dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blobc11bb6d2d00a4bc00f9df0dc55c2375bed34c735
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 unsigned int mtu,
89 int (*output)(struct net *, struct sock *, struct sk_buff *));
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
94 iph->check = 0;
95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
97 EXPORT_SYMBOL(ip_send_check);
99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
101 struct iphdr *iph = ip_hdr(skb);
103 iph->tot_len = htons(skb->len);
104 ip_send_check(iph);
106 skb->protocol = htons(ETH_P_IP);
108 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
109 net, sk, skb, NULL, skb_dst(skb)->dev,
110 dst_output);
113 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
115 int err;
117 err = __ip_local_out(net, sk, skb);
118 if (likely(err == 1))
119 err = dst_output(net, sk, skb);
121 return err;
123 EXPORT_SYMBOL_GPL(ip_local_out);
125 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 int ttl = inet->uc_ttl;
129 if (ttl < 0)
130 ttl = ip4_dst_hoplimit(dst);
131 return ttl;
135 * Add an ip header to a skbuff and send it out.
138 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
139 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
141 struct inet_sock *inet = inet_sk(sk);
142 struct rtable *rt = skb_rtable(skb);
143 struct net *net = sock_net(sk);
144 struct iphdr *iph;
146 /* Build the IP header. */
147 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
148 skb_reset_network_header(skb);
149 iph = ip_hdr(skb);
150 iph->version = 4;
151 iph->ihl = 5;
152 iph->tos = inet->tos;
153 iph->ttl = ip_select_ttl(inet, &rt->dst);
154 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
155 iph->saddr = saddr;
156 iph->protocol = sk->sk_protocol;
157 if (ip_dont_fragment(sk, &rt->dst)) {
158 iph->frag_off = htons(IP_DF);
159 iph->id = 0;
160 } else {
161 iph->frag_off = 0;
162 __ip_select_ident(net, iph, 1);
165 if (opt && opt->opt.optlen) {
166 iph->ihl += opt->opt.optlen>>2;
167 ip_options_build(skb, &opt->opt, daddr, rt, 0);
170 skb->priority = sk->sk_priority;
171 skb->mark = sk->sk_mark;
173 /* Send it out. */
174 return ip_local_out(net, skb->sk, skb);
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
180 struct dst_entry *dst = skb_dst(skb);
181 struct rtable *rt = (struct rtable *)dst;
182 struct net_device *dev = dst->dev;
183 unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 struct neighbour *neigh;
185 u32 nexthop;
187 if (rt->rt_type == RTN_MULTICAST) {
188 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
189 } else if (rt->rt_type == RTN_BROADCAST)
190 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 struct sk_buff *skb2;
196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 if (!skb2) {
198 kfree_skb(skb);
199 return -ENOMEM;
201 if (skb->sk)
202 skb_set_owner_w(skb2, skb->sk);
203 consume_skb(skb);
204 skb = skb2;
207 rcu_read_lock_bh();
208 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
209 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
210 if (unlikely(!neigh))
211 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
212 if (!IS_ERR(neigh)) {
213 int res = dst_neigh_output(dst, neigh, skb);
215 rcu_read_unlock_bh();
216 return res;
218 rcu_read_unlock_bh();
220 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
221 __func__);
222 kfree_skb(skb);
223 return -EINVAL;
226 static int ip_finish_output_gso(struct net *net, struct sock *sk,
227 struct sk_buff *skb, unsigned int mtu)
229 netdev_features_t features;
230 struct sk_buff *segs;
231 int ret = 0;
233 /* common case: locally created skb or seglen is <= mtu */
234 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
235 skb_gso_network_seglen(skb) <= mtu)
236 return ip_finish_output2(net, sk, skb);
238 /* Slowpath - GSO segment length is exceeding the dst MTU.
240 * This can happen in two cases:
241 * 1) TCP GRO packet, DF bit not set
242 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
243 * from host network stack.
245 features = netif_skb_features(skb);
246 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
247 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
248 if (IS_ERR_OR_NULL(segs)) {
249 kfree_skb(skb);
250 return -ENOMEM;
253 consume_skb(skb);
255 do {
256 struct sk_buff *nskb = segs->next;
257 int err;
259 segs->next = NULL;
260 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
262 if (err && ret == 0)
263 ret = err;
264 segs = nskb;
265 } while (segs);
267 return ret;
270 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
272 unsigned int mtu;
274 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
275 /* Policy lookup after SNAT yielded a new policy */
276 if (skb_dst(skb)->xfrm) {
277 IPCB(skb)->flags |= IPSKB_REROUTED;
278 return dst_output(net, sk, skb);
280 #endif
281 mtu = ip_skb_dst_mtu(skb);
282 if (skb_is_gso(skb))
283 return ip_finish_output_gso(net, sk, skb, mtu);
285 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
286 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
288 return ip_finish_output2(net, sk, skb);
291 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 struct rtable *rt = skb_rtable(skb);
294 struct net_device *dev = rt->dst.dev;
297 * If the indicated interface is up and running, send the packet.
299 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
301 skb->dev = dev;
302 skb->protocol = htons(ETH_P_IP);
305 * Multicasts are looped back for other local users
308 if (rt->rt_flags&RTCF_MULTICAST) {
309 if (sk_mc_loop(sk)
310 #ifdef CONFIG_IP_MROUTE
311 /* Small optimization: do not loopback not local frames,
312 which returned after forwarding; they will be dropped
313 by ip_mr_input in any case.
