2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
43 #define RT6_TRACE(x...) pr_debug(x)
45 #define RT6_TRACE(x...) do { ; } while (0)
48 static struct kmem_cache
*fib6_node_kmem __read_mostly
;
53 int (*func
)(struct rt6_info
*, void *arg
);
58 static DEFINE_RWLOCK(fib6_walker_lock
);
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
63 #define FWS_INIT FWS_L
66 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
);
67 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
68 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
69 static int fib6_walk(struct fib6_walker
*w
);
70 static int fib6_walk_continue(struct fib6_walker
*w
);
73 * A routing update causes an increase of the serial number on the
74 * affected subtree. This allows for cached routes to be asynchronously
75 * tested when modifications are made to the destination cache as a
76 * result of redirects, path MTU changes, etc.
79 static void fib6_gc_timer_cb(unsigned long arg
);
81 static LIST_HEAD(fib6_walkers
);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
84 static void fib6_walker_link(struct fib6_walker
*w
)
86 write_lock_bh(&fib6_walker_lock
);
87 list_add(&w
->lh
, &fib6_walkers
);
88 write_unlock_bh(&fib6_walker_lock
);
91 static void fib6_walker_unlink(struct fib6_walker
*w
)
93 write_lock_bh(&fib6_walker_lock
);
95 write_unlock_bh(&fib6_walker_lock
);
98 static int fib6_new_sernum(struct net
*net
)
103 old
= atomic_read(&net
->ipv6
.fib6_sernum
);
104 new = old
< INT_MAX
? old
+ 1 : 1;
105 } while (atomic_cmpxchg(&net
->ipv6
.fib6_sernum
,
111 FIB6_NO_SERNUM_CHANGE
= 0,
115 * Auxiliary address test functions for the radix tree.
117 * These assume a 32bit processor (although it will work on
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
127 # define BITOP_BE32_SWIZZLE 0
130 static __be32
addr_bit_set(const void *token
, int fn_bit
)
132 const __be32
*addr
= token
;
135 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136 * is optimized version of
137 * htonl(1 << ((~fn_bit)&0x1F))
138 * See include/asm-generic/bitops/le.h.
140 return (__force __be32
)(1 << ((~fn_bit
^ BITOP_BE32_SWIZZLE
) & 0x1f)) &
144 static struct fib6_node
*node_alloc(void)
146 struct fib6_node
*fn
;
148 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
153 static void node_free_immediate(struct fib6_node
*fn
)
155 kmem_cache_free(fib6_node_kmem
, fn
);
158 static void node_free_rcu(struct rcu_head
*head
)
160 struct fib6_node
*fn
= container_of(head
, struct fib6_node
, rcu
);
162 kmem_cache_free(fib6_node_kmem
, fn
);
165 static void node_free(struct fib6_node
*fn
)
167 call_rcu(&fn
->rcu
, node_free_rcu
);
170 static void rt6_rcu_free(struct rt6_info
*rt
)
172 call_rcu(&rt
->dst
.rcu_head
, dst_rcu_free
);
175 static void rt6_free_pcpu(struct rt6_info
*non_pcpu_rt
)
179 if (!non_pcpu_rt
->rt6i_pcpu
)
182 for_each_possible_cpu(cpu
) {
183 struct rt6_info
**ppcpu_rt
;
184 struct rt6_info
*pcpu_rt
;
186 ppcpu_rt
= per_cpu_ptr(non_pcpu_rt
->rt6i_pcpu
, cpu
);
189 rt6_rcu_free(pcpu_rt
);
194 free_percpu(non_pcpu_rt
->rt6i_pcpu
);
195 non_pcpu_rt
->rt6i_pcpu
= NULL
;
198 static void rt6_release(struct rt6_info
*rt
)
200 if (atomic_dec_and_test(&rt
->rt6i_ref
)) {
206 static void fib6_free_table(struct fib6_table
*table
)
208 inetpeer_invalidate_tree(&table
->tb6_peers
);
212 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
217 * Initialize table lock at a single place to give lockdep a key,
218 * tables aren't visible prior to being linked to the list.
220 rwlock_init(&tb
->tb6_lock
);
222 h
= tb
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1);
225 * No protection necessary, this is the only list mutatation
226 * operation, tables never disappear once they exist.
