dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob9c4c6cd0316ee80256f8fb704e84e56ecc6e9683
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 1000;
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
100 int sysctl_tcp_thin_dupack __read_mostly;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_early_retrans __read_mostly = 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
122 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
123 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
124 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
125 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
128 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
130 /* Adapt the MSS value used to make delayed ack decision to the
131 * real world.
133 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 struct inet_connection_sock *icsk = inet_csk(sk);
136 const unsigned int lss = icsk->icsk_ack.last_seg_size;
137 unsigned int len;
139 icsk->icsk_ack.last_seg_size = 0;
141 /* skb->len may jitter because of SACKs, even if peer
142 * sends good full-sized frames.
144 len = skb_shinfo(skb)->gso_size ? : skb->len;
145 if (len >= icsk->icsk_ack.rcv_mss) {
146 icsk->icsk_ack.rcv_mss = len;
147 } else {
148 /* Otherwise, we make more careful check taking into account,
149 * that SACKs block is variable.
151 * "len" is invariant segment length, including TCP header.
153 len += skb->data - skb_transport_header(skb);
154 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
155 /* If PSH is not set, packet should be
156 * full sized, provided peer TCP is not badly broken.
157 * This observation (if it is correct 8)) allows
158 * to handle super-low mtu links fairly.
160 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
161 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
162 /* Subtract also invariant (if peer is RFC compliant),
163 * tcp header plus fixed timestamp option length.
164 * Resulting "len" is MSS free of SACK jitter.
166 len -= tcp_sk(sk)->tcp_header_len;
167 icsk->icsk_ack.last_seg_size = len;
168 if (len == lss) {
169 icsk->icsk_ack.rcv_mss = len;
170 return;
173 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
179 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 if (quickacks == 0)
185 quickacks = 2;
186 quickacks = min(quickacks, max_quickacks);
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = quickacks;
191 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
193 struct inet_connection_sock *icsk = inet_csk(sk);
195 tcp_incr_quickack(sk, max_quickacks);
196 icsk->icsk_ack.pingpong = 0;
197 icsk->icsk_ack.ato = TCP_ATO_MIN;
199 EXPORT_SYMBOL(tcp_enter_quickack_mode);
201 /* Send ACKs quickly, if "quick" count is not exhausted
202 * and the session is not interactive.
205 static bool tcp_in_quickack_mode(struct sock *sk)
207 const struct inet_connection_sock *icsk = inet_csk(sk);
208 const struct dst_entry *dst = __sk_dst_get(sk);
210 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
211 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
214 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
216 if (tp->ecn_flags & TCP_ECN_OK)
217 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
220 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (tcp_hdr(skb)->cwr)
223 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
226 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
231 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
233 struct tcp_sock *tp = tcp_sk(sk);
235 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
236 case INET_ECN_NOT_ECT:
237 /* Funny extension: if ECT is not set on a segment,
238 * and we already seen ECT on a previous segment,
239 * it is probably a retransmit.
241 if (tp->ecn_flags & TCP_ECN_SEEN)
242 tcp_enter_quickack_mode(sk, 2);
243 break;
244 case INET_ECN_CE:
245 if (tcp_ca_needs_ecn(sk))
246 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
248 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
249 /* Better not delay acks, sender can have a very low cwnd */
250 tcp_enter_quickack_mode(sk, 2);
251 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
253 tp->ecn_flags |= TCP_ECN_SEEN;
254 break;
255 default:
256 if (tcp_ca_needs_ecn(sk))
257 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
258 tp->ecn_flags |= TCP_ECN_SEEN;
259 break;
263 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
265 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
266 __tcp_ecn_check_ce(sk, skb);
269 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
271 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
272 tp->ecn_flags &= ~TCP_ECN_OK;
275 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
277 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
278 tp->ecn_flags &= ~TCP_ECN_OK;
281 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
283 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
284 return true;
285 return false;
288 /* Buffer size and advertised window tuning.
290 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 static void tcp_sndbuf_expand(struct sock *sk)
295 const struct tcp_sock *tp = tcp_sk(sk);
296 int sndmem, per_mss;
297 u32 nr_segs;
299 /* Worst case is non GSO/TSO : each frame consumes one skb
300 * and skb->head is kmalloced using power of two area of memory
302 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
303 MAX_TCP_HEADER +
304 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
306 per_mss = roundup_pow_of_two(per_mss) +
307 SKB_DATA_ALIGN(sizeof(struct sk_buff));
309 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
310 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
312 /* Fast Recovery (RFC 5681 3.2) :
313 * Cubic needs 1.7 factor, rounded to 2 to include
314 * extra cushion (application might react slowly to POLLOUT)
316 sndmem = 2 * nr_segs * per_mss;
318 if (sk->sk_sndbuf < sndmem)
319 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
322 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
324 * All tcp_full_space() is split to two parts: "network" buffer, allocated
325 * forward and advertised in receiver window (tp->rcv_wnd) and
326 * "application buffer", required to isolate scheduling/application
327 * latencies from network.
328 * window_clamp is maximal advertised window. It can be less than
329 * tcp_full_space(), in this case tcp_full_space() - window_clamp
330 * is reserved for "application" buffer. The less window_clamp is
331 * the smoother our behaviour from viewpoint of network, but the lower
332 * throughput and the higher sensitivity of the connection to losses. 8)
334 * rcv_ssthresh is more strict window_clamp used at "slow start"
335 * phase to predict further behaviour of this connection.
336 * It is used for two goals:
337 * - to enforce header prediction at sender, even when application
338 * requires some significant "application buffer". It is check #1.
339 * - to prevent pruning of receive queue because of misprediction
340 * of receiver window. Check #2.
342 * The scheme does not work when sender sends good segments opening
343 * window and then starts to feed us spaghetti. But it should work
344 * in common situations. Otherwise, we have to rely on queue collapsing.
347 /* Slow part of check#2. */
348 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
350 struct tcp_sock *tp = tcp_sk(sk);
351 /* Optimize this! */
352 int truesize = tcp_win_from_space(skb->truesize) >> 1;
353 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
355 while (tp->rcv_ssthresh <= window) {
356 if (truesize <= skb->len)
357 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
359 truesize >>= 1;
360 window >>= 1;
362 return 0;
365 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
367 struct tcp_sock *tp = tcp_sk(sk);
369 /* Check #1 */
370 if (tp->rcv_ssthresh < tp->window_clamp &&
371 (int)tp->rcv_ssthresh < tcp_space(sk) &&
372 !tcp_under_memory_pressure(sk)) {
373 int incr;
375 /* Check #2. Increase window, if skb with such overhead
376 * will fit to rcvbuf in future.
378 if (tcp_win_from_space(skb->truesize) <= skb->len)
379 incr = 2 * tp->advmss;
380 else
381 incr = __tcp_grow_window(sk, skb);
383 if (incr) {
384 incr = max_t(int, incr, 2 * skb->len);
385 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
386 tp->window_clamp);
387 inet_csk(sk)->icsk_ack.quick |= 1;
392 /* 3. Tuning rcvbuf, when connection enters established state. */
393 static void tcp_fixup_rcvbuf(struct sock *sk)
395 u32 mss = tcp_sk(sk)->advmss;
396 int rcvmem;
398 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
399 tcp_default_init_rwnd(mss);
401 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
402 * Allow enough cushion so that sender is not limited by our window
404 if (sysctl_tcp_moderate_rcvbuf)
405 rcvmem <<= 2;
407 if (sk->sk_rcvbuf < rcvmem)
408 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
411 /* 4. Try to fixup all. It is made immediately after connection enters
412 * established state.
414 void tcp_init_buffer_space(struct sock *sk)
416 struct tcp_sock *tp = tcp_sk(sk);
417 int maxwin;
419 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
420 tcp_fixup_rcvbuf(sk);
421 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
422 tcp_sndbuf_expand(sk);
424 tp->rcvq_space.space = tp->rcv_wnd;
425 tp->rcvq_space.time = tcp_time_stamp;
426 tp->rcvq_space.seq = tp->copied_seq;
428 maxwin = tcp_full_space(sk);
430 if (tp->window_clamp >= maxwin) {
431 tp->window_clamp = maxwin;
433 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
434 tp->window_clamp = max(maxwin -
435 (maxwin >> sysctl_tcp_app_win),
436 4 * tp->advmss);
439 /* Force reservation of one segment. */
440 if (sysctl_tcp_app_win &&
441 tp->window_clamp > 2 * tp->advmss &&
442 tp->window_clamp + tp->advmss > maxwin)
443 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
445 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
446 tp->snd_cwnd_stamp = tcp_time_stamp;
449 /* 5. Recalculate window clamp after socket hit its memory bounds. */
450 static void tcp_clamp_window(struct sock *sk)
452 struct tcp_sock *tp = tcp_sk(sk);
453 struct inet_connection_sock *icsk = inet_csk(sk);
455 icsk->icsk_ack.quick = 0;
457 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
458 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
459 !tcp_under_memory_pressure(sk) &&
460 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
461 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
462 sysctl_tcp_rmem[2]);
464 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
465 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
468 /* Initialize RCV_MSS value.
469 * RCV_MSS is an our guess about MSS used by the peer.
470 * We haven't any direct information about the MSS.
471 * It's better to underestimate the RCV_MSS rather than overestimate.
472 * Overestimations make us ACKing less frequently than needed.
473 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
475 void tcp_initialize_rcv_mss(struct sock *sk)
477 const struct tcp_sock *tp = tcp_sk(sk);
478 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
480 hint = min(hint, tp->rcv_wnd / 2);
481 hint = min(hint, TCP_MSS_DEFAULT);
482 hint = max(hint, TCP_MIN_MSS);
484 inet_csk(sk)->icsk_ack.rcv_mss = hint;
486 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
488 /* Receiver "autotuning" code.
490 * The algorithm for RTT estimation w/o timestamps is based on
491 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
492 * <http://public.lanl.gov/radiant/pubs.html#DRS>
494 * More detail on this code can be found at
495 * <http://staff.psc.edu/jheffner/>,
496 * though this reference is out of date. A new paper
497 * is pending.
499 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
501 u32 new_sample = tp->rcv_rtt_est.rtt;
502 long m = sample;
504 if (m == 0)
505 m = 1;
507 if (new_sample != 0) {
508 /* If we sample in larger samples in the non-timestamp
509 * case, we could grossly overestimate the RTT especially
510 * with chatty applications or bulk transfer apps which
511 * are stalled on filesystem I/O.
513 * Also, since we are only going for a minimum in the
514 * non-timestamp case, we do not smooth things out
515 * else with timestamps disabled convergence takes too
516 * long.
518 if (!win_dep) {
519 m -= (new_sample >> 3);
520 new_sample += m;
521 } else {
522 m <<= 3;
523 if (m < new_sample)
524 new_sample = m;
526 } else {
527 /* No previous measure. */
528 new_sample = m << 3;
531 if (tp->rcv_rtt_est.rtt != new_sample)
532 tp->rcv_rtt_est.rtt = new_sample;
535 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
537 if (tp->rcv_rtt_est.time == 0)
538 goto new_measure;
539 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
540 return;
541 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
543 new_measure:
544 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
545 tp->rcv_rtt_est.time = tcp_time_stamp;
548 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
549 const struct sk_buff *skb)
551 struct tcp_sock *tp = tcp_sk(sk);
552 if (tp->rx_opt.rcv_tsecr &&
553 (TCP_SKB_CB(skb)->end_seq -
554 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
555 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
559 * This function should be called every time data is copied to user space.
560 * It calculates the appropriate TCP receive buffer space.
562 void tcp_rcv_space_adjust(struct sock *sk)
564 struct tcp_sock *tp = tcp_sk(sk);
565 u32 copied;
566 int time;
568 time = tcp_time_stamp - tp->rcvq_space.time;
569 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
570 return;
572 /* Number of bytes copied to user in last RTT */
573 copied = tp->copied_seq - tp->rcvq_space.seq;
574 if (copied <= tp->rcvq_space.space)
575 goto new_measure;
577 /* A bit of theory :
578 * copied = bytes received in previous RTT, our base window
579 * To cope with packet losses, we need a 2x factor
580 * To cope with slow start, and sender growing its cwin by 100 %
581 * every RTT, we need a 4x factor, because the ACK we are sending
582 * now is for the next RTT, not the current one :
583 * <prev RTT . ><current RTT .. ><next RTT .... >
586 if (sysctl_tcp_moderate_rcvbuf &&
587 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
588 int rcvmem, rcvbuf;
589 u64 rcvwin;
591 /* minimal window to cope with packet losses, assuming
592 * steady state. Add some cushion because of small variations.
594 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
596 /* If rate increased by 25%,
597 * assume slow start, rcvwin = 3 * copied
598 * If rate increased by 50%,
599 * assume sender can use 2x growth, rcvwin = 4 * copied
601 if (copied >=
602 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
603 if (copied >=
604 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
605 rcvwin <<= 1;
606 else
607 rcvwin += (rcvwin >> 1);
610 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
611 while (tcp_win_from_space(rcvmem) < tp->advmss)
612 rcvmem += 128;
614 do_div(rcvwin, tp->advmss);
615 rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
616 if (rcvbuf > sk->sk_rcvbuf) {
617 sk->sk_rcvbuf = rcvbuf;
619 /* Make the window clamp follow along. */
620 tp->window_clamp = tcp_win_from_space(rcvbuf);
623 tp->rcvq_space.space = copied;
625 new_measure:
626 tp->rcvq_space.seq = tp->copied_seq;
627 tp->rcvq_space.time = tcp_time_stamp;
630 /* There is something which you must keep in mind when you analyze the
631 * behavior of the tp->ato delayed ack timeout interval. When a
632 * connection starts up, we want to ack as quickly as possible. The
633 * problem is that "good" TCP's do slow start at the beginning of data
634 * transmission. The means that until we send the first few ACK's the
635 * sender will sit on his end and only queue most of his data, because
636 * he can only send snd_cwnd unacked packets at any given time. For
637 * each ACK we send, he increments snd_cwnd and transmits more of his
638 * queue. -DaveM
640 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
642 struct tcp_sock *tp = tcp_sk(sk);
643 struct inet_connection_sock *icsk = inet_csk(sk);
644 u32 now;
646 inet_csk_schedule_ack(sk);
648 tcp_measure_rcv_mss(sk, skb);
650 tcp_rcv_rtt_measure(tp);
652 now = tcp_time_stamp;
654 if (!icsk->icsk_ack.ato) {
655 /* The _first_ data packet received, initialize
656 * delayed ACK engine.
658 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
659 icsk->icsk_ack.ato = TCP_ATO_MIN;
660 } else {
661 int m = now - icsk->icsk_ack.lrcvtime;
663 if (m <= TCP_ATO_MIN / 2) {
664 /* The fastest case is the first. */
665 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
666 } else if (m < icsk->icsk_ack.ato) {
667 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
668 if (icsk->icsk_ack.ato > icsk->icsk_rto)
669 icsk->icsk_ack.ato = icsk->icsk_rto;
670 } else if (m > icsk->icsk_rto) {
671 /* Too long gap. Apparently sender failed to
672 * restart window, so that we send ACKs quickly.
674 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
675 sk_mem_reclaim(sk);
678 icsk->icsk_ack.lrcvtime = now;
680 tcp_ecn_check_ce(sk, skb);
682 if (skb->len >= 128)
683 tcp_grow_window(sk, skb);
686 /* Called to compute a smoothed rtt estimate. The data fed to this
687 * routine either comes from timestamps, or from segments that were
688 * known _not_ to have been retransmitted [see Karn/Partridge
689 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
690 * piece by Van Jacobson.
691 * NOTE: the next three routines used to be one big routine.
692 * To save cycles in the RFC 1323 implementation it was better to break
693 * it up into three procedures. -- erics
695 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
697 struct tcp_sock *tp = tcp_sk(sk);
698 long m = mrtt_us; /* RTT */
699 u32 srtt = tp->srtt_us;
701 /* The following amusing code comes from Jacobson's
702 * article in SIGCOMM '88. Note that rtt and mdev
703 * are scaled versions of rtt and mean deviation.
704 * This is designed to be as fast as possible
705 * m stands for "measurement".
707 * On a 1990 paper the rto value is changed to:
708 * RTO = rtt + 4 * mdev
710 * Funny. This algorithm seems to be very broken.
711 * These formulae increase RTO, when it should be decreased, increase
712 * too slowly, when it should be increased quickly, decrease too quickly
713 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
714 * does not matter how to _calculate_ it. Seems, it was trap
715 * that VJ failed to avoid. 8)
717 if (srtt != 0) {
718 m -= (srtt >> 3); /* m is now error in rtt est */
719 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
720 if (m < 0) {
721 m = -m; /* m is now abs(error) */
722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
723 /* This is similar to one of Eifel findings.
724 * Eifel blocks mdev updates when rtt decreases.
725 * This solution is a bit different: we use finer gain
726 * for mdev in this case (alpha*beta).
727 * Like Eifel it also prevents growth of rto,
728 * but also it limits too fast rto decreases,
729 * happening in pure Eifel.
731 if (m > 0)
732 m >>= 3;
733 } else {
734 m -= (tp->mdev_us >> 2); /* similar update on mdev */
736 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
737 if (tp->mdev_us > tp->mdev_max_us) {
738 tp->mdev_max_us = tp->mdev_us;
739 if (tp->mdev_max_us > tp->rttvar_us)
740 tp->rttvar_us = tp->mdev_max_us;
742 if (after(tp->snd_una, tp->rtt_seq)) {
743 if (tp->mdev_max_us < tp->rttvar_us)
744 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
745 tp->rtt_seq = tp->snd_nxt;
746 tp->mdev_max_us = tcp_rto_min_us(sk);
748 } else {
749 /* no previous measure. */
750 srtt = m << 3; /* take the measured time to be rtt */
751 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
752 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
753 tp->mdev_max_us = tp->rttvar_us;
754 tp->rtt_seq = tp->snd_nxt;
756 tp->srtt_us = max(1U, srtt);
759 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
760 * Note: TCP stack does not yet implement pacing.
761 * FQ packet scheduler can be used to implement cheap but effective
762 * TCP pacing, to smooth the burst on large writes when packets
763 * in flight is significantly lower than cwnd (or rwin)
765 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
766 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
768 static void tcp_update_pacing_rate(struct sock *sk)
770 const struct tcp_sock *tp = tcp_sk(sk);
771 u64 rate;
773 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
774 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776 /* current rate is (cwnd * mss) / srtt
777 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
778 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
781 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
782 * end of slow start and should slow down.
784 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
785 rate *= sysctl_tcp_pacing_ss_ratio;
786 else
787 rate *= sysctl_tcp_pacing_ca_ratio;
789 rate *= max(tp->snd_cwnd, tp->packets_out);
791 if (likely(tp->srtt_us))
792 do_div(rate, tp->srtt_us);
794 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
795 * without any lock. We want to make sure compiler wont store
796 * intermediate values in this location.
798 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
799 sk->sk_max_pacing_rate);
802 /* Calculate rto without backoff. This is the second half of Van Jacobson's
803 * routine referred to above.
805 static void tcp_set_rto(struct sock *sk)
807 const struct tcp_sock *tp = tcp_sk(sk);
808 /* Old crap is replaced with new one. 8)
810 * More seriously:
811 * 1. If rtt variance happened to be less 50msec, it is hallucination.
812 * It cannot be less due to utterly erratic ACK generation made
813 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
814 * to do with delayed acks, because at cwnd>2 true delack timeout
815 * is invisible. Actually, Linux-2.4 also generates erratic
816 * ACKs in some circumstances.
818 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
820 /* 2. Fixups made earlier cannot be right.
821 * If we do not estimate RTO correctly without them,
822 * all the algo is pure shit and should be replaced
823 * with correct one. It is exactly, which we pretend to do.
826 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
827 * guarantees that rto is higher.
829 tcp_bound_rto(sk);
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 if (!cwnd)
837 cwnd = TCP_INIT_CWND;
838 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 * Packet counting of FACK is based on in-order assumptions, therefore TCP
843 * disables it when reordering is detected
845 void tcp_disable_fack(struct tcp_sock *tp)
847 /* RFC3517 uses different metric in lost marker => reset on change */
848 if (tcp_is_fack(tp))
849 tp->lost_skb_hint = NULL;
850 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
853 /* Take a notice that peer is sending D-SACKs */
854 static void tcp_dsack_seen(struct tcp_sock *tp)
856 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
859 static void tcp_update_reordering(struct sock *sk, const int metric,
860 const int ts)
862 struct tcp_sock *tp = tcp_sk(sk);
863 if (metric > tp->reordering) {
864 int mib_idx;
866 tp->reordering = min(sysctl_tcp_max_reordering, metric);
868 /* This exciting event is worth to be remembered. 8) */
869 if (ts)
870 mib_idx = LINUX_MIB_TCPTSREORDER;
871 else if (tcp_is_reno(tp))
872 mib_idx = LINUX_MIB_TCPRENOREORDER;
873 else if (tcp_is_fack(tp))
874 mib_idx = LINUX_MIB_TCPFACKREORDER;
875 else
876 mib_idx = LINUX_MIB_TCPSACKREORDER;
878 NET_INC_STATS_BH(sock_net(sk), mib_idx);
879 #if FASTRETRANS_DEBUG > 1
880 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
881 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
882 tp->reordering,
883 tp->fackets_out,
884 tp->sacked_out,
885 tp->undo_marker ? tp->undo_retrans : 0);
886 #endif
887 tcp_disable_fack(tp);
890 if (metric > 0)
891 tcp_disable_early_retrans(tp);
892 tp->rack.reord = 1;
895 /* This must be called before lost_out is incremented */
896 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
898 if (!tp->retransmit_skb_hint ||
899 before(TCP_SKB_CB(skb)->seq,
900 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
901 tp->retransmit_skb_hint = skb;
903 if (!tp->lost_out ||
904 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
905 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
908 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
910 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
911 tcp_verify_retransmit_hint(tp, skb);
913 tp->lost_out += tcp_skb_pcount(skb);
914 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
918 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
920 tcp_verify_retransmit_hint(tp, skb);
922 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
923 tp->lost_out += tcp_skb_pcount(skb);
924 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 /* This procedure tags the retransmission queue when SACKs arrive.
