dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / rds / iw_send.c
blobe20bd503f4bd5c87363b79dbd9e3ca0e0f8e2f4d
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
39 #include "rds.h"
40 #include "iw.h"
42 static void rds_iw_send_rdma_complete(struct rds_message *rm,
43 int wc_status)
45 int notify_status;
47 switch (wc_status) {
48 case IB_WC_WR_FLUSH_ERR:
49 return;
51 case IB_WC_SUCCESS:
52 notify_status = RDS_RDMA_SUCCESS;
53 break;
55 case IB_WC_REM_ACCESS_ERR:
56 notify_status = RDS_RDMA_REMOTE_ERROR;
57 break;
59 default:
60 notify_status = RDS_RDMA_OTHER_ERROR;
61 break;
63 rds_rdma_send_complete(rm, notify_status);
66 static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
67 struct rm_rdma_op *op)
69 if (op->op_mapped) {
70 ib_dma_unmap_sg(ic->i_cm_id->device,
71 op->op_sg, op->op_nents,
72 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73 op->op_mapped = 0;
77 static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
78 struct rds_iw_send_work *send,
79 int wc_status)
81 struct rds_message *rm = send->s_rm;
83 rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
85 ib_dma_unmap_sg(ic->i_cm_id->device,
86 rm->data.op_sg, rm->data.op_nents,
87 DMA_TO_DEVICE);
89 if (rm->rdma.op_active) {
90 rds_iw_send_unmap_rdma(ic, &rm->rdma);
92 /* If the user asked for a completion notification on this
93 * message, we can implement three different semantics:
94 * 1. Notify when we received the ACK on the RDS message
95 * that was queued with the RDMA. This provides reliable
96 * notification of RDMA status at the expense of a one-way
97 * packet delay.
98 * 2. Notify when the IB stack gives us the completion event for
99 * the RDMA operation.
100 * 3. Notify when the IB stack gives us the completion event for
101 * the accompanying RDS messages.
102 * Here, we implement approach #3. To implement approach #2,
103 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 * handling in the ACK processing code.
107 * Note: There's no need to explicitly sync any RDMA buffers using
108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 * operation itself unmapped the RDMA buffers, which takes care
110 * of synching.
112 rds_iw_send_rdma_complete(rm, wc_status);
114 if (rm->rdma.op_write)
115 rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
116 else
117 rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
120 /* If anyone waited for this message to get flushed out, wake
121 * them up now */
122 rds_message_unmapped(rm);
124 rds_message_put(rm);
125 send->s_rm = NULL;
128 void rds_iw_send_init_ring(struct rds_iw_connection *ic)
130 struct rds_iw_send_work *send;
131 u32 i;
133 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134 struct ib_sge *sge;
136 send->s_rm = NULL;
137 send->s_op = NULL;
138 send->s_mapping = NULL;
140 send->s_send_wr.next = NULL;
141 send->s_send_wr.wr_id = i;
142 send->s_send_wr.sg_list = send->s_sge;
143 send->s_send_wr.num_sge = 1;
144 send->s_send_wr.opcode = IB_WR_SEND;
145 send->s_send_wr.send_flags = 0;
146 send->s_send_wr.ex.imm_data = 0;
148 sge = rds_iw_data_sge(ic, send->s_sge);
149 sge->lkey = 0;
151 sge = rds_iw_header_sge(ic, send->s_sge);
152 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
153 sge->length = sizeof(struct rds_header);
154 sge->lkey = 0;
156 send->s_mr = ib_alloc_mr(ic->i_pd, IB_MR_TYPE_MEM_REG,
157 fastreg_message_size);
158 if (IS_ERR(send->s_mr)) {
159 printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed\n");
160 break;
165 void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
167 struct rds_iw_send_work *send;
168 u32 i;
170 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
171 BUG_ON(!send->s_mr);
172 ib_dereg_mr(send->s_mr);
173 if (send->s_send_wr.opcode == 0xdead)
174 continue;
175 if (send->s_rm)
176 rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
177 if (send->s_op)
178 rds_iw_send_unmap_rdma(ic, send->s_op);
183 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
184 * operations performed in the send path. As the sender allocs and potentially
185 * unallocs the next free entry in the ring it doesn't alter which is
186 * the next to be freed, which is what this is concerned with.