228 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
233 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
235 struct fib6_table
*table
;
237 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
240 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
241 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
242 inet_peer_base_init(&table
->tb6_peers
);
248 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
250 struct fib6_table
*tb
;
254 tb
= fib6_get_table(net
, id
);
258 tb
= fib6_alloc_table(net
, id
);
260 fib6_link_table(net
, tb
);
265 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
267 struct fib6_table
*tb
;
268 struct hlist_head
*head
;
273 h
= id
& (FIB6_TABLE_HASHSZ
- 1);
275 head
= &net
->ipv6
.fib_table_hash
[h
];
276 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
277 if (tb
->tb6_id
== id
) {
286 EXPORT_SYMBOL_GPL(fib6_get_table
);
288 static void __net_init
fib6_tables_init(struct net
*net
)
290 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
291 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
295 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
297 return fib6_get_table(net
, id
);
300 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
302 return net
->ipv6
.fib6_main_tbl
;
305 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi6
*fl6
,
306 int flags
, pol_lookup_t lookup
)
310 rt
= lookup(net
, net
->ipv6
.fib6_main_tbl
, fl6
, flags
);
311 if (rt
->dst
.error
== -EAGAIN
) {
313 rt
= net
->ipv6
.ip6_null_entry
;
320 static void __net_init
fib6_tables_init(struct net
*net
)
322 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
327 static int fib6_dump_node(struct fib6_walker
*w
)
332 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
333 res
= rt6_dump_route(rt
, w
->args
);
335 /* Frame is full, suspend walking */
344 static void fib6_dump_end(struct netlink_callback
*cb
)
346 struct fib6_walker
*w
= (void *)cb
->args
[2];
351 fib6_walker_unlink(w
);
356 cb
->done
= (void *)cb
->args
[3];
360 static int fib6_dump_done(struct netlink_callback
*cb
)
363 return cb
->done
? cb
->done(cb
) : 0;
366 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
367 struct netlink_callback
*cb
)
369 struct fib6_walker
*w
;
372 w
= (void *)cb
->args
[2];
373 w
->root
= &table
->tb6_root
;
375 if (cb
->args
[4] == 0) {
379 read_lock_bh(&table
->tb6_lock
);
381 read_unlock_bh(&table
->tb6_lock
);
384 cb
->args
[5] = w
->root
->fn_sernum
;
387 if (cb
->args
[5] != w
->root
->fn_sernum
) {
388 /* Begin at the root if the tree changed */
389 cb
->args
[5] = w
->root
->fn_sernum
;
396 read_lock_bh(&table
->tb6_lock
);
397 res
= fib6_walk_continue(w
);
398 read_unlock_bh(&table
->tb6_lock
);
400 fib6_walker_unlink(w
);
408 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
410 struct net
*net
= sock_net(skb
->sk
);
412 unsigned int e
= 0, s_e
;
413 struct rt6_rtnl_dump_arg arg
;
414 struct fib6_walker
*w
;
415 struct fib6_table
*tb
;
416 struct hlist_head
*head
;
422 w
= (void *)cb
->args
[2];
426 * 1. hook callback destructor.
428 cb
->args
[3] = (long)cb
->done
;
429 cb
->done
= fib6_dump_done
;
432 * 2. allocate and initialize walker.
434 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
437 w
->func
= fib6_dump_node
;
438 cb
->args
[2] = (long)w
;
447 for (h
= s_h
; h
< FIB6_TABLE_HASHSZ
; h
++, s_e
= 0) {
449 head
= &net
->ipv6
.fib_table_hash
[h
];
450 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
453 res
= fib6_dump_table(tb
, skb
, cb
);
465 res
= res
< 0 ? res
: skb
->len
;
474 * return the appropriate node for a routing tree "add" operation
475 * by either creating and inserting or by returning an existing
479 static struct fib6_node
*fib6_add_1(struct fib6_node
*root
,
480 struct in6_addr
*addr
, int plen
,
481 int offset
, int allow_create
,
482 int replace_required
, int sernum
)
484 struct fib6_node
*fn
, *in
, *ln
;
485 struct fib6_node
*pn
= NULL
;
490 RT6_TRACE("fib6_add_1\n");
492 /* insert node in tree */
497 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
502 if (plen
< fn
->fn_bit
||
503 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
)) {
505 if (replace_required
) {
506 pr_warn("Can't replace route, no match found\n");
507 return ERR_PTR(-ENOENT
);
509 pr_warn("NLM_F_CREATE should be set when creating new route\n");
518 if (plen
== fn
->fn_bit
) {
519 /* clean up an intermediate node */
520 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
521 rt6_release(fn
->leaf
);
525 fn
->fn_sernum
= sernum
;
531 * We have more bits to go
534 /* Try to walk down on tree. */
535 fn
->fn_sernum
= sernum
;
536 dir
= addr_bit_set(addr
, fn
->fn_bit
);
538 fn
= dir
? fn
->right
: fn
->left
;
542 /* We should not create new node because
543 * NLM_F_REPLACE was specified without NLM_F_CREATE
544 * I assume it is safe to require NLM_F_CREATE when
545 * REPLACE flag is used! Later we may want to remove the
546 * check for replace_required, because according
547 * to netlink specification, NLM_F_CREATE
548 * MUST be specified if new route is created.
549 * That would keep IPv6 consistent with IPv4
551 if (replace_required
) {
552 pr_warn("Can't replace route, no match found\n");
553 return ERR_PTR(-ENOENT
);
555 pr_warn("NLM_F_CREATE should be set when creating new route\n");
558 * We walked to the bottom of tree.
559 * Create new leaf node without children.
565 return ERR_PTR(-ENOMEM
);
569 ln
->fn_sernum
= sernum
;
581 * split since we don't have a common prefix anymore or
582 * we have a less significant route.
583 * we've to insert an intermediate node on the list
584 * this new node will point to the one we need to create
590 /* find 1st bit in difference between the 2 addrs.
592 See comment in __ipv6_addr_diff: bit may be an invalid value,
593 but if it is >= plen, the value is ignored in any case.
596 bit
= __ipv6_addr_diff(addr
, &key
->addr
, sizeof(*addr
));
601 * (new leaf node)[ln] (old node)[fn]
609 node_free_immediate(in
);
611 node_free_immediate(ln
);
612 return ERR_PTR(-ENOMEM
);
616 * new intermediate node.
