2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
30 int sysctl_tcp_syncookies __read_mostly
= 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies
);
33 int sysctl_tcp_abort_on_overflow __read_mostly
;
35 struct inet_timewait_death_row tcp_death_row
= {
36 .sysctl_max_tw_buckets
= NR_FILE
* 2,
37 .hashinfo
= &tcp_hashinfo
,
39 EXPORT_SYMBOL_GPL(tcp_death_row
);
41 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
45 if (after(end_seq
, s_win
) && before(seq
, e_win
))
47 return seq
== e_win
&& seq
== end_seq
;
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock
*tw
,
52 const struct sk_buff
*skb
, int mib_idx
)
54 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
56 if (!tcp_oow_rate_limited(twsk_net(tw
), skb
, mib_idx
,
57 &tcptw
->tw_last_oow_ack_time
)) {
58 /* Send ACK. Note, we do not put the bucket,
59 * it will be released by caller.
64 /* We are rate-limiting, so just release the tw sock and drop skb. */
66 return TCP_TW_SUCCESS
;
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
97 * We don't need to initialize tmp_out.sack_ok as we don't use the results
100 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
101 const struct tcphdr
*th
)
103 struct tcp_options_received tmp_opt
;
104 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
105 bool paws_reject
= false;
107 tmp_opt
.saw_tstamp
= 0;
108 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
109 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
111 if (tmp_opt
.saw_tstamp
) {
112 tmp_opt
.rcv_tsecr
-= tcptw
->tw_ts_offset
;
113 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
114 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
115 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
119 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
120 /* Just repeat all the checks of tcp_rcv_state_process() */
122 /* Out of window, send ACK */
124 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
126 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
127 return tcp_timewait_check_oow_rate_limit(
128 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDFINWAIT2
);
133 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
138 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
139 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
141 return TCP_TW_SUCCESS
;
144 /* New data or FIN. If new data arrive after half-duplex close,
148 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1) {
150 inet_twsk_deschedule_put(tw
);
154 /* FIN arrived, enter true time-wait state. */
155 tw
->tw_substate
= TCP_TIME_WAIT
;
156 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
157 if (tmp_opt
.saw_tstamp
) {
158 tcptw
->tw_ts_recent_stamp
= get_seconds();
159 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
162 if (tcp_death_row
.sysctl_tw_recycle
&&
163 tcptw
->tw_ts_recent_stamp
&&
164 tcp_tw_remember_stamp(tw
))
165 inet_twsk_reschedule(tw
, tw
->tw_timeout
);
167 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
172 * Now real TIME-WAIT state.
175 * "When a connection is [...] on TIME-WAIT state [...]
176 * [a TCP] MAY accept a new SYN from the remote TCP to
177 * reopen the connection directly, if it:
179 * (1) assigns its initial sequence number for the new
180 * connection to be larger than the largest sequence
181 * number it used on the previous connection incarnation,
184 * (2) returns to TIME-WAIT state if the SYN turns out
185 * to be an old duplicate".
189 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
190 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
191 /* In window segment, it may be only reset or bare ack. */
194 /* This is TIME_WAIT assassination, in two flavors.
195 * Oh well... nobody has a sufficient solution to this
198 if (sysctl_tcp_rfc1337
== 0) {
200 inet_twsk_deschedule_put(tw
);
201 return TCP_TW_SUCCESS
;
204 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
207 if (tmp_opt
.saw_tstamp
) {
208 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
209 tcptw
->tw_ts_recent_stamp
= get_seconds();
213 return TCP_TW_SUCCESS
;
216 /* Out of window segment.
218 All the segments are ACKed immediately.
220 The only exception is new SYN. We accept it, if it is
221 not old duplicate and we are not in danger to be killed
222 by delayed old duplicates. RFC check is that it has
223 newer sequence number works at rates <40Mbit/sec.
224 However, if paws works, it is reliable AND even more,
225 we even may relax silly seq space cutoff.
227 RED-PEN: we violate main RFC requirement, if this SYN will appear
228 old duplicate (i.e. we receive RST in reply to SYN-ACK),
229 we must return socket to time-wait state. It is not good,
233 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
234 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
235 (tmp_opt
.saw_tstamp
&&
236 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
237 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
240 TCP_SKB_CB(skb
)->tcp_tw_isn
= isn
;
245 NET_INC_STATS_BH(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
248 /* In this case we must reset the TIMEWAIT timer.
