dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blob5e162b8ab1846d7ad6d7b7cf7d9af76c8ea01570
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
287 int sysctl_tcp_min_tso_segs __read_mostly = 2;
289 int sysctl_tcp_autocorking __read_mostly = 1;
291 struct percpu_counter tcp_orphan_count;
292 EXPORT_SYMBOL_GPL(tcp_orphan_count);
294 long sysctl_tcp_mem[3] __read_mostly;
295 int sysctl_tcp_wmem[3] __read_mostly;
296 int sysctl_tcp_rmem[3] __read_mostly;
298 EXPORT_SYMBOL(sysctl_tcp_mem);
299 EXPORT_SYMBOL(sysctl_tcp_rmem);
300 EXPORT_SYMBOL(sysctl_tcp_wmem);
302 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
306 * Current number of TCP sockets.
308 struct percpu_counter tcp_sockets_allocated;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
312 * TCP splice context
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
326 int tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL(tcp_memory_pressure);
329 void tcp_enter_memory_pressure(struct sock *sk)
331 if (!tcp_memory_pressure) {
332 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
333 tcp_memory_pressure = 1;
336 EXPORT_SYMBOL(tcp_enter_memory_pressure);
338 /* Convert seconds to retransmits based on initial and max timeout */
339 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
341 u8 res = 0;
343 if (seconds > 0) {
344 int period = timeout;
346 res = 1;
347 while (seconds > period && res < 255) {
348 res++;
349 timeout <<= 1;
350 if (timeout > rto_max)
351 timeout = rto_max;
352 period += timeout;
355 return res;
358 /* Convert retransmits to seconds based on initial and max timeout */
359 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
361 int period = 0;
363 if (retrans > 0) {
364 period = timeout;
365 while (--retrans) {
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
372 return period;
375 /* Address-family independent initialization for a tcp_sock.
377 * NOTE: A lot of things set to zero explicitly by call to
378 * sk_alloc() so need not be done here.
380 void tcp_init_sock(struct sock *sk)
382 struct inet_connection_sock *icsk = inet_csk(sk);
383 struct tcp_sock *tp = tcp_sk(sk);
385 __skb_queue_head_init(&tp->out_of_order_queue);
386 tcp_init_xmit_timers(sk);
387 tcp_prequeue_init(tp);
388 INIT_LIST_HEAD(&tp->tsq_node);
390 icsk->icsk_rto = TCP_TIMEOUT_INIT;
391 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
392 tp->rtt_min[0].rtt = ~0U;
394 /* So many TCP implementations out there (incorrectly) count the
395 * initial SYN frame in their delayed-ACK and congestion control
396 * algorithms that we must have the following bandaid to talk
397 * efficiently to them. -DaveM
399 tp->snd_cwnd = TCP_INIT_CWND;
401 /* See draft-stevens-tcpca-spec-01 for discussion of the
402 * initialization of these values.
404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 tp->snd_cwnd_clamp = ~0;
406 tp->mss_cache = TCP_MSS_DEFAULT;
407 u64_stats_init(&tp->syncp);
409 tp->reordering = sysctl_tcp_reordering;
410 tcp_enable_early_retrans(tp);
411 tcp_assign_congestion_control(sk);
413 tp->tsoffset = 0;
415 sk->sk_state = TCP_CLOSE;
417 sk->sk_write_space = sk_stream_write_space;
418 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
420 icsk->icsk_sync_mss = tcp_sync_mss;
422 sk->sk_sndbuf = sysctl_tcp_wmem[1];
423 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 local_bh_disable();
426 sock_update_memcg(sk);
427 sk_sockets_allocated_inc(sk);
428 local_bh_enable();
430 EXPORT_SYMBOL(tcp_init_sock);
432 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
434 if (sk->sk_tsflags) {
435 struct skb_shared_info *shinfo = skb_shinfo(skb);
437 sock_tx_timestamp(sk, &shinfo->tx_flags);
438 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
439 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
444 * Wait for a TCP event.
446 * Note that we don't need to lock the socket, as the upper poll layers
447 * take care of normal races (between the test and the event) and we don't
448 * go look at any of the socket buffers directly.
450 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 unsigned int mask;
453 struct sock *sk = sock->sk;
454 const struct tcp_sock *tp = tcp_sk(sk);
455 int state;
457 sock_rps_record_flow(sk);
459 sock_poll_wait(file, sk_sleep(sk), wait);
461 state = sk_state_load(sk);
462 if (state == TCP_LISTEN)
463 return inet_csk_listen_poll(sk);
465 /* Socket is not locked. We are protected from async events
466 * by poll logic and correct handling of state changes
467 * made by other threads is impossible in any case.
470 mask = 0;
473 * POLLHUP is certainly not done right. But poll() doesn't
474 * have a notion of HUP in just one direction, and for a
475 * socket the read side is more interesting.
477 * Some poll() documentation says that POLLHUP is incompatible
478 * with the POLLOUT/POLLWR flags, so somebody should check this
479 * all. But careful, it tends to be safer to return too many
480 * bits than too few, and you can easily break real applications
481 * if you don't tell them that something has hung up!
483 * Check-me.
485 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
486 * our fs/select.c). It means that after we received EOF,
487 * poll always returns immediately, making impossible poll() on write()
488 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
489 * if and only if shutdown has been made in both directions.
490 * Actually, it is interesting to look how Solaris and DUX
491 * solve this dilemma. I would prefer, if POLLHUP were maskable,
492 * then we could set it on SND_SHUTDOWN. BTW examples given
493 * in Stevens' books assume exactly this behaviour, it explains
494 * why POLLHUP is incompatible with POLLOUT. --ANK
496 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
497 * blocking on fresh not-connected or disconnected socket. --ANK
499 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
500 mask |= POLLHUP;
501 if (sk->sk_shutdown & RCV_SHUTDOWN)
502 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504 /* Connected or passive Fast Open socket? */
505 if (state != TCP_SYN_SENT &&
506 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
507 int target = sock_rcvlowat(sk, 0, INT_MAX);
509 if (tp->urg_seq == tp->copied_seq &&
510 !sock_flag(sk, SOCK_URGINLINE) &&
511 tp->urg_data)
512 target++;
514 if (tp->rcv_nxt - tp->copied_seq >= target)
515 mask |= POLLIN | POLLRDNORM;
517 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
518 if (sk_stream_is_writeable(sk)) {
519 mask |= POLLOUT | POLLWRNORM;
520 } else { /* send SIGIO later */
521 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
522 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524 /* Race breaker. If space is freed after
525 * wspace test but before the flags are set,
526 * IO signal will be lost. Memory barrier
527 * pairs with the input side.
529 smp_mb__after_atomic();
530 if (sk_stream_is_writeable(sk))
531 mask |= POLLOUT | POLLWRNORM;
533 } else
534 mask |= POLLOUT | POLLWRNORM;
536 if (tp->urg_data & TCP_URG_VALID)
537 mask |= POLLPRI;
539 /* This barrier is coupled with smp_wmb() in tcp_reset() */
540 smp_rmb();
541 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
542 mask |= POLLERR;
544 return mask;
546 EXPORT_SYMBOL(tcp_poll);
548 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 struct tcp_sock *tp = tcp_sk(sk);
551 int answ;
552 bool slow;
554 switch (cmd) {
555 case SIOCINQ:
556 if (sk->sk_state == TCP_LISTEN)
557 return -EINVAL;
559 slow = lock_sock_fast(sk);
560 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
561 answ = 0;
562 else if (sock_flag(sk, SOCK_URGINLINE) ||
563 !tp->urg_data ||
564 before(tp->urg_seq, tp->copied_seq) ||
565 !before(tp->urg_seq, tp->rcv_nxt)) {
567 answ = tp->rcv_nxt - tp->copied_seq;
569 /* Subtract 1, if FIN was received */
570 if (answ && sock_flag(sk, SOCK_DONE))
571 answ--;
572 } else
573 answ = tp->urg_seq - tp->copied_seq;
574 unlock_sock_fast(sk, slow);
575 break;
576 case SIOCATMARK:
577 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
578 break;
579 case SIOCOUTQ:
580 if (sk->sk_state == TCP_LISTEN)
581 return -EINVAL;
583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 answ = 0;
585 else
586 answ = tp->write_seq - tp->snd_una;
587 break;
588 case SIOCOUTQNSD:
589 if (sk->sk_state == TCP_LISTEN)
590 return -EINVAL;
592 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
593 answ = 0;
594 else
595 answ = tp->write_seq - tp->snd_nxt;
596 break;
597 default:
598 return -ENOIOCTLCMD;
601 return put_user(answ, (int __user *)arg);
603 EXPORT_SYMBOL(tcp_ioctl);
605 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
607 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
608 tp->pushed_seq = tp->write_seq;
611 static inline bool forced_push(const struct tcp_sock *tp)
613 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
616 static void skb_entail(struct sock *sk, struct sk_buff *skb)
618 struct tcp_sock *tp = tcp_sk(sk);
619 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
621 skb->csum = 0;
622 tcb->seq = tcb->end_seq = tp->write_seq;
623 tcb->tcp_flags = TCPHDR_ACK;
624 tcb->sacked = 0;
625 __skb_header_release(skb);
626 tcp_add_write_queue_tail(sk, skb);
627 sk->sk_wmem_queued += skb->truesize;
628 sk_mem_charge(sk, skb->truesize);
629 if (tp->nonagle & TCP_NAGLE_PUSH)
630 tp->nonagle &= ~TCP_NAGLE_PUSH;
632 tcp_slow_start_after_idle_check(sk);
635 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
637 if (flags & MSG_OOB)
638 tp->snd_up = tp->write_seq;
641 /* If a not yet filled skb is pushed, do not send it if
642 * we have data packets in Qdisc or NIC queues :
643 * Because TX completion will happen shortly, it gives a chance
644 * to coalesce future sendmsg() payload into this skb, without
645 * need for a timer, and with no latency trade off.
646 * As packets containing data payload have a bigger truesize
647 * than pure acks (dataless) packets, the last checks prevent
648 * autocorking if we only have an ACK in Qdisc/NIC queues,
649 * or if TX completion was delayed after we processed ACK packet.