618 * be off since that an address that chooses one of
619 * the branches would not match less specific routes
620 * in the other branch
627 atomic_inc(&in
->leaf
->rt6i_ref
);
629 in
->fn_sernum
= sernum
;
631 /* update parent pointer */
642 ln
->fn_sernum
= sernum
;
644 if (addr_bit_set(addr
, bit
)) {
651 } else { /* plen <= bit */
654 * (new leaf node)[ln]
656 * (old node)[fn] NULL
662 return ERR_PTR(-ENOMEM
);
668 ln
->fn_sernum
= sernum
;
675 if (addr_bit_set(&key
->addr
, plen
))
685 static bool rt6_qualify_for_ecmp(struct rt6_info
*rt
)
687 return (rt
->rt6i_flags
& (RTF_GATEWAY
|RTF_ADDRCONF
|RTF_DYNAMIC
)) ==
691 static void fib6_copy_metrics(u32
*mp
, const struct mx6_config
*mxc
)
695 for (i
= 0; i
< RTAX_MAX
; i
++) {
696 if (test_bit(i
, mxc
->mx_valid
))
701 static int fib6_commit_metrics(struct dst_entry
*dst
, struct mx6_config
*mxc
)
706 if (dst
->flags
& DST_HOST
) {
707 u32
*mp
= dst_metrics_write_ptr(dst
);
712 fib6_copy_metrics(mp
, mxc
);
714 dst_init_metrics(dst
, mxc
->mx
, false);
716 /* We've stolen mx now. */
723 static void fib6_purge_rt(struct rt6_info
*rt
, struct fib6_node
*fn
,
726 if (atomic_read(&rt
->rt6i_ref
) != 1) {
727 /* This route is used as dummy address holder in some split
728 * nodes. It is not leaked, but it still holds other resources,
729 * which must be released in time. So, scan ascendant nodes
730 * and replace dummy references to this route with references
731 * to still alive ones.
734 if (!(fn
->fn_flags
& RTN_RTINFO
) && fn
->leaf
== rt
) {
735 fn
->leaf
= fib6_find_prefix(net
, fn
);
736 atomic_inc(&fn
->leaf
->rt6i_ref
);
741 /* No more references are possible at this point. */
742 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
747 * Insert routing information in a node.
750 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
751 struct nl_info
*info
, struct mx6_config
*mxc
)
753 struct rt6_info
*iter
= NULL
;
754 struct rt6_info
**ins
;
755 struct rt6_info
**fallback_ins
= NULL
;
756 int replace
= (info
->nlh
&&
757 (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
));
758 int add
= (!info
->nlh
||
759 (info
->nlh
->nlmsg_flags
& NLM_F_CREATE
));
761 bool rt_can_ecmp
= rt6_qualify_for_ecmp(rt
);
766 for (iter
= fn
->leaf
; iter
; iter
= iter
->dst
.rt6_next
) {
768 * Search for duplicates
771 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
773 * Same priority level
776 (info
->nlh
->nlmsg_flags
& NLM_F_EXCL
))
779 if (rt_can_ecmp
== rt6_qualify_for_ecmp(iter
)) {
784 fallback_ins
= fallback_ins
?: ins
;
788 if (rt6_duplicate_nexthop(iter
, rt
)) {
789 if (rt
->rt6i_nsiblings
)
790 rt
->rt6i_nsiblings
= 0;
791 if (!(iter
->rt6i_flags
& RTF_EXPIRES
))
793 if (!(rt
->rt6i_flags
& RTF_EXPIRES
))
794 rt6_clean_expires(iter
);
796 rt6_set_expires(iter
, rt
->dst
.expires
);
797 iter
->rt6i_pmtu
= rt
->rt6i_pmtu
;
800 /* If we have the same destination and the same metric,
801 * but not the same gateway, then the route we try to
802 * add is sibling to this route, increment our counter
803 * of siblings, and later we will add our route to the
805 * Only static routes (which don't have flag
806 * RTF_EXPIRES) are used for ECMPv6.
808 * To avoid long list, we only had siblings if the
809 * route have a gateway.
812 rt6_qualify_for_ecmp(iter
))
813 rt
->rt6i_nsiblings
++;
816 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
820 ins
= &iter
->dst
.rt6_next
;
823 if (fallback_ins
&& !found
) {
824 /* No ECMP-able route found, replace first non-ECMP one */
830 /* Reset round-robin state, if necessary */
831 if (ins
== &fn
->leaf
)
834 /* Link this route to others same route. */
835 if (rt
->rt6i_nsiblings
) {
836 unsigned int rt6i_nsiblings
;
837 struct rt6_info
*sibling
, *temp_sibling
;
839 /* Find the first route that have the same metric */
842 if (sibling
->rt6i_metric
== rt
->rt6i_metric
&&
843 rt6_qualify_for_ecmp(sibling
)) {
844 list_add_tail(&rt
->rt6i_siblings
,
845 &sibling
->rt6i_siblings
);
848 sibling
= sibling
->dst
.rt6_next
;
850 /* For each sibling in the list, increment the counter of
851 * siblings. BUG() if counters does not match, list of siblings
855 list_for_each_entry_safe(sibling
, temp_sibling
,
856 &rt
->rt6i_siblings
, rt6i_siblings
) {
857 sibling
->rt6i_nsiblings
++;
858 BUG_ON(sibling
->rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
861 BUG_ON(rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
869 pr_warn("NLM_F_CREATE should be set when creating new route\n");
872 err
= fib6_commit_metrics(&rt
->dst
, mxc
);
876 rt
->dst
.rt6_next
= iter
;
878 rcu_assign_pointer(rt
->rt6i_node
, fn
);
879 atomic_inc(&rt
->rt6i_ref
);
880 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
, 0);
881 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
883 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
884 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
885 fn
->fn_flags
|= RTN_RTINFO
;
894 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
898 err
= fib6_commit_metrics(&rt
->dst
, mxc
);
903 rcu_assign_pointer(rt
->rt6i_node
, fn
);
904 rt
->dst
.rt6_next
= iter
->dst
.rt6_next
;
905 atomic_inc(&rt
->rt6i_ref
);
906 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
, NLM_F_REPLACE
);
907 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
908 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
909 fn
->fn_flags
|= RTN_RTINFO
;
911 nsiblings
= iter
->rt6i_nsiblings
;
912 fib6_purge_rt(iter
, fn
, info
->nl_net
);
913 if (fn
->rr_ptr
== iter
)
918 /* Replacing an ECMP route, remove all siblings */
919 ins
= &rt
->dst
.rt6_next
;
922 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
924 if (rt6_qualify_for_ecmp(iter
)) {
925 *ins
= iter
->dst
.rt6_next
;
926 fib6_purge_rt(iter
, fn
, info
->nl_net
);
927 if (fn
->rr_ptr
== iter
)
932 ins
= &iter
->dst
.rt6_next
;
936 WARN_ON(nsiblings
!= 0);
943 static void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
945 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
946 (rt
->rt6i_flags
& (RTF_EXPIRES
| RTF_CACHE
)))
947 mod_timer(&net
->ipv6
.ip6_fib_timer
,
948 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
951 void fib6_force_start_gc(struct net
*net
)
953 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
954 mod_timer(&net
->ipv6
.ip6_fib_timer
,
955 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
959 * Add routing information to the routing tree.
