dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / ipv4 / tcp_ipv4.c
blobeeda67c3dd1127420d9365efaba7da37882cd045
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
53 #define pr_fmt(fmt) "TCP: " fmt
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
124 if (tcptw->tw_ts_recent_stamp &&
125 (!twp || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
136 return 0;
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 sk_rcv_saddr_set(sk, inet->inet_saddr);
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
225 sk_set_txhash(sk);
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
244 inet->inet_id = tp->write_seq ^ jiffies;
246 err = tcp_connect(sk);
248 rt = NULL;
249 if (err)
250 goto failure;
252 return 0;
254 failure:
256 * This unhashes the socket and releases the local port,
257 * if necessary.
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
265 EXPORT_SYMBOL(tcp_v4_connect);
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
272 void tcp_v4_mtu_reduced(struct sock *sk)
274 struct inet_sock *inet = inet_sk(sk);
275 struct dst_entry *dst;
276 u32 mtu;
278 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
279 return;
280 mtu = tcp_sk(sk)->mtu_info;
281 dst = inet_csk_update_pmtu(sk, mtu);
282 if (!dst)
283 return;
285 /* Something is about to be wrong... Remember soft error
286 * for the case, if this connection will not able to recover.
288 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
289 sk->sk_err_soft = EMSGSIZE;
291 mtu = dst_mtu(dst);
293 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
294 ip_sk_accept_pmtu(sk) &&
295 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
296 tcp_sync_mss(sk, mtu);
298 /* Resend the TCP packet because it's
299 * clear that the old packet has been
300 * dropped. This is the new "fast" path mtu
301 * discovery.
303 tcp_simple_retransmit(sk);
304 } /* else let the usual retransmit timer handle it */
306 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
308 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 struct dst_entry *dst = __sk_dst_check(sk, 0);
312 if (dst)
313 dst->ops->redirect(dst, sk, skb);
317 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
318 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
320 struct request_sock *req = inet_reqsk(sk);
321 struct net *net = sock_net(sk);
323 /* ICMPs are not backlogged, hence we cannot get
324 * an established socket here.
326 if (seq != tcp_rsk(req)->snt_isn) {
327 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
328 } else if (abort) {
330 * Still in SYN_RECV, just remove it silently.
331 * There is no good way to pass the error to the newly
332 * created socket, and POSIX does not want network
333 * errors returned from accept().
335 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
336 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
338 reqsk_put(req);
340 EXPORT_SYMBOL(tcp_req_err);
343 * This routine is called by the ICMP module when it gets some
344 * sort of error condition. If err < 0 then the socket should
345 * be closed and the error returned to the user. If err > 0
346 * it's just the icmp type << 8 | icmp code. After adjustment
347 * header points to the first 8 bytes of the tcp header. We need
348 * to find the appropriate port.
350 * The locking strategy used here is very "optimistic". When
351 * someone else accesses the socket the ICMP is just dropped
352 * and for some paths there is no check at all.
353 * A more general error queue to queue errors for later handling
354 * is probably better.
358 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
360 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
361 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
362 struct inet_connection_sock *icsk;
363 struct tcp_sock *tp;
364 struct inet_sock *inet;
365 const int type = icmp_hdr(icmp_skb)->type;
366 const int code = icmp_hdr(icmp_skb)->code;
367 struct sock *sk;
368 struct sk_buff *skb;
369 struct request_sock *fastopen;
370 __u32 seq, snd_una;
371 __u32 remaining;
372 int err;
373 struct net *net = dev_net(icmp_skb->dev);
375 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
376 th->dest, iph->saddr, ntohs(th->source),
377 inet_iif(icmp_skb));
378 if (!sk) {
379 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
380 return;
382 if (sk->sk_state == TCP_TIME_WAIT) {
383 inet_twsk_put(inet_twsk(sk));
384 return;
386 seq = ntohl(th->seq);
387 if (sk->sk_state == TCP_NEW_SYN_RECV)
388 return tcp_req_err(sk, seq,
389 type == ICMP_PARAMETERPROB ||
390 type == ICMP_TIME_EXCEEDED ||
391 (type == ICMP_DEST_UNREACH &&
392 (code == ICMP_NET_UNREACH ||
393 code == ICMP_HOST_UNREACH)));
395 bh_lock_sock(sk);
396 /* If too many ICMPs get dropped on busy
397 * servers this needs to be solved differently.
398 * We do take care of PMTU discovery (RFC1191) special case :
399 * we can receive locally generated ICMP messages while socket is held.
401 if (sock_owned_by_user(sk)) {
402 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
403 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
405 if (sk->sk_state == TCP_CLOSE)
406 goto out;
408 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
409 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
410 goto out;
413 icsk = inet_csk(sk);
414 tp = tcp_sk(sk);
415 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
416 fastopen = tp->fastopen_rsk;
417 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
418 if (sk->sk_state != TCP_LISTEN &&
419 !between(seq, snd_una, tp->snd_nxt)) {
420 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
421 goto out;
424 switch (type) {
425 case ICMP_REDIRECT:
426 if (!sock_owned_by_user(sk))
427 do_redirect(icmp_skb, sk);
428 goto out;
429 case ICMP_SOURCE_QUENCH:
430 /* Just silently ignore these. */
431 goto out;
432 case ICMP_PARAMETERPROB:
433 err = EPROTO;
434 break;
435 case ICMP_DEST_UNREACH:
436 if (code > NR_ICMP_UNREACH)
437 goto out;
439 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
440 /* We are not interested in TCP_LISTEN and open_requests
441 * (SYN-ACKs send out by Linux are always <576bytes so
442 * they should go through unfragmented).
444 if (sk->sk_state == TCP_LISTEN)
445 goto out;
447 tp->mtu_info = info;
448 if (!sock_owned_by_user(sk)) {
449 tcp_v4_mtu_reduced(sk);
450 } else {
451 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
452 sock_hold(sk);
454 goto out;
457 err = icmp_err_convert[code].errno;
458 /* check if icmp_skb allows revert of backoff
459 * (see draft-zimmermann-tcp-lcd) */
460 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
461 break;
462 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
463 !icsk->icsk_backoff || fastopen)
464 break;
466 if (sock_owned_by_user(sk))
467 break;
469 icsk->icsk_backoff--;
470 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
471 TCP_TIMEOUT_INIT;
472 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
474 skb = tcp_write_queue_head(sk);
475 BUG_ON(!skb);
477 remaining = icsk->icsk_rto -
478 min(icsk->icsk_rto,
479 tcp_time_stamp - tcp_skb_timestamp(skb));
481 if (remaining) {
482 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
483 remaining, TCP_RTO_MAX);
484 } else {
485 /* RTO revert clocked out retransmission.
486 * Will retransmit now */
487 tcp_retransmit_timer(sk);
490 break;
491 case ICMP_TIME_EXCEEDED:
492 err = EHOSTUNREACH;
493 break;
494 default:
495 goto out;
498 switch (sk->sk_state) {
499 case TCP_SYN_SENT:
500 case TCP_SYN_RECV:
501 /* Only in fast or simultaneous open. If a fast open socket is
502 * is already accepted it is treated as a connected one below.