188 void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
190 struct rds_connection *conn = context;
191 struct rds_iw_connection *ic = conn->c_transport_data;
192 struct ib_wc wc;
193 struct rds_iw_send_work *send;
194 u32 completed;
195 u32 oldest;
196 u32 i;
197 int ret;
199 rdsdebug("cq %p conn %p\n", cq, conn);
200 rds_iw_stats_inc(s_iw_tx_cq_call);
201 ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
202 if (ret)
203 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
205 while (ib_poll_cq(cq, 1, &wc) > 0) {
206 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
207 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
208 be32_to_cpu(wc.ex.imm_data));
209 rds_iw_stats_inc(s_iw_tx_cq_event);
211 if (wc.status != IB_WC_SUCCESS) {
212 printk(KERN_ERR "WC Error: status = %d opcode = %d\n", wc.status, wc.opcode);
213 break;
216 if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
217 ic->i_fastreg_posted = 0;
218 continue;
221 if (wc.opcode == IB_WC_REG_MR && wc.wr_id == RDS_IW_REG_WR_ID) {
222 ic->i_fastreg_posted = 1;
223 continue;
226 if (wc.wr_id == RDS_IW_ACK_WR_ID) {
227 if (time_after(jiffies, ic->i_ack_queued + HZ/2))
228 rds_iw_stats_inc(s_iw_tx_stalled);
229 rds_iw_ack_send_complete(ic);
230 continue;
233 oldest = rds_iw_ring_oldest(&ic->i_send_ring);
235 completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
237 for (i = 0; i < completed; i++) {
238 send = &ic->i_sends[oldest];
240 /* In the error case, wc.opcode sometimes contains garbage */
241 switch (send->s_send_wr.opcode) {
242 case IB_WR_SEND:
243 if (send->s_rm)
244 rds_iw_send_unmap_rm(ic, send, wc.status);
245 break;
246 case IB_WR_REG_MR:
247 case IB_WR_RDMA_WRITE:
248 case IB_WR_RDMA_READ:
249 case IB_WR_RDMA_READ_WITH_INV:
250 /* Nothing to be done - the SG list will be unmapped
251 * when the SEND completes. */
252 break;
253 default:
254 printk_ratelimited(KERN_NOTICE
255 "RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
256 __func__, send->s_send_wr.opcode);
257 break;
260 send->s_send_wr.opcode = 0xdead;
261 send->s_send_wr.num_sge = 1;
262 if (time_after(jiffies, send->s_queued + HZ/2))
263 rds_iw_stats_inc(s_iw_tx_stalled);
265 /* If a RDMA operation produced an error, signal this right
266 * away. If we don't, the subsequent SEND that goes with this
267 * RDMA will be canceled with ERR_WFLUSH, and the application
268 * never learn that the RDMA failed. */
269 if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
270 struct rds_message *rm;
272 rm = rds_send_get_message(conn, send->s_op);
273 if (rm)
274 rds_iw_send_rdma_complete(rm, wc.status);
277 oldest = (oldest + 1) % ic->i_send_ring.w_nr;
280 rds_iw_ring_free(&ic->i_send_ring, completed);
282 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
283 test_bit(0, &conn->c_map_queued))
284 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
286 /* We expect errors as the qp is drained during shutdown */
287 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
288 rds_iw_conn_error(conn,
289 "send completion on %pI4 "
290 "had status %u, disconnecting and reconnecting\n",
291 &conn->c_faddr, wc.status);
297 * This is the main function for allocating credits when sending
298 * messages.
300 * Conceptually, we have two counters:
301 * - send credits: this tells us how many WRs we're allowed
302 * to submit without overruning the receiver's queue. For
303 * each SEND WR we post, we decrement this by one.
305 * - posted credits: this tells us how many WRs we recently
306 * posted to the receive queue. This value is transferred
307 * to the peer as a "credit update" in a RDS header field.
308 * Every time we transmit credits to the peer, we subtract
309 * the amount of transferred credits from this counter.
311 * It is essential that we avoid situations where both sides have
312 * exhausted their send credits, and are unable to send new credits
313 * to the peer. We achieve this by requiring that we send at least
314 * one credit update to the peer before exhausting our credits.
315 * When new credits arrive, we subtract one credit that is withheld
316 * until we've posted new buffers and are ready to transmit these
317 * credits (see rds_iw_send_add_credits below).