314 Note, that local frames are looped back to be delivered
315 to local recipients.
317 This check is duplicated in ip_mr_input at the moment.
320 ((rt->rt_flags & RTCF_LOCAL) ||
321 !(IPCB(skb)->flags & IPSKB_FORWARDED))
322 #endif
324 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
325 if (newskb)
326 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
327 net, sk, newskb, NULL, newskb->dev,
328 dev_loopback_xmit);
331 /* Multicasts with ttl 0 must not go beyond the host */
333 if (ip_hdr(skb)->ttl == 0) {
334 kfree_skb(skb);
335 return 0;
339 if (rt->rt_flags&RTCF_BROADCAST) {
340 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
341 if (newskb)
342 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
343 net, sk, newskb, NULL, newskb->dev,
344 dev_loopback_xmit);
347 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
348 net, sk, skb, NULL, skb->dev,
349 ip_finish_output,
350 !(IPCB(skb)->flags & IPSKB_REROUTED));
353 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
355 struct net_device *dev = skb_dst(skb)->dev;
357 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
359 skb->dev = dev;
360 skb->protocol = htons(ETH_P_IP);
362 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
363 net, sk, skb, NULL, dev,
364 ip_finish_output,
365 !(IPCB(skb)->flags & IPSKB_REROUTED));
369 * copy saddr and daddr, possibly using 64bit load/stores
370 * Equivalent to :
371 * iph->saddr = fl4->saddr;
372 * iph->daddr = fl4->daddr;
374 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
376 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
377 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
378 memcpy(&iph->saddr, &fl4->saddr,
379 sizeof(fl4->saddr) + sizeof(fl4->daddr));
382 /* Note: skb->sk can be different from sk, in case of tunnels */
383 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
385 struct inet_sock *inet = inet_sk(sk);
386 struct net *net = sock_net(sk);
387 struct ip_options_rcu *inet_opt;
388 struct flowi4 *fl4;
389 struct rtable *rt;
390 struct iphdr *iph;
391 int res;
393 /* Skip all of this if the packet is already routed,
394 * f.e. by something like SCTP.
396 rcu_read_lock();
397 inet_opt = rcu_dereference(inet->inet_opt);
398 fl4 = &fl->u.ip4;
399 rt = skb_rtable(skb);
400 if (rt)
401 goto packet_routed;
403 /* Make sure we can route this packet. */
404 rt = (struct rtable *)__sk_dst_check(sk, 0);
405 if (!rt) {
406 __be32 daddr;
408 /* Use correct destination address if we have options. */
409 daddr = inet->inet_daddr;
410 if (inet_opt && inet_opt->opt.srr)
411 daddr = inet_opt->opt.faddr;
413 /* If this fails, retransmit mechanism of transport layer will
414 * keep trying until route appears or the connection times
415 * itself out.
417 rt = ip_route_output_ports(net, fl4, sk,
418 daddr, inet->inet_saddr,
419 inet->inet_dport,
420 inet->inet_sport,
421 sk->sk_protocol,
422 RT_CONN_FLAGS(sk),
423 sk->sk_bound_dev_if);
424 if (IS_ERR(rt))
425 goto no_route;
426 sk_setup_caps(sk, &rt->dst);
428 skb_dst_set_noref(skb, &rt->dst);
430 packet_routed:
431 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
432 goto no_route;
434 /* OK, we know where to send it, allocate and build IP header. */
435 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
436 skb_reset_network_header(skb);
437 iph = ip_hdr(skb);
438 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
439 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
440 iph->frag_off = htons(IP_DF);
441 else
442 iph->frag_off = 0;
443 iph->ttl = ip_select_ttl(inet, &rt->dst);
444 iph->protocol = sk->sk_protocol;
445 ip_copy_addrs(iph, fl4);
447 /* Transport layer set skb->h.foo itself. */
449 if (inet_opt && inet_opt->opt.optlen) {
450 iph->ihl += inet_opt->opt.optlen >> 2;
451 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
454 ip_select_ident_segs(net, skb, sk,
455 skb_shinfo(skb)->gso_segs ?: 1);
457 /* TODO : should we use skb->sk here instead of sk ? */
458 skb->priority = sk->sk_priority;
459 skb->mark = sk->sk_mark;
461 res = ip_local_out(net, sk, skb);
462 rcu_read_unlock();
463 return res;
465 no_route:
466 rcu_read_unlock();
467 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
468 kfree_skb(skb);
469 return -EHOSTUNREACH;
471 EXPORT_SYMBOL(ip_queue_xmit);
473 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
475 to->pkt_type = from->pkt_type;
476 to->priority = from->priority;
477 to->protocol = from->protocol;
478 skb_dst_drop(to);
479 skb_dst_copy(to, from);
480 to->dev = from->dev;
481 to->mark = from->mark;
483 skb_copy_hash(to, from);
485 /* Copy the flags to each fragment. */
486 IPCB(to)->flags = IPCB(from)->flags;
488 #ifdef CONFIG_NET_SCHED
489 to->tc_index = from->tc_index;
490 #endif
491 nf_copy(to, from);
492 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
493 to->ipvs_property = from->ipvs_property;
494 #endif
495 skb_copy_secmark(to, from);
498 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
499 unsigned int mtu,
500 int (*output)(struct net *, struct sock *, struct sk_buff *))
502 struct iphdr *iph = ip_hdr(skb);
504 if ((iph->frag_off & htons(IP_DF)) == 0)
505 return ip_do_fragment(net, sk, skb, output);
507 if (unlikely(!skb->ignore_df ||
508 (IPCB(skb)->frag_max_size &&
509 IPCB(skb)->frag_max_size > mtu))) {
510 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
511 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
512 htonl(mtu));
513 kfree_skb(skb);
514 return -EMSGSIZE;
517 return ip_do_fragment(net, sk, skb, output);
521 * This IP datagram is too large to be sent in one piece. Break it up into
522 * smaller pieces (each of size equal to IP header plus
523 * a block of the data of the original IP data part) that will yet fit in a
524 * single device frame, and queue such a frame for sending.