930 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
931 * Packets in queue with these bits set are counted in variables
932 * sacked_out, retrans_out and lost_out, correspondingly.
934 * Valid combinations are:
935 * Tag InFlight Description
936 * 0 1 - orig segment is in flight.
937 * S 0 - nothing flies, orig reached receiver.
938 * L 0 - nothing flies, orig lost by net.
939 * R 2 - both orig and retransmit are in flight.
940 * L|R 1 - orig is lost, retransmit is in flight.
941 * S|R 1 - orig reached receiver, retrans is still in flight.
942 * (L|S|R is logically valid, it could occur when L|R is sacked,
943 * but it is equivalent to plain S and code short-curcuits it to S.
944 * L|S is logically invalid, it would mean -1 packet in flight 8))
946 * These 6 states form finite state machine, controlled by the following events:
947 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
948 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
949 * 3. Loss detection event of two flavors:
950 * A. Scoreboard estimator decided the packet is lost.
951 * A'. Reno "three dupacks" marks head of queue lost.
952 * A''. Its FACK modification, head until snd.fack is lost.
953 * B. SACK arrives sacking SND.NXT at the moment, when the
954 * segment was retransmitted.
955 * 4. D-SACK added new rule: D-SACK changes any tag to S.
957 * It is pleasant to note, that state diagram turns out to be commutative,
958 * so that we are allowed not to be bothered by order of our actions,
959 * when multiple events arrive simultaneously. (see the function below).
961 * Reordering detection.
962 * --------------------
963 * Reordering metric is maximal distance, which a packet can be displaced
964 * in packet stream. With SACKs we can estimate it:
966 * 1. SACK fills old hole and the corresponding segment was not
967 * ever retransmitted -> reordering. Alas, we cannot use it
968 * when segment was retransmitted.
969 * 2. The last flaw is solved with D-SACK. D-SACK arrives
970 * for retransmitted and already SACKed segment -> reordering..
971 * Both of these heuristics are not used in Loss state, when we cannot
972 * account for retransmits accurately.
974 * SACK block validation.
975 * ----------------------
977 * SACK block range validation checks that the received SACK block fits to
978 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
979 * Note that SND.UNA is not included to the range though being valid because
980 * it means that the receiver is rather inconsistent with itself reporting
981 * SACK reneging when it should advance SND.UNA. Such SACK block this is
982 * perfectly valid, however, in light of RFC2018 which explicitly states
983 * that "SACK block MUST reflect the newest segment. Even if the newest
984 * segment is going to be discarded ...", not that it looks very clever
985 * in case of head skb. Due to potentional receiver driven attacks, we
986 * choose to avoid immediate execution of a walk in write queue due to
987 * reneging and defer head skb's loss recovery to standard loss recovery
988 * procedure that will eventually trigger (nothing forbids us doing this).
990 * Implements also blockage to start_seq wrap-around. Problem lies in the
991 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
992 * there's no guarantee that it will be before snd_nxt (n). The problem
993 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
994 * wrap (s_w):
996 * <- outs wnd -> <- wrapzone ->
997 * u e n u_w e_w s n_w
998 * | | | | | | |
999 * |<------------+------+----- TCP seqno space --------------+---------->|
1000 * ...-- <2^31 ->| |<--------...
1001 * ...---- >2^31 ------>| |<--------...
1003 * Current code wouldn't be vulnerable but it's better still to discard such
1004 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1005 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1006 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1007 * equal to the ideal case (infinite seqno space without wrap caused issues).
1009 * With D-SACK the lower bound is extended to cover sequence space below
1010 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1011 * again, D-SACK block must not to go across snd_una (for the same reason as
1012 * for the normal SACK blocks, explained above). But there all simplicity
1013 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1014 * fully below undo_marker they do not affect behavior in anyway and can
1015 * therefore be safely ignored. In rare cases (which are more or less
1016 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1017 * fragmentation and packet reordering past skb's retransmission. To consider
1018 * them correctly, the acceptable range must be extended even more though
1019 * the exact amount is rather hard to quantify. However, tp->max_window can
1020 * be used as an exaggerated estimate.
1022 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1023 u32 start_seq, u32 end_seq)
1025 /* Too far in future, or reversed (interpretation is ambiguous) */
1026 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1027 return false;
1029 /* Nasty start_seq wrap-around check (see comments above) */
1030 if (!before(start_seq, tp->snd_nxt))
1031 return false;
1033 /* In outstanding window? ...This is valid exit for D-SACKs too.
1034 * start_seq == snd_una is non-sensical (see comments above)
1036 if (after(start_seq, tp->snd_una))
1037 return true;
1039 if (!is_dsack || !tp->undo_marker)
1040 return false;
1042 /* ...Then it's D-SACK, and must reside below snd_una completely */
1043 if (after(end_seq, tp->snd_una))
1044 return false;
1046 if (!before(start_seq, tp->undo_marker))
1047 return true;
1049 /* Too old */
1050 if (!after(end_seq, tp->undo_marker))
1051 return false;
1053 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1054 * start_seq < undo_marker and end_seq >= undo_marker.
1056 return !before(start_seq, end_seq - tp->max_window);
1059 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1060 struct tcp_sack_block_wire *sp, int num_sacks,
1061 u32 prior_snd_una)
1063 struct tcp_sock *tp = tcp_sk(sk);
1064 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1065 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1066 bool dup_sack = false;
1068 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1069 dup_sack = true;
1070 tcp_dsack_seen(tp);
1071 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1072 } else if (num_sacks > 1) {
1073 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1074 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1076 if (!after(end_seq_0, end_seq_1) &&
1077 !before(start_seq_0, start_seq_1)) {
1078 dup_sack = true;
1079 tcp_dsack_seen(tp);
1080 NET_INC_STATS_BH(sock_net(sk),
1081 LINUX_MIB_TCPDSACKOFORECV);
1085 /* D-SACK for already forgotten data... Do dumb counting. */
1086 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1087 !after(end_seq_0, prior_snd_una) &&
1088 after(end_seq_0, tp->undo_marker))
1089 tp->undo_retrans--;
1091 return dup_sack;
1094 struct tcp_sacktag_state {
1095 int reord;
1096 int fack_count;
1097 /* Timestamps for earliest and latest never-retransmitted segment
1098 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1099 * but congestion control should still get an accurate delay signal.
1101 struct skb_mstamp first_sackt;
1102 struct skb_mstamp last_sackt;
1103 int flag;
1106 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1107 * the incoming SACK may not exactly match but we can find smaller MSS
1108 * aligned portion of it that matches. Therefore we might need to fragment
1109 * which may fail and creates some hassle (caller must handle error case
1110 * returns).
1112 * FIXME: this could be merged to shift decision code
1114 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1115 u32 start_seq, u32 end_seq)
1117 int err;
1118 bool in_sack;
1119 unsigned int pkt_len;
1120 unsigned int mss;
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1123 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1125 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1126 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1127 mss = tcp_skb_mss(skb);
1128 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1130 if (!in_sack) {
1131 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1132 if (pkt_len < mss)
1133 pkt_len = mss;
1134 } else {
1135 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1136 if (pkt_len < mss)
1137 return -EINVAL;
1140 /* Round if necessary so that SACKs cover only full MSSes
1141 * and/or the remaining small portion (if present)
1143 if (pkt_len > mss) {
1144 unsigned int new_len = (pkt_len / mss) * mss;
1145 if (!in_sack && new_len < pkt_len)
1146 new_len += mss;
1147 pkt_len = new_len;
1150 if (pkt_len >= skb->len && !in_sack)
1151 return 0;
1153 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1154 if (err < 0)
1155 return err;
1158 return in_sack;
1161 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1162 static u8 tcp_sacktag_one(struct sock *sk,
1163 struct tcp_sacktag_state *state, u8 sacked,
1164 u32 start_seq, u32 end_seq,
1165 int dup_sack, int pcount,
1166 const struct skb_mstamp *xmit_time)
1168 struct tcp_sock *tp = tcp_sk(sk);
1169 int fack_count = state->fack_count;
1171 /* Account D-SACK for retransmitted packet. */
1172 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1173 if (tp->undo_marker && tp->undo_retrans > 0 &&
1174 after(end_seq, tp->undo_marker))
1175 tp->undo_retrans--;
1176 if (sacked & TCPCB_SACKED_ACKED)
1177 state->reord = min(fack_count, state->reord);
1180 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1181 if (!after(end_seq, tp->snd_una))
1182 return sacked;
1184 if (!(sacked & TCPCB_SACKED_ACKED)) {
1185 tcp_rack_advance(tp, xmit_time, sacked);
1187 if (sacked & TCPCB_SACKED_RETRANS) {
1188 /* If the segment is not tagged as lost,
1189 * we do not clear RETRANS, believing
1190 * that retransmission is still in flight.
1192 if (sacked & TCPCB_LOST) {
1193 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1194 tp->lost_out -= pcount;
1195 tp->retrans_out -= pcount;
1197 } else {
1198 if (!(sacked & TCPCB_RETRANS)) {
1199 /* New sack for not retransmitted frame,
1200 * which was in hole. It is reordering.
1202 if (before(start_seq,
1203 tcp_highest_sack_seq(tp)))
1204 state->reord = min(fack_count,
1205 state->reord);
1206 if (!after(end_seq, tp->high_seq))
1207 state->flag |= FLAG_ORIG_SACK_ACKED;
1208 if (state->first_sackt.v64 == 0)
1209 state->first_sackt = *xmit_time;
1210 state->last_sackt = *xmit_time;
1213 if (sacked & TCPCB_LOST) {
1214 sacked &= ~TCPCB_LOST;
1215 tp->lost_out -= pcount;
1219 sacked |= TCPCB_SACKED_ACKED;
1220 state->flag |= FLAG_DATA_SACKED;
1221 tp->sacked_out += pcount;
1223 fack_count += pcount;
1225 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1226 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1227 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1228 tp->lost_cnt_hint += pcount;
1230 if (fack_count > tp->fackets_out)
1231 tp->fackets_out = fack_count;
1234 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1235 * frames and clear it. undo_retrans is decreased above, L|R frames
1236 * are accounted above as well.
1238 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1239 sacked &= ~TCPCB_SACKED_RETRANS;
1240 tp->retrans_out -= pcount;
1243 return sacked;
1246 /* Shift newly-SACKed bytes from this skb to the immediately previous
1247 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1250 struct tcp_sacktag_state *state,
1251 unsigned int pcount, int shifted, int mss,
1252 bool dup_sack)
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1256 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1257 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1259 BUG_ON(!pcount);
1261 /* Adjust counters and hints for the newly sacked sequence
1262 * range but discard the return value since prev is already
1263 * marked. We must tag the range first because the seq
1264 * advancement below implicitly advances
1265 * tcp_highest_sack_seq() when skb is highest_sack.
1267 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1268 start_seq, end_seq, dup_sack, pcount,
1269 &skb->skb_mstamp);
1271 if (skb == tp->lost_skb_hint)
1272 tp->lost_cnt_hint += pcount;
1274 TCP_SKB_CB(prev)->end_seq += shifted;
1275 TCP_SKB_CB(skb)->seq += shifted;
1277 tcp_skb_pcount_add(prev, pcount);
1278 BUG_ON(tcp_skb_pcount(skb) < pcount);
1279 tcp_skb_pcount_add(skb, -pcount);
1281 /* When we're adding to gso_segs == 1, gso_size will be zero,
1282 * in theory this shouldn't be necessary but as long as DSACK
1283 * code can come after this skb later on it's better to keep
1284 * setting gso_size to something.
1286 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1287 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1289 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1290 if (tcp_skb_pcount(skb) <= 1)
1291 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1293 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1294 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1296 if (skb->len > 0) {
1297 BUG_ON(!tcp_skb_pcount(skb));
1298 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1299 return false;
1302 /* Whole SKB was eaten :-) */
1304 if (skb == tp->retransmit_skb_hint)
1305 tp->retransmit_skb_hint = prev;
1306 if (skb == tp->lost_skb_hint) {
1307 tp->lost_skb_hint = prev;
1308 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1312 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1313 TCP_SKB_CB(prev)->end_seq++;
1315 if (skb == tcp_highest_sack(sk))
1316 tcp_advance_highest_sack(sk, skb);
1318 tcp_unlink_write_queue(skb, sk);
1319 sk_wmem_free_skb(sk, skb);
1321 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1323 return true;
1326 /* I wish gso_size would have a bit more sane initialization than
1327 * something-or-zero which complicates things
1329 static int tcp_skb_seglen(const struct sk_buff *skb)
1331 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1334 /* Shifting pages past head area doesn't work */
1335 static int skb_can_shift(const struct sk_buff *skb)
1337 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1340 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1341 * skb.
1343 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1344 struct tcp_sacktag_state *state,
1345 u32 start_seq, u32 end_seq,
1346 bool dup_sack)
1348 struct tcp_sock *tp = tcp_sk(sk);
1349 struct sk_buff *prev;
1350 int mss;
1351 int pcount = 0;
1352 int len;
1353 int in_sack;
1355 if (!sk_can_gso(sk))
1356 goto fallback;
1358 /* Normally R but no L won't result in plain S */
1359 if (!dup_sack &&
1360 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1361 goto fallback;
1362 if (!skb_can_shift(skb))
1363 goto fallback;
1364 /* This frame is about to be dropped (was ACKed). */
1365 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1366 goto fallback;
1368 /* Can only happen with delayed DSACK + discard craziness */
1369 if (unlikely(skb == tcp_write_queue_head(sk)))
1370 goto fallback;
1371 prev = tcp_write_queue_prev(sk, skb);
1373 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1374 goto fallback;
1376 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1377 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1379 if (in_sack) {
1380 len = skb->len;
1381 pcount = tcp_skb_pcount(skb);
1382 mss = tcp_skb_seglen(skb);
1384 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1385 * drop this restriction as unnecessary
1387 if (mss != tcp_skb_seglen(prev))
1388 goto fallback;
1389 } else {
1390 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1391 goto noop;
1392 /* CHECKME: This is non-MSS split case only?, this will
1393 * cause skipped skbs due to advancing loop btw, original
1394 * has that feature too
1396 if (tcp_skb_pcount(skb) <= 1)
1397 goto noop;
1399 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1400 if (!in_sack) {
1401 /* TODO: head merge to next could be attempted here
1402 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1403 * though it might not be worth of the additional hassle
1405 * ...we can probably just fallback to what was done
1406 * previously. We could try merging non-SACKed ones
1407 * as well but it probably isn't going to buy off
1408 * because later SACKs might again split them, and
1409 * it would make skb timestamp tracking considerably
1410 * harder problem.
1412 goto fallback;
1415 len = end_seq - TCP_SKB_CB(skb)->seq;
1416 BUG_ON(len < 0);
1417 BUG_ON(len > skb->len);
1419 /* MSS boundaries should be honoured or else pcount will
1420 * severely break even though it makes things bit trickier.
1421 * Optimize common case to avoid most of the divides
1423 mss = tcp_skb_mss(skb);
1425 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1426 * drop this restriction as unnecessary
1428 if (mss != tcp_skb_seglen(prev))
1429 goto fallback;
1431 if (len == mss) {
1432 pcount = 1;
1433 } else if (len < mss) {
1434 goto noop;
1435 } else {
1436 pcount = len / mss;
1437 len = pcount * mss;
1441 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1442 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1443 goto fallback;
1445 if (!skb_shift(prev, skb, len))
1446 goto fallback;
1447 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1448 goto out;
1450 /* Hole filled allows collapsing with the next as well, this is very
1451 * useful when hole on every nth skb pattern happens
1453 if (prev == tcp_write_queue_tail(sk))
1454 goto out;
1455 skb = tcp_write_queue_next(sk, prev);
1457 if (!skb_can_shift(skb) ||
1458 (skb == tcp_send_head(sk)) ||
1459 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1460 (mss != tcp_skb_seglen(skb)))
1461 goto out;
1463 len = skb->len;
1464 if (skb_shift(prev, skb, len)) {
1465 pcount += tcp_skb_pcount(skb);
1466 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1469 out:
1470 state->fack_count += pcount;
1471 return prev;
1473 noop:
1474 return skb;
1476 fallback:
1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1478 return NULL;
1481 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1482 struct tcp_sack_block *next_dup,
1483 struct tcp_sacktag_state *state,
1484 u32 start_seq, u32 end_seq,
1485 bool dup_sack_in)
1487 struct tcp_sock *tp = tcp_sk(sk);
1488 struct sk_buff *tmp;
1490 tcp_for_write_queue_from(skb, sk) {
1491 int in_sack = 0;
1492 bool dup_sack = dup_sack_in;
1494 if (skb == tcp_send_head(sk))
1495 break;
1497 /* queue is in-order => we can short-circuit the walk early */
1498 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1499 break;
1501 if (next_dup &&
1502 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1503 in_sack = tcp_match_skb_to_sack(sk, skb,
1504 next_dup->start_seq,
1505 next_dup->end_seq);
1506 if (in_sack > 0)
1507 dup_sack = true;
1510 /* skb reference here is a bit tricky to get right, since
1511 * shifting can eat and free both this skb and the next,
1512 * so not even _safe variant of the loop is enough.
1514 if (in_sack <= 0) {
1515 tmp = tcp_shift_skb_data(sk, skb, state,
1516 start_seq, end_seq, dup_sack);
1517 if (tmp) {
1518 if (tmp != skb) {
1519 skb = tmp;
1520 continue;
1523 in_sack = 0;
1524 } else {
1525 in_sack = tcp_match_skb_to_sack(sk, skb,
1526 start_seq,
1527 end_seq);
1531 if (unlikely(in_sack < 0))
1532 break;
1534 if (in_sack) {
1535 TCP_SKB_CB(skb)->sacked =
1536 tcp_sacktag_one(sk,
1537 state,
1538 TCP_SKB_CB(skb)->sacked,
1539 TCP_SKB_CB(skb)->seq,
1540 TCP_SKB_CB(skb)->end_seq,
1541 dup_sack,
1542 tcp_skb_pcount(skb),
1543 &skb->skb_mstamp);
1545 if (!before(TCP_SKB_CB(skb)->seq,
1546 tcp_highest_sack_seq(tp)))
1547 tcp_advance_highest_sack(sk, skb);
1550 state->fack_count += tcp_skb_pcount(skb);
1552 return skb;
1555 /* Avoid all extra work that is being done by sacktag while walking in
1556 * a normal way
1558 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1559 struct tcp_sacktag_state *state,
1560 u32 skip_to_seq)
1562 tcp_for_write_queue_from(skb, sk) {
1563 if (skb == tcp_send_head(sk))
1564 break;
1566 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1567 break;
1569 state->fack_count += tcp_skb_pcount(skb);
1571 return skb;
1574 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1575 struct sock *sk,
1576 struct tcp_sack_block *next_dup,
1577 struct tcp_sacktag_state *state,
1578 u32 skip_to_seq)
1580 if (!next_dup)
1581 return skb;
1583 if (before(next_dup->start_seq, skip_to_seq)) {
1584 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1585 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1586 next_dup->start_seq, next_dup->end_seq,
1590 return skb;
1593 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1595 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1598 static int
1599 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1600 u32 prior_snd_una, struct tcp_sacktag_state *state)
1602 struct tcp_sock *tp = tcp_sk(sk);
1603 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1604 TCP_SKB_CB(ack_skb)->sacked);
1605 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1606 struct tcp_sack_block sp[TCP_NUM_SACKS];
1607 struct tcp_sack_block *cache;
1608 struct sk_buff *skb;
1609 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1610 int used_sacks;
1611 bool found_dup_sack = false;
1612 int i, j;
1613 int first_sack_index;
1615 state->flag = 0;
1616 state->reord = tp->packets_out;
1618 if (!tp->sacked_out) {
1619 if (WARN_ON(tp->fackets_out))
1620 tp->fackets_out = 0;
1621 tcp_highest_sack_reset(sk);
1624 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1625 num_sacks, prior_snd_una);
1626 if (found_dup_sack)
1627 state->flag |= FLAG_DSACKING_ACK;
1629 /* Eliminate too old ACKs, but take into
1630 * account more or less fresh ones, they can
1631 * contain valid SACK info.