504 if (fastopen && !fastopen->sk)
505 break;
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
510 sk->sk_error_report(sk);
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
516 goto out;
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
548 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
550 struct tcphdr *th = tcp_hdr(skb);
552 if (skb->ip_summed == CHECKSUM_PARTIAL) {
553 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
554 skb->csum_start = skb_transport_header(skb) - skb->head;
555 skb->csum_offset = offsetof(struct tcphdr, check);
556 } else {
557 th->check = tcp_v4_check(skb->len, saddr, daddr,
558 csum_partial(th,
559 th->doff << 2,
560 skb->csum));
564 /* This routine computes an IPv4 TCP checksum. */
565 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 const struct inet_sock *inet = inet_sk(sk);
569 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 EXPORT_SYMBOL(tcp_v4_send_check);
574 * This routine will send an RST to the other tcp.
576 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
577 * for reset.
578 * Answer: if a packet caused RST, it is not for a socket
579 * existing in our system, if it is matched to a socket,
580 * it is just duplicate segment or bug in other side's TCP.
581 * So that we build reply only basing on parameters
582 * arrived with segment.
583 * Exception: precedence violation. We do not implement it in any case.
586 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
588 const struct tcphdr *th = tcp_hdr(skb);
589 struct {
590 struct tcphdr th;
591 #ifdef CONFIG_TCP_MD5SIG
592 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
593 #endif
594 } rep;
595 struct ip_reply_arg arg;
596 #ifdef CONFIG_TCP_MD5SIG
597 struct tcp_md5sig_key *key;
598 const __u8 *hash_location = NULL;
599 unsigned char newhash[16];
600 int genhash;
601 struct sock *sk1 = NULL;
602 #endif
603 struct net *net;
605 /* Never send a reset in response to a reset. */
606 if (th->rst)
607 return;
609 /* If sk not NULL, it means we did a successful lookup and incoming
610 * route had to be correct. prequeue might have dropped our dst.
612 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
613 return;
615 /* Swap the send and the receive. */
616 memset(&rep, 0, sizeof(rep));
617 rep.th.dest = th->source;
618 rep.th.source = th->dest;
619 rep.th.doff = sizeof(struct tcphdr) / 4;
620 rep.th.rst = 1;
622 if (th->ack) {
623 rep.th.seq = th->ack_seq;
624 } else {
625 rep.th.ack = 1;
626 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
627 skb->len - (th->doff << 2));
630 memset(&arg, 0, sizeof(arg));
631 arg.iov[0].iov_base = (unsigned char *)&rep;
632 arg.iov[0].iov_len = sizeof(rep.th);
634 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
635 #ifdef CONFIG_TCP_MD5SIG
636 hash_location = tcp_parse_md5sig_option(th);
637 if (!sk && hash_location) {
639 * active side is lost. Try to find listening socket through
640 * source port, and then find md5 key through listening socket.
641 * we are not loose security here:
642 * Incoming packet is checked with md5 hash with finding key,
643 * no RST generated if md5 hash doesn't match.
645 sk1 = __inet_lookup_listener(net,
646 &tcp_hashinfo, ip_hdr(skb)->saddr,
647 th->source, ip_hdr(skb)->daddr,
648 ntohs(th->source), inet_iif(skb));
649 /* don't send rst if it can't find key */
650 if (!sk1)
651 return;
652 rcu_read_lock();
653 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
654 &ip_hdr(skb)->saddr, AF_INET);
655 if (!key)
656 goto release_sk1;
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto release_sk1;
661 } else {
662 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
663 &ip_hdr(skb)->saddr,
664 AF_INET) : NULL;
667 if (key) {
668 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
669 (TCPOPT_NOP << 16) |
670 (TCPOPT_MD5SIG << 8) |
671 TCPOLEN_MD5SIG);
672 /* Update length and the length the header thinks exists */
673 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
674 rep.th.doff = arg.iov[0].iov_len / 4;
676 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
677 key, ip_hdr(skb)->saddr,
678 ip_hdr(skb)->daddr, &rep.th);
680 #endif
681 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
682 ip_hdr(skb)->saddr, /* XXX */
683 arg.iov[0].iov_len, IPPROTO_TCP, 0);
684 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
685 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
686 /* When socket is gone, all binding information is lost.
687 * routing might fail in this case. No choice here, if we choose to force
688 * input interface, we will misroute in case of asymmetric route.
690 if (sk)
691 arg.bound_dev_if = sk->sk_bound_dev_if;
693 arg.tos = ip_hdr(skb)->tos;
694 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
695 skb, &TCP_SKB_CB(skb)->header.h4.opt,
696 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
697 &arg, arg.iov[0].iov_len);
699 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
700 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
702 #ifdef CONFIG_TCP_MD5SIG
703 release_sk1:
704 if (sk1) {
705 rcu_read_unlock();
706 sock_put(sk1);
708 #endif
711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
712 outside socket context is ugly, certainly. What can I do?
715 static void tcp_v4_send_ack(struct net *net,
716 struct sk_buff *skb, u32 seq, u32 ack,
717 u32 win, u32 tsval, u32 tsecr, int oif,
718 struct tcp_md5sig_key *key,
719 int reply_flags, u8 tos)
721 const struct tcphdr *th = tcp_hdr(skb);
722 struct {
723 struct tcphdr th;
724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
725 #ifdef CONFIG_TCP_MD5SIG
726 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
727 #endif
729 } rep;
730 struct ip_reply_arg arg;
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof(arg));
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (tsecr) {
738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.opt[1] = htonl(tsval);
742 rep.opt[2] = htonl(tsecr);
743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
755 #ifdef CONFIG_TCP_MD5SIG
756 if (key) {
757 int offset = (tsecr) ? 3 : 0;
759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
760 (TCPOPT_NOP << 16) |
761 (TCPOPT_MD5SIG << 8) |
762 TCPOLEN_MD5SIG);
763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
764 rep.th.doff = arg.iov[0].iov_len/4;
766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
767 key, ip_hdr(skb)->saddr,
768 ip_hdr(skb)->daddr, &rep.th);
770 #endif
771 arg.flags = reply_flags;
772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
773 ip_hdr(skb)->saddr, /* XXX */
774 arg.iov[0].iov_len, IPPROTO_TCP, 0);
775 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
776 if (oif)
777 arg.bound_dev_if = oif;
778 arg.tos = tos;
779 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
780 skb, &TCP_SKB_CB(skb)->header.h4.opt,
781 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
782 &arg, arg.iov[0].iov_len);
784 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
787 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
789 struct inet_timewait_sock *tw = inet_twsk(sk);
790 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
792 tcp_v4_send_ack(sock_net(sk), skb,
793 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
794 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
795 tcp_time_stamp + tcptw->tw_ts_offset,
796 tcptw->tw_ts_recent,
797 tw->tw_bound_dev_if,
798 tcp_twsk_md5_key(tcptw),
799 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
800 tw->tw_tos
803 inet_twsk_put(tw);
806 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
807 struct request_sock *req)
809 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
810 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
812 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
813 tcp_sk(sk)->snd_nxt;
815 /* RFC 7323 2.3
816 * The window field (SEG.WND) of every outgoing segment, with the
817 * exception of <SYN> segments, MUST be right-shifted by
818 * Rcv.Wind.Shift bits:
820 tcp_v4_send_ack(sock_net(sk), skb, seq,
821 tcp_rsk(req)->rcv_nxt,
822 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
823 tcp_time_stamp,
824 req->ts_recent,
826 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
827 AF_INET),
828 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
829 ip_hdr(skb)->tos);
833 * Send a SYN-ACK after having received a SYN.
834 * This still operates on a request_sock only, not on a big
835 * socket.