527 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
528 int (*output)(struct net *, struct sock *, struct sk_buff *))
530 struct iphdr *iph;
531 int ptr;
532 struct net_device *dev;
533 struct sk_buff *skb2;
534 unsigned int mtu, hlen, left, len, ll_rs;
535 int offset;
536 __be16 not_last_frag;
537 struct rtable *rt = skb_rtable(skb);
538 int err = 0;
540 dev = rt->dst.dev;
542 /* for offloaded checksums cleanup checksum before fragmentation */
543 if (skb->ip_summed == CHECKSUM_PARTIAL &&
544 (err = skb_checksum_help(skb)))
545 goto fail;
548 * Point into the IP datagram header.
551 iph = ip_hdr(skb);
553 mtu = ip_skb_dst_mtu(skb);
554 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
555 mtu = IPCB(skb)->frag_max_size;
558 * Setup starting values.
561 hlen = iph->ihl * 4;
562 mtu = mtu - hlen; /* Size of data space */
563 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
565 /* When frag_list is given, use it. First, check its validity:
566 * some transformers could create wrong frag_list or break existing
567 * one, it is not prohibited. In this case fall back to copying.
569 * LATER: this step can be merged to real generation of fragments,
570 * we can switch to copy when see the first bad fragment.
572 if (skb_has_frag_list(skb)) {
573 struct sk_buff *frag, *frag2;
574 int first_len = skb_pagelen(skb);
576 if (first_len - hlen > mtu ||
577 ((first_len - hlen) & 7) ||
578 ip_is_fragment(iph) ||
579 skb_cloned(skb))
580 goto slow_path;
582 skb_walk_frags(skb, frag) {
583 /* Correct geometry. */
584 if (frag->len > mtu ||
585 ((frag->len & 7) && frag->next) ||
586 skb_headroom(frag) < hlen)
587 goto slow_path_clean;
589 /* Partially cloned skb? */
590 if (skb_shared(frag))
591 goto slow_path_clean;
593 BUG_ON(frag->sk);
594 if (skb->sk) {
595 frag->sk = skb->sk;
596 frag->destructor = sock_wfree;
598 skb->truesize -= frag->truesize;
601 /* Everything is OK. Generate! */
603 err = 0;
604 offset = 0;
605 frag = skb_shinfo(skb)->frag_list;
606 skb_frag_list_init(skb);
607 skb->data_len = first_len - skb_headlen(skb);
608 skb->len = first_len;
609 iph->tot_len = htons(first_len);
610 iph->frag_off = htons(IP_MF);
611 ip_send_check(iph);
613 for (;;) {
614 /* Prepare header of the next frame,
615 * before previous one went down. */
616 if (frag) {
617 frag->ip_summed = CHECKSUM_NONE;
618 skb_reset_transport_header(frag);
619 __skb_push(frag, hlen);
620 skb_reset_network_header(frag);
621 memcpy(skb_network_header(frag), iph, hlen);
622 iph = ip_hdr(frag);
623 iph->tot_len = htons(frag->len);
624 ip_copy_metadata(frag, skb);
625 if (offset == 0)
626 ip_options_fragment(frag);
627 offset += skb->len - hlen;
628 iph->frag_off = htons(offset>>3);
629 if (frag->next)
630 iph->frag_off |= htons(IP_MF);
631 /* Ready, complete checksum */
632 ip_send_check(iph);
635 err = output(net, sk, skb);
637 if (!err)
638 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
639 if (err || !frag)
640 break;
642 skb = frag;
643 frag = skb->next;
644 skb->next = NULL;
647 if (err == 0) {
648 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
649 return 0;
652 while (frag) {
653 skb = frag->next;
654 kfree_skb(frag);
655 frag = skb;
657 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
658 return err;
660 slow_path_clean:
661 skb_walk_frags(skb, frag2) {
662 if (frag2 == frag)
663 break;
664 frag2->sk = NULL;
665 frag2->destructor = NULL;
666 skb->truesize += frag2->truesize;
670 slow_path:
671 iph = ip_hdr(skb);
673 left = skb->len - hlen; /* Space per frame */
674 ptr = hlen; /* Where to start from */
676 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
679 * Fragment the datagram.
682 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
683 not_last_frag = iph->frag_off & htons(IP_MF);
686 * Keep copying data until we run out.