1633 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1634 return 0;
1636 if (!tp->packets_out)
1637 goto out;
1639 used_sacks = 0;
1640 first_sack_index = 0;
1641 for (i = 0; i < num_sacks; i++) {
1642 bool dup_sack = !i && found_dup_sack;
1644 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1645 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1647 if (!tcp_is_sackblock_valid(tp, dup_sack,
1648 sp[used_sacks].start_seq,
1649 sp[used_sacks].end_seq)) {
1650 int mib_idx;
1652 if (dup_sack) {
1653 if (!tp->undo_marker)
1654 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1655 else
1656 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1657 } else {
1658 /* Don't count olds caused by ACK reordering */
1659 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1660 !after(sp[used_sacks].end_seq, tp->snd_una))
1661 continue;
1662 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1665 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1666 if (i == 0)
1667 first_sack_index = -1;
1668 continue;
1671 /* Ignore very old stuff early */
1672 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1673 continue;
1675 used_sacks++;
1678 /* order SACK blocks to allow in order walk of the retrans queue */
1679 for (i = used_sacks - 1; i > 0; i--) {
1680 for (j = 0; j < i; j++) {
1681 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1682 swap(sp[j], sp[j + 1]);
1684 /* Track where the first SACK block goes to */
1685 if (j == first_sack_index)
1686 first_sack_index = j + 1;
1691 skb = tcp_write_queue_head(sk);
1692 state->fack_count = 0;
1693 i = 0;
1695 if (!tp->sacked_out) {
1696 /* It's already past, so skip checking against it */
1697 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1698 } else {
1699 cache = tp->recv_sack_cache;
1700 /* Skip empty blocks in at head of the cache */
1701 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1702 !cache->end_seq)
1703 cache++;
1706 while (i < used_sacks) {
1707 u32 start_seq = sp[i].start_seq;
1708 u32 end_seq = sp[i].end_seq;
1709 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1710 struct tcp_sack_block *next_dup = NULL;
1712 if (found_dup_sack && ((i + 1) == first_sack_index))
1713 next_dup = &sp[i + 1];
1715 /* Skip too early cached blocks */
1716 while (tcp_sack_cache_ok(tp, cache) &&
1717 !before(start_seq, cache->end_seq))
1718 cache++;
1720 /* Can skip some work by looking recv_sack_cache? */
1721 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1722 after(end_seq, cache->start_seq)) {
1724 /* Head todo? */
1725 if (before(start_seq, cache->start_seq)) {
1726 skb = tcp_sacktag_skip(skb, sk, state,
1727 start_seq);
1728 skb = tcp_sacktag_walk(skb, sk, next_dup,
1729 state,
1730 start_seq,
1731 cache->start_seq,
1732 dup_sack);
1735 /* Rest of the block already fully processed? */
1736 if (!after(end_seq, cache->end_seq))
1737 goto advance_sp;
1739 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1740 state,
1741 cache->end_seq);
1743 /* ...tail remains todo... */
1744 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1745 /* ...but better entrypoint exists! */
1746 skb = tcp_highest_sack(sk);
1747 if (!skb)
1748 break;
1749 state->fack_count = tp->fackets_out;
1750 cache++;
1751 goto walk;
1754 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1755 /* Check overlap against next cached too (past this one already) */
1756 cache++;
1757 continue;
1760 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1761 skb = tcp_highest_sack(sk);
1762 if (!skb)
1763 break;
1764 state->fack_count = tp->fackets_out;
1766 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1768 walk:
1769 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1770 start_seq, end_seq, dup_sack);
1772 advance_sp:
1773 i++;
1776 /* Clear the head of the cache sack blocks so we can skip it next time */
1777 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1778 tp->recv_sack_cache[i].start_seq = 0;
1779 tp->recv_sack_cache[i].end_seq = 0;
1781 for (j = 0; j < used_sacks; j++)
1782 tp->recv_sack_cache[i++] = sp[j];
1784 if ((state->reord < tp->fackets_out) &&
1785 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1786 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1788 tcp_verify_left_out(tp);
1789 out:
1791 #if FASTRETRANS_DEBUG > 0
1792 WARN_ON((int)tp->sacked_out < 0);
1793 WARN_ON((int)tp->lost_out < 0);
1794 WARN_ON((int)tp->retrans_out < 0);
1795 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1796 #endif
1797 return state->flag;
1800 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1801 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1803 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1805 u32 holes;
1807 holes = max(tp->lost_out, 1U);
1808 holes = min(holes, tp->packets_out);
1810 if ((tp->sacked_out + holes) > tp->packets_out) {
1811 tp->sacked_out = tp->packets_out - holes;
1812 return true;
1814 return false;
1817 /* If we receive more dupacks than we expected counting segments
1818 * in assumption of absent reordering, interpret this as reordering.
1819 * The only another reason could be bug in receiver TCP.
1821 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1823 struct tcp_sock *tp = tcp_sk(sk);
1824 if (tcp_limit_reno_sacked(tp))
1825 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1828 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1830 static void tcp_add_reno_sack(struct sock *sk)
1832 struct tcp_sock *tp = tcp_sk(sk);
1833 tp->sacked_out++;
1834 tcp_check_reno_reordering(sk, 0);
1835 tcp_verify_left_out(tp);
1838 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1840 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1842 struct tcp_sock *tp = tcp_sk(sk);
1844 if (acked > 0) {
1845 /* One ACK acked hole. The rest eat duplicate ACKs. */
1846 if (acked - 1 >= tp->sacked_out)
1847 tp->sacked_out = 0;
1848 else
1849 tp->sacked_out -= acked - 1;
1851 tcp_check_reno_reordering(sk, acked);
1852 tcp_verify_left_out(tp);
1855 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1857 tp->sacked_out = 0;
1860 void tcp_clear_retrans(struct tcp_sock *tp)
1862 tp->retrans_out = 0;
1863 tp->lost_out = 0;
1864 tp->undo_marker = 0;
1865 tp->undo_retrans = -1;
1866 tp->fackets_out = 0;
1867 tp->sacked_out = 0;
1870 static inline void tcp_init_undo(struct tcp_sock *tp)
1872 tp->undo_marker = tp->snd_una;
1873 /* Retransmission still in flight may cause DSACKs later. */
1874 tp->undo_retrans = tp->retrans_out ? : -1;
1877 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1881 void tcp_enter_loss(struct sock *sk)
1883 const struct inet_connection_sock *icsk = inet_csk(sk);
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 struct sk_buff *skb;
1886 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1887 bool is_reneg; /* is receiver reneging on SACKs? */
1889 /* Reduce ssthresh if it has not yet been made inside this window. */
1890 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1891 !after(tp->high_seq, tp->snd_una) ||
1892 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1893 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1894 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1895 tcp_ca_event(sk, CA_EVENT_LOSS);
1896 tcp_init_undo(tp);
1898 tp->snd_cwnd = 1;
1899 tp->snd_cwnd_cnt = 0;
1900 tp->snd_cwnd_stamp = tcp_time_stamp;
1902 tp->retrans_out = 0;
1903 tp->lost_out = 0;
1905 if (tcp_is_reno(tp))
1906 tcp_reset_reno_sack(tp);
1908 skb = tcp_write_queue_head(sk);
1909 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1910 if (is_reneg) {
1911 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1912 tp->sacked_out = 0;
1913 tp->fackets_out = 0;
1915 tcp_clear_all_retrans_hints(tp);
1917 tcp_for_write_queue(skb, sk) {
1918 if (skb == tcp_send_head(sk))
1919 break;
1921 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1922 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1923 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1924 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1925 tp->lost_out += tcp_skb_pcount(skb);
1926 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1929 tcp_verify_left_out(tp);
1931 /* Timeout in disordered state after receiving substantial DUPACKs
1932 * suggests that the degree of reordering is over-estimated.
1934 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1935 tp->sacked_out >= sysctl_tcp_reordering)
1936 tp->reordering = min_t(unsigned int, tp->reordering,
1937 sysctl_tcp_reordering);
1938 tcp_set_ca_state(sk, TCP_CA_Loss);
1939 tp->high_seq = tp->snd_nxt;
1940 tcp_ecn_queue_cwr(tp);
1942 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1943 * loss recovery is underway except recurring timeout(s) on
1944 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946 tp->frto = sysctl_tcp_frto &&
1947 (new_recovery || icsk->icsk_retransmits) &&
1948 !inet_csk(sk)->icsk_mtup.probe_size;
1951 /* If ACK arrived pointing to a remembered SACK, it means that our
1952 * remembered SACKs do not reflect real state of receiver i.e.
1953 * receiver _host_ is heavily congested (or buggy).
1955 * To avoid big spurious retransmission bursts due to transient SACK
1956 * scoreboard oddities that look like reneging, we give the receiver a
1957 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1958 * restore sanity to the SACK scoreboard. If the apparent reneging
1959 * persists until this RTO then we'll clear the SACK scoreboard.
1961 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963 if (flag & FLAG_SACK_RENEGING) {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1966 msecs_to_jiffies(10));
1968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1969 delay, TCP_RTO_MAX);
1970 return true;
1972 return false;
1975 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1981 * counter when SACK is enabled (without SACK, sacked_out is used for
1982 * that purpose).
1984 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1985 * segments up to the highest received SACK block so far and holes in
1986 * between them.
1988 * With reordering, holes may still be in flight, so RFC3517 recovery
1989 * uses pure sacked_out (total number of SACKed segments) even though
1990 * it violates the RFC that uses duplicate ACKs, often these are equal
1991 * but when e.g. out-of-window ACKs or packet duplication occurs,
1992 * they differ. Since neither occurs due to loss, TCP should really
1993 * ignore them.
1995 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002 struct tcp_sock *tp = tcp_sk(sk);
2003 unsigned long delay;
2005 /* Delay early retransmit and entering fast recovery for
2006 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2007 * available, or RTO is scheduled to fire first.
2009 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2010 (flag & FLAG_ECE) || !tp->srtt_us)
2011 return false;
2013 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2014 msecs_to_jiffies(2));
2016 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2017 return false;
2019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2020 TCP_RTO_MAX);
2021 return true;
2024 /* Linux NewReno/SACK/FACK/ECN state machine.
2025 * --------------------------------------
2027 * "Open" Normal state, no dubious events, fast path.
2028 * "Disorder" In all the respects it is "Open",
2029 * but requires a bit more attention. It is entered when
2030 * we see some SACKs or dupacks. It is split of "Open"
2031 * mainly to move some processing from fast path to slow one.
2032 * "CWR" CWND was reduced due to some Congestion Notification event.
2033 * It can be ECN, ICMP source quench, local device congestion.
2034 * "Recovery" CWND was reduced, we are fast-retransmitting.
2035 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2037 * tcp_fastretrans_alert() is entered:
2038 * - each incoming ACK, if state is not "Open"
2039 * - when arrived ACK is unusual, namely:
2040 * * SACK
2041 * * Duplicate ACK.
2042 * * ECN ECE.
2044 * Counting packets in flight is pretty simple.
2046 * in_flight = packets_out - left_out + retrans_out
2048 * packets_out is SND.NXT-SND.UNA counted in packets.
2050 * retrans_out is number of retransmitted segments.
2052 * left_out is number of segments left network, but not ACKed yet.
2054 * left_out = sacked_out + lost_out
2056 * sacked_out: Packets, which arrived to receiver out of order
2057 * and hence not ACKed. With SACKs this number is simply
2058 * amount of SACKed data. Even without SACKs
2059 * it is easy to give pretty reliable estimate of this number,
2060 * counting duplicate ACKs.
2062 * lost_out: Packets lost by network. TCP has no explicit
2063 * "loss notification" feedback from network (for now).
2064 * It means that this number can be only _guessed_.
2065 * Actually, it is the heuristics to predict lossage that
2066 * distinguishes different algorithms.
2068 * F.e. after RTO, when all the queue is considered as lost,
2069 * lost_out = packets_out and in_flight = retrans_out.
2071 * Essentially, we have now two algorithms counting
2072 * lost packets.
2074 * FACK: It is the simplest heuristics. As soon as we decided
2075 * that something is lost, we decide that _all_ not SACKed
2076 * packets until the most forward SACK are lost. I.e.
2077 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2078 * It is absolutely correct estimate, if network does not reorder
2079 * packets. And it loses any connection to reality when reordering
2080 * takes place. We use FACK by default until reordering
2081 * is suspected on the path to this destination.
2083 * NewReno: when Recovery is entered, we assume that one segment
2084 * is lost (classic Reno). While we are in Recovery and
2085 * a partial ACK arrives, we assume that one more packet
2086 * is lost (NewReno). This heuristics are the same in NewReno
2087 * and SACK.
2089 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2090 * deflation etc. CWND is real congestion window, never inflated, changes
2091 * only according to classic VJ rules.
2093 * Really tricky (and requiring careful tuning) part of algorithm
2094 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2095 * The first determines the moment _when_ we should reduce CWND and,
2096 * hence, slow down forward transmission. In fact, it determines the moment
2097 * when we decide that hole is caused by loss, rather than by a reorder.
2099 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2100 * holes, caused by lost packets.
2102 * And the most logically complicated part of algorithm is undo
2103 * heuristics. We detect false retransmits due to both too early
2104 * fast retransmit (reordering) and underestimated RTO, analyzing
2105 * timestamps and D-SACKs. When we detect that some segments were
2106 * retransmitted by mistake and CWND reduction was wrong, we undo
2107 * window reduction and abort recovery phase. This logic is hidden
2108 * inside several functions named tcp_try_undo_<something>.
2111 /* This function decides, when we should leave Disordered state
2112 * and enter Recovery phase, reducing congestion window.
2114 * Main question: may we further continue forward transmission
2115 * with the same cwnd?
2117 static bool tcp_time_to_recover(struct sock *sk, int flag)
2119 struct tcp_sock *tp = tcp_sk(sk);
2120 __u32 packets_out;
2122 /* Trick#1: The loss is proven. */
2123 if (tp->lost_out)
2124 return true;
2126 /* Not-A-Trick#2 : Classic rule... */
2127 if (tcp_dupack_heuristics(tp) > tp->reordering)
2128 return true;
2130 /* Trick#4: It is still not OK... But will it be useful to delay
2131 * recovery more?
2133 packets_out = tp->packets_out;
2134 if (packets_out <= tp->reordering &&
2135 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2136 !tcp_may_send_now(sk)) {
2137 /* We have nothing to send. This connection is limited
2138 * either by receiver window or by application.
2140 return true;
2143 /* If a thin stream is detected, retransmit after first
2144 * received dupack. Employ only if SACK is supported in order
2145 * to avoid possible corner-case series of spurious retransmissions
2146 * Use only if there are no unsent data.
2148 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2149 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2150 tcp_is_sack(tp) && !tcp_send_head(sk))
2151 return true;
2153 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2154 * retransmissions due to small network reorderings, we implement
2155 * Mitigation A.3 in the RFC and delay the retransmission for a short
2156 * interval if appropriate.
2158 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2159 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2160 !tcp_may_send_now(sk))
2161 return !tcp_pause_early_retransmit(sk, flag);
2163 return false;
2166 /* Detect loss in event "A" above by marking head of queue up as lost.
2167 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2168 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2169 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2170 * the maximum SACKed segments to pass before reaching this limit.
2172 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2174 struct tcp_sock *tp = tcp_sk(sk);
2175 struct sk_buff *skb;
2176 int cnt, oldcnt, lost;
2177 unsigned int mss;
2178 /* Use SACK to deduce losses of new sequences sent during recovery */
2179 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2181 WARN_ON(packets > tp->packets_out);
2182 if (tp->lost_skb_hint) {
2183 skb = tp->lost_skb_hint;
2184 cnt = tp->lost_cnt_hint;
2185 /* Head already handled? */
2186 if (mark_head && skb != tcp_write_queue_head(sk))
2187 return;
2188 } else {
2189 skb = tcp_write_queue_head(sk);
2190 cnt = 0;
2193 tcp_for_write_queue_from(skb, sk) {
2194 if (skb == tcp_send_head(sk))
2195 break;
2196 /* TODO: do this better */
2197 /* this is not the most efficient way to do this... */
2198 tp->lost_skb_hint = skb;
2199 tp->lost_cnt_hint = cnt;
2201 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2202 break;
2204 oldcnt = cnt;
2205 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2206 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2207 cnt += tcp_skb_pcount(skb);
2209 if (cnt > packets) {
2210 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2211 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2212 (oldcnt >= packets))
2213 break;
2215 mss = tcp_skb_mss(skb);
2216 /* If needed, chop off the prefix to mark as lost. */
2217 lost = (packets - oldcnt) * mss;
2218 if (lost < skb->len &&
2219 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2220 break;
2221 cnt = packets;
2224 tcp_skb_mark_lost(tp, skb);
2226 if (mark_head)
2227 break;
2229 tcp_verify_left_out(tp);
2232 /* Account newly detected lost packet(s) */
2234 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2236 struct tcp_sock *tp = tcp_sk(sk);
2238 if (tcp_is_reno(tp)) {
2239 tcp_mark_head_lost(sk, 1, 1);
2240 } else if (tcp_is_fack(tp)) {
2241 int lost = tp->fackets_out - tp->reordering;
2242 if (lost <= 0)
2243 lost = 1;
2244 tcp_mark_head_lost(sk, lost, 0);
2245 } else {
2246 int sacked_upto = tp->sacked_out - tp->reordering;
2247 if (sacked_upto >= 0)
2248 tcp_mark_head_lost(sk, sacked_upto, 0);
2249 else if (fast_rexmit)
2250 tcp_mark_head_lost(sk, 1, 1);
2254 /* CWND moderation, preventing bursts due to too big ACKs
2255 * in dubious situations.
2257 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 tp->snd_cwnd = min(tp->snd_cwnd,
2260 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2261 tp->snd_cwnd_stamp = tcp_time_stamp;
2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2266 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2267 before(tp->rx_opt.rcv_tsecr, when);
2270 /* skb is spurious retransmitted if the returned timestamp echo
2271 * reply is prior to the skb transmission time
2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2274 const struct sk_buff *skb)
2276 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2277 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280 /* Nothing was retransmitted or returned timestamp is less
2281 * than timestamp of the first retransmission.
2283 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2285 return !tp->retrans_stamp ||
2286 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289 /* Undo procedures. */
2291 /* We can clear retrans_stamp when there are no retransmissions in the
2292 * window. It would seem that it is trivially available for us in
2293 * tp->retrans_out, however, that kind of assumptions doesn't consider
2294 * what will happen if errors occur when sending retransmission for the
2295 * second time. ...It could the that such segment has only
2296 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2297 * the head skb is enough except for some reneging corner cases that
2298 * are not worth the effort.
2300 * Main reason for all this complexity is the fact that connection dying
2301 * time now depends on the validity of the retrans_stamp, in particular,
2302 * that successive retransmissions of a segment must not advance
2303 * retrans_stamp under any conditions.
2305 static bool tcp_any_retrans_done(const struct sock *sk)
2307 const struct tcp_sock *tp = tcp_sk(sk);
2308 struct sk_buff *skb;
2310 if (tp->retrans_out)
2311 return true;
2313 skb = tcp_write_queue_head(sk);
2314 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2315 return true;
2317 return false;
2320 #if FASTRETRANS_DEBUG > 1
2321 static void DBGUNDO(struct sock *sk, const char *msg)
2323 struct tcp_sock *tp = tcp_sk(sk);
2324 struct inet_sock *inet = inet_sk(sk);
2326 if (sk->sk_family == AF_INET) {
2327 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2328 msg,
2329 &inet->inet_daddr, ntohs(inet->inet_dport),
2330 tp->snd_cwnd, tcp_left_out(tp),
2331 tp->snd_ssthresh, tp->prior_ssthresh,
2332 tp->packets_out);
2334 #if IS_ENABLED(CONFIG_IPV6)
2335 else if (sk->sk_family == AF_INET6) {
2336 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2337 msg,
2338 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2339 tp->snd_cwnd, tcp_left_out(tp),
2340 tp->snd_ssthresh, tp->prior_ssthresh,
2341 tp->packets_out);
2343 #endif
2345 #else
2346 #define DBGUNDO(x...) do { } while (0)
2347 #endif
2349 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2351 struct tcp_sock *tp = tcp_sk(sk);
2353 if (unmark_loss) {
2354 struct sk_buff *skb;
2356 tcp_for_write_queue(skb, sk) {
2357 if (skb == tcp_send_head(sk))
2358 break;
2359 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2361 tp->lost_out = 0;
2362 tcp_clear_all_retrans_hints(tp);
2365 if (tp->prior_ssthresh) {
2366 const struct inet_connection_sock *icsk = inet_csk(sk);
2368 if (icsk->icsk_ca_ops->undo_cwnd)
2369 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2370 else
2371 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2373 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2374 tp->snd_ssthresh = tp->prior_ssthresh;
2375 tcp_ecn_withdraw_cwr(tp);
2377 } else {
2378 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2380 tp->snd_cwnd_stamp = tcp_time_stamp;
2381 tp->undo_marker = 0;
2384 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2389 /* People celebrate: "We love our President!" */
2390 static bool tcp_try_undo_recovery(struct sock *sk)
2392 struct tcp_sock *tp = tcp_sk(sk);
2394 if (tcp_may_undo(tp)) {
2395 int mib_idx;
2397 /* Happy end! We did not retransmit anything
2398 * or our original transmission succeeded.