651 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
652 int size_goal)
654 return skb->len < size_goal &&
655 sysctl_tcp_autocorking &&
656 skb != tcp_write_queue_head(sk) &&
657 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
660 static void tcp_push(struct sock *sk, int flags, int mss_now,
661 int nonagle, int size_goal)
663 struct tcp_sock *tp = tcp_sk(sk);
664 struct sk_buff *skb;
666 if (!tcp_send_head(sk))
667 return;
669 skb = tcp_write_queue_tail(sk);
670 if (!(flags & MSG_MORE) || forced_push(tp))
671 tcp_mark_push(tp, skb);
673 tcp_mark_urg(tp, flags);
675 if (tcp_should_autocork(sk, skb, size_goal)) {
677 /* avoid atomic op if TSQ_THROTTLED bit is already set */
678 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
679 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
680 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
682 /* It is possible TX completion already happened
683 * before we set TSQ_THROTTLED.
685 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
686 return;
689 if (flags & MSG_MORE)
690 nonagle = TCP_NAGLE_CORK;
692 __tcp_push_pending_frames(sk, mss_now, nonagle);
695 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
696 unsigned int offset, size_t len)
698 struct tcp_splice_state *tss = rd_desc->arg.data;
699 int ret;
701 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
702 min(rd_desc->count, len), tss->flags,
703 skb_socket_splice);
704 if (ret > 0)
705 rd_desc->count -= ret;
706 return ret;
709 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
711 /* Store TCP splice context information in read_descriptor_t. */
712 read_descriptor_t rd_desc = {
713 .arg.data = tss,
714 .count = tss->len,
717 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
721 * tcp_splice_read - splice data from TCP socket to a pipe
722 * @sock: socket to splice from
723 * @ppos: position (not valid)
724 * @pipe: pipe to splice to
725 * @len: number of bytes to splice
726 * @flags: splice modifier flags
728 * Description:
729 * Will read pages from given socket and fill them into a pipe.
732 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
733 struct pipe_inode_info *pipe, size_t len,
734 unsigned int flags)
736 struct sock *sk = sock->sk;
737 struct tcp_splice_state tss = {
738 .pipe = pipe,
739 .len = len,
740 .flags = flags,
742 long timeo;
743 ssize_t spliced;
744 int ret;
746 sock_rps_record_flow(sk);
748 * We can't seek on a socket input
750 if (unlikely(*ppos))
751 return -ESPIPE;
753 ret = spliced = 0;
755 lock_sock(sk);
757 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
758 while (tss.len) {
759 ret = __tcp_splice_read(sk, &tss);
760 if (ret < 0)
761 break;
762 else if (!ret) {
763 if (spliced)
764 break;
765 if (sock_flag(sk, SOCK_DONE))
766 break;
767 if (sk->sk_err) {
768 ret = sock_error(sk);
769 break;
771 if (sk->sk_shutdown & RCV_SHUTDOWN)
772 break;
773 if (sk->sk_state == TCP_CLOSE) {
775 * This occurs when user tries to read
776 * from never connected socket.
778 if (!sock_flag(sk, SOCK_DONE))
779 ret = -ENOTCONN;
780 break;
782 if (!timeo) {
783 ret = -EAGAIN;
784 break;
786 /* if __tcp_splice_read() got nothing while we have
787 * an skb in receive queue, we do not want to loop.
788 * This might happen with URG data.
790 if (!skb_queue_empty(&sk->sk_receive_queue))
791 break;
792 sk_wait_data(sk, &timeo, NULL);
793 if (signal_pending(current)) {
794 ret = sock_intr_errno(timeo);
795 break;
797 continue;
799 tss.len -= ret;
800 spliced += ret;
802 if (!timeo)
803 break;
804 release_sock(sk);
805 lock_sock(sk);
807 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
808 (sk->sk_shutdown & RCV_SHUTDOWN) ||
809 signal_pending(current))
810 break;
813 release_sock(sk);
815 if (spliced)
816 return spliced;
818 return ret;
820 EXPORT_SYMBOL(tcp_splice_read);
822 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
823 bool force_schedule)
825 struct sk_buff *skb;
827 /* The TCP header must be at least 32-bit aligned. */
828 size = ALIGN(size, 4);
830 if (unlikely(tcp_under_memory_pressure(sk)))
831 sk_mem_reclaim_partial(sk);
833 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
834 if (likely(skb)) {
835 bool mem_scheduled;
837 if (force_schedule) {
838 mem_scheduled = true;
839 sk_forced_mem_schedule(sk, skb->truesize);
840 } else {
841 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
843 if (likely(mem_scheduled)) {
844 skb_reserve(skb, sk->sk_prot->max_header);
846 * Make sure that we have exactly size bytes
847 * available to the caller, no more, no less.
849 skb->reserved_tailroom = skb->end - skb->tail - size;
850 return skb;
852 __kfree_skb(skb);
853 } else {
854 sk->sk_prot->enter_memory_pressure(sk);
855 sk_stream_moderate_sndbuf(sk);
857 return NULL;
860 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
861 int large_allowed)
863 struct tcp_sock *tp = tcp_sk(sk);
864 u32 new_size_goal, size_goal;
866 if (!large_allowed || !sk_can_gso(sk))
867 return mss_now;
869 /* Note : tcp_tso_autosize() will eventually split this later */
870 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
871 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
873 /* We try hard to avoid divides here */
874 size_goal = tp->gso_segs * mss_now;
875 if (unlikely(new_size_goal < size_goal ||
876 new_size_goal >= size_goal + mss_now)) {
877 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
878 sk->sk_gso_max_segs);
879 size_goal = tp->gso_segs * mss_now;
882 return max(size_goal, mss_now);
885 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
887 int mss_now;
889 mss_now = tcp_current_mss(sk);
890 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
892 return mss_now;
895 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
896 size_t size, int flags)
898 struct tcp_sock *tp = tcp_sk(sk);
899 int mss_now, size_goal;
900 int err;
901 ssize_t copied;
902 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
904 /* Wait for a connection to finish. One exception is TCP Fast Open
905 * (passive side) where data is allowed to be sent before a connection
906 * is fully established.
908 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
909 !tcp_passive_fastopen(sk)) {
910 err = sk_stream_wait_connect(sk, &timeo);
911 if (err != 0)
912 goto out_err;
915 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
917 mss_now = tcp_send_mss(sk, &size_goal, flags);
918 copied = 0;
920 err = -EPIPE;
921 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
922 goto out_err;
924 while (size > 0) {
925 struct sk_buff *skb = tcp_write_queue_tail(sk);
926 int copy, i;
927 bool can_coalesce;
929 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
930 new_segment:
931 if (!sk_stream_memory_free(sk))
932 goto wait_for_sndbuf;
934 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
935 skb_queue_empty(&sk->sk_write_queue));
936 if (!skb)
937 goto wait_for_memory;
939 skb_entail(sk, skb);
940 copy = size_goal;
943 if (copy > size)
944 copy = size;
946 i = skb_shinfo(skb)->nr_frags;
947 can_coalesce = skb_can_coalesce(skb, i, page, offset);
948 if (!can_coalesce && i >= sysctl_max_skb_frags) {
949 tcp_mark_push(tp, skb);
950 goto new_segment;
952 if (!sk_wmem_schedule(sk, copy))
953 goto wait_for_memory;
955 if (can_coalesce) {
956 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
957 } else {
958 get_page(page);
959 skb_fill_page_desc(skb, i, page, offset, copy);
961 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
963 skb->len += copy;
964 skb->data_len += copy;
965 skb->truesize += copy;
966 sk->sk_wmem_queued += copy;
967 sk_mem_charge(sk, copy);
968 skb->ip_summed = CHECKSUM_PARTIAL;
969 tp->write_seq += copy;
970 TCP_SKB_CB(skb)->end_seq += copy;
971 tcp_skb_pcount_set(skb, 0);
973 if (!copied)
974 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
976 copied += copy;
977 offset += copy;
978 size -= copy;
979 if (!size) {
980 tcp_tx_timestamp(sk, skb);
981 goto out;
984 if (skb->len < size_goal || (flags & MSG_OOB))
985 continue;
987 if (forced_push(tp)) {
988 tcp_mark_push(tp, skb);
989 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
990 } else if (skb == tcp_send_head(sk))
991 tcp_push_one(sk, mss_now);
992 continue;
994 wait_for_sndbuf:
995 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
996 wait_for_memory:
997 tcp_push(sk, flags & ~MSG_MORE, mss_now,
998 TCP_NAGLE_PUSH, size_goal);
1000 err = sk_stream_wait_memory(sk, &timeo);
1001 if (err != 0)
1002 goto do_error;
1004 mss_now = tcp_send_mss(sk, &size_goal, flags);
1007 out:
1008 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1009 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1010 return copied;
1012 do_error:
1013 if (copied)
1014 goto out;
1015 out_err:
1016 /* make sure we wake any epoll edge trigger waiter */
1017 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1018 sk->sk_write_space(sk);
1019 return sk_stream_error(sk, flags, err);
1022 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1023 size_t size, int flags)
1025 ssize_t res;
1027 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1028 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1029 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1030 flags);
1032 lock_sock(sk);
1033 res = do_tcp_sendpages(sk, page, offset, size, flags);
1034 release_sock(sk);
1035 return res;
1037 EXPORT_SYMBOL(tcp_sendpage);
1039 static inline int select_size(const struct sock *sk, bool sg)
1041 const struct tcp_sock *tp = tcp_sk(sk);
1042 int tmp = tp->mss_cache;
1044 if (sg) {
1045 if (sk_can_gso(sk)) {
1046 /* Small frames wont use a full page:
1047 * Payload will immediately follow tcp header.