250 * If it is ACKless SYN it may be both old duplicate
251 * and new good SYN with random sequence number <rcv_nxt.
252 * Do not reschedule in the last case.
254 if (paws_reject
|| th
->ack
)
255 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
257 return tcp_timewait_check_oow_rate_limit(
258 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT
);
261 return TCP_TW_SUCCESS
;
263 EXPORT_SYMBOL(tcp_timewait_state_process
);
266 * Move a socket to time-wait or dead fin-wait-2 state.
268 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
270 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
271 const struct tcp_sock
*tp
= tcp_sk(sk
);
272 struct inet_timewait_sock
*tw
;
273 bool recycle_ok
= false;
275 if (tcp_death_row
.sysctl_tw_recycle
&& tp
->rx_opt
.ts_recent_stamp
)
276 recycle_ok
= tcp_remember_stamp(sk
);
278 tw
= inet_twsk_alloc(sk
, &tcp_death_row
, state
);
281 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
282 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
283 struct inet_sock
*inet
= inet_sk(sk
);
285 tw
->tw_transparent
= inet
->transparent
;
286 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
287 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
288 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
289 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
290 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
291 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
292 tcptw
->tw_ts_offset
= tp
->tsoffset
;
293 tcptw
->tw_last_oow_ack_time
= 0;
295 #if IS_ENABLED(CONFIG_IPV6)
296 if (tw
->tw_family
== PF_INET6
) {
297 struct ipv6_pinfo
*np
= inet6_sk(sk
);
299 tw
->tw_v6_daddr
= sk
->sk_v6_daddr
;
300 tw
->tw_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
301 tw
->tw_tclass
= np
->tclass
;
302 tw
->tw_flowlabel
= be32_to_cpu(np
->flow_label
& IPV6_FLOWLABEL_MASK
);
303 tw
->tw_ipv6only
= sk
->sk_ipv6only
;
307 #ifdef CONFIG_TCP_MD5SIG
309 * The timewait bucket does not have the key DB from the
310 * sock structure. We just make a quick copy of the
311 * md5 key being used (if indeed we are using one)
312 * so the timewait ack generating code has the key.
315 struct tcp_md5sig_key
*key
;
316 tcptw
->tw_md5_key
= NULL
;
317 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
319 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
320 if (tcptw
->tw_md5_key
&& !tcp_alloc_md5sig_pool())
326 /* Get the TIME_WAIT timeout firing. */
331 tw
->tw_timeout
= rto
;
333 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
334 if (state
== TCP_TIME_WAIT
)
335 timeo
= TCP_TIMEWAIT_LEN
;
338 inet_twsk_schedule(tw
, timeo
);
339 /* Linkage updates. */
340 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
343 /* Sorry, if we're out of memory, just CLOSE this
344 * socket up. We've got bigger problems than
345 * non-graceful socket closings.
347 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
350 tcp_update_metrics(sk
);
354 void tcp_twsk_destructor(struct sock
*sk
)
356 #ifdef CONFIG_TCP_MD5SIG
357 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
359 if (twsk
->tw_md5_key
)
360 kfree_rcu(twsk
->tw_md5_key
, rcu
);
363 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
365 /* Warning : This function is called without sk_listener being locked.
366 * Be sure to read socket fields once, as their value could change under us.
