dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / ipv4 / udp.c
blob6f929689fd03f03a1d79c93736337aa2b45d1fde
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 const struct udp_hslot *hslot,
137 unsigned long *bitmap,
138 struct sock *sk,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2),
141 unsigned int log)
143 struct sock *sk2;
144 struct hlist_nulls_node *node;
145 kuid_t uid = sock_i_uid(sk);
147 sk_nulls_for_each(sk2, node, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 !uid_eq(uid, sock_i_uid(sk2))) &&
156 saddr_comp(sk, sk2)) {
157 if (!bitmap)
158 return 1;
159 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
162 return 0;
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 saddr_comp(sk, sk2)) {
191 res = 1;
192 break;
195 spin_unlock(&hslot2->lock);
196 return res;
200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
202 * @sk: socket struct in question
203 * @snum: port number to look up
204 * @saddr_comp: AF-dependent comparison of bound local IP addresses
205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206 * with NULL address
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 int (*saddr_comp)(const struct sock *sk1,
210 const struct sock *sk2),
211 unsigned int hash2_nulladdr)
213 struct udp_hslot *hslot, *hslot2;
214 struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 int error = 1;
216 struct net *net = sock_net(sk);
218 if (!snum) {
219 int low, high, remaining;
220 unsigned int rand;
221 unsigned short first, last;
222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224 inet_get_local_port_range(net, &low, &high);
225 remaining = (high - low) + 1;
227 rand = prandom_u32();
228 first = reciprocal_scale(rand, remaining) + low;
230 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 rand = (rand | 1) * (udptable->mask + 1);
233 last = first + udptable->mask + 1;
234 do {
235 hslot = udp_hashslot(udptable, net, first);
236 bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 spin_lock_bh(&hslot->lock);
238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 saddr_comp, udptable->log);
241 snum = first;
243 * Iterate on all possible values of snum for this hash.
244 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 * give us randomization and full range coverage.
247 do {
248 if (low <= snum && snum <= high &&
249 !test_bit(snum >> udptable->log, bitmap) &&
250 !inet_is_local_reserved_port(net, snum))
251 goto found;
252 snum += rand;
253 } while (snum != first);
254 spin_unlock_bh(&hslot->lock);
255 } while (++first != last);
256 goto fail;
257 } else {
258 hslot = udp_hashslot(udptable, net, snum);
259 spin_lock_bh(&hslot->lock);
260 if (hslot->count > 10) {
261 int exist;
262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264 slot2 &= udptable->mask;
265 hash2_nulladdr &= udptable->mask;
267 hslot2 = udp_hashslot2(udptable, slot2);
268 if (hslot->count < hslot2->count)
269 goto scan_primary_hash;
271 exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 sk, saddr_comp);
273 if (!exist && (hash2_nulladdr != slot2)) {
274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 sk, saddr_comp);
278 if (exist)
279 goto fail_unlock;
280 else
281 goto found;
283 scan_primary_hash:
284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 saddr_comp, 0))
286 goto fail_unlock;
288 found:
289 inet_sk(sk)->inet_num = snum;
290 udp_sk(sk)->udp_port_hash = snum;
291 udp_sk(sk)->udp_portaddr_hash ^= snum;
292 if (sk_unhashed(sk)) {
293 sk_nulls_add_node_rcu(sk, &hslot->head);
294 hslot->count++;
295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 spin_lock(&hslot2->lock);
299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 &hslot2->head);
301 hslot2->count++;
302 spin_unlock(&hslot2->lock);
304 error = 0;
305 fail_unlock:
306 spin_unlock_bh(&hslot->lock);
307 fail:
308 return error;
310 EXPORT_SYMBOL(udp_lib_get_port);
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316 return (!ipv6_only_sock(sk2) &&
317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
322 unsigned int port)
324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 unsigned int hash2_nulladdr =
330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 unsigned int hash2_partial =
332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334 /* precompute partial secondary hash */
335 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
339 static inline int compute_score(struct sock *sk, struct net *net,
340 __be32 saddr, unsigned short hnum, __be16 sport,
341 __be32 daddr, __be16 dport, int dif)
343 int score;
344 struct inet_sock *inet;
346 if (!net_eq(sock_net(sk), net) ||
347 udp_sk(sk)->udp_port_hash != hnum ||
348 ipv6_only_sock(sk))
349 return -1;
351 score = (sk->sk_family == PF_INET) ? 2 : 1;
352 inet = inet_sk(sk);
354 if (inet->inet_rcv_saddr) {
355 if (inet->inet_rcv_saddr != daddr)
356 return -1;
357 score += 4;
360 if (inet->inet_daddr) {
361 if (inet->inet_daddr != saddr)
362 return -1;
363 score += 4;
366 if (inet->inet_dport) {
367 if (inet->inet_dport != sport)
368 return -1;
369 score += 4;
372 if (sk->sk_bound_dev_if) {
373 if (sk->sk_bound_dev_if != dif)
374 return -1;
375 score += 4;
377 if (sk->sk_incoming_cpu == raw_smp_processor_id())
378 score++;
379 return score;
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 __be32 saddr, __be16 sport,
387 __be32 daddr, unsigned int hnum, int dif)
389 int score;
390 struct inet_sock *inet;
392 if (!net_eq(sock_net(sk), net) ||
393 ipv6_only_sock(sk))
394 return -1;
396 inet = inet_sk(sk);
398 if (inet->inet_rcv_saddr != daddr ||
399 inet->inet_num != hnum)
400 return -1;
402 score = (sk->sk_family == PF_INET) ? 2 : 1;
404 if (inet->inet_daddr) {
405 if (inet->inet_daddr != saddr)
406 return -1;
407 score += 4;
410 if (inet->inet_dport) {
411 if (inet->inet_dport != sport)
412 return -1;
413 score += 4;
416 if (sk->sk_bound_dev_if) {
417 if (sk->sk_bound_dev_if != dif)
418 return -1;
419 score += 4;
422 if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 score++;
425 return score;
428 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
429 const __u16 lport, const __be32 faddr,
430 const __be16 fport)
432 static u32 udp_ehash_secret __read_mostly;
434 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
436 return __inet_ehashfn(laddr, lport, faddr, fport,
437 udp_ehash_secret + net_hash_mix(net));
440 /* called with read_rcu_lock() */
441 static struct sock *udp4_lib_lookup2(struct net *net,
442 __be32 saddr, __be16 sport,
443 __be32 daddr, unsigned int hnum, int dif,
444 struct udp_hslot *hslot2, unsigned int slot2)
446 struct sock *sk, *result;
447 struct hlist_nulls_node *node;
448 int score, badness, matches = 0, reuseport = 0;
449 u32 hash = 0;
451 begin:
452 result = NULL;
453 badness = 0;
454 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
455 score = compute_score2(sk, net, saddr, sport,
456 daddr, hnum, dif);
457 if (score > badness) {
458 result = sk;
459 badness = score;
460 reuseport = sk->sk_reuseport;
461 if (reuseport) {
462 hash = udp_ehashfn(net, daddr, hnum,
463 saddr, sport);
464 matches = 1;
466 } else if (score == badness && reuseport) {
467 matches++;
468 if (reciprocal_scale(hash, matches) == 0)
469 result = sk;
470 hash = next_pseudo_random32(hash);
474 * if the nulls value we got at the end of this lookup is
475 * not the expected one, we must restart lookup.
476 * We probably met an item that was moved to another chain.