837 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
838 struct flowi *fl,
839 struct request_sock *req,
840 struct tcp_fastopen_cookie *foc,
841 bool attach_req)
843 const struct inet_request_sock *ireq = inet_rsk(req);
844 struct flowi4 fl4;
845 int err = -1;
846 struct sk_buff *skb;
848 /* First, grab a route. */
849 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
850 return -1;
852 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
854 if (skb) {
855 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
857 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
858 ireq->ir_rmt_addr,
859 ireq_opt_deref(ireq));
860 err = net_xmit_eval(err);
863 return err;
867 * IPv4 request_sock destructor.
869 static void tcp_v4_reqsk_destructor(struct request_sock *req)
871 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
875 #ifdef CONFIG_TCP_MD5SIG
877 * RFC2385 MD5 checksumming requires a mapping of
878 * IP address->MD5 Key.
879 * We need to maintain these in the sk structure.
882 /* Find the Key structure for an address. */
883 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
884 const union tcp_md5_addr *addr,
885 int family)
887 const struct tcp_sock *tp = tcp_sk(sk);
888 struct tcp_md5sig_key *key;
889 unsigned int size = sizeof(struct in_addr);
890 const struct tcp_md5sig_info *md5sig;
892 /* caller either holds rcu_read_lock() or socket lock */
893 md5sig = rcu_dereference_check(tp->md5sig_info,
894 sock_owned_by_user(sk) ||
895 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
896 if (!md5sig)
897 return NULL;
898 #if IS_ENABLED(CONFIG_IPV6)
899 if (family == AF_INET6)
900 size = sizeof(struct in6_addr);
901 #endif
902 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
903 if (key->family != family)
904 continue;
905 if (!memcmp(&key->addr, addr, size))
906 return key;
908 return NULL;
910 EXPORT_SYMBOL(tcp_md5_do_lookup);
912 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
913 const struct sock *addr_sk)
915 const union tcp_md5_addr *addr;
917 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
918 return tcp_md5_do_lookup(sk, addr, AF_INET);
920 EXPORT_SYMBOL(tcp_v4_md5_lookup);
922 /* This can be called on a newly created socket, from other files */
923 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
924 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
926 /* Add Key to the list */
927 struct tcp_md5sig_key *key;
928 struct tcp_sock *tp = tcp_sk(sk);
929 struct tcp_md5sig_info *md5sig;
931 key = tcp_md5_do_lookup(sk, addr, family);
932 if (key) {
933 /* Pre-existing entry - just update that one. */
934 memcpy(key->key, newkey, newkeylen);
935 key->keylen = newkeylen;
936 return 0;
939 md5sig = rcu_dereference_protected(tp->md5sig_info,
940 sock_owned_by_user(sk) ||
941 lockdep_is_held(&sk->sk_lock.slock));
942 if (!md5sig) {
943 md5sig = kmalloc(sizeof(*md5sig), gfp);
944 if (!md5sig)
945 return -ENOMEM;
947 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
948 INIT_HLIST_HEAD(&md5sig->head);
949 rcu_assign_pointer(tp->md5sig_info, md5sig);
952 key = sock_kmalloc(sk, sizeof(*key), gfp);
953 if (!key)
954 return -ENOMEM;
955 if (!tcp_alloc_md5sig_pool()) {
956 sock_kfree_s(sk, key, sizeof(*key));
957 return -ENOMEM;
960 memcpy(key->key, newkey, newkeylen);
961 key->keylen = newkeylen;
962 key->family = family;
963 memcpy(&key->addr, addr,
964 (family == AF_INET6) ? sizeof(struct in6_addr) :
965 sizeof(struct in_addr));
966 hlist_add_head_rcu(&key->node, &md5sig->head);
967 return 0;
969 EXPORT_SYMBOL(tcp_md5_do_add);
971 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
973 struct tcp_md5sig_key *key;
975 key = tcp_md5_do_lookup(sk, addr, family);
976 if (!key)
977 return -ENOENT;
978 hlist_del_rcu(&key->node);
979 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
980 kfree_rcu(key, rcu);
981 return 0;
983 EXPORT_SYMBOL(tcp_md5_do_del);
985 static void tcp_clear_md5_list(struct sock *sk)
987 struct tcp_sock *tp = tcp_sk(sk);
988 struct tcp_md5sig_key *key;
989 struct hlist_node *n;
990 struct tcp_md5sig_info *md5sig;
992 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
994 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
995 hlist_del_rcu(&key->node);
996 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
997 kfree_rcu(key, rcu);
1001 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1002 int optlen)
1004 struct tcp_md5sig cmd;
1005 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1007 if (optlen < sizeof(cmd))
1008 return -EINVAL;
1010 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1011 return -EFAULT;
1013 if (sin->sin_family != AF_INET)
1014 return -EINVAL;
1016 if (!cmd.tcpm_keylen)
1017 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1018 AF_INET);
1020 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1021 return -EINVAL;
1023 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1024 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1025 GFP_KERNEL);
1028 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1029 __be32 daddr, __be32 saddr, int nbytes)
1031 struct tcp4_pseudohdr *bp;
1032 struct scatterlist sg;
1034 bp = &hp->md5_blk.ip4;
1037 * 1. the TCP pseudo-header (in the order: source IP address,
1038 * destination IP address, zero-padded protocol number, and
1039 * segment length)
1041 bp->saddr = saddr;
1042 bp->daddr = daddr;
1043 bp->pad = 0;
1044 bp->protocol = IPPROTO_TCP;
1045 bp->len = cpu_to_be16(nbytes);
1047 sg_init_one(&sg, bp, sizeof(*bp));
1048 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1051 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1052 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1054 struct tcp_md5sig_pool *hp;
1055 struct hash_desc *desc;
1057 hp = tcp_get_md5sig_pool();
1058 if (!hp)
1059 goto clear_hash_noput;
1060 desc = &hp->md5_desc;
1062 if (crypto_hash_init(desc))
1063 goto clear_hash;
1064 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1065 goto clear_hash;
1066 if (tcp_md5_hash_header(hp, th))
1067 goto clear_hash;
1068 if (tcp_md5_hash_key(hp, key))
1069 goto clear_hash;
1070 if (crypto_hash_final(desc, md5_hash))
1071 goto clear_hash;
1073 tcp_put_md5sig_pool();
1074 return 0;
1076 clear_hash:
1077 tcp_put_md5sig_pool();
1078 clear_hash_noput:
1079 memset(md5_hash, 0, 16);
1080 return 1;
1083 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1084 const struct sock *sk,
1085 const struct sk_buff *skb)
1087 struct tcp_md5sig_pool *hp;
1088 struct hash_desc *desc;
1089 const struct tcphdr *th = tcp_hdr(skb);
1090 __be32 saddr, daddr;
1092 if (sk) { /* valid for establish/request sockets */
1093 saddr = sk->sk_rcv_saddr;
1094 daddr = sk->sk_daddr;
1095 } else {
1096 const struct iphdr *iph = ip_hdr(skb);
1097 saddr = iph->saddr;
1098 daddr = iph->daddr;
1101 hp = tcp_get_md5sig_pool();
1102 if (!hp)
1103 goto clear_hash_noput;
1104 desc = &hp->md5_desc;
1106 if (crypto_hash_init(desc))
1107 goto clear_hash;
1109 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1110 goto clear_hash;
1111 if (tcp_md5_hash_header(hp, th))
1112 goto clear_hash;
1113 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1114 goto clear_hash;
1115 if (tcp_md5_hash_key(hp, key))
1116 goto clear_hash;
1117 if (crypto_hash_final(desc, md5_hash))
1118 goto clear_hash;
1120 tcp_put_md5sig_pool();
1121 return 0;
1123 clear_hash:
1124 tcp_put_md5sig_pool();
1125 clear_hash_noput:
1126 memset(md5_hash, 0, 16);
1127 return 1;
1129 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1131 #endif
1133 /* Called with rcu_read_lock() */
1134 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1135 const struct sk_buff *skb)
1137 #ifdef CONFIG_TCP_MD5SIG
1139 * This gets called for each TCP segment that arrives
1140 * so we want to be efficient.