319 * The RDS send code is essentially single-threaded; rds_send_xmit
320 * grabs c_send_lock to ensure exclusive access to the send ring.
321 * However, the ACK sending code is independent and can race with
322 * message SENDs.
324 * In the send path, we need to update the counters for send credits
325 * and the counter of posted buffers atomically - when we use the
326 * last available credit, we cannot allow another thread to race us
327 * and grab the posted credits counter. Hence, we have to use a
328 * spinlock to protect the credit counter, or use atomics.
330 * Spinlocks shared between the send and the receive path are bad,
331 * because they create unnecessary delays. An early implementation
332 * using a spinlock showed a 5% degradation in throughput at some
333 * loads.
335 * This implementation avoids spinlocks completely, putting both
336 * counters into a single atomic, and updating that atomic using
337 * atomic_add (in the receive path, when receiving fresh credits),
338 * and using atomic_cmpxchg when updating the two counters.
340 int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
341 u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
343 unsigned int avail, posted, got = 0, advertise;
344 long oldval, newval;
346 *adv_credits = 0;
347 if (!ic->i_flowctl)
348 return wanted;
350 try_again:
351 advertise = 0;
352 oldval = newval = atomic_read(&ic->i_credits);
353 posted = IB_GET_POST_CREDITS(oldval);
354 avail = IB_GET_SEND_CREDITS(oldval);
356 rdsdebug("wanted=%u credits=%u posted=%u\n",
357 wanted, avail, posted);
359 /* The last credit must be used to send a credit update. */
360 if (avail && !posted)
361 avail--;
363 if (avail < wanted) {
364 struct rds_connection *conn = ic->i_cm_id->context;
366 /* Oops, there aren't that many credits left! */
367 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
368 got = avail;
369 } else {
370 /* Sometimes you get what you want, lalala. */
371 got = wanted;
373 newval -= IB_SET_SEND_CREDITS(got);
376 * If need_posted is non-zero, then the caller wants
377 * the posted regardless of whether any send credits are
378 * available.
380 if (posted && (got || need_posted)) {
381 advertise = min_t(unsigned int, posted, max_posted);
382 newval -= IB_SET_POST_CREDITS(advertise);
385 /* Finally bill everything */
386 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
387 goto try_again;
389 *adv_credits = advertise;
390 return got;
393 void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
395 struct rds_iw_connection *ic = conn->c_transport_data;
397 if (credits == 0)
398 return;
400 rdsdebug("credits=%u current=%u%s\n",
401 credits,
402 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
403 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
405 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
406 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
407 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
409 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
411 rds_iw_stats_inc(s_iw_rx_credit_updates);
414 void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
416 struct rds_iw_connection *ic = conn->c_transport_data;
418 if (posted == 0)
419 return;
421 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
423 /* Decide whether to send an update to the peer now.
424 * If we would send a credit update for every single buffer we
425 * post, we would end up with an ACK storm (ACK arrives,
426 * consumes buffer, we refill the ring, send ACK to remote
427 * advertising the newly posted buffer... ad inf)
429 * Performance pretty much depends on how often we send
430 * credit updates - too frequent updates mean lots of ACKs.
431 * Too infrequent updates, and the peer will run out of
432 * credits and has to throttle.
433 * For the time being, 16 seems to be a good compromise.
435 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
436 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
439 static inline void
440 rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
441 struct rds_iw_send_work *send, unsigned int pos,
442 unsigned long buffer, unsigned int length,
443 int send_flags)
445 struct ib_sge *sge;
447 WARN_ON(pos != send - ic->i_sends);
449 send->s_send_wr.send_flags = send_flags;
450 send->s_send_wr.opcode = IB_WR_SEND;
451 send->s_send_wr.num_sge = 2;
452 send->s_send_wr.next = NULL;
453 send->s_queued = jiffies;
454 send->s_op = NULL;
456 if (length != 0) {
457 sge = rds_iw_data_sge(ic, send->s_sge);
458 sge->addr = buffer;
459 sge->length = length;
460 sge->lkey = rds_iw_local_dma_lkey(ic);
462 sge = rds_iw_header_sge(ic, send->s_sge);
463 } else {
464 /* We're sending a packet with no payload. There is only
465 * one SGE */
466 send->s_send_wr.num_sge = 1;
467 sge = &send->s_sge[0];
470 sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
471 sge->length = sizeof(struct rds_header);
472 sge->lkey = rds_iw_local_dma_lkey(ic);
476 * This can be called multiple times for a given message. The first time
477 * we see a message we map its scatterlist into the IB device so that
478 * we can provide that mapped address to the IB scatter gather entries
479 * in the IB work requests. We translate the scatterlist into a series
480 * of work requests that fragment the message. These work requests complete
481 * in order so we pass ownership of the message to the completion handler
482 * once we send the final fragment.