478 if (get_nulls_value(node) != slot2)
479 goto begin;
480 if (result) {
481 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
482 result = NULL;
483 else if (unlikely(compute_score2(result, net, saddr, sport,
484 daddr, hnum, dif) < badness)) {
485 sock_put(result);
486 goto begin;
489 return result;
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493 * harder than this. -DaveM
495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 __be16 sport, __be32 daddr, __be16 dport,
497 int dif, struct udp_table *udptable)
499 struct sock *sk, *result;
500 struct hlist_nulls_node *node;
501 unsigned short hnum = ntohs(dport);
502 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
503 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
504 int score, badness, matches = 0, reuseport = 0;
505 u32 hash = 0;
507 rcu_read_lock();
508 if (hslot->count > 10) {
509 hash2 = udp4_portaddr_hash(net, daddr, hnum);
510 slot2 = hash2 & udptable->mask;
511 hslot2 = &udptable->hash2[slot2];
512 if (hslot->count < hslot2->count)
513 goto begin;
515 result = udp4_lib_lookup2(net, saddr, sport,
516 daddr, hnum, dif,
517 hslot2, slot2);
518 if (!result) {
519 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 slot2 = hash2 & udptable->mask;
521 hslot2 = &udptable->hash2[slot2];
522 if (hslot->count < hslot2->count)
523 goto begin;
525 result = udp4_lib_lookup2(net, saddr, sport,
526 htonl(INADDR_ANY), hnum, dif,
527 hslot2, slot2);
529 rcu_read_unlock();
530 return result;
532 begin:
533 result = NULL;
534 badness = 0;
535 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
536 score = compute_score(sk, net, saddr, hnum, sport,
537 daddr, dport, dif);
538 if (score > badness) {
539 result = sk;
540 badness = score;
541 reuseport = sk->sk_reuseport;
542 if (reuseport) {
543 hash = udp_ehashfn(net, daddr, hnum,
544 saddr, sport);
545 matches = 1;
547 } else if (score == badness && reuseport) {
548 matches++;
549 if (reciprocal_scale(hash, matches) == 0)
550 result = sk;
551 hash = next_pseudo_random32(hash);
555 * if the nulls value we got at the end of this lookup is
556 * not the expected one, we must restart lookup.
557 * We probably met an item that was moved to another chain.
559 if (get_nulls_value(node) != slot)
560 goto begin;
562 if (result) {
563 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
564 result = NULL;
565 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
566 daddr, dport, dif) < badness)) {
567 sock_put(result);
568 goto begin;
571 rcu_read_unlock();
572 return result;
574 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
576 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
577 __be16 sport, __be16 dport,
578 struct udp_table *udptable)
580 const struct iphdr *iph = ip_hdr(skb);
582 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
583 iph->daddr, dport, inet_iif(skb),
584 udptable);
587 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
588 __be32 daddr, __be16 dport, int dif)
590 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
592 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
594 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
595 __be16 loc_port, __be32 loc_addr,
596 __be16 rmt_port, __be32 rmt_addr,
597 int dif, unsigned short hnum)
599 struct inet_sock *inet = inet_sk(sk);
601 if (!net_eq(sock_net(sk), net) ||
602 udp_sk(sk)->udp_port_hash != hnum ||
603 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
604 (inet->inet_dport != rmt_port && inet->inet_dport) ||
605 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
606 ipv6_only_sock(sk) ||
607 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
608 return false;
609 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
610 return false;
611 return true;
615 * This routine is called by the ICMP module when it gets some
616 * sort of error condition. If err < 0 then the socket should
617 * be closed and the error returned to the user. If err > 0
618 * it's just the icmp type << 8 | icmp code.
619 * Header points to the ip header of the error packet. We move
620 * on past this. Then (as it used to claim before adjustment)
621 * header points to the first 8 bytes of the udp header. We need
622 * to find the appropriate port.
625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
627 struct inet_sock *inet;
628 const struct iphdr *iph = (const struct iphdr *)skb->data;
629 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
630 const int type = icmp_hdr(skb)->type;
631 const int code = icmp_hdr(skb)->code;
632 struct sock *sk;
633 int harderr;
634 int err;
635 struct net *net = dev_net(skb->dev);
637 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
638 iph->saddr, uh->source, skb->dev->ifindex, udptable);
639 if (!sk) {
640 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
641 return; /* No socket for error */
644 err = 0;
645 harderr = 0;
646 inet = inet_sk(sk);
648 switch (type) {
649 default:
650 case ICMP_TIME_EXCEEDED:
651 err = EHOSTUNREACH;
652 break;
653 case ICMP_SOURCE_QUENCH:
654 goto out;
655 case ICMP_PARAMETERPROB:
656 err = EPROTO;
657 harderr = 1;
658 break;
659 case ICMP_DEST_UNREACH:
660 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
661 ipv4_sk_update_pmtu(skb, sk, info);
662 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
663 err = EMSGSIZE;
664 harderr = 1;
665 break;
667 goto out;
669 err = EHOSTUNREACH;
670 if (code <= NR_ICMP_UNREACH) {
671 harderr = icmp_err_convert[code].fatal;
672 err = icmp_err_convert[code].errno;
674 break;
675 case ICMP_REDIRECT:
676 ipv4_sk_redirect(skb, sk);
677 goto out;
681 * RFC1122: OK. Passes ICMP errors back to application, as per
682 * 4.1.3.3.
684 if (!inet->recverr) {
685 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
686 goto out;
687 } else
688 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
690 sk->sk_err = err;
691 sk->sk_error_report(sk);
692 out:
693 sock_put(sk);
696 void udp_err(struct sk_buff *skb, u32 info)
698 __udp4_lib_err(skb, info, &udp_table);
702 * Throw away all pending data and cancel the corking. Socket is locked.
704 void udp_flush_pending_frames(struct sock *sk)
706 struct udp_sock *up = udp_sk(sk);
708 if (up->pending) {
709 up->len = 0;
710 up->pending = 0;
711 ip_flush_pending_frames(sk);
714 EXPORT_SYMBOL(udp_flush_pending_frames);
717 * udp4_hwcsum - handle outgoing HW checksumming
718 * @skb: sk_buff containing the filled-in UDP header
719 * (checksum field must be zeroed out)
720 * @src: source IP address
721 * @dst: destination IP address
723 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
725 struct udphdr *uh = udp_hdr(skb);
726 int offset = skb_transport_offset(skb);
727 int len = skb->len - offset;
728 int hlen = len;
729 __wsum csum = 0;
731 if (!skb_has_frag_list(skb)) {
733 * Only one fragment on the socket.
735 skb->csum_start = skb_transport_header(skb) - skb->head;
736 skb->csum_offset = offsetof(struct udphdr, check);
737 uh->check = ~csum_tcpudp_magic(src, dst, len,
738 IPPROTO_UDP, 0);
739 } else {
740 struct sk_buff *frags;
743 * HW-checksum won't work as there are two or more
744 * fragments on the socket so that all csums of sk_buffs
745 * should be together
747 skb_walk_frags(skb, frags) {
748 csum = csum_add(csum, frags->csum);
749 hlen -= frags->len;
752 csum = skb_checksum(skb, offset, hlen, csum);
753 skb->ip_summed = CHECKSUM_NONE;
755 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
756 if (uh->check == 0)
757 uh->check = CSUM_MANGLED_0;
760 EXPORT_SYMBOL_GPL(udp4_hwcsum);
762 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
763 * for the simple case like when setting the checksum for a UDP tunnel.
765 void udp_set_csum(bool nocheck, struct sk_buff *skb,
766 __be32 saddr, __be32 daddr, int len)
768 struct udphdr *uh = udp_hdr(skb);
770 if (nocheck)
771 uh->check = 0;
772 else if (skb_is_gso(skb))
773 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
774 else if (skb_dst(skb) && skb_dst(skb)->dev &&
775 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
777 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
779 skb->ip_summed = CHECKSUM_PARTIAL;
780 skb->csum_start = skb_transport_header(skb) - skb->head;
781 skb->csum_offset = offsetof(struct udphdr, check);
782 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
783 } else {
784 __wsum csum;
786 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
788 uh->check = 0;
789 csum = skb_checksum(skb, 0, len, 0);
790 uh->check = udp_v4_check(len, saddr, daddr, csum);
791 if (uh->check == 0)
792 uh->check = CSUM_MANGLED_0;
794 skb->ip_summed = CHECKSUM_UNNECESSARY;
797 EXPORT_SYMBOL(udp_set_csum);
799 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
801 struct sock *sk = skb->sk;
802 struct inet_sock *inet = inet_sk(sk);
803 struct udphdr *uh;
804 int err = 0;
805 int is_udplite = IS_UDPLITE(sk);
806 int offset = skb_transport_offset(skb);
807 int len = skb->len - offset;
808 __wsum csum = 0;
811 * Create a UDP header
813 uh = udp_hdr(skb);
814 uh->source = inet->inet_sport;
815 uh->dest = fl4->fl4_dport;
816 uh->len = htons(len);
817 uh->check = 0;
819 if (is_udplite) /* UDP-Lite */
820 csum = udplite_csum(skb);
822 else if (sk->sk_no_check_tx && !skb_is_gso(skb)) { /* UDP csum off */
824 skb->ip_summed = CHECKSUM_NONE;
825 goto send;
827 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
829 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
830 goto send;
832 } else
833 csum = udp_csum(skb);
835 /* add protocol-dependent pseudo-header */
836 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
837 sk->sk_protocol, csum);
838 if (uh->check == 0)
839 uh->check = CSUM_MANGLED_0;
841 send:
842 err = ip_send_skb(sock_net(sk), skb);
843 if (err) {
844 if (err == -ENOBUFS && !inet->recverr) {
845 UDP_INC_STATS_USER(sock_net(sk),
846 UDP_MIB_SNDBUFERRORS, is_udplite);
847 err = 0;
849 } else
850 UDP_INC_STATS_USER(sock_net(sk),
851 UDP_MIB_OUTDATAGRAMS, is_udplite);
852 return err;
856 * Push out all pending data as one UDP datagram. Socket is locked.