689 while (left > 0) {
690 len = left;
691 /* IF: it doesn't fit, use 'mtu' - the data space left */
692 if (len > mtu)
693 len = mtu;
694 /* IF: we are not sending up to and including the packet end
695 then align the next start on an eight byte boundary */
696 if (len < left) {
697 len &= ~7;
700 /* Allocate buffer */
701 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
702 if (!skb2) {
703 err = -ENOMEM;
704 goto fail;
708 * Set up data on packet
711 ip_copy_metadata(skb2, skb);
712 skb_reserve(skb2, ll_rs);
713 skb_put(skb2, len + hlen);
714 skb_reset_network_header(skb2);
715 skb2->transport_header = skb2->network_header + hlen;
718 * Charge the memory for the fragment to any owner
719 * it might possess
722 if (skb->sk)
723 skb_set_owner_w(skb2, skb->sk);
726 * Copy the packet header into the new buffer.
729 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
732 * Copy a block of the IP datagram.
734 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
735 BUG();
736 left -= len;
739 * Fill in the new header fields.
741 iph = ip_hdr(skb2);
742 iph->frag_off = htons((offset >> 3));
744 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
745 iph->frag_off |= htons(IP_DF);
747 /* ANK: dirty, but effective trick. Upgrade options only if
748 * the segment to be fragmented was THE FIRST (otherwise,
749 * options are already fixed) and make it ONCE
750 * on the initial skb, so that all the following fragments
751 * will inherit fixed options.
753 if (offset == 0)
754 ip_options_fragment(skb);
757 * Added AC : If we are fragmenting a fragment that's not the
758 * last fragment then keep MF on each bit
760 if (left > 0 || not_last_frag)
761 iph->frag_off |= htons(IP_MF);
762 ptr += len;
763 offset += len;
766 * Put this fragment into the sending queue.
768 iph->tot_len = htons(len + hlen);
770 ip_send_check(iph);
772 err = output(net, sk, skb2);
773 if (err)
774 goto fail;
776 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
778 consume_skb(skb);
779 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
780 return err;
782 fail:
783 kfree_skb(skb);
784 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
785 return err;
787 EXPORT_SYMBOL(ip_do_fragment);
790 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
792 struct msghdr *msg = from;
794 if (skb->ip_summed == CHECKSUM_PARTIAL) {
795 if (copy_from_iter(to, len, &msg->msg_iter) != len)
796 return -EFAULT;
797 } else {
798 __wsum csum = 0;
799 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
800 return -EFAULT;
801 skb->csum = csum_block_add(skb->csum, csum, odd);
803 return 0;
805 EXPORT_SYMBOL(ip_generic_getfrag);
807 static inline __wsum
808 csum_page(struct page *page, int offset, int copy)
810 char *kaddr;
811 __wsum csum;
812 kaddr = kmap(page);
813 csum = csum_partial(kaddr + offset, copy, 0);
814 kunmap(page);
815 return csum;
818 static inline int ip_ufo_append_data(struct sock *sk,
819 struct sk_buff_head *queue,
820 int getfrag(void *from, char *to, int offset, int len,
821 int odd, struct sk_buff *skb),
822 void *from, int length, int hh_len, int fragheaderlen,
823 int transhdrlen, int maxfraglen, unsigned int flags)
825 struct sk_buff *skb;
826 int err;
828 /* There is support for UDP fragmentation offload by network
829 * device, so create one single skb packet containing complete
830 * udp datagram
832 skb = skb_peek_tail(queue);
833 if (!skb) {
834 skb = sock_alloc_send_skb(sk,
835 hh_len + fragheaderlen + transhdrlen + 20,
836 (flags & MSG_DONTWAIT), &err);
838 if (!skb)
839 return err;
841 /* reserve space for Hardware header */
842 skb_reserve(skb, hh_len);
844 /* create space for UDP/IP header */
845 skb_put(skb, fragheaderlen + transhdrlen);
847 /* initialize network header pointer */
848 skb_reset_network_header(skb);
850 /* initialize protocol header pointer */
851 skb->transport_header = skb->network_header + fragheaderlen;
853 skb->csum = 0;
855 __skb_queue_tail(queue, skb);
856 } else if (skb_is_gso(skb)) {
857 goto append;
860 skb->ip_summed = CHECKSUM_PARTIAL;
861 /* specify the length of each IP datagram fragment */
862 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
863 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
865 append:
866 return skb_append_datato_frags(sk, skb, getfrag, from,
867 (length - transhdrlen));
870 static int __ip_append_data(struct sock *sk,
871 struct flowi4 *fl4,
872 struct sk_buff_head *queue,
873 struct inet_cork *cork,
874 struct page_frag *pfrag,
875 int getfrag(void *from, char *to, int offset,
876 int len, int odd, struct sk_buff *skb),
877 void *from, int length, int transhdrlen,
878 unsigned int flags)
880 struct inet_sock *inet = inet_sk(sk);
881 struct sk_buff *skb;
883 struct ip_options *opt = cork->opt;
884 int hh_len;
885 int exthdrlen;
886 int mtu;
887 int copy;
888 int err;
889 int offset = 0;
890 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
891 int csummode = CHECKSUM_NONE;
892 struct rtable *rt = (struct rtable *)cork->dst;
893 u32 tskey = 0;
895 skb = skb_peek_tail(queue);
897 exthdrlen = !skb ? rt->dst.header_len : 0;
898 mtu = cork->fragsize;
899 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
900 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
901 tskey = sk->sk_tskey++;
903 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
905 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
906 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
907 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
909 if (cork->length + length > maxnonfragsize - fragheaderlen) {
910 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
911 mtu - (opt ? opt->optlen : 0));
912 return -EMSGSIZE;
916 * transhdrlen > 0 means that this is the first fragment and we wish
917 * it won't be fragmented in the future.