368 void tcp_openreq_init_rwin(struct request_sock
*req
,
369 const struct sock
*sk_listener
,
370 const struct dst_entry
*dst
)
372 struct inet_request_sock
*ireq
= inet_rsk(req
);
373 const struct tcp_sock
*tp
= tcp_sk(sk_listener
);
374 u16 user_mss
= READ_ONCE(tp
->rx_opt
.user_mss
);
375 int full_space
= tcp_full_space(sk_listener
);
376 int mss
= dst_metric_advmss(dst
);
380 if (user_mss
&& user_mss
< mss
)
383 window_clamp
= READ_ONCE(tp
->window_clamp
);
384 /* Set this up on the first call only */
385 req
->rsk_window_clamp
= window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
387 /* limit the window selection if the user enforce a smaller rx buffer */
388 if (sk_listener
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
389 (req
->rsk_window_clamp
> full_space
|| req
->rsk_window_clamp
== 0))
390 req
->rsk_window_clamp
= full_space
;
392 /* tcp_full_space because it is guaranteed to be the first packet */
393 tcp_select_initial_window(full_space
,
394 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
396 &req
->rsk_window_clamp
,
399 dst_metric(dst
, RTAX_INITRWND
));
400 ireq
->rcv_wscale
= rcv_wscale
;
402 EXPORT_SYMBOL(tcp_openreq_init_rwin
);
404 static void tcp_ecn_openreq_child(struct tcp_sock
*tp
,
405 const struct request_sock
*req
)
407 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
410 void tcp_ca_openreq_child(struct sock
*sk
, const struct dst_entry
*dst
)
412 struct inet_connection_sock
*icsk
= inet_csk(sk
);
413 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
414 bool ca_got_dst
= false;
416 if (ca_key
!= TCP_CA_UNSPEC
) {
417 const struct tcp_congestion_ops
*ca
;
420 ca
= tcp_ca_find_key(ca_key
);
421 if (likely(ca
&& try_module_get(ca
->owner
))) {
422 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
423 icsk
->icsk_ca_ops
= ca
;
429 /* If no valid choice made yet, assign current system default ca. */
431 (!icsk
->icsk_ca_setsockopt
||
432 !try_module_get(icsk
->icsk_ca_ops
->owner
)))
433 tcp_assign_congestion_control(sk
);
435 tcp_set_ca_state(sk
, TCP_CA_Open
);
437 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child
);
439 /* This is not only more efficient than what we used to do, it eliminates
440 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
442 * Actually, we could lots of memory writes here. tp of listening
443 * socket contains all necessary default parameters.
445 struct sock
*tcp_create_openreq_child(const struct sock
*sk
,
446 struct request_sock
*req
,
449 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
452 const struct inet_request_sock
*ireq
= inet_rsk(req
);
453 struct tcp_request_sock
*treq
= tcp_rsk(req
);
454 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
455 struct tcp_sock
*newtp
= tcp_sk(newsk
);
457 /* Now setup tcp_sock */
458 newtp
->pred_flags
= 0;
460 newtp
->rcv_wup
= newtp
->copied_seq
=
461 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
464 newtp
->snd_sml
= newtp
->snd_una
=
465 newtp
->snd_nxt
= newtp
->snd_up
= treq
->snt_isn
+ 1;
467 tcp_prequeue_init(newtp
);
468 INIT_LIST_HEAD(&newtp
->tsq_node
);
470 tcp_init_wl(newtp
, treq
->rcv_isn
);
473 newtp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
474 newtp
->rtt_min
[0].rtt
= ~0U;
475 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
476 newicsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
478 newtp
->packets_out
= 0;
479 newtp
->retrans_out
= 0;
480 newtp
->sacked_out
= 0;
481 newtp
->fackets_out
= 0;
482 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
483 tcp_enable_early_retrans(newtp
);
484 newtp
->tlp_high_seq
= 0;
485 newtp
->lsndtime
= treq
->snt_synack
.stamp_jiffies
;
486 newsk
->sk_txhash
= treq
->txhash
;
487 newtp
->last_oow_ack_time
= 0;
488 newtp
->total_retrans
= req
->num_retrans
;
490 /* So many TCP implementations out there (incorrectly) count the
491 * initial SYN frame in their delayed-ACK and congestion control
492 * algorithms that we must have the following bandaid to talk
493 * efficiently to them. -DaveM
495 newtp
->snd_cwnd
= TCP_INIT_CWND
;
496 newtp
->snd_cwnd_cnt
= 0;
498 tcp_init_xmit_timers(newsk
);
499 __skb_queue_head_init(&newtp
->out_of_order_queue
);
500 newtp
->write_seq
= newtp
->pushed_seq
= treq
->snt_isn
+ 1;
502 newtp
->rx_opt
.saw_tstamp
= 0;
504 newtp
->rx_opt
.dsack
= 0;
505 newtp
->rx_opt
.num_sacks
= 0;
509 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
510 inet_csk_reset_keepalive_timer(newsk
,
511 keepalive_time_when(newtp
));
513 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
514 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
516 tcp_enable_fack(newtp
);
518 newtp
->window_clamp
= req
->rsk_window_clamp
;
519 newtp
->rcv_ssthresh
= req
->rsk_rcv_wnd
;
520 newtp
->rcv_wnd
= req
->rsk_rcv_wnd
;
521 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
522 if (newtp
->rx_opt
.wscale_ok
) {
523 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
524 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
526 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
527 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
529 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
530 newtp
->rx_opt
.snd_wscale
);
531 newtp
->max_window
= newtp
->snd_wnd
;
533 if (newtp
->rx_opt
.tstamp_ok
) {
534 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
535 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
536 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
538 newtp
->rx_opt
.ts_recent_stamp
= 0;
539 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
542 #ifdef CONFIG_TCP_MD5SIG
543 newtp
->md5sig_info
= NULL
; /*XXX*/
544 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
545 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
547 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
548 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
549 newtp
->rx_opt
.mss_clamp
= req
->mss
;
550 tcp_ecn_openreq_child(newtp
, req
);
551 newtp
->fastopen_req
= NULL
;
552 newtp
->fastopen_rsk
= NULL
;
553 newtp
->syn_data_acked
= 0;
554 newtp
->rack
.mstamp
.v64
= 0;
555 newtp
->rack
.advanced
= 0;
557 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
561 EXPORT_SYMBOL(tcp_create_openreq_child
);
564 * Process an incoming packet for SYN_RECV sockets represented as a
565 * request_sock. Normally sk is the listener socket but for TFO it
566 * points to the child socket.
