satisfy an allocation of a given size and is a
1618 * value between 0 and 1. The higher the value, the more of free memory is
1619 * unusable and by implication, the worse the external fragmentation is. This
1620 * can be expressed as a percentage by multiplying by 100.
1622 static int unusable_show(struct seq_file
*m
, void *arg
)
1624 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1626 /* check memoryless node */
1627 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1630 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1635 static const struct seq_operations unusable_op
= {
1636 .start
= frag_start
,
1639 .show
= unusable_show
,
1642 static int unusable_open(struct inode
*inode
, struct file
*file
)
1644 return seq_open(file
, &unusable_op
);
1647 static const struct file_operations unusable_file_ops
= {
1648 .open
= unusable_open
,
1650 .llseek
= seq_lseek
,
1651 .release
= seq_release
,
1654 static void extfrag_show_print(struct seq_file
*m
,
1655 pg_data_t
*pgdat
, struct zone
*zone
)
1660 /* Alloc on stack as interrupts are disabled for zone walk */
1661 struct contig_page_info info
;
1663 seq_printf(m
, "Node %d, zone %8s ",
1666 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1667 fill_contig_page_info(zone
, order
, &info
);
1668 index
= __fragmentation_index(order
, &info
);
1669 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1676 * Display fragmentation index for orders that allocations would fail for
1678 static int extfrag_show(struct seq_file
*m
, void *arg
)
1680 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1682 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1687 static const struct seq_operations extfrag_op
= {
1688 .start
= frag_start
,
1691 .show
= extfrag_show
,
1694 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1696 return seq_open(file
, &extfrag_op
);
1699 static const struct file_operations extfrag_file_ops
= {
1700 .open
= extfrag_open
,
1702 .llseek
= seq_lseek
,
1703 .release
= seq_release
,
1706 static int __init
extfrag_debug_init(void)
1708 struct dentry
*extfrag_debug_root
;
1710 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1711 if (!extfrag_debug_root
)
1714 if (!debugfs_create_file("unusable_index", 0444,
1715 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1718 if (!debugfs_create_file("extfrag_index", 0444,
1719 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1724 debugfs_remove_recursive(extfrag_debug_root
);
1728 module_init(extfrag_debug_init
);