919 if (transhdrlen &&
920 length + fragheaderlen <= mtu &&
921 rt->dst.dev->features & NETIF_F_V4_CSUM &&
922 !(flags & MSG_MORE) &&
923 !exthdrlen)
924 csummode = CHECKSUM_PARTIAL;
926 cork->length += length;
927 if ((skb && skb_is_gso(skb)) ||
928 (((length + (skb ? skb->len : fragheaderlen)) > mtu) &&
929 (skb_queue_len(queue) <= 1) &&
930 (sk->sk_protocol == IPPROTO_UDP) &&
931 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
932 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx)) {
933 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
934 hh_len, fragheaderlen, transhdrlen,
935 maxfraglen, flags);
936 if (err)
937 goto error;
938 return 0;
941 /* So, what's going on in the loop below?
943 * We use calculated fragment length to generate chained skb,
944 * each of segments is IP fragment ready for sending to network after
945 * adding appropriate IP header.
948 if (!skb)
949 goto alloc_new_skb;
951 while (length > 0) {
952 /* Check if the remaining data fits into current packet. */
953 copy = mtu - skb->len;
954 if (copy < length)
955 copy = maxfraglen - skb->len;
956 if (copy <= 0) {
957 char *data;
958 unsigned int datalen;
959 unsigned int fraglen;
960 unsigned int fraggap;
961 unsigned int alloclen;
962 struct sk_buff *skb_prev;
963 alloc_new_skb:
964 skb_prev = skb;
965 if (skb_prev)
966 fraggap = skb_prev->len - maxfraglen;
967 else
968 fraggap = 0;
971 * If remaining data exceeds the mtu,
972 * we know we need more fragment(s).
974 datalen = length + fraggap;
975 if (datalen > mtu - fragheaderlen)
976 datalen = maxfraglen - fragheaderlen;
977 fraglen = datalen + fragheaderlen;
979 if ((flags & MSG_MORE) &&
980 !(rt->dst.dev->features&NETIF_F_SG))
981 alloclen = mtu;
982 else
983 alloclen = fraglen;
985 alloclen += exthdrlen;
987 /* The last fragment gets additional space at tail.
988 * Note, with MSG_MORE we overallocate on fragments,
989 * because we have no idea what fragment will be
990 * the last.
992 if (datalen == length + fraggap)
993 alloclen += rt->dst.trailer_len;
995 if (transhdrlen) {
996 skb = sock_alloc_send_skb(sk,
997 alloclen + hh_len + 15,
998 (flags & MSG_DONTWAIT), &err);
999 } else {
1000 skb = NULL;
1001 if (atomic_read(&sk->sk_wmem_alloc) <=
1002 2 * sk->sk_sndbuf)
1003 skb = sock_wmalloc(sk,
1004 alloclen + hh_len + 15, 1,
1005 sk->sk_allocation);
1006 if (unlikely(!skb))
1007 err = -ENOBUFS;
1009 if (!skb)
1010 goto error;
1013 * Fill in the control structures
1015 skb->ip_summed = csummode;
1016 skb->csum = 0;
1017 skb_reserve(skb, hh_len);
1019 /* only the initial fragment is time stamped */
1020 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1021 cork->tx_flags = 0;
1022 skb_shinfo(skb)->tskey = tskey;
1023 tskey = 0;
1026 * Find where to start putting bytes.
1028 data = skb_put(skb, fraglen + exthdrlen);
1029 skb_set_network_header(skb, exthdrlen);
1030 skb->transport_header = (skb->network_header +
1031 fragheaderlen);
1032 data += fragheaderlen + exthdrlen;
1034 if (fraggap) {
1035 skb->csum = skb_copy_and_csum_bits(
1036 skb_prev, maxfraglen,
1037 data + transhdrlen, fraggap, 0);
1038 skb_prev->csum = csum_sub(skb_prev->csum,
1039 skb->csum);
1040 data += fraggap;
1041 pskb_trim_unique(skb_prev, maxfraglen);
1044 copy = datalen - transhdrlen - fraggap;
1045 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1046 err = -EFAULT;
1047 kfree_skb(skb);
1048 goto error;
1051 offset += copy;
1052 length -= datalen - fraggap;
1053 transhdrlen = 0;
1054 exthdrlen = 0;
1055 csummode = CHECKSUM_NONE;
1058 * Put the packet on the pending queue.