568 * XXX (TFO) - The current impl contains a special check for ack
569 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
571 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
574 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
575 struct request_sock
*req
,
578 struct tcp_options_received tmp_opt
;
580 const struct tcphdr
*th
= tcp_hdr(skb
);
581 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
582 bool paws_reject
= false;
585 tmp_opt
.saw_tstamp
= 0;
586 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
587 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
589 if (tmp_opt
.saw_tstamp
) {
590 tmp_opt
.ts_recent
= req
->ts_recent
;
591 /* We do not store true stamp, but it is not required,
592 * it can be estimated (approximately)
595 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
596 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
600 /* Check for pure retransmitted SYN. */
601 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
602 flg
== TCP_FLAG_SYN
&&
605 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
606 * this case on figure 6 and figure 8, but formal
607 * protocol description says NOTHING.
608 * To be more exact, it says that we should send ACK,
609 * because this segment (at least, if it has no data)
612 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
613 * describe SYN-RECV state. All the description
614 * is wrong, we cannot believe to it and should
615 * rely only on common sense and implementation
618 * Enforce "SYN-ACK" according to figure 8, figure 6
619 * of RFC793, fixed by RFC1122.
621 * Note that even if there is new data in the SYN packet
622 * they will be thrown away too.
624 * Reset timer after retransmitting SYNACK, similar to
625 * the idea of fast retransmit in recovery.
627 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
628 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
629 &tcp_rsk(req
)->last_oow_ack_time
) &&
631 !inet_rtx_syn_ack(sk
, req
)) {
632 unsigned long expires
= jiffies
;
634 expires
+= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
,
637 mod_timer_pending(&req
->rsk_timer
, expires
);
639 req
->rsk_timer
.expires
= expires
;
644 /* Further reproduces section "SEGMENT ARRIVES"
645 for state SYN-RECEIVED of RFC793.
646 It is broken, however, it does not work only
647 when SYNs are crossed.
649 You would think that SYN crossing is impossible here, since
650 we should have a SYN_SENT socket (from connect()) on our end,
651 but this is not true if the crossed SYNs were sent to both
652 ends by a malicious third party. We must defend against this,
653 and to do that we first verify the ACK (as per RFC793, page
654 36) and reset if it is invalid. Is this a true full defense?
655 To convince ourselves, let us consider a way in which the ACK
656 test can still pass in this 'malicious crossed SYNs' case.
657 Malicious sender sends identical SYNs (and thus identical sequence
658 numbers) to both A and B:
663 By our good fortune, both A and B select the same initial
664 send sequence number of seven :-)
666 A: sends SYN|ACK, seq=7, ack_seq=8
667 B: sends SYN|ACK, seq=7, ack_seq=8
669 So we are now A eating this SYN|ACK, ACK test passes. So
670 does sequence test, SYN is truncated, and thus we consider
673 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
674 bare ACK. Otherwise, we create an established connection. Both
675 ends (listening sockets) accept the new incoming connection and try
676 to talk to each other. 8-)
678 Note: This case is both harmless, and rare. Possibility is about the
679 same as us discovering intelligent life on another plant tomorrow.