1049 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1050 } else {
1051 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1053 if (tmp >= pgbreak &&
1054 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1055 tmp = pgbreak;
1059 return tmp;
1062 void tcp_free_fastopen_req(struct tcp_sock *tp)
1064 if (tp->fastopen_req) {
1065 kfree(tp->fastopen_req);
1066 tp->fastopen_req = NULL;
1070 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1071 int *copied, size_t size)
1073 struct tcp_sock *tp = tcp_sk(sk);
1074 struct sockaddr *uaddr = msg->msg_name;
1075 int err, flags;
1077 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1078 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1079 uaddr->sa_family == AF_UNSPEC))
1080 return -EOPNOTSUPP;
1081 if (tp->fastopen_req)
1082 return -EALREADY; /* Another Fast Open is in progress */
1084 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1085 sk->sk_allocation);
1086 if (unlikely(!tp->fastopen_req))
1087 return -ENOBUFS;
1088 tp->fastopen_req->data = msg;
1089 tp->fastopen_req->size = size;
1091 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1092 err = __inet_stream_connect(sk->sk_socket, uaddr,
1093 msg->msg_namelen, flags);
1094 *copied = tp->fastopen_req->copied;
1095 tcp_free_fastopen_req(tp);
1096 return err;
1099 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1101 struct tcp_sock *tp = tcp_sk(sk);
1102 struct sk_buff *skb;
1103 int flags, err, copied = 0;
1104 int mss_now = 0, size_goal, copied_syn = 0;
1105 bool sg;
1106 long timeo;
1108 lock_sock(sk);
1110 flags = msg->msg_flags;
1111 if ((flags & MSG_FASTOPEN) && !tp->repair) {
1112 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1113 if (err == -EINPROGRESS && copied_syn > 0)
1114 goto out;
1115 else if (err)
1116 goto out_err;
1119 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1121 /* Wait for a connection to finish. One exception is TCP Fast Open
1122 * (passive side) where data is allowed to be sent before a connection
1123 * is fully established.
1125 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1126 !tcp_passive_fastopen(sk)) {
1127 err = sk_stream_wait_connect(sk, &timeo);
1128 if (err != 0)
1129 goto do_error;
1132 if (unlikely(tp->repair)) {
1133 if (tp->repair_queue == TCP_RECV_QUEUE) {
1134 copied = tcp_send_rcvq(sk, msg, size);
1135 goto out_nopush;
1138 err = -EINVAL;
1139 if (tp->repair_queue == TCP_NO_QUEUE)
1140 goto out_err;
1142 /* 'common' sending to sendq */
1145 /* This should be in poll */
1146 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1148 mss_now = tcp_send_mss(sk, &size_goal, flags);
1150 /* Ok commence sending. */
1151 copied = 0;
1153 err = -EPIPE;
1154 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1155 goto out_err;
1157 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1159 while (msg_data_left(msg)) {
1160 int copy = 0;
1161 int max = size_goal;
1163 skb = tcp_write_queue_tail(sk);
1164 if (tcp_send_head(sk)) {
1165 if (skb->ip_summed == CHECKSUM_NONE)
1166 max = mss_now;
1167 copy = max - skb->len;
1170 if (copy <= 0) {
1171 new_segment:
1172 /* Allocate new segment. If the interface is SG,
1173 * allocate skb fitting to single page.
1175 if (!sk_stream_memory_free(sk))
1176 goto wait_for_sndbuf;
1178 skb = sk_stream_alloc_skb(sk,
1179 select_size(sk, sg),
1180 sk->sk_allocation,
1181 skb_queue_empty(&sk->sk_write_queue));
1182 if (!skb)
1183 goto wait_for_memory;
1186 * Check whether we can use HW checksum.
1188 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1189 skb->ip_summed = CHECKSUM_PARTIAL;
1191 skb_entail(sk, skb);
1192 copy = size_goal;
1193 max = size_goal;
1195 /* All packets are restored as if they have
1196 * already been sent. skb_mstamp isn't set to
1197 * avoid wrong rtt estimation.
1199 if (tp->repair)
1200 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1203 /* Try to append data to the end of skb. */
1204 if (copy > msg_data_left(msg))
1205 copy = msg_data_left(msg);
1207 /* Where to copy to? */
1208 if (skb_availroom(skb) > 0) {
1209 /* We have some space in skb head. Superb! */
1210 copy = min_t(int, copy, skb_availroom(skb));
1211 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1212 if (err)
1213 goto do_fault;
1214 } else {
1215 bool merge = true;
1216 int i = skb_shinfo(skb)->nr_frags;
1217 struct page_frag *pfrag = sk_page_frag(sk);
1219 if (!sk_page_frag_refill(sk, pfrag))
1220 goto wait_for_memory;
1222 if (!skb_can_coalesce(skb, i, pfrag->page,
1223 pfrag->offset)) {
1224 if (i >= sysctl_max_skb_frags || !sg) {
1225 tcp_mark_push(tp, skb);
1226 goto new_segment;
1228 merge = false;
1231 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1233 if (!sk_wmem_schedule(sk, copy))
1234 goto wait_for_memory;
1236 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1237 pfrag->page,
1238 pfrag->offset,
1239 copy);
1240 if (err)
1241 goto do_error;
1243 /* Update the skb. */
1244 if (merge) {
1245 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1246 } else {
1247 skb_fill_page_desc(skb, i, pfrag->page,
1248 pfrag->offset, copy);
1249 get_page(pfrag->page);
1251 pfrag->offset += copy;
1254 if (!copied)
1255 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1257 tp->write_seq += copy;
1258 TCP_SKB_CB(skb)->end_seq += copy;
1259 tcp_skb_pcount_set(skb, 0);
1261 copied += copy;
1262 if (!msg_data_left(msg)) {
1263 tcp_tx_timestamp(sk, skb);
1264 goto out;
1267 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1268 continue;
1270 if (forced_push(tp)) {
1271 tcp_mark_push(tp, skb);
1272 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1273 } else if (skb == tcp_send_head(sk))
1274 tcp_push_one(sk, mss_now);
1275 continue;
1277 wait_for_sndbuf:
1278 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1279 wait_for_memory:
1280 if (copied)
1281 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1282 TCP_NAGLE_PUSH, size_goal);
1284 err = sk_stream_wait_memory(sk, &timeo);
1285 if (err != 0)
1286 goto do_error;
1288 mss_now = tcp_send_mss(sk, &size_goal, flags);
1291 out:
1292 if (copied)
1293 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1294 out_nopush:
1295 release_sock(sk);
1296 return copied + copied_syn;
1298 do_fault:
1299 if (!skb->len) {
1300 tcp_unlink_write_queue(skb, sk);
1301 /* It is the one place in all of TCP, except connection
1302 * reset, where we can be unlinking the send_head.
1304 tcp_check_send_head(sk, skb);
1305 sk_wmem_free_skb(sk, skb);
1308 do_error:
1309 if (copied + copied_syn)
1310 goto out;
1311 out_err:
1312 err = sk_stream_error(sk, flags, err);
1313 /* make sure we wake any epoll edge trigger waiter */
1314 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1315 sk->sk_write_space(sk);
1316 release_sock(sk);
1317 return err;
1319 EXPORT_SYMBOL(tcp_sendmsg);
1322 * Handle reading urgent data. BSD has very simple semantics for
1323 * this, no blocking and very strange errors 8)
1326 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1328 struct tcp_sock *tp = tcp_sk(sk);
1330 /* No URG data to read. */
1331 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1332 tp->urg_data == TCP_URG_READ)
1333 return -EINVAL; /* Yes this is right ! */
1335 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1336 return -ENOTCONN;
1338 if (tp->urg_data & TCP_URG_VALID) {
1339 int err = 0;
1340 char c = tp->urg_data;
1342 if (!(flags & MSG_PEEK))
1343 tp->urg_data = TCP_URG_READ;
1345 /* Read urgent data. */
1346 msg->msg_flags |= MSG_OOB;
1348 if (len > 0) {
1349 if (!(flags & MSG_TRUNC))
1350 err = memcpy_to_msg(msg, &c, 1);
1351 len = 1;
1352 } else
1353 msg->msg_flags |= MSG_TRUNC;
1355 return err ? -EFAULT : len;
1358 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1359 return 0;
1361 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1362 * the available implementations agree in this case:
1363 * this call should never block, independent of the
1364 * blocking state of the socket.
1365 * Mike <pall@rz.uni-karlsruhe.de>
1367 return -EAGAIN;
1370 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1372 struct sk_buff *skb;
1373 int copied = 0, err = 0;
1375 /* XXX -- need to support SO_PEEK_OFF */
1377 skb_queue_walk(&sk->sk_write_queue, skb) {
1378 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1379 if (err)
1380 break;
1382 copied += skb->len;
1385 return err ?: copied;
1388 /* Clean up the receive buffer for full frames taken by the user,
1389 * then send an ACK if necessary. COPIED is the number of bytes
1390 * tcp_recvmsg has given to the user so far, it speeds up the
1391 * calculation of whether or not we must ACK for the sake of
1392 * a window update.
1394 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 bool time_to_ack = false;
1399 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1401 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1402 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1403 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1405 if (inet_csk_ack_scheduled(sk)) {
1406 const struct inet_connection_sock *icsk = inet_csk(sk);
1407 /* Delayed ACKs frequently hit locked sockets during bulk
1408 * receive. */
1409 if (icsk->icsk_ack.blocked ||
1410 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1411 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1413 * If this read emptied read buffer, we send ACK, if
1414 * connection is not bidirectional, user drained
1415 * receive buffer and there was a small segment
1416 * in queue.
1418 (copied > 0 &&
1419 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1420 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1421 !icsk->icsk_ack.pingpong)) &&
1422 !atomic_read(&sk->sk_rmem_alloc)))
1423 time_to_ack = true;
1426 /* We send an ACK if we can now advertise a non-zero window
1427 * which has been raised "significantly".
1429 * Even if window raised up to infinity, do not send window open ACK
1430 * in states, where we will not receive more. It is useless.
1432 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1433 __u32 rcv_window_now = tcp_receive_window(tp);
1435 /* Optimize, __tcp_select_window() is not cheap. */
1436 if (2*rcv_window_now <= tp->window_clamp) {
1437 __u32 new_window = __tcp_select_window(sk);
1439 /* Send ACK now, if this read freed lots of space
1440 * in our buffer. Certainly, new_window is new window.
1441 * We can advertise it now, if it is not less than current one.
1442 * "Lots" means "at least twice" here.