2400 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2401 tcp_undo_cwnd_reduction(sk, false);
2402 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2403 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2404 else
2405 mib_idx = LINUX_MIB_TCPFULLUNDO;
2407 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2410 /* Hold old state until something *above* high_seq
2411 * is ACKed. For Reno it is MUST to prevent false
2412 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 tcp_moderate_cwnd(tp);
2414 if (!tcp_any_retrans_done(sk))
2415 tp->retrans_stamp = 0;
2416 return true;
2418 tcp_set_ca_state(sk, TCP_CA_Open);
2419 return false;
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static bool tcp_try_undo_dsack(struct sock *sk)
2425 struct tcp_sock *tp = tcp_sk(sk);
2427 if (tp->undo_marker && !tp->undo_retrans) {
2428 DBGUNDO(sk, "D-SACK");
2429 tcp_undo_cwnd_reduction(sk, false);
2430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2431 return true;
2433 return false;
2436 /* Undo during loss recovery after partial ACK or using F-RTO. */
2437 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439 struct tcp_sock *tp = tcp_sk(sk);
2441 if (frto_undo || tcp_may_undo(tp)) {
2442 tcp_undo_cwnd_reduction(sk, true);
2444 DBGUNDO(sk, "partial loss");
2445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2446 if (frto_undo)
2447 NET_INC_STATS_BH(sock_net(sk),
2448 LINUX_MIB_TCPSPURIOUSRTOS);
2449 inet_csk(sk)->icsk_retransmits = 0;
2450 if (frto_undo || tcp_is_sack(tp))
2451 tcp_set_ca_state(sk, TCP_CA_Open);
2452 return true;
2454 return false;
2457 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2458 * It computes the number of packets to send (sndcnt) based on packets newly
2459 * delivered:
2460 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2461 * cwnd reductions across a full RTT.
2462 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2463 * But when the retransmits are acked without further losses, PRR
2464 * slow starts cwnd up to ssthresh to speed up the recovery.
2466 static void tcp_init_cwnd_reduction(struct sock *sk)
2468 struct tcp_sock *tp = tcp_sk(sk);
2470 tp->high_seq = tp->snd_nxt;
2471 tp->tlp_high_seq = 0;
2472 tp->snd_cwnd_cnt = 0;
2473 tp->prior_cwnd = tp->snd_cwnd;
2474 tp->prr_delivered = 0;
2475 tp->prr_out = 0;
2476 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2477 tcp_ecn_queue_cwr(tp);
2480 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2481 int fast_rexmit, int flag)
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 int sndcnt = 0;
2485 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2486 int newly_acked_sacked = prior_unsacked -
2487 (tp->packets_out - tp->sacked_out);
2489 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2490 return;
2492 tp->prr_delivered += newly_acked_sacked;
2493 if (delta < 0) {
2494 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2495 tp->prior_cwnd - 1;
2496 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2497 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2498 !(flag & FLAG_LOST_RETRANS)) {
2499 sndcnt = min_t(int, delta,
2500 max_t(int, tp->prr_delivered - tp->prr_out,
2501 newly_acked_sacked) + 1);
2502 } else {
2503 sndcnt = min(delta, newly_acked_sacked);
2505 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2506 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2509 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2511 struct tcp_sock *tp = tcp_sk(sk);
2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2515 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2516 tp->snd_cwnd = tp->snd_ssthresh;
2517 tp->snd_cwnd_stamp = tcp_time_stamp;
2519 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock *sk)
2525 struct tcp_sock *tp = tcp_sk(sk);
2527 tp->prior_ssthresh = 0;
2528 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529 tp->undo_marker = 0;
2530 tcp_init_cwnd_reduction(sk);
2531 tcp_set_ca_state(sk, TCP_CA_CWR);
2534 EXPORT_SYMBOL(tcp_enter_cwr);
2536 static void tcp_try_keep_open(struct sock *sk)
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 int state = TCP_CA_Open;
2541 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542 state = TCP_CA_Disorder;
2544 if (inet_csk(sk)->icsk_ca_state != state) {
2545 tcp_set_ca_state(sk, state);
2546 tp->high_seq = tp->snd_nxt;
2550 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2552 struct tcp_sock *tp = tcp_sk(sk);
2554 tcp_verify_left_out(tp);
2556 if (!tcp_any_retrans_done(sk))
2557 tp->retrans_stamp = 0;
2559 if (flag & FLAG_ECE)
2560 tcp_enter_cwr(sk);
2562 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563 tcp_try_keep_open(sk);
2564 } else {
2565 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2569 static void tcp_mtup_probe_failed(struct sock *sk)
2571 struct inet_connection_sock *icsk = inet_csk(sk);
2573 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2574 icsk->icsk_mtup.probe_size = 0;
2575 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2578 static void tcp_mtup_probe_success(struct sock *sk)
2580 struct tcp_sock *tp = tcp_sk(sk);
2581 struct inet_connection_sock *icsk = inet_csk(sk);
2583 /* FIXME: breaks with very large cwnd */
2584 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2585 tp->snd_cwnd = tp->snd_cwnd *
2586 tcp_mss_to_mtu(sk, tp->mss_cache) /
2587 icsk->icsk_mtup.probe_size;
2588 tp->snd_cwnd_cnt = 0;
2589 tp->snd_cwnd_stamp = tcp_time_stamp;
2590 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2592 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2593 icsk->icsk_mtup.probe_size = 0;
2594 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599 * tcp_timer. This is used for path mtu discovery.
2600 * The socket is already locked here.
2602 void tcp_simple_retransmit(struct sock *sk)
2604 const struct inet_connection_sock *icsk = inet_csk(sk);
2605 struct tcp_sock *tp = tcp_sk(sk);
2606 struct sk_buff *skb;
2607 unsigned int mss = tcp_current_mss(sk);
2608 u32 prior_lost = tp->lost_out;
2610 tcp_for_write_queue(skb, sk) {
2611 if (skb == tcp_send_head(sk))
2612 break;
2613 if (tcp_skb_seglen(skb) > mss &&
2614 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2615 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2616 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2617 tp->retrans_out -= tcp_skb_pcount(skb);
2619 tcp_skb_mark_lost_uncond_verify(tp, skb);
2623 tcp_clear_retrans_hints_partial(tp);
2625 if (prior_lost == tp->lost_out)
2626 return;
2628 if (tcp_is_reno(tp))
2629 tcp_limit_reno_sacked(tp);
2631 tcp_verify_left_out(tp);
2633 /* Don't muck with the congestion window here.
2634 * Reason is that we do not increase amount of _data_
2635 * in network, but units changed and effective
2636 * cwnd/ssthresh really reduced now.
2638 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2639 tp->high_seq = tp->snd_nxt;
2640 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2641 tp->prior_ssthresh = 0;
2642 tp->undo_marker = 0;
2643 tcp_set_ca_state(sk, TCP_CA_Loss);
2645 tcp_xmit_retransmit_queue(sk);
2647 EXPORT_SYMBOL(tcp_simple_retransmit);
2649 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2651 struct tcp_sock *tp = tcp_sk(sk);
2652 int mib_idx;
2654 if (tcp_is_reno(tp))
2655 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2656 else
2657 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2659 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2661 tp->prior_ssthresh = 0;
2662 tcp_init_undo(tp);
2664 if (!tcp_in_cwnd_reduction(sk)) {
2665 if (!ece_ack)
2666 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2667 tcp_init_cwnd_reduction(sk);
2669 tcp_set_ca_state(sk, TCP_CA_Recovery);
2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2673 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2675 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2677 struct tcp_sock *tp = tcp_sk(sk);
2678 bool recovered = !before(tp->snd_una, tp->high_seq);
2680 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2681 tcp_try_undo_loss(sk, false))
2682 return;
2684 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2685 /* Step 3.b. A timeout is spurious if not all data are
2686 * lost, i.e., never-retransmitted data are (s)acked.
2688 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2689 tcp_try_undo_loss(sk, true))
2690 return;
2692 if (after(tp->snd_nxt, tp->high_seq)) {
2693 if (flag & FLAG_DATA_SACKED || is_dupack)
2694 tp->frto = 0; /* Step 3.a. loss was real */
2695 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2696 tp->high_seq = tp->snd_nxt;
2697 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2698 TCP_NAGLE_OFF);
2699 if (after(tp->snd_nxt, tp->high_seq))
2700 return; /* Step 2.b */
2701 tp->frto = 0;
2705 if (recovered) {
2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 tcp_try_undo_recovery(sk);
2708 return;
2710 if (tcp_is_reno(tp)) {
2711 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2712 * delivered. Lower inflight to clock out (re)tranmissions.
2714 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2715 tcp_add_reno_sack(sk);
2716 else if (flag & FLAG_SND_UNA_ADVANCED)
2717 tcp_reset_reno_sack(tp);
2719 tcp_xmit_retransmit_queue(sk);
2722 /* Undo during fast recovery after partial ACK. */
2723 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2724 const int prior_unsacked, int flag)
2726 struct tcp_sock *tp = tcp_sk(sk);
2728 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit.
2732 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2739 if (tp->retrans_out) {
2740 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2741 return true;
2744 if (!tcp_any_retrans_done(sk))
2745 tp->retrans_stamp = 0;
2747 DBGUNDO(sk, "partial recovery");
2748 tcp_undo_cwnd_reduction(sk, true);
2749 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2750 tcp_try_keep_open(sk);
2751 return true;
2753 return false;
2756 /* Process an event, which can update packets-in-flight not trivially.
2757 * Main goal of this function is to calculate new estimate for left_out,
2758 * taking into account both packets sitting in receiver's buffer and
2759 * packets lost by network.
2761 * Besides that it does CWND reduction, when packet loss is detected
2762 * and changes state of machine.
2764 * It does _not_ decide what to send, it is made in function
2765 * tcp_xmit_retransmit_queue().
2767 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2768 const int prior_unsacked,
2769 bool is_dupack, int flag)
2771 struct inet_connection_sock *icsk = inet_csk(sk);
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2774 (tcp_fackets_out(tp) > tp->reordering));
2775 int fast_rexmit = 0;
2777 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2778 tp->sacked_out = 0;
2779 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2780 tp->fackets_out = 0;
2782 /* Now state machine starts.
2783 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2784 if (flag & FLAG_ECE)
2785 tp->prior_ssthresh = 0;
2787 /* B. In all the states check for reneging SACKs. */
2788 if (tcp_check_sack_reneging(sk, flag))
2789 return;
2791 /* C. Check consistency of the current state. */
2792 tcp_verify_left_out(tp);
2794 /* D. Check state exit conditions. State can be terminated
2795 * when high_seq is ACKed. */
2796 if (icsk->icsk_ca_state == TCP_CA_Open) {
2797 WARN_ON(tp->retrans_out != 0);
2798 tp->retrans_stamp = 0;
2799 } else if (!before(tp->snd_una, tp->high_seq)) {
2800 switch (icsk->icsk_ca_state) {
2801 case TCP_CA_CWR:
2802 /* CWR is to be held something *above* high_seq
2803 * is ACKed for CWR bit to reach receiver. */
2804 if (tp->snd_una != tp->high_seq) {
2805 tcp_end_cwnd_reduction(sk);
2806 tcp_set_ca_state(sk, TCP_CA_Open);
2808 break;
2810 case TCP_CA_Recovery:
2811 if (tcp_is_reno(tp))
2812 tcp_reset_reno_sack(tp);
2813 if (tcp_try_undo_recovery(sk))
2814 return;
2815 tcp_end_cwnd_reduction(sk);
2816 break;
2820 /* Use RACK to detect loss */
2821 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2822 tcp_rack_mark_lost(sk))
2823 flag |= FLAG_LOST_RETRANS;
2825 /* E. Process state. */
2826 switch (icsk->icsk_ca_state) {
2827 case TCP_CA_Recovery:
2828 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2829 if (tcp_is_reno(tp) && is_dupack)
2830 tcp_add_reno_sack(sk);
2831 } else {
2832 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2833 return;
2834 /* Partial ACK arrived. Force fast retransmit. */
2835 do_lost = tcp_is_reno(tp) ||
2836 tcp_fackets_out(tp) > tp->reordering;
2838 if (tcp_try_undo_dsack(sk)) {
2839 tcp_try_keep_open(sk);
2840 return;
2842 break;
2843 case TCP_CA_Loss:
2844 tcp_process_loss(sk, flag, is_dupack);
2845 if (icsk->icsk_ca_state != TCP_CA_Open &&
2846 !(flag & FLAG_LOST_RETRANS))
2847 return;
2848 /* Change state if cwnd is undone or retransmits are lost */
2849 default:
2850 if (tcp_is_reno(tp)) {
2851 if (flag & FLAG_SND_UNA_ADVANCED)
2852 tcp_reset_reno_sack(tp);
2853 if (is_dupack)
2854 tcp_add_reno_sack(sk);
2857 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2858 tcp_try_undo_dsack(sk);
2860 if (!tcp_time_to_recover(sk, flag)) {
2861 tcp_try_to_open(sk, flag, prior_unsacked);
2862 return;
2865 /* MTU probe failure: don't reduce cwnd */
2866 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2867 icsk->icsk_mtup.probe_size &&
2868 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2869 tcp_mtup_probe_failed(sk);
2870 /* Restores the reduction we did in tcp_mtup_probe() */
2871 tp->snd_cwnd++;
2872 tcp_simple_retransmit(sk);
2873 return;
2876 /* Otherwise enter Recovery state */
2877 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2878 fast_rexmit = 1;
2881 if (do_lost)
2882 tcp_update_scoreboard(sk, fast_rexmit);
2883 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2884 tcp_xmit_retransmit_queue(sk);
2887 /* Kathleen Nichols' algorithm for tracking the minimum value of
2888 * a data stream over some fixed time interval. (E.g., the minimum
2889 * RTT over the past five minutes.) It uses constant space and constant
2890 * time per update yet almost always delivers the same minimum as an
2891 * implementation that has to keep all the data in the window.
2893 * The algorithm keeps track of the best, 2nd best & 3rd best min
2894 * values, maintaining an invariant that the measurement time of the
2895 * n'th best >= n-1'th best. It also makes sure that the three values
2896 * are widely separated in the time window since that bounds the worse
2897 * case error when that data is monotonically increasing over the window.
2899 * Upon getting a new min, we can forget everything earlier because it
2900 * has no value - the new min is <= everything else in the window by
2901 * definition and it's the most recent. So we restart fresh on every new min
2902 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2903 * best.
2905 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2907 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2908 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2909 struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
2910 u32 elapsed;
2912 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2913 if (unlikely(rttm.rtt <= m[0].rtt))
2914 m[0] = m[1] = m[2] = rttm;
2915 else if (rttm.rtt <= m[1].rtt)
2916 m[1] = m[2] = rttm;
2917 else if (rttm.rtt <= m[2].rtt)
2918 m[2] = rttm;
2920 elapsed = now - m[0].ts;
2921 if (unlikely(elapsed > wlen)) {
2922 /* Passed entire window without a new min so make 2nd choice
2923 * the new min & 3rd choice the new 2nd. So forth and so on.
2925 m[0] = m[1];
2926 m[1] = m[2];
2927 m[2] = rttm;
2928 if (now - m[0].ts > wlen) {
2929 m[0] = m[1];
2930 m[1] = rttm;
2931 if (now - m[0].ts > wlen)
2932 m[0] = rttm;
2934 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2935 /* Passed a quarter of the window without a new min so
2936 * take 2nd choice from the 2nd quarter of the window.
2938 m[2] = m[1] = rttm;
2939 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2940 /* Passed half the window without a new min so take the 3rd
2941 * choice from the last half of the window.
2943 m[2] = rttm;
2947 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2948 long seq_rtt_us, long sack_rtt_us,
2949 long ca_rtt_us)
2951 const struct tcp_sock *tp = tcp_sk(sk);
2953 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2954 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2955 * Karn's algorithm forbids taking RTT if some retransmitted data
2956 * is acked (RFC6298).
2958 if (seq_rtt_us < 0)
2959 seq_rtt_us = sack_rtt_us;
2961 /* RTTM Rule: A TSecr value received in a segment is used to
2962 * update the averaged RTT measurement only if the segment
2963 * acknowledges some new data, i.e., only if it advances the
2964 * left edge of the send window.
2965 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2967 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2968 flag & FLAG_ACKED)
2969 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2970 tp->rx_opt.rcv_tsecr);
2971 if (seq_rtt_us < 0)
2972 return false;
2974 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2975 * always taken together with ACK, SACK, or TS-opts. Any negative
2976 * values will be skipped with the seq_rtt_us < 0 check above.
2978 tcp_update_rtt_min(sk, ca_rtt_us);
2979 tcp_rtt_estimator(sk, seq_rtt_us);
2980 tcp_set_rto(sk);
2982 /* RFC6298: only reset backoff on valid RTT measurement. */
2983 inet_csk(sk)->icsk_backoff = 0;
2984 return true;
2987 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2988 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2990 long rtt_us = -1L;
2992 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2993 struct skb_mstamp now;
2995 skb_mstamp_get(&now);
2996 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2999 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3003 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3005 const struct inet_connection_sock *icsk = inet_csk(sk);
3007 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3008 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3011 /* Restart timer after forward progress on connection.
3012 * RFC2988 recommends to restart timer to now+rto.
3014 void tcp_rearm_rto(struct sock *sk)
3016 const struct inet_connection_sock *icsk = inet_csk(sk);
3017 struct tcp_sock *tp = tcp_sk(sk);
3019 /* If the retrans timer is currently being used by Fast Open
3020 * for SYN-ACK retrans purpose, stay put.
3022 if (tp->fastopen_rsk)
3023 return;
3025 if (!tp->packets_out) {
3026 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3027 } else {
3028 u32 rto = inet_csk(sk)->icsk_rto;
3029 /* Offset the time elapsed after installing regular RTO */
3030 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3031 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3032 struct sk_buff *skb = tcp_write_queue_head(sk);
3033 const u32 rto_time_stamp =
3034 tcp_skb_timestamp(skb) + rto;
3035 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3036 /* delta may not be positive if the socket is locked
3037 * when the retrans timer fires and is rescheduled.
3039 rto = max(delta, 1);
3041 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3042 TCP_RTO_MAX);
3046 /* This function is called when the delayed ER timer fires. TCP enters
3047 * fast recovery and performs fast-retransmit.
3049 void tcp_resume_early_retransmit(struct sock *sk)
3051 struct tcp_sock *tp = tcp_sk(sk);
3053 tcp_rearm_rto(sk);
3055 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3056 if (!tp->do_early_retrans)
3057 return;
3059 tcp_enter_recovery(sk, false);
3060 tcp_update_scoreboard(sk, 1);
3061 tcp_xmit_retransmit_queue(sk);
3064 /* If we get here, the whole TSO packet has not been acked. */
3065 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3067 struct tcp_sock *tp = tcp_sk(sk);
3068 u32 packets_acked;
3070 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3072 packets_acked = tcp_skb_pcount(skb);
3073 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3074 return 0;
3075 packets_acked -= tcp_skb_pcount(skb);
3077 if (packets_acked) {
3078 BUG_ON(tcp_skb_pcount(skb) == 0);
3079 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3082 return packets_acked;
3085 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3086 u32 prior_snd_una)
3088 const struct skb_shared_info *shinfo;
3090 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3091 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3092 return;
3094 shinfo = skb_shinfo(skb);
3095 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3096 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3097 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3100 /* Remove acknowledged frames from the retransmission queue. If our packet
3101 * is before the ack sequence we can discard it as it's confirmed to have
3102 * arrived at the other end.
3104 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3105 u32 prior_snd_una,
3106 struct tcp_sacktag_state *sack)
3108 const struct inet_connection_sock *icsk = inet_csk(sk);
3109 struct skb_mstamp first_ackt, last_ackt, now;
3110 struct tcp_sock *tp = tcp_sk(sk);
3111 u32 prior_sacked = tp->sacked_out;
3112 u32 reord = tp->packets_out;
3113 bool fully_acked = true;
3114 long sack_rtt_us = -1L;
3115 long seq_rtt_us = -1L;
3116 long ca_rtt_us = -1L;
3117 struct sk_buff *skb;
3118 u32 pkts_acked = 0;
3119 bool rtt_update;
3120 int flag = 0;
3122 first_ackt.v64 = 0;
3124 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3125 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3126 u8 sacked = scb->sacked;
3127 u32 acked_pcount;
3129 tcp_ack_tstamp(sk, skb, prior_snd_una);
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb->end_seq, tp->snd_una)) {
3133 if (tcp_skb_pcount(skb) == 1 ||
3134 !after(tp->snd_una, scb->seq))
3135 break;
3137 acked_pcount = tcp_tso_acked(sk, skb);
3138 if (!acked_pcount)
3139 break;
3141 fully_acked = false;
3142 } else {
3143 /* Speedup tcp_unlink_write_queue() and next loop */
3144 prefetchw(skb->next);
3145 acked_pcount = tcp_skb_pcount(skb);
3148 if (unlikely(sacked & TCPCB_RETRANS)) {
3149 if (sacked & TCPCB_SACKED_RETRANS)
3150 tp->retrans_out -= acked_pcount;
3151 flag |= FLAG_RETRANS_DATA_ACKED;
3152 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3153 last_ackt = skb->skb_mstamp;
3154 WARN_ON_ONCE(last_ackt.v64 == 0);
3155 if (!first_ackt.v64)
3156 first_ackt = last_ackt;
3158 reord = min(pkts_acked, reord);
3159 if (!after(scb->end_seq, tp->high_seq))
3160 flag |= FLAG_ORIG_SACK_ACKED;
3163 if (sacked & TCPCB_SACKED_ACKED)
3164 tp->sacked_out -= acked_pcount;
3165 else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3166 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3167 if (sacked & TCPCB_LOST)
3168 tp->lost_out -= acked_pcount;
3170 tp->packets_out -= acked_pcount;
3171 pkts_acked += acked_pcount;
3173 /* Initial outgoing SYN's get put onto the write_queue
3174 * just like anything else we transmit. It is not
3175 * true data, and if we misinform our callers that
3176 * this ACK acks real data, we will erroneously exit
3177 * connection startup slow start one packet too
3178 * quickly. This is severely frowned upon behavior.