960 * <destination addr>/<source addr>
961 * with source addr info in sub-trees
964 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
,
965 struct nl_info
*info
, struct mx6_config
*mxc
)
967 struct fib6_node
*fn
, *pn
= NULL
;
969 int allow_create
= 1;
970 int replace_required
= 0;
971 int sernum
= fib6_new_sernum(info
->nl_net
);
973 if (WARN_ON_ONCE((rt
->dst
.flags
& DST_NOCACHE
) &&
974 !atomic_read(&rt
->dst
.__refcnt
)))
978 if (!(info
->nlh
->nlmsg_flags
& NLM_F_CREATE
))
980 if (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
)
981 replace_required
= 1;
983 if (!allow_create
&& !replace_required
)
984 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
986 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, rt
->rt6i_dst
.plen
,
987 offsetof(struct rt6_info
, rt6i_dst
), allow_create
,
988 replace_required
, sernum
);
997 #ifdef CONFIG_IPV6_SUBTREES
998 if (rt
->rt6i_src
.plen
) {
999 struct fib6_node
*sn
;
1002 struct fib6_node
*sfn
;
1014 /* Create subtree root node */
1019 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
1020 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
1021 sfn
->fn_flags
= RTN_ROOT
;
1022 sfn
->fn_sernum
= sernum
;
1024 /* Now add the first leaf node to new subtree */
1026 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
1028 offsetof(struct rt6_info
, rt6i_src
),
1029 allow_create
, replace_required
, sernum
);
1032 /* If it is failed, discard just allocated
1033 root, and then (in failure) stale node
1036 node_free_immediate(sfn
);
1041 /* Now link new subtree to main tree */
1045 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
1047 offsetof(struct rt6_info
, rt6i_src
),
1048 allow_create
, replace_required
, sernum
);
1058 atomic_inc(&rt
->rt6i_ref
);
1064 err
= fib6_add_rt2node(fn
, rt
, info
, mxc
);
1066 fib6_start_gc(info
->nl_net
, rt
);
1067 if (!(rt
->rt6i_flags
& RTF_CACHE
))
1068 fib6_prune_clones(info
->nl_net
, pn
);
1069 rt
->dst
.flags
&= ~DST_NOCACHE
;
1074 #ifdef CONFIG_IPV6_SUBTREES
1076 * If fib6_add_1 has cleared the old leaf pointer in the
1077 * super-tree leaf node we have to find a new one for it.
1079 if (pn
!= fn
&& pn
->leaf
== rt
) {
1081 atomic_dec(&rt
->rt6i_ref
);
1083 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
1084 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
1087 WARN_ON(pn
->leaf
== NULL
);
1088 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
1091 atomic_inc(&pn
->leaf
->rt6i_ref
);
1099 /* fn->leaf could be NULL if fn is an intermediate node and we
1100 * failed to add the new route to it in both subtree creation
1101 * failure and fib6_add_rt2node() failure case.