1060 __skb_queue_tail(queue, skb);
1061 continue;
1064 if (copy > length)
1065 copy = length;
1067 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1068 skb_tailroom(skb) >= copy) {
1069 unsigned int off;
1071 off = skb->len;
1072 if (getfrag(from, skb_put(skb, copy),
1073 offset, copy, off, skb) < 0) {
1074 __skb_trim(skb, off);
1075 err = -EFAULT;
1076 goto error;
1078 } else {
1079 int i = skb_shinfo(skb)->nr_frags;
1081 err = -ENOMEM;
1082 if (!sk_page_frag_refill(sk, pfrag))
1083 goto error;
1085 if (!skb_can_coalesce(skb, i, pfrag->page,
1086 pfrag->offset)) {
1087 err = -EMSGSIZE;
1088 if (i == MAX_SKB_FRAGS)
1089 goto error;
1091 __skb_fill_page_desc(skb, i, pfrag->page,
1092 pfrag->offset, 0);
1093 skb_shinfo(skb)->nr_frags = ++i;
1094 get_page(pfrag->page);
1096 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1097 if (getfrag(from,
1098 page_address(pfrag->page) + pfrag->offset,
1099 offset, copy, skb->len, skb) < 0)
1100 goto error_efault;
1102 pfrag->offset += copy;
1103 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1104 skb->len += copy;
1105 skb->data_len += copy;
1106 skb->truesize += copy;
1107 atomic_add(copy, &sk->sk_wmem_alloc);
1109 offset += copy;
1110 length -= copy;
1113 return 0;
1115 error_efault:
1116 err = -EFAULT;
1117 error:
1118 cork->length -= length;
1119 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1120 return err;
1123 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1124 struct ipcm_cookie *ipc, struct rtable **rtp)
1126 struct ip_options_rcu *opt;
1127 struct rtable *rt;
1130 * setup for corking.
1132 opt = ipc->opt;
1133 if (opt) {
1134 if (!cork->opt) {
1135 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1136 sk->sk_allocation);
1137 if (unlikely(!cork->opt))
1138 return -ENOBUFS;
1140 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1141 cork->flags |= IPCORK_OPT;
1142 cork->addr = ipc->addr;
1144 rt = *rtp;
1145 if (unlikely(!rt))
1146 return -EFAULT;
1148 * We steal reference to this route, caller should not release it
1150 *rtp = NULL;
1151 cork->fragsize = ip_sk_use_pmtu(sk) ?
1152 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1153 cork->dst = &rt->dst;
1154 cork->length = 0;
1155 cork->ttl = ipc->ttl;
1156 cork->tos = ipc->tos;
1157 cork->priority = ipc->priority;
1158 cork->tx_flags = ipc->tx_flags;
1160 return 0;
1164 * ip_append_data() and ip_append_page() can make one large IP datagram
1165 * from many pieces of data. Each pieces will be holded on the socket
1166 * until ip_push_pending_frames() is called. Each piece can be a page
1167 * or non-page data.
1169 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1170 * this interface potentially.
1172 * LATER: length must be adjusted by pad at tail, when it is required.
1174 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1175 int getfrag(void *from, char *to, int offset, int len,
1176 int odd, struct sk_buff *skb),
1177 void *from, int length, int transhdrlen,
1178 struct ipcm_cookie *ipc, struct rtable **rtp,
1179 unsigned int flags)
1181 struct inet_sock *inet = inet_sk(sk);
1182 int err;
1184 if (flags&MSG_PROBE)
1185 return 0;
1187 if (skb_queue_empty(&sk->sk_write_queue)) {
1188 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1189 if (err)
1190 return err;
1191 } else {
1192 transhdrlen = 0;
1195 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1196 sk_page_frag(sk), getfrag,
1197 from, length, transhdrlen, flags);
1200 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1201 int offset, size_t size, int flags)
1203 struct inet_sock *inet = inet_sk(sk);
1204 struct sk_buff *skb;
1205 struct rtable *rt;
1206 struct ip_options *opt = NULL;
1207 struct inet_cork *cork;
1208 int hh_len;
1209 int mtu;
1210 int len;
1211 int err;
1212 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1214 if (inet->hdrincl)
1215 return -EPERM;
1217 if (flags&MSG_PROBE)
1218 return 0;
1220 if (skb_queue_empty(&sk->sk_write_queue))
1221 return -EINVAL;
1223 cork = &inet->cork.base;
1224 rt = (struct rtable *)cork->dst;
1225 if (cork->flags & IPCORK_OPT)
1226 opt = cork->opt;
1228 if (!(rt->dst.dev->features&NETIF_F_SG))
1229 return -EOPNOTSUPP;
1231 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1232 mtu = cork->fragsize;
1234 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1235 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1236 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1238 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1239 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1240 mtu - (opt ? opt->optlen : 0));
1241 return -EMSGSIZE;
1244 skb = skb_peek_tail(&sk->sk_write_queue);
1245 if (!skb)
1246 return -EINVAL;
1248 if ((size + skb->len > mtu) &&
1249 (skb_queue_len(&sk->sk_write_queue) == 1) &&
1250 (sk->sk_protocol == IPPROTO_UDP) &&
1251 (rt->dst.dev->features & NETIF_F_UFO)) {
1252 if (skb->ip_summed != CHECKSUM_PARTIAL)
1253 return -EOPNOTSUPP;
1255 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1256 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1258 cork->length += size;
1260 while (size > 0) {
1261 if (skb_is_gso(skb)) {
1262 len = size;
1263 } else {
1265 /* Check if the remaining data fits into current packet. */
1266 len = mtu - skb->len;
1267 if (len < size)
1268 len = maxfraglen - skb->len;
1270 if (len <= 0) {
1271 struct sk_buff *skb_prev;
1272 int alloclen;
1274 skb_prev = skb;
1275 fraggap = skb_prev->len - maxfraglen;
1277 alloclen = fragheaderlen + hh_len + fraggap + 15;
1278 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1279 if (unlikely(!skb)) {
1280 err = -ENOBUFS;
1281 goto error;
1285 * Fill in the control structures
1287 skb->ip_summed = CHECKSUM_NONE;
1288 skb->csum = 0;
1289 skb_reserve(skb, hh_len);
1292 * Find where to start putting bytes.