681 But generally, we should (RFC lies!) to accept ACK
682 from SYNACK both here and in tcp_rcv_state_process().
683 tcp_rcv_state_process() does not, hence, we do not too.
685 Note that the case is absolutely generic:
686 we cannot optimize anything here without
687 violating protocol. All the checks must be made
688 before attempt to create socket.
691 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
692 * and the incoming segment acknowledges something not yet
693 * sent (the segment carries an unacceptable ACK) ...
696 * Invalid ACK: reset will be sent by listening socket.
697 * Note that the ACK validity check for a Fast Open socket is done
698 * elsewhere and is checked directly against the child socket rather
699 * than req because user data may have been sent out.
701 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
702 (TCP_SKB_CB(skb
)->ack_seq
!=
703 tcp_rsk(req
)->snt_isn
+ 1))
706 /* Also, it would be not so bad idea to check rcv_tsecr, which
707 * is essentially ACK extension and too early or too late values
708 * should cause reset in unsynchronized states.
711 /* RFC793: "first check sequence number". */
713 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
714 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rsk_rcv_wnd
)) {
715 /* Out of window: send ACK and drop. */
716 if (!(flg
& TCP_FLAG_RST
))
717 req
->rsk_ops
->send_ack(sk
, skb
, req
);
719 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
723 /* In sequence, PAWS is OK. */
725 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
726 req
->ts_recent
= tmp_opt
.rcv_tsval
;
728 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
729 /* Truncate SYN, it is out of window starting
730 at tcp_rsk(req)->rcv_isn + 1. */
731 flg
&= ~TCP_FLAG_SYN
;
734 /* RFC793: "second check the RST bit" and
735 * "fourth, check the SYN bit"
737 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
738 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
739 goto embryonic_reset
;
742 /* ACK sequence verified above, just make sure ACK is
743 * set. If ACK not set, just silently drop the packet.
745 * XXX (TFO) - if we ever allow "data after SYN", the
746 * following check needs to be removed.
748 if (!(flg
& TCP_FLAG_ACK
))
751 /* For Fast Open no more processing is needed (sk is the
757 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
758 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
759 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
760 inet_rsk(req
)->acked
= 1;
761 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
765 /* OK, ACK is valid, create big socket and
766 * feed this segment to it. It will repeat all
767 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
768 * ESTABLISHED STATE. If it will be dropped after
769 * socket is created, wait for troubles.
771 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
,
774 goto listen_overflow
;
776 sock_rps_save_rxhash(child
, skb
);
777 tcp_synack_rtt_meas(child
, req
);
778 return inet_csk_complete_hashdance(sk
, child
, req
, own_req
);
781 if (!sysctl_tcp_abort_on_overflow
) {
782 inet_rsk(req
)->acked
= 1;
787 if (!(flg
& TCP_FLAG_RST
)) {
788 /* Received a bad SYN pkt - for TFO We try not to reset
789 * the local connection unless it's really necessary to
790 * avoid becoming vulnerable to outside attack aiming at
791 * resetting legit local connections.
793 req
->rsk_ops
->send_reset(sk
, skb
);
794 } else if (fastopen
) { /* received a valid RST pkt */
795 reqsk_fastopen_remove(sk
, req
, true);
799 inet_csk_reqsk_queue_drop(sk
, req
);
800 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
804 EXPORT_SYMBOL(tcp_check_req
);
807 * Queue segment on the new socket if the new socket is active,
808 * otherwise we just shortcircuit this and continue with
811 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
812 * when entering. But other states are possible due to a race condition
813 * where after __inet_lookup_established() fails but before the listener
814 * locked is obtained, other packets cause the same connection to
818 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
822 int state
= child
->sk_state
;
824 tcp_sk(child
)->segs_in
+= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
825 if (!sock_owned_by_user(child
)) {
826 ret
= tcp_rcv_state_process(child
, skb
);
827 /* Wakeup parent, send SIGIO */
828 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
829 parent
->sk_data_ready(parent
);
831 /* Alas, it is possible again, because we do lookup
832 * in main socket hash table and lock on listening
833 * socket does not protect us more.
835 __sk_add_backlog(child
, skb
);
838 bh_unlock_sock(child
);
842 EXPORT_SYMBOL(tcp_child_process
);