1102 * In both cases, fib6_repair_tree() should be called to fix
1105 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
1106 fib6_repair_tree(info
->nl_net
, fn
);
1107 if (!(rt
->dst
.flags
& DST_NOCACHE
))
1113 * Routing tree lookup
1117 struct lookup_args
{
1118 int offset
; /* key offset on rt6_info */
1119 const struct in6_addr
*addr
; /* search key */
1122 static struct fib6_node
*fib6_lookup_1(struct fib6_node
*root
,
1123 struct lookup_args
*args
)
1125 struct fib6_node
*fn
;
1128 if (unlikely(args
->offset
== 0))
1138 struct fib6_node
*next
;
1140 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
1142 next
= dir
? fn
->right
: fn
->left
;
1152 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
1155 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
1158 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
1159 #ifdef CONFIG_IPV6_SUBTREES
1161 struct fib6_node
*sfn
;
1162 sfn
= fib6_lookup_1(fn
->subtree
,
1169 if (fn
->fn_flags
& RTN_RTINFO
)
1173 #ifdef CONFIG_IPV6_SUBTREES
1176 if (fn
->fn_flags
& RTN_ROOT
)
1185 struct fib6_node
*fib6_lookup(struct fib6_node
*root
, const struct in6_addr
*daddr
,
1186 const struct in6_addr
*saddr
)
1188 struct fib6_node
*fn
;
1189 struct lookup_args args
[] = {
1191 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
1194 #ifdef CONFIG_IPV6_SUBTREES
1196 .offset
= offsetof(struct rt6_info
, rt6i_src
),
1201 .offset
= 0, /* sentinel */
1205 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
1206 if (!fn
|| fn
->fn_flags
& RTN_TL_ROOT
)
1213 * Get node with specified destination prefix (and source prefix,
1214 * if subtrees are used)
1218 static struct fib6_node
*fib6_locate_1(struct fib6_node
*root
,
1219 const struct in6_addr
*addr
,
1220 int plen
, int offset
)
1222 struct fib6_node
*fn
;
1224 for (fn
= root
; fn
; ) {
1225 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
1230 if (plen
< fn
->fn_bit
||
1231 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
1234 if (plen
== fn
->fn_bit
)
1238 * We have more bits to go
1240 if (addr_bit_set(addr
, fn
->fn_bit
))
1248 struct fib6_node
*fib6_locate(struct fib6_node
*root
,
1249 const struct in6_addr
*daddr
, int dst_len
,
1250 const struct in6_addr
*saddr
, int src_len
)
1252 struct fib6_node
*fn
;
1254 fn
= fib6_locate_1(root
, daddr
, dst_len
,
1255 offsetof(struct rt6_info
, rt6i_dst
));
1257 #ifdef CONFIG_IPV6_SUBTREES
1259 WARN_ON(saddr
== NULL
);
1260 if (fn
&& fn
->subtree
)
1261 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
1262 offsetof(struct rt6_info
, rt6i_src
));
1266 if (fn
&& fn
->fn_flags
& RTN_RTINFO
)
1278 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
1280 if (fn
->fn_flags
& RTN_ROOT
)
1281 return net
->ipv6
.ip6_null_entry
;
1285 return fn
->left
->leaf
;
1287 return fn
->right
->leaf
;
1289 fn
= FIB6_SUBTREE(fn
);
1295 * Called to trim the tree of intermediate nodes when possible. "fn"
1296 * is the node we want to try and remove.
1299 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
1300 struct fib6_node
*fn
)
1304 struct fib6_node
*child
, *pn
;
1305 struct fib6_walker
*w
;
1309 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1312 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1313 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1319 child
= fn
->right
, children
|= 1;
1321 child
= fn
->left
, children
|= 2;
1323 if (children
== 3 || FIB6_SUBTREE(fn
)
1324 #ifdef CONFIG_IPV6_SUBTREES
1325 /* Subtree root (i.e. fn) may have one child */
1326 || (children
&& fn
->fn_flags
& RTN_ROOT
)
1329 fn
->leaf
= fib6_find_prefix(net
, fn
);
1333 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1336 atomic_inc(&fn
->leaf
->rt6i_ref
);
1341 #ifdef CONFIG_IPV6_SUBTREES
1342 if (FIB6_SUBTREE(pn
) == fn
) {
1343 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1344 FIB6_SUBTREE(pn
) = NULL
;
1347 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1349 if (pn
->right
== fn
)
1351 else if (pn
->left
== fn
)
1360 #ifdef CONFIG_IPV6_SUBTREES
1364 read_lock(&fib6_walker_lock
);
1367 if (w
->root
== fn
) {
1368 w
->root
= w
->node
= NULL
;
1369 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1370 } else if (w
->node
== fn
) {
1371 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1376 if (w
->root
== fn
) {
1378 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1380 if (w
->node
== fn
) {
1383 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1384 w
->state
= w
->state
>= FWS_R
? FWS_U
: FWS_INIT
;
1386 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1387 w
->state
= w
->state
>= FWS_C
? FWS_U
: FWS_INIT
;
1392 read_unlock(&fib6_walker_lock
);
1395 if (pn
->fn_flags
& RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1398 rt6_release(pn
->leaf
);
1404 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1405 struct nl_info
*info
)
1407 struct fib6_walker
*w
;
1408 struct rt6_info
*rt
= *rtp
;
1409 struct net
*net
= info
->nl_net
;
1411 RT6_TRACE("fib6_del_route\n");
1414 *rtp
= rt
->dst
.rt6_next
;
1415 rt
->rt6i_node
= NULL
;
1416 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1417 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1419 /* Reset round-robin state, if necessary */
1420 if (fn
->rr_ptr
== rt
)
1423 /* Remove this entry from other siblings */
1424 if (rt
->rt6i_nsiblings
) {
1425 struct rt6_info
*sibling
, *next_sibling
;
1427 list_for_each_entry_safe(sibling
, next_sibling
,
1428 &rt
->rt6i_siblings
, rt6i_siblings
)
1429 sibling
->rt6i_nsiblings
--;
1430 rt
->rt6i_nsiblings
= 0;
1431 list_del_init(&rt
->rt6i_siblings
);
1434 /* Adjust walkers */
1435 read_lock(&fib6_walker_lock
);
1437 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1438 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1439 w
->leaf
= rt
->dst
.rt6_next
;
1444 read_unlock(&fib6_walker_lock
);
1446 rt
->dst
.rt6_next
= NULL
;
1448 /* If it was last route, expunge its radix tree node */
1450 fn
->fn_flags
&= ~RTN_RTINFO
;
1451 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1452 fn
= fib6_repair_tree(net
, fn
);
1455 fib6_purge_rt(rt
, fn
, net
);
1457 inet6_rt_notify(RTM_DELROUTE
, rt
, info
, 0);
1461 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1463 struct fib6_node
*fn
= rcu_dereference_protected(rt
->rt6i_node
,
1464 lockdep_is_held(&rt
->rt6i_table
->tb6_lock
));
1465 struct net
*net
= info
->nl_net
;
1466 struct rt6_info
**rtp
;
1469 if (rt
->dst
.obsolete
> 0) {
1474 if (!fn
|| rt
== net
->ipv6
.ip6_null_entry
)
1477 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1479 if (!(rt
->rt6i_flags
& RTF_CACHE
)) {
1480 struct fib6_node
*pn
= fn
;
1481 #ifdef CONFIG_IPV6_SUBTREES
1482 /* clones of this route might be in another subtree */
1483 if (rt
->rt6i_src
.plen
) {
1484 while (!(pn
->fn_flags
& RTN_ROOT
))
1489 fib6_prune_clones(info
->nl_net
, pn
);
1493 * Walk the leaf entries looking for ourself
1496 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->dst
.rt6_next
) {
1498 fib6_del_route(fn
, rtp
, info
);
1506 * Tree traversal function.