1141 * We have 3 drop cases:
1142 * o No MD5 hash and one expected.
1143 * o MD5 hash and we're not expecting one.
1144 * o MD5 hash and its wrong.
1146 const __u8 *hash_location = NULL;
1147 struct tcp_md5sig_key *hash_expected;
1148 const struct iphdr *iph = ip_hdr(skb);
1149 const struct tcphdr *th = tcp_hdr(skb);
1150 int genhash;
1151 unsigned char newhash[16];
1153 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1154 AF_INET);
1155 hash_location = tcp_parse_md5sig_option(th);
1157 /* We've parsed the options - do we have a hash? */
1158 if (!hash_expected && !hash_location)
1159 return false;
1161 if (hash_expected && !hash_location) {
1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1163 return true;
1166 if (!hash_expected && hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1168 return true;
1171 /* Okay, so this is hash_expected and hash_location -
1172 * so we need to calculate the checksum.
1174 genhash = tcp_v4_md5_hash_skb(newhash,
1175 hash_expected,
1176 NULL, skb);
1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1179 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1180 &iph->saddr, ntohs(th->source),
1181 &iph->daddr, ntohs(th->dest),
1182 genhash ? " tcp_v4_calc_md5_hash failed"
1183 : "");
1184 return true;
1186 return false;
1187 #endif
1188 return false;
1191 static void tcp_v4_init_req(struct request_sock *req,
1192 const struct sock *sk_listener,
1193 struct sk_buff *skb)
1195 struct inet_request_sock *ireq = inet_rsk(req);
1197 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1198 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1199 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1200 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(skb));
1203 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1204 struct flowi *fl,
1205 const struct request_sock *req,
1206 bool *strict)
1208 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1210 if (strict) {
1211 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1212 *strict = true;
1213 else
1214 *strict = false;
1217 return dst;
1220 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1221 .family = PF_INET,
1222 .obj_size = sizeof(struct tcp_request_sock),
1223 .rtx_syn_ack = tcp_rtx_synack,
1224 .send_ack = tcp_v4_reqsk_send_ack,
1225 .destructor = tcp_v4_reqsk_destructor,
1226 .send_reset = tcp_v4_send_reset,
1227 .syn_ack_timeout = tcp_syn_ack_timeout,
1230 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1231 .mss_clamp = TCP_MSS_DEFAULT,
1232 #ifdef CONFIG_TCP_MD5SIG
1233 .req_md5_lookup = tcp_v4_md5_lookup,
1234 .calc_md5_hash = tcp_v4_md5_hash_skb,
1235 #endif
1236 .init_req = tcp_v4_init_req,
1237 #ifdef CONFIG_SYN_COOKIES
1238 .cookie_init_seq = cookie_v4_init_sequence,
1239 #endif
1240 .route_req = tcp_v4_route_req,
1241 .init_seq = tcp_v4_init_sequence,
1242 .send_synack = tcp_v4_send_synack,
1245 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1247 /* Never answer to SYNs send to broadcast or multicast */
1248 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1249 goto drop;
1251 return tcp_conn_request(&tcp_request_sock_ops,
1252 &tcp_request_sock_ipv4_ops, sk, skb);
1254 drop:
1255 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1256 return 0;
1258 EXPORT_SYMBOL(tcp_v4_conn_request);
1262 * The three way handshake has completed - we got a valid synack -
1263 * now create the new socket.
1265 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1266 struct request_sock *req,
1267 struct dst_entry *dst,
1268 struct request_sock *req_unhash,
1269 bool *own_req)
1271 struct inet_request_sock *ireq;
1272 struct inet_sock *newinet;
1273 struct tcp_sock *newtp;
1274 struct sock *newsk;
1275 #ifdef CONFIG_TCP_MD5SIG
1276 struct tcp_md5sig_key *key;
1277 #endif
1278 struct ip_options_rcu *inet_opt;
1280 if (sk_acceptq_is_full(sk))
1281 goto exit_overflow;
1283 newsk = tcp_create_openreq_child(sk, req, skb);
1284 if (!newsk)
1285 goto exit_nonewsk;
1287 newsk->sk_gso_type = SKB_GSO_TCPV4;
1288 inet_sk_rx_dst_set(newsk, skb);
1290 newtp = tcp_sk(newsk);
1291 newinet = inet_sk(newsk);
1292 ireq = inet_rsk(req);
1293 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1294 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1295 newinet->inet_saddr = ireq->ir_loc_addr;
1296 inet_opt = rcu_dereference(ireq->ireq_opt);
1297 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1298 newinet->mc_index = inet_iif(skb);
1299 newinet->mc_ttl = ip_hdr(skb)->ttl;
1300 newinet->rcv_tos = ip_hdr(skb)->tos;
1301 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1302 if (inet_opt)
1303 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1304 newinet->inet_id = newtp->write_seq ^ jiffies;
1306 if (!dst) {
1307 dst = inet_csk_route_child_sock(sk, newsk, req);
1308 if (!dst)
1309 goto put_and_exit;
1310 } else {
1311 /* syncookie case : see end of cookie_v4_check() */
1313 sk_setup_caps(newsk, dst);
1315 tcp_ca_openreq_child(newsk, dst);
1317 tcp_sync_mss(newsk, dst_mtu(dst));
1318 newtp->advmss = dst_metric_advmss(dst);
1319 if (tcp_sk(sk)->rx_opt.user_mss &&
1320 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1321 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1323 tcp_initialize_rcv_mss(newsk);
1325 #ifdef CONFIG_TCP_MD5SIG
1326 /* Copy over the MD5 key from the original socket */
1327 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1328 AF_INET);
1329 if (key) {
1331 * We're using one, so create a matching key
1332 * on the newsk structure. If we fail to get
1333 * memory, then we end up not copying the key
1334 * across. Shucks.
1336 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1337 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1338 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1340 #endif
1342 if (__inet_inherit_port(sk, newsk) < 0)
1343 goto put_and_exit;
1344 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1345 if (likely(*own_req)) {
1346 tcp_move_syn(newtp, req);
1347 ireq->ireq_opt = NULL;
1348 } else {
1349 newinet->inet_opt = NULL;
1351 return newsk;
1353 exit_overflow:
1354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1355 exit_nonewsk:
1356 dst_release(dst);
1357 exit:
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1359 return NULL;
1360 put_and_exit:
1361 newinet->inet_opt = NULL;
1362 inet_csk_prepare_forced_close(newsk);
1363 tcp_done(newsk);
1364 goto exit;
1366 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1368 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1370 #ifdef CONFIG_SYN_COOKIES
1371 const struct tcphdr *th = tcp_hdr(skb);
1373 if (!th->syn)
1374 sk = cookie_v4_check(sk, skb);
1375 #endif
1376 return sk;
1379 /* The socket must have it's spinlock held when we get
1380 * here, unless it is a TCP_LISTEN socket.
1382 * We have a potential double-lock case here, so even when
1383 * doing backlog processing we use the BH locking scheme.
1384 * This is because we cannot sleep with the original spinlock
1385 * held.