1444 if (new_window && new_window >= 2 * rcv_window_now)
1445 time_to_ack = true;
1448 if (time_to_ack)
1449 tcp_send_ack(sk);
1452 static void tcp_prequeue_process(struct sock *sk)
1454 struct sk_buff *skb;
1455 struct tcp_sock *tp = tcp_sk(sk);
1457 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1459 /* RX process wants to run with disabled BHs, though it is not
1460 * necessary */
1461 local_bh_disable();
1462 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1463 sk_backlog_rcv(sk, skb);
1464 local_bh_enable();
1466 /* Clear memory counter. */
1467 tp->ucopy.memory = 0;
1470 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1472 struct sk_buff *skb;
1473 u32 offset;
1475 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1476 offset = seq - TCP_SKB_CB(skb)->seq;
1477 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1478 offset--;
1479 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1480 *off = offset;
1481 return skb;
1483 /* This looks weird, but this can happen if TCP collapsing
1484 * splitted a fat GRO packet, while we released socket lock
1485 * in skb_splice_bits()
1487 sk_eat_skb(sk, skb);
1489 return NULL;
1493 * This routine provides an alternative to tcp_recvmsg() for routines
1494 * that would like to handle copying from skbuffs directly in 'sendfile'
1495 * fashion.
1496 * Note:
1497 * - It is assumed that the socket was locked by the caller.
1498 * - The routine does not block.
1499 * - At present, there is no support for reading OOB data
1500 * or for 'peeking' the socket using this routine
1501 * (although both would be easy to implement).
1503 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1504 sk_read_actor_t recv_actor)
1506 struct sk_buff *skb;
1507 struct tcp_sock *tp = tcp_sk(sk);
1508 u32 seq = tp->copied_seq;
1509 u32 offset;
1510 int copied = 0;
1512 if (sk->sk_state == TCP_LISTEN)
1513 return -ENOTCONN;
1514 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1515 if (offset < skb->len) {
1516 int used;
1517 size_t len;
1519 len = skb->len - offset;
1520 /* Stop reading if we hit a patch of urgent data */
1521 if (tp->urg_data) {
1522 u32 urg_offset = tp->urg_seq - seq;
1523 if (urg_offset < len)
1524 len = urg_offset;
1525 if (!len)
1526 break;
1528 used = recv_actor(desc, skb, offset, len);
1529 if (used <= 0) {
1530 if (!copied)
1531 copied = used;
1532 break;
1533 } else if (used <= len) {
1534 seq += used;
1535 copied += used;
1536 offset += used;
1538 /* If recv_actor drops the lock (e.g. TCP splice
1539 * receive) the skb pointer might be invalid when
1540 * getting here: tcp_collapse might have deleted it
1541 * while aggregating skbs from the socket queue.
1543 skb = tcp_recv_skb(sk, seq - 1, &offset);
1544 if (!skb)
1545 break;
1546 /* TCP coalescing might have appended data to the skb.
1547 * Try to splice more frags
1549 if (offset + 1 != skb->len)
1550 continue;
1552 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1553 sk_eat_skb(sk, skb);
1554 ++seq;
1555 break;
1557 sk_eat_skb(sk, skb);
1558 if (!desc->count)
1559 break;
1560 tp->copied_seq = seq;
1562 tp->copied_seq = seq;
1564 tcp_rcv_space_adjust(sk);
1566 /* Clean up data we have read: This will do ACK frames. */
1567 if (copied > 0) {
1568 tcp_recv_skb(sk, seq, &offset);
1569 tcp_cleanup_rbuf(sk, copied);
1571 return copied;
1573 EXPORT_SYMBOL(tcp_read_sock);
1576 * This routine copies from a sock struct into the user buffer.
1578 * Technical note: in 2.3 we work on _locked_ socket, so that
1579 * tricks with *seq access order and skb->users are not required.
1580 * Probably, code can be easily improved even more.
1583 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1584 int flags, int *addr_len)
1586 struct tcp_sock *tp = tcp_sk(sk);
1587 int copied = 0;
1588 u32 peek_seq;
1589 u32 *seq;
1590 unsigned long used;
1591 int err;
1592 int target; /* Read at least this many bytes */
1593 long timeo;
1594 struct task_struct *user_recv = NULL;
1595 struct sk_buff *skb, *last;
1596 u32 urg_hole = 0;
1598 if (unlikely(flags & MSG_ERRQUEUE))
1599 return inet_recv_error(sk, msg, len, addr_len);
1601 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1602 (sk->sk_state == TCP_ESTABLISHED))
1603 sk_busy_loop(sk, nonblock);
1605 lock_sock(sk);
1607 err = -ENOTCONN;
1608 if (sk->sk_state == TCP_LISTEN)
1609 goto out;
1611 timeo = sock_rcvtimeo(sk, nonblock);
1613 /* Urgent data needs to be handled specially. */
1614 if (flags & MSG_OOB)
1615 goto recv_urg;
1617 if (unlikely(tp->repair)) {
1618 err = -EPERM;
1619 if (!(flags & MSG_PEEK))
1620 goto out;
1622 if (tp->repair_queue == TCP_SEND_QUEUE)
1623 goto recv_sndq;
1625 err = -EINVAL;
1626 if (tp->repair_queue == TCP_NO_QUEUE)
1627 goto out;
1629 /* 'common' recv queue MSG_PEEK-ing */
1632 seq = &tp->copied_seq;
1633 if (flags & MSG_PEEK) {
1634 peek_seq = tp->copied_seq;
1635 seq = &peek_seq;
1638 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1640 do {
1641 u32 offset;
1643 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1644 if (tp->urg_data && tp->urg_seq == *seq) {
1645 if (copied)
1646 break;
1647 if (signal_pending(current)) {
1648 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1649 break;
1653 /* Next get a buffer. */
1655 last = skb_peek_tail(&sk->sk_receive_queue);
1656 skb_queue_walk(&sk->sk_receive_queue, skb) {
1657 last = skb;
1658 /* Now that we have two receive queues this
1659 * shouldn't happen.
1661 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1662 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1663 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1664 flags))
1665 break;
1667 offset = *seq - TCP_SKB_CB(skb)->seq;
1668 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1669 offset--;
1670 if (offset < skb->len)
1671 goto found_ok_skb;
1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1673 goto found_fin_ok;
1674 WARN(!(flags & MSG_PEEK),
1675 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
1676 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1679 /* Well, if we have backlog, try to process it now yet. */
1681 if (copied >= target && !sk->sk_backlog.tail)
1682 break;
1684 if (copied) {
1685 if (sk->sk_err ||
1686 sk->sk_state == TCP_CLOSE ||
1687 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1688 !timeo ||
1689 signal_pending(current))
1690 break;
1691 } else {
1692 if (sock_flag(sk, SOCK_DONE))
1693 break;
1695 if (sk->sk_err) {
1696 copied = sock_error(sk);
1697 break;
1700 if (sk->sk_shutdown & RCV_SHUTDOWN)
1701 break;
1703 if (sk->sk_state == TCP_CLOSE) {
1704 if (!sock_flag(sk, SOCK_DONE)) {
1705 /* This occurs when user tries to read
1706 * from never connected socket.
1708 copied = -ENOTCONN;
1709 break;
1711 break;
1714 if (!timeo) {
1715 copied = -EAGAIN;
1716 break;
1719 if (signal_pending(current)) {
1720 copied = sock_intr_errno(timeo);
1721 break;
1725 tcp_cleanup_rbuf(sk, copied);
1727 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1728 /* Install new reader */
1729 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1730 user_recv = current;
1731 tp->ucopy.task = user_recv;
1732 tp->ucopy.msg = msg;
1735 tp->ucopy.len = len;
1737 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1738 !(flags & (MSG_PEEK | MSG_TRUNC)));
1740 /* Ugly... If prequeue is not empty, we have to
1741 * process it before releasing socket, otherwise
1742 * order will be broken at second iteration.
1743 * More elegant solution is required!!!
1745 * Look: we have the following (pseudo)queues:
1747 * 1. packets in flight
1748 * 2. backlog
1749 * 3. prequeue
1750 * 4. receive_queue
1752 * Each queue can be processed only if the next ones
1753 * are empty. At this point we have empty receive_queue.
1754 * But prequeue _can_ be not empty after 2nd iteration,
1755 * when we jumped to start of loop because backlog
1756 * processing added something to receive_queue.
1757 * We cannot release_sock(), because backlog contains
1758 * packets arrived _after_ prequeued ones.
1760 * Shortly, algorithm is clear --- to process all
1761 * the queues in order. We could make it more directly,
1762 * requeueing packets from backlog to prequeue, if
1763 * is not empty. It is more elegant, but eats cycles,
1764 * unfortunately.