1508 * Certainly, it is not interrupt safe.
1509 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1510 * It means, that we can modify tree during walking
1511 * and use this function for garbage collection, clone pruning,
1512 * cleaning tree when a device goes down etc. etc.
1514 * It guarantees that every node will be traversed,
1515 * and that it will be traversed only once.
1517 * Callback function w->func may return:
1518 * 0 -> continue walking.
1519 * positive value -> walking is suspended (used by tree dumps,
1520 * and probably by gc, if it will be split to several slices)
1521 * negative value -> terminate walking.
1523 * The function itself returns:
1524 * 0 -> walk is complete.
1525 * >0 -> walk is incomplete (i.e. suspended)
1526 * <0 -> walk is terminated by an error.
1529 static int fib6_walk_continue(struct fib6_walker
*w
)
1531 struct fib6_node
*fn
, *pn
;
1538 if (w
->prune
&& fn
!= w
->root
&&
1539 fn
->fn_flags
& RTN_RTINFO
&& w
->state
< FWS_C
) {
1544 #ifdef CONFIG_IPV6_SUBTREES
1546 if (FIB6_SUBTREE(fn
)) {
1547 w
->node
= FIB6_SUBTREE(fn
);
1555 w
->state
= FWS_INIT
;
1561 w
->node
= fn
->right
;
1562 w
->state
= FWS_INIT
;
1568 if (w
->leaf
&& fn
->fn_flags
& RTN_RTINFO
) {
1590 #ifdef CONFIG_IPV6_SUBTREES
1591 if (FIB6_SUBTREE(pn
) == fn
) {
1592 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1597 if (pn
->left
== fn
) {
1601 if (pn
->right
== fn
) {
1603 w
->leaf
= w
->node
->leaf
;
1613 static int fib6_walk(struct fib6_walker
*w
)
1617 w
->state
= FWS_INIT
;
1620 fib6_walker_link(w
);
1621 res
= fib6_walk_continue(w
);
1623 fib6_walker_unlink(w
);
1627 static int fib6_clean_node(struct fib6_walker
*w
)
1630 struct rt6_info
*rt
;
1631 struct fib6_cleaner
*c
= container_of(w
, struct fib6_cleaner
, w
);
1632 struct nl_info info
= {
1636 if (c
->sernum
!= FIB6_NO_SERNUM_CHANGE
&&
1637 w
->node
->fn_sernum
!= c
->sernum
)
1638 w
->node
->fn_sernum
= c
->sernum
;
1641 WARN_ON_ONCE(c
->sernum
== FIB6_NO_SERNUM_CHANGE
);
1646 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
1647 res
= c
->func(rt
, c
->arg
);
1650 res
= fib6_del(rt
, &info
);
1653 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1655 rcu_access_pointer(rt
->rt6i_node
),
1669 * Convenient frontend to tree walker.
1671 * func is called on each route.
1672 * It may return -1 -> delete this route.
1673 * 0 -> continue walking
1675 * prune==1 -> only immediate children of node (certainly,
1676 * ignoring pure split nodes) will be scanned.
1679 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1680 int (*func
)(struct rt6_info
*, void *arg
),
1681 bool prune
, int sernum
, void *arg
)
1683 struct fib6_cleaner c
;
1686 c
.w
.func
= fib6_clean_node
;
1698 static void __fib6_clean_all(struct net
*net
,
1699 int (*func
)(struct rt6_info
*, void *),
1700 int sernum
, void *arg
)
1702 struct fib6_table
*table
;
1703 struct hlist_head
*head
;
1707 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1708 head
= &net
->ipv6
.fib_table_hash
[h
];
1709 hlist_for_each_entry_rcu(table
, head
, tb6_hlist
) {
1710 write_lock_bh(&table
->tb6_lock
);
1711 fib6_clean_tree(net
, &table
->tb6_root
,
1712 func
, false, sernum
, arg
);
1713 write_unlock_bh(&table
->tb6_lock
);
1719 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *),
1722 __fib6_clean_all(net
, func
, FIB6_NO_SERNUM_CHANGE
, arg
);
1725 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1727 if (rt
->rt6i_flags
& RTF_CACHE
) {
1728 RT6_TRACE("pruning clone %p\n", rt
);
1735 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
)
1737 fib6_clean_tree(net
, fn
, fib6_prune_clone
, true,
1738 FIB6_NO_SERNUM_CHANGE
, NULL
);
1741 static void fib6_flush_trees(struct net
*net
)
1743 int new_sernum
= fib6_new_sernum(net
);
1745 __fib6_clean_all(net
, NULL
, new_sernum
, NULL
);
1749 * Garbage collection
1752 static struct fib6_gc_args
1758 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1760 unsigned long now
= jiffies
;
1763 * check addrconf expiration here.