1387 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1389 struct sock *rsk;
1391 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1392 struct dst_entry *dst = sk->sk_rx_dst;
1394 sock_rps_save_rxhash(sk, skb);
1395 sk_mark_napi_id(sk, skb);
1396 if (dst) {
1397 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1398 !dst->ops->check(dst, 0)) {
1399 dst_release(dst);
1400 sk->sk_rx_dst = NULL;
1403 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1404 return 0;
1407 if (tcp_checksum_complete(skb))
1408 goto csum_err;
1410 if (sk->sk_state == TCP_LISTEN) {
1411 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1413 if (!nsk)
1414 goto discard;
1415 if (nsk != sk) {
1416 sock_rps_save_rxhash(nsk, skb);
1417 sk_mark_napi_id(nsk, skb);
1418 if (tcp_child_process(sk, nsk, skb)) {
1419 rsk = nsk;
1420 goto reset;
1422 return 0;
1424 } else
1425 sock_rps_save_rxhash(sk, skb);
1427 if (tcp_rcv_state_process(sk, skb)) {
1428 rsk = sk;
1429 goto reset;
1431 return 0;
1433 reset:
1434 tcp_v4_send_reset(rsk, skb);
1435 discard:
1436 kfree_skb(skb);
1437 /* Be careful here. If this function gets more complicated and
1438 * gcc suffers from register pressure on the x86, sk (in %ebx)
1439 * might be destroyed here. This current version compiles correctly,
1440 * but you have been warned.
1442 return 0;
1444 csum_err:
1445 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1446 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1447 goto discard;
1449 EXPORT_SYMBOL(tcp_v4_do_rcv);
1451 void tcp_v4_early_demux(struct sk_buff *skb)
1453 const struct iphdr *iph;
1454 const struct tcphdr *th;
1455 struct sock *sk;
1457 if (skb->pkt_type != PACKET_HOST)
1458 return;
1460 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1461 return;
1463 iph = ip_hdr(skb);
1464 th = tcp_hdr(skb);
1466 if (th->doff < sizeof(struct tcphdr) / 4)
1467 return;
1469 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1470 iph->saddr, th->source,
1471 iph->daddr, ntohs(th->dest),
1472 skb->skb_iif);
1473 if (sk) {
1474 skb->sk = sk;
1475 skb->destructor = sock_edemux;
1476 if (sk_fullsock(sk)) {
1477 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1479 if (dst)
1480 dst = dst_check(dst, 0);
1481 if (dst &&
1482 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1483 skb_dst_set_noref(skb, dst);
1488 /* Packet is added to VJ-style prequeue for processing in process
1489 * context, if a reader task is waiting. Apparently, this exciting
1490 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1491 * failed somewhere. Latency? Burstiness? Well, at least now we will
1492 * see, why it failed. 8)8) --ANK
1495 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1497 struct tcp_sock *tp = tcp_sk(sk);
1499 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1500 return false;
1502 if (skb->len <= tcp_hdrlen(skb) &&
1503 skb_queue_len(&tp->ucopy.prequeue) == 0)
1504 return false;
1506 /* Before escaping RCU protected region, we need to take care of skb
1507 * dst. Prequeue is only enabled for established sockets.
1508 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1509 * Instead of doing full sk_rx_dst validity here, let's perform
1510 * an optimistic check.
1512 if (likely(sk->sk_rx_dst))
1513 skb_dst_drop(skb);
1514 else
1515 skb_dst_force_safe(skb);
1517 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1518 tp->ucopy.memory += skb->truesize;
1519 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1520 struct sk_buff *skb1;
1522 BUG_ON(sock_owned_by_user(sk));
1524 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1525 sk_backlog_rcv(sk, skb1);
1526 NET_INC_STATS_BH(sock_net(sk),
1527 LINUX_MIB_TCPPREQUEUEDROPPED);
1530 tp->ucopy.memory = 0;
1531 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1532 wake_up_interruptible_sync_poll(sk_sleep(sk),
1533 POLLIN | POLLRDNORM | POLLRDBAND);
1534 if (!inet_csk_ack_scheduled(sk))
1535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1536 (3 * tcp_rto_min(sk)) / 4,
1537 TCP_RTO_MAX);
1539 return true;
1541 EXPORT_SYMBOL(tcp_prequeue);
1543 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1545 struct tcphdr *th = (struct tcphdr *)skb->data;
1546 unsigned int eaten = skb->len;
1547 int err;
1549 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1550 if (!err) {
1551 eaten -= skb->len;
1552 TCP_SKB_CB(skb)->end_seq -= eaten;
1554 return err;
1556 EXPORT_SYMBOL(tcp_filter);
1559 * From tcp_input.c
1562 int tcp_v4_rcv(struct sk_buff *skb)
1564 const struct iphdr *iph;
1565 const struct tcphdr *th;
1566 struct sock *sk;
1567 int ret;
1568 struct net *net = dev_net(skb->dev);
1570 if (skb->pkt_type != PACKET_HOST)
1571 goto discard_it;
1573 /* Count it even if it's bad */
1574 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1576 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1577 goto discard_it;
1579 th = tcp_hdr(skb);
1581 if (th->doff < sizeof(struct tcphdr) / 4)
1582 goto bad_packet;
1583 if (!pskb_may_pull(skb, th->doff * 4))
1584 goto discard_it;
1586 /* An explanation is required here, I think.
1587 * Packet length and doff are validated by header prediction,
1588 * provided case of th->doff==0 is eliminated.
1589 * So, we defer the checks. */
1591 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1592 goto csum_error;
1594 th = tcp_hdr(skb);
1595 iph = ip_hdr(skb);
1596 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1597 * barrier() makes sure compiler wont play fool^Waliasing games.