1766 if (!skb_queue_empty(&tp->ucopy.prequeue))
1767 goto do_prequeue;
1769 /* __ Set realtime policy in scheduler __ */
1772 if (copied >= target) {
1773 /* Do not sleep, just process backlog. */
1774 release_sock(sk);
1775 lock_sock(sk);
1776 } else {
1777 sk_wait_data(sk, &timeo, last);
1780 if (user_recv) {
1781 int chunk;
1783 /* __ Restore normal policy in scheduler __ */
1785 chunk = len - tp->ucopy.len;
1786 if (chunk != 0) {
1787 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1788 len -= chunk;
1789 copied += chunk;
1792 if (tp->rcv_nxt == tp->copied_seq &&
1793 !skb_queue_empty(&tp->ucopy.prequeue)) {
1794 do_prequeue:
1795 tcp_prequeue_process(sk);
1797 chunk = len - tp->ucopy.len;
1798 if (chunk != 0) {
1799 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1800 len -= chunk;
1801 copied += chunk;
1805 if ((flags & MSG_PEEK) &&
1806 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1807 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1808 current->comm,
1809 task_pid_nr(current));
1810 peek_seq = tp->copied_seq;
1812 continue;
1814 found_ok_skb:
1815 /* Ok so how much can we use? */
1816 used = skb->len - offset;
1817 if (len < used)
1818 used = len;
1820 /* Do we have urgent data here? */
1821 if (tp->urg_data) {
1822 u32 urg_offset = tp->urg_seq - *seq;
1823 if (urg_offset < used) {
1824 if (!urg_offset) {
1825 if (!sock_flag(sk, SOCK_URGINLINE)) {
1826 ++*seq;
1827 urg_hole++;
1828 offset++;
1829 used--;
1830 if (!used)
1831 goto skip_copy;
1833 } else
1834 used = urg_offset;
1838 if (!(flags & MSG_TRUNC)) {
1839 err = skb_copy_datagram_msg(skb, offset, msg, used);
1840 if (err) {
1841 /* Exception. Bailout! */
1842 if (!copied)
1843 copied = -EFAULT;
1844 break;
1848 *seq += used;
1849 copied += used;
1850 len -= used;
1852 tcp_rcv_space_adjust(sk);
1854 skip_copy:
1855 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1856 tp->urg_data = 0;
1857 tcp_fast_path_check(sk);
1859 if (used + offset < skb->len)
1860 continue;
1862 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1863 goto found_fin_ok;
1864 if (!(flags & MSG_PEEK))
1865 sk_eat_skb(sk, skb);
1866 continue;
1868 found_fin_ok:
1869 /* Process the FIN. */
1870 ++*seq;
1871 if (!(flags & MSG_PEEK))
1872 sk_eat_skb(sk, skb);
1873 break;
1874 } while (len > 0);
1876 if (user_recv) {
1877 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1878 int chunk;
1880 tp->ucopy.len = copied > 0 ? len : 0;
1882 tcp_prequeue_process(sk);
1884 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1885 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1886 len -= chunk;
1887 copied += chunk;
1891 tp->ucopy.task = NULL;
1892 tp->ucopy.len = 0;
1895 /* According to UNIX98, msg_name/msg_namelen are ignored
1896 * on connected socket. I was just happy when found this 8) --ANK
1899 /* Clean up data we have read: This will do ACK frames. */
1900 tcp_cleanup_rbuf(sk, copied);
1902 release_sock(sk);
1903 return copied;
1905 out:
1906 release_sock(sk);
1907 return err;
1909 recv_urg:
1910 err = tcp_recv_urg(sk, msg, len, flags);
1911 goto out;
1913 recv_sndq:
1914 err = tcp_peek_sndq(sk, msg, len);
1915 goto out;
1917 EXPORT_SYMBOL(tcp_recvmsg);
1919 void tcp_set_state(struct sock *sk, int state)
1921 int oldstate = sk->sk_state;
1923 switch (state) {
1924 case TCP_ESTABLISHED:
1925 if (oldstate != TCP_ESTABLISHED)
1926 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1927 break;
1929 case TCP_CLOSE:
1930 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1931 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1933 sk->sk_prot->unhash(sk);
1934 if (inet_csk(sk)->icsk_bind_hash &&
1935 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1936 inet_put_port(sk);
1937 /* fall through */
1938 default:
1939 if (oldstate == TCP_ESTABLISHED)
1940 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1943 /* Change state AFTER socket is unhashed to avoid closed
1944 * socket sitting in hash tables.
1946 sk_state_store(sk, state);
1948 #ifdef STATE_TRACE
1949 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1950 #endif
1952 EXPORT_SYMBOL_GPL(tcp_set_state);
1955 * State processing on a close. This implements the state shift for
1956 * sending our FIN frame. Note that we only send a FIN for some
1957 * states. A shutdown() may have already sent the FIN, or we may be
1958 * closed.
1961 static const unsigned char new_state[16] = {
1962 /* current state: new state: action: */
1963 [0 /* (Invalid) */] = TCP_CLOSE,
1964 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1965 [TCP_SYN_SENT] = TCP_CLOSE,
1966 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1967 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1968 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1969 [TCP_TIME_WAIT] = TCP_CLOSE,
1970 [TCP_CLOSE] = TCP_CLOSE,
1971 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1972 [TCP_LAST_ACK] = TCP_LAST_ACK,
1973 [TCP_LISTEN] = TCP_CLOSE,
1974 [TCP_CLOSING] = TCP_CLOSING,
1975 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1978 static int tcp_close_state(struct sock *sk)
1980 int next = (int)new_state[sk->sk_state];
1981 int ns = next & TCP_STATE_MASK;
1983 tcp_set_state(sk, ns);
1985 return next & TCP_ACTION_FIN;
1989 * Shutdown the sending side of a connection. Much like close except
1990 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1993 void tcp_shutdown(struct sock *sk, int how)
1995 /* We need to grab some memory, and put together a FIN,
1996 * and then put it into the queue to be sent.
1997 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1999 if (!(how & SEND_SHUTDOWN))
2000 return;
2002 /* If we've already sent a FIN, or it's a closed state, skip this. */
2003 if ((1 << sk->sk_state) &
2004 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2005 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2006 /* Clear out any half completed packets. FIN if needed. */
2007 if (tcp_close_state(sk))
2008 tcp_send_fin(sk);
2011 EXPORT_SYMBOL(tcp_shutdown);
2013 bool tcp_check_oom(struct sock *sk, int shift)
2015 bool too_many_orphans, out_of_socket_memory;
2017 too_many_orphans = tcp_too_many_orphans(sk, shift);
2018 out_of_socket_memory = tcp_out_of_memory(sk);
2020 if (too_many_orphans)
2021 net_info_ratelimited("too many orphaned sockets\n");
2022 if (out_of_socket_memory)
2023 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2024 return too_many_orphans || out_of_socket_memory;
2027 void tcp_close(struct sock *sk, long timeout)
2029 struct sk_buff *skb;
2030 int data_was_unread = 0;
2031 int state;
2033 lock_sock(sk);
2034 sk->sk_shutdown = SHUTDOWN_MASK;
2036 if (sk->sk_state == TCP_LISTEN) {
2037 tcp_set_state(sk, TCP_CLOSE);
2039 /* Special case. */
2040 inet_csk_listen_stop(sk);
2042 goto adjudge_to_death;
2045 /* We need to flush the recv. buffs. We do this only on the
2046 * descriptor close, not protocol-sourced closes, because the
2047 * reader process may not have drained the data yet!
2049 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2050 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2052 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2053 len--;
2054 data_was_unread += len;
2055 __kfree_skb(skb);
2058 sk_mem_reclaim(sk);
2060 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2061 if (sk->sk_state == TCP_CLOSE)
2062 goto adjudge_to_death;
2064 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2065 * data was lost. To witness the awful effects of the old behavior of
2066 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2067 * GET in an FTP client, suspend the process, wait for the client to
2068 * advertise a zero window, then kill -9 the FTP client, wheee...
2069 * Note: timeout is always zero in such a case.
2071 if (unlikely(tcp_sk(sk)->repair)) {
2072 sk->sk_prot->disconnect(sk, 0);
2073 } else if (data_was_unread) {
2074 /* Unread data was tossed, zap the connection. */
2075 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2076 tcp_set_state(sk, TCP_CLOSE);
2077 tcp_send_active_reset(sk, sk->sk_allocation);
2078 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2079 /* Check zero linger _after_ checking for unread data. */
2080 sk->sk_prot->disconnect(sk, 0);
2081 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2082 } else if (tcp_close_state(sk)) {
2083 /* We FIN if the application ate all the data before
2084 * zapping the connection.
2087 /* RED-PEN. Formally speaking, we have broken TCP state
2088 * machine. State transitions:
2090 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2091 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2092 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2094 * are legal only when FIN has been sent (i.e. in window),
2095 * rather than queued out of window. Purists blame.
2097 * F.e. "RFC state" is ESTABLISHED,
2098 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2100 * The visible declinations are that sometimes
2101 * we enter time-wait state, when it is not required really
2102 * (harmless), do not send active resets, when they are
2103 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2104 * they look as CLOSING or LAST_ACK for Linux)
2105 * Probably, I missed some more holelets.
2106 * --ANK
2107 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2108 * in a single packet! (May consider it later but will
2109 * probably need API support or TCP_CORK SYN-ACK until
2110 * data is written and socket is closed.)
2112 tcp_send_fin(sk);
2115 sk_stream_wait_close(sk, timeout);
2117 adjudge_to_death:
2118 state = sk->sk_state;
2119 sock_hold(sk);
2120 sock_orphan(sk);
2122 /* It is the last release_sock in its life. It will remove backlog. */
2123 release_sock(sk);
2126 /* Now socket is owned by kernel and we acquire BH lock
2127 to finish close. No need to check for user refs.
2129 local_bh_disable();
2130 bh_lock_sock(sk);
2131 WARN_ON(sock_owned_by_user(sk));
2133 percpu_counter_inc(sk->sk_prot->orphan_count);
2135 /* Have we already been destroyed by a softirq or backlog? */
2136 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2137 goto out;
2139 /* This is a (useful) BSD violating of the RFC. There is a
2140 * problem with TCP as specified in that the other end could
2141 * keep a socket open forever with no application left this end.
2142 * We use a 1 minute timeout (about the same as BSD) then kill
2143 * our end. If they send after that then tough - BUT: long enough
2144 * that we won't make the old 4*rto = almost no time - whoops
2145 * reset mistake.
2147 * Nope, it was not mistake. It is really desired behaviour
2148 * f.e. on http servers, when such sockets are useless, but
2149 * consume significant resources. Let's do it with special
2150 * linger2 option. --ANK
2153 if (sk->sk_state == TCP_FIN_WAIT2) {
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 if (tp->linger2 < 0) {
2156 tcp_set_state(sk, TCP_CLOSE);
2157 tcp_send_active_reset(sk, GFP_ATOMIC);
2158 NET_INC_STATS_BH(sock_net(sk),
2159 LINUX_MIB_TCPABORTONLINGER);
2160 } else {
2161 const int tmo = tcp_fin_time(sk);
2163 if (tmo > TCP_TIMEWAIT_LEN) {
2164 inet_csk_reset_keepalive_timer(sk,
2165 tmo - TCP_TIMEWAIT_LEN);
2166 } else {
2167 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2168 goto out;
2172 if (sk->sk_state != TCP_CLOSE) {
2173 sk_mem_reclaim(sk);
2174 if (tcp_check_oom(sk, 0)) {
2175 tcp_set_state(sk, TCP_CLOSE);
2176 tcp_send_active_reset(sk, GFP_ATOMIC);
2177 NET_INC_STATS_BH(sock_net(sk),
2178 LINUX_MIB_TCPABORTONMEMORY);
2179 } else if (!check_net(sock_net(sk))) {
2180 /* Not possible to send reset; just close */
2181 tcp_set_state(sk, TCP_CLOSE);
2185 if (sk->sk_state == TCP_CLOSE) {
2186 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2187 /* We could get here with a non-NULL req if the socket is
2188 * aborted (e.g., closed with unread data) before 3WHS
2189 * finishes.