1294 skb_put(skb, fragheaderlen + fraggap);
1295 skb_reset_network_header(skb);
1296 skb->transport_header = (skb->network_header +
1297 fragheaderlen);
1298 if (fraggap) {
1299 skb->csum = skb_copy_and_csum_bits(skb_prev,
1300 maxfraglen,
1301 skb_transport_header(skb),
1302 fraggap, 0);
1303 skb_prev->csum = csum_sub(skb_prev->csum,
1304 skb->csum);
1305 pskb_trim_unique(skb_prev, maxfraglen);
1309 * Put the packet on the pending queue.
1311 __skb_queue_tail(&sk->sk_write_queue, skb);
1312 continue;
1315 if (len > size)
1316 len = size;
1318 if (skb_append_pagefrags(skb, page, offset, len)) {
1319 err = -EMSGSIZE;
1320 goto error;
1323 if (skb->ip_summed == CHECKSUM_NONE) {
1324 __wsum csum;
1325 csum = csum_page(page, offset, len);
1326 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1329 skb->len += len;
1330 skb->data_len += len;
1331 skb->truesize += len;
1332 atomic_add(len, &sk->sk_wmem_alloc);
1333 offset += len;
1334 size -= len;
1336 return 0;
1338 error:
1339 cork->length -= size;
1340 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1341 return err;
1344 static void ip_cork_release(struct inet_cork *cork)
1346 cork->flags &= ~IPCORK_OPT;
1347 kfree(cork->opt);
1348 cork->opt = NULL;
1349 dst_release(cork->dst);
1350 cork->dst = NULL;
1354 * Combined all pending IP fragments on the socket as one IP datagram
1355 * and push them out.
1357 struct sk_buff *__ip_make_skb(struct sock *sk,
1358 struct flowi4 *fl4,
1359 struct sk_buff_head *queue,
1360 struct inet_cork *cork)
1362 struct sk_buff *skb, *tmp_skb;
1363 struct sk_buff **tail_skb;
1364 struct inet_sock *inet = inet_sk(sk);
1365 struct net *net = sock_net(sk);
1366 struct ip_options *opt = NULL;
1367 struct rtable *rt = (struct rtable *)cork->dst;
1368 struct iphdr *iph;
1369 __be16 df = 0;
1370 __u8 ttl;
1372 skb = __skb_dequeue(queue);
1373 if (!skb)
1374 goto out;
1375 tail_skb = &(skb_shinfo(skb)->frag_list);
1377 /* move skb->data to ip header from ext header */
1378 if (skb->data < skb_network_header(skb))
1379 __skb_pull(skb, skb_network_offset(skb));
1380 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1381 __skb_pull(tmp_skb, skb_network_header_len(skb));
1382 *tail_skb = tmp_skb;
1383 tail_skb = &(tmp_skb->next);
1384 skb->len += tmp_skb->len;
1385 skb->data_len += tmp_skb->len;
1386 skb->truesize += tmp_skb->truesize;
1387 tmp_skb->destructor = NULL;
1388 tmp_skb->sk = NULL;
1391 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1392 * to fragment the frame generated here. No matter, what transforms
1393 * how transforms change size of the packet, it will come out.
1395 skb->ignore_df = ip_sk_ignore_df(sk);
1397 /* DF bit is set when we want to see DF on outgoing frames.
1398 * If ignore_df is set too, we still allow to fragment this frame
1399 * locally. */
1400 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1401 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1402 (skb->len <= dst_mtu(&rt->dst) &&
1403 ip_dont_fragment(sk, &rt->dst)))
1404 df = htons(IP_DF);
1406 if (cork->flags & IPCORK_OPT)
1407 opt = cork->opt;
1409 if (cork->ttl != 0)
1410 ttl = cork->ttl;
1411 else if (rt->rt_type == RTN_MULTICAST)
1412 ttl = inet->mc_ttl;
1413 else
1414 ttl = ip_select_ttl(inet, &rt->dst);
1416 iph = ip_hdr(skb);
1417 iph->version = 4;
1418 iph->ihl = 5;
1419 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1420 iph->frag_off = df;
1421 iph->ttl = ttl;
1422 iph->protocol = sk->sk_protocol;
1423 ip_copy_addrs(iph, fl4);
1424 ip_select_ident(net, skb, sk);
1426 if (opt) {
1427 iph->ihl += opt->optlen>>2;
1428 ip_options_build(skb, opt, cork->addr, rt, 0);
1431 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1432 skb->mark = sk->sk_mark;
1434 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1435 * on dst refcount
1437 cork->dst = NULL;
1438 skb_dst_set(skb, &rt->dst);
1440 if (iph->protocol == IPPROTO_ICMP)
1441 icmp_out_count(net, ((struct icmphdr *)
1442 skb_transport_header(skb))->type);
1444 ip_cork_release(cork);
1445 out:
1446 return skb;
1449 int ip_send_skb(struct net *net, struct sk_buff *skb)
1451 int err;
1453 err = ip_local_out(net, skb->sk, skb);
1454 if (err) {
1455 if (err > 0)
1456 err = net_xmit_errno(err);
1457 if (err)
1458 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1461 return err;
1464 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1466 struct sk_buff *skb;
1468 skb = ip_finish_skb(sk, fl4);
1469 if (!skb)
1470 return 0;
1472 /* Netfilter gets whole the not fragmented skb. */
1473 return ip_send_skb(sock_net(sk), skb);
1477 * Throw away all pending data on the socket.