1599 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1600 sizeof(struct inet_skb_parm));
1601 barrier();
1603 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1604 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1605 skb->len - th->doff * 4);
1606 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1607 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1608 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1609 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1610 TCP_SKB_CB(skb)->sacked = 0;
1612 lookup:
1613 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1614 if (!sk)
1615 goto no_tcp_socket;
1617 process:
1618 if (sk->sk_state == TCP_TIME_WAIT)
1619 goto do_time_wait;
1621 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1622 struct request_sock *req = inet_reqsk(sk);
1623 struct sock *nsk;
1625 sk = req->rsk_listener;
1626 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1627 reqsk_put(req);
1628 goto discard_it;
1630 if (tcp_checksum_complete(skb)) {
1631 reqsk_put(req);
1632 goto csum_error;
1634 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1635 inet_csk_reqsk_queue_drop_and_put(sk, req);
1636 goto lookup;
1638 sock_hold(sk);
1639 nsk = tcp_check_req(sk, skb, req, false);
1640 if (!nsk) {
1641 reqsk_put(req);
1642 goto discard_and_relse;
1644 if (nsk == sk) {
1645 reqsk_put(req);
1646 } else if (tcp_child_process(sk, nsk, skb)) {
1647 tcp_v4_send_reset(nsk, skb);
1648 goto discard_and_relse;
1649 } else {
1650 sock_put(sk);
1651 return 0;
1654 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1655 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1656 goto discard_and_relse;
1659 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1660 goto discard_and_relse;
1662 if (tcp_v4_inbound_md5_hash(sk, skb))
1663 goto discard_and_relse;
1665 nf_reset(skb);
1667 if (tcp_filter(sk, skb))
1668 goto discard_and_relse;
1669 th = (const struct tcphdr *)skb->data;
1670 iph = ip_hdr(skb);
1672 skb->dev = NULL;
1674 if (sk->sk_state == TCP_LISTEN) {
1675 ret = tcp_v4_do_rcv(sk, skb);
1676 goto put_and_return;
1679 sk_incoming_cpu_update(sk);
1681 bh_lock_sock_nested(sk);
1682 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1683 ret = 0;
1684 if (!sock_owned_by_user(sk)) {
1685 if (!tcp_prequeue(sk, skb))
1686 ret = tcp_v4_do_rcv(sk, skb);
1687 } else if (unlikely(sk_add_backlog(sk, skb,
1688 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1689 bh_unlock_sock(sk);
1690 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1691 goto discard_and_relse;
1693 bh_unlock_sock(sk);
1695 put_and_return:
1696 sock_put(sk);
1698 return ret;
1700 no_tcp_socket:
1701 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1702 goto discard_it;
1704 if (tcp_checksum_complete(skb)) {
1705 csum_error:
1706 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1707 bad_packet:
1708 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1709 } else {
1710 tcp_v4_send_reset(NULL, skb);
1713 discard_it:
1714 /* Discard frame. */
1715 kfree_skb(skb);
1716 return 0;
1718 discard_and_relse:
1719 sock_put(sk);
1720 goto discard_it;
1722 do_time_wait:
1723 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1724 inet_twsk_put(inet_twsk(sk));
1725 goto discard_it;
1728 if (tcp_checksum_complete(skb)) {
1729 inet_twsk_put(inet_twsk(sk));
1730 goto csum_error;
1732 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1733 case TCP_TW_SYN: {
1734 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1735 &tcp_hashinfo,
1736 iph->saddr, th->source,
1737 iph->daddr, th->dest,
1738 inet_iif(skb));
1739 if (sk2) {
1740 inet_twsk_deschedule_put(inet_twsk(sk));
1741 sk = sk2;
1742 goto process;
1744 /* Fall through to ACK */
1746 case TCP_TW_ACK:
1747 tcp_v4_timewait_ack(sk, skb);
1748 break;
1749 case TCP_TW_RST:
1750 goto no_tcp_socket;
1751 case TCP_TW_SUCCESS:;
1753 goto discard_it;
1756 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1757 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1758 .twsk_unique = tcp_twsk_unique,
1759 .twsk_destructor= tcp_twsk_destructor,
1762 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1764 struct dst_entry *dst = skb_dst(skb);
1766 if (dst && dst_hold_safe(dst)) {
1767 sk->sk_rx_dst = dst;
1768 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1771 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1773 const struct inet_connection_sock_af_ops ipv4_specific = {
1774 .queue_xmit = ip_queue_xmit,
1775 .send_check = tcp_v4_send_check,
1776 .rebuild_header = inet_sk_rebuild_header,
1777 .sk_rx_dst_set = inet_sk_rx_dst_set,
1778 .conn_request = tcp_v4_conn_request,
1779 .syn_recv_sock = tcp_v4_syn_recv_sock,
1780 .net_header_len = sizeof(struct iphdr),
1781 .setsockopt = ip_setsockopt,
1782 .getsockopt = ip_getsockopt,
1783 .addr2sockaddr = inet_csk_addr2sockaddr,
1784 .sockaddr_len = sizeof(struct sockaddr_in),
1785 .bind_conflict = inet_csk_bind_conflict,
1786 #ifdef CONFIG_COMPAT
1787 .compat_setsockopt = compat_ip_setsockopt,
1788 .compat_getsockopt = compat_ip_getsockopt,
1789 #endif
1790 .mtu_reduced = tcp_v4_mtu_reduced,
1792 EXPORT_SYMBOL(ipv4_specific);
1794 #ifdef CONFIG_TCP_MD5SIG
1795 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1796 .md5_lookup = tcp_v4_md5_lookup,
1797 .calc_md5_hash = tcp_v4_md5_hash_skb,
1798 .md5_parse = tcp_v4_parse_md5_keys,
1800 #endif
1802 /* NOTE: A lot of things set to zero explicitly by call to
1803 * sk_alloc() so need not be done here.
1805 static int tcp_v4_init_sock(struct sock *sk)
1807 struct inet_connection_sock *icsk = inet_csk(sk);
1809 tcp_init_sock(sk);
1811 icsk->icsk_af_ops = &ipv4_specific;
1813 #ifdef CONFIG_TCP_MD5SIG
1814 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1815 #endif
1817 return 0;
1820 void tcp_v4_destroy_sock(struct sock *sk)
1822 struct tcp_sock *tp = tcp_sk(sk);
1824 tcp_clear_xmit_timers(sk);
1826 tcp_cleanup_congestion_control(sk);
1828 /* Cleanup up the write buffer. */
1829 tcp_write_queue_purge(sk);
1831 /* Cleans up our, hopefully empty, out_of_order_queue. */
1832 __skb_queue_purge(&tp->out_of_order_queue);
1834 #ifdef CONFIG_TCP_MD5SIG
1835 /* Clean up the MD5 key list, if any */
1836 if (tp->md5sig_info) {
1837 tcp_clear_md5_list(sk);
1838 kfree_rcu(tp->md5sig_info, rcu);
1839 tp->md5sig_info = NULL;
1841 #endif
1843 /* Clean prequeue, it must be empty really */
1844 __skb_queue_purge(&tp->ucopy.prequeue);
1846 /* Clean up a referenced TCP bind bucket. */
1847 if (inet_csk(sk)->icsk_bind_hash)
1848 inet_put_port(sk);
1850 BUG_ON(tp->fastopen_rsk);
1852 /* If socket is aborted during connect operation */
1853 tcp_free_fastopen_req(tp);
1854 tcp_saved_syn_free(tp);
1856 sk_sockets_allocated_dec(sk);
1857 sock_release_memcg(sk);
1859 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1861 #ifdef CONFIG_PROC_FS
1862 /* Proc filesystem TCP sock list dumping. */
1865 * Get next listener socket follow cur. If cur is NULL, get first socket
1866 * starting from bucket given in st->bucket; when st->bucket is zero the
1867 * very first socket in the hash table is returned.
1869 static void *listening_get_next(struct seq_file *seq, void *cur)
1871 struct inet_connection_sock *icsk;
1872 struct hlist_nulls_node *node;
1873 struct sock *sk = cur;
1874 struct inet_listen_hashbucket *ilb;
1875 struct tcp_iter_state *st = seq->private;
1876 struct net *net = seq_file_net(seq);
1878 if (!sk) {
1879 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1880 spin_lock_bh(&ilb->lock);
1881 sk = sk_nulls_head(&ilb->head);
1882 st->offset = 0;
1883 goto get_sk;
1885 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1886 ++st->num;
1887 ++st->offset;
1889 sk = sk_nulls_next(sk);
1890 get_sk:
1891 sk_nulls_for_each_from(sk, node) {
1892 if (!net_eq(sock_net(sk), net))
1893 continue;
1894 if (sk->sk_family == st->family) {
1895 cur = sk;
1896 goto out;
1898 icsk = inet_csk(sk);
1900 spin_unlock_bh(&ilb->lock);
1901 st->offset = 0;
1902 if (++st->bucket < INET_LHTABLE_SIZE) {
1903 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1904 spin_lock_bh(&ilb->lock);
1905 sk = sk_nulls_head(&ilb->head);
1906 goto get_sk;
1908 cur = NULL;
1909 out:
1910 return cur;
1913 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1915 struct tcp_iter_state *st = seq->private;
1916 void *rc;
1918 st->bucket = 0;
1919 st->offset = 0;
1920 rc = listening_get_next(seq, NULL);
1922 while (rc && *pos) {
1923 rc = listening_get_next(seq, rc);
1924 --*pos;
1926 return rc;
1929 static inline bool empty_bucket(const struct tcp_iter_state *st)
1931 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1935 * Get first established socket starting from bucket given in st->bucket.