484 * The RDS core uses the c_send_lock to only enter this function once
485 * per connection. This makes sure that the tx ring alloc/unalloc pairs
486 * don't get out of sync and confuse the ring.
488 int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
489 unsigned int hdr_off, unsigned int sg, unsigned int off)
491 struct rds_iw_connection *ic = conn->c_transport_data;
492 struct ib_device *dev = ic->i_cm_id->device;
493 struct rds_iw_send_work *send = NULL;
494 struct rds_iw_send_work *first;
495 struct rds_iw_send_work *prev;
496 struct ib_send_wr *failed_wr;
497 struct scatterlist *scat;
498 u32 pos;
499 u32 i;
500 u32 work_alloc;
501 u32 credit_alloc;
502 u32 posted;
503 u32 adv_credits = 0;
504 int send_flags = 0;
505 int sent;
506 int ret;
507 int flow_controlled = 0;
509 BUG_ON(off % RDS_FRAG_SIZE);
510 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
512 /* Fastreg support */
513 if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
514 ret = -EAGAIN;
515 goto out;
518 /* FIXME we may overallocate here */
519 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
520 i = 1;
521 else
522 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
524 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
525 if (work_alloc == 0) {
526 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
527 rds_iw_stats_inc(s_iw_tx_ring_full);
528 ret = -ENOMEM;
529 goto out;
532 credit_alloc = work_alloc;
533 if (ic->i_flowctl) {
534 credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
535 adv_credits += posted;
536 if (credit_alloc < work_alloc) {
537 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
538 work_alloc = credit_alloc;
539 flow_controlled++;
541 if (work_alloc == 0) {
542 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
543 rds_iw_stats_inc(s_iw_tx_throttle);
544 ret = -ENOMEM;
545 goto out;
549 /* map the message the first time we see it */
550 if (!ic->i_rm) {
552 printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
553 be16_to_cpu(rm->m_inc.i_hdr.h_dport),
554 rm->m_inc.i_hdr.h_flags,
555 be32_to_cpu(rm->m_inc.i_hdr.h_len));
557 if (rm->data.op_nents) {
558 rm->data.op_count = ib_dma_map_sg(dev,
559 rm->data.op_sg,
560 rm->data.op_nents,
561 DMA_TO_DEVICE);
562 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
563 if (rm->data.op_count == 0) {
564 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
565 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
566 ret = -ENOMEM; /* XXX ? */
567 goto out;
569 } else {
570 rm->data.op_count = 0;
573 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
574 ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
575 rds_message_addref(rm);
576 rm->data.op_dmasg = 0;
577 rm->data.op_dmaoff = 0;
578 ic->i_rm = rm;
580 /* Finalize the header */
581 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
582 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
583 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
584 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
586 /* If it has a RDMA op, tell the peer we did it. This is
587 * used by the peer to release use-once RDMA MRs. */
588 if (rm->rdma.op_active) {
589 struct rds_ext_header_rdma ext_hdr;
591 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
592 rds_message_add_extension(&rm->m_inc.i_hdr,
593 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
595 if (rm->m_rdma_cookie) {
596 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
597 rds_rdma_cookie_key(rm->m_rdma_cookie),
598 rds_rdma_cookie_offset(rm->m_rdma_cookie));
601 /* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
602 * we should not do this unless we have a chance of at least
603 * sticking the header into the send ring. Which is why we
604 * should call rds_iw_ring_alloc first. */
605 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
606 rds_message_make_checksum(&rm->m_inc.i_hdr);
609 * Update adv_credits since we reset the ACK_REQUIRED bit.
611 rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
612 adv_credits += posted;
613 BUG_ON(adv_credits > 255);
616 send = &ic->i_sends[pos];
617 first = send;
618 prev = NULL;
619 scat = &rm->data.op_sg[rm->data.op_dmasg];
620 sent = 0;
621 i = 0;
623 /* Sometimes you want to put a fