2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
84 int sysctl_tcp_max_reordering __read_mostly
= 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 1000;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
100 int sysctl_tcp_thin_dupack __read_mostly
;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
103 int sysctl_tcp_early_retrans __read_mostly
= 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
122 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
123 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
124 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
125 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
128 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
130 /* Adapt the MSS value used to make delayed ack decision to the
133 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
135 struct inet_connection_sock
*icsk
= inet_csk(sk
);
136 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
139 icsk
->icsk_ack
.last_seg_size
= 0;
141 /* skb->len may jitter because of SACKs, even if peer
142 * sends good full-sized frames.
144 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
145 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
146 icsk
->icsk_ack
.rcv_mss
= len
;
148 /* Otherwise, we make more careful check taking into account,
149 * that SACKs block is variable.
151 * "len" is invariant segment length, including TCP header.
153 len
+= skb
->data
- skb_transport_header(skb
);
154 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
155 /* If PSH is not set, packet should be
156 * full sized, provided peer TCP is not badly broken.
157 * This observation (if it is correct 8)) allows
158 * to handle super-low mtu links fairly.
160 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
161 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
162 /* Subtract also invariant (if peer is RFC compliant),
163 * tcp header plus fixed timestamp option length.
164 * Resulting "len" is MSS free of SACK jitter.
166 len
-= tcp_sk(sk
)->tcp_header_len
;
167 icsk
->icsk_ack
.last_seg_size
= len
;
169 icsk
->icsk_ack
.rcv_mss
= len
;
173 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
174 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
175 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
179 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
181 struct inet_connection_sock
*icsk
= inet_csk(sk
);
182 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
186 quickacks
= min(quickacks
, max_quickacks
);
187 if (quickacks
> icsk
->icsk_ack
.quick
)
188 icsk
->icsk_ack
.quick
= quickacks
;
191 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
193 struct inet_connection_sock
*icsk
= inet_csk(sk
);
195 tcp_incr_quickack(sk
, max_quickacks
);
196 icsk
->icsk_ack
.pingpong
= 0;
197 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
199 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
201 /* Send ACKs quickly, if "quick" count is not exhausted
202 * and the session is not interactive.
205 static bool tcp_in_quickack_mode(struct sock
*sk
)
207 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
208 const struct dst_entry
*dst
= __sk_dst_get(sk
);
210 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
211 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
214 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
216 if (tp
->ecn_flags
& TCP_ECN_OK
)
217 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
220 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
222 if (tcp_hdr(skb
)->cwr
)
223 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
226 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
228 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
231 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
233 struct tcp_sock
*tp
= tcp_sk(sk
);
235 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
236 case INET_ECN_NOT_ECT
:
237 /* Funny extension: if ECT is not set on a segment,
238 * and we already seen ECT on a previous segment,
239 * it is probably a retransmit.
241 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
242 tcp_enter_quickack_mode(sk
, 2);
245 if (tcp_ca_needs_ecn(sk
))
246 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
248 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
249 /* Better not delay acks, sender can have a very low cwnd */
250 tcp_enter_quickack_mode(sk
, 2);
251 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
253 tp
->ecn_flags
|= TCP_ECN_SEEN
;
256 if (tcp_ca_needs_ecn(sk
))
257 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
258 tp
->ecn_flags
|= TCP_ECN_SEEN
;
263 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
265 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
266 __tcp_ecn_check_ce(sk
, skb
);
269 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
271 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
272 tp
->ecn_flags
&= ~TCP_ECN_OK
;
275 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
277 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
278 tp
->ecn_flags
&= ~TCP_ECN_OK
;
281 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
283 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
288 /* Buffer size and advertised window tuning.
290 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 static void tcp_sndbuf_expand(struct sock
*sk
)
295 const struct tcp_sock
*tp
= tcp_sk(sk
);
299 /* Worst case is non GSO/TSO : each frame consumes one skb
300 * and skb->head is kmalloced using power of two area of memory
302 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
304 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
306 per_mss
= roundup_pow_of_two(per_mss
) +
307 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
309 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
310 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
312 /* Fast Recovery (RFC 5681 3.2) :
313 * Cubic needs 1.7 factor, rounded to 2 to include
314 * extra cushion (application might react slowly to POLLOUT)
316 sndmem
= 2 * nr_segs
* per_mss
;
318 if (sk
->sk_sndbuf
< sndmem
)
319 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
322 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
324 * All tcp_full_space() is split to two parts: "network" buffer, allocated
325 * forward and advertised in receiver window (tp->rcv_wnd) and
326 * "application buffer", required to isolate scheduling/application
327 * latencies from network.
328 * window_clamp is maximal advertised window. It can be less than
329 * tcp_full_space(), in this case tcp_full_space() - window_clamp
330 * is reserved for "application" buffer. The less window_clamp is
331 * the smoother our behaviour from viewpoint of network, but the lower
332 * throughput and the higher sensitivity of the connection to losses. 8)
334 * rcv_ssthresh is more strict window_clamp used at "slow start"
335 * phase to predict further behaviour of this connection.
336 * It is used for two goals:
337 * - to enforce header prediction at sender, even when application
338 * requires some significant "application buffer". It is check #1.
339 * - to prevent pruning of receive queue because of misprediction
340 * of receiver window. Check #2.
342 * The scheme does not work when sender sends good segments opening
343 * window and then starts to feed us spaghetti. But it should work
344 * in common situations. Otherwise, we have to rely on queue collapsing.
347 /* Slow part of check#2. */
348 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
350 struct tcp_sock
*tp
= tcp_sk(sk
);
352 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
353 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
355 while (tp
->rcv_ssthresh
<= window
) {
356 if (truesize
<= skb
->len
)
357 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
365 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
367 struct tcp_sock
*tp
= tcp_sk(sk
);
370 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
371 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
372 !tcp_under_memory_pressure(sk
)) {
375 /* Check #2. Increase window, if skb with such overhead
376 * will fit to rcvbuf in future.
378 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
379 incr
= 2 * tp
->advmss
;
381 incr
= __tcp_grow_window(sk
, skb
);
384 incr
= max_t(int, incr
, 2 * skb
->len
);
385 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
387 inet_csk(sk
)->icsk_ack
.quick
|= 1;
392 /* 3. Tuning rcvbuf, when connection enters established state. */
393 static void tcp_fixup_rcvbuf(struct sock
*sk
)
395 u32 mss
= tcp_sk(sk
)->advmss
;
398 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
399 tcp_default_init_rwnd(mss
);
401 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
402 * Allow enough cushion so that sender is not limited by our window
404 if (sysctl_tcp_moderate_rcvbuf
)
407 if (sk
->sk_rcvbuf
< rcvmem
)
408 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
411 /* 4. Try to fixup all. It is made immediately after connection enters
414 void tcp_init_buffer_space(struct sock
*sk
)
416 struct tcp_sock
*tp
= tcp_sk(sk
);
419 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
420 tcp_fixup_rcvbuf(sk
);
421 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
422 tcp_sndbuf_expand(sk
);
424 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
425 tp
->rcvq_space
.time
= tcp_time_stamp
;
426 tp
->rcvq_space
.seq
= tp
->copied_seq
;
428 maxwin
= tcp_full_space(sk
);
430 if (tp
->window_clamp
>= maxwin
) {
431 tp
->window_clamp
= maxwin
;
433 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
434 tp
->window_clamp
= max(maxwin
-
435 (maxwin
>> sysctl_tcp_app_win
),
439 /* Force reservation of one segment. */
440 if (sysctl_tcp_app_win
&&
441 tp
->window_clamp
> 2 * tp
->advmss
&&
442 tp
->window_clamp
+ tp
->advmss
> maxwin
)
443 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
445 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
446 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
449 /* 5. Recalculate window clamp after socket hit its memory bounds. */
450 static void tcp_clamp_window(struct sock
*sk
)
452 struct tcp_sock
*tp
= tcp_sk(sk
);
453 struct inet_connection_sock
*icsk
= inet_csk(sk
);
455 icsk
->icsk_ack
.quick
= 0;
457 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
458 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
459 !tcp_under_memory_pressure(sk
) &&
460 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
461 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
464 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
465 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
468 /* Initialize RCV_MSS value.
469 * RCV_MSS is an our guess about MSS used by the peer.
470 * We haven't any direct information about the MSS.
471 * It's better to underestimate the RCV_MSS rather than overestimate.
472 * Overestimations make us ACKing less frequently than needed.
473 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
475 void tcp_initialize_rcv_mss(struct sock
*sk
)
477 const struct tcp_sock
*tp
= tcp_sk(sk
);
478 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
480 hint
= min(hint
, tp
->rcv_wnd
/ 2);
481 hint
= min(hint
, TCP_MSS_DEFAULT
);
482 hint
= max(hint
, TCP_MIN_MSS
);
484 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
486 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
488 /* Receiver "autotuning" code.
490 * The algorithm for RTT estimation w/o timestamps is based on
491 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
492 * <http://public.lanl.gov/radiant/pubs.html#DRS>
494 * More detail on this code can be found at
495 * <http://staff.psc.edu/jheffner/>,
496 * though this reference is out of date. A new paper
499 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
501 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
507 if (new_sample
!= 0) {
508 /* If we sample in larger samples in the non-timestamp
509 * case, we could grossly overestimate the RTT especially
510 * with chatty applications or bulk transfer apps which
511 * are stalled on filesystem I/O.
513 * Also, since we are only going for a minimum in the
514 * non-timestamp case, we do not smooth things out
515 * else with timestamps disabled convergence takes too
519 m
-= (new_sample
>> 3);
527 /* No previous measure. */
531 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
532 tp
->rcv_rtt_est
.rtt
= new_sample
;
535 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
537 if (tp
->rcv_rtt_est
.time
== 0)
539 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
541 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
544 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
545 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
548 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
549 const struct sk_buff
*skb
)
551 struct tcp_sock
*tp
= tcp_sk(sk
);
552 if (tp
->rx_opt
.rcv_tsecr
&&
553 (TCP_SKB_CB(skb
)->end_seq
-
554 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
555 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
559 * This function should be called every time data is copied to user space.
560 * It calculates the appropriate TCP receive buffer space.
562 void tcp_rcv_space_adjust(struct sock
*sk
)
564 struct tcp_sock
*tp
= tcp_sk(sk
);
568 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
569 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
572 /* Number of bytes copied to user in last RTT */
573 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
574 if (copied
<= tp
->rcvq_space
.space
)
578 * copied = bytes received in previous RTT, our base window
579 * To cope with packet losses, we need a 2x factor
580 * To cope with slow start, and sender growing its cwin by 100 %
581 * every RTT, we need a 4x factor, because the ACK we are sending
582 * now is for the next RTT, not the current one :
583 * <prev RTT . ><current RTT .. ><next RTT .... >
586 if (sysctl_tcp_moderate_rcvbuf
&&
587 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
591 /* minimal window to cope with packet losses, assuming
592 * steady state. Add some cushion because of small variations.
594 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
596 /* If rate increased by 25%,
597 * assume slow start, rcvwin = 3 * copied
598 * If rate increased by 50%,
599 * assume sender can use 2x growth, rcvwin = 4 * copied
602 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
604 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
607 rcvwin
+= (rcvwin
>> 1);
610 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
611 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
614 do_div(rcvwin
, tp
->advmss
);
615 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
, sysctl_tcp_rmem
[2]);
616 if (rcvbuf
> sk
->sk_rcvbuf
) {
617 sk
->sk_rcvbuf
= rcvbuf
;
619 /* Make the window clamp follow along. */
620 tp
->window_clamp
= tcp_win_from_space(rcvbuf
);
623 tp
->rcvq_space
.space
= copied
;
626 tp
->rcvq_space
.seq
= tp
->copied_seq
;
627 tp
->rcvq_space
.time
= tcp_time_stamp
;
630 /* There is something which you must keep in mind when you analyze the
631 * behavior of the tp->ato delayed ack timeout interval. When a
632 * connection starts up, we want to ack as quickly as possible. The
633 * problem is that "good" TCP's do slow start at the beginning of data
634 * transmission. The means that until we send the first few ACK's the
635 * sender will sit on his end and only queue most of his data, because
636 * he can only send snd_cwnd unacked packets at any given time. For
637 * each ACK we send, he increments snd_cwnd and transmits more of his
640 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
642 struct tcp_sock
*tp
= tcp_sk(sk
);
643 struct inet_connection_sock
*icsk
= inet_csk(sk
);
646 inet_csk_schedule_ack(sk
);
648 tcp_measure_rcv_mss(sk
, skb
);
650 tcp_rcv_rtt_measure(tp
);
652 now
= tcp_time_stamp
;
654 if (!icsk
->icsk_ack
.ato
) {
655 /* The _first_ data packet received, initialize
656 * delayed ACK engine.
658 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
659 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
661 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
663 if (m
<= TCP_ATO_MIN
/ 2) {
664 /* The fastest case is the first. */
665 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
666 } else if (m
< icsk
->icsk_ack
.ato
) {
667 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
668 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
669 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
670 } else if (m
> icsk
->icsk_rto
) {
671 /* Too long gap. Apparently sender failed to
672 * restart window, so that we send ACKs quickly.
674 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
678 icsk
->icsk_ack
.lrcvtime
= now
;
680 tcp_ecn_check_ce(sk
, skb
);
683 tcp_grow_window(sk
, skb
);
686 /* Called to compute a smoothed rtt estimate. The data fed to this
687 * routine either comes from timestamps, or from segments that were
688 * known _not_ to have been retransmitted [see Karn/Partridge
689 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
690 * piece by Van Jacobson.
691 * NOTE: the next three routines used to be one big routine.
692 * To save cycles in the RFC 1323 implementation it was better to break
693 * it up into three procedures. -- erics
695 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
697 struct tcp_sock
*tp
= tcp_sk(sk
);
698 long m
= mrtt_us
; /* RTT */
699 u32 srtt
= tp
->srtt_us
;
701 /* The following amusing code comes from Jacobson's
702 * article in SIGCOMM '88. Note that rtt and mdev
703 * are scaled versions of rtt and mean deviation.
704 * This is designed to be as fast as possible
705 * m stands for "measurement".
707 * On a 1990 paper the rto value is changed to:
708 * RTO = rtt + 4 * mdev
710 * Funny. This algorithm seems to be very broken.
711 * These formulae increase RTO, when it should be decreased, increase
712 * too slowly, when it should be increased quickly, decrease too quickly
713 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
714 * does not matter how to _calculate_ it. Seems, it was trap
715 * that VJ failed to avoid. 8)
718 m
-= (srtt
>> 3); /* m is now error in rtt est */
719 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
721 m
= -m
; /* m is now abs(error) */
722 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
723 /* This is similar to one of Eifel findings.
724 * Eifel blocks mdev updates when rtt decreases.
725 * This solution is a bit different: we use finer gain
726 * for mdev in this case (alpha*beta).
727 * Like Eifel it also prevents growth of rto,
728 * but also it limits too fast rto decreases,
729 * happening in pure Eifel.
734 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
736 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
737 if (tp
->mdev_us
> tp
->mdev_max_us
) {
738 tp
->mdev_max_us
= tp
->mdev_us
;
739 if (tp
->mdev_max_us
> tp
->rttvar_us
)
740 tp
->rttvar_us
= tp
->mdev_max_us
;
742 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
743 if (tp
->mdev_max_us
< tp
->rttvar_us
)
744 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
745 tp
->rtt_seq
= tp
->snd_nxt
;
746 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
749 /* no previous measure. */
750 srtt
= m
<< 3; /* take the measured time to be rtt */
751 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
752 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
753 tp
->mdev_max_us
= tp
->rttvar_us
;
754 tp
->rtt_seq
= tp
->snd_nxt
;
756 tp
->srtt_us
= max(1U, srtt
);
759 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
760 * Note: TCP stack does not yet implement pacing.
761 * FQ packet scheduler can be used to implement cheap but effective
762 * TCP pacing, to smooth the burst on large writes when packets
763 * in flight is significantly lower than cwnd (or rwin)
765 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
766 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
768 static void tcp_update_pacing_rate(struct sock
*sk
)
770 const struct tcp_sock
*tp
= tcp_sk(sk
);
773 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
774 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
776 /* current rate is (cwnd * mss) / srtt
777 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
778 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
781 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
782 * end of slow start and should slow down.
784 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
785 rate
*= sysctl_tcp_pacing_ss_ratio
;
787 rate
*= sysctl_tcp_pacing_ca_ratio
;
789 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
791 if (likely(tp
->srtt_us
))
792 do_div(rate
, tp
->srtt_us
);
794 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
795 * without any lock. We want to make sure compiler wont store
796 * intermediate values in this location.
798 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
799 sk
->sk_max_pacing_rate
);
802 /* Calculate rto without backoff. This is the second half of Van Jacobson's
803 * routine referred to above.
805 static void tcp_set_rto(struct sock
*sk
)
807 const struct tcp_sock
*tp
= tcp_sk(sk
);
808 /* Old crap is replaced with new one. 8)
811 * 1. If rtt variance happened to be less 50msec, it is hallucination.
812 * It cannot be less due to utterly erratic ACK generation made
813 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
814 * to do with delayed acks, because at cwnd>2 true delack timeout
815 * is invisible. Actually, Linux-2.4 also generates erratic
816 * ACKs in some circumstances.
818 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
820 /* 2. Fixups made earlier cannot be right.
821 * If we do not estimate RTO correctly without them,
822 * all the algo is pure shit and should be replaced
823 * with correct one. It is exactly, which we pretend to do.
826 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
827 * guarantees that rto is higher.
832 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
834 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
837 cwnd
= TCP_INIT_CWND
;
838 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
842 * Packet counting of FACK is based on in-order assumptions, therefore TCP
843 * disables it when reordering is detected
845 void tcp_disable_fack(struct tcp_sock
*tp
)
847 /* RFC3517 uses different metric in lost marker => reset on change */
849 tp
->lost_skb_hint
= NULL
;
850 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
853 /* Take a notice that peer is sending D-SACKs */
854 static void tcp_dsack_seen(struct tcp_sock
*tp
)
856 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
859 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
862 struct tcp_sock
*tp
= tcp_sk(sk
);
863 if (metric
> tp
->reordering
) {
866 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
868 /* This exciting event is worth to be remembered. 8) */
870 mib_idx
= LINUX_MIB_TCPTSREORDER
;
871 else if (tcp_is_reno(tp
))
872 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
873 else if (tcp_is_fack(tp
))
874 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
876 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
878 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
879 #if FASTRETRANS_DEBUG > 1
880 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
881 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
885 tp
->undo_marker
? tp
->undo_retrans
: 0);
887 tcp_disable_fack(tp
);
891 tcp_disable_early_retrans(tp
);
895 /* This must be called before lost_out is incremented */
896 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
898 if (!tp
->retransmit_skb_hint
||
899 before(TCP_SKB_CB(skb
)->seq
,
900 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
901 tp
->retransmit_skb_hint
= skb
;
904 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
905 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
908 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
910 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
911 tcp_verify_retransmit_hint(tp
, skb
);
913 tp
->lost_out
+= tcp_skb_pcount(skb
);
914 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
918 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
920 tcp_verify_retransmit_hint(tp
, skb
);
922 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
923 tp
->lost_out
+= tcp_skb_pcount(skb
);
924 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
928 /* This procedure tags the retransmission queue when SACKs arrive.
930 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
931 * Packets in queue with these bits set are counted in variables
932 * sacked_out, retrans_out and lost_out, correspondingly.
934 * Valid combinations are:
935 * Tag InFlight Description
936 * 0 1 - orig segment is in flight.
937 * S 0 - nothing flies, orig reached receiver.
938 * L 0 - nothing flies, orig lost by net.
939 * R 2 - both orig and retransmit are in flight.
940 * L|R 1 - orig is lost, retransmit is in flight.
941 * S|R 1 - orig reached receiver, retrans is still in flight.
942 * (L|S|R is logically valid, it could occur when L|R is sacked,
943 * but it is equivalent to plain S and code short-curcuits it to S.
944 * L|S is logically invalid, it would mean -1 packet in flight 8))
946 * These 6 states form finite state machine, controlled by the following events:
947 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
948 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
949 * 3. Loss detection event of two flavors:
950 * A. Scoreboard estimator decided the packet is lost.
951 * A'. Reno "three dupacks" marks head of queue lost.
952 * A''. Its FACK modification, head until snd.fack is lost.
953 * B. SACK arrives sacking SND.NXT at the moment, when the
954 * segment was retransmitted.
955 * 4. D-SACK added new rule: D-SACK changes any tag to S.
957 * It is pleasant to note, that state diagram turns out to be commutative,
958 * so that we are allowed not to be bothered by order of our actions,
959 * when multiple events arrive simultaneously. (see the function below).
961 * Reordering detection.
962 * --------------------
963 * Reordering metric is maximal distance, which a packet can be displaced
964 * in packet stream. With SACKs we can estimate it:
966 * 1. SACK fills old hole and the corresponding segment was not
967 * ever retransmitted -> reordering. Alas, we cannot use it
968 * when segment was retransmitted.
969 * 2. The last flaw is solved with D-SACK. D-SACK arrives
970 * for retransmitted and already SACKed segment -> reordering..
971 * Both of these heuristics are not used in Loss state, when we cannot
972 * account for retransmits accurately.
974 * SACK block validation.
975 * ----------------------
977 * SACK block range validation checks that the received SACK block fits to
978 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
979 * Note that SND.UNA is not included to the range though being valid because
980 * it means that the receiver is rather inconsistent with itself reporting
981 * SACK reneging when it should advance SND.UNA. Such SACK block this is
982 * perfectly valid, however, in light of RFC2018 which explicitly states
983 * that "SACK block MUST reflect the newest segment. Even if the newest
984 * segment is going to be discarded ...", not that it looks very clever
985 * in case of head skb. Due to potentional receiver driven attacks, we
986 * choose to avoid immediate execution of a walk in write queue due to
987 * reneging and defer head skb's loss recovery to standard loss recovery
988 * procedure that will eventually trigger (nothing forbids us doing this).
990 * Implements also blockage to start_seq wrap-around. Problem lies in the
991 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
992 * there's no guarantee that it will be before snd_nxt (n). The problem
993 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996 * <- outs wnd -> <- wrapzone ->
997 * u e n u_w e_w s n_w
999 * |<------------+------+----- TCP seqno space --------------+---------->|
1000 * ...-- <2^31 ->| |<--------...
1001 * ...---- >2^31 ------>| |<--------...
1003 * Current code wouldn't be vulnerable but it's better still to discard such
1004 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1005 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1006 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1007 * equal to the ideal case (infinite seqno space without wrap caused issues).
1009 * With D-SACK the lower bound is extended to cover sequence space below
1010 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1011 * again, D-SACK block must not to go across snd_una (for the same reason as
1012 * for the normal SACK blocks, explained above). But there all simplicity
1013 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1014 * fully below undo_marker they do not affect behavior in anyway and can
1015 * therefore be safely ignored. In rare cases (which are more or less
1016 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1017 * fragmentation and packet reordering past skb's retransmission. To consider
1018 * them correctly, the acceptable range must be extended even more though
1019 * the exact amount is rather hard to quantify. However, tp->max_window can
1020 * be used as an exaggerated estimate.
1022 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1023 u32 start_seq
, u32 end_seq
)
1025 /* Too far in future, or reversed (interpretation is ambiguous) */
1026 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1029 /* Nasty start_seq wrap-around check (see comments above) */
1030 if (!before(start_seq
, tp
->snd_nxt
))
1033 /* In outstanding window? ...This is valid exit for D-SACKs too.
1034 * start_seq == snd_una is non-sensical (see comments above)
1036 if (after(start_seq
, tp
->snd_una
))
1039 if (!is_dsack
|| !tp
->undo_marker
)
1042 /* ...Then it's D-SACK, and must reside below snd_una completely */
1043 if (after(end_seq
, tp
->snd_una
))
1046 if (!before(start_seq
, tp
->undo_marker
))
1050 if (!after(end_seq
, tp
->undo_marker
))
1053 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1054 * start_seq < undo_marker and end_seq >= undo_marker.
1056 return !before(start_seq
, end_seq
- tp
->max_window
);
1059 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1060 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1063 struct tcp_sock
*tp
= tcp_sk(sk
);
1064 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1065 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1066 bool dup_sack
= false;
1068 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1071 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1072 } else if (num_sacks
> 1) {
1073 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1074 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1076 if (!after(end_seq_0
, end_seq_1
) &&
1077 !before(start_seq_0
, start_seq_1
)) {
1080 NET_INC_STATS_BH(sock_net(sk
),
1081 LINUX_MIB_TCPDSACKOFORECV
);
1085 /* D-SACK for already forgotten data... Do dumb counting. */
1086 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1087 !after(end_seq_0
, prior_snd_una
) &&
1088 after(end_seq_0
, tp
->undo_marker
))
1094 struct tcp_sacktag_state
{
1097 /* Timestamps for earliest and latest never-retransmitted segment
1098 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1099 * but congestion control should still get an accurate delay signal.
1101 struct skb_mstamp first_sackt
;
1102 struct skb_mstamp last_sackt
;
1106 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1107 * the incoming SACK may not exactly match but we can find smaller MSS
1108 * aligned portion of it that matches. Therefore we might need to fragment
1109 * which may fail and creates some hassle (caller must handle error case
1112 * FIXME: this could be merged to shift decision code
1114 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1115 u32 start_seq
, u32 end_seq
)
1119 unsigned int pkt_len
;
1122 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1123 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1125 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1126 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1127 mss
= tcp_skb_mss(skb
);
1128 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1131 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1135 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1140 /* Round if necessary so that SACKs cover only full MSSes
1141 * and/or the remaining small portion (if present)
1143 if (pkt_len
> mss
) {
1144 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1145 if (!in_sack
&& new_len
< pkt_len
)
1150 if (pkt_len
>= skb
->len
&& !in_sack
)
1153 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1161 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1162 static u8
tcp_sacktag_one(struct sock
*sk
,
1163 struct tcp_sacktag_state
*state
, u8 sacked
,
1164 u32 start_seq
, u32 end_seq
,
1165 int dup_sack
, int pcount
,
1166 const struct skb_mstamp
*xmit_time
)
1168 struct tcp_sock
*tp
= tcp_sk(sk
);
1169 int fack_count
= state
->fack_count
;
1171 /* Account D-SACK for retransmitted packet. */
1172 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1173 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1174 after(end_seq
, tp
->undo_marker
))
1176 if (sacked
& TCPCB_SACKED_ACKED
)
1177 state
->reord
= min(fack_count
, state
->reord
);
1180 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1181 if (!after(end_seq
, tp
->snd_una
))
1184 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1185 tcp_rack_advance(tp
, xmit_time
, sacked
);
1187 if (sacked
& TCPCB_SACKED_RETRANS
) {
1188 /* If the segment is not tagged as lost,
1189 * we do not clear RETRANS, believing
1190 * that retransmission is still in flight.
1192 if (sacked
& TCPCB_LOST
) {
1193 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1194 tp
->lost_out
-= pcount
;
1195 tp
->retrans_out
-= pcount
;
1198 if (!(sacked
& TCPCB_RETRANS
)) {
1199 /* New sack for not retransmitted frame,
1200 * which was in hole. It is reordering.
1202 if (before(start_seq
,
1203 tcp_highest_sack_seq(tp
)))
1204 state
->reord
= min(fack_count
,
1206 if (!after(end_seq
, tp
->high_seq
))
1207 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1208 if (state
->first_sackt
.v64
== 0)
1209 state
->first_sackt
= *xmit_time
;
1210 state
->last_sackt
= *xmit_time
;
1213 if (sacked
& TCPCB_LOST
) {
1214 sacked
&= ~TCPCB_LOST
;
1215 tp
->lost_out
-= pcount
;
1219 sacked
|= TCPCB_SACKED_ACKED
;
1220 state
->flag
|= FLAG_DATA_SACKED
;
1221 tp
->sacked_out
+= pcount
;
1223 fack_count
+= pcount
;
1225 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1226 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1227 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1228 tp
->lost_cnt_hint
+= pcount
;
1230 if (fack_count
> tp
->fackets_out
)
1231 tp
->fackets_out
= fack_count
;
1234 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1235 * frames and clear it. undo_retrans is decreased above, L|R frames
1236 * are accounted above as well.
1238 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1239 sacked
&= ~TCPCB_SACKED_RETRANS
;
1240 tp
->retrans_out
-= pcount
;
1246 /* Shift newly-SACKed bytes from this skb to the immediately previous
1247 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1250 struct tcp_sacktag_state
*state
,
1251 unsigned int pcount
, int shifted
, int mss
,
1254 struct tcp_sock
*tp
= tcp_sk(sk
);
1255 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1256 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1257 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1261 /* Adjust counters and hints for the newly sacked sequence
1262 * range but discard the return value since prev is already
1263 * marked. We must tag the range first because the seq
1264 * advancement below implicitly advances
1265 * tcp_highest_sack_seq() when skb is highest_sack.
1267 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1268 start_seq
, end_seq
, dup_sack
, pcount
,
1271 if (skb
== tp
->lost_skb_hint
)
1272 tp
->lost_cnt_hint
+= pcount
;
1274 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1275 TCP_SKB_CB(skb
)->seq
+= shifted
;
1277 tcp_skb_pcount_add(prev
, pcount
);
1278 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1279 tcp_skb_pcount_add(skb
, -pcount
);
1281 /* When we're adding to gso_segs == 1, gso_size will be zero,
1282 * in theory this shouldn't be necessary but as long as DSACK
1283 * code can come after this skb later on it's better to keep
1284 * setting gso_size to something.
1286 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1287 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1289 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1290 if (tcp_skb_pcount(skb
) <= 1)
1291 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1293 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1294 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1297 BUG_ON(!tcp_skb_pcount(skb
));
1298 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1302 /* Whole SKB was eaten :-) */
1304 if (skb
== tp
->retransmit_skb_hint
)
1305 tp
->retransmit_skb_hint
= prev
;
1306 if (skb
== tp
->lost_skb_hint
) {
1307 tp
->lost_skb_hint
= prev
;
1308 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1311 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1312 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1313 TCP_SKB_CB(prev
)->end_seq
++;
1315 if (skb
== tcp_highest_sack(sk
))
1316 tcp_advance_highest_sack(sk
, skb
);
1318 tcp_unlink_write_queue(skb
, sk
);
1319 sk_wmem_free_skb(sk
, skb
);
1321 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1326 /* I wish gso_size would have a bit more sane initialization than
1327 * something-or-zero which complicates things
1329 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1331 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1334 /* Shifting pages past head area doesn't work */
1335 static int skb_can_shift(const struct sk_buff
*skb
)
1337 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1340 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1343 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1344 struct tcp_sacktag_state
*state
,
1345 u32 start_seq
, u32 end_seq
,
1348 struct tcp_sock
*tp
= tcp_sk(sk
);
1349 struct sk_buff
*prev
;
1355 if (!sk_can_gso(sk
))
1358 /* Normally R but no L won't result in plain S */
1360 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1362 if (!skb_can_shift(skb
))
1364 /* This frame is about to be dropped (was ACKed). */
1365 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1368 /* Can only happen with delayed DSACK + discard craziness */
1369 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1371 prev
= tcp_write_queue_prev(sk
, skb
);
1373 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1376 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1377 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1381 pcount
= tcp_skb_pcount(skb
);
1382 mss
= tcp_skb_seglen(skb
);
1384 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1385 * drop this restriction as unnecessary
1387 if (mss
!= tcp_skb_seglen(prev
))
1390 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1392 /* CHECKME: This is non-MSS split case only?, this will
1393 * cause skipped skbs due to advancing loop btw, original
1394 * has that feature too
1396 if (tcp_skb_pcount(skb
) <= 1)
1399 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1401 /* TODO: head merge to next could be attempted here
1402 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1403 * though it might not be worth of the additional hassle
1405 * ...we can probably just fallback to what was done
1406 * previously. We could try merging non-SACKed ones
1407 * as well but it probably isn't going to buy off
1408 * because later SACKs might again split them, and
1409 * it would make skb timestamp tracking considerably
1415 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1417 BUG_ON(len
> skb
->len
);
1419 /* MSS boundaries should be honoured or else pcount will
1420 * severely break even though it makes things bit trickier.
1421 * Optimize common case to avoid most of the divides
1423 mss
= tcp_skb_mss(skb
);
1425 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1426 * drop this restriction as unnecessary
1428 if (mss
!= tcp_skb_seglen(prev
))
1433 } else if (len
< mss
) {
1441 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1442 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1445 if (!skb_shift(prev
, skb
, len
))
1447 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1450 /* Hole filled allows collapsing with the next as well, this is very
1451 * useful when hole on every nth skb pattern happens
1453 if (prev
== tcp_write_queue_tail(sk
))
1455 skb
= tcp_write_queue_next(sk
, prev
);
1457 if (!skb_can_shift(skb
) ||
1458 (skb
== tcp_send_head(sk
)) ||
1459 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1460 (mss
!= tcp_skb_seglen(skb
)))
1464 if (skb_shift(prev
, skb
, len
)) {
1465 pcount
+= tcp_skb_pcount(skb
);
1466 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1470 state
->fack_count
+= pcount
;
1477 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1481 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1482 struct tcp_sack_block
*next_dup
,
1483 struct tcp_sacktag_state
*state
,
1484 u32 start_seq
, u32 end_seq
,
1487 struct tcp_sock
*tp
= tcp_sk(sk
);
1488 struct sk_buff
*tmp
;
1490 tcp_for_write_queue_from(skb
, sk
) {
1492 bool dup_sack
= dup_sack_in
;
1494 if (skb
== tcp_send_head(sk
))
1497 /* queue is in-order => we can short-circuit the walk early */
1498 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1502 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1503 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1504 next_dup
->start_seq
,
1510 /* skb reference here is a bit tricky to get right, since
1511 * shifting can eat and free both this skb and the next,
1512 * so not even _safe variant of the loop is enough.
1515 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1516 start_seq
, end_seq
, dup_sack
);
1525 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1531 if (unlikely(in_sack
< 0))
1535 TCP_SKB_CB(skb
)->sacked
=
1538 TCP_SKB_CB(skb
)->sacked
,
1539 TCP_SKB_CB(skb
)->seq
,
1540 TCP_SKB_CB(skb
)->end_seq
,
1542 tcp_skb_pcount(skb
),
1545 if (!before(TCP_SKB_CB(skb
)->seq
,
1546 tcp_highest_sack_seq(tp
)))
1547 tcp_advance_highest_sack(sk
, skb
);
1550 state
->fack_count
+= tcp_skb_pcount(skb
);
1555 /* Avoid all extra work that is being done by sacktag while walking in
1558 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1559 struct tcp_sacktag_state
*state
,
1562 tcp_for_write_queue_from(skb
, sk
) {
1563 if (skb
== tcp_send_head(sk
))
1566 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1569 state
->fack_count
+= tcp_skb_pcount(skb
);
1574 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1576 struct tcp_sack_block
*next_dup
,
1577 struct tcp_sacktag_state
*state
,
1583 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1584 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1585 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1586 next_dup
->start_seq
, next_dup
->end_seq
,
1593 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1595 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1599 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1600 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1602 struct tcp_sock
*tp
= tcp_sk(sk
);
1603 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1604 TCP_SKB_CB(ack_skb
)->sacked
);
1605 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1606 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1607 struct tcp_sack_block
*cache
;
1608 struct sk_buff
*skb
;
1609 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1611 bool found_dup_sack
= false;
1613 int first_sack_index
;
1616 state
->reord
= tp
->packets_out
;
1618 if (!tp
->sacked_out
) {
1619 if (WARN_ON(tp
->fackets_out
))
1620 tp
->fackets_out
= 0;
1621 tcp_highest_sack_reset(sk
);
1624 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1625 num_sacks
, prior_snd_una
);
1627 state
->flag
|= FLAG_DSACKING_ACK
;
1629 /* Eliminate too old ACKs, but take into
1630 * account more or less fresh ones, they can
1631 * contain valid SACK info.
1633 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1636 if (!tp
->packets_out
)
1640 first_sack_index
= 0;
1641 for (i
= 0; i
< num_sacks
; i
++) {
1642 bool dup_sack
= !i
&& found_dup_sack
;
1644 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1645 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1647 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1648 sp
[used_sacks
].start_seq
,
1649 sp
[used_sacks
].end_seq
)) {
1653 if (!tp
->undo_marker
)
1654 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1656 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1658 /* Don't count olds caused by ACK reordering */
1659 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1660 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1662 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1665 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1667 first_sack_index
= -1;
1671 /* Ignore very old stuff early */
1672 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1678 /* order SACK blocks to allow in order walk of the retrans queue */
1679 for (i
= used_sacks
- 1; i
> 0; i
--) {
1680 for (j
= 0; j
< i
; j
++) {
1681 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1682 swap(sp
[j
], sp
[j
+ 1]);
1684 /* Track where the first SACK block goes to */
1685 if (j
== first_sack_index
)
1686 first_sack_index
= j
+ 1;
1691 skb
= tcp_write_queue_head(sk
);
1692 state
->fack_count
= 0;
1695 if (!tp
->sacked_out
) {
1696 /* It's already past, so skip checking against it */
1697 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1699 cache
= tp
->recv_sack_cache
;
1700 /* Skip empty blocks in at head of the cache */
1701 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1706 while (i
< used_sacks
) {
1707 u32 start_seq
= sp
[i
].start_seq
;
1708 u32 end_seq
= sp
[i
].end_seq
;
1709 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1710 struct tcp_sack_block
*next_dup
= NULL
;
1712 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1713 next_dup
= &sp
[i
+ 1];
1715 /* Skip too early cached blocks */
1716 while (tcp_sack_cache_ok(tp
, cache
) &&
1717 !before(start_seq
, cache
->end_seq
))
1720 /* Can skip some work by looking recv_sack_cache? */
1721 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1722 after(end_seq
, cache
->start_seq
)) {
1725 if (before(start_seq
, cache
->start_seq
)) {
1726 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1728 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1735 /* Rest of the block already fully processed? */
1736 if (!after(end_seq
, cache
->end_seq
))
1739 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1743 /* ...tail remains todo... */
1744 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1745 /* ...but better entrypoint exists! */
1746 skb
= tcp_highest_sack(sk
);
1749 state
->fack_count
= tp
->fackets_out
;
1754 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1755 /* Check overlap against next cached too (past this one already) */
1760 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1761 skb
= tcp_highest_sack(sk
);
1764 state
->fack_count
= tp
->fackets_out
;
1766 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1769 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1770 start_seq
, end_seq
, dup_sack
);
1776 /* Clear the head of the cache sack blocks so we can skip it next time */
1777 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1778 tp
->recv_sack_cache
[i
].start_seq
= 0;
1779 tp
->recv_sack_cache
[i
].end_seq
= 0;
1781 for (j
= 0; j
< used_sacks
; j
++)
1782 tp
->recv_sack_cache
[i
++] = sp
[j
];
1784 if ((state
->reord
< tp
->fackets_out
) &&
1785 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1786 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1788 tcp_verify_left_out(tp
);
1791 #if FASTRETRANS_DEBUG > 0
1792 WARN_ON((int)tp
->sacked_out
< 0);
1793 WARN_ON((int)tp
->lost_out
< 0);
1794 WARN_ON((int)tp
->retrans_out
< 0);
1795 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1800 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1801 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1803 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1807 holes
= max(tp
->lost_out
, 1U);
1808 holes
= min(holes
, tp
->packets_out
);
1810 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1811 tp
->sacked_out
= tp
->packets_out
- holes
;
1817 /* If we receive more dupacks than we expected counting segments
1818 * in assumption of absent reordering, interpret this as reordering.
1819 * The only another reason could be bug in receiver TCP.
1821 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1823 struct tcp_sock
*tp
= tcp_sk(sk
);
1824 if (tcp_limit_reno_sacked(tp
))
1825 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1828 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1830 static void tcp_add_reno_sack(struct sock
*sk
)
1832 struct tcp_sock
*tp
= tcp_sk(sk
);
1834 tcp_check_reno_reordering(sk
, 0);
1835 tcp_verify_left_out(tp
);
1838 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1840 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1842 struct tcp_sock
*tp
= tcp_sk(sk
);
1845 /* One ACK acked hole. The rest eat duplicate ACKs. */
1846 if (acked
- 1 >= tp
->sacked_out
)
1849 tp
->sacked_out
-= acked
- 1;
1851 tcp_check_reno_reordering(sk
, acked
);
1852 tcp_verify_left_out(tp
);
1855 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1860 void tcp_clear_retrans(struct tcp_sock
*tp
)
1862 tp
->retrans_out
= 0;
1864 tp
->undo_marker
= 0;
1865 tp
->undo_retrans
= -1;
1866 tp
->fackets_out
= 0;
1870 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1872 tp
->undo_marker
= tp
->snd_una
;
1873 /* Retransmission still in flight may cause DSACKs later. */
1874 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1877 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1881 void tcp_enter_loss(struct sock
*sk
)
1883 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1884 struct tcp_sock
*tp
= tcp_sk(sk
);
1885 struct sk_buff
*skb
;
1886 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1887 bool is_reneg
; /* is receiver reneging on SACKs? */
1889 /* Reduce ssthresh if it has not yet been made inside this window. */
1890 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1891 !after(tp
->high_seq
, tp
->snd_una
) ||
1892 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1893 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1894 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1895 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1899 tp
->snd_cwnd_cnt
= 0;
1900 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1902 tp
->retrans_out
= 0;
1905 if (tcp_is_reno(tp
))
1906 tcp_reset_reno_sack(tp
);
1908 skb
= tcp_write_queue_head(sk
);
1909 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1911 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1913 tp
->fackets_out
= 0;
1915 tcp_clear_all_retrans_hints(tp
);
1917 tcp_for_write_queue(skb
, sk
) {
1918 if (skb
== tcp_send_head(sk
))
1921 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1922 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || is_reneg
) {
1923 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1924 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1925 tp
->lost_out
+= tcp_skb_pcount(skb
);
1926 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1929 tcp_verify_left_out(tp
);
1931 /* Timeout in disordered state after receiving substantial DUPACKs
1932 * suggests that the degree of reordering is over-estimated.
1934 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1935 tp
->sacked_out
>= sysctl_tcp_reordering
)
1936 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1937 sysctl_tcp_reordering
);
1938 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1939 tp
->high_seq
= tp
->snd_nxt
;
1940 tcp_ecn_queue_cwr(tp
);
1942 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1943 * loss recovery is underway except recurring timeout(s) on
1944 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946 tp
->frto
= sysctl_tcp_frto
&&
1947 (new_recovery
|| icsk
->icsk_retransmits
) &&
1948 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1951 /* If ACK arrived pointing to a remembered SACK, it means that our
1952 * remembered SACKs do not reflect real state of receiver i.e.
1953 * receiver _host_ is heavily congested (or buggy).
1955 * To avoid big spurious retransmission bursts due to transient SACK
1956 * scoreboard oddities that look like reneging, we give the receiver a
1957 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1958 * restore sanity to the SACK scoreboard. If the apparent reneging
1959 * persists until this RTO then we'll clear the SACK scoreboard.
1961 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1963 if (flag
& FLAG_SACK_RENEGING
) {
1964 struct tcp_sock
*tp
= tcp_sk(sk
);
1965 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
1966 msecs_to_jiffies(10));
1968 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1969 delay
, TCP_RTO_MAX
);
1975 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
1977 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1980 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1981 * counter when SACK is enabled (without SACK, sacked_out is used for
1984 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1985 * segments up to the highest received SACK block so far and holes in
1988 * With reordering, holes may still be in flight, so RFC3517 recovery
1989 * uses pure sacked_out (total number of SACKed segments) even though
1990 * it violates the RFC that uses duplicate ACKs, often these are equal
1991 * but when e.g. out-of-window ACKs or packet duplication occurs,
1992 * they differ. Since neither occurs due to loss, TCP should really
1995 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
1997 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2000 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2002 struct tcp_sock
*tp
= tcp_sk(sk
);
2003 unsigned long delay
;
2005 /* Delay early retransmit and entering fast recovery for
2006 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2007 * available, or RTO is scheduled to fire first.
2009 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2010 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2013 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2014 msecs_to_jiffies(2));
2016 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2019 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2024 /* Linux NewReno/SACK/FACK/ECN state machine.
2025 * --------------------------------------
2027 * "Open" Normal state, no dubious events, fast path.
2028 * "Disorder" In all the respects it is "Open",
2029 * but requires a bit more attention. It is entered when
2030 * we see some SACKs or dupacks. It is split of "Open"
2031 * mainly to move some processing from fast path to slow one.
2032 * "CWR" CWND was reduced due to some Congestion Notification event.
2033 * It can be ECN, ICMP source quench, local device congestion.
2034 * "Recovery" CWND was reduced, we are fast-retransmitting.
2035 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2037 * tcp_fastretrans_alert() is entered:
2038 * - each incoming ACK, if state is not "Open"
2039 * - when arrived ACK is unusual, namely:
2044 * Counting packets in flight is pretty simple.
2046 * in_flight = packets_out - left_out + retrans_out
2048 * packets_out is SND.NXT-SND.UNA counted in packets.
2050 * retrans_out is number of retransmitted segments.
2052 * left_out is number of segments left network, but not ACKed yet.
2054 * left_out = sacked_out + lost_out
2056 * sacked_out: Packets, which arrived to receiver out of order
2057 * and hence not ACKed. With SACKs this number is simply
2058 * amount of SACKed data. Even without SACKs
2059 * it is easy to give pretty reliable estimate of this number,
2060 * counting duplicate ACKs.
2062 * lost_out: Packets lost by network. TCP has no explicit
2063 * "loss notification" feedback from network (for now).
2064 * It means that this number can be only _guessed_.
2065 * Actually, it is the heuristics to predict lossage that
2066 * distinguishes different algorithms.
2068 * F.e. after RTO, when all the queue is considered as lost,
2069 * lost_out = packets_out and in_flight = retrans_out.
2071 * Essentially, we have now two algorithms counting
2074 * FACK: It is the simplest heuristics. As soon as we decided
2075 * that something is lost, we decide that _all_ not SACKed
2076 * packets until the most forward SACK are lost. I.e.
2077 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2078 * It is absolutely correct estimate, if network does not reorder
2079 * packets. And it loses any connection to reality when reordering
2080 * takes place. We use FACK by default until reordering
2081 * is suspected on the path to this destination.
2083 * NewReno: when Recovery is entered, we assume that one segment
2084 * is lost (classic Reno). While we are in Recovery and
2085 * a partial ACK arrives, we assume that one more packet
2086 * is lost (NewReno). This heuristics are the same in NewReno
2089 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2090 * deflation etc. CWND is real congestion window, never inflated, changes
2091 * only according to classic VJ rules.
2093 * Really tricky (and requiring careful tuning) part of algorithm
2094 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2095 * The first determines the moment _when_ we should reduce CWND and,
2096 * hence, slow down forward transmission. In fact, it determines the moment
2097 * when we decide that hole is caused by loss, rather than by a reorder.
2099 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2100 * holes, caused by lost packets.
2102 * And the most logically complicated part of algorithm is undo
2103 * heuristics. We detect false retransmits due to both too early
2104 * fast retransmit (reordering) and underestimated RTO, analyzing
2105 * timestamps and D-SACKs. When we detect that some segments were
2106 * retransmitted by mistake and CWND reduction was wrong, we undo
2107 * window reduction and abort recovery phase. This logic is hidden
2108 * inside several functions named tcp_try_undo_<something>.
2111 /* This function decides, when we should leave Disordered state
2112 * and enter Recovery phase, reducing congestion window.
2114 * Main question: may we further continue forward transmission
2115 * with the same cwnd?
2117 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2119 struct tcp_sock
*tp
= tcp_sk(sk
);
2122 /* Trick#1: The loss is proven. */
2126 /* Not-A-Trick#2 : Classic rule... */
2127 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2130 /* Trick#4: It is still not OK... But will it be useful to delay
2133 packets_out
= tp
->packets_out
;
2134 if (packets_out
<= tp
->reordering
&&
2135 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2136 !tcp_may_send_now(sk
)) {
2137 /* We have nothing to send. This connection is limited
2138 * either by receiver window or by application.
2143 /* If a thin stream is detected, retransmit after first
2144 * received dupack. Employ only if SACK is supported in order
2145 * to avoid possible corner-case series of spurious retransmissions
2146 * Use only if there are no unsent data.
2148 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2149 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2150 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2153 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2154 * retransmissions due to small network reorderings, we implement
2155 * Mitigation A.3 in the RFC and delay the retransmission for a short
2156 * interval if appropriate.
2158 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2159 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2160 !tcp_may_send_now(sk
))
2161 return !tcp_pause_early_retransmit(sk
, flag
);
2166 /* Detect loss in event "A" above by marking head of queue up as lost.
2167 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2168 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2169 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2170 * the maximum SACKed segments to pass before reaching this limit.
2172 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2174 struct tcp_sock
*tp
= tcp_sk(sk
);
2175 struct sk_buff
*skb
;
2176 int cnt
, oldcnt
, lost
;
2178 /* Use SACK to deduce losses of new sequences sent during recovery */
2179 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2181 WARN_ON(packets
> tp
->packets_out
);
2182 if (tp
->lost_skb_hint
) {
2183 skb
= tp
->lost_skb_hint
;
2184 cnt
= tp
->lost_cnt_hint
;
2185 /* Head already handled? */
2186 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2189 skb
= tcp_write_queue_head(sk
);
2193 tcp_for_write_queue_from(skb
, sk
) {
2194 if (skb
== tcp_send_head(sk
))
2196 /* TODO: do this better */
2197 /* this is not the most efficient way to do this... */
2198 tp
->lost_skb_hint
= skb
;
2199 tp
->lost_cnt_hint
= cnt
;
2201 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2205 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2206 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2207 cnt
+= tcp_skb_pcount(skb
);
2209 if (cnt
> packets
) {
2210 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2211 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2212 (oldcnt
>= packets
))
2215 mss
= tcp_skb_mss(skb
);
2216 /* If needed, chop off the prefix to mark as lost. */
2217 lost
= (packets
- oldcnt
) * mss
;
2218 if (lost
< skb
->len
&&
2219 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2224 tcp_skb_mark_lost(tp
, skb
);
2229 tcp_verify_left_out(tp
);
2232 /* Account newly detected lost packet(s) */
2234 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2236 struct tcp_sock
*tp
= tcp_sk(sk
);
2238 if (tcp_is_reno(tp
)) {
2239 tcp_mark_head_lost(sk
, 1, 1);
2240 } else if (tcp_is_fack(tp
)) {
2241 int lost
= tp
->fackets_out
- tp
->reordering
;
2244 tcp_mark_head_lost(sk
, lost
, 0);
2246 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2247 if (sacked_upto
>= 0)
2248 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2249 else if (fast_rexmit
)
2250 tcp_mark_head_lost(sk
, 1, 1);
2254 /* CWND moderation, preventing bursts due to too big ACKs
2255 * in dubious situations.
2257 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2259 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2260 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2261 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2266 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2267 before(tp
->rx_opt
.rcv_tsecr
, when
);
2270 /* skb is spurious retransmitted if the returned timestamp echo
2271 * reply is prior to the skb transmission time
2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2274 const struct sk_buff
*skb
)
2276 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2277 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2280 /* Nothing was retransmitted or returned timestamp is less
2281 * than timestamp of the first retransmission.
2283 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2285 return !tp
->retrans_stamp
||
2286 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2289 /* Undo procedures. */
2291 /* We can clear retrans_stamp when there are no retransmissions in the
2292 * window. It would seem that it is trivially available for us in
2293 * tp->retrans_out, however, that kind of assumptions doesn't consider
2294 * what will happen if errors occur when sending retransmission for the
2295 * second time. ...It could the that such segment has only
2296 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2297 * the head skb is enough except for some reneging corner cases that
2298 * are not worth the effort.
2300 * Main reason for all this complexity is the fact that connection dying
2301 * time now depends on the validity of the retrans_stamp, in particular,
2302 * that successive retransmissions of a segment must not advance
2303 * retrans_stamp under any conditions.
2305 static bool tcp_any_retrans_done(const struct sock
*sk
)
2307 const struct tcp_sock
*tp
= tcp_sk(sk
);
2308 struct sk_buff
*skb
;
2310 if (tp
->retrans_out
)
2313 skb
= tcp_write_queue_head(sk
);
2314 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2320 #if FASTRETRANS_DEBUG > 1
2321 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2323 struct tcp_sock
*tp
= tcp_sk(sk
);
2324 struct inet_sock
*inet
= inet_sk(sk
);
2326 if (sk
->sk_family
== AF_INET
) {
2327 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2329 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2330 tp
->snd_cwnd
, tcp_left_out(tp
),
2331 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2334 #if IS_ENABLED(CONFIG_IPV6)
2335 else if (sk
->sk_family
== AF_INET6
) {
2336 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2338 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2339 tp
->snd_cwnd
, tcp_left_out(tp
),
2340 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2346 #define DBGUNDO(x...) do { } while (0)
2349 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2351 struct tcp_sock
*tp
= tcp_sk(sk
);
2354 struct sk_buff
*skb
;
2356 tcp_for_write_queue(skb
, sk
) {
2357 if (skb
== tcp_send_head(sk
))
2359 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2362 tcp_clear_all_retrans_hints(tp
);
2365 if (tp
->prior_ssthresh
) {
2366 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2368 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2369 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2371 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2373 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2374 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2375 tcp_ecn_withdraw_cwr(tp
);
2378 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2380 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2381 tp
->undo_marker
= 0;
2384 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2386 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2389 /* People celebrate: "We love our President!" */
2390 static bool tcp_try_undo_recovery(struct sock
*sk
)
2392 struct tcp_sock
*tp
= tcp_sk(sk
);
2394 if (tcp_may_undo(tp
)) {
2397 /* Happy end! We did not retransmit anything
2398 * or our original transmission succeeded.
2400 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2401 tcp_undo_cwnd_reduction(sk
, false);
2402 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2403 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2405 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2407 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2409 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2410 /* Hold old state until something *above* high_seq
2411 * is ACKed. For Reno it is MUST to prevent false
2412 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 tcp_moderate_cwnd(tp
);
2414 if (!tcp_any_retrans_done(sk
))
2415 tp
->retrans_stamp
= 0;
2418 tcp_set_ca_state(sk
, TCP_CA_Open
);
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static bool tcp_try_undo_dsack(struct sock
*sk
)
2425 struct tcp_sock
*tp
= tcp_sk(sk
);
2427 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2428 DBGUNDO(sk
, "D-SACK");
2429 tcp_undo_cwnd_reduction(sk
, false);
2430 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2436 /* Undo during loss recovery after partial ACK or using F-RTO. */
2437 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2439 struct tcp_sock
*tp
= tcp_sk(sk
);
2441 if (frto_undo
|| tcp_may_undo(tp
)) {
2442 tcp_undo_cwnd_reduction(sk
, true);
2444 DBGUNDO(sk
, "partial loss");
2445 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2447 NET_INC_STATS_BH(sock_net(sk
),
2448 LINUX_MIB_TCPSPURIOUSRTOS
);
2449 inet_csk(sk
)->icsk_retransmits
= 0;
2450 if (frto_undo
|| tcp_is_sack(tp
))
2451 tcp_set_ca_state(sk
, TCP_CA_Open
);
2457 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2458 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2461 * cwnd reductions across a full RTT.
2462 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2463 * But when the retransmits are acked without further losses, PRR
2464 * slow starts cwnd up to ssthresh to speed up the recovery.
2466 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2468 struct tcp_sock
*tp
= tcp_sk(sk
);
2470 tp
->high_seq
= tp
->snd_nxt
;
2471 tp
->tlp_high_seq
= 0;
2472 tp
->snd_cwnd_cnt
= 0;
2473 tp
->prior_cwnd
= tp
->snd_cwnd
;
2474 tp
->prr_delivered
= 0;
2476 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2477 tcp_ecn_queue_cwr(tp
);
2480 static void tcp_cwnd_reduction(struct sock
*sk
, const int prior_unsacked
,
2481 int fast_rexmit
, int flag
)
2483 struct tcp_sock
*tp
= tcp_sk(sk
);
2485 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2486 int newly_acked_sacked
= prior_unsacked
-
2487 (tp
->packets_out
- tp
->sacked_out
);
2489 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2492 tp
->prr_delivered
+= newly_acked_sacked
;
2494 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2496 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2497 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2498 !(flag
& FLAG_LOST_RETRANS
)) {
2499 sndcnt
= min_t(int, delta
,
2500 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2501 newly_acked_sacked
) + 1);
2503 sndcnt
= min(delta
, newly_acked_sacked
);
2505 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2506 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2509 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2511 struct tcp_sock
*tp
= tcp_sk(sk
);
2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2515 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2516 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2517 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2519 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock
*sk
)
2525 struct tcp_sock
*tp
= tcp_sk(sk
);
2527 tp
->prior_ssthresh
= 0;
2528 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2529 tp
->undo_marker
= 0;
2530 tcp_init_cwnd_reduction(sk
);
2531 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2534 EXPORT_SYMBOL(tcp_enter_cwr
);
2536 static void tcp_try_keep_open(struct sock
*sk
)
2538 struct tcp_sock
*tp
= tcp_sk(sk
);
2539 int state
= TCP_CA_Open
;
2541 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2542 state
= TCP_CA_Disorder
;
2544 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2545 tcp_set_ca_state(sk
, state
);
2546 tp
->high_seq
= tp
->snd_nxt
;
2550 static void tcp_try_to_open(struct sock
*sk
, int flag
, const int prior_unsacked
)
2552 struct tcp_sock
*tp
= tcp_sk(sk
);
2554 tcp_verify_left_out(tp
);
2556 if (!tcp_any_retrans_done(sk
))
2557 tp
->retrans_stamp
= 0;
2559 if (flag
& FLAG_ECE
)
2562 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2563 tcp_try_keep_open(sk
);
2565 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2569 static void tcp_mtup_probe_failed(struct sock
*sk
)
2571 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2573 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2574 icsk
->icsk_mtup
.probe_size
= 0;
2575 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2578 static void tcp_mtup_probe_success(struct sock
*sk
)
2580 struct tcp_sock
*tp
= tcp_sk(sk
);
2581 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2583 /* FIXME: breaks with very large cwnd */
2584 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2585 tp
->snd_cwnd
= tp
->snd_cwnd
*
2586 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2587 icsk
->icsk_mtup
.probe_size
;
2588 tp
->snd_cwnd_cnt
= 0;
2589 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2590 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2592 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2593 icsk
->icsk_mtup
.probe_size
= 0;
2594 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2595 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599 * tcp_timer. This is used for path mtu discovery.
2600 * The socket is already locked here.
2602 void tcp_simple_retransmit(struct sock
*sk
)
2604 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2605 struct tcp_sock
*tp
= tcp_sk(sk
);
2606 struct sk_buff
*skb
;
2607 unsigned int mss
= tcp_current_mss(sk
);
2608 u32 prior_lost
= tp
->lost_out
;
2610 tcp_for_write_queue(skb
, sk
) {
2611 if (skb
== tcp_send_head(sk
))
2613 if (tcp_skb_seglen(skb
) > mss
&&
2614 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2615 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2616 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2617 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2619 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2623 tcp_clear_retrans_hints_partial(tp
);
2625 if (prior_lost
== tp
->lost_out
)
2628 if (tcp_is_reno(tp
))
2629 tcp_limit_reno_sacked(tp
);
2631 tcp_verify_left_out(tp
);
2633 /* Don't muck with the congestion window here.
2634 * Reason is that we do not increase amount of _data_
2635 * in network, but units changed and effective
2636 * cwnd/ssthresh really reduced now.
2638 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2639 tp
->high_seq
= tp
->snd_nxt
;
2640 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2641 tp
->prior_ssthresh
= 0;
2642 tp
->undo_marker
= 0;
2643 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2645 tcp_xmit_retransmit_queue(sk
);
2647 EXPORT_SYMBOL(tcp_simple_retransmit
);
2649 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2651 struct tcp_sock
*tp
= tcp_sk(sk
);
2654 if (tcp_is_reno(tp
))
2655 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2657 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2659 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2661 tp
->prior_ssthresh
= 0;
2664 if (!tcp_in_cwnd_reduction(sk
)) {
2666 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2667 tcp_init_cwnd_reduction(sk
);
2669 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2673 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2675 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
)
2677 struct tcp_sock
*tp
= tcp_sk(sk
);
2678 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2680 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2681 tcp_try_undo_loss(sk
, false))
2684 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2685 /* Step 3.b. A timeout is spurious if not all data are
2686 * lost, i.e., never-retransmitted data are (s)acked.
2688 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2689 tcp_try_undo_loss(sk
, true))
2692 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2693 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2694 tp
->frto
= 0; /* Step 3.a. loss was real */
2695 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2696 tp
->high_seq
= tp
->snd_nxt
;
2697 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
2699 if (after(tp
->snd_nxt
, tp
->high_seq
))
2700 return; /* Step 2.b */
2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 tcp_try_undo_recovery(sk
);
2710 if (tcp_is_reno(tp
)) {
2711 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2712 * delivered. Lower inflight to clock out (re)tranmissions.
2714 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2715 tcp_add_reno_sack(sk
);
2716 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2717 tcp_reset_reno_sack(tp
);
2719 tcp_xmit_retransmit_queue(sk
);
2722 /* Undo during fast recovery after partial ACK. */
2723 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
,
2724 const int prior_unsacked
, int flag
)
2726 struct tcp_sock
*tp
= tcp_sk(sk
);
2728 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit.
2732 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2739 if (tp
->retrans_out
) {
2740 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2744 if (!tcp_any_retrans_done(sk
))
2745 tp
->retrans_stamp
= 0;
2747 DBGUNDO(sk
, "partial recovery");
2748 tcp_undo_cwnd_reduction(sk
, true);
2749 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2750 tcp_try_keep_open(sk
);
2756 /* Process an event, which can update packets-in-flight not trivially.
2757 * Main goal of this function is to calculate new estimate for left_out,
2758 * taking into account both packets sitting in receiver's buffer and
2759 * packets lost by network.
2761 * Besides that it does CWND reduction, when packet loss is detected
2762 * and changes state of machine.
2764 * It does _not_ decide what to send, it is made in function
2765 * tcp_xmit_retransmit_queue().
2767 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2768 const int prior_unsacked
,
2769 bool is_dupack
, int flag
)
2771 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2772 struct tcp_sock
*tp
= tcp_sk(sk
);
2773 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2774 (tcp_fackets_out(tp
) > tp
->reordering
));
2775 int fast_rexmit
= 0;
2777 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2779 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2780 tp
->fackets_out
= 0;
2782 /* Now state machine starts.
2783 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2784 if (flag
& FLAG_ECE
)
2785 tp
->prior_ssthresh
= 0;
2787 /* B. In all the states check for reneging SACKs. */
2788 if (tcp_check_sack_reneging(sk
, flag
))
2791 /* C. Check consistency of the current state. */
2792 tcp_verify_left_out(tp
);
2794 /* D. Check state exit conditions. State can be terminated
2795 * when high_seq is ACKed. */
2796 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2797 WARN_ON(tp
->retrans_out
!= 0);
2798 tp
->retrans_stamp
= 0;
2799 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2800 switch (icsk
->icsk_ca_state
) {
2802 /* CWR is to be held something *above* high_seq
2803 * is ACKed for CWR bit to reach receiver. */
2804 if (tp
->snd_una
!= tp
->high_seq
) {
2805 tcp_end_cwnd_reduction(sk
);
2806 tcp_set_ca_state(sk
, TCP_CA_Open
);
2810 case TCP_CA_Recovery
:
2811 if (tcp_is_reno(tp
))
2812 tcp_reset_reno_sack(tp
);
2813 if (tcp_try_undo_recovery(sk
))
2815 tcp_end_cwnd_reduction(sk
);
2820 /* Use RACK to detect loss */
2821 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2822 tcp_rack_mark_lost(sk
))
2823 flag
|= FLAG_LOST_RETRANS
;
2825 /* E. Process state. */
2826 switch (icsk
->icsk_ca_state
) {
2827 case TCP_CA_Recovery
:
2828 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2829 if (tcp_is_reno(tp
) && is_dupack
)
2830 tcp_add_reno_sack(sk
);
2832 if (tcp_try_undo_partial(sk
, acked
, prior_unsacked
, flag
))
2834 /* Partial ACK arrived. Force fast retransmit. */
2835 do_lost
= tcp_is_reno(tp
) ||
2836 tcp_fackets_out(tp
) > tp
->reordering
;
2838 if (tcp_try_undo_dsack(sk
)) {
2839 tcp_try_keep_open(sk
);
2844 tcp_process_loss(sk
, flag
, is_dupack
);
2845 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2846 !(flag
& FLAG_LOST_RETRANS
))
2848 /* Change state if cwnd is undone or retransmits are lost */
2850 if (tcp_is_reno(tp
)) {
2851 if (flag
& FLAG_SND_UNA_ADVANCED
)
2852 tcp_reset_reno_sack(tp
);
2854 tcp_add_reno_sack(sk
);
2857 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2858 tcp_try_undo_dsack(sk
);
2860 if (!tcp_time_to_recover(sk
, flag
)) {
2861 tcp_try_to_open(sk
, flag
, prior_unsacked
);
2865 /* MTU probe failure: don't reduce cwnd */
2866 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2867 icsk
->icsk_mtup
.probe_size
&&
2868 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2869 tcp_mtup_probe_failed(sk
);
2870 /* Restores the reduction we did in tcp_mtup_probe() */
2872 tcp_simple_retransmit(sk
);
2876 /* Otherwise enter Recovery state */
2877 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2882 tcp_update_scoreboard(sk
, fast_rexmit
);
2883 tcp_cwnd_reduction(sk
, prior_unsacked
, fast_rexmit
, flag
);
2884 tcp_xmit_retransmit_queue(sk
);
2887 /* Kathleen Nichols' algorithm for tracking the minimum value of
2888 * a data stream over some fixed time interval. (E.g., the minimum
2889 * RTT over the past five minutes.) It uses constant space and constant
2890 * time per update yet almost always delivers the same minimum as an
2891 * implementation that has to keep all the data in the window.
2893 * The algorithm keeps track of the best, 2nd best & 3rd best min
2894 * values, maintaining an invariant that the measurement time of the
2895 * n'th best >= n-1'th best. It also makes sure that the three values
2896 * are widely separated in the time window since that bounds the worse
2897 * case error when that data is monotonically increasing over the window.
2899 * Upon getting a new min, we can forget everything earlier because it
2900 * has no value - the new min is <= everything else in the window by
2901 * definition and it's the most recent. So we restart fresh on every new min
2902 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2907 const u32 now
= tcp_time_stamp
, wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2908 struct rtt_meas
*m
= tcp_sk(sk
)->rtt_min
;
2909 struct rtt_meas rttm
= { .rtt
= (rtt_us
? : 1), .ts
= now
};
2912 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2913 if (unlikely(rttm
.rtt
<= m
[0].rtt
))
2914 m
[0] = m
[1] = m
[2] = rttm
;
2915 else if (rttm
.rtt
<= m
[1].rtt
)
2917 else if (rttm
.rtt
<= m
[2].rtt
)
2920 elapsed
= now
- m
[0].ts
;
2921 if (unlikely(elapsed
> wlen
)) {
2922 /* Passed entire window without a new min so make 2nd choice
2923 * the new min & 3rd choice the new 2nd. So forth and so on.
2928 if (now
- m
[0].ts
> wlen
) {
2931 if (now
- m
[0].ts
> wlen
)
2934 } else if (m
[1].ts
== m
[0].ts
&& elapsed
> wlen
/ 4) {
2935 /* Passed a quarter of the window without a new min so
2936 * take 2nd choice from the 2nd quarter of the window.
2939 } else if (m
[2].ts
== m
[1].ts
&& elapsed
> wlen
/ 2) {
2940 /* Passed half the window without a new min so take the 3rd
2941 * choice from the last half of the window.
2947 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2948 long seq_rtt_us
, long sack_rtt_us
,
2951 const struct tcp_sock
*tp
= tcp_sk(sk
);
2953 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2954 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2955 * Karn's algorithm forbids taking RTT if some retransmitted data
2956 * is acked (RFC6298).
2959 seq_rtt_us
= sack_rtt_us
;
2961 /* RTTM Rule: A TSecr value received in a segment is used to
2962 * update the averaged RTT measurement only if the segment
2963 * acknowledges some new data, i.e., only if it advances the
2964 * left edge of the send window.
2965 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2967 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2969 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2970 tp
->rx_opt
.rcv_tsecr
);
2974 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2975 * always taken together with ACK, SACK, or TS-opts. Any negative
2976 * values will be skipped with the seq_rtt_us < 0 check above.
2978 tcp_update_rtt_min(sk
, ca_rtt_us
);
2979 tcp_rtt_estimator(sk
, seq_rtt_us
);
2982 /* RFC6298: only reset backoff on valid RTT measurement. */
2983 inet_csk(sk
)->icsk_backoff
= 0;
2987 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2988 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2992 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2993 struct skb_mstamp now
;
2995 skb_mstamp_get(&now
);
2996 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2999 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
3003 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3005 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3007 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3008 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3011 /* Restart timer after forward progress on connection.
3012 * RFC2988 recommends to restart timer to now+rto.
3014 void tcp_rearm_rto(struct sock
*sk
)
3016 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3017 struct tcp_sock
*tp
= tcp_sk(sk
);
3019 /* If the retrans timer is currently being used by Fast Open
3020 * for SYN-ACK retrans purpose, stay put.
3022 if (tp
->fastopen_rsk
)
3025 if (!tp
->packets_out
) {
3026 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3028 u32 rto
= inet_csk(sk
)->icsk_rto
;
3029 /* Offset the time elapsed after installing regular RTO */
3030 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3031 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3032 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3033 const u32 rto_time_stamp
=
3034 tcp_skb_timestamp(skb
) + rto
;
3035 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3036 /* delta may not be positive if the socket is locked
3037 * when the retrans timer fires and is rescheduled.
3039 rto
= max(delta
, 1);
3041 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3046 /* This function is called when the delayed ER timer fires. TCP enters
3047 * fast recovery and performs fast-retransmit.
3049 void tcp_resume_early_retransmit(struct sock
*sk
)
3051 struct tcp_sock
*tp
= tcp_sk(sk
);
3055 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3056 if (!tp
->do_early_retrans
)
3059 tcp_enter_recovery(sk
, false);
3060 tcp_update_scoreboard(sk
, 1);
3061 tcp_xmit_retransmit_queue(sk
);
3064 /* If we get here, the whole TSO packet has not been acked. */
3065 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3067 struct tcp_sock
*tp
= tcp_sk(sk
);
3070 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3072 packets_acked
= tcp_skb_pcount(skb
);
3073 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3075 packets_acked
-= tcp_skb_pcount(skb
);
3077 if (packets_acked
) {
3078 BUG_ON(tcp_skb_pcount(skb
) == 0);
3079 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3082 return packets_acked
;
3085 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3088 const struct skb_shared_info
*shinfo
;
3090 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3091 if (likely(!(sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)))
3094 shinfo
= skb_shinfo(skb
);
3095 if ((shinfo
->tx_flags
& SKBTX_ACK_TSTAMP
) &&
3096 between(shinfo
->tskey
, prior_snd_una
, tcp_sk(sk
)->snd_una
- 1))
3097 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3100 /* Remove acknowledged frames from the retransmission queue. If our packet
3101 * is before the ack sequence we can discard it as it's confirmed to have
3102 * arrived at the other end.
3104 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3106 struct tcp_sacktag_state
*sack
)
3108 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3109 struct skb_mstamp first_ackt
, last_ackt
, now
;
3110 struct tcp_sock
*tp
= tcp_sk(sk
);
3111 u32 prior_sacked
= tp
->sacked_out
;
3112 u32 reord
= tp
->packets_out
;
3113 bool fully_acked
= true;
3114 long sack_rtt_us
= -1L;
3115 long seq_rtt_us
= -1L;
3116 long ca_rtt_us
= -1L;
3117 struct sk_buff
*skb
;
3124 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3125 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3126 u8 sacked
= scb
->sacked
;
3129 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb
->end_seq
, tp
->snd_una
)) {
3133 if (tcp_skb_pcount(skb
) == 1 ||
3134 !after(tp
->snd_una
, scb
->seq
))
3137 acked_pcount
= tcp_tso_acked(sk
, skb
);
3141 fully_acked
= false;
3143 /* Speedup tcp_unlink_write_queue() and next loop */
3144 prefetchw(skb
->next
);
3145 acked_pcount
= tcp_skb_pcount(skb
);
3148 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3149 if (sacked
& TCPCB_SACKED_RETRANS
)
3150 tp
->retrans_out
-= acked_pcount
;
3151 flag
|= FLAG_RETRANS_DATA_ACKED
;
3152 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3153 last_ackt
= skb
->skb_mstamp
;
3154 WARN_ON_ONCE(last_ackt
.v64
== 0);
3155 if (!first_ackt
.v64
)
3156 first_ackt
= last_ackt
;
3158 reord
= min(pkts_acked
, reord
);
3159 if (!after(scb
->end_seq
, tp
->high_seq
))
3160 flag
|= FLAG_ORIG_SACK_ACKED
;
3163 if (sacked
& TCPCB_SACKED_ACKED
)
3164 tp
->sacked_out
-= acked_pcount
;
3165 else if (tcp_is_sack(tp
) && !tcp_skb_spurious_retrans(tp
, skb
))
3166 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3167 if (sacked
& TCPCB_LOST
)
3168 tp
->lost_out
-= acked_pcount
;
3170 tp
->packets_out
-= acked_pcount
;
3171 pkts_acked
+= acked_pcount
;
3173 /* Initial outgoing SYN's get put onto the write_queue
3174 * just like anything else we transmit. It is not
3175 * true data, and if we misinform our callers that
3176 * this ACK acks real data, we will erroneously exit
3177 * connection startup slow start one packet too
3178 * quickly. This is severely frowned upon behavior.
3180 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3181 flag
|= FLAG_DATA_ACKED
;
3183 flag
|= FLAG_SYN_ACKED
;
3184 tp
->retrans_stamp
= 0;
3190 tcp_unlink_write_queue(skb
, sk
);
3191 sk_wmem_free_skb(sk
, skb
);
3192 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3193 tp
->retransmit_skb_hint
= NULL
;
3194 if (unlikely(skb
== tp
->lost_skb_hint
))
3195 tp
->lost_skb_hint
= NULL
;
3198 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3199 tp
->snd_up
= tp
->snd_una
;
3201 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3202 flag
|= FLAG_SACK_RENEGING
;
3204 skb_mstamp_get(&now
);
3205 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3206 seq_rtt_us
= skb_mstamp_us_delta(&now
, &first_ackt
);
3207 ca_rtt_us
= skb_mstamp_us_delta(&now
, &last_ackt
);
3209 if (sack
->first_sackt
.v64
) {
3210 sack_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->first_sackt
);
3211 ca_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->last_sackt
);
3214 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3217 if (flag
& FLAG_ACKED
) {
3219 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3220 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3221 tcp_mtup_probe_success(sk
);
3224 if (tcp_is_reno(tp
)) {
3225 tcp_remove_reno_sacks(sk
, pkts_acked
);
3227 /* If any of the cumulatively ACKed segments was
3228 * retransmitted, non-SACK case cannot confirm that
3229 * progress was due to original transmission due to
3230 * lack of TCPCB_SACKED_ACKED bits even if some of
3231 * the packets may have been never retransmitted.
3233 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3234 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3238 /* Non-retransmitted hole got filled? That's reordering */
3239 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3240 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3242 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3243 prior_sacked
- tp
->sacked_out
;
3244 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3247 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3249 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3250 sack_rtt_us
> skb_mstamp_us_delta(&now
, &skb
->skb_mstamp
)) {
3251 /* Do not re-arm RTO if the sack RTT is measured from data sent
3252 * after when the head was last (re)transmitted. Otherwise the
3253 * timeout may continue to extend in loss recovery.
3258 if (icsk
->icsk_ca_ops
->pkts_acked
)
3259 icsk
->icsk_ca_ops
->pkts_acked(sk
, pkts_acked
, ca_rtt_us
);
3261 #if FASTRETRANS_DEBUG > 0
3262 WARN_ON((int)tp
->sacked_out
< 0);
3263 WARN_ON((int)tp
->lost_out
< 0);
3264 WARN_ON((int)tp
->retrans_out
< 0);
3265 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3266 icsk
= inet_csk(sk
);
3268 pr_debug("Leak l=%u %d\n",
3269 tp
->lost_out
, icsk
->icsk_ca_state
);
3272 if (tp
->sacked_out
) {
3273 pr_debug("Leak s=%u %d\n",
3274 tp
->sacked_out
, icsk
->icsk_ca_state
);
3277 if (tp
->retrans_out
) {
3278 pr_debug("Leak r=%u %d\n",
3279 tp
->retrans_out
, icsk
->icsk_ca_state
);
3280 tp
->retrans_out
= 0;
3287 static void tcp_ack_probe(struct sock
*sk
)
3289 const struct tcp_sock
*tp
= tcp_sk(sk
);
3290 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3292 /* Was it a usable window open? */
3294 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3295 icsk
->icsk_backoff
= 0;
3296 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3297 /* Socket must be waked up by subsequent tcp_data_snd_check().
3298 * This function is not for random using!
3301 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3303 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3308 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3310 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3311 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3317 if (tcp_in_cwnd_reduction(sk
))
3320 /* If reordering is high then always grow cwnd whenever data is
3321 * delivered regardless of its ordering. Otherwise stay conservative
3322 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323 * new SACK or ECE mark may first advance cwnd here and later reduce
3324 * cwnd in tcp_fastretrans_alert() based on more states.
3326 if (tcp_sk(sk
)->reordering
> sysctl_tcp_reordering
)
3327 return flag
& FLAG_FORWARD_PROGRESS
;
3329 return flag
& FLAG_DATA_ACKED
;
3332 /* Check that window update is acceptable.
3333 * The function assumes that snd_una<=ack<=snd_next.
3335 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3336 const u32 ack
, const u32 ack_seq
,
3339 return after(ack
, tp
->snd_una
) ||
3340 after(ack_seq
, tp
->snd_wl1
) ||
3341 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3344 /* If we update tp->snd_una, also update tp->bytes_acked */
3345 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3347 u32 delta
= ack
- tp
->snd_una
;
3349 u64_stats_update_begin(&tp
->syncp
);
3350 tp
->bytes_acked
+= delta
;
3351 u64_stats_update_end(&tp
->syncp
);
3355 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3356 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3358 u32 delta
= seq
- tp
->rcv_nxt
;
3360 u64_stats_update_begin(&tp
->syncp
);
3361 tp
->bytes_received
+= delta
;
3362 u64_stats_update_end(&tp
->syncp
);
3366 /* Update our send window.
3368 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3369 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3371 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3374 struct tcp_sock
*tp
= tcp_sk(sk
);
3376 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3378 if (likely(!tcp_hdr(skb
)->syn
))
3379 nwin
<<= tp
->rx_opt
.snd_wscale
;
3381 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3382 flag
|= FLAG_WIN_UPDATE
;
3383 tcp_update_wl(tp
, ack_seq
);
3385 if (tp
->snd_wnd
!= nwin
) {
3388 /* Note, it is the only place, where
3389 * fast path is recovered for sending TCP.
3392 tcp_fast_path_check(sk
);
3394 if (tcp_send_head(sk
))
3395 tcp_slow_start_after_idle_check(sk
);
3397 if (nwin
> tp
->max_window
) {
3398 tp
->max_window
= nwin
;
3399 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3404 tcp_snd_una_update(tp
, ack
);
3409 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3410 u32
*last_oow_ack_time
)
3412 if (*last_oow_ack_time
) {
3413 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3415 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3416 NET_INC_STATS_BH(net
, mib_idx
);
3417 return true; /* rate-limited: don't send yet! */
3421 *last_oow_ack_time
= tcp_time_stamp
;
3423 return false; /* not rate-limited: go ahead, send dupack now! */
3426 /* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3433 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3434 int mib_idx
, u32
*last_oow_ack_time
)
3436 /* Data packets without SYNs are not likely part of an ACK loop. */
3437 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3441 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3444 /* RFC 5961 7 [ACK Throttling] */
3445 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3447 /* unprotected vars, we dont care of overwrites */
3448 static u32 challenge_timestamp
;
3449 static unsigned int challenge_count
;
3450 struct tcp_sock
*tp
= tcp_sk(sk
);
3453 /* First check our per-socket dupack rate limit. */
3454 if (__tcp_oow_rate_limited(sock_net(sk
),
3455 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3456 &tp
->last_oow_ack_time
))
3459 /* Then check host-wide RFC 5961 rate limit. */
3461 if (now
!= challenge_timestamp
) {
3462 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3464 challenge_timestamp
= now
;
3465 WRITE_ONCE(challenge_count
, half
+
3466 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3468 count
= READ_ONCE(challenge_count
);
3470 WRITE_ONCE(challenge_count
, count
- 1);
3471 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3476 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3478 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3479 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3482 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3484 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3485 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3486 * extra check below makes sure this can only happen
3487 * for pure ACK frames. -DaveM
3489 * Not only, also it occurs for expired timestamps.
3492 if (tcp_paws_check(&tp
->rx_opt
, 0))
3493 tcp_store_ts_recent(tp
);
3497 /* This routine deals with acks during a TLP episode.
3498 * We mark the end of a TLP episode on receiving TLP dupack or when
3499 * ack is after tlp_high_seq.
3500 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3502 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3504 struct tcp_sock
*tp
= tcp_sk(sk
);
3506 if (before(ack
, tp
->tlp_high_seq
))
3509 if (flag
& FLAG_DSACKING_ACK
) {
3510 /* This DSACK means original and TLP probe arrived; no loss */
3511 tp
->tlp_high_seq
= 0;
3512 } else if (after(ack
, tp
->tlp_high_seq
)) {
3513 /* ACK advances: there was a loss, so reduce cwnd. Reset
3514 * tlp_high_seq in tcp_init_cwnd_reduction()
3516 tcp_init_cwnd_reduction(sk
);
3517 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3518 tcp_end_cwnd_reduction(sk
);
3519 tcp_try_keep_open(sk
);
3520 NET_INC_STATS_BH(sock_net(sk
),
3521 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3522 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3523 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3524 /* Pure dupack: original and TLP probe arrived; no loss */
3525 tp
->tlp_high_seq
= 0;
3529 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3531 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3533 if (icsk
->icsk_ca_ops
->in_ack_event
)
3534 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3540 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3541 struct tcp_sock
*tp
= tcp_sk(sk
);
3542 struct tcp_sacktag_state sack_state
;
3543 u32 prior_snd_una
= tp
->snd_una
;
3544 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3545 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3546 bool is_dupack
= false;
3548 int prior_packets
= tp
->packets_out
;
3549 const int prior_unsacked
= tp
->packets_out
- tp
->sacked_out
;
3550 int acked
= 0; /* Number of packets newly acked */
3552 sack_state
.first_sackt
.v64
= 0;
3554 /* We very likely will need to access write queue head. */
3555 prefetchw(sk
->sk_write_queue
.next
);
3557 /* If the ack is older than previous acks
3558 * then we can probably ignore it.
3560 if (before(ack
, prior_snd_una
)) {
3561 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3562 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3563 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3564 tcp_send_challenge_ack(sk
, skb
);
3570 /* If the ack includes data we haven't sent yet, discard
3571 * this segment (RFC793 Section 3.9).
3573 if (after(ack
, tp
->snd_nxt
))
3576 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3577 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3580 if (after(ack
, prior_snd_una
)) {
3581 flag
|= FLAG_SND_UNA_ADVANCED
;
3582 icsk
->icsk_retransmits
= 0;
3585 prior_fackets
= tp
->fackets_out
;
3587 /* ts_recent update must be made after we are sure that the packet
3590 if (flag
& FLAG_UPDATE_TS_RECENT
)
3591 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3593 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3594 /* Window is constant, pure forward advance.
3595 * No more checks are required.
3596 * Note, we use the fact that SND.UNA>=SND.WL2.
3598 tcp_update_wl(tp
, ack_seq
);
3599 tcp_snd_una_update(tp
, ack
);
3600 flag
|= FLAG_WIN_UPDATE
;
3602 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3604 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3606 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3608 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3611 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3613 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3615 if (TCP_SKB_CB(skb
)->sacked
)
3616 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3619 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3621 ack_ev_flags
|= CA_ACK_ECE
;
3624 if (flag
& FLAG_WIN_UPDATE
)
3625 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3627 tcp_in_ack_event(sk
, ack_ev_flags
);
3630 /* We passed data and got it acked, remove any soft error
3631 * log. Something worked...
3633 sk
->sk_err_soft
= 0;
3634 icsk
->icsk_probes_out
= 0;
3635 tp
->rcv_tstamp
= tcp_time_stamp
;
3639 /* See if we can take anything off of the retransmit queue. */
3640 acked
= tp
->packets_out
;
3641 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
,
3643 acked
-= tp
->packets_out
;
3645 if (tcp_ack_is_dubious(sk
, flag
)) {
3646 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3647 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3650 if (tp
->tlp_high_seq
)
3651 tcp_process_tlp_ack(sk
, ack
, flag
);
3653 /* Advance cwnd if state allows */
3654 if (tcp_may_raise_cwnd(sk
, flag
))
3655 tcp_cong_avoid(sk
, ack
, acked
);
3657 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3658 struct dst_entry
*dst
= __sk_dst_get(sk
);
3663 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3664 tcp_schedule_loss_probe(sk
);
3665 tcp_update_pacing_rate(sk
);
3669 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3670 if (flag
& FLAG_DSACKING_ACK
)
3671 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3673 /* If this ack opens up a zero window, clear backoff. It was
3674 * being used to time the probes, and is probably far higher than
3675 * it needs to be for normal retransmission.
3677 if (tcp_send_head(sk
))
3680 if (tp
->tlp_high_seq
)
3681 tcp_process_tlp_ack(sk
, ack
, flag
);
3685 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3689 /* If data was SACKed, tag it and see if we should send more data.
3690 * If data was DSACKed, see if we can undo a cwnd reduction.
3692 if (TCP_SKB_CB(skb
)->sacked
) {
3693 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3695 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3699 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3703 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3704 bool syn
, struct tcp_fastopen_cookie
*foc
,
3707 /* Valid only in SYN or SYN-ACK with an even length. */
3708 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3711 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3712 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3713 memcpy(foc
->val
, cookie
, len
);
3720 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3721 * But, this can also be called on packets in the established flow when
3722 * the fast version below fails.
3724 void tcp_parse_options(const struct sk_buff
*skb
,
3725 struct tcp_options_received
*opt_rx
, int estab
,
3726 struct tcp_fastopen_cookie
*foc
)
3728 const unsigned char *ptr
;
3729 const struct tcphdr
*th
= tcp_hdr(skb
);
3730 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3732 ptr
= (const unsigned char *)(th
+ 1);
3733 opt_rx
->saw_tstamp
= 0;
3735 while (length
> 0) {
3736 int opcode
= *ptr
++;
3742 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3747 if (opsize
< 2) /* "silly options" */
3749 if (opsize
> length
)
3750 return; /* don't parse partial options */
3753 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3754 u16 in_mss
= get_unaligned_be16(ptr
);
3756 if (opt_rx
->user_mss
&&
3757 opt_rx
->user_mss
< in_mss
)
3758 in_mss
= opt_rx
->user_mss
;
3759 opt_rx
->mss_clamp
= in_mss
;
3764 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3765 !estab
&& sysctl_tcp_window_scaling
) {
3766 __u8 snd_wscale
= *(__u8
*)ptr
;
3767 opt_rx
->wscale_ok
= 1;
3768 if (snd_wscale
> 14) {
3769 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3774 opt_rx
->snd_wscale
= snd_wscale
;
3777 case TCPOPT_TIMESTAMP
:
3778 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3779 ((estab
&& opt_rx
->tstamp_ok
) ||
3780 (!estab
&& sysctl_tcp_timestamps
))) {
3781 opt_rx
->saw_tstamp
= 1;
3782 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3783 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3786 case TCPOPT_SACK_PERM
:
3787 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3788 !estab
&& sysctl_tcp_sack
) {
3789 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3790 tcp_sack_reset(opt_rx
);
3795 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3796 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3798 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3801 #ifdef CONFIG_TCP_MD5SIG
3804 * The MD5 Hash has already been
3805 * checked (see tcp_v{4,6}_do_rcv()).
3809 case TCPOPT_FASTOPEN
:
3810 tcp_parse_fastopen_option(
3811 opsize
- TCPOLEN_FASTOPEN_BASE
,
3812 ptr
, th
->syn
, foc
, false);
3816 /* Fast Open option shares code 254 using a
3817 * 16 bits magic number.
3819 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3820 get_unaligned_be16(ptr
) ==
3821 TCPOPT_FASTOPEN_MAGIC
)
3822 tcp_parse_fastopen_option(opsize
-
3823 TCPOLEN_EXP_FASTOPEN_BASE
,
3824 ptr
+ 2, th
->syn
, foc
, true);
3833 EXPORT_SYMBOL(tcp_parse_options
);
3835 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3837 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3839 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3840 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3841 tp
->rx_opt
.saw_tstamp
= 1;
3843 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3846 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3848 tp
->rx_opt
.rcv_tsecr
= 0;
3854 /* Fast parse options. This hopes to only see timestamps.
3855 * If it is wrong it falls back on tcp_parse_options().
3857 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3858 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3860 /* In the spirit of fast parsing, compare doff directly to constant
3861 * values. Because equality is used, short doff can be ignored here.
3863 if (th
->doff
== (sizeof(*th
) / 4)) {
3864 tp
->rx_opt
.saw_tstamp
= 0;
3866 } else if (tp
->rx_opt
.tstamp_ok
&&
3867 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3868 if (tcp_parse_aligned_timestamp(tp
, th
))
3872 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3873 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3874 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3879 #ifdef CONFIG_TCP_MD5SIG
3881 * Parse MD5 Signature option
3883 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3885 int length
= (th
->doff
<< 2) - sizeof(*th
);
3886 const u8
*ptr
= (const u8
*)(th
+ 1);
3888 /* If not enough data remaining, we can short cut */
3889 while (length
>= TCPOLEN_MD5SIG
) {
3890 int opcode
= *ptr
++;
3901 if (opsize
< 2 || opsize
> length
)
3903 if (opcode
== TCPOPT_MD5SIG
)
3904 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3911 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3917 * it can pass through stack. So, the following predicate verifies that
3918 * this segment is not used for anything but congestion avoidance or
3919 * fast retransmit. Moreover, we even are able to eliminate most of such
3920 * second order effects, if we apply some small "replay" window (~RTO)
3921 * to timestamp space.
3923 * All these measures still do not guarantee that we reject wrapped ACKs
3924 * on networks with high bandwidth, when sequence space is recycled fastly,
3925 * but it guarantees that such events will be very rare and do not affect
3926 * connection seriously. This doesn't look nice, but alas, PAWS is really
3929 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3930 * states that events when retransmit arrives after original data are rare.
3931 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3932 * the biggest problem on large power networks even with minor reordering.
3933 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3934 * up to bandwidth of 18Gigabit/sec. 8) ]
3937 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3939 const struct tcp_sock
*tp
= tcp_sk(sk
);
3940 const struct tcphdr
*th
= tcp_hdr(skb
);
3941 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3942 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3944 return (/* 1. Pure ACK with correct sequence number. */
3945 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3947 /* 2. ... and duplicate ACK. */
3948 ack
== tp
->snd_una
&&
3950 /* 3. ... and does not update window. */
3951 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3953 /* 4. ... and sits in replay window. */
3954 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3957 static inline bool tcp_paws_discard(const struct sock
*sk
,
3958 const struct sk_buff
*skb
)
3960 const struct tcp_sock
*tp
= tcp_sk(sk
);
3962 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3963 !tcp_disordered_ack(sk
, skb
);
3966 /* Check segment sequence number for validity.
3968 * Segment controls are considered valid, if the segment
3969 * fits to the window after truncation to the window. Acceptability
3970 * of data (and SYN, FIN, of course) is checked separately.
3971 * See tcp_data_queue(), for example.
3973 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3974 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3975 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3976 * (borrowed from freebsd)
3979 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3981 return !before(end_seq
, tp
->rcv_wup
) &&
3982 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3985 /* When we get a reset we do this. */
3986 void tcp_reset(struct sock
*sk
)
3988 /* We want the right error as BSD sees it (and indeed as we do). */
3989 switch (sk
->sk_state
) {
3991 sk
->sk_err
= ECONNREFUSED
;
3993 case TCP_CLOSE_WAIT
:
3999 sk
->sk_err
= ECONNRESET
;
4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4004 if (!sock_flag(sk
, SOCK_DEAD
))
4005 sk
->sk_error_report(sk
);
4011 * Process the FIN bit. This now behaves as it is supposed to work
4012 * and the FIN takes effect when it is validly part of sequence
4013 * space. Not before when we get holes.
4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4020 * close and we go into CLOSING (and later onto TIME-WAIT)
4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024 static void tcp_fin(struct sock
*sk
)
4026 struct tcp_sock
*tp
= tcp_sk(sk
);
4028 inet_csk_schedule_ack(sk
);
4030 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4031 sock_set_flag(sk
, SOCK_DONE
);
4033 switch (sk
->sk_state
) {
4035 case TCP_ESTABLISHED
:
4036 /* Move to CLOSE_WAIT */
4037 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4038 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4041 case TCP_CLOSE_WAIT
:
4043 /* Received a retransmission of the FIN, do
4048 /* RFC793: Remain in the LAST-ACK state. */
4052 /* This case occurs when a simultaneous close
4053 * happens, we must ack the received FIN and
4054 * enter the CLOSING state.
4057 tcp_set_state(sk
, TCP_CLOSING
);
4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4062 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 * cases we should never reach this piece of code.
4068 pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 __func__
, sk
->sk_state
);
4073 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 * Probably, we should reset in this case. For now drop them.
4076 __skb_queue_purge(&tp
->out_of_order_queue
);
4077 if (tcp_is_sack(tp
))
4078 tcp_sack_reset(&tp
->rx_opt
);
4081 if (!sock_flag(sk
, SOCK_DEAD
)) {
4082 sk
->sk_state_change(sk
);
4084 /* Do not send POLL_HUP for half duplex close. */
4085 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4086 sk
->sk_state
== TCP_CLOSE
)
4087 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4089 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4093 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4096 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4097 if (before(seq
, sp
->start_seq
))
4098 sp
->start_seq
= seq
;
4099 if (after(end_seq
, sp
->end_seq
))
4100 sp
->end_seq
= end_seq
;
4106 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4108 struct tcp_sock
*tp
= tcp_sk(sk
);
4110 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4113 if (before(seq
, tp
->rcv_nxt
))
4114 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4116 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4118 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4120 tp
->rx_opt
.dsack
= 1;
4121 tp
->duplicate_sack
[0].start_seq
= seq
;
4122 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4126 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4128 struct tcp_sock
*tp
= tcp_sk(sk
);
4130 if (!tp
->rx_opt
.dsack
)
4131 tcp_dsack_set(sk
, seq
, end_seq
);
4133 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4136 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4138 struct tcp_sock
*tp
= tcp_sk(sk
);
4140 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4141 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4142 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4143 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4145 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4146 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4148 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4149 end_seq
= tp
->rcv_nxt
;
4150 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158 * in-order packets close up the sequence space.
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4163 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4164 struct tcp_sack_block
*swalk
= sp
+ 1;
4166 /* See if the recent change to the first SACK eats into
4167 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4170 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4173 /* Zap SWALK, by moving every further SACK up by one slot.
4174 * Decrease num_sacks.
4176 tp
->rx_opt
.num_sacks
--;
4177 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4181 this_sack
++, swalk
++;
4185 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4187 struct tcp_sock
*tp
= tcp_sk(sk
);
4188 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4189 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4195 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4196 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4197 /* Rotate this_sack to the first one. */
4198 for (; this_sack
> 0; this_sack
--, sp
--)
4199 swap(*sp
, *(sp
- 1));
4201 tcp_sack_maybe_coalesce(tp
);
4206 /* Could not find an adjacent existing SACK, build a new one,
4207 * put it at the front, and shift everyone else down. We
4208 * always know there is at least one SACK present already here.
4210 * If the sack array is full, forget about the last one.
4212 if (this_sack
>= TCP_NUM_SACKS
) {
4214 tp
->rx_opt
.num_sacks
--;
4217 for (; this_sack
> 0; this_sack
--, sp
--)
4221 /* Build the new head SACK, and we're done. */
4222 sp
->start_seq
= seq
;
4223 sp
->end_seq
= end_seq
;
4224 tp
->rx_opt
.num_sacks
++;
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4229 static void tcp_sack_remove(struct tcp_sock
*tp
)
4231 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4232 int num_sacks
= tp
->rx_opt
.num_sacks
;
4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4237 tp
->rx_opt
.num_sacks
= 0;
4241 for (this_sack
= 0; this_sack
< num_sacks
;) {
4242 /* Check if the start of the sack is covered by RCV.NXT. */
4243 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4246 /* RCV.NXT must cover all the block! */
4247 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4249 /* Zap this SACK, by moving forward any other SACKS. */
4250 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4251 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4258 tp
->rx_opt
.num_sacks
= num_sacks
;
4262 * tcp_try_coalesce - try to merge skb to prior one
4265 * @from: buffer to add in queue
4266 * @fragstolen: pointer to boolean
4268 * Before queueing skb @from after @to, try to merge them
4269 * to reduce overall memory use and queue lengths, if cost is small.
4270 * Packets in ofo or receive queues can stay a long time.
4271 * Better try to coalesce them right now to avoid future collapses.
4272 * Returns true if caller should free @from instead of queueing it
4274 static bool tcp_try_coalesce(struct sock
*sk
,
4276 struct sk_buff
*from
,
4281 *fragstolen
= false;
4283 /* Its possible this segment overlaps with prior segment in queue */
4284 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4287 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4290 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4291 sk_mem_charge(sk
, delta
);
4292 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4293 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4294 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4295 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4299 /* This one checks to see if we can put data from the
4300 * out_of_order queue into the receive_queue.
4302 static void tcp_ofo_queue(struct sock
*sk
)
4304 struct tcp_sock
*tp
= tcp_sk(sk
);
4305 __u32 dsack_high
= tp
->rcv_nxt
;
4306 struct sk_buff
*skb
, *tail
;
4307 bool fragstolen
, eaten
;
4309 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4310 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4313 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4314 __u32 dsack
= dsack_high
;
4315 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4316 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4317 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4320 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4321 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4322 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4326 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4328 TCP_SKB_CB(skb
)->end_seq
);
4330 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4331 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4332 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4334 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4335 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4338 kfree_skb_partial(skb
, fragstolen
);
4342 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4343 static int tcp_prune_queue(struct sock
*sk
);
4345 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4348 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4349 !sk_rmem_schedule(sk
, skb
, size
)) {
4351 if (tcp_prune_queue(sk
) < 0)
4354 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4355 if (!tcp_prune_ofo_queue(sk
))
4358 if (!sk_rmem_schedule(sk
, skb
, size
))
4365 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4367 struct tcp_sock
*tp
= tcp_sk(sk
);
4368 struct sk_buff
*skb1
;
4371 tcp_ecn_check_ce(sk
, skb
);
4373 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4374 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4379 /* Disable header prediction. */
4381 inet_csk_schedule_ack(sk
);
4383 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4384 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4385 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4387 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4389 /* Initial out of order segment, build 1 SACK. */
4390 if (tcp_is_sack(tp
)) {
4391 tp
->rx_opt
.num_sacks
= 1;
4392 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4393 tp
->selective_acks
[0].end_seq
=
4394 TCP_SKB_CB(skb
)->end_seq
;
4396 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4400 seq
= TCP_SKB_CB(skb
)->seq
;
4401 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4403 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4406 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4407 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4409 tcp_grow_window(sk
, skb
);
4410 kfree_skb_partial(skb
, fragstolen
);
4414 if (!tp
->rx_opt
.num_sacks
||
4415 tp
->selective_acks
[0].end_seq
!= seq
)
4418 /* Common case: data arrive in order after hole. */
4419 tp
->selective_acks
[0].end_seq
= end_seq
;
4423 /* Find place to insert this segment. */
4425 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4427 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4431 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4434 /* Do skb overlap to previous one? */
4435 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4436 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4437 /* All the bits are present. Drop. */
4438 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4441 tcp_dsack_set(sk
, seq
, end_seq
);
4444 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4445 /* Partial overlap. */
4446 tcp_dsack_set(sk
, seq
,
4447 TCP_SKB_CB(skb1
)->end_seq
);
4449 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4453 skb1
= skb_queue_prev(
4454 &tp
->out_of_order_queue
,
4459 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4461 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4463 /* And clean segments covered by new one as whole. */
4464 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4465 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4467 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4469 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4470 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4474 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4475 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4476 TCP_SKB_CB(skb1
)->end_seq
);
4477 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4482 if (tcp_is_sack(tp
))
4483 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4486 tcp_grow_window(sk
, skb
);
4487 skb_set_owner_r(skb
, sk
);
4491 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4495 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4497 __skb_pull(skb
, hdrlen
);
4499 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4500 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4502 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4503 skb_set_owner_r(skb
, sk
);
4508 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4510 struct sk_buff
*skb
;
4518 if (size
> PAGE_SIZE
) {
4519 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4521 data_len
= npages
<< PAGE_SHIFT
;
4522 size
= data_len
+ (size
& ~PAGE_MASK
);
4524 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4525 PAGE_ALLOC_COSTLY_ORDER
,
4526 &err
, sk
->sk_allocation
);
4530 skb_put(skb
, size
- data_len
);
4531 skb
->data_len
= data_len
;
4534 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4537 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4541 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4542 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4543 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4545 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4546 WARN_ON_ONCE(fragstolen
); /* should not happen */
4558 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4560 struct tcp_sock
*tp
= tcp_sk(sk
);
4562 bool fragstolen
= false;
4564 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4568 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4570 tcp_ecn_accept_cwr(tp
, skb
);
4572 tp
->rx_opt
.dsack
= 0;
4574 /* Queue data for delivery to the user.
4575 * Packets in sequence go to the receive queue.
4576 * Out of sequence packets to the out_of_order_queue.
4578 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4579 if (tcp_receive_window(tp
) == 0)
4582 /* Ok. In sequence. In window. */
4583 if (tp
->ucopy
.task
== current
&&
4584 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4585 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4586 int chunk
= min_t(unsigned int, skb
->len
,
4589 __set_current_state(TASK_RUNNING
);
4592 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4593 tp
->ucopy
.len
-= chunk
;
4594 tp
->copied_seq
+= chunk
;
4595 eaten
= (chunk
== skb
->len
);
4596 tcp_rcv_space_adjust(sk
);
4604 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4605 sk_forced_mem_schedule(sk
, skb
->truesize
);
4606 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4609 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4611 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4613 tcp_event_data_recv(sk
, skb
);
4614 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4617 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4620 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4621 * gap in queue is filled.
4623 if (skb_queue_empty(&tp
->out_of_order_queue
))
4624 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4627 if (tp
->rx_opt
.num_sacks
)
4628 tcp_sack_remove(tp
);
4630 tcp_fast_path_check(sk
);
4633 kfree_skb_partial(skb
, fragstolen
);
4634 if (!sock_flag(sk
, SOCK_DEAD
))
4635 sk
->sk_data_ready(sk
);
4639 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4640 /* A retransmit, 2nd most common case. Force an immediate ack. */
4641 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4642 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4645 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4646 inet_csk_schedule_ack(sk
);
4652 /* Out of window. F.e. zero window probe. */
4653 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4656 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4657 /* Partial packet, seq < rcv_next < end_seq */
4658 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4659 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4660 TCP_SKB_CB(skb
)->end_seq
);
4662 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4664 /* If window is closed, drop tail of packet. But after
4665 * remembering D-SACK for its head made in previous line.
4667 if (!tcp_receive_window(tp
))
4672 tcp_data_queue_ofo(sk
, skb
);
4675 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4676 struct sk_buff_head
*list
)
4678 struct sk_buff
*next
= NULL
;
4680 if (!skb_queue_is_last(list
, skb
))
4681 next
= skb_queue_next(list
, skb
);
4683 __skb_unlink(skb
, list
);
4685 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4690 /* Collapse contiguous sequence of skbs head..tail with
4691 * sequence numbers start..end.
4693 * If tail is NULL, this means until the end of the list.
4695 * Segments with FIN/SYN are not collapsed (only because this
4699 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4700 struct sk_buff
*head
, struct sk_buff
*tail
,
4703 struct sk_buff
*skb
, *n
;
4706 /* First, check that queue is collapsible and find
4707 * the point where collapsing can be useful. */
4711 skb_queue_walk_from_safe(list
, skb
, n
) {
4714 /* No new bits? It is possible on ofo queue. */
4715 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4716 skb
= tcp_collapse_one(sk
, skb
, list
);
4722 /* The first skb to collapse is:
4724 * - bloated or contains data before "start" or
4725 * overlaps to the next one.
4727 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4728 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4729 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4730 end_of_skbs
= false;
4734 if (!skb_queue_is_last(list
, skb
)) {
4735 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4737 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4738 end_of_skbs
= false;
4743 /* Decided to skip this, advance start seq. */
4744 start
= TCP_SKB_CB(skb
)->end_seq
;
4747 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4750 while (before(start
, end
)) {
4751 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4752 struct sk_buff
*nskb
;
4754 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4758 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4759 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4760 __skb_queue_before(list
, skb
, nskb
);
4761 skb_set_owner_r(nskb
, sk
);
4763 /* Copy data, releasing collapsed skbs. */
4765 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4766 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4770 size
= min(copy
, size
);
4771 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4773 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4777 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4778 skb
= tcp_collapse_one(sk
, skb
, list
);
4781 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4788 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4789 * and tcp_collapse() them until all the queue is collapsed.
4791 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4793 struct tcp_sock
*tp
= tcp_sk(sk
);
4794 u32 range_truesize
, sum_tiny
= 0;
4795 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4796 struct sk_buff
*head
;
4802 start
= TCP_SKB_CB(skb
)->seq
;
4803 end
= TCP_SKB_CB(skb
)->end_seq
;
4804 range_truesize
= skb
->truesize
;
4808 struct sk_buff
*next
= NULL
;
4810 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4811 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4814 /* Segment is terminated when we see gap or when
4815 * we are at the end of all the queue. */
4817 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4818 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4819 /* Do not attempt collapsing tiny skbs */
4820 if (range_truesize
!= head
->truesize
||
4821 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
4822 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4823 head
, skb
, start
, end
);
4825 sum_tiny
+= range_truesize
;
4826 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
4833 /* Start new segment */
4834 start
= TCP_SKB_CB(skb
)->seq
;
4835 end
= TCP_SKB_CB(skb
)->end_seq
;
4836 range_truesize
= skb
->truesize
;
4838 range_truesize
+= skb
->truesize
;
4839 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4840 start
= TCP_SKB_CB(skb
)->seq
;
4841 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4842 end
= TCP_SKB_CB(skb
)->end_seq
;
4848 * Purge the out-of-order queue.
4849 * Return true if queue was pruned.
4851 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4853 struct tcp_sock
*tp
= tcp_sk(sk
);
4856 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4857 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4858 __skb_queue_purge(&tp
->out_of_order_queue
);
4860 /* Reset SACK state. A conforming SACK implementation will
4861 * do the same at a timeout based retransmit. When a connection
4862 * is in a sad state like this, we care only about integrity
4863 * of the connection not performance.
4865 if (tp
->rx_opt
.sack_ok
)
4866 tcp_sack_reset(&tp
->rx_opt
);
4873 /* Reduce allocated memory if we can, trying to get
4874 * the socket within its memory limits again.
4876 * Return less than zero if we should start dropping frames
4877 * until the socket owning process reads some of the data
4878 * to stabilize the situation.
4880 static int tcp_prune_queue(struct sock
*sk
)
4882 struct tcp_sock
*tp
= tcp_sk(sk
);
4884 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4886 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4888 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4889 tcp_clamp_window(sk
);
4890 else if (tcp_under_memory_pressure(sk
))
4891 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4893 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4896 tcp_collapse_ofo_queue(sk
);
4897 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4898 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4899 skb_peek(&sk
->sk_receive_queue
),
4901 tp
->copied_seq
, tp
->rcv_nxt
);
4904 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4907 /* Collapsing did not help, destructive actions follow.
4908 * This must not ever occur. */
4910 tcp_prune_ofo_queue(sk
);
4912 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4915 /* If we are really being abused, tell the caller to silently
4916 * drop receive data on the floor. It will get retransmitted
4917 * and hopefully then we'll have sufficient space.
4919 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4921 /* Massive buffer overcommit. */
4926 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4928 const struct tcp_sock
*tp
= tcp_sk(sk
);
4930 /* If the user specified a specific send buffer setting, do
4933 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4936 /* If we are under global TCP memory pressure, do not expand. */
4937 if (tcp_under_memory_pressure(sk
))
4940 /* If we are under soft global TCP memory pressure, do not expand. */
4941 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4944 /* If we filled the congestion window, do not expand. */
4945 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4951 /* When incoming ACK allowed to free some skb from write_queue,
4952 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4953 * on the exit from tcp input handler.
4955 * PROBLEM: sndbuf expansion does not work well with largesend.
4957 static void tcp_new_space(struct sock
*sk
)
4959 struct tcp_sock
*tp
= tcp_sk(sk
);
4961 if (tcp_should_expand_sndbuf(sk
)) {
4962 tcp_sndbuf_expand(sk
);
4963 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4966 sk
->sk_write_space(sk
);
4969 static void tcp_check_space(struct sock
*sk
)
4971 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4972 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4973 /* pairs with tcp_poll() */
4975 if (sk
->sk_socket
&&
4976 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4981 static inline void tcp_data_snd_check(struct sock
*sk
)
4983 tcp_push_pending_frames(sk
);
4984 tcp_check_space(sk
);
4988 * Check if sending an ack is needed.
4990 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4992 struct tcp_sock
*tp
= tcp_sk(sk
);
4994 /* More than one full frame received... */
4995 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4996 /* ... and right edge of window advances far enough.
4997 * (tcp_recvmsg() will send ACK otherwise). Or...
4999 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5000 /* We ACK each frame or... */
5001 tcp_in_quickack_mode(sk
) ||
5002 /* We have out of order data. */
5003 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5004 /* Then ack it now */
5007 /* Else, send delayed ack. */
5008 tcp_send_delayed_ack(sk
);
5012 static inline void tcp_ack_snd_check(struct sock
*sk
)
5014 if (!inet_csk_ack_scheduled(sk
)) {
5015 /* We sent a data segment already. */
5018 __tcp_ack_snd_check(sk
, 1);
5022 * This routine is only called when we have urgent data
5023 * signaled. Its the 'slow' part of tcp_urg. It could be
5024 * moved inline now as tcp_urg is only called from one
5025 * place. We handle URGent data wrong. We have to - as
5026 * BSD still doesn't use the correction from RFC961.
5027 * For 1003.1g we should support a new option TCP_STDURG to permit
5028 * either form (or just set the sysctl tcp_stdurg).
5031 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5033 struct tcp_sock
*tp
= tcp_sk(sk
);
5034 u32 ptr
= ntohs(th
->urg_ptr
);
5036 if (ptr
&& !sysctl_tcp_stdurg
)
5038 ptr
+= ntohl(th
->seq
);
5040 /* Ignore urgent data that we've already seen and read. */
5041 if (after(tp
->copied_seq
, ptr
))
5044 /* Do not replay urg ptr.
5046 * NOTE: interesting situation not covered by specs.
5047 * Misbehaving sender may send urg ptr, pointing to segment,
5048 * which we already have in ofo queue. We are not able to fetch
5049 * such data and will stay in TCP_URG_NOTYET until will be eaten
5050 * by recvmsg(). Seems, we are not obliged to handle such wicked
5051 * situations. But it is worth to think about possibility of some
5052 * DoSes using some hypothetical application level deadlock.
5054 if (before(ptr
, tp
->rcv_nxt
))
5057 /* Do we already have a newer (or duplicate) urgent pointer? */
5058 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5061 /* Tell the world about our new urgent pointer. */
5064 /* We may be adding urgent data when the last byte read was
5065 * urgent. To do this requires some care. We cannot just ignore
5066 * tp->copied_seq since we would read the last urgent byte again
5067 * as data, nor can we alter copied_seq until this data arrives
5068 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5070 * NOTE. Double Dutch. Rendering to plain English: author of comment
5071 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5072 * and expect that both A and B disappear from stream. This is _wrong_.
5073 * Though this happens in BSD with high probability, this is occasional.
5074 * Any application relying on this is buggy. Note also, that fix "works"
5075 * only in this artificial test. Insert some normal data between A and B and we will
5076 * decline of BSD again. Verdict: it is better to remove to trap
5079 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5080 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5081 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5083 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5084 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5089 tp
->urg_data
= TCP_URG_NOTYET
;
5092 /* Disable header prediction. */
5096 /* This is the 'fast' part of urgent handling. */
5097 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5099 struct tcp_sock
*tp
= tcp_sk(sk
);
5101 /* Check if we get a new urgent pointer - normally not. */
5103 tcp_check_urg(sk
, th
);
5105 /* Do we wait for any urgent data? - normally not... */
5106 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5107 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5110 /* Is the urgent pointer pointing into this packet? */
5111 if (ptr
< skb
->len
) {
5113 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5115 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5116 if (!sock_flag(sk
, SOCK_DEAD
))
5117 sk
->sk_data_ready(sk
);
5122 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5124 struct tcp_sock
*tp
= tcp_sk(sk
);
5125 int chunk
= skb
->len
- hlen
;
5129 if (skb_csum_unnecessary(skb
))
5130 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5132 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5135 tp
->ucopy
.len
-= chunk
;
5136 tp
->copied_seq
+= chunk
;
5137 tcp_rcv_space_adjust(sk
);
5144 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5145 struct sk_buff
*skb
)
5149 if (sock_owned_by_user(sk
)) {
5151 result
= __tcp_checksum_complete(skb
);
5154 result
= __tcp_checksum_complete(skb
);
5159 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5160 struct sk_buff
*skb
)
5162 return !skb_csum_unnecessary(skb
) &&
5163 __tcp_checksum_complete_user(sk
, skb
);
5166 /* Does PAWS and seqno based validation of an incoming segment, flags will
5167 * play significant role here.
5169 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5170 const struct tcphdr
*th
, int syn_inerr
)
5172 struct tcp_sock
*tp
= tcp_sk(sk
);
5174 /* RFC1323: H1. Apply PAWS check first. */
5175 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5176 tcp_paws_discard(sk
, skb
)) {
5178 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5179 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5180 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5181 &tp
->last_oow_ack_time
))
5182 tcp_send_dupack(sk
, skb
);
5185 /* Reset is accepted even if it did not pass PAWS. */
5188 /* Step 1: check sequence number */
5189 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5190 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5191 * (RST) segments are validated by checking their SEQ-fields."
5192 * And page 69: "If an incoming segment is not acceptable,
5193 * an acknowledgment should be sent in reply (unless the RST
5194 * bit is set, if so drop the segment and return)".
5199 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5200 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5201 &tp
->last_oow_ack_time
))
5202 tcp_send_dupack(sk
, skb
);
5207 /* Step 2: check RST bit */
5210 * If sequence number exactly matches RCV.NXT, then
5211 * RESET the connection
5213 * Send a challenge ACK
5215 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5218 tcp_send_challenge_ack(sk
, skb
);
5222 /* step 3: check security and precedence [ignored] */
5224 /* step 4: Check for a SYN
5225 * RFC 5961 4.2 : Send a challenge ack
5230 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5231 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5232 tcp_send_challenge_ack(sk
, skb
);
5244 * TCP receive function for the ESTABLISHED state.
5246 * It is split into a fast path and a slow path. The fast path is
5248 * - A zero window was announced from us - zero window probing
5249 * is only handled properly in the slow path.
5250 * - Out of order segments arrived.
5251 * - Urgent data is expected.
5252 * - There is no buffer space left
5253 * - Unexpected TCP flags/window values/header lengths are received
5254 * (detected by checking the TCP header against pred_flags)
5255 * - Data is sent in both directions. Fast path only supports pure senders
5256 * or pure receivers (this means either the sequence number or the ack
5257 * value must stay constant)
5258 * - Unexpected TCP option.
5260 * When these conditions are not satisfied it drops into a standard
5261 * receive procedure patterned after RFC793 to handle all cases.
5262 * The first three cases are guaranteed by proper pred_flags setting,
5263 * the rest is checked inline. Fast processing is turned on in
5264 * tcp_data_queue when everything is OK.
5266 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5267 const struct tcphdr
*th
, unsigned int len
)
5269 struct tcp_sock
*tp
= tcp_sk(sk
);
5271 if (unlikely(!sk
->sk_rx_dst
))
5272 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5274 * Header prediction.
5275 * The code loosely follows the one in the famous
5276 * "30 instruction TCP receive" Van Jacobson mail.
5278 * Van's trick is to deposit buffers into socket queue
5279 * on a device interrupt, to call tcp_recv function
5280 * on the receive process context and checksum and copy
5281 * the buffer to user space. smart...
5283 * Our current scheme is not silly either but we take the
5284 * extra cost of the net_bh soft interrupt processing...
5285 * We do checksum and copy also but from device to kernel.
5288 tp
->rx_opt
.saw_tstamp
= 0;
5290 /* pred_flags is 0xS?10 << 16 + snd_wnd
5291 * if header_prediction is to be made
5292 * 'S' will always be tp->tcp_header_len >> 2
5293 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5294 * turn it off (when there are holes in the receive
5295 * space for instance)
5296 * PSH flag is ignored.
5299 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5300 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5301 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5302 int tcp_header_len
= tp
->tcp_header_len
;
5304 /* Timestamp header prediction: tcp_header_len
5305 * is automatically equal to th->doff*4 due to pred_flags
5309 /* Check timestamp */
5310 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5311 /* No? Slow path! */
5312 if (!tcp_parse_aligned_timestamp(tp
, th
))
5315 /* If PAWS failed, check it more carefully in slow path */
5316 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5319 /* DO NOT update ts_recent here, if checksum fails
5320 * and timestamp was corrupted part, it will result
5321 * in a hung connection since we will drop all
5322 * future packets due to the PAWS test.
5326 if (len
<= tcp_header_len
) {
5327 /* Bulk data transfer: sender */
5328 if (len
== tcp_header_len
) {
5329 /* Predicted packet is in window by definition.
5330 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5331 * Hence, check seq<=rcv_wup reduces to:
5333 if (tcp_header_len
==
5334 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5335 tp
->rcv_nxt
== tp
->rcv_wup
)
5336 tcp_store_ts_recent(tp
);
5338 /* We know that such packets are checksummed
5341 tcp_ack(sk
, skb
, 0);
5343 tcp_data_snd_check(sk
);
5345 } else { /* Header too small */
5346 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5351 bool fragstolen
= false;
5353 if (tp
->ucopy
.task
== current
&&
5354 tp
->copied_seq
== tp
->rcv_nxt
&&
5355 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5356 sock_owned_by_user(sk
)) {
5357 __set_current_state(TASK_RUNNING
);
5359 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5360 /* Predicted packet is in window by definition.
5361 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5362 * Hence, check seq<=rcv_wup reduces to:
5364 if (tcp_header_len
==
5365 (sizeof(struct tcphdr
) +
5366 TCPOLEN_TSTAMP_ALIGNED
) &&
5367 tp
->rcv_nxt
== tp
->rcv_wup
)
5368 tcp_store_ts_recent(tp
);
5370 tcp_rcv_rtt_measure_ts(sk
, skb
);
5372 __skb_pull(skb
, tcp_header_len
);
5373 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5374 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5379 if (tcp_checksum_complete_user(sk
, skb
))
5382 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5385 /* Predicted packet is in window by definition.
5386 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5387 * Hence, check seq<=rcv_wup reduces to:
5389 if (tcp_header_len
==
5390 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5391 tp
->rcv_nxt
== tp
->rcv_wup
)
5392 tcp_store_ts_recent(tp
);
5394 tcp_rcv_rtt_measure_ts(sk
, skb
);
5396 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5398 /* Bulk data transfer: receiver */
5399 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5403 tcp_event_data_recv(sk
, skb
);
5405 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5406 /* Well, only one small jumplet in fast path... */
5407 tcp_ack(sk
, skb
, FLAG_DATA
);
5408 tcp_data_snd_check(sk
);
5409 if (!inet_csk_ack_scheduled(sk
))
5413 __tcp_ack_snd_check(sk
, 0);
5416 kfree_skb_partial(skb
, fragstolen
);
5417 sk
->sk_data_ready(sk
);
5423 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5426 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5430 * Standard slow path.
5433 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5437 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5440 tcp_rcv_rtt_measure_ts(sk
, skb
);
5442 /* Process urgent data. */
5443 tcp_urg(sk
, skb
, th
);
5445 /* step 7: process the segment text */
5446 tcp_data_queue(sk
, skb
);
5448 tcp_data_snd_check(sk
);
5449 tcp_ack_snd_check(sk
);
5453 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5454 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5459 EXPORT_SYMBOL(tcp_rcv_established
);
5461 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5463 struct tcp_sock
*tp
= tcp_sk(sk
);
5464 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5466 tcp_set_state(sk
, TCP_ESTABLISHED
);
5467 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5470 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5471 security_inet_conn_established(sk
, skb
);
5474 /* Make sure socket is routed, for correct metrics. */
5475 icsk
->icsk_af_ops
->rebuild_header(sk
);
5477 tcp_init_metrics(sk
);
5479 tcp_init_congestion_control(sk
);
5481 /* Prevent spurious tcp_cwnd_restart() on first data
5484 tp
->lsndtime
= tcp_time_stamp
;
5486 tcp_init_buffer_space(sk
);
5488 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5489 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5491 if (!tp
->rx_opt
.snd_wscale
)
5492 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5498 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5499 struct tcp_fastopen_cookie
*cookie
)
5501 struct tcp_sock
*tp
= tcp_sk(sk
);
5502 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5503 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5504 bool syn_drop
= false;
5506 if (mss
== tp
->rx_opt
.user_mss
) {
5507 struct tcp_options_received opt
;
5509 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5510 tcp_clear_options(&opt
);
5511 opt
.user_mss
= opt
.mss_clamp
= 0;
5512 tcp_parse_options(synack
, &opt
, 0, NULL
);
5513 mss
= opt
.mss_clamp
;
5516 if (!tp
->syn_fastopen
) {
5517 /* Ignore an unsolicited cookie */
5519 } else if (tp
->total_retrans
) {
5520 /* SYN timed out and the SYN-ACK neither has a cookie nor
5521 * acknowledges data. Presumably the remote received only
5522 * the retransmitted (regular) SYNs: either the original
5523 * SYN-data or the corresponding SYN-ACK was dropped.
5525 syn_drop
= (cookie
->len
< 0 && data
);
5526 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5527 /* We requested a cookie but didn't get it. If we did not use
5528 * the (old) exp opt format then try so next time (try_exp=1).
5529 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5531 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5534 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5536 if (data
) { /* Retransmit unacked data in SYN */
5537 tcp_for_write_queue_from(data
, sk
) {
5538 if (data
== tcp_send_head(sk
) ||
5539 __tcp_retransmit_skb(sk
, data
))
5543 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5546 tp
->syn_data_acked
= tp
->syn_data
;
5547 if (tp
->syn_data_acked
)
5548 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5552 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5553 const struct tcphdr
*th
)
5555 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5556 struct tcp_sock
*tp
= tcp_sk(sk
);
5557 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5558 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5561 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5562 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5563 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5567 * "If the state is SYN-SENT then
5568 * first check the ACK bit
5569 * If the ACK bit is set
5570 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5571 * a reset (unless the RST bit is set, if so drop
5572 * the segment and return)"
5574 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5575 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5576 goto reset_and_undo
;
5578 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5579 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5581 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5582 goto reset_and_undo
;
5585 /* Now ACK is acceptable.
5587 * "If the RST bit is set
5588 * If the ACK was acceptable then signal the user "error:
5589 * connection reset", drop the segment, enter CLOSED state,
5590 * delete TCB, and return."
5599 * "fifth, if neither of the SYN or RST bits is set then
5600 * drop the segment and return."
5606 goto discard_and_undo
;
5609 * "If the SYN bit is on ...
5610 * are acceptable then ...
5611 * (our SYN has been ACKed), change the connection
5612 * state to ESTABLISHED..."
5615 tcp_ecn_rcv_synack(tp
, th
);
5617 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5618 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5620 /* Ok.. it's good. Set up sequence numbers and
5621 * move to established.
5623 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5624 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5626 /* RFC1323: The window in SYN & SYN/ACK segments is
5629 tp
->snd_wnd
= ntohs(th
->window
);
5631 if (!tp
->rx_opt
.wscale_ok
) {
5632 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5633 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5636 if (tp
->rx_opt
.saw_tstamp
) {
5637 tp
->rx_opt
.tstamp_ok
= 1;
5638 tp
->tcp_header_len
=
5639 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5640 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5641 tcp_store_ts_recent(tp
);
5643 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5646 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5647 tcp_enable_fack(tp
);
5650 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5651 tcp_initialize_rcv_mss(sk
);
5653 /* Remember, tcp_poll() does not lock socket!
5654 * Change state from SYN-SENT only after copied_seq
5655 * is initialized. */
5656 tp
->copied_seq
= tp
->rcv_nxt
;
5660 tcp_finish_connect(sk
, skb
);
5662 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5663 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5665 if (!sock_flag(sk
, SOCK_DEAD
)) {
5666 sk
->sk_state_change(sk
);
5667 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5671 if (sk
->sk_write_pending
||
5672 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5673 icsk
->icsk_ack
.pingpong
) {
5674 /* Save one ACK. Data will be ready after
5675 * several ticks, if write_pending is set.
5677 * It may be deleted, but with this feature tcpdumps
5678 * look so _wonderfully_ clever, that I was not able
5679 * to stand against the temptation 8) --ANK
5681 inet_csk_schedule_ack(sk
);
5682 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5683 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5684 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5695 /* No ACK in the segment */
5699 * "If the RST bit is set
5701 * Otherwise (no ACK) drop the segment and return."
5704 goto discard_and_undo
;
5708 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5709 tcp_paws_reject(&tp
->rx_opt
, 0))
5710 goto discard_and_undo
;
5713 /* We see SYN without ACK. It is attempt of
5714 * simultaneous connect with crossed SYNs.
5715 * Particularly, it can be connect to self.
5717 tcp_set_state(sk
, TCP_SYN_RECV
);
5719 if (tp
->rx_opt
.saw_tstamp
) {
5720 tp
->rx_opt
.tstamp_ok
= 1;
5721 tcp_store_ts_recent(tp
);
5722 tp
->tcp_header_len
=
5723 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5725 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5728 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5729 tp
->copied_seq
= tp
->rcv_nxt
;
5730 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5732 /* RFC1323: The window in SYN & SYN/ACK segments is
5735 tp
->snd_wnd
= ntohs(th
->window
);
5736 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5737 tp
->max_window
= tp
->snd_wnd
;
5739 tcp_ecn_rcv_syn(tp
, th
);
5742 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5743 tcp_initialize_rcv_mss(sk
);
5745 tcp_send_synack(sk
);
5747 /* Note, we could accept data and URG from this segment.
5748 * There are no obstacles to make this (except that we must
5749 * either change tcp_recvmsg() to prevent it from returning data
5750 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5752 * However, if we ignore data in ACKless segments sometimes,
5753 * we have no reasons to accept it sometimes.
5754 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5755 * is not flawless. So, discard packet for sanity.
5756 * Uncomment this return to process the data.
5763 /* "fifth, if neither of the SYN or RST bits is set then
5764 * drop the segment and return."
5768 tcp_clear_options(&tp
->rx_opt
);
5769 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5773 tcp_clear_options(&tp
->rx_opt
);
5774 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5779 * This function implements the receiving procedure of RFC 793 for
5780 * all states except ESTABLISHED and TIME_WAIT.
5781 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5782 * address independent.
5785 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5787 struct tcp_sock
*tp
= tcp_sk(sk
);
5788 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5789 const struct tcphdr
*th
= tcp_hdr(skb
);
5790 struct request_sock
*req
;
5794 tp
->rx_opt
.saw_tstamp
= 0;
5796 switch (sk
->sk_state
) {
5810 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5813 /* Now we have several options: In theory there is
5814 * nothing else in the frame. KA9Q has an option to
5815 * send data with the syn, BSD accepts data with the
5816 * syn up to the [to be] advertised window and
5817 * Solaris 2.1 gives you a protocol error. For now
5818 * we just ignore it, that fits the spec precisely
5819 * and avoids incompatibilities. It would be nice in
5820 * future to drop through and process the data.
5822 * Now that TTCP is starting to be used we ought to
5824 * But, this leaves one open to an easy denial of
5825 * service attack, and SYN cookies can't defend
5826 * against this problem. So, we drop the data
5827 * in the interest of security over speed unless
5828 * it's still in use.
5836 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5840 /* Do step6 onward by hand. */
5841 tcp_urg(sk
, skb
, th
);
5843 tcp_data_snd_check(sk
);
5847 req
= tp
->fastopen_rsk
;
5849 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5850 sk
->sk_state
!= TCP_FIN_WAIT1
);
5852 if (!tcp_check_req(sk
, skb
, req
, true))
5856 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5859 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5862 /* step 5: check the ACK field */
5863 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5864 FLAG_UPDATE_TS_RECENT
|
5865 FLAG_NO_CHALLENGE_ACK
) > 0;
5868 if (sk
->sk_state
== TCP_SYN_RECV
)
5869 return 1; /* send one RST */
5870 tcp_send_challenge_ack(sk
, skb
);
5873 switch (sk
->sk_state
) {
5876 tcp_synack_rtt_meas(sk
, req
);
5878 /* Once we leave TCP_SYN_RECV, we no longer need req
5882 tp
->total_retrans
= req
->num_retrans
;
5883 reqsk_fastopen_remove(sk
, req
, false);
5885 /* Make sure socket is routed, for correct metrics. */
5886 icsk
->icsk_af_ops
->rebuild_header(sk
);
5887 tcp_init_congestion_control(sk
);
5890 tp
->copied_seq
= tp
->rcv_nxt
;
5891 tcp_init_buffer_space(sk
);
5894 tcp_set_state(sk
, TCP_ESTABLISHED
);
5895 sk
->sk_state_change(sk
);
5897 /* Note, that this wakeup is only for marginal crossed SYN case.
5898 * Passively open sockets are not waked up, because
5899 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5902 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5904 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5905 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5906 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5908 if (tp
->rx_opt
.tstamp_ok
)
5909 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5912 /* Re-arm the timer because data may have been sent out.
5913 * This is similar to the regular data transmission case
5914 * when new data has just been ack'ed.
5916 * (TFO) - we could try to be more aggressive and
5917 * retransmitting any data sooner based on when they
5922 tcp_init_metrics(sk
);
5924 tcp_update_pacing_rate(sk
);
5926 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5927 tp
->lsndtime
= tcp_time_stamp
;
5929 tcp_initialize_rcv_mss(sk
);
5930 tcp_fast_path_on(tp
);
5933 case TCP_FIN_WAIT1
: {
5934 struct dst_entry
*dst
;
5937 /* If we enter the TCP_FIN_WAIT1 state and we are a
5938 * Fast Open socket and this is the first acceptable
5939 * ACK we have received, this would have acknowledged
5940 * our SYNACK so stop the SYNACK timer.
5943 /* We no longer need the request sock. */
5944 reqsk_fastopen_remove(sk
, req
, false);
5947 if (tp
->snd_una
!= tp
->write_seq
)
5950 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5951 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5953 dst
= __sk_dst_get(sk
);
5957 if (!sock_flag(sk
, SOCK_DEAD
)) {
5958 /* Wake up lingering close() */
5959 sk
->sk_state_change(sk
);
5963 if (tp
->linger2
< 0 ||
5964 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5965 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5967 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5971 tmo
= tcp_fin_time(sk
);
5972 if (tmo
> TCP_TIMEWAIT_LEN
) {
5973 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5974 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5975 /* Bad case. We could lose such FIN otherwise.
5976 * It is not a big problem, but it looks confusing
5977 * and not so rare event. We still can lose it now,
5978 * if it spins in bh_lock_sock(), but it is really
5981 inet_csk_reset_keepalive_timer(sk
, tmo
);
5983 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5990 if (tp
->snd_una
== tp
->write_seq
) {
5991 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5997 if (tp
->snd_una
== tp
->write_seq
) {
5998 tcp_update_metrics(sk
);
6005 /* step 6: check the URG bit */
6006 tcp_urg(sk
, skb
, th
);
6008 /* step 7: process the segment text */
6009 switch (sk
->sk_state
) {
6010 case TCP_CLOSE_WAIT
:
6013 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6017 /* RFC 793 says to queue data in these states,
6018 * RFC 1122 says we MUST send a reset.
6019 * BSD 4.4 also does reset.
6021 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6022 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6023 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6024 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6030 case TCP_ESTABLISHED
:
6031 tcp_data_queue(sk
, skb
);
6036 /* tcp_data could move socket to TIME-WAIT */
6037 if (sk
->sk_state
!= TCP_CLOSE
) {
6038 tcp_data_snd_check(sk
);
6039 tcp_ack_snd_check(sk
);
6048 EXPORT_SYMBOL(tcp_rcv_state_process
);
6050 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6052 struct inet_request_sock
*ireq
= inet_rsk(req
);
6054 if (family
== AF_INET
)
6055 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6056 &ireq
->ir_rmt_addr
, port
);
6057 #if IS_ENABLED(CONFIG_IPV6)
6058 else if (family
== AF_INET6
)
6059 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6060 &ireq
->ir_v6_rmt_addr
, port
);
6064 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6066 * If we receive a SYN packet with these bits set, it means a
6067 * network is playing bad games with TOS bits. In order to
6068 * avoid possible false congestion notifications, we disable
6069 * TCP ECN negotiation.
6071 * Exception: tcp_ca wants ECN. This is required for DCTCP
6072 * congestion control: Linux DCTCP asserts ECT on all packets,
6073 * including SYN, which is most optimal solution; however,
6074 * others, such as FreeBSD do not.
6076 static void tcp_ecn_create_request(struct request_sock
*req
,
6077 const struct sk_buff
*skb
,
6078 const struct sock
*listen_sk
,
6079 const struct dst_entry
*dst
)
6081 const struct tcphdr
*th
= tcp_hdr(skb
);
6082 const struct net
*net
= sock_net(listen_sk
);
6083 bool th_ecn
= th
->ece
&& th
->cwr
;
6090 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6091 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6092 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6094 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6095 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6096 inet_rsk(req
)->ecn_ok
= 1;
6099 static void tcp_openreq_init(struct request_sock
*req
,
6100 const struct tcp_options_received
*rx_opt
,
6101 struct sk_buff
*skb
, const struct sock
*sk
)
6103 struct inet_request_sock
*ireq
= inet_rsk(req
);
6105 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6107 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6108 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6109 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6110 tcp_rsk(req
)->last_oow_ack_time
= 0;
6111 req
->mss
= rx_opt
->mss_clamp
;
6112 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6113 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6114 ireq
->sack_ok
= rx_opt
->sack_ok
;
6115 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6116 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6119 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6120 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6121 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6124 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6125 struct sock
*sk_listener
,
6126 bool attach_listener
)
6128 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6132 struct inet_request_sock
*ireq
= inet_rsk(req
);
6134 kmemcheck_annotate_bitfield(ireq
, flags
);
6135 ireq
->ireq_opt
= NULL
;
6136 atomic64_set(&ireq
->ir_cookie
, 0);
6137 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6138 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6139 ireq
->ireq_family
= sk_listener
->sk_family
;
6144 EXPORT_SYMBOL(inet_reqsk_alloc
);
6147 * Return true if a syncookie should be sent
6149 static bool tcp_syn_flood_action(const struct sock
*sk
,
6150 const struct sk_buff
*skb
,
6153 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6154 const char *msg
= "Dropping request";
6155 bool want_cookie
= false;
6157 #ifdef CONFIG_SYN_COOKIES
6158 if (sysctl_tcp_syncookies
) {
6159 msg
= "Sending cookies";
6161 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6164 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6166 if (!queue
->synflood_warned
&&
6167 sysctl_tcp_syncookies
!= 2 &&
6168 xchg(&queue
->synflood_warned
, 1) == 0)
6169 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6170 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6175 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6176 struct request_sock
*req
,
6177 const struct sk_buff
*skb
)
6179 if (tcp_sk(sk
)->save_syn
) {
6180 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6183 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6186 memcpy(©
[1], skb_network_header(skb
), len
);
6187 req
->saved_syn
= copy
;
6192 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6193 const struct tcp_request_sock_ops
*af_ops
,
6194 struct sock
*sk
, struct sk_buff
*skb
)
6196 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6197 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6198 struct tcp_options_received tmp_opt
;
6199 struct tcp_sock
*tp
= tcp_sk(sk
);
6200 struct sock
*fastopen_sk
= NULL
;
6201 struct dst_entry
*dst
= NULL
;
6202 struct request_sock
*req
;
6203 bool want_cookie
= false;
6206 /* TW buckets are converted to open requests without
6207 * limitations, they conserve resources and peer is
6208 * evidently real one.
6210 if ((sysctl_tcp_syncookies
== 2 ||
6211 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6212 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6218 /* Accept backlog is full. If we have already queued enough
6219 * of warm entries in syn queue, drop request. It is better than
6220 * clogging syn queue with openreqs with exponentially increasing
6223 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
6224 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6228 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6232 tcp_rsk(req
)->af_specific
= af_ops
;
6234 tcp_clear_options(&tmp_opt
);
6235 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6236 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6237 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6239 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6240 tcp_clear_options(&tmp_opt
);
6242 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6243 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6245 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6246 inet_rsk(req
)->ir_iif
= sk
->sk_bound_dev_if
;
6248 af_ops
->init_req(req
, sk
, skb
);
6250 if (security_inet_conn_request(sk
, skb
, req
))
6253 if (!want_cookie
&& !isn
) {
6254 /* VJ's idea. We save last timestamp seen
6255 * from the destination in peer table, when entering
6256 * state TIME-WAIT, and check against it before
6257 * accepting new connection request.
6259 * If "isn" is not zero, this request hit alive
6260 * timewait bucket, so that all the necessary checks
6261 * are made in the function processing timewait state.
6263 if (tcp_death_row
.sysctl_tw_recycle
) {
6266 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6268 if (dst
&& strict
&&
6269 !tcp_peer_is_proven(req
, dst
, true,
6270 tmp_opt
.saw_tstamp
)) {
6271 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6272 goto drop_and_release
;
6275 /* Kill the following clause, if you dislike this way. */
6276 else if (!sysctl_tcp_syncookies
&&
6277 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6278 (sysctl_max_syn_backlog
>> 2)) &&
6279 !tcp_peer_is_proven(req
, dst
, false,
6280 tmp_opt
.saw_tstamp
)) {
6281 /* Without syncookies last quarter of
6282 * backlog is filled with destinations,
6283 * proven to be alive.
6284 * It means that we continue to communicate
6285 * to destinations, already remembered
6286 * to the moment of synflood.
6288 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6290 goto drop_and_release
;
6293 isn
= af_ops
->init_seq(skb
);
6296 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6301 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6304 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6305 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6306 if (!tmp_opt
.tstamp_ok
)
6307 inet_rsk(req
)->ecn_ok
= 0;
6310 tcp_rsk(req
)->snt_isn
= isn
;
6311 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6312 tcp_openreq_init_rwin(req
, sk
, dst
);
6314 tcp_reqsk_record_syn(sk
, req
, skb
);
6315 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6318 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6320 /* Add the child socket directly into the accept queue */
6321 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6322 sk
->sk_data_ready(sk
);
6323 bh_unlock_sock(fastopen_sk
);
6324 sock_put(fastopen_sk
);
6326 tcp_rsk(req
)->tfo_listener
= false;
6328 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6329 af_ops
->send_synack(sk
, dst
, &fl
, req
,
6330 &foc
, !want_cookie
);
6342 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
6345 EXPORT_SYMBOL(tcp_conn_request
);