858 int udp_push_pending_frames(struct sock *sk)
860 struct udp_sock *up = udp_sk(sk);
861 struct inet_sock *inet = inet_sk(sk);
862 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
863 struct sk_buff *skb;
864 int err = 0;
866 skb = ip_finish_skb(sk, fl4);
867 if (!skb)
868 goto out;
870 err = udp_send_skb(skb, fl4);
872 out:
873 up->len = 0;
874 up->pending = 0;
875 return err;
877 EXPORT_SYMBOL(udp_push_pending_frames);
879 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
881 struct inet_sock *inet = inet_sk(sk);
882 struct udp_sock *up = udp_sk(sk);
883 struct flowi4 fl4_stack;
884 struct flowi4 *fl4;
885 int ulen = len;
886 struct ipcm_cookie ipc;
887 struct rtable *rt = NULL;
888 int free = 0;
889 int connected = 0;
890 __be32 daddr, faddr, saddr;
891 __be16 dport;
892 u8 tos;
893 int err, is_udplite = IS_UDPLITE(sk);
894 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
895 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
896 struct sk_buff *skb;
897 struct ip_options_data opt_copy;
899 if (len > 0xFFFF)
900 return -EMSGSIZE;
903 * Check the flags.
906 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
907 return -EOPNOTSUPP;
909 ipc.opt = NULL;
910 ipc.tx_flags = 0;
911 ipc.ttl = 0;
912 ipc.tos = -1;
914 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
916 fl4 = &inet->cork.fl.u.ip4;
917 if (up->pending) {
919 * There are pending frames.
920 * The socket lock must be held while it's corked.
922 lock_sock(sk);
923 if (likely(up->pending)) {
924 if (unlikely(up->pending != AF_INET)) {
925 release_sock(sk);
926 return -EINVAL;
928 goto do_append_data;
930 release_sock(sk);
932 ulen += sizeof(struct udphdr);
935 * Get and verify the address.
937 if (msg->msg_name) {
938 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
939 if (msg->msg_namelen < sizeof(*usin))
940 return -EINVAL;
941 if (usin->sin_family != AF_INET) {
942 if (usin->sin_family != AF_UNSPEC)
943 return -EAFNOSUPPORT;
946 daddr = usin->sin_addr.s_addr;
947 dport = usin->sin_port;
948 if (dport == 0)
949 return -EINVAL;
950 } else {
951 if (sk->sk_state != TCP_ESTABLISHED)
952 return -EDESTADDRREQ;
953 daddr = inet->inet_daddr;
954 dport = inet->inet_dport;
955 /* Open fast path for connected socket.
956 Route will not be used, if at least one option is set.
958 connected = 1;
960 ipc.addr = inet->inet_saddr;
962 ipc.oif = sk->sk_bound_dev_if;
964 sock_tx_timestamp(sk, &ipc.tx_flags);
966 if (msg->msg_controllen) {
967 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
968 sk->sk_family == AF_INET6);
969 if (unlikely(err)) {
970 kfree(ipc.opt);
971 return err;
973 if (ipc.opt)
974 free = 1;
975 connected = 0;
977 if (!ipc.opt) {
978 struct ip_options_rcu *inet_opt;
980 rcu_read_lock();
981 inet_opt = rcu_dereference(inet->inet_opt);
982 if (inet_opt) {
983 memcpy(&opt_copy, inet_opt,
984 sizeof(*inet_opt) + inet_opt->opt.optlen);
985 ipc.opt = &opt_copy.opt;
987 rcu_read_unlock();
990 saddr = ipc.addr;
991 ipc.addr = faddr = daddr;
993 if (ipc.opt && ipc.opt->opt.srr) {
994 if (!daddr) {
995 err = -EINVAL;
996 goto out_free;
998 faddr = ipc.opt->opt.faddr;
999 connected = 0;
1001 tos = get_rttos(&ipc, inet);
1002 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1003 (msg->msg_flags & MSG_DONTROUTE) ||
1004 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1005 tos |= RTO_ONLINK;
1006 connected = 0;
1009 if (ipv4_is_multicast(daddr)) {
1010 if (!ipc.oif)
1011 ipc.oif = inet->mc_index;
1012 if (!saddr)
1013 saddr = inet->mc_addr;
1014 connected = 0;
1015 } else if (!ipc.oif)
1016 ipc.oif = inet->uc_index;
1018 if (connected)
1019 rt = (struct rtable *)sk_dst_check(sk, 0);
1021 if (!rt) {
1022 struct net *net = sock_net(sk);
1023 __u8 flow_flags = inet_sk_flowi_flags(sk);
1025 fl4 = &fl4_stack;
1027 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1028 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1029 flow_flags,
1030 faddr, saddr, dport, inet->inet_sport);
1032 if (!saddr && ipc.oif) {
1033 err = l3mdev_get_saddr(net, ipc.oif, fl4);
1034 if (err < 0)
1035 goto out;
1038 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1039 rt = ip_route_output_flow(net, fl4, sk);
1040 if (IS_ERR(rt)) {
1041 err = PTR_ERR(rt);
1042 rt = NULL;
1043 if (err == -ENETUNREACH)
1044 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1045 goto out;
1048 err = -EACCES;
1049 if ((rt->rt_flags & RTCF_BROADCAST) &&
1050 !sock_flag(sk, SOCK_BROADCAST))
1051 goto out;
1052 if (connected)
1053 sk_dst_set(sk, dst_clone(&rt->dst));
1056 if (msg->msg_flags&MSG_CONFIRM)
1057 goto do_confirm;
1058 back_from_confirm:
1060 saddr = fl4->saddr;
1061 if (!ipc.addr)
1062 daddr = ipc.addr = fl4->daddr;
1064 /* Lockless fast path for the non-corking case. */
1065 if (!corkreq) {
1066 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1067 sizeof(struct udphdr), &ipc, &rt,
1068 msg->msg_flags);
1069 err = PTR_ERR(skb);
1070 if (!IS_ERR_OR_NULL(skb))
1071 err = udp_send_skb(skb, fl4);
1072 goto out;
1075 lock_sock(sk);
1076 if (unlikely(up->pending)) {
1077 /* The socket is already corked while preparing it. */
1078 /* ... which is an evident application bug. --ANK */
1079 release_sock(sk);
1081 net_dbg_ratelimited("cork app bug 2\n");
1082 err = -EINVAL;
1083 goto out;
1086 * Now cork the socket to pend data.