3180 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3181 flag |= FLAG_DATA_ACKED;
3182 } else {
3183 flag |= FLAG_SYN_ACKED;
3184 tp->retrans_stamp = 0;
3187 if (!fully_acked)
3188 break;
3190 tcp_unlink_write_queue(skb, sk);
3191 sk_wmem_free_skb(sk, skb);
3192 if (unlikely(skb == tp->retransmit_skb_hint))
3193 tp->retransmit_skb_hint = NULL;
3194 if (unlikely(skb == tp->lost_skb_hint))
3195 tp->lost_skb_hint = NULL;
3198 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3199 tp->snd_up = tp->snd_una;
3201 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3202 flag |= FLAG_SACK_RENEGING;
3204 skb_mstamp_get(&now);
3205 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3206 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3207 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3209 if (sack->first_sackt.v64) {
3210 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3211 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3214 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3215 ca_rtt_us);
3217 if (flag & FLAG_ACKED) {
3218 tcp_rearm_rto(sk);
3219 if (unlikely(icsk->icsk_mtup.probe_size &&
3220 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3221 tcp_mtup_probe_success(sk);
3224 if (tcp_is_reno(tp)) {
3225 tcp_remove_reno_sacks(sk, pkts_acked);
3227 /* If any of the cumulatively ACKed segments was
3228 * retransmitted, non-SACK case cannot confirm that
3229 * progress was due to original transmission due to
3230 * lack of TCPCB_SACKED_ACKED bits even if some of
3231 * the packets may have been never retransmitted.
3233 if (flag & FLAG_RETRANS_DATA_ACKED)
3234 flag &= ~FLAG_ORIG_SACK_ACKED;
3235 } else {
3236 int delta;
3238 /* Non-retransmitted hole got filled? That's reordering */
3239 if (reord < prior_fackets && reord <= tp->fackets_out)
3240 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242 delta = tcp_is_fack(tp) ? pkts_acked :
3243 prior_sacked - tp->sacked_out;
3244 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3247 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3250 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3251 /* Do not re-arm RTO if the sack RTT is measured from data sent
3252 * after when the head was last (re)transmitted. Otherwise the
3253 * timeout may continue to extend in loss recovery.
3255 tcp_rearm_rto(sk);
3258 if (icsk->icsk_ca_ops->pkts_acked)
3259 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3261 #if FASTRETRANS_DEBUG > 0
3262 WARN_ON((int)tp->sacked_out < 0);
3263 WARN_ON((int)tp->lost_out < 0);
3264 WARN_ON((int)tp->retrans_out < 0);
3265 if (!tp->packets_out && tcp_is_sack(tp)) {
3266 icsk = inet_csk(sk);
3267 if (tp->lost_out) {
3268 pr_debug("Leak l=%u %d\n",
3269 tp->lost_out, icsk->icsk_ca_state);
3270 tp->lost_out = 0;
3272 if (tp->sacked_out) {
3273 pr_debug("Leak s=%u %d\n",
3274 tp->sacked_out, icsk->icsk_ca_state);
3275 tp->sacked_out = 0;
3277 if (tp->retrans_out) {
3278 pr_debug("Leak r=%u %d\n",
3279 tp->retrans_out, icsk->icsk_ca_state);
3280 tp->retrans_out = 0;
3283 #endif
3284 return flag;
3287 static void tcp_ack_probe(struct sock *sk)
3289 const struct tcp_sock *tp = tcp_sk(sk);
3290 struct inet_connection_sock *icsk = inet_csk(sk);
3292 /* Was it a usable window open? */
3294 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3295 icsk->icsk_backoff = 0;
3296 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3297 /* Socket must be waked up by subsequent tcp_data_snd_check().
3298 * This function is not for random using!
3300 } else {
3301 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3303 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3304 when, TCP_RTO_MAX);
3308 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3310 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3311 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3317 if (tcp_in_cwnd_reduction(sk))
3318 return false;
3320 /* If reordering is high then always grow cwnd whenever data is
3321 * delivered regardless of its ordering. Otherwise stay conservative
3322 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323 * new SACK or ECE mark may first advance cwnd here and later reduce
3324 * cwnd in tcp_fastretrans_alert() based on more states.
3326 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3327 return flag & FLAG_FORWARD_PROGRESS;
3329 return flag & FLAG_DATA_ACKED;
3332 /* Check that window update is acceptable.
3333 * The function assumes that snd_una<=ack<=snd_next.
3335 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3336 const u32 ack, const u32 ack_seq,
3337 const u32 nwin)
3339 return after(ack, tp->snd_una) ||
3340 after(ack_seq, tp->snd_wl1) ||
3341 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3344 /* If we update tp->snd_una, also update tp->bytes_acked */
3345 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3347 u32 delta = ack - tp->snd_una;
3349 u64_stats_update_begin(&tp->syncp);
3350 tp->bytes_acked += delta;
3351 u64_stats_update_end(&tp->syncp);
3352 tp->snd_una = ack;
3355 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3356 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3358 u32 delta = seq - tp->rcv_nxt;
3360 u64_stats_update_begin(&tp->syncp);
3361 tp->bytes_received += delta;
3362 u64_stats_update_end(&tp->syncp);
3363 tp->rcv_nxt = seq;
3366 /* Update our send window.
3368 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3369 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3371 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3372 u32 ack_seq)
3374 struct tcp_sock *tp = tcp_sk(sk);
3375 int flag = 0;
3376 u32 nwin = ntohs(tcp_hdr(skb)->window);
3378 if (likely(!tcp_hdr(skb)->syn))
3379 nwin <<= tp->rx_opt.snd_wscale;
3381 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3382 flag |= FLAG_WIN_UPDATE;
3383 tcp_update_wl(tp, ack_seq);
3385 if (tp->snd_wnd != nwin) {
3386 tp->snd_wnd = nwin;
3388 /* Note, it is the only place, where
3389 * fast path is recovered for sending TCP.
3391 tp->pred_flags = 0;
3392 tcp_fast_path_check(sk);
3394 if (tcp_send_head(sk))
3395 tcp_slow_start_after_idle_check(sk);
3397 if (nwin > tp->max_window) {
3398 tp->max_window = nwin;
3399 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404 tcp_snd_una_update(tp, ack);
3406 return flag;
3409 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3410 u32 *last_oow_ack_time)
3412 if (*last_oow_ack_time) {
3413 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3415 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3416 NET_INC_STATS_BH(net, mib_idx);
3417 return true; /* rate-limited: don't send yet! */
3421 *last_oow_ack_time = tcp_time_stamp;
3423 return false; /* not rate-limited: go ahead, send dupack now! */
3426 /* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3433 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434 int mib_idx, u32 *last_oow_ack_time)
3436 /* Data packets without SYNs are not likely part of an ACK loop. */
3437 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438 !tcp_hdr(skb)->syn)
3439 return false;
3441 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3444 /* RFC 5961 7 [ACK Throttling] */
3445 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3447 /* unprotected vars, we dont care of overwrites */
3448 static u32 challenge_timestamp;
3449 static unsigned int challenge_count;
3450 struct tcp_sock *tp = tcp_sk(sk);
3451 u32 count, now;
3453 /* First check our per-socket dupack rate limit. */
3454 if (__tcp_oow_rate_limited(sock_net(sk),
3455 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3456 &tp->last_oow_ack_time))
3457 return;
3459 /* Then check host-wide RFC 5961 rate limit. */
3460 now = jiffies / HZ;
3461 if (now != challenge_timestamp) {
3462 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3464 challenge_timestamp = now;
3465 WRITE_ONCE(challenge_count, half +
3466 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3468 count = READ_ONCE(challenge_count);
3469 if (count > 0) {
3470 WRITE_ONCE(challenge_count, count - 1);
3471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3472 tcp_send_ack(sk);
3476 static void tcp_store_ts_recent(struct tcp_sock *tp)
3478 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3479 tp->rx_opt.ts_recent_stamp = get_seconds();
3482 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3484 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3485 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3486 * extra check below makes sure this can only happen
3487 * for pure ACK frames. -DaveM
3489 * Not only, also it occurs for expired timestamps.
3492 if (tcp_paws_check(&tp->rx_opt, 0))
3493 tcp_store_ts_recent(tp);
3497 /* This routine deals with acks during a TLP episode.
3498 * We mark the end of a TLP episode on receiving TLP dupack or when
3499 * ack is after tlp_high_seq.
3500 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3502 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3504 struct tcp_sock *tp = tcp_sk(sk);
3506 if (before(ack, tp->tlp_high_seq))
3507 return;
3509 if (flag & FLAG_DSACKING_ACK) {
3510 /* This DSACK means original and TLP probe arrived; no loss */
3511 tp->tlp_high_seq = 0;
3512 } else if (after(ack, tp->tlp_high_seq)) {
3513 /* ACK advances: there was a loss, so reduce cwnd. Reset
3514 * tlp_high_seq in tcp_init_cwnd_reduction()
3516 tcp_init_cwnd_reduction(sk);
3517 tcp_set_ca_state(sk, TCP_CA_CWR);
3518 tcp_end_cwnd_reduction(sk);
3519 tcp_try_keep_open(sk);
3520 NET_INC_STATS_BH(sock_net(sk),
3521 LINUX_MIB_TCPLOSSPROBERECOVERY);
3522 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3523 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3524 /* Pure dupack: original and TLP probe arrived; no loss */
3525 tp->tlp_high_seq = 0;
3529 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3531 const struct inet_connection_sock *icsk = inet_csk(sk);
3533 if (icsk->icsk_ca_ops->in_ack_event)
3534 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3540 struct inet_connection_sock *icsk = inet_csk(sk);
3541 struct tcp_sock *tp = tcp_sk(sk);
3542 struct tcp_sacktag_state sack_state;
3543 u32 prior_snd_una = tp->snd_una;
3544 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3545 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3546 bool is_dupack = false;
3547 u32 prior_fackets;
3548 int prior_packets = tp->packets_out;
3549 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3550 int acked = 0; /* Number of packets newly acked */
3552 sack_state.first_sackt.v64 = 0;
3554 /* We very likely will need to access write queue head. */
3555 prefetchw(sk->sk_write_queue.next);
3557 /* If the ack is older than previous acks
3558 * then we can probably ignore it.
3560 if (before(ack, prior_snd_una)) {
3561 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3562 if (before(ack, prior_snd_una - tp->max_window)) {
3563 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3564 tcp_send_challenge_ack(sk, skb);
3565 return -1;
3567 goto old_ack;
3570 /* If the ack includes data we haven't sent yet, discard
3571 * this segment (RFC793 Section 3.9).
3573 if (after(ack, tp->snd_nxt))
3574 goto invalid_ack;
3576 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3577 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3578 tcp_rearm_rto(sk);
3580 if (after(ack, prior_snd_una)) {
3581 flag |= FLAG_SND_UNA_ADVANCED;
3582 icsk->icsk_retransmits = 0;
3585 prior_fackets = tp->fackets_out;
3587 /* ts_recent update must be made after we are sure that the packet
3588 * is in window.
3590 if (flag & FLAG_UPDATE_TS_RECENT)
3591 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3593 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3594 /* Window is constant, pure forward advance.
3595 * No more checks are required.
3596 * Note, we use the fact that SND.UNA>=SND.WL2.
3598 tcp_update_wl(tp, ack_seq);
3599 tcp_snd_una_update(tp, ack);
3600 flag |= FLAG_WIN_UPDATE;
3602 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3605 } else {
3606 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3608 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3609 flag |= FLAG_DATA;
3610 else
3611 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3613 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3615 if (TCP_SKB_CB(skb)->sacked)
3616 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3617 &sack_state);
3619 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3620 flag |= FLAG_ECE;
3621 ack_ev_flags |= CA_ACK_ECE;
3624 if (flag & FLAG_WIN_UPDATE)
3625 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3627 tcp_in_ack_event(sk, ack_ev_flags);
3630 /* We passed data and got it acked, remove any soft error
3631 * log. Something worked...
3633 sk->sk_err_soft = 0;
3634 icsk->icsk_probes_out = 0;
3635 tp->rcv_tstamp = tcp_time_stamp;
3636 if (!prior_packets)
3637 goto no_queue;
3639 /* See if we can take anything off of the retransmit queue. */
3640 acked = tp->packets_out;
3641 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3642 &sack_state);
3643 acked -= tp->packets_out;
3645 if (tcp_ack_is_dubious(sk, flag)) {
3646 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3647 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3648 is_dupack, flag);
3650 if (tp->tlp_high_seq)
3651 tcp_process_tlp_ack(sk, ack, flag);
3653 /* Advance cwnd if state allows */
3654 if (tcp_may_raise_cwnd(sk, flag))
3655 tcp_cong_avoid(sk, ack, acked);
3657 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3658 struct dst_entry *dst = __sk_dst_get(sk);
3659 if (dst)
3660 dst_confirm(dst);
3663 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3664 tcp_schedule_loss_probe(sk);
3665 tcp_update_pacing_rate(sk);
3666 return 1;
3668 no_queue:
3669 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3670 if (flag & FLAG_DSACKING_ACK)
3671 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3672 is_dupack, flag);
3673 /* If this ack opens up a zero window, clear backoff. It was
3674 * being used to time the probes, and is probably far higher than
3675 * it needs to be for normal retransmission.
3677 if (tcp_send_head(sk))
3678 tcp_ack_probe(sk);
3680 if (tp->tlp_high_seq)
3681 tcp_process_tlp_ack(sk, ack, flag);
3682 return 1;
3684 invalid_ack:
3685 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3686 return -1;
3688 old_ack:
3689 /* If data was SACKed, tag it and see if we should send more data.
3690 * If data was DSACKed, see if we can undo a cwnd reduction.
3692 if (TCP_SKB_CB(skb)->sacked) {
3693 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3694 &sack_state);
3695 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3696 is_dupack, flag);
3699 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3700 return 0;
3703 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3704 bool syn, struct tcp_fastopen_cookie *foc,
3705 bool exp_opt)
3707 /* Valid only in SYN or SYN-ACK with an even length. */
3708 if (!foc || !syn || len < 0 || (len & 1))
3709 return;
3711 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3712 len <= TCP_FASTOPEN_COOKIE_MAX)
3713 memcpy(foc->val, cookie, len);
3714 else if (len != 0)
3715 len = -1;
3716 foc->len = len;
3717 foc->exp = exp_opt;
3720 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3721 * But, this can also be called on packets in the established flow when
3722 * the fast version below fails.
3724 void tcp_parse_options(const struct sk_buff *skb,
3725 struct tcp_options_received *opt_rx, int estab,
3726 struct tcp_fastopen_cookie *foc)
3728 const unsigned char *ptr;
3729 const struct tcphdr *th = tcp_hdr(skb);
3730 int length = (th->doff * 4) - sizeof(struct tcphdr);
3732 ptr = (const unsigned char *)(th + 1);
3733 opt_rx->saw_tstamp = 0;
3735 while (length > 0) {
3736 int opcode = *ptr++;
3737 int opsize;
3739 switch (opcode) {
3740 case TCPOPT_EOL:
3741 return;
3742 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3743 length--;
3744 continue;
3745 default:
3746 opsize = *ptr++;
3747 if (opsize < 2) /* "silly options" */
3748 return;
3749 if (opsize > length)
3750 return; /* don't parse partial options */
3751 switch (opcode) {
3752 case TCPOPT_MSS:
3753 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3754 u16 in_mss = get_unaligned_be16(ptr);
3755 if (in_mss) {
3756 if (opt_rx->user_mss &&
3757 opt_rx->user_mss < in_mss)
3758 in_mss = opt_rx->user_mss;
3759 opt_rx->mss_clamp = in_mss;
3762 break;
3763 case TCPOPT_WINDOW:
3764 if (opsize == TCPOLEN_WINDOW && th->syn &&
3765 !estab && sysctl_tcp_window_scaling) {
3766 __u8 snd_wscale = *(__u8 *)ptr;
3767 opt_rx->wscale_ok = 1;
3768 if (snd_wscale > 14) {
3769 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3770 __func__,
3771 snd_wscale);
3772 snd_wscale = 14;
3774 opt_rx->snd_wscale = snd_wscale;
3776 break;
3777 case TCPOPT_TIMESTAMP:
3778 if ((opsize == TCPOLEN_TIMESTAMP) &&
3779 ((estab && opt_rx->tstamp_ok) ||
3780 (!estab && sysctl_tcp_timestamps))) {
3781 opt_rx->saw_tstamp = 1;
3782 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3783 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3785 break;
3786 case TCPOPT_SACK_PERM:
3787 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3788 !estab && sysctl_tcp_sack) {
3789 opt_rx->sack_ok = TCP_SACK_SEEN;
3790 tcp_sack_reset(opt_rx);
3792 break;
3794 case TCPOPT_SACK:
3795 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3796 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3797 opt_rx->sack_ok) {
3798 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3800 break;
3801 #ifdef CONFIG_TCP_MD5SIG
3802 case TCPOPT_MD5SIG:
3804 * The MD5 Hash has already been
3805 * checked (see tcp_v{4,6}_do_rcv()).
3807 break;
3808 #endif
3809 case TCPOPT_FASTOPEN:
3810 tcp_parse_fastopen_option(
3811 opsize - TCPOLEN_FASTOPEN_BASE,
3812 ptr, th->syn, foc, false);
3813 break;
3815 case TCPOPT_EXP:
3816 /* Fast Open option shares code 254 using a
3817 * 16 bits magic number.
3819 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3820 get_unaligned_be16(ptr) ==
3821 TCPOPT_FASTOPEN_MAGIC)
3822 tcp_parse_fastopen_option(opsize -
3823 TCPOLEN_EXP_FASTOPEN_BASE,
3824 ptr + 2, th->syn, foc, true);
3825 break;
3828 ptr += opsize-2;
3829 length -= opsize;
3833 EXPORT_SYMBOL(tcp_parse_options);
3835 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3837 const __be32 *ptr = (const __be32 *)(th + 1);
3839 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3840 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3841 tp->rx_opt.saw_tstamp = 1;
3842 ++ptr;
3843 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3844 ++ptr;
3845 if (*ptr)
3846 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3847 else
3848 tp->rx_opt.rcv_tsecr = 0;
3849 return true;
3851 return false;
3854 /* Fast parse options. This hopes to only see timestamps.
3855 * If it is wrong it falls back on tcp_parse_options().
3857 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3858 const struct tcphdr *th, struct tcp_sock *tp)
3860 /* In the spirit of fast parsing, compare doff directly to constant
3861 * values. Because equality is used, short doff can be ignored here.
3863 if (th->doff == (sizeof(*th) / 4)) {
3864 tp->rx_opt.saw_tstamp = 0;
3865 return false;
3866 } else if (tp->rx_opt.tstamp_ok &&
3867 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3868 if (tcp_parse_aligned_timestamp(tp, th))
3869 return true;
3872 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3873 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3874 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3876 return true;
3879 #ifdef CONFIG_TCP_MD5SIG
3881 * Parse MD5 Signature option
3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3885 int length = (th->doff << 2) - sizeof(*th);
3886 const u8 *ptr = (const u8 *)(th + 1);
3888 /* If not enough data remaining, we can short cut */
3889 while (length >= TCPOLEN_MD5SIG) {
3890 int opcode = *ptr++;
3891 int opsize;
3893 switch (opcode) {
3894 case TCPOPT_EOL:
3895 return NULL;
3896 case TCPOPT_NOP:
3897 length--;
3898 continue;
3899 default:
3900 opsize = *ptr++;
3901 if (opsize < 2 || opsize > length)
3902 return NULL;
3903 if (opcode == TCPOPT_MD5SIG)
3904 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3906 ptr += opsize - 2;
3907 length -= opsize;
3909 return NULL;
3911 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3912 #endif
3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3917 * it can pass through stack. So, the following predicate verifies that
3918 * this segment is not used for anything but congestion avoidance or
3919 * fast retransmit. Moreover, we even are able to eliminate most of such
3920 * second order effects, if we apply some small "replay" window (~RTO)
3921 * to timestamp space.
3923 * All these measures still do not guarantee that we reject wrapped ACKs
3924 * on networks with high bandwidth, when sequence space is recycled fastly,
3925 * but it guarantees that such events will be very rare and do not affect
3926 * connection seriously. This doesn't look nice, but alas, PAWS is really
3927 * buggy extension.
3929 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3930 * states that events when retransmit arrives after original data are rare.
3931 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3932 * the biggest problem on large power networks even with minor reordering.
3933 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3934 * up to bandwidth of 18Gigabit/sec. 8) ]
3937 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3939 const struct tcp_sock *tp = tcp_sk(sk);
3940 const struct tcphdr *th = tcp_hdr(skb);
3941 u32 seq = TCP_SKB_CB(skb)->seq;
3942 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3944 return (/* 1. Pure ACK with correct sequence number. */
3945 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3947 /* 2. ... and duplicate ACK. */
3948 ack == tp->snd_una &&
3950 /* 3. ... and does not update window. */
3951 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3953 /* 4. ... and sits in replay window. */
3954 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3957 static inline bool tcp_paws_discard(const struct sock *sk,
3958 const struct sk_buff *skb)
3960 const struct tcp_sock *tp = tcp_sk(sk);
3962 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3963 !tcp_disordered_ack(sk, skb);
3966 /* Check segment sequence number for validity.