1479 static void __ip_flush_pending_frames(struct sock *sk,
1480 struct sk_buff_head *queue,
1481 struct inet_cork *cork)
1483 struct sk_buff *skb;
1485 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1486 kfree_skb(skb);
1488 ip_cork_release(cork);
1491 void ip_flush_pending_frames(struct sock *sk)
1493 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1496 struct sk_buff *ip_make_skb(struct sock *sk,
1497 struct flowi4 *fl4,
1498 int getfrag(void *from, char *to, int offset,
1499 int len, int odd, struct sk_buff *skb),
1500 void *from, int length, int transhdrlen,
1501 struct ipcm_cookie *ipc, struct rtable **rtp,
1502 unsigned int flags)
1504 struct inet_cork cork;
1505 struct sk_buff_head queue;
1506 int err;
1508 if (flags & MSG_PROBE)
1509 return NULL;
1511 __skb_queue_head_init(&queue);
1513 cork.flags = 0;
1514 cork.addr = 0;
1515 cork.opt = NULL;
1516 err = ip_setup_cork(sk, &cork, ipc, rtp);
1517 if (err)
1518 return ERR_PTR(err);
1520 err = __ip_append_data(sk, fl4, &queue, &cork,
1521 &current->task_frag, getfrag,
1522 from, length, transhdrlen, flags);
1523 if (err) {
1524 __ip_flush_pending_frames(sk, &queue, &cork);
1525 return ERR_PTR(err);
1528 return __ip_make_skb(sk, fl4, &queue, &cork);
1532 * Fetch data from kernel space and fill in checksum if needed.
1534 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1535 int len, int odd, struct sk_buff *skb)
1537 __wsum csum;
1539 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1540 skb->csum = csum_block_add(skb->csum, csum, odd);
1541 return 0;
1545 * Generic function to send a packet as reply to another packet.
1546 * Used to send some TCP resets/acks so far.
1548 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1549 const struct ip_options *sopt,
1550 __be32 daddr, __be32 saddr,
1551 const struct ip_reply_arg *arg,
1552 unsigned int len)
1554 struct ip_options_data replyopts;
1555 struct ipcm_cookie ipc;
1556 struct flowi4 fl4;
1557 struct rtable *rt = skb_rtable(skb);
1558 struct net *net = sock_net(sk);
1559 struct sk_buff *nskb;
1560 int err;
1561 int oif;
1563 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1564 return;
1566 ipc.addr = daddr;
1567 ipc.opt = NULL;
1568 ipc.tx_flags = 0;
1569 ipc.ttl = 0;
1570 ipc.tos = -1;
1572 if (replyopts.opt.opt.optlen) {
1573 ipc.opt = &replyopts.opt;
1575 if (replyopts.opt.opt.srr)
1576 daddr = replyopts.opt.opt.faddr;
1579 oif = arg->bound_dev_if;
1580 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1581 oif = skb->skb_iif;
1583 flowi4_init_output(&fl4, oif,
1584 IP4_REPLY_MARK(net, skb->mark),
1585 RT_TOS(arg->tos),
1586 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1587 ip_reply_arg_flowi_flags(arg),
1588 daddr, saddr,
1589 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1590 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1591 rt = ip_route_output_key(net, &fl4);
1592 if (IS_ERR(rt))
1593 return;
1595 inet_sk(sk)->tos = arg->tos;
1597 sk->sk_priority = skb->priority;
1598 sk->sk_protocol = ip_hdr(skb)->protocol;
1599 sk->sk_bound_dev_if = arg->bound_dev_if;
1600 sk->sk_sndbuf = sysctl_wmem_default;
1601 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1602 len, 0, &ipc, &rt, MSG_DONTWAIT);
1603 if (unlikely(err)) {
1604 ip_flush_pending_frames(sk);
1605 goto out;
1608 nskb = skb_peek(&sk->sk_write_queue);
1609 if (nskb) {
1610 if (arg->csumoffset >= 0)
1611 *((__sum16 *)skb_transport_header(nskb) +
1612 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1613 arg->csum));
1614 nskb->ip_summed = CHECKSUM_NONE;
1615 ip_push_pending_frames(sk, &fl4);
1617 out:
1618 ip_rt_put(rt);
1621 void __init ip_init(void)
1623 ip_rt_init();
1624 inet_initpeers();
1626 #if defined(CONFIG_IP_MULTICAST)
1627 igmp_mc_init();
1628 #endif