1936 * If st->bucket is zero, the very first socket in the hash is returned.
1938 static void *established_get_first(struct seq_file *seq)
1940 struct tcp_iter_state *st = seq->private;
1941 struct net *net = seq_file_net(seq);
1942 void *rc = NULL;
1944 st->offset = 0;
1945 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1946 struct sock *sk;
1947 struct hlist_nulls_node *node;
1948 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1950 /* Lockless fast path for the common case of empty buckets */
1951 if (empty_bucket(st))
1952 continue;
1954 spin_lock_bh(lock);
1955 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1956 if (sk->sk_family != st->family ||
1957 !net_eq(sock_net(sk), net)) {
1958 continue;
1960 rc = sk;
1961 goto out;
1963 spin_unlock_bh(lock);
1965 out:
1966 return rc;
1969 static void *established_get_next(struct seq_file *seq, void *cur)
1971 struct sock *sk = cur;
1972 struct hlist_nulls_node *node;
1973 struct tcp_iter_state *st = seq->private;
1974 struct net *net = seq_file_net(seq);
1976 ++st->num;
1977 ++st->offset;
1979 sk = sk_nulls_next(sk);
1981 sk_nulls_for_each_from(sk, node) {
1982 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1983 return sk;
1986 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1987 ++st->bucket;
1988 return established_get_first(seq);
1991 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1993 struct tcp_iter_state *st = seq->private;
1994 void *rc;
1996 st->bucket = 0;
1997 rc = established_get_first(seq);
1999 while (rc && pos) {
2000 rc = established_get_next(seq, rc);
2001 --pos;
2003 return rc;
2006 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2008 void *rc;
2009 struct tcp_iter_state *st = seq->private;
2011 st->state = TCP_SEQ_STATE_LISTENING;
2012 rc = listening_get_idx(seq, &pos);
2014 if (!rc) {
2015 st->state = TCP_SEQ_STATE_ESTABLISHED;
2016 rc = established_get_idx(seq, pos);
2019 return rc;
2022 static void *tcp_seek_last_pos(struct seq_file *seq)
2024 struct tcp_iter_state *st = seq->private;
2025 int offset = st->offset;
2026 int orig_num = st->num;
2027 void *rc = NULL;
2029 switch (st->state) {
2030 case TCP_SEQ_STATE_LISTENING:
2031 if (st->bucket >= INET_LHTABLE_SIZE)
2032 break;
2033 st->state = TCP_SEQ_STATE_LISTENING;
2034 rc = listening_get_next(seq, NULL);
2035 while (offset-- && rc)
2036 rc = listening_get_next(seq, rc);
2037 if (rc)
2038 break;
2039 st->bucket = 0;
2040 st->state = TCP_SEQ_STATE_ESTABLISHED;
2041 /* Fallthrough */
2042 case TCP_SEQ_STATE_ESTABLISHED:
2043 if (st->bucket > tcp_hashinfo.ehash_mask)
2044 break;
2045 rc = established_get_first(seq);
2046 while (offset-- && rc)
2047 rc = established_get_next(seq, rc);
2050 st->num = orig_num;
2052 return rc;
2055 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2057 struct tcp_iter_state *st = seq->private;
2058 void *rc;
2060 if (*pos && *pos == st->last_pos) {
2061 rc = tcp_seek_last_pos(seq);
2062 if (rc)
2063 goto out;
2066 st->state = TCP_SEQ_STATE_LISTENING;
2067 st->num = 0;
2068 st->bucket = 0;
2069 st->offset = 0;
2070 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2072 out:
2073 st->last_pos = *pos;
2074 return rc;
2077 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2079 struct tcp_iter_state *st = seq->private;
2080 void *rc = NULL;
2082 if (v == SEQ_START_TOKEN) {
2083 rc = tcp_get_idx(seq, 0);
2084 goto out;
2087 switch (st->state) {
2088 case TCP_SEQ_STATE_LISTENING:
2089 rc = listening_get_next(seq, v);
2090 if (!rc) {
2091 st->state = TCP_SEQ_STATE_ESTABLISHED;
2092 st->bucket = 0;
2093 st->offset = 0;
2094 rc = established_get_first(seq);
2096 break;
2097 case TCP_SEQ_STATE_ESTABLISHED:
2098 rc = established_get_next(seq, v);
2099 break;
2101 out:
2102 ++*pos;
2103 st->last_pos = *pos;
2104 return rc;
2107 static void tcp_seq_stop(struct seq_file *seq, void *v)
2109 struct tcp_iter_state *st = seq->private;
2111 switch (st->state) {
2112 case TCP_SEQ_STATE_LISTENING:
2113 if (v != SEQ_START_TOKEN)
2114 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2115 break;
2116 case TCP_SEQ_STATE_ESTABLISHED:
2117 if (v)
2118 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2119 break;
2123 int tcp_seq_open(struct inode *inode, struct file *file)
2125 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2126 struct tcp_iter_state *s;
2127 int err;
2129 err = seq_open_net(inode, file, &afinfo->seq_ops,
2130 sizeof(struct tcp_iter_state));
2131 if (err < 0)
2132 return err;
2134 s = ((struct seq_file *)file->private_data)->private;
2135 s->family = afinfo->family;
2136 s->last_pos = 0;
2137 return 0;
2139 EXPORT_SYMBOL(tcp_seq_open);
2141 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2143 int rc = 0;
2144 struct proc_dir_entry *p;
2146 afinfo->seq_ops.start = tcp_seq_start;
2147 afinfo->seq_ops.next = tcp_seq_next;
2148 afinfo->seq_ops.stop = tcp_seq_stop;
2150 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2151 afinfo->seq_fops, afinfo);
2152 if (!p)
2153 rc = -ENOMEM;
2154 return rc;
2156 EXPORT_SYMBOL(tcp_proc_register);
2158 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2160 remove_proc_entry(afinfo->name, net->proc_net);
2162 EXPORT_SYMBOL(tcp_proc_unregister);
2164 static void get_openreq4(const struct request_sock *req,
2165 struct seq_file *f, int i)
2167 const struct inet_request_sock *ireq = inet_rsk(req);
2168 long delta = req->rsk_timer.expires - jiffies;
2170 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2171 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2173 ireq->ir_loc_addr,
2174 ireq->ir_num,
2175 ireq->ir_rmt_addr,
2176 ntohs(ireq->ir_rmt_port),
2177 TCP_SYN_RECV,
2178 0, 0, /* could print option size, but that is af dependent. */
2179 1, /* timers active (only the expire timer) */
2180 jiffies_delta_to_clock_t(delta),
2181 req->num_timeout,
2182 from_kuid_munged(seq_user_ns(f),
2183 sock_i_uid(req->rsk_listener)),
2184 0, /* non standard timer */
2185 0, /* open_requests have no inode */
2187 req);
2190 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2192 int timer_active;
2193 unsigned long timer_expires;
2194 const struct tcp_sock *tp = tcp_sk(sk);
2195 const struct inet_connection_sock *icsk = inet_csk(sk);
2196 const struct inet_sock *inet = inet_sk(sk);
2197 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2198 __be32 dest = inet->inet_daddr;
2199 __be32 src = inet->inet_rcv_saddr;
2200 __u16 destp = ntohs(inet->inet_dport);
2201 __u16 srcp = ntohs(inet->inet_sport);
2202 int rx_queue;
2203 int state;
2205 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2206 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2207 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2208 timer_active = 1;
2209 timer_expires = icsk->icsk_timeout;
2210 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2211 timer_active = 4;
2212 timer_expires = icsk->icsk_timeout;
2213 } else if (timer_pending(&sk->sk_timer)) {
2214 timer_active = 2;
2215 timer_expires = sk->sk_timer.expires;
2216 } else {
2217 timer_active = 0;
2218 timer_expires = jiffies;
2221 state = sk_state_load(sk);
2222 if (state == TCP_LISTEN)
2223 rx_queue = sk->sk_ack_backlog;
2224 else
2225 /* Because we don't lock the socket,
2226 * we might find a transient negative value.