2191 if (req)
2192 reqsk_fastopen_remove(sk, req, false);
2193 inet_csk_destroy_sock(sk);
2195 /* Otherwise, socket is reprieved until protocol close. */
2197 out:
2198 bh_unlock_sock(sk);
2199 local_bh_enable();
2200 sock_put(sk);
2202 EXPORT_SYMBOL(tcp_close);
2204 /* These states need RST on ABORT according to RFC793 */
2206 static inline bool tcp_need_reset(int state)
2208 return (1 << state) &
2209 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2210 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2213 int tcp_disconnect(struct sock *sk, int flags)
2215 struct inet_sock *inet = inet_sk(sk);
2216 struct inet_connection_sock *icsk = inet_csk(sk);
2217 struct tcp_sock *tp = tcp_sk(sk);
2218 int err = 0;
2219 int old_state = sk->sk_state;
2221 if (old_state != TCP_CLOSE)
2222 tcp_set_state(sk, TCP_CLOSE);
2224 /* ABORT function of RFC793 */
2225 if (old_state == TCP_LISTEN) {
2226 inet_csk_listen_stop(sk);
2227 } else if (unlikely(tp->repair)) {
2228 sk->sk_err = ECONNABORTED;
2229 } else if (tcp_need_reset(old_state) ||
2230 (tp->snd_nxt != tp->write_seq &&
2231 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2232 /* The last check adjusts for discrepancy of Linux wrt. RFC
2233 * states
2235 tcp_send_active_reset(sk, gfp_any());
2236 sk->sk_err = ECONNRESET;
2237 } else if (old_state == TCP_SYN_SENT)
2238 sk->sk_err = ECONNRESET;
2240 tcp_clear_xmit_timers(sk);
2241 __skb_queue_purge(&sk->sk_receive_queue);
2242 tcp_write_queue_purge(sk);
2243 __skb_queue_purge(&tp->out_of_order_queue);
2245 inet->inet_dport = 0;
2247 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2248 inet_reset_saddr(sk);
2250 sk->sk_shutdown = 0;
2251 sock_reset_flag(sk, SOCK_DONE);
2252 tp->srtt_us = 0;
2253 tp->write_seq += tp->max_window + 2;
2254 if (tp->write_seq == 0)
2255 tp->write_seq = 1;
2256 icsk->icsk_backoff = 0;
2257 tp->snd_cwnd = 2;
2258 icsk->icsk_probes_out = 0;
2259 tp->packets_out = 0;
2260 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2261 tp->snd_cwnd_cnt = 0;
2262 tp->window_clamp = 0;
2263 tcp_set_ca_state(sk, TCP_CA_Open);
2264 tcp_clear_retrans(tp);
2265 inet_csk_delack_init(sk);
2266 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2267 * issue in __tcp_select_window()
2269 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2270 tcp_init_send_head(sk);
2271 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2272 __sk_dst_reset(sk);
2273 dst_release(sk->sk_rx_dst);
2274 sk->sk_rx_dst = NULL;
2275 tcp_saved_syn_free(tp);
2277 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2279 if (sk->sk_frag.page) {
2280 put_page(sk->sk_frag.page);
2281 sk->sk_frag.page = NULL;
2282 sk->sk_frag.offset = 0;
2285 sk->sk_error_report(sk);
2286 return err;
2288 EXPORT_SYMBOL(tcp_disconnect);
2290 static inline bool tcp_can_repair_sock(const struct sock *sk)
2292 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2293 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2296 static int tcp_repair_options_est(struct tcp_sock *tp,
2297 struct tcp_repair_opt __user *optbuf, unsigned int len)
2299 struct tcp_repair_opt opt;
2301 while (len >= sizeof(opt)) {
2302 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2303 return -EFAULT;
2305 optbuf++;
2306 len -= sizeof(opt);
2308 switch (opt.opt_code) {
2309 case TCPOPT_MSS:
2310 tp->rx_opt.mss_clamp = opt.opt_val;
2311 break;
2312 case TCPOPT_WINDOW:
2314 u16 snd_wscale = opt.opt_val & 0xFFFF;
2315 u16 rcv_wscale = opt.opt_val >> 16;
2317 if (snd_wscale > 14 || rcv_wscale > 14)
2318 return -EFBIG;
2320 tp->rx_opt.snd_wscale = snd_wscale;
2321 tp->rx_opt.rcv_wscale = rcv_wscale;
2322 tp->rx_opt.wscale_ok = 1;
2324 break;
2325 case TCPOPT_SACK_PERM:
2326 if (opt.opt_val != 0)
2327 return -EINVAL;
2329 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2330 if (sysctl_tcp_fack)
2331 tcp_enable_fack(tp);
2332 break;
2333 case TCPOPT_TIMESTAMP:
2334 if (opt.opt_val != 0)
2335 return -EINVAL;
2337 tp->rx_opt.tstamp_ok = 1;
2338 break;
2342 return 0;
2346 * Socket option code for TCP.
2348 static int do_tcp_setsockopt(struct sock *sk, int level,
2349 int optname, char __user *optval, unsigned int optlen)
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 struct inet_connection_sock *icsk = inet_csk(sk);
2353 int val;
2354 int err = 0;
2356 /* These are data/string values, all the others are ints */
2357 switch (optname) {
2358 case TCP_CONGESTION: {
2359 char name[TCP_CA_NAME_MAX];
2361 if (optlen < 1)
2362 return -EINVAL;
2364 val = strncpy_from_user(name, optval,
2365 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2366 if (val < 0)
2367 return -EFAULT;
2368 name[val] = 0;
2370 lock_sock(sk);
2371 err = tcp_set_congestion_control(sk, name);
2372 release_sock(sk);
2373 return err;
2375 default:
2376 /* fallthru */
2377 break;
2380 if (optlen < sizeof(int))
2381 return -EINVAL;
2383 if (get_user(val, (int __user *)optval))
2384 return -EFAULT;
2386 lock_sock(sk);
2388 switch (optname) {
2389 case TCP_MAXSEG:
2390 /* Values greater than interface MTU won't take effect. However
2391 * at the point when this call is done we typically don't yet
2392 * know which interface is going to be used */
2393 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2394 err = -EINVAL;
2395 break;
2397 tp->rx_opt.user_mss = val;
2398 break;
2400 case TCP_NODELAY:
2401 if (val) {
2402 /* TCP_NODELAY is weaker than TCP_CORK, so that
2403 * this option on corked socket is remembered, but
2404 * it is not activated until cork is cleared.
2406 * However, when TCP_NODELAY is set we make
2407 * an explicit push, which overrides even TCP_CORK
2408 * for currently queued segments.
2410 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2411 tcp_push_pending_frames(sk);
2412 } else {
2413 tp->nonagle &= ~TCP_NAGLE_OFF;
2415 break;
2417 case TCP_THIN_LINEAR_TIMEOUTS:
2418 if (val < 0 || val > 1)
2419 err = -EINVAL;
2420 else
2421 tp->thin_lto = val;
2422 break;
2424 case TCP_THIN_DUPACK:
2425 if (val < 0 || val > 1)
2426 err = -EINVAL;
2427 else {
2428 tp->thin_dupack = val;
2429 if (tp->thin_dupack)
2430 tcp_disable_early_retrans(tp);
2432 break;
2434 case TCP_REPAIR:
2435 if (!tcp_can_repair_sock(sk))
2436 err = -EPERM;
2437 else if (val == 1) {
2438 tp->repair = 1;
2439 sk->sk_reuse = SK_FORCE_REUSE;
2440 tp->repair_queue = TCP_NO_QUEUE;
2441 } else if (val == 0) {
2442 tp->repair = 0;
2443 sk->sk_reuse = SK_NO_REUSE;
2444 tcp_send_window_probe(sk);
2445 } else
2446 err = -EINVAL;
2448 break;
2450 case TCP_REPAIR_QUEUE:
2451 if (!tp->repair)
2452 err = -EPERM;
2453 else if ((unsigned int)val < TCP_QUEUES_NR)
2454 tp->repair_queue = val;
2455 else
2456 err = -EINVAL;
2457 break;
2459 case TCP_QUEUE_SEQ:
2460 if (sk->sk_state != TCP_CLOSE)
2461 err = -EPERM;
2462 else if (tp->repair_queue == TCP_SEND_QUEUE)
2463 tp->write_seq = val;
2464 else if (tp->repair_queue == TCP_RECV_QUEUE)
2465 tp->rcv_nxt = val;
2466 else
2467 err = -EINVAL;
2468 break;
2470 case TCP_REPAIR_OPTIONS:
2471 if (!tp->repair)
2472 err = -EINVAL;
2473 else if (sk->sk_state == TCP_ESTABLISHED)
2474 err = tcp_repair_options_est(tp,
2475 (struct tcp_repair_opt __user *)optval,
2476 optlen);
2477 else
2478 err = -EPERM;
2479 break;
2481 case TCP_CORK:
2482 /* When set indicates to always queue non-full frames.
2483 * Later the user clears this option and we transmit
2484 * any pending partial frames in the queue. This is
2485 * meant to be used alongside sendfile() to get properly
2486 * filled frames when the user (for example) must write
2487 * out headers with a write() call first and then use
2488 * sendfile to send out the data parts.
2490 * TCP_CORK can be set together with TCP_NODELAY and it is
2491 * stronger than TCP_NODELAY.