3968 * Segment controls are considered valid, if the segment
3969 * fits to the window after truncation to the window. Acceptability
3970 * of data (and SYN, FIN, of course) is checked separately.
3971 * See tcp_data_queue(), for example.
3973 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3974 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3975 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3976 * (borrowed from freebsd)
3979 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3981 return !before(end_seq, tp->rcv_wup) &&
3982 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3985 /* When we get a reset we do this. */
3986 void tcp_reset(struct sock *sk)
3988 /* We want the right error as BSD sees it (and indeed as we do). */
3989 switch (sk->sk_state) {
3990 case TCP_SYN_SENT:
3991 sk->sk_err = ECONNREFUSED;
3992 break;
3993 case TCP_CLOSE_WAIT:
3994 sk->sk_err = EPIPE;
3995 break;
3996 case TCP_CLOSE:
3997 return;
3998 default:
3999 sk->sk_err = ECONNRESET;
4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4002 smp_wmb();
4004 if (!sock_flag(sk, SOCK_DEAD))
4005 sk->sk_error_report(sk);
4007 tcp_done(sk);
4011 * Process the FIN bit. This now behaves as it is supposed to work
4012 * and the FIN takes effect when it is validly part of sequence
4013 * space. Not before when we get holes.
4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4017 * TIME-WAIT)
4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4020 * close and we go into CLOSING (and later onto TIME-WAIT)
4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024 static void tcp_fin(struct sock *sk)
4026 struct tcp_sock *tp = tcp_sk(sk);
4028 inet_csk_schedule_ack(sk);
4030 sk->sk_shutdown |= RCV_SHUTDOWN;
4031 sock_set_flag(sk, SOCK_DONE);
4033 switch (sk->sk_state) {
4034 case TCP_SYN_RECV:
4035 case TCP_ESTABLISHED:
4036 /* Move to CLOSE_WAIT */
4037 tcp_set_state(sk, TCP_CLOSE_WAIT);
4038 inet_csk(sk)->icsk_ack.pingpong = 1;
4039 break;
4041 case TCP_CLOSE_WAIT:
4042 case TCP_CLOSING:
4043 /* Received a retransmission of the FIN, do
4044 * nothing.
4046 break;
4047 case TCP_LAST_ACK:
4048 /* RFC793: Remain in the LAST-ACK state. */
4049 break;
4051 case TCP_FIN_WAIT1:
4052 /* This case occurs when a simultaneous close
4053 * happens, we must ack the received FIN and
4054 * enter the CLOSING state.
4056 tcp_send_ack(sk);
4057 tcp_set_state(sk, TCP_CLOSING);
4058 break;
4059 case TCP_FIN_WAIT2:
4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4061 tcp_send_ack(sk);
4062 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4063 break;
4064 default:
4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 * cases we should never reach this piece of code.
4068 pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 __func__, sk->sk_state);
4070 break;
4073 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 * Probably, we should reset in this case. For now drop them.
4076 __skb_queue_purge(&tp->out_of_order_queue);
4077 if (tcp_is_sack(tp))
4078 tcp_sack_reset(&tp->rx_opt);
4079 sk_mem_reclaim(sk);
4081 if (!sock_flag(sk, SOCK_DEAD)) {
4082 sk->sk_state_change(sk);
4084 /* Do not send POLL_HUP for half duplex close. */
4085 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4086 sk->sk_state == TCP_CLOSE)
4087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4088 else
4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4094 u32 end_seq)
4096 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4097 if (before(seq, sp->start_seq))
4098 sp->start_seq = seq;
4099 if (after(end_seq, sp->end_seq))
4100 sp->end_seq = end_seq;
4101 return true;
4103 return false;
4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4108 struct tcp_sock *tp = tcp_sk(sk);
4110 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4111 int mib_idx;
4113 if (before(seq, tp->rcv_nxt))
4114 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4115 else
4116 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4118 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4120 tp->rx_opt.dsack = 1;
4121 tp->duplicate_sack[0].start_seq = seq;
4122 tp->duplicate_sack[0].end_seq = end_seq;
4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4128 struct tcp_sock *tp = tcp_sk(sk);
4130 if (!tp->rx_opt.dsack)
4131 tcp_dsack_set(sk, seq, end_seq);
4132 else
4133 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4138 struct tcp_sock *tp = tcp_sk(sk);
4140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4141 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4142 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4143 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4146 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4148 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4149 end_seq = tp->rcv_nxt;
4150 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4154 tcp_send_ack(sk);
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158 * in-order packets close up the sequence space.
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4162 int this_sack;
4163 struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 struct tcp_sack_block *swalk = sp + 1;
4166 /* See if the recent change to the first SACK eats into
4167 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4170 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4171 int i;
4173 /* Zap SWALK, by moving every further SACK up by one slot.
4174 * Decrease num_sacks.
4176 tp->rx_opt.num_sacks--;
4177 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4178 sp[i] = sp[i + 1];
4179 continue;
4181 this_sack++, swalk++;
4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4187 struct tcp_sock *tp = tcp_sk(sk);
4188 struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 int cur_sacks = tp->rx_opt.num_sacks;
4190 int this_sack;
4192 if (!cur_sacks)
4193 goto new_sack;
4195 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4196 if (tcp_sack_extend(sp, seq, end_seq)) {
4197 /* Rotate this_sack to the first one. */
4198 for (; this_sack > 0; this_sack--, sp--)
4199 swap(*sp, *(sp - 1));
4200 if (cur_sacks > 1)
4201 tcp_sack_maybe_coalesce(tp);
4202 return;
4206 /* Could not find an adjacent existing SACK, build a new one,
4207 * put it at the front, and shift everyone else down. We
4208 * always know there is at least one SACK present already here.
4210 * If the sack array is full, forget about the last one.
4212 if (this_sack >= TCP_NUM_SACKS) {
4213 this_sack--;
4214 tp->rx_opt.num_sacks--;
4215 sp--;
4217 for (; this_sack > 0; this_sack--, sp--)
4218 *sp = *(sp - 1);
4220 new_sack:
4221 /* Build the new head SACK, and we're done. */
4222 sp->start_seq = seq;
4223 sp->end_seq = end_seq;
4224 tp->rx_opt.num_sacks++;
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4229 static void tcp_sack_remove(struct tcp_sock *tp)
4231 struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 int num_sacks = tp->rx_opt.num_sacks;
4233 int this_sack;
4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 if (skb_queue_empty(&tp->out_of_order_queue)) {
4237 tp->rx_opt.num_sacks = 0;
4238 return;
4241 for (this_sack = 0; this_sack < num_sacks;) {
4242 /* Check if the start of the sack is covered by RCV.NXT. */
4243 if (!before(tp->rcv_nxt, sp->start_seq)) {
4244 int i;
4246 /* RCV.NXT must cover all the block! */
4247 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4249 /* Zap this SACK, by moving forward any other SACKS. */
4250 for (i = this_sack+1; i < num_sacks; i++)
4251 tp->selective_acks[i-1] = tp->selective_acks[i];
4252 num_sacks--;
4253 continue;
4255 this_sack++;
4256 sp++;
4258 tp->rx_opt.num_sacks = num_sacks;
4262 * tcp_try_coalesce - try to merge skb to prior one
4263 * @sk: socket
4264 * @to: prior buffer
4265 * @from: buffer to add in queue
4266 * @fragstolen: pointer to boolean
4268 * Before queueing skb @from after @to, try to merge them
4269 * to reduce overall memory use and queue lengths, if cost is small.
4270 * Packets in ofo or receive queues can stay a long time.
4271 * Better try to coalesce them right now to avoid future collapses.
4272 * Returns true if caller should free @from instead of queueing it
4274 static bool tcp_try_coalesce(struct sock *sk,
4275 struct sk_buff *to,
4276 struct sk_buff *from,
4277 bool *fragstolen)
4279 int delta;
4281 *fragstolen = false;
4283 /* Its possible this segment overlaps with prior segment in queue */
4284 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4285 return false;
4287 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4288 return false;
4290 atomic_add(delta, &sk->sk_rmem_alloc);
4291 sk_mem_charge(sk, delta);
4292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4293 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4294 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4295 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4296 return true;
4299 /* This one checks to see if we can put data from the
4300 * out_of_order queue into the receive_queue.
4302 static void tcp_ofo_queue(struct sock *sk)
4304 struct tcp_sock *tp = tcp_sk(sk);
4305 __u32 dsack_high = tp->rcv_nxt;
4306 struct sk_buff *skb, *tail;
4307 bool fragstolen, eaten;
4309 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4310 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4311 break;
4313 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4314 __u32 dsack = dsack_high;
4315 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4316 dsack_high = TCP_SKB_CB(skb)->end_seq;
4317 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4320 __skb_unlink(skb, &tp->out_of_order_queue);
4321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322 SOCK_DEBUG(sk, "ofo packet was already received\n");
4323 __kfree_skb(skb);
4324 continue;
4326 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4328 TCP_SKB_CB(skb)->end_seq);
4330 tail = skb_peek_tail(&sk->sk_receive_queue);
4331 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4332 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4333 if (!eaten)
4334 __skb_queue_tail(&sk->sk_receive_queue, skb);
4335 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4336 tcp_fin(sk);
4337 if (eaten)
4338 kfree_skb_partial(skb, fragstolen);
4342 static bool tcp_prune_ofo_queue(struct sock *sk);
4343 static int tcp_prune_queue(struct sock *sk);
4345 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4346 unsigned int size)
4348 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4349 !sk_rmem_schedule(sk, skb, size)) {
4351 if (tcp_prune_queue(sk) < 0)
4352 return -1;
4354 if (!sk_rmem_schedule(sk, skb, size)) {
4355 if (!tcp_prune_ofo_queue(sk))
4356 return -1;
4358 if (!sk_rmem_schedule(sk, skb, size))
4359 return -1;
4362 return 0;
4365 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4367 struct tcp_sock *tp = tcp_sk(sk);
4368 struct sk_buff *skb1;
4369 u32 seq, end_seq;
4371 tcp_ecn_check_ce(sk, skb);
4373 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4374 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4375 __kfree_skb(skb);
4376 return;
4379 /* Disable header prediction. */
4380 tp->pred_flags = 0;
4381 inet_csk_schedule_ack(sk);
4383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4384 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4385 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4387 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4388 if (!skb1) {
4389 /* Initial out of order segment, build 1 SACK. */
4390 if (tcp_is_sack(tp)) {
4391 tp->rx_opt.num_sacks = 1;
4392 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4393 tp->selective_acks[0].end_seq =
4394 TCP_SKB_CB(skb)->end_seq;
4396 __skb_queue_head(&tp->out_of_order_queue, skb);
4397 goto end;
4400 seq = TCP_SKB_CB(skb)->seq;
4401 end_seq = TCP_SKB_CB(skb)->end_seq;
4403 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4404 bool fragstolen;
4406 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4407 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4408 } else {
4409 tcp_grow_window(sk, skb);
4410 kfree_skb_partial(skb, fragstolen);
4411 skb = NULL;
4414 if (!tp->rx_opt.num_sacks ||
4415 tp->selective_acks[0].end_seq != seq)
4416 goto add_sack;
4418 /* Common case: data arrive in order after hole. */
4419 tp->selective_acks[0].end_seq = end_seq;
4420 goto end;
4423 /* Find place to insert this segment. */
4424 while (1) {
4425 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4426 break;
4427 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4428 skb1 = NULL;
4429 break;
4431 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4434 /* Do skb overlap to previous one? */
4435 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4436 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4437 /* All the bits are present. Drop. */
4438 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4439 __kfree_skb(skb);
4440 skb = NULL;
4441 tcp_dsack_set(sk, seq, end_seq);
4442 goto add_sack;
4444 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4445 /* Partial overlap. */
4446 tcp_dsack_set(sk, seq,
4447 TCP_SKB_CB(skb1)->end_seq);
4448 } else {
4449 if (skb_queue_is_first(&tp->out_of_order_queue,
4450 skb1))
4451 skb1 = NULL;
4452 else
4453 skb1 = skb_queue_prev(
4454 &tp->out_of_order_queue,
4455 skb1);
4458 if (!skb1)
4459 __skb_queue_head(&tp->out_of_order_queue, skb);
4460 else
4461 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4463 /* And clean segments covered by new one as whole. */
4464 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4465 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4467 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4468 break;
4469 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4470 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4471 end_seq);
4472 break;
4474 __skb_unlink(skb1, &tp->out_of_order_queue);
4475 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4476 TCP_SKB_CB(skb1)->end_seq);
4477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4478 __kfree_skb(skb1);
4481 add_sack:
4482 if (tcp_is_sack(tp))
4483 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4484 end:
4485 if (skb) {
4486 tcp_grow_window(sk, skb);
4487 skb_set_owner_r(skb, sk);
4491 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4492 bool *fragstolen)
4494 int eaten;
4495 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4497 __skb_pull(skb, hdrlen);
4498 eaten = (tail &&
4499 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4500 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4501 if (!eaten) {
4502 __skb_queue_tail(&sk->sk_receive_queue, skb);
4503 skb_set_owner_r(skb, sk);
4505 return eaten;
4508 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4510 struct sk_buff *skb;
4511 int err = -ENOMEM;
4512 int data_len = 0;
4513 bool fragstolen;
4515 if (size == 0)
4516 return 0;
4518 if (size > PAGE_SIZE) {
4519 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4521 data_len = npages << PAGE_SHIFT;
4522 size = data_len + (size & ~PAGE_MASK);
4524 skb = alloc_skb_with_frags(size - data_len, data_len,
4525 PAGE_ALLOC_COSTLY_ORDER,
4526 &err, sk->sk_allocation);
4527 if (!skb)
4528 goto err;
4530 skb_put(skb, size - data_len);
4531 skb->data_len = data_len;
4532 skb->len = size;
4534 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4535 goto err_free;
4537 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4538 if (err)
4539 goto err_free;
4541 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4542 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4543 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4545 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4546 WARN_ON_ONCE(fragstolen); /* should not happen */
4547 __kfree_skb(skb);
4549 return size;
4551 err_free:
4552 kfree_skb(skb);
4553 err:
4554 return err;
4558 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4560 struct tcp_sock *tp = tcp_sk(sk);
4561 int eaten = -1;
4562 bool fragstolen = false;
4564 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4565 goto drop;
4567 skb_dst_drop(skb);
4568 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4570 tcp_ecn_accept_cwr(tp, skb);
4572 tp->rx_opt.dsack = 0;
4574 /* Queue data for delivery to the user.
4575 * Packets in sequence go to the receive queue.
4576 * Out of sequence packets to the out_of_order_queue.
4578 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4579 if (tcp_receive_window(tp) == 0)
4580 goto out_of_window;
4582 /* Ok. In sequence. In window. */
4583 if (tp->ucopy.task == current &&
4584 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4585 sock_owned_by_user(sk) && !tp->urg_data) {
4586 int chunk = min_t(unsigned int, skb->len,
4587 tp->ucopy.len);
4589 __set_current_state(TASK_RUNNING);
4591 local_bh_enable();
4592 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4593 tp->ucopy.len -= chunk;
4594 tp->copied_seq += chunk;
4595 eaten = (chunk == skb->len);
4596 tcp_rcv_space_adjust(sk);
4598 local_bh_disable();
4601 if (eaten <= 0) {
4602 queue_and_out:
4603 if (eaten < 0) {
4604 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4605 sk_forced_mem_schedule(sk, skb->truesize);
4606 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4607 goto drop;
4609 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4611 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4612 if (skb->len)
4613 tcp_event_data_recv(sk, skb);
4614 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4615 tcp_fin(sk);
4617 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4618 tcp_ofo_queue(sk);
4620 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4621 * gap in queue is filled.
4623 if (skb_queue_empty(&tp->out_of_order_queue))
4624 inet_csk(sk)->icsk_ack.pingpong = 0;
4627 if (tp->rx_opt.num_sacks)
4628 tcp_sack_remove(tp);
4630 tcp_fast_path_check(sk);
4632 if (eaten > 0)
4633 kfree_skb_partial(skb, fragstolen);
4634 if (!sock_flag(sk, SOCK_DEAD))
4635 sk->sk_data_ready(sk);
4636 return;
4639 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4640 /* A retransmit, 2nd most common case. Force an immediate ack. */
4641 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4642 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4644 out_of_window:
4645 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4646 inet_csk_schedule_ack(sk);
4647 drop:
4648 __kfree_skb(skb);
4649 return;
4652 /* Out of window. F.e. zero window probe. */
4653 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4654 goto out_of_window;
4656 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4657 /* Partial packet, seq < rcv_next < end_seq */
4658 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4659 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4660 TCP_SKB_CB(skb)->end_seq);
4662 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4664 /* If window is closed, drop tail of packet. But after
4665 * remembering D-SACK for its head made in previous line.
4667 if (!tcp_receive_window(tp))
4668 goto out_of_window;
4669 goto queue_and_out;
4672 tcp_data_queue_ofo(sk, skb);
4675 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4676 struct sk_buff_head *list)
4678 struct sk_buff *next = NULL;
4680 if (!skb_queue_is_last(list, skb))
4681 next = skb_queue_next(list, skb);
4683 __skb_unlink(skb, list);
4684 __kfree_skb(skb);
4685 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4687 return next;
4690 /* Collapse contiguous sequence of skbs head..tail with
4691 * sequence numbers start..end.
4693 * If tail is NULL, this means until the end of the list.
4695 * Segments with FIN/SYN are not collapsed (only because this
4696 * simplifies code)
4698 static void
4699 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4700 struct sk_buff *head, struct sk_buff *tail,
4701 u32 start, u32 end)
4703 struct sk_buff *skb, *n;
4704 bool end_of_skbs;
4706 /* First, check that queue is collapsible and find
4707 * the point where collapsing can be useful. */
4708 skb = head;
4709 restart:
4710 end_of_skbs = true;
4711 skb_queue_walk_from_safe(list, skb, n) {
4712 if (skb == tail)
4713 break;
4714 /* No new bits? It is possible on ofo queue. */
4715 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4716 skb = tcp_collapse_one(sk, skb, list);
4717 if (!skb)
4718 break;
4719 goto restart;
4722 /* The first skb to collapse is:
4723 * - not SYN/FIN and
4724 * - bloated or contains data before "start" or
4725 * overlaps to the next one.
4727 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4728 (tcp_win_from_space(skb->truesize) > skb->len ||
4729 before(TCP_SKB_CB(skb)->seq, start))) {
4730 end_of_skbs = false;
4731 break;
4734 if (!skb_queue_is_last(list, skb)) {
4735 struct sk_buff *next = skb_queue_next(list, skb);
4736 if (next != tail &&
4737 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4738 end_of_skbs = false;
4739 break;
4743 /* Decided to skip this, advance start seq. */
4744 start = TCP_SKB_CB(skb)->end_seq;
4746 if (end_of_skbs ||
4747 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4748 return;
4750 while (before(start, end)) {
4751 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4752 struct sk_buff *nskb;
4754 nskb = alloc_skb(copy, GFP_ATOMIC);
4755 if (!nskb)
4756 return;
4758 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4759 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4760 __skb_queue_before(list, skb, nskb);
4761 skb_set_owner_r(nskb, sk);
4763 /* Copy data, releasing collapsed skbs. */
4764 while (copy > 0) {
4765 int offset = start - TCP_SKB_CB(skb)->seq;
4766 int size = TCP_SKB_CB(skb)->end_seq - start;
4768 BUG_ON(offset < 0);
4769 if (size > 0) {
4770 size = min(copy, size);
4771 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4772 BUG();
4773 TCP_SKB_CB(nskb)->end_seq += size;
4774 copy -= size;
4775 start += size;
4777 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4778 skb = tcp_collapse_one(sk, skb, list);
4779 if (!skb ||
4780 skb == tail ||
4781 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4782 return;
4788 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4789 * and tcp_collapse() them until all the queue is collapsed.
4791 static void tcp_collapse_ofo_queue(struct sock *sk)
4793 struct tcp_sock *tp = tcp_sk(sk);
4794 u32 range_truesize, sum_tiny = 0;
4795 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4796 struct sk_buff *head;
4797 u32 start, end;
4799 if (!skb)
4800 return;
4802 start = TCP_SKB_CB(skb)->seq;
4803 end = TCP_SKB_CB(skb)->end_seq;
4804 range_truesize = skb->truesize;
4805 head = skb;
4807 for (;;) {
4808 struct sk_buff *next = NULL;
4810 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4811 next = skb_queue_next(&tp->out_of_order_queue, skb);
4812 skb = next;
4814 /* Segment is terminated when we see gap or when
4815 * we are at the end of all the queue. */
4816 if (!skb ||
4817 after(TCP_SKB_CB(skb)->seq, end) ||
4818 before(TCP_SKB_CB(skb)->end_seq, start)) {
4819 /* Do not attempt collapsing tiny skbs */
4820 if (range_truesize != head->truesize ||
4821 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4822 tcp_collapse(sk, &tp->out_of_order_queue,
4823 head, skb, start, end);
4824 } else {
4825 sum_tiny += range_truesize;
4826 if (sum_tiny > sk->sk_rcvbuf >> 3)
4827 return;
4830 head = skb;
4831 if (!skb)
4832 break;
4833 /* Start new segment */
4834 start = TCP_SKB_CB(skb)->seq;
4835 end = TCP_SKB_CB(skb)->end_seq;
4836 range_truesize = skb->truesize;
4837 } else {
4838 range_truesize += skb->truesize;
4839 if (before(TCP_SKB_CB(skb)->seq, start))
4840 start = TCP_SKB_CB(skb)->seq;
4841 if (after(TCP_SKB_CB(skb)->end_seq, end))
4842 end = TCP_SKB_CB(skb)->end_seq;
4848 * Purge the out-of-order queue.