1088 fl4 = &inet->cork.fl.u.ip4;
1089 fl4->daddr = daddr;
1090 fl4->saddr = saddr;
1091 fl4->fl4_dport = dport;
1092 fl4->fl4_sport = inet->inet_sport;
1093 up->pending = AF_INET;
1095 do_append_data:
1096 up->len += ulen;
1097 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1098 sizeof(struct udphdr), &ipc, &rt,
1099 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1100 if (err)
1101 udp_flush_pending_frames(sk);
1102 else if (!corkreq)
1103 err = udp_push_pending_frames(sk);
1104 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1105 up->pending = 0;
1106 release_sock(sk);
1108 out:
1109 ip_rt_put(rt);
1110 out_free:
1111 if (free)
1112 kfree(ipc.opt);
1113 if (!err)
1114 return len;
1116 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1117 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1118 * we don't have a good statistic (IpOutDiscards but it can be too many
1119 * things). We could add another new stat but at least for now that
1120 * seems like overkill.
1122 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1123 UDP_INC_STATS_USER(sock_net(sk),
1124 UDP_MIB_SNDBUFERRORS, is_udplite);
1126 return err;
1128 do_confirm:
1129 dst_confirm(&rt->dst);
1130 if (!(msg->msg_flags&MSG_PROBE) || len)
1131 goto back_from_confirm;
1132 err = 0;
1133 goto out;
1135 EXPORT_SYMBOL(udp_sendmsg);
1137 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1138 size_t size, int flags)
1140 struct inet_sock *inet = inet_sk(sk);
1141 struct udp_sock *up = udp_sk(sk);
1142 int ret;
1144 if (flags & MSG_SENDPAGE_NOTLAST)
1145 flags |= MSG_MORE;
1147 if (!up->pending) {
1148 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1150 /* Call udp_sendmsg to specify destination address which
1151 * sendpage interface can't pass.
1152 * This will succeed only when the socket is connected.
1154 ret = udp_sendmsg(sk, &msg, 0);
1155 if (ret < 0)
1156 return ret;
1159 lock_sock(sk);
1161 if (unlikely(!up->pending)) {
1162 release_sock(sk);
1164 net_dbg_ratelimited("udp cork app bug 3\n");
1165 return -EINVAL;
1168 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1169 page, offset, size, flags);
1170 if (ret == -EOPNOTSUPP) {
1171 release_sock(sk);
1172 return sock_no_sendpage(sk->sk_socket, page, offset,
1173 size, flags);
1175 if (ret < 0) {
1176 udp_flush_pending_frames(sk);
1177 goto out;
1180 up->len += size;
1181 if (!(up->corkflag || (flags&MSG_MORE)))
1182 ret = udp_push_pending_frames(sk);
1183 if (!ret)
1184 ret = size;
1185 out:
1186 release_sock(sk);
1187 return ret;
1191 * first_packet_length - return length of first packet in receive queue
1192 * @sk: socket
1194 * Drops all bad checksum frames, until a valid one is found.
1195 * Returns the length of found skb, or 0 if none is found.
1197 static unsigned int first_packet_length(struct sock *sk)
1199 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1200 struct sk_buff *skb;
1201 unsigned int res;
1203 __skb_queue_head_init(&list_kill);
1205 spin_lock_bh(&rcvq->lock);
1206 while ((skb = skb_peek(rcvq)) != NULL &&
1207 udp_lib_checksum_complete(skb)) {
1208 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1209 IS_UDPLITE(sk));
1210 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1211 IS_UDPLITE(sk));
1212 atomic_inc(&sk->sk_drops);
1213 __skb_unlink(skb, rcvq);
1214 __skb_queue_tail(&list_kill, skb);
1216 res = skb ? skb->len : 0;
1217 spin_unlock_bh(&rcvq->lock);
1219 if (!skb_queue_empty(&list_kill)) {
1220 bool slow = lock_sock_fast(sk);
1222 __skb_queue_purge(&list_kill);
1223 sk_mem_reclaim_partial(sk);
1224 unlock_sock_fast(sk, slow);
1226 return res;
1230 * IOCTL requests applicable to the UDP protocol
1233 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1235 switch (cmd) {
1236 case SIOCOUTQ:
1238 int amount = sk_wmem_alloc_get(sk);
1240 return put_user(amount, (int __user *)arg);
1243 case SIOCINQ:
1245 unsigned int amount = first_packet_length(sk);
1247 if (amount)
1249 * We will only return the amount
1250 * of this packet since that is all
1251 * that will be read.
1253 amount -= sizeof(struct udphdr);
1255 return put_user(amount, (int __user *)arg);
1258 default:
1259 return -ENOIOCTLCMD;
1262 return 0;
1264 EXPORT_SYMBOL(udp_ioctl);
1267 * This should be easy, if there is something there we
1268 * return it, otherwise we block.
1271 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1272 int flags, int *addr_len)
1274 struct inet_sock *inet = inet_sk(sk);
1275 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1276 struct sk_buff *skb;
1277 unsigned int ulen, copied;
1278 int peeked, off = 0;
1279 int err;
1280 int is_udplite = IS_UDPLITE(sk);
1281 bool checksum_valid = false;
1282 bool slow;
1284 if (flags & MSG_ERRQUEUE)
1285 return ip_recv_error(sk, msg, len, addr_len);
1287 try_again:
1288 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1289 &peeked, &off, &err);
1290 if (!skb)
1291 goto out;
1293 ulen = skb->len - sizeof(struct udphdr);
1294 copied = len;
1295 if (copied > ulen)
1296 copied = ulen;
1297 else if (copied < ulen)
1298 msg->msg_flags |= MSG_TRUNC;
1301 * If checksum is needed at all, try to do it while copying the
1302 * data. If the data is truncated, or if we only want a partial
1303 * coverage checksum (UDP-Lite), do it before the copy.
1306 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1307 checksum_valid = !udp_lib_checksum_complete(skb);
1308 if (!checksum_valid)
1309 goto csum_copy_err;
1312 if (checksum_valid || skb_csum_unnecessary(skb))
1313 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1314 msg, copied);
1315 else {
1316 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1317 msg);
1319 if (err == -EINVAL)
1320 goto csum_copy_err;
1323 if (unlikely(err)) {
1324 trace_kfree_skb(skb, udp_recvmsg);
1325 if (!peeked) {
1326 atomic_inc(&sk->sk_drops);
1327 UDP_INC_STATS_USER(sock_net(sk),
1328 UDP_MIB_INERRORS, is_udplite);
1330 goto out_free;
1333 if (!peeked)
1334 UDP_INC_STATS_USER(sock_net(sk),
1335 UDP_MIB_INDATAGRAMS, is_udplite);
1337 sock_recv_ts_and_drops(msg, sk, skb);
1339 /* Copy the address. */
1340 if (sin) {
1341 sin->sin_family = AF_INET;
1342 sin->sin_port = udp_hdr(skb)->source;
1343 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1344 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1345 *addr_len = sizeof(*sin);
1347 if (inet->cmsg_flags)
1348 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr), off);
1350 err = copied;
1351 if (flags & MSG_TRUNC)
1352 err = ulen;
1354 out_free:
1355 skb_free_datagram_locked(sk, skb);
1356 out:
1357 return err;
1359 csum_copy_err:
1360 slow = lock_sock_fast(sk);
1361 if (!skb_kill_datagram(sk, skb, flags)) {
1362 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1363 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1365 unlock_sock_fast(sk, slow);
1367 /* starting over for a new packet, but check if we need to yield */
1368 cond_resched();
1369 msg->msg_flags &= ~MSG_TRUNC;
1370 goto try_again;
1373 int udp_disconnect(struct sock *sk, int flags)
1375 struct inet_sock *inet = inet_sk(sk);
1377 * 1003.1g - break association.