1764 * Routes are expired even if they are in use.
1766 * Also age clones. Note, that clones are aged out
1767 * only if they are not in use now.
1770 if (rt
->rt6i_flags
& RTF_EXPIRES
&& rt
->dst
.expires
) {
1771 if (time_after(now
, rt
->dst
.expires
)) {
1772 RT6_TRACE("expiring %p\n", rt
);
1776 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1777 if (atomic_read(&rt
->dst
.__refcnt
) == 0 &&
1778 time_after_eq(now
, rt
->dst
.lastuse
+ gc_args
.timeout
)) {
1779 RT6_TRACE("aging clone %p\n", rt
);
1781 } else if (rt
->rt6i_flags
& RTF_GATEWAY
) {
1782 struct neighbour
*neigh
;
1783 __u8 neigh_flags
= 0;
1785 neigh
= dst_neigh_lookup(&rt
->dst
, &rt
->rt6i_gateway
);
1787 neigh_flags
= neigh
->flags
;
1788 neigh_release(neigh
);
1790 if (!(neigh_flags
& NTF_ROUTER
)) {
1791 RT6_TRACE("purging route %p via non-router but gateway\n",
1802 static DEFINE_SPINLOCK(fib6_gc_lock
);
1804 void fib6_run_gc(unsigned long expires
, struct net
*net
, bool force
)
1809 spin_lock_bh(&fib6_gc_lock
);
1810 } else if (!spin_trylock_bh(&fib6_gc_lock
)) {
1811 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1814 gc_args
.timeout
= expires
? (int)expires
:
1815 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1817 gc_args
.more
= icmp6_dst_gc();
1819 fib6_clean_all(net
, fib6_age
, NULL
);
1821 net
->ipv6
.ip6_rt_last_gc
= now
;
1824 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1826 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1828 del_timer(&net
->ipv6
.ip6_fib_timer
);
1829 spin_unlock_bh(&fib6_gc_lock
);
1832 static void fib6_gc_timer_cb(unsigned long arg
)
1834 fib6_run_gc(0, (struct net
*)arg
, true);
1837 static int __net_init
fib6_net_init(struct net
*net
)
1839 size_t size
= sizeof(struct hlist_head
) * FIB6_TABLE_HASHSZ
;
1841 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1843 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1844 if (!net
->ipv6
.rt6_stats
)
1847 /* Avoid false sharing : Use at least a full cache line */
1848 size
= max_t(size_t, size
, L1_CACHE_BYTES
);
1850 net
->ipv6
.fib_table_hash
= kzalloc(size
, GFP_KERNEL
);
1851 if (!net
->ipv6
.fib_table_hash
)
1854 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1856 if (!net
->ipv6
.fib6_main_tbl
)
1857 goto out_fib_table_hash
;
1859 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1860 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1861 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1862 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1863 inet_peer_base_init(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1865 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1866 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1868 if (!net
->ipv6
.fib6_local_tbl
)
1869 goto out_fib6_main_tbl
;
1870 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1871 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1872 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1873 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1874 inet_peer_base_init(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1876 fib6_tables_init(net
);
1880 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1882 kfree(net
->ipv6
.fib6_main_tbl
);
1885 kfree(net
->ipv6
.fib_table_hash
);
1887 kfree(net
->ipv6
.rt6_stats
);
1892 static void fib6_net_exit(struct net
*net
)
1896 rt6_ifdown(net
, NULL
);
1897 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1899 for (i
= 0; i
< FIB6_TABLE_HASHSZ
; i
++) {
1900 struct hlist_head
*head
= &net
->ipv6
.fib_table_hash
[i
];
1901 struct hlist_node
*tmp
;
1902 struct fib6_table
*tb
;
1904 hlist_for_each_entry_safe(tb
, tmp
, head
, tb6_hlist
) {
1905 hlist_del(&tb
->tb6_hlist
);
1906 fib6_free_table(tb
);
1910 kfree(net
->ipv6
.fib_table_hash
);
1911 kfree(net
->ipv6
.rt6_stats
);
1914 static struct pernet_operations fib6_net_ops
= {
1915 .init
= fib6_net_init
,
1916 .exit
= fib6_net_exit
,
1919 int __init
fib6_init(void)
1923 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1924 sizeof(struct fib6_node
),
1925 0, SLAB_HWCACHE_ALIGN
,
1927 if (!fib6_node_kmem
)
1930 ret
= register_pernet_subsys(&fib6_net_ops
);
1932 goto out_kmem_cache_create
;
1934 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
,
1937 goto out_unregister_subsys
;
1939 __fib6_flush_trees
= fib6_flush_trees
;
1943 out_unregister_subsys
:
1944 unregister_pernet_subsys(&fib6_net_ops
);
1945 out_kmem_cache_create
:
1946 kmem_cache_destroy(fib6_node_kmem
);
1950 void fib6_gc_cleanup(void)
1952 unregister_pernet_subsys(&fib6_net_ops
);
1953 kmem_cache_destroy(fib6_node_kmem
);
1956 #ifdef CONFIG_PROC_FS
1958 struct ipv6_route_iter
{
1959 struct seq_net_private p
;
1960 struct fib6_walker w
;
1962 struct fib6_table
*tbl
;
1966 static int ipv6_route_seq_show(struct seq_file
*seq
, void *v
)
1968 struct rt6_info
*rt
= v
;
1969 struct ipv6_route_iter
*iter
= seq
->private;
1971 seq_printf(seq
, "%pi6 %02x ", &rt
->rt6i_dst
.addr
, rt
->rt6i_dst
.plen
);
1973 #ifdef CONFIG_IPV6_SUBTREES
1974 seq_printf(seq
, "%pi6 %02x ", &rt
->rt6i_src
.addr
, rt
->rt6i_src
.plen
);
1976 seq_puts(seq
, "00000000000000000000000000000000 00 ");
1978 if (rt
->rt6i_flags
& RTF_GATEWAY
)
1979 seq_printf(seq
, "%pi6", &rt
->rt6i_gateway
);
1981 seq_puts(seq
, "00000000000000000000000000000000");
1983 seq_printf(seq
, " %08x %08x %08x %08x %8s\n",
1984 rt
->rt6i_metric
, atomic_read(&rt
->dst
.__refcnt
),
1985 rt
->dst
.__use
, rt
->rt6i_flags
,
1986 rt
->dst
.dev
? rt
->dst
.dev
->name
: "");
1987 iter
->w
.leaf
= NULL
;
1991 static int ipv6_route_yield(struct fib6_walker
*w
)
1993 struct ipv6_route_iter
*iter
= w
->args
;
1999 iter
->w
.leaf
= iter
->w
.leaf
->dst
.rt6_next
;
2001 if (!iter
->skip
&& iter
->w
.leaf
)
2003 } while (iter
->w
.leaf
);
2008 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter
*iter
)
2010 memset(&iter
->w
, 0, sizeof(iter
->w
));
2011 iter
->w
.func
= ipv6_route_yield
;
2012 iter
->w
.root
= &iter
->tbl
->tb6_root
;
2013 iter
->w
.state
= FWS_INIT
;
2014 iter
->w
.node
= iter
->w
.root
;
2015 iter
->w
.args
= iter
;
2016 iter
->sernum
= iter
->w
.root
->fn_sernum
;
2017 INIT_LIST_HEAD(&iter
->w
.lh
);
2018 fib6_walker_link(&iter
->w
);
2021 static struct fib6_table
*ipv6_route_seq_next_table(struct fib6_table
*tbl
,
2025 struct hlist_node
*node
;
2028 h
= (tbl
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1)) + 1;
2029 node
= rcu_dereference_bh(hlist_next_rcu(&tbl
->tb6_hlist
));
2035 while (!node
&& h
< FIB6_TABLE_HASHSZ
) {
2036 node
= rcu_dereference_bh(
2037 hlist_first_rcu(&net
->ipv6
.fib_table_hash
[h
++]));
2039 return hlist_entry_safe(node
, struct fib6_table
, tb6_hlist
);
2042 static void ipv6_route_check_sernum(struct ipv6_route_iter
*iter
)
2044 if (iter
->sernum
!= iter
->w
.root
->fn_sernum
) {
2045 iter
->sernum
= iter
->w
.root
->fn_sernum
;
2046 iter
->w
.state
= FWS_INIT
;
2047 iter
->w
.node
= iter
->w
.root
;
2048 WARN_ON(iter
->w
.skip
);
2049 iter
->w
.skip
= iter
->w
.count
;
2053 static void *ipv6_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2057 struct net
*net
= seq_file_net(seq
);
2058 struct ipv6_route_iter
*iter
= seq
->private;
2063 n
= ((struct rt6_info
*)v
)->dst
.rt6_next
;
2070 ipv6_route_check_sernum(iter
);
2071 read_lock(&iter
->tbl
->tb6_lock
);
2072 r
= fib6_walk_continue(&iter
->w
);
2073 read_unlock(&iter
->tbl
->tb6_lock
);
2077 return iter
->w
.leaf
;
2079 fib6_walker_unlink(&iter
->w
);
2082 fib6_walker_unlink(&iter
->w
);
2084 iter
->tbl
= ipv6_route_seq_next_table(iter
->tbl
, net
);
2088 ipv6_route_seq_setup_walk(iter
);
2092 static void *ipv6_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2095 struct net
*net
= seq_file_net(seq
);
2096 struct ipv6_route_iter
*iter
= seq
->private;
2099 iter
->tbl
= ipv6_route_seq_next_table(NULL
, net
);
2103 ipv6_route_seq_setup_walk(iter
);
2104 return ipv6_route_seq_next(seq
, NULL
, pos
);
2110 static bool ipv6_route_iter_active(struct ipv6_route_iter
*iter
)
2112 struct fib6_walker
*w
= &iter
->w
;
2113 return w
->node
&& !(w
->state
== FWS_U
&& w
->node
== w
->root
);
2116 static void ipv6_route_seq_stop(struct seq_file
*seq
, void *v
)
2119 struct ipv6_route_iter
*iter
= seq
->private;
2121 if (ipv6_route_iter_active(iter
))
2122 fib6_walker_unlink(&iter
->w
);
2124 rcu_read_unlock_bh();
2127 static const struct seq_operations ipv6_route_seq_ops
= {
2128 .start
= ipv6_route_seq_start
,
2129 .next
= ipv6_route_seq_next
,
2130 .stop
= ipv6_route_seq_stop
,
2131 .show
= ipv6_route_seq_show
2134 int ipv6_route_open(struct inode
*inode
, struct file
*file
)
2136 return seq_open_net(inode
, file
, &ipv6_route_seq_ops
,
2137 sizeof(struct ipv6_route_iter
));
2140 #endif /* CONFIG_PROC_FS */