2228 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2230 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2231 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2232 i, src, srcp, dest, destp, state,
2233 tp->write_seq - tp->snd_una,
2234 rx_queue,
2235 timer_active,
2236 jiffies_delta_to_clock_t(timer_expires - jiffies),
2237 icsk->icsk_retransmits,
2238 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2239 icsk->icsk_probes_out,
2240 sock_i_ino(sk),
2241 atomic_read(&sk->sk_refcnt), sk,
2242 jiffies_to_clock_t(icsk->icsk_rto),
2243 jiffies_to_clock_t(icsk->icsk_ack.ato),
2244 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2245 tp->snd_cwnd,
2246 state == TCP_LISTEN ?
2247 fastopenq->max_qlen :
2248 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2251 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2252 struct seq_file *f, int i)
2254 long delta = tw->tw_timer.expires - jiffies;
2255 __be32 dest, src;
2256 __u16 destp, srcp;
2258 dest = tw->tw_daddr;
2259 src = tw->tw_rcv_saddr;
2260 destp = ntohs(tw->tw_dport);
2261 srcp = ntohs(tw->tw_sport);
2263 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2264 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2265 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2266 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2267 atomic_read(&tw->tw_refcnt), tw);
2270 #define TMPSZ 150
2272 static int tcp4_seq_show(struct seq_file *seq, void *v)
2274 struct tcp_iter_state *st;
2275 struct sock *sk = v;
2277 seq_setwidth(seq, TMPSZ - 1);
2278 if (v == SEQ_START_TOKEN) {
2279 seq_puts(seq, " sl local_address rem_address st tx_queue "
2280 "rx_queue tr tm->when retrnsmt uid timeout "
2281 "inode");
2282 goto out;
2284 st = seq->private;
2286 if (sk->sk_state == TCP_TIME_WAIT)
2287 get_timewait4_sock(v, seq, st->num);
2288 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2289 get_openreq4(v, seq, st->num);
2290 else
2291 get_tcp4_sock(v, seq, st->num);
2292 out:
2293 seq_pad(seq, '\n');
2294 return 0;
2297 static const struct file_operations tcp_afinfo_seq_fops = {
2298 .owner = THIS_MODULE,
2299 .open = tcp_seq_open,
2300 .read = seq_read,
2301 .llseek = seq_lseek,
2302 .release = seq_release_net
2305 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2306 .name = "tcp",
2307 .family = AF_INET,
2308 .seq_fops = &tcp_afinfo_seq_fops,
2309 .seq_ops = {
2310 .show = tcp4_seq_show,
2314 static int __net_init tcp4_proc_init_net(struct net *net)
2316 return tcp_proc_register(net, &tcp4_seq_afinfo);
2319 static void __net_exit tcp4_proc_exit_net(struct net *net)
2321 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2324 static struct pernet_operations tcp4_net_ops = {
2325 .init = tcp4_proc_init_net,
2326 .exit = tcp4_proc_exit_net,
2329 int __init tcp4_proc_init(void)
2331 return register_pernet_subsys(&tcp4_net_ops);
2334 void tcp4_proc_exit(void)
2336 unregister_pernet_subsys(&tcp4_net_ops);
2338 #endif /* CONFIG_PROC_FS */
2340 struct proto tcp_prot = {
2341 .name = "TCP",
2342 .owner = THIS_MODULE,
2343 .close = tcp_close,
2344 .connect = tcp_v4_connect,
2345 .disconnect = tcp_disconnect,
2346 .accept = inet_csk_accept,
2347 .ioctl = tcp_ioctl,
2348 .init = tcp_v4_init_sock,
2349 .destroy = tcp_v4_destroy_sock,
2350 .shutdown = tcp_shutdown,
2351 .setsockopt = tcp_setsockopt,
2352 .getsockopt = tcp_getsockopt,
2353 .recvmsg = tcp_recvmsg,
2354 .sendmsg = tcp_sendmsg,
2355 .sendpage = tcp_sendpage,
2356 .backlog_rcv = tcp_v4_do_rcv,
2357 .release_cb = tcp_release_cb,
2358 .hash = inet_hash,
2359 .unhash = inet_unhash,
2360 .get_port = inet_csk_get_port,
2361 .enter_memory_pressure = tcp_enter_memory_pressure,
2362 .stream_memory_free = tcp_stream_memory_free,
2363 .sockets_allocated = &tcp_sockets_allocated,
2364 .orphan_count = &tcp_orphan_count,
2365 .memory_allocated = &tcp_memory_allocated,
2366 .memory_pressure = &tcp_memory_pressure,
2367 .sysctl_mem = sysctl_tcp_mem,
2368 .sysctl_wmem = sysctl_tcp_wmem,
2369 .sysctl_rmem = sysctl_tcp_rmem,
2370 .max_header = MAX_TCP_HEADER,
2371 .obj_size = sizeof(struct tcp_sock),
2372 .slab_flags = SLAB_DESTROY_BY_RCU,
2373 .twsk_prot = &tcp_timewait_sock_ops,
2374 .rsk_prot = &tcp_request_sock_ops,
2375 .h.hashinfo = &tcp_hashinfo,
2376 .no_autobind = true,
2377 #ifdef CONFIG_COMPAT
2378 .compat_setsockopt = compat_tcp_setsockopt,
2379 .compat_getsockopt = compat_tcp_getsockopt,
2380 #endif
2381 #ifdef CONFIG_MEMCG_KMEM
2382 .init_cgroup = tcp_init_cgroup,
2383 .destroy_cgroup = tcp_destroy_cgroup,
2384 .proto_cgroup = tcp_proto_cgroup,
2385 #endif
2387 EXPORT_SYMBOL(tcp_prot);
2389 static void __net_exit tcp_sk_exit(struct net *net)
2391 int cpu;
2393 for_each_possible_cpu(cpu)
2394 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2395 free_percpu(net->ipv4.tcp_sk);
2398 static int __net_init tcp_sk_init(struct net *net)
2400 int res, cpu;
2402 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2403 if (!net->ipv4.tcp_sk)
2404 return -ENOMEM;
2406 for_each_possible_cpu(cpu) {
2407 struct sock *sk;
2409 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2410 IPPROTO_TCP, net);
2411 if (res)
2412 goto fail;
2413 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2416 net->ipv4.sysctl_tcp_ecn = 2;
2417 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2419 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2420 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2421 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2423 return 0;
2424 fail:
2425 tcp_sk_exit(net);
2427 return res;
2430 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2432 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2435 static struct pernet_operations __net_initdata tcp_sk_ops = {
2436 .init = tcp_sk_init,
2437 .exit = tcp_sk_exit,
2438 .exit_batch = tcp_sk_exit_batch,
2441 void __init tcp_v4_init(void)
2443 inet_hashinfo_init(&tcp_hashinfo);
2444 if (register_pernet_subsys(&tcp_sk_ops))
2445 panic("Failed to create the TCP control socket.\n");