1380 sk->sk_state = TCP_CLOSE;
1381 inet->inet_daddr = 0;
1382 inet->inet_dport = 0;
1383 sock_rps_reset_rxhash(sk);
1384 sk->sk_bound_dev_if = 0;
1385 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1386 inet_reset_saddr(sk);
1388 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1389 sk->sk_prot->unhash(sk);
1390 inet->inet_sport = 0;
1392 sk_dst_reset(sk);
1393 return 0;
1395 EXPORT_SYMBOL(udp_disconnect);
1397 void udp_lib_unhash(struct sock *sk)
1399 if (sk_hashed(sk)) {
1400 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1401 struct udp_hslot *hslot, *hslot2;
1403 hslot = udp_hashslot(udptable, sock_net(sk),
1404 udp_sk(sk)->udp_port_hash);
1405 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1407 spin_lock_bh(&hslot->lock);
1408 if (sk_nulls_del_node_init_rcu(sk)) {
1409 hslot->count--;
1410 inet_sk(sk)->inet_num = 0;
1411 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1413 spin_lock(&hslot2->lock);
1414 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1415 hslot2->count--;
1416 spin_unlock(&hslot2->lock);
1418 spin_unlock_bh(&hslot->lock);
1421 EXPORT_SYMBOL(udp_lib_unhash);
1424 * inet_rcv_saddr was changed, we must rehash secondary hash
1426 void udp_lib_rehash(struct sock *sk, u16 newhash)
1428 if (sk_hashed(sk)) {
1429 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1430 struct udp_hslot *hslot, *hslot2, *nhslot2;
1432 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1433 nhslot2 = udp_hashslot2(udptable, newhash);
1434 udp_sk(sk)->udp_portaddr_hash = newhash;
1435 if (hslot2 != nhslot2) {
1436 hslot = udp_hashslot(udptable, sock_net(sk),
1437 udp_sk(sk)->udp_port_hash);
1438 /* we must lock primary chain too */
1439 spin_lock_bh(&hslot->lock);
1441 spin_lock(&hslot2->lock);
1442 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1443 hslot2->count--;
1444 spin_unlock(&hslot2->lock);
1446 spin_lock(&nhslot2->lock);
1447 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1448 &nhslot2->head);
1449 nhslot2->count++;
1450 spin_unlock(&nhslot2->lock);
1452 spin_unlock_bh(&hslot->lock);
1456 EXPORT_SYMBOL(udp_lib_rehash);
1458 static void udp_v4_rehash(struct sock *sk)
1460 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1461 inet_sk(sk)->inet_rcv_saddr,
1462 inet_sk(sk)->inet_num);
1463 udp_lib_rehash(sk, new_hash);
1466 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1468 int rc;
1470 if (inet_sk(sk)->inet_daddr) {
1471 sock_rps_save_rxhash(sk, skb);
1472 sk_mark_napi_id(sk, skb);
1473 sk_incoming_cpu_update(sk);
1476 rc = sock_queue_rcv_skb(sk, skb);
1477 if (rc < 0) {
1478 int is_udplite = IS_UDPLITE(sk);
1480 /* Note that an ENOMEM error is charged twice */
1481 if (rc == -ENOMEM)
1482 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1483 is_udplite);
1484 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1485 kfree_skb(skb);
1486 trace_udp_fail_queue_rcv_skb(rc, sk);
1487 return -1;
1490 return 0;
1494 static struct static_key udp_encap_needed __read_mostly;
1495 void udp_encap_enable(void)
1497 if (!static_key_enabled(&udp_encap_needed))
1498 static_key_slow_inc(&udp_encap_needed);
1500 EXPORT_SYMBOL(udp_encap_enable);
1502 /* returns:
1503 * -1: error
1504 * 0: success
1505 * >0: "udp encap" protocol resubmission
1507 * Note that in the success and error cases, the skb is assumed to
1508 * have either been requeued or freed.
1510 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1512 struct udp_sock *up = udp_sk(sk);
1513 int rc;
1514 int is_udplite = IS_UDPLITE(sk);
1517 * Charge it to the socket, dropping if the queue is full.
1519 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1520 goto drop;
1521 nf_reset(skb);
1523 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1524 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1527 * This is an encapsulation socket so pass the skb to
1528 * the socket's udp_encap_rcv() hook. Otherwise, just
1529 * fall through and pass this up the UDP socket.
1530 * up->encap_rcv() returns the following value:
1531 * =0 if skb was successfully passed to the encap
1532 * handler or was discarded by it.
1533 * >0 if skb should be passed on to UDP.
1534 * <0 if skb should be resubmitted as proto -N
1537 /* if we're overly short, let UDP handle it */
1538 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1539 if (encap_rcv) {
1540 int ret;
1542 /* Verify checksum before giving to encap */
1543 if (udp_lib_checksum_complete(skb))
1544 goto csum_error;
1546 ret = encap_rcv(sk, skb);
1547 if (ret <= 0) {
1548 UDP_INC_STATS_BH(sock_net(sk),
1549 UDP_MIB_INDATAGRAMS,
1550 is_udplite);
1551 return -ret;
1555 /* FALLTHROUGH -- it's a UDP Packet */
1559 * UDP-Lite specific tests, ignored on UDP sockets
1561 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1564 * MIB statistics other than incrementing the error count are
1565 * disabled for the following two types of errors: these depend
1566 * on the application settings, not on the functioning of the
1567 * protocol stack as such.
1569 * RFC 3828 here recommends (sec 3.3): "There should also be a
1570 * way ... to ... at least let the receiving application block
1571 * delivery of packets with coverage values less than a value
1572 * provided by the application."
1574 if (up->pcrlen == 0) { /* full coverage was set */
1575 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1576 UDP_SKB_CB(skb)->cscov, skb->len);
1577 goto drop;
1579 /* The next case involves violating the min. coverage requested
1580 * by the receiver. This is subtle: if receiver wants x and x is
1581 * greater than the buffersize/MTU then receiver will complain
1582 * that it wants x while sender emits packets of smaller size y.
1583 * Therefore the above ...()->partial_cov statement is essential.
1585 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1586 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1587 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1588 goto drop;
1592 if (rcu_access_pointer(sk->sk_filter) &&
1593 udp_lib_checksum_complete(skb))
1594 goto csum_error;
1596 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1597 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1598 is_udplite);
1599 goto drop;
1602 rc = 0;
1604 ipv4_pktinfo_prepare(sk, skb);
1605 bh_lock_sock(sk);
1606 if (!sock_owned_by_user(sk))
1607 rc = __udp_queue_rcv_skb(sk, skb);
1608 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1609 bh_unlock_sock(sk);
1610 goto drop;
1612 bh_unlock_sock(sk);
1614 return rc;
1616 csum_error:
1617 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1618 drop:
1619 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1620 atomic_inc(&sk->sk_drops);
1621 kfree_skb(skb);
1622 return -1;
1625 static void flush_stack(struct sock **stack, unsigned int count,
1626 struct sk_buff *skb, unsigned int final)
1628 unsigned int i;
1629 struct sk_buff *skb1 = NULL;
1630 struct sock *sk;
1632 for (i = 0; i < count; i++) {
1633 sk = stack[i];
1634 if (likely(!skb1))
1635 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1637 if (!skb1) {
1638 atomic_inc(&sk->sk_drops);
1639 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1640 IS_UDPLITE(sk));
1641 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1642 IS_UDPLITE(sk));
1645 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1646 skb1 = NULL;
1648 sock_put(sk);
1650 if (unlikely(skb1))
1651 kfree_skb(skb1);
1654 /* For TCP sockets, sk_rx_dst is protected by socket lock
1655 * For UDP, we use xchg() to guard against concurrent changes.
1657 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1659 struct dst_entry *old;
1661 dst_hold(dst);
1662 old = xchg(&sk->sk_rx_dst, dst);
1663 dst_release(old);
1667 * Multicasts and broadcasts go to each listener.
1669 * Note: called only from the BH handler context.
1671 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1672 struct udphdr *uh,
1673 __be32 saddr, __be32 daddr,
1674 struct udp_table *udptable,
1675 int proto)
1677 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1678 struct hlist_nulls_node *node;
1679 unsigned short hnum = ntohs(uh->dest);
1680 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1681 int dif = skb->dev->ifindex;
1682 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1683 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1684 bool inner_flushed = false;
1686 if (use_hash2) {
1687 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1688 udp_table.mask;
1689 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1690 start_lookup:
1691 hslot = &udp_table.hash2[hash2];
1692 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1695 spin_lock(&hslot->lock);
1696 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1697 if (__udp_is_mcast_sock(net, sk,
1698 uh->dest, daddr,
1699 uh->source, saddr,
1700 dif, hnum)) {
1701 if (unlikely(count == ARRAY_SIZE(stack))) {
1702 flush_stack(stack, count, skb, ~0);
1703 inner_flushed = true;
1704 count = 0;
1706 stack[count++] = sk;
1707 sock_hold(sk);
1711 spin_unlock(&hslot->lock);
1713 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1714 if (use_hash2 && hash2 != hash2_any) {
1715 hash2 = hash2_any;
1716 goto start_lookup;
1720 * do the slow work with no lock held
1722 if (count) {
1723 flush_stack(stack, count, skb, count - 1);
1724 } else {
1725 if (!inner_flushed)
1726 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1727 proto == IPPROTO_UDPLITE);
1728 consume_skb(skb);
1730 return 0;
1733 /* Initialize UDP checksum. If exited with zero value (success),
1734 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1735 * Otherwise, csum completion requires chacksumming packet body,
1736 * including udp header and folding it to skb->csum.
1738 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1739 int proto)
1741 int err;
1743 UDP_SKB_CB(skb)->partial_cov = 0;
1744 UDP_SKB_CB(skb)->cscov = skb->len;
1746 if (proto == IPPROTO_UDPLITE) {
1747 err = udplite_checksum_init(skb, uh);
1748 if (err)
1749 return err;
1751 if (UDP_SKB_CB(skb)->partial_cov) {
1752 skb->csum = inet_compute_pseudo(skb, proto);
1753 return 0;
1757 return skb_checksum_init_zero_check(skb, proto, uh->check,
1758 inet_compute_pseudo);
1762 * All we need to do is get the socket, and then do a checksum.
1765 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1766 int proto)
1768 struct sock *sk;
1769 struct udphdr *uh;
1770 unsigned short ulen;
1771 struct rtable *rt = skb_rtable(skb);
1772 __be32 saddr, daddr;
1773 struct net *net = dev_net(skb->dev);
1776 * Validate the packet.
1778 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1779 goto drop; /* No space for header. */
1781 uh = udp_hdr(skb);
1782 ulen = ntohs(uh->len);
1783 saddr = ip_hdr(skb)->saddr;
1784 daddr = ip_hdr(skb)->daddr;
1786 if (ulen > skb->len)
1787 goto short_packet;
1789 if (proto == IPPROTO_UDP) {
1790 /* UDP validates ulen. */
1791 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1792 goto short_packet;
1793 uh = udp_hdr(skb);
1796 if (udp4_csum_init(skb, uh, proto))
1797 goto csum_error;
1799 sk = skb_steal_sock(skb);
1800 if (sk) {
1801 struct dst_entry *dst = skb_dst(skb);
1802 int ret;
1804 if (unlikely(sk->sk_rx_dst != dst))
1805 udp_sk_rx_dst_set(sk, dst);
1807 ret = udp_queue_rcv_skb(sk, skb);
1808 sock_put(sk);
1809 /* a return value > 0 means to resubmit the input, but
1810 * it wants the return to be -protocol, or 0
1812 if (ret > 0)
1813 return -ret;
1814 return 0;
1817 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1818 return __udp4_lib_mcast_deliver(net, skb, uh,
1819 saddr, daddr, udptable, proto);
1821 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1822 if (sk) {
1823 int ret;
1825 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1826 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1827 inet_compute_pseudo);
1829 ret = udp_queue_rcv_skb(sk, skb);
1830 sock_put(sk);
1832 /* a return value > 0 means to resubmit the input, but
1833 * it wants the return to be -protocol, or 0
1835 if (ret > 0)
1836 return -ret;
1837 return 0;
1840 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1841 goto drop;
1842 nf_reset(skb);
1844 /* No socket. Drop packet silently, if checksum is wrong */
1845 if (udp_lib_checksum_complete(skb))
1846 goto csum_error;
1848 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1849 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1852 * Hmm. We got an UDP packet to a port to which we
1853 * don't wanna listen. Ignore it.
1855 kfree_skb(skb);
1856 return 0;
1858 short_packet:
1859 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1860 proto == IPPROTO_UDPLITE ? "Lite" : "",
1861 &saddr, ntohs(uh->source),
1862 ulen, skb->len,
1863 &daddr, ntohs(uh->dest));
1864 goto drop;
1866 csum_error:
1868 * RFC1122: OK. Discards the bad packet silently (as far as
1869 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1871 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1872 proto == IPPROTO_UDPLITE ? "Lite" : "",
1873 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1874 ulen);
1875 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1876 drop:
1877 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1878 kfree_skb(skb);
1879 return 0;
1882 /* We can only early demux multicast if there is a single matching socket.
1883 * If more than one socket found returns NULL
1885 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1886 __be16 loc_port, __be32 loc_addr,
1887 __be16 rmt_port, __be32 rmt_addr,
1888 int dif)
1890 struct sock *sk, *result;
1891 struct hlist_nulls_node *node;
1892 unsigned short hnum = ntohs(loc_port);
1893 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1894 struct udp_hslot *hslot = &udp_table.hash[slot];
1896 /* Do not bother scanning a too big list */
1897 if (hslot->count > 10)
1898 return NULL;
1900 rcu_read_lock();
1901 begin:
1902 count = 0;
1903 result = NULL;
1904 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1905 if (__udp_is_mcast_sock(net, sk,
1906 loc_port, loc_addr,
1907 rmt_port, rmt_addr,
1908 dif, hnum)) {
1909 result = sk;
1910 ++count;
1914 * if the nulls value we got at the end of this lookup is
1915 * not the expected one, we must restart lookup.
1916 * We probably met an item that was moved to another chain.
1918 if (get_nulls_value(node) != slot)
1919 goto begin;
1921 if (result) {
1922 if (count != 1 ||
1923 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1924 result = NULL;
1925 else if (unlikely(!__udp_is_mcast_sock(net, result,
1926 loc_port, loc_addr,
1927 rmt_port, rmt_addr,
1928 dif, hnum))) {
1929 sock_put(result);
1930 result = NULL;
1933 rcu_read_unlock();
1934 return result;
1937 /* For unicast we should only early demux connected sockets or we can
1938 * break forwarding setups. The chains here can be long so only check
1939 * if the first socket is an exact match and if not move on.