2493 if (val) {
2494 tp->nonagle |= TCP_NAGLE_CORK;
2495 } else {
2496 tp->nonagle &= ~TCP_NAGLE_CORK;
2497 if (tp->nonagle&TCP_NAGLE_OFF)
2498 tp->nonagle |= TCP_NAGLE_PUSH;
2499 tcp_push_pending_frames(sk);
2501 break;
2503 case TCP_KEEPIDLE:
2504 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2505 err = -EINVAL;
2506 else {
2507 tp->keepalive_time = val * HZ;
2508 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2509 !((1 << sk->sk_state) &
2510 (TCPF_CLOSE | TCPF_LISTEN))) {
2511 u32 elapsed = keepalive_time_elapsed(tp);
2512 if (tp->keepalive_time > elapsed)
2513 elapsed = tp->keepalive_time - elapsed;
2514 else
2515 elapsed = 0;
2516 inet_csk_reset_keepalive_timer(sk, elapsed);
2519 break;
2520 case TCP_KEEPINTVL:
2521 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2522 err = -EINVAL;
2523 else
2524 tp->keepalive_intvl = val * HZ;
2525 break;
2526 case TCP_KEEPCNT:
2527 if (val < 1 || val > MAX_TCP_KEEPCNT)
2528 err = -EINVAL;
2529 else
2530 tp->keepalive_probes = val;
2531 break;
2532 case TCP_SYNCNT:
2533 if (val < 1 || val > MAX_TCP_SYNCNT)
2534 err = -EINVAL;
2535 else
2536 icsk->icsk_syn_retries = val;
2537 break;
2539 case TCP_SAVE_SYN:
2540 if (val < 0 || val > 1)
2541 err = -EINVAL;
2542 else
2543 tp->save_syn = val;
2544 break;
2546 case TCP_LINGER2:
2547 if (val < 0)
2548 tp->linger2 = -1;
2549 else if (val > sysctl_tcp_fin_timeout / HZ)
2550 tp->linger2 = 0;
2551 else
2552 tp->linger2 = val * HZ;
2553 break;
2555 case TCP_DEFER_ACCEPT:
2556 /* Translate value in seconds to number of retransmits */
2557 icsk->icsk_accept_queue.rskq_defer_accept =
2558 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2559 TCP_RTO_MAX / HZ);
2560 break;
2562 case TCP_WINDOW_CLAMP:
2563 if (!val) {
2564 if (sk->sk_state != TCP_CLOSE) {
2565 err = -EINVAL;
2566 break;
2568 tp->window_clamp = 0;
2569 } else
2570 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2571 SOCK_MIN_RCVBUF / 2 : val;
2572 break;
2574 case TCP_QUICKACK:
2575 if (!val) {
2576 icsk->icsk_ack.pingpong = 1;
2577 } else {
2578 icsk->icsk_ack.pingpong = 0;
2579 if ((1 << sk->sk_state) &
2580 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2581 inet_csk_ack_scheduled(sk)) {
2582 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2583 tcp_cleanup_rbuf(sk, 1);
2584 if (!(val & 1))
2585 icsk->icsk_ack.pingpong = 1;
2588 break;
2590 #ifdef CONFIG_TCP_MD5SIG
2591 case TCP_MD5SIG:
2592 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2593 err = tp->af_specific->md5_parse(sk, optval, optlen);
2594 else
2595 err = -EINVAL;
2596 break;
2597 #endif
2598 case TCP_USER_TIMEOUT:
2599 /* Cap the max time in ms TCP will retry or probe the window
2600 * before giving up and aborting (ETIMEDOUT) a connection.
2602 if (val < 0)
2603 err = -EINVAL;
2604 else
2605 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2606 break;
2608 case TCP_FASTOPEN:
2609 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2610 TCPF_LISTEN))) {
2611 tcp_fastopen_init_key_once(true);
2613 fastopen_queue_tune(sk, val);
2614 } else {
2615 err = -EINVAL;
2617 break;
2618 case TCP_TIMESTAMP:
2619 if (!tp->repair)
2620 err = -EPERM;
2621 else
2622 tp->tsoffset = val - tcp_time_stamp;
2623 break;
2624 case TCP_NOTSENT_LOWAT:
2625 tp->notsent_lowat = val;
2626 sk->sk_write_space(sk);
2627 break;
2628 default:
2629 err = -ENOPROTOOPT;
2630 break;
2633 release_sock(sk);
2634 return err;
2637 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2638 unsigned int optlen)
2640 const struct inet_connection_sock *icsk = inet_csk(sk);
2642 if (level != SOL_TCP)
2643 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2644 optval, optlen);
2645 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2647 EXPORT_SYMBOL(tcp_setsockopt);
2649 #ifdef CONFIG_COMPAT
2650 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2651 char __user *optval, unsigned int optlen)
2653 if (level != SOL_TCP)
2654 return inet_csk_compat_setsockopt(sk, level, optname,
2655 optval, optlen);
2656 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2658 EXPORT_SYMBOL(compat_tcp_setsockopt);
2659 #endif
2661 /* Return information about state of tcp endpoint in API format. */
2662 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2664 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2665 const struct inet_connection_sock *icsk = inet_csk(sk);
2666 u32 now = tcp_time_stamp;
2667 unsigned int start;
2668 u64 rate64;
2669 u32 rate;
2671 memset(info, 0, sizeof(*info));
2672 if (sk->sk_type != SOCK_STREAM)
2673 return;
2675 info->tcpi_state = sk_state_load(sk);
2677 info->tcpi_ca_state = icsk->icsk_ca_state;
2678 info->tcpi_retransmits = icsk->icsk_retransmits;
2679 info->tcpi_probes = icsk->icsk_probes_out;
2680 info->tcpi_backoff = icsk->icsk_backoff;
2682 if (tp->rx_opt.tstamp_ok)
2683 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2684 if (tcp_is_sack(tp))
2685 info->tcpi_options |= TCPI_OPT_SACK;
2686 if (tp->rx_opt.wscale_ok) {
2687 info->tcpi_options |= TCPI_OPT_WSCALE;
2688 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2689 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2692 if (tp->ecn_flags & TCP_ECN_OK)
2693 info->tcpi_options |= TCPI_OPT_ECN;
2694 if (tp->ecn_flags & TCP_ECN_SEEN)
2695 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2696 if (tp->syn_data_acked)
2697 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2699 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2700 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2701 info->tcpi_snd_mss = tp->mss_cache;
2702 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2704 if (info->tcpi_state == TCP_LISTEN) {
2705 info->tcpi_unacked = sk->sk_ack_backlog;
2706 info->tcpi_sacked = sk->sk_max_ack_backlog;
2707 } else {
2708 info->tcpi_unacked = tp->packets_out;
2709 info->tcpi_sacked = tp->sacked_out;
2711 info->tcpi_lost = tp->lost_out;
2712 info->tcpi_retrans = tp->retrans_out;
2713 info->tcpi_fackets = tp->fackets_out;
2715 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2716 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2717 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2719 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2720 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2721 info->tcpi_rtt = tp->srtt_us >> 3;
2722 info->tcpi_rttvar = tp->mdev_us >> 2;
2723 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2724 info->tcpi_snd_cwnd = tp->snd_cwnd;
2725 info->tcpi_advmss = tp->advmss;
2726 info->tcpi_reordering = tp->reordering;
2728 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2729 info->tcpi_rcv_space = tp->rcvq_space.space;
2731 info->tcpi_total_retrans = tp->total_retrans;
2733 rate = READ_ONCE(sk->sk_pacing_rate);
2734 rate64 = rate != ~0U ? rate : ~0ULL;
2735 put_unaligned(rate64, &info->tcpi_pacing_rate);
2737 rate = READ_ONCE(sk->sk_max_pacing_rate);
2738 rate64 = rate != ~0U ? rate : ~0ULL;
2739 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2741 do {
2742 start = u64_stats_fetch_begin_irq(&tp->syncp);
2743 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2744 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2745 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2746 info->tcpi_segs_out = tp->segs_out;
2747 info->tcpi_segs_in = tp->segs_in;
2749 EXPORT_SYMBOL_GPL(tcp_get_info);
2751 static int do_tcp_getsockopt(struct sock *sk, int level,
2752 int optname, char __user *optval, int __user *optlen)
2754 struct inet_connection_sock *icsk = inet_csk(sk);
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 int val, len;
2758 if (get_user(len, optlen))
2759 return -EFAULT;
2761 len = min_t(unsigned int, len, sizeof(int));
2763 if (len < 0)
2764 return -EINVAL;
2766 switch (optname) {
2767 case TCP_MAXSEG:
2768 val = tp->mss_cache;
2769 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2770 val = tp->rx_opt.user_mss;
2771 if (tp->repair)
2772 val = tp->rx_opt.mss_clamp;
2773 break;
2774 case TCP_NODELAY:
2775 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2776 break;
2777 case TCP_CORK:
2778 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2779 break;
2780 case TCP_KEEPIDLE:
2781 val = keepalive_time_when(tp) / HZ;
2782 break;
2783 case TCP_KEEPINTVL:
2784 val = keepalive_intvl_when(tp) / HZ;
2785 break;
2786 case TCP_KEEPCNT:
2787 val = keepalive_probes(tp);
2788 break;
2789 case TCP_SYNCNT:
2790 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2791 break;
2792 case TCP_LINGER2:
2793 val = tp->linger2;
2794 if (val >= 0)
2795 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2796 break;
2797 case TCP_DEFER_ACCEPT:
2798 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2799 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2800 break;
2801 case TCP_WINDOW_CLAMP:
2802 val = tp->window_clamp;
2803 break;
2804 case TCP_INFO: {
2805 struct tcp_info info;
2807 if (get_user(len, optlen))
2808 return -EFAULT;
2810 tcp_get_info(sk, &info);
2812 len = min_t(unsigned int, len, sizeof(info));
2813 if (put_user(len, optlen))
2814 return -EFAULT;
2815 if (copy_to_user(optval, &info, len))
2816 return -EFAULT;
2817 return 0;
2819 case TCP_CC_INFO: {
2820 const struct tcp_congestion_ops *ca_ops;
2821 union tcp_cc_info info;
2822 size_t sz = 0;
2823 int attr;
2825 if (get_user(len, optlen))
2826 return -EFAULT;
2828 ca_ops = icsk->icsk_ca_ops;
2829 if (ca_ops && ca_ops->get_info)
2830 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2832 len = min_t(unsigned int, len, sz);
2833 if (put_user(len, optlen))
2834 return -EFAULT;
2835 if (copy_to_user(optval, &info, len))
2836 return -EFAULT;
2837 return 0;
2839 case TCP_QUICKACK:
2840 val = !icsk->icsk_ack.pingpong;
2841 break;
2843 case TCP_CONGESTION:
2844 if (get_user(len, optlen))
2845 return -EFAULT;
2846 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2847 if (put_user(len, optlen))
2848 return -EFAULT;
2849 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2850 return -EFAULT;
2851 return 0;
2853 case TCP_THIN_LINEAR_TIMEOUTS:
2854 val = tp->thin_lto;
2855 break;
2856 case TCP_THIN_DUPACK:
2857 val = tp->thin_dupack;
2858 break;
2860 case TCP_REPAIR:
2861 val = tp->repair;
2862 break;
2864 case TCP_REPAIR_QUEUE:
2865 if (tp->repair)
2866 val = tp->repair_queue;
2867 else
2868 return -EINVAL;
2869 break;
2871 case TCP_QUEUE_SEQ:
2872 if (tp->repair_queue == TCP_SEND_QUEUE)
2873 val = tp->write_seq;
2874 else if (tp->repair_queue == TCP_RECV_QUEUE)
2875 val = tp->rcv_nxt;
2876 else
2877 return -EINVAL;
2878 break;
2880 case TCP_USER_TIMEOUT:
2881 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2882 break;
2884 case TCP_FASTOPEN:
2885 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2886 break;
2888 case TCP_TIMESTAMP:
2889 val = tcp_time_stamp + tp->tsoffset;
2890 break;
2891 case TCP_NOTSENT_LOWAT:
2892 val = tp->notsent_lowat;
2893 break;
2894 case TCP_SAVE_SYN:
2895 val = tp->save_syn;
2896 break;
2897 case TCP_SAVED_SYN: {
2898 if (get_user(len, optlen))
2899 return -EFAULT;
2901 lock_sock(sk);
2902 if (tp->saved_syn) {
2903 if (len < tp->saved_syn[0]) {
2904 if (put_user(tp->saved_syn[0], optlen)) {
2905 release_sock(sk);
2906 return -EFAULT;
2908 release_sock(sk);
2909 return -EINVAL;
2911 len = tp->saved_syn[0];
2912 if (put_user(len, optlen)) {
2913 release_sock(sk);
2914 return -EFAULT;
2916 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2917 release_sock(sk);
2918 return -EFAULT;
2920 tcp_saved_syn_free(tp);
2921 release_sock(sk);
2922 } else {
2923 release_sock(sk);
2924 len = 0;
2925 if (put_user(len, optlen))
2926 return -EFAULT;
2928 return 0;
2930 default:
2931 return -ENOPROTOOPT;
2934 if (put_user(len, optlen))
2935 return -EFAULT;
2936 if (copy_to_user(optval, &val, len))
2937 return -EFAULT;
2938 return 0;
2941 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2942 int __user *optlen)
2944 struct inet_connection_sock *icsk = inet_csk(sk);
2946 if (level != SOL_TCP)
2947 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2948 optval, optlen);
2949 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2951 EXPORT_SYMBOL(tcp_getsockopt);
2953 #ifdef CONFIG_COMPAT
2954 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2955 char __user *optval, int __user *optlen)
2957 if (level != SOL_TCP)
2958 return inet_csk_compat_getsockopt(sk, level, optname,
2959 optval, optlen);
2960 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2962 EXPORT_SYMBOL(compat_tcp_getsockopt);
2963 #endif
2965 #ifdef CONFIG_TCP_MD5SIG
2966 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2967 static DEFINE_MUTEX(tcp_md5sig_mutex);
2968 static bool tcp_md5sig_pool_populated = false;
2970 static void __tcp_alloc_md5sig_pool(void)
2972 int cpu;
2974 for_each_possible_cpu(cpu) {
2975 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2976 struct crypto_hash *hash;
2978 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2979 if (IS_ERR_OR_NULL(hash))
2980 return;
2981 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2984 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2985 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2987 smp_wmb();
2988 tcp_md5sig_pool_populated = true;
2991 bool tcp_alloc_md5sig_pool(void)
2993 if (unlikely(!tcp_md5sig_pool_populated)) {
2994 mutex_lock(&tcp_md5sig_mutex);
2996 if (!tcp_md5sig_pool_populated)
2997 __tcp_alloc_md5sig_pool();
2999 mutex_unlock(&tcp_md5sig_mutex);
3001 return tcp_md5sig_pool_populated;
3003 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3007 * tcp_get_md5sig_pool - get md5sig_pool for this user
3009 * We use percpu structure, so if we succeed, we exit with preemption
3010 * and BH disabled, to make sure another thread or softirq handling
3011 * wont try to get same context.
3013 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3015 local_bh_disable();
3017 if (tcp_md5sig_pool_populated) {
3018 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3019 smp_rmb();
3020 return this_cpu_ptr(&tcp_md5sig_pool);
3022 local_bh_enable();
3023 return NULL;
3025 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3027 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3028 const struct tcphdr *th)
3030 struct scatterlist sg;
3031 struct tcphdr hdr;
3032 int err;
3034 /* We are not allowed to change tcphdr, make a local copy */
3035 memcpy(&hdr, th, sizeof(hdr));
3036 hdr.check = 0;
3038 /* options aren't included in the hash */
3039 sg_init_one(&sg, &hdr, sizeof(hdr));
3040 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3041 return err;
3043 EXPORT_SYMBOL(tcp_md5_hash_header);
3045 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3046 const struct sk_buff *skb, unsigned int header_len)
3048 struct scatterlist sg;
3049 const struct tcphdr *tp = tcp_hdr(skb);
3050 struct hash_desc *desc = &hp->md5_desc;
3051 unsigned int i;
3052 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3053 skb_headlen(skb) - header_len : 0;
3054 const struct skb_shared_info *shi = skb_shinfo(skb);
3055 struct sk_buff *frag_iter;
3057 sg_init_table(&sg, 1);
3059 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3060 if (crypto_hash_update(desc, &sg, head_data_len))
3061 return 1;
3063 for (i = 0; i < shi->nr_frags; ++i) {
3064 const struct skb_frag_struct *f = &shi->frags[i];
3065 unsigned int offset = f->page_offset;
3066 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3068 sg_set_page(&sg, page, skb_frag_size(f),
3069 offset_in_page(offset));
3070 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3071 return 1;
3074 skb_walk_frags(skb, frag_iter)
3075 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3076 return 1;
3078 return 0;
3080 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3082 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3084 struct scatterlist sg;
3086 sg_init_one(&sg, key->key, key->keylen);
3087 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3089 EXPORT_SYMBOL(tcp_md5_hash_key);
3091 #endif
3093 void tcp_done(struct sock *sk)
3095 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3097 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3098 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3100 tcp_set_state(sk, TCP_CLOSE);
3101 tcp_clear_xmit_timers(sk);
3102 if (req)
3103 reqsk_fastopen_remove(sk, req, false);
3105 sk->sk_shutdown = SHUTDOWN_MASK;
3107 if (!sock_flag(sk, SOCK_DEAD))
3108 sk->sk_state_change(sk);
3109 else
3110 inet_csk_destroy_sock(sk);
3112 EXPORT_SYMBOL_GPL(tcp_done);
3114 extern struct tcp_congestion_ops tcp_reno;
3116 static __initdata unsigned long thash_entries;
3117 static int __init set_thash_entries(char *str)
3119 ssize_t ret;
3121 if (!str)
3122 return 0;
3124 ret = kstrtoul(str, 0, &thash_entries);
3125 if (ret)
3126 return 0;
3128 return 1;
3130 __setup("thash_entries=", set_thash_entries);
3132 static void __init tcp_init_mem(void)
3134 unsigned long limit = nr_free_buffer_pages() / 16;
3136 limit = max(limit, 128UL);
3137 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3138 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3139 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3142 void __init tcp_init(void)
3144 unsigned long limit;
3145 int max_rshare, max_wshare, cnt;
3146 unsigned int i;
3148 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3150 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3151 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3152 tcp_hashinfo.bind_bucket_cachep =
3153 kmem_cache_create("tcp_bind_bucket",
3154 sizeof(struct inet_bind_bucket), 0,
3155 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3157 /* Size and allocate the main established and bind bucket
3158 * hash tables.
3160 * The methodology is similar to that of the buffer cache.
3162 tcp_hashinfo.ehash =
3163 alloc_large_system_hash("TCP established",
3164 sizeof(struct inet_ehash_bucket),
3165 thash_entries,
3166 17, /* one slot per 128 KB of memory */
3168 NULL,
3169 &tcp_hashinfo.ehash_mask,
3171 thash_entries ? 0 : 512 * 1024);
3172 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3173 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3175 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3176 panic("TCP: failed to alloc ehash_locks");
3177 tcp_hashinfo.bhash =
3178 alloc_large_system_hash("TCP bind",
3179 sizeof(struct inet_bind_hashbucket),
3180 tcp_hashinfo.ehash_mask + 1,
3181 17, /* one slot per 128 KB of memory */
3183 &tcp_hashinfo.bhash_size,
3184 NULL,
3186 64 * 1024);
3187 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3188 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3189 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3190 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3194 cnt = tcp_hashinfo.ehash_mask + 1;
3196 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3197 sysctl_tcp_max_orphans = cnt / 2;
3198 sysctl_max_syn_backlog = max(128, cnt / 256);
3200 tcp_init_mem();
3201 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3202 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3203 max_wshare = min(4UL*1024*1024, limit);
3204 max_rshare = min(6UL*1024*1024, limit);
3206 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3207 sysctl_tcp_wmem[1] = 16*1024;
3208 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3210 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3211 sysctl_tcp_rmem[1] = 87380;
3212 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3214 pr_info("Hash tables configured (established %u bind %u)\n",
3215 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3217 tcp_metrics_init();
3218 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3219 tcp_tasklet_init();