4849 * Return true if queue was pruned.
4851 static bool tcp_prune_ofo_queue(struct sock *sk)
4853 struct tcp_sock *tp = tcp_sk(sk);
4854 bool res = false;
4856 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4857 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4858 __skb_queue_purge(&tp->out_of_order_queue);
4860 /* Reset SACK state. A conforming SACK implementation will
4861 * do the same at a timeout based retransmit. When a connection
4862 * is in a sad state like this, we care only about integrity
4863 * of the connection not performance.
4865 if (tp->rx_opt.sack_ok)
4866 tcp_sack_reset(&tp->rx_opt);
4867 sk_mem_reclaim(sk);
4868 res = true;
4870 return res;
4873 /* Reduce allocated memory if we can, trying to get
4874 * the socket within its memory limits again.
4876 * Return less than zero if we should start dropping frames
4877 * until the socket owning process reads some of the data
4878 * to stabilize the situation.
4880 static int tcp_prune_queue(struct sock *sk)
4882 struct tcp_sock *tp = tcp_sk(sk);
4884 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4886 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4888 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4889 tcp_clamp_window(sk);
4890 else if (tcp_under_memory_pressure(sk))
4891 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4893 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4894 return 0;
4896 tcp_collapse_ofo_queue(sk);
4897 if (!skb_queue_empty(&sk->sk_receive_queue))
4898 tcp_collapse(sk, &sk->sk_receive_queue,
4899 skb_peek(&sk->sk_receive_queue),
4900 NULL,
4901 tp->copied_seq, tp->rcv_nxt);
4902 sk_mem_reclaim(sk);
4904 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4905 return 0;
4907 /* Collapsing did not help, destructive actions follow.
4908 * This must not ever occur. */
4910 tcp_prune_ofo_queue(sk);
4912 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4913 return 0;
4915 /* If we are really being abused, tell the caller to silently
4916 * drop receive data on the floor. It will get retransmitted
4917 * and hopefully then we'll have sufficient space.
4919 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4921 /* Massive buffer overcommit. */
4922 tp->pred_flags = 0;
4923 return -1;
4926 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4928 const struct tcp_sock *tp = tcp_sk(sk);
4930 /* If the user specified a specific send buffer setting, do
4931 * not modify it.
4933 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4934 return false;
4936 /* If we are under global TCP memory pressure, do not expand. */
4937 if (tcp_under_memory_pressure(sk))
4938 return false;
4940 /* If we are under soft global TCP memory pressure, do not expand. */
4941 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4942 return false;
4944 /* If we filled the congestion window, do not expand. */
4945 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4946 return false;
4948 return true;
4951 /* When incoming ACK allowed to free some skb from write_queue,
4952 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4953 * on the exit from tcp input handler.
4955 * PROBLEM: sndbuf expansion does not work well with largesend.
4957 static void tcp_new_space(struct sock *sk)
4959 struct tcp_sock *tp = tcp_sk(sk);
4961 if (tcp_should_expand_sndbuf(sk)) {
4962 tcp_sndbuf_expand(sk);
4963 tp->snd_cwnd_stamp = tcp_time_stamp;
4966 sk->sk_write_space(sk);
4969 static void tcp_check_space(struct sock *sk)
4971 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4972 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4973 /* pairs with tcp_poll() */
4974 smp_mb();
4975 if (sk->sk_socket &&
4976 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4977 tcp_new_space(sk);
4981 static inline void tcp_data_snd_check(struct sock *sk)
4983 tcp_push_pending_frames(sk);
4984 tcp_check_space(sk);
4988 * Check if sending an ack is needed.
4990 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4992 struct tcp_sock *tp = tcp_sk(sk);
4994 /* More than one full frame received... */
4995 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4996 /* ... and right edge of window advances far enough.
4997 * (tcp_recvmsg() will send ACK otherwise). Or...
4999 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5000 /* We ACK each frame or... */
5001 tcp_in_quickack_mode(sk) ||
5002 /* We have out of order data. */
5003 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5004 /* Then ack it now */
5005 tcp_send_ack(sk);
5006 } else {
5007 /* Else, send delayed ack. */
5008 tcp_send_delayed_ack(sk);
5012 static inline void tcp_ack_snd_check(struct sock *sk)
5014 if (!inet_csk_ack_scheduled(sk)) {
5015 /* We sent a data segment already. */
5016 return;
5018 __tcp_ack_snd_check(sk, 1);
5022 * This routine is only called when we have urgent data
5023 * signaled. Its the 'slow' part of tcp_urg. It could be
5024 * moved inline now as tcp_urg is only called from one
5025 * place. We handle URGent data wrong. We have to - as
5026 * BSD still doesn't use the correction from RFC961.
5027 * For 1003.1g we should support a new option TCP_STDURG to permit
5028 * either form (or just set the sysctl tcp_stdurg).
5031 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5033 struct tcp_sock *tp = tcp_sk(sk);
5034 u32 ptr = ntohs(th->urg_ptr);
5036 if (ptr && !sysctl_tcp_stdurg)
5037 ptr--;
5038 ptr += ntohl(th->seq);
5040 /* Ignore urgent data that we've already seen and read. */
5041 if (after(tp->copied_seq, ptr))
5042 return;
5044 /* Do not replay urg ptr.
5046 * NOTE: interesting situation not covered by specs.
5047 * Misbehaving sender may send urg ptr, pointing to segment,
5048 * which we already have in ofo queue. We are not able to fetch
5049 * such data and will stay in TCP_URG_NOTYET until will be eaten
5050 * by recvmsg(). Seems, we are not obliged to handle such wicked
5051 * situations. But it is worth to think about possibility of some
5052 * DoSes using some hypothetical application level deadlock.
5054 if (before(ptr, tp->rcv_nxt))
5055 return;
5057 /* Do we already have a newer (or duplicate) urgent pointer? */
5058 if (tp->urg_data && !after(ptr, tp->urg_seq))
5059 return;
5061 /* Tell the world about our new urgent pointer. */
5062 sk_send_sigurg(sk);
5064 /* We may be adding urgent data when the last byte read was
5065 * urgent. To do this requires some care. We cannot just ignore
5066 * tp->copied_seq since we would read the last urgent byte again
5067 * as data, nor can we alter copied_seq until this data arrives
5068 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5070 * NOTE. Double Dutch. Rendering to plain English: author of comment
5071 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5072 * and expect that both A and B disappear from stream. This is _wrong_.
5073 * Though this happens in BSD with high probability, this is occasional.
5074 * Any application relying on this is buggy. Note also, that fix "works"
5075 * only in this artificial test. Insert some normal data between A and B and we will
5076 * decline of BSD again. Verdict: it is better to remove to trap
5077 * buggy users.
5079 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5080 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5081 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5082 tp->copied_seq++;
5083 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5084 __skb_unlink(skb, &sk->sk_receive_queue);
5085 __kfree_skb(skb);
5089 tp->urg_data = TCP_URG_NOTYET;
5090 tp->urg_seq = ptr;
5092 /* Disable header prediction. */
5093 tp->pred_flags = 0;
5096 /* This is the 'fast' part of urgent handling. */
5097 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5099 struct tcp_sock *tp = tcp_sk(sk);
5101 /* Check if we get a new urgent pointer - normally not. */
5102 if (th->urg)
5103 tcp_check_urg(sk, th);
5105 /* Do we wait for any urgent data? - normally not... */
5106 if (tp->urg_data == TCP_URG_NOTYET) {
5107 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5108 th->syn;
5110 /* Is the urgent pointer pointing into this packet? */
5111 if (ptr < skb->len) {
5112 u8 tmp;
5113 if (skb_copy_bits(skb, ptr, &tmp, 1))
5114 BUG();
5115 tp->urg_data = TCP_URG_VALID | tmp;
5116 if (!sock_flag(sk, SOCK_DEAD))
5117 sk->sk_data_ready(sk);
5122 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5124 struct tcp_sock *tp = tcp_sk(sk);
5125 int chunk = skb->len - hlen;
5126 int err;
5128 local_bh_enable();
5129 if (skb_csum_unnecessary(skb))
5130 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5131 else
5132 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5134 if (!err) {
5135 tp->ucopy.len -= chunk;
5136 tp->copied_seq += chunk;
5137 tcp_rcv_space_adjust(sk);
5140 local_bh_disable();
5141 return err;
5144 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5145 struct sk_buff *skb)
5147 __sum16 result;
5149 if (sock_owned_by_user(sk)) {
5150 local_bh_enable();
5151 result = __tcp_checksum_complete(skb);
5152 local_bh_disable();
5153 } else {
5154 result = __tcp_checksum_complete(skb);
5156 return result;
5159 static inline bool tcp_checksum_complete_user(struct sock *sk,
5160 struct sk_buff *skb)
5162 return !skb_csum_unnecessary(skb) &&
5163 __tcp_checksum_complete_user(sk, skb);
5166 /* Does PAWS and seqno based validation of an incoming segment, flags will
5167 * play significant role here.
5169 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5170 const struct tcphdr *th, int syn_inerr)
5172 struct tcp_sock *tp = tcp_sk(sk);
5174 /* RFC1323: H1. Apply PAWS check first. */
5175 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5176 tcp_paws_discard(sk, skb)) {
5177 if (!th->rst) {
5178 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5179 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5180 LINUX_MIB_TCPACKSKIPPEDPAWS,
5181 &tp->last_oow_ack_time))
5182 tcp_send_dupack(sk, skb);
5183 goto discard;
5185 /* Reset is accepted even if it did not pass PAWS. */
5188 /* Step 1: check sequence number */
5189 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5190 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5191 * (RST) segments are validated by checking their SEQ-fields."
5192 * And page 69: "If an incoming segment is not acceptable,
5193 * an acknowledgment should be sent in reply (unless the RST
5194 * bit is set, if so drop the segment and return)".
5196 if (!th->rst) {
5197 if (th->syn)
5198 goto syn_challenge;
5199 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5200 LINUX_MIB_TCPACKSKIPPEDSEQ,
5201 &tp->last_oow_ack_time))
5202 tcp_send_dupack(sk, skb);
5204 goto discard;
5207 /* Step 2: check RST bit */
5208 if (th->rst) {
5209 /* RFC 5961 3.2 :
5210 * If sequence number exactly matches RCV.NXT, then
5211 * RESET the connection
5212 * else
5213 * Send a challenge ACK
5215 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5216 tcp_reset(sk);
5217 else
5218 tcp_send_challenge_ack(sk, skb);
5219 goto discard;
5222 /* step 3: check security and precedence [ignored] */
5224 /* step 4: Check for a SYN
5225 * RFC 5961 4.2 : Send a challenge ack
5227 if (th->syn) {
5228 syn_challenge:
5229 if (syn_inerr)
5230 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5231 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5232 tcp_send_challenge_ack(sk, skb);
5233 goto discard;
5236 return true;
5238 discard:
5239 __kfree_skb(skb);
5240 return false;
5244 * TCP receive function for the ESTABLISHED state.
5246 * It is split into a fast path and a slow path. The fast path is
5247 * disabled when:
5248 * - A zero window was announced from us - zero window probing
5249 * is only handled properly in the slow path.
5250 * - Out of order segments arrived.
5251 * - Urgent data is expected.
5252 * - There is no buffer space left
5253 * - Unexpected TCP flags/window values/header lengths are received
5254 * (detected by checking the TCP header against pred_flags)
5255 * - Data is sent in both directions. Fast path only supports pure senders
5256 * or pure receivers (this means either the sequence number or the ack
5257 * value must stay constant)
5258 * - Unexpected TCP option.
5260 * When these conditions are not satisfied it drops into a standard
5261 * receive procedure patterned after RFC793 to handle all cases.
5262 * The first three cases are guaranteed by proper pred_flags setting,
5263 * the rest is checked inline. Fast processing is turned on in
5264 * tcp_data_queue when everything is OK.
5266 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5267 const struct tcphdr *th, unsigned int len)
5269 struct tcp_sock *tp = tcp_sk(sk);
5271 if (unlikely(!sk->sk_rx_dst))
5272 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5274 * Header prediction.
5275 * The code loosely follows the one in the famous
5276 * "30 instruction TCP receive" Van Jacobson mail.
5278 * Van's trick is to deposit buffers into socket queue
5279 * on a device interrupt, to call tcp_recv function
5280 * on the receive process context and checksum and copy
5281 * the buffer to user space. smart...
5283 * Our current scheme is not silly either but we take the
5284 * extra cost of the net_bh soft interrupt processing...
5285 * We do checksum and copy also but from device to kernel.
5288 tp->rx_opt.saw_tstamp = 0;
5290 /* pred_flags is 0xS?10 << 16 + snd_wnd
5291 * if header_prediction is to be made
5292 * 'S' will always be tp->tcp_header_len >> 2
5293 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5294 * turn it off (when there are holes in the receive
5295 * space for instance)
5296 * PSH flag is ignored.
5299 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5300 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5301 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5302 int tcp_header_len = tp->tcp_header_len;
5304 /* Timestamp header prediction: tcp_header_len
5305 * is automatically equal to th->doff*4 due to pred_flags
5306 * match.
5309 /* Check timestamp */
5310 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5311 /* No? Slow path! */
5312 if (!tcp_parse_aligned_timestamp(tp, th))
5313 goto slow_path;
5315 /* If PAWS failed, check it more carefully in slow path */
5316 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5317 goto slow_path;
5319 /* DO NOT update ts_recent here, if checksum fails
5320 * and timestamp was corrupted part, it will result
5321 * in a hung connection since we will drop all
5322 * future packets due to the PAWS test.
5326 if (len <= tcp_header_len) {
5327 /* Bulk data transfer: sender */
5328 if (len == tcp_header_len) {
5329 /* Predicted packet is in window by definition.
5330 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5331 * Hence, check seq<=rcv_wup reduces to:
5333 if (tcp_header_len ==
5334 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5335 tp->rcv_nxt == tp->rcv_wup)
5336 tcp_store_ts_recent(tp);
5338 /* We know that such packets are checksummed
5339 * on entry.
5341 tcp_ack(sk, skb, 0);
5342 __kfree_skb(skb);
5343 tcp_data_snd_check(sk);
5344 return;
5345 } else { /* Header too small */
5346 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5347 goto discard;
5349 } else {
5350 int eaten = 0;
5351 bool fragstolen = false;
5353 if (tp->ucopy.task == current &&
5354 tp->copied_seq == tp->rcv_nxt &&
5355 len - tcp_header_len <= tp->ucopy.len &&
5356 sock_owned_by_user(sk)) {
5357 __set_current_state(TASK_RUNNING);
5359 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5360 /* Predicted packet is in window by definition.
5361 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5362 * Hence, check seq<=rcv_wup reduces to:
5364 if (tcp_header_len ==
5365 (sizeof(struct tcphdr) +
5366 TCPOLEN_TSTAMP_ALIGNED) &&
5367 tp->rcv_nxt == tp->rcv_wup)
5368 tcp_store_ts_recent(tp);
5370 tcp_rcv_rtt_measure_ts(sk, skb);
5372 __skb_pull(skb, tcp_header_len);
5373 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5374 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5375 eaten = 1;
5378 if (!eaten) {
5379 if (tcp_checksum_complete_user(sk, skb))
5380 goto csum_error;
5382 if ((int)skb->truesize > sk->sk_forward_alloc)
5383 goto step5;
5385 /* Predicted packet is in window by definition.
5386 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5387 * Hence, check seq<=rcv_wup reduces to:
5389 if (tcp_header_len ==
5390 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5391 tp->rcv_nxt == tp->rcv_wup)
5392 tcp_store_ts_recent(tp);
5394 tcp_rcv_rtt_measure_ts(sk, skb);
5396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5398 /* Bulk data transfer: receiver */
5399 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5400 &fragstolen);
5403 tcp_event_data_recv(sk, skb);
5405 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5406 /* Well, only one small jumplet in fast path... */
5407 tcp_ack(sk, skb, FLAG_DATA);
5408 tcp_data_snd_check(sk);
5409 if (!inet_csk_ack_scheduled(sk))
5410 goto no_ack;
5413 __tcp_ack_snd_check(sk, 0);
5414 no_ack:
5415 if (eaten)
5416 kfree_skb_partial(skb, fragstolen);
5417 sk->sk_data_ready(sk);
5418 return;
5422 slow_path:
5423 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5424 goto csum_error;
5426 if (!th->ack && !th->rst && !th->syn)
5427 goto discard;
5430 * Standard slow path.
5433 if (!tcp_validate_incoming(sk, skb, th, 1))
5434 return;
5436 step5:
5437 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5438 goto discard;
5440 tcp_rcv_rtt_measure_ts(sk, skb);
5442 /* Process urgent data. */
5443 tcp_urg(sk, skb, th);
5445 /* step 7: process the segment text */
5446 tcp_data_queue(sk, skb);
5448 tcp_data_snd_check(sk);
5449 tcp_ack_snd_check(sk);
5450 return;
5452 csum_error:
5453 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5454 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5456 discard:
5457 __kfree_skb(skb);
5459 EXPORT_SYMBOL(tcp_rcv_established);
5461 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5463 struct tcp_sock *tp = tcp_sk(sk);
5464 struct inet_connection_sock *icsk = inet_csk(sk);
5466 tcp_set_state(sk, TCP_ESTABLISHED);
5467 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5469 if (skb) {
5470 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5471 security_inet_conn_established(sk, skb);
5474 /* Make sure socket is routed, for correct metrics. */
5475 icsk->icsk_af_ops->rebuild_header(sk);
5477 tcp_init_metrics(sk);
5479 tcp_init_congestion_control(sk);
5481 /* Prevent spurious tcp_cwnd_restart() on first data
5482 * packet.
5484 tp->lsndtime = tcp_time_stamp;
5486 tcp_init_buffer_space(sk);
5488 if (sock_flag(sk, SOCK_KEEPOPEN))
5489 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5491 if (!tp->rx_opt.snd_wscale)
5492 __tcp_fast_path_on(tp, tp->snd_wnd);
5493 else
5494 tp->pred_flags = 0;
5498 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5499 struct tcp_fastopen_cookie *cookie)
5501 struct tcp_sock *tp = tcp_sk(sk);
5502 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5503 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5504 bool syn_drop = false;
5506 if (mss == tp->rx_opt.user_mss) {
5507 struct tcp_options_received opt;
5509 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5510 tcp_clear_options(&opt);
5511 opt.user_mss = opt.mss_clamp = 0;
5512 tcp_parse_options(synack, &opt, 0, NULL);
5513 mss = opt.mss_clamp;
5516 if (!tp->syn_fastopen) {
5517 /* Ignore an unsolicited cookie */
5518 cookie->len = -1;
5519 } else if (tp->total_retrans) {
5520 /* SYN timed out and the SYN-ACK neither has a cookie nor
5521 * acknowledges data. Presumably the remote received only
5522 * the retransmitted (regular) SYNs: either the original
5523 * SYN-data or the corresponding SYN-ACK was dropped.
5525 syn_drop = (cookie->len < 0 && data);
5526 } else if (cookie->len < 0 && !tp->syn_data) {
5527 /* We requested a cookie but didn't get it. If we did not use
5528 * the (old) exp opt format then try so next time (try_exp=1).
5529 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5531 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5534 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5536 if (data) { /* Retransmit unacked data in SYN */
5537 tcp_for_write_queue_from(data, sk) {
5538 if (data == tcp_send_head(sk) ||
5539 __tcp_retransmit_skb(sk, data))
5540 break;
5542 tcp_rearm_rto(sk);
5543 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5544 return true;
5546 tp->syn_data_acked = tp->syn_data;
5547 if (tp->syn_data_acked)
5548 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5549 return false;
5552 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5553 const struct tcphdr *th)
5555 struct inet_connection_sock *icsk = inet_csk(sk);
5556 struct tcp_sock *tp = tcp_sk(sk);
5557 struct tcp_fastopen_cookie foc = { .len = -1 };
5558 int saved_clamp = tp->rx_opt.mss_clamp;
5559 bool fastopen_fail;
5561 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5562 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5563 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5565 if (th->ack) {
5566 /* rfc793:
5567 * "If the state is SYN-SENT then
5568 * first check the ACK bit
5569 * If the ACK bit is set
5570 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5571 * a reset (unless the RST bit is set, if so drop
5572 * the segment and return)"
5574 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5575 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5576 goto reset_and_undo;
5578 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5579 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5580 tcp_time_stamp)) {
5581 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5582 goto reset_and_undo;
5585 /* Now ACK is acceptable.
5587 * "If the RST bit is set
5588 * If the ACK was acceptable then signal the user "error:
5589 * connection reset", drop the segment, enter CLOSED state,
5590 * delete TCB, and return."
5593 if (th->rst) {
5594 tcp_reset(sk);
5595 goto discard;
5598 /* rfc793:
5599 * "fifth, if neither of the SYN or RST bits is set then
5600 * drop the segment and return."
5602 * See note below!
5603 * --ANK(990513)
5605 if (!th->syn)
5606 goto discard_and_undo;
5608 /* rfc793:
5609 * "If the SYN bit is on ...
5610 * are acceptable then ...
5611 * (our SYN has been ACKed), change the connection
5612 * state to ESTABLISHED..."
5615 tcp_ecn_rcv_synack(tp, th);
5617 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5618 tcp_ack(sk, skb, FLAG_SLOWPATH);
5620 /* Ok.. it's good. Set up sequence numbers and
5621 * move to established.
5623 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5624 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5626 /* RFC1323: The window in SYN & SYN/ACK segments is
5627 * never scaled.
5629 tp->snd_wnd = ntohs(th->window);
5631 if (!tp->rx_opt.wscale_ok) {
5632 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5633 tp->window_clamp = min(tp->window_clamp, 65535U);
5636 if (tp->rx_opt.saw_tstamp) {
5637 tp->rx_opt.tstamp_ok = 1;
5638 tp->tcp_header_len =
5639 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5640 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5641 tcp_store_ts_recent(tp);
5642 } else {
5643 tp->tcp_header_len = sizeof(struct tcphdr);
5646 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5647 tcp_enable_fack(tp);
5649 tcp_mtup_init(sk);
5650 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5651 tcp_initialize_rcv_mss(sk);
5653 /* Remember, tcp_poll() does not lock socket!
5654 * Change state from SYN-SENT only after copied_seq
5655 * is initialized. */
5656 tp->copied_seq = tp->rcv_nxt;
5658 smp_mb();
5660 tcp_finish_connect(sk, skb);
5662 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5663 tcp_rcv_fastopen_synack(sk, skb, &foc);
5665 if (!sock_flag(sk, SOCK_DEAD)) {
5666 sk->sk_state_change(sk);
5667 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5669 if (fastopen_fail)
5670 return -1;
5671 if (sk->sk_write_pending ||
5672 icsk->icsk_accept_queue.rskq_defer_accept ||
5673 icsk->icsk_ack.pingpong) {
5674 /* Save one ACK. Data will be ready after
5675 * several ticks, if write_pending is set.
5677 * It may be deleted, but with this feature tcpdumps
5678 * look so _wonderfully_ clever, that I was not able
5679 * to stand against the temptation 8) --ANK
5681 inet_csk_schedule_ack(sk);
5682 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5683 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5684 TCP_DELACK_MAX, TCP_RTO_MAX);
5686 discard:
5687 __kfree_skb(skb);
5688 return 0;
5689 } else {
5690 tcp_send_ack(sk);
5692 return -1;
5695 /* No ACK in the segment */
5697 if (th->rst) {
5698 /* rfc793:
5699 * "If the RST bit is set
5701 * Otherwise (no ACK) drop the segment and return."
5704 goto discard_and_undo;
5707 /* PAWS check. */
5708 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5709 tcp_paws_reject(&tp->rx_opt, 0))
5710 goto discard_and_undo;
5712 if (th->syn) {
5713 /* We see SYN without ACK. It is attempt of
5714 * simultaneous connect with crossed SYNs.
5715 * Particularly, it can be connect to self.
5717 tcp_set_state(sk, TCP_SYN_RECV);
5719 if (tp->rx_opt.saw_tstamp) {
5720 tp->rx_opt.tstamp_ok = 1;
5721 tcp_store_ts_recent(tp);
5722 tp->tcp_header_len =
5723 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5724 } else {
5725 tp->tcp_header_len = sizeof(struct tcphdr);
5728 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5729 tp->copied_seq = tp->rcv_nxt;
5730 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5732 /* RFC1323: The window in SYN & SYN/ACK segments is
5733 * never scaled.
5735 tp->snd_wnd = ntohs(th->window);
5736 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5737 tp->max_window = tp->snd_wnd;
5739 tcp_ecn_rcv_syn(tp, th);
5741 tcp_mtup_init(sk);
5742 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5743 tcp_initialize_rcv_mss(sk);
5745 tcp_send_synack(sk);
5746 #if 0
5747 /* Note, we could accept data and URG from this segment.
5748 * There are no obstacles to make this (except that we must
5749 * either change tcp_recvmsg() to prevent it from returning data
5750 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5752 * However, if we ignore data in ACKless segments sometimes,
5753 * we have no reasons to accept it sometimes.
5754 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5755 * is not flawless. So, discard packet for sanity.
5756 * Uncomment this return to process the data.
5758 return -1;
5759 #else
5760 goto discard;
5761 #endif
5763 /* "fifth, if neither of the SYN or RST bits is set then
5764 * drop the segment and return."
5767 discard_and_undo:
5768 tcp_clear_options(&tp->rx_opt);
5769 tp->rx_opt.mss_clamp = saved_clamp;
5770 goto discard;
5772 reset_and_undo:
5773 tcp_clear_options(&tp->rx_opt);
5774 tp->rx_opt.mss_clamp = saved_clamp;
5775 return 1;
5779 * This function implements the receiving procedure of RFC 793 for
5780 * all states except ESTABLISHED and TIME_WAIT.
5781 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5782 * address independent.
5785 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5787 struct tcp_sock *tp = tcp_sk(sk);
5788 struct inet_connection_sock *icsk = inet_csk(sk);
5789 const struct tcphdr *th = tcp_hdr(skb);
5790 struct request_sock *req;
5791 int queued = 0;
5792 bool acceptable;
5794 tp->rx_opt.saw_tstamp = 0;
5796 switch (sk->sk_state) {
5797 case TCP_CLOSE:
5798 goto discard;
5800 case TCP_LISTEN:
5801 if (th->ack)
5802 return 1;
5804 if (th->rst)
5805 goto discard;
5807 if (th->syn) {
5808 if (th->fin)
5809 goto discard;
5810 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5811 return 1;
5813 /* Now we have several options: In theory there is
5814 * nothing else in the frame. KA9Q has an option to
5815 * send data with the syn, BSD accepts data with the
5816 * syn up to the [to be] advertised window and
5817 * Solaris 2.1 gives you a protocol error. For now
5818 * we just ignore it, that fits the spec precisely
5819 * and avoids incompatibilities. It would be nice in
5820 * future to drop through and process the data.
5822 * Now that TTCP is starting to be used we ought to
5823 * queue this data.
5824 * But, this leaves one open to an easy denial of
5825 * service attack, and SYN cookies can't defend
5826 * against this problem. So, we drop the data
5827 * in the interest of security over speed unless
5828 * it's still in use.
5830 kfree_skb(skb);
5831 return 0;
5833 goto discard;
5835 case TCP_SYN_SENT:
5836 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5837 if (queued >= 0)
5838 return queued;
5840 /* Do step6 onward by hand. */
5841 tcp_urg(sk, skb, th);
5842 __kfree_skb(skb);
5843 tcp_data_snd_check(sk);
5844 return 0;
5847 req = tp->fastopen_rsk;
5848 if (req) {
5849 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5850 sk->sk_state != TCP_FIN_WAIT1);
5852 if (!tcp_check_req(sk, skb, req, true))
5853 goto discard;
5856 if (!th->ack && !th->rst && !th->syn)
5857 goto discard;
5859 if (!tcp_validate_incoming(sk, skb, th, 0))
5860 return 0;
5862 /* step 5: check the ACK field */
5863 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5864 FLAG_UPDATE_TS_RECENT |
5865 FLAG_NO_CHALLENGE_ACK) > 0;
5867 if (!acceptable) {
5868 if (sk->sk_state == TCP_SYN_RECV)
5869 return 1; /* send one RST */
5870 tcp_send_challenge_ack(sk, skb);
5871 goto discard;
5873 switch (sk->sk_state) {
5874 case TCP_SYN_RECV:
5875 if (!tp->srtt_us)
5876 tcp_synack_rtt_meas(sk, req);
5878 /* Once we leave TCP_SYN_RECV, we no longer need req
5879 * so release it.
5881 if (req) {
5882 tp->total_retrans = req->num_retrans;
5883 reqsk_fastopen_remove(sk, req, false);
5884 } else {
5885 /* Make sure socket is routed, for correct metrics. */
5886 icsk->icsk_af_ops->rebuild_header(sk);
5887 tcp_init_congestion_control(sk);
5889 tcp_mtup_init(sk);
5890 tp->copied_seq = tp->rcv_nxt;
5891 tcp_init_buffer_space(sk);
5893 smp_mb();
5894 tcp_set_state(sk, TCP_ESTABLISHED);
5895 sk->sk_state_change(sk);
5897 /* Note, that this wakeup is only for marginal crossed SYN case.
5898 * Passively open sockets are not waked up, because
5899 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5901 if (sk->sk_socket)
5902 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5904 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5905 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5906 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5908 if (tp->rx_opt.tstamp_ok)
5909 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5911 if (req) {
5912 /* Re-arm the timer because data may have been sent out.
5913 * This is similar to the regular data transmission case
5914 * when new data has just been ack'ed.
5916 * (TFO) - we could try to be more aggressive and
5917 * retransmitting any data sooner based on when they
5918 * are sent out.
5920 tcp_rearm_rto(sk);
5921 } else
5922 tcp_init_metrics(sk);
5924 tcp_update_pacing_rate(sk);
5926 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5927 tp->lsndtime = tcp_time_stamp;
5929 tcp_initialize_rcv_mss(sk);
5930 tcp_fast_path_on(tp);
5931 break;
5933 case TCP_FIN_WAIT1: {
5934 struct dst_entry *dst;
5935 int tmo;
5937 /* If we enter the TCP_FIN_WAIT1 state and we are a
5938 * Fast Open socket and this is the first acceptable
5939 * ACK we have received, this would have acknowledged
5940 * our SYNACK so stop the SYNACK timer.
5942 if (req) {
5943 /* We no longer need the request sock. */
5944 reqsk_fastopen_remove(sk, req, false);
5945 tcp_rearm_rto(sk);
5947 if (tp->snd_una != tp->write_seq)
5948 break;
5950 tcp_set_state(sk, TCP_FIN_WAIT2);
5951 sk->sk_shutdown |= SEND_SHUTDOWN;
5953 dst = __sk_dst_get(sk);
5954 if (dst)
5955 dst_confirm(dst);
5957 if (!sock_flag(sk, SOCK_DEAD)) {
5958 /* Wake up lingering close() */
5959 sk->sk_state_change(sk);
5960 break;
5963 if (tp->linger2 < 0 ||
5964 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5965 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5966 tcp_done(sk);
5967 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5968 return 1;
5971 tmo = tcp_fin_time(sk);
5972 if (tmo > TCP_TIMEWAIT_LEN) {
5973 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5974 } else if (th->fin || sock_owned_by_user(sk)) {
5975 /* Bad case. We could lose such FIN otherwise.
5976 * It is not a big problem, but it looks confusing
5977 * and not so rare event. We still can lose it now,
5978 * if it spins in bh_lock_sock(), but it is really
5979 * marginal case.
5981 inet_csk_reset_keepalive_timer(sk, tmo);
5982 } else {
5983 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5984 goto discard;
5986 break;
5989 case TCP_CLOSING:
5990 if (tp->snd_una == tp->write_seq) {
5991 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5992 goto discard;
5994 break;
5996 case TCP_LAST_ACK:
5997 if (tp->snd_una == tp->write_seq) {
5998 tcp_update_metrics(sk);
5999 tcp_done(sk);
6000 goto discard;
6002 break;
6005 /* step 6: check the URG bit */
6006 tcp_urg(sk, skb, th);
6008 /* step 7: process the segment text */
6009 switch (sk->sk_state) {
6010 case TCP_CLOSE_WAIT:
6011 case TCP_CLOSING:
6012 case TCP_LAST_ACK:
6013 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6014 break;
6015 case TCP_FIN_WAIT1:
6016 case TCP_FIN_WAIT2:
6017 /* RFC 793 says to queue data in these states,
6018 * RFC 1122 says we MUST send a reset.
6019 * BSD 4.4 also does reset.
6021 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6022 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6023 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6024 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6025 tcp_reset(sk);
6026 return 1;
6029 /* Fall through */
6030 case TCP_ESTABLISHED:
6031 tcp_data_queue(sk, skb);
6032 queued = 1;
6033 break;
6036 /* tcp_data could move socket to TIME-WAIT */
6037 if (sk->sk_state != TCP_CLOSE) {
6038 tcp_data_snd_check(sk);
6039 tcp_ack_snd_check(sk);
6042 if (!queued) {
6043 discard:
6044 __kfree_skb(skb);
6046 return 0;
6048 EXPORT_SYMBOL(tcp_rcv_state_process);
6050 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6052 struct inet_request_sock *ireq = inet_rsk(req);
6054 if (family == AF_INET)
6055 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6056 &ireq->ir_rmt_addr, port);
6057 #if IS_ENABLED(CONFIG_IPV6)
6058 else if (family == AF_INET6)
6059 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6060 &ireq->ir_v6_rmt_addr, port);
6061 #endif
6064 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6066 * If we receive a SYN packet with these bits set, it means a
6067 * network is playing bad games with TOS bits. In order to
6068 * avoid possible false congestion notifications, we disable
6069 * TCP ECN negotiation.
6071 * Exception: tcp_ca wants ECN. This is required for DCTCP
6072 * congestion control: Linux DCTCP asserts ECT on all packets,
6073 * including SYN, which is most optimal solution; however,
6074 * others, such as FreeBSD do not.
6076 static void tcp_ecn_create_request(struct request_sock *req,
6077 const struct sk_buff *skb,
6078 const struct sock *listen_sk,
6079 const struct dst_entry *dst)
6081 const struct tcphdr *th = tcp_hdr(skb);
6082 const struct net *net = sock_net(listen_sk);
6083 bool th_ecn = th->ece && th->cwr;
6084 bool ect, ecn_ok;
6085 u32 ecn_ok_dst;
6087 if (!th_ecn)
6088 return;
6090 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6091 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6092 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6094 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6095 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6096 inet_rsk(req)->ecn_ok = 1;
6099 static void tcp_openreq_init(struct request_sock *req,
6100 const struct tcp_options_received *rx_opt,
6101 struct sk_buff *skb, const struct sock *sk)
6103 struct inet_request_sock *ireq = inet_rsk(req);
6105 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6106 req->cookie_ts = 0;
6107 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6108 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6109 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6110 tcp_rsk(req)->last_oow_ack_time = 0;
6111 req->mss = rx_opt->mss_clamp;
6112 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6113 ireq->tstamp_ok = rx_opt->tstamp_ok;
6114 ireq->sack_ok = rx_opt->sack_ok;
6115 ireq->snd_wscale = rx_opt->snd_wscale;
6116 ireq->wscale_ok = rx_opt->wscale_ok;
6117 ireq->acked = 0;
6118 ireq->ecn_ok = 0;
6119 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6120 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6121 ireq->ir_mark = inet_request_mark(sk, skb);
6124 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6125 struct sock *sk_listener,
6126 bool attach_listener)
6128 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6129 attach_listener);
6131 if (req) {
6132 struct inet_request_sock *ireq = inet_rsk(req);
6134 kmemcheck_annotate_bitfield(ireq, flags);
6135 ireq->ireq_opt = NULL;
6136 atomic64_set(&ireq->ir_cookie, 0);
6137 ireq->ireq_state = TCP_NEW_SYN_RECV;
6138 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6139 ireq->ireq_family = sk_listener->sk_family;
6142 return req;
6144 EXPORT_SYMBOL(inet_reqsk_alloc);
6147 * Return true if a syncookie should be sent
6149 static bool tcp_syn_flood_action(const struct sock *sk,
6150 const struct sk_buff *skb,
6151 const char *proto)
6153 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6154 const char *msg = "Dropping request";
6155 bool want_cookie = false;
6157 #ifdef CONFIG_SYN_COOKIES
6158 if (sysctl_tcp_syncookies) {
6159 msg = "Sending cookies";
6160 want_cookie = true;
6161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6162 } else
6163 #endif
6164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6166 if (!queue->synflood_warned &&
6167 sysctl_tcp_syncookies != 2 &&
6168 xchg(&queue->synflood_warned, 1) == 0)
6169 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6170 proto, ntohs(tcp_hdr(skb)->dest), msg);
6172 return want_cookie;
6175 static void tcp_reqsk_record_syn(const struct sock *sk,
6176 struct request_sock *req,
6177 const struct sk_buff *skb)
6179 if (tcp_sk(sk)->save_syn) {
6180 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6181 u32 *copy;
6183 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6184 if (copy) {
6185 copy[0] = len;
6186 memcpy(&copy[1], skb_network_header(skb), len);
6187 req->saved_syn = copy;
6192 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6193 const struct tcp_request_sock_ops *af_ops,
6194 struct sock *sk, struct sk_buff *skb)
6196 struct tcp_fastopen_cookie foc = { .len = -1 };
6197 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6198 struct tcp_options_received tmp_opt;
6199 struct tcp_sock *tp = tcp_sk(sk);
6200 struct sock *fastopen_sk = NULL;
6201 struct dst_entry *dst = NULL;
6202 struct request_sock *req;
6203 bool want_cookie = false;
6204 struct flowi fl;
6206 /* TW buckets are converted to open requests without
6207 * limitations, they conserve resources and peer is
6208 * evidently real one.
6210 if ((sysctl_tcp_syncookies == 2 ||
6211 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6212 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6213 if (!want_cookie)
6214 goto drop;
6218 /* Accept backlog is full. If we have already queued enough
6219 * of warm entries in syn queue, drop request. It is better than
6220 * clogging syn queue with openreqs with exponentially increasing
6221 * timeout.
6223 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6224 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6225 goto drop;
6228 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6229 if (!req)
6230 goto drop;
6232 tcp_rsk(req)->af_specific = af_ops;
6234 tcp_clear_options(&tmp_opt);
6235 tmp_opt.mss_clamp = af_ops->mss_clamp;
6236 tmp_opt.user_mss = tp->rx_opt.user_mss;
6237 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6239 if (want_cookie && !tmp_opt.saw_tstamp)
6240 tcp_clear_options(&tmp_opt);
6242 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6243 tcp_openreq_init(req, &tmp_opt, skb, sk);
6245 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6246 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6248 af_ops->init_req(req, sk, skb);
6250 if (security_inet_conn_request(sk, skb, req))
6251 goto drop_and_free;
6253 if (!want_cookie && !isn) {
6254 /* VJ's idea. We save last timestamp seen
6255 * from the destination in peer table, when entering
6256 * state TIME-WAIT, and check against it before
6257 * accepting new connection request.
6259 * If "isn" is not zero, this request hit alive
6260 * timewait bucket, so that all the necessary checks
6261 * are made in the function processing timewait state.
6263 if (tcp_death_row.sysctl_tw_recycle) {
6264 bool strict;
6266 dst = af_ops->route_req(sk, &fl, req, &strict);
6268 if (dst && strict &&
6269 !tcp_peer_is_proven(req, dst, true,
6270 tmp_opt.saw_tstamp)) {
6271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6272 goto drop_and_release;
6275 /* Kill the following clause, if you dislike this way. */
6276 else if (!sysctl_tcp_syncookies &&
6277 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6278 (sysctl_max_syn_backlog >> 2)) &&
6279 !tcp_peer_is_proven(req, dst, false,
6280 tmp_opt.saw_tstamp)) {
6281 /* Without syncookies last quarter of
6282 * backlog is filled with destinations,
6283 * proven to be alive.
6284 * It means that we continue to communicate
6285 * to destinations, already remembered
6286 * to the moment of synflood.
6288 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6289 rsk_ops->family);
6290 goto drop_and_release;
6293 isn = af_ops->init_seq(skb);
6295 if (!dst) {
6296 dst = af_ops->route_req(sk, &fl, req, NULL);
6297 if (!dst)
6298 goto drop_and_free;
6301 tcp_ecn_create_request(req, skb, sk, dst);
6303 if (want_cookie) {
6304 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6305 req->cookie_ts = tmp_opt.tstamp_ok;
6306 if (!tmp_opt.tstamp_ok)
6307 inet_rsk(req)->ecn_ok = 0;
6310 tcp_rsk(req)->snt_isn = isn;
6311 tcp_rsk(req)->txhash = net_tx_rndhash();
6312 tcp_openreq_init_rwin(req, sk, dst);
6313 if (!want_cookie) {
6314 tcp_reqsk_record_syn(sk, req, skb);
6315 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6317 if (fastopen_sk) {
6318 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6319 &foc, false);
6320 /* Add the child socket directly into the accept queue */
6321 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6322 sk->sk_data_ready(sk);
6323 bh_unlock_sock(fastopen_sk);
6324 sock_put(fastopen_sk);
6325 } else {
6326 tcp_rsk(req)->tfo_listener = false;
6327 if (!want_cookie)
6328 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6329 af_ops->send_synack(sk, dst, &fl, req,
6330 &foc, !want_cookie);
6331 if (want_cookie)
6332 goto drop_and_free;
6334 reqsk_put(req);
6335 return 0;
6337 drop_and_release:
6338 dst_release(dst);
6339 drop_and_free:
6340 reqsk_free(req);
6341 drop:
6342 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6343 return 0;
6345 EXPORT_SYMBOL(tcp_conn_request);