1941 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1942 __be16 loc_port, __be32 loc_addr,
1943 __be16 rmt_port, __be32 rmt_addr,
1944 int dif)
1946 struct sock *sk, *result;
1947 struct hlist_nulls_node *node;
1948 unsigned short hnum = ntohs(loc_port);
1949 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1950 unsigned int slot2 = hash2 & udp_table.mask;
1951 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1952 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1953 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1955 rcu_read_lock();
1956 result = NULL;
1957 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1958 if (INET_MATCH(sk, net, acookie,
1959 rmt_addr, loc_addr, ports, dif))
1960 result = sk;
1961 /* Only check first socket in chain */
1962 break;
1965 if (result) {
1966 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1967 result = NULL;
1968 else if (unlikely(!INET_MATCH(sk, net, acookie,
1969 rmt_addr, loc_addr,
1970 ports, dif))) {
1971 sock_put(result);
1972 result = NULL;
1975 rcu_read_unlock();
1976 return result;
1979 void udp_v4_early_demux(struct sk_buff *skb)
1981 struct net *net = dev_net(skb->dev);
1982 const struct iphdr *iph;
1983 const struct udphdr *uh;
1984 struct sock *sk;
1985 struct dst_entry *dst;
1986 int dif = skb->dev->ifindex;
1987 int ours;
1989 /* validate the packet */
1990 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1991 return;
1993 iph = ip_hdr(skb);
1994 uh = udp_hdr(skb);
1996 if (skb->pkt_type == PACKET_BROADCAST ||
1997 skb->pkt_type == PACKET_MULTICAST) {
1998 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2000 if (!in_dev)
2001 return;
2003 /* we are supposed to accept bcast packets */
2004 if (skb->pkt_type == PACKET_MULTICAST) {
2005 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2006 iph->protocol);
2007 if (!ours)
2008 return;
2011 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2012 uh->source, iph->saddr, dif);
2013 } else if (skb->pkt_type == PACKET_HOST) {
2014 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2015 uh->source, iph->saddr, dif);
2016 } else {
2017 return;
2020 if (!sk)
2021 return;
2023 skb->sk = sk;
2024 skb->destructor = sock_efree;
2025 dst = READ_ONCE(sk->sk_rx_dst);
2027 if (dst)
2028 dst = dst_check(dst, 0);
2029 if (dst) {
2030 /* DST_NOCACHE can not be used without taking a reference */
2031 if (dst->flags & DST_NOCACHE) {
2032 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2033 skb_dst_set(skb, dst);
2034 } else {
2035 skb_dst_set_noref(skb, dst);
2040 int udp_rcv(struct sk_buff *skb)
2042 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2045 void udp_destroy_sock(struct sock *sk)
2047 struct udp_sock *up = udp_sk(sk);
2048 bool slow = lock_sock_fast(sk);
2049 udp_flush_pending_frames(sk);
2050 unlock_sock_fast(sk, slow);
2051 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2052 void (*encap_destroy)(struct sock *sk);
2053 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2054 if (encap_destroy)
2055 encap_destroy(sk);
2060 * Socket option code for UDP
2062 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2063 char __user *optval, unsigned int optlen,
2064 int (*push_pending_frames)(struct sock *))
2066 struct udp_sock *up = udp_sk(sk);
2067 int val, valbool;
2068 int err = 0;
2069 int is_udplite = IS_UDPLITE(sk);
2071 if (optlen < sizeof(int))
2072 return -EINVAL;
2074 if (get_user(val, (int __user *)optval))
2075 return -EFAULT;
2077 valbool = val ? 1 : 0;
2079 switch (optname) {
2080 case UDP_CORK:
2081 if (val != 0) {
2082 up->corkflag = 1;
2083 } else {
2084 up->corkflag = 0;
2085 lock_sock(sk);
2086 push_pending_frames(sk);
2087 release_sock(sk);
2089 break;
2091 case UDP_ENCAP:
2092 switch (val) {
2093 case 0:
2094 case UDP_ENCAP_ESPINUDP:
2095 case UDP_ENCAP_ESPINUDP_NON_IKE:
2096 up->encap_rcv = xfrm4_udp_encap_rcv;
2097 /* FALLTHROUGH */
2098 case UDP_ENCAP_L2TPINUDP:
2099 up->encap_type = val;
2100 udp_encap_enable();
2101 break;
2102 default:
2103 err = -ENOPROTOOPT;
2104 break;
2106 break;
2108 case UDP_NO_CHECK6_TX:
2109 up->no_check6_tx = valbool;
2110 break;
2112 case UDP_NO_CHECK6_RX:
2113 up->no_check6_rx = valbool;
2114 break;
2117 * UDP-Lite's partial checksum coverage (RFC 3828).
2119 /* The sender sets actual checksum coverage length via this option.
2120 * The case coverage > packet length is handled by send module. */
2121 case UDPLITE_SEND_CSCOV:
2122 if (!is_udplite) /* Disable the option on UDP sockets */
2123 return -ENOPROTOOPT;
2124 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2125 val = 8;
2126 else if (val > USHRT_MAX)
2127 val = USHRT_MAX;
2128 up->pcslen = val;
2129 up->pcflag |= UDPLITE_SEND_CC;
2130 break;
2132 /* The receiver specifies a minimum checksum coverage value. To make
2133 * sense, this should be set to at least 8 (as done below). If zero is
2134 * used, this again means full checksum coverage. */
2135 case UDPLITE_RECV_CSCOV:
2136 if (!is_udplite) /* Disable the option on UDP sockets */
2137 return -ENOPROTOOPT;
2138 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2139 val = 8;
2140 else if (val > USHRT_MAX)
2141 val = USHRT_MAX;
2142 up->pcrlen = val;
2143 up->pcflag |= UDPLITE_RECV_CC;
2144 break;
2146 default:
2147 err = -ENOPROTOOPT;
2148 break;
2151 return err;
2153 EXPORT_SYMBOL(udp_lib_setsockopt);
2155 int udp_setsockopt(struct sock *sk, int level, int optname,
2156 char __user *optval, unsigned int optlen)
2158 if (level == SOL_UDP || level == SOL_UDPLITE)
2159 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2160 udp_push_pending_frames);
2161 return ip_setsockopt(sk, level, optname, optval, optlen);
2164 #ifdef CONFIG_COMPAT
2165 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2166 char __user *optval, unsigned int optlen)
2168 if (level == SOL_UDP || level == SOL_UDPLITE)
2169 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2170 udp_push_pending_frames);
2171 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2173 #endif
2175 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2176 char __user *optval, int __user *optlen)
2178 struct udp_sock *up = udp_sk(sk);
2179 int val, len;
2181 if (get_user(len, optlen))
2182 return -EFAULT;
2184 len = min_t(unsigned int, len, sizeof(int));
2186 if (len < 0)
2187 return -EINVAL;
2189 switch (optname) {
2190 case UDP_CORK:
2191 val = up->corkflag;
2192 break;
2194 case UDP_ENCAP:
2195 val = up->encap_type;
2196 break;
2198 case UDP_NO_CHECK6_TX:
2199 val = up->no_check6_tx;
2200 break;
2202 case UDP_NO_CHECK6_RX:
2203 val = up->no_check6_rx;
2204 break;
2206 /* The following two cannot be changed on UDP sockets, the return is
2207 * always 0 (which corresponds to the full checksum coverage of UDP). */
2208 case UDPLITE_SEND_CSCOV:
2209 val = up->pcslen;
2210 break;
2212 case UDPLITE_RECV_CSCOV:
2213 val = up->pcrlen;
2214 break;
2216 default:
2217 return -ENOPROTOOPT;
2220 if (put_user(len, optlen))
2221 return -EFAULT;
2222 if (copy_to_user(optval, &val, len))
2223 return -EFAULT;
2224 return 0;
2226 EXPORT_SYMBOL(udp_lib_getsockopt);
2228 int udp_getsockopt(struct sock *sk, int level, int optname,
2229 char __user *optval, int __user *optlen)
2231 if (level == SOL_UDP || level == SOL_UDPLITE)
2232 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2233 return ip_getsockopt(sk, level, optname, optval, optlen);
2236 #ifdef CONFIG_COMPAT
2237 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2238 char __user *optval, int __user *optlen)
2240 if (level == SOL_UDP || level == SOL_UDPLITE)
2241 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2242 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2244 #endif
2246 * udp_poll - wait for a UDP event.
2247 * @file - file struct
2248 * @sock - socket
2249 * @wait - poll table
2251 * This is same as datagram poll, except for the special case of
2252 * blocking sockets. If application is using a blocking fd
2253 * and a packet with checksum error is in the queue;
2254 * then it could get return from select indicating data available
2255 * but then block when reading it. Add special case code
2256 * to work around these arguably broken applications.
2258 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2260 unsigned int mask = datagram_poll(file, sock, wait);
2261 struct sock *sk = sock->sk;
2263 sock_rps_record_flow(sk);
2265 /* Check for false positives due to checksum errors */
2266 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2267 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2268 mask &= ~(POLLIN | POLLRDNORM);
2270 return mask;
2273 EXPORT_SYMBOL(udp_poll);
2275 struct proto udp_prot = {
2276 .name = "UDP",
2277 .owner = THIS_MODULE,
2278 .close = udp_lib_close,
2279 .connect = ip4_datagram_connect,
2280 .disconnect = udp_disconnect,
2281 .ioctl = udp_ioctl,
2282 .destroy = udp_destroy_sock,
2283 .setsockopt = udp_setsockopt,
2284 .getsockopt = udp_getsockopt,
2285 .sendmsg = udp_sendmsg,
2286 .recvmsg = udp_recvmsg,
2287 .sendpage = udp_sendpage,
2288 .backlog_rcv = __udp_queue_rcv_skb,
2289 .release_cb = ip4_datagram_release_cb,
2290 .hash = udp_lib_hash,
2291 .unhash = udp_lib_unhash,
2292 .rehash = udp_v4_rehash,
2293 .get_port = udp_v4_get_port,
2294 .memory_allocated = &udp_memory_allocated,
2295 .sysctl_mem = sysctl_udp_mem,
2296 .sysctl_wmem = &sysctl_udp_wmem_min,
2297 .sysctl_rmem = &sysctl_udp_rmem_min,
2298 .obj_size = sizeof(struct udp_sock),
2299 .slab_flags = SLAB_DESTROY_BY_RCU,
2300 .h.udp_table = &udp_table,
2301 #ifdef CONFIG_COMPAT
2302 .compat_setsockopt = compat_udp_setsockopt,
2303 .compat_getsockopt = compat_udp_getsockopt,
2304 #endif
2305 .clear_sk = sk_prot_clear_portaddr_nulls,
2307 EXPORT_SYMBOL(udp_prot);
2309 /* ------------------------------------------------------------------------ */
2310 #ifdef CONFIG_PROC_FS
2312 static struct sock *udp_get_first(struct seq_file *seq, int start)
2314 struct sock *sk;
2315 struct udp_iter_state *state = seq->private;
2316 struct net *net = seq_file_net(seq);
2318 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2319 ++state->bucket) {
2320 struct hlist_nulls_node *node;
2321 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2323 if (hlist_nulls_empty(&hslot->head))
2324 continue;
2326 spin_lock_bh(&hslot->lock);
2327 sk_nulls_for_each(sk, node, &hslot->head) {
2328 if (!net_eq(sock_net(sk), net))
2329 continue;
2330 if (sk->sk_family == state->family)
2331 goto found;
2333 spin_unlock_bh(&hslot->lock);
2335 sk = NULL;
2336 found:
2337 return sk;
2340 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2342 struct udp_iter_state *state = seq->private;
2343 struct net *net = seq_file_net(seq);
2345 do {
2346 sk = sk_nulls_next(sk);
2347 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2349 if (!sk) {
2350 if (state->bucket <= state->udp_table->mask)
2351 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2352 return udp_get_first(seq, state->bucket + 1);
2354 return sk;
2357 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2359 struct sock *sk = udp_get_first(seq, 0);
2361 if (sk)
2362 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2363 --pos;
2364 return pos ? NULL : sk;
2367 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2369 struct udp_iter_state *state = seq->private;
2370 state->bucket = MAX_UDP_PORTS;
2372 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2375 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2377 struct sock *sk;
2379 if (v == SEQ_START_TOKEN)
2380 sk = udp_get_idx(seq, 0);
2381 else
2382 sk = udp_get_next(seq, v);
2384 ++*pos;
2385 return sk;
2388 static void udp_seq_stop(struct seq_file *seq, void *v)
2390 struct udp_iter_state *state = seq->private;
2392 if (state->bucket <= state->udp_table->mask)
2393 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2396 int udp_seq_open(struct inode *inode, struct file *file)
2398 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2399 struct udp_iter_state *s;
2400 int err;
2402 err = seq_open_net(inode, file, &afinfo->seq_ops,
2403 sizeof(struct udp_iter_state));
2404 if (err < 0)
2405 return err;
2407 s = ((struct seq_file *)file->private_data)->private;
2408 s->family = afinfo->family;
2409 s->udp_table = afinfo->udp_table;
2410 return err;
2412 EXPORT_SYMBOL(udp_seq_open);
2414 /* ------------------------------------------------------------------------ */
2415 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2417 struct proc_dir_entry *p;
2418 int rc = 0;
2420 afinfo->seq_ops.start = udp_seq_start;
2421 afinfo->seq_ops.next = udp_seq_next;
2422 afinfo->seq_ops.stop = udp_seq_stop;
2424 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2425 afinfo->seq_fops, afinfo);
2426 if (!p)
2427 rc = -ENOMEM;
2428 return rc;
2430 EXPORT_SYMBOL(udp_proc_register);
2432 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2434 remove_proc_entry(afinfo->name, net->proc_net);
2436 EXPORT_SYMBOL(udp_proc_unregister);
2438 /* ------------------------------------------------------------------------ */
2439 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2440 int bucket)
2442 struct inet_sock *inet = inet_sk(sp);
2443 __be32 dest = inet->inet_daddr;
2444 __be32 src = inet->inet_rcv_saddr;
2445 __u16 destp = ntohs(inet->inet_dport);
2446 __u16 srcp = ntohs(inet->inet_sport);
2448 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2449 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2450 bucket, src, srcp, dest, destp, sp->sk_state,
2451 sk_wmem_alloc_get(sp),
2452 sk_rmem_alloc_get(sp),
2453 0, 0L, 0,
2454 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2455 0, sock_i_ino(sp),
2456 atomic_read(&sp->sk_refcnt), sp,
2457 atomic_read(&sp->sk_drops));
2460 int udp4_seq_show(struct seq_file *seq, void *v)
2462 seq_setwidth(seq, 127);
2463 if (v == SEQ_START_TOKEN)
2464 seq_puts(seq, " sl local_address rem_address st tx_queue "
2465 "rx_queue tr tm->when retrnsmt uid timeout "
2466 "inode ref pointer drops");
2467 else {
2468 struct udp_iter_state *state = seq->private;
2470 udp4_format_sock(v, seq, state->bucket);
2472 seq_pad(seq, '\n');
2473 return 0;
2476 static const struct file_operations udp_afinfo_seq_fops = {
2477 .owner = THIS_MODULE,
2478 .open = udp_seq_open,
2479 .read = seq_read,
2480 .llseek = seq_lseek,
2481 .release = seq_release_net
2484 /* ------------------------------------------------------------------------ */
2485 static struct udp_seq_afinfo udp4_seq_afinfo = {
2486 .name = "udp",
2487 .family = AF_INET,
2488 .udp_table = &udp_table,
2489 .seq_fops = &udp_afinfo_seq_fops,
2490 .seq_ops = {
2491 .show = udp4_seq_show,
2495 static int __net_init udp4_proc_init_net(struct net *net)
2497 return udp_proc_register(net, &udp4_seq_afinfo);
2500 static void __net_exit udp4_proc_exit_net(struct net *net)
2502 udp_proc_unregister(net, &udp4_seq_afinfo);
2505 static struct pernet_operations udp4_net_ops = {
2506 .init = udp4_proc_init_net,
2507 .exit = udp4_proc_exit_net,
2510 int __init udp4_proc_init(void)
2512 return register_pernet_subsys(&udp4_net_ops);
2515 void udp4_proc_exit(void)
2517 unregister_pernet_subsys(&udp4_net_ops);
2519 #endif /* CONFIG_PROC_FS */
2521 static __initdata unsigned long uhash_entries;
2522 static int __init set_uhash_entries(char *str)
2524 ssize_t ret;
2526 if (!str)
2527 return 0;
2529 ret = kstrtoul(str, 0, &uhash_entries);
2530 if (ret)
2531 return 0;
2533 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2534 uhash_entries = UDP_HTABLE_SIZE_MIN;
2535 return 1;
2537 __setup("uhash_entries=", set_uhash_entries);
2539 void __init udp_table_init(struct udp_table *table, const char *name)
2541 unsigned int i;
2543 table->hash = alloc_large_system_hash(name,
2544 2 * sizeof(struct udp_hslot),
2545 uhash_entries,
2546 21, /* one slot per 2 MB */
2548 &table->log,
2549 &table->mask,
2550 UDP_HTABLE_SIZE_MIN,
2551 64 * 1024);
2553 table->hash2 = table->hash + (table->mask + 1);
2554 for (i = 0; i <= table->mask; i++) {
2555 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2556 table->hash[i].count = 0;
2557 spin_lock_init(&table->hash[i].lock);
2559 for (i = 0; i <= table->mask; i++) {
2560 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2561 table->hash2[i].count = 0;
2562 spin_lock_init(&table->hash2[i].lock);
2566 u32 udp_flow_hashrnd(void)
2568 static u32 hashrnd __read_mostly;
2570 net_get_random_once(&hashrnd, sizeof(hashrnd));
2572 return hashrnd;
2574 EXPORT_SYMBOL(udp_flow_hashrnd);
2576 void __init udp_init(void)
2578 unsigned long limit;
2580 udp_table_init(&udp_table, "UDP");
2581 limit = nr_free_buffer_pages() / 8;
2582 limit = max(limit, 128UL);
2583 sysctl_udp_mem[0] = limit / 4 * 3;
2584 sysctl_udp_mem[1] = limit;
2585 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2587 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2588 sysctl_udp_wmem_min = SK_MEM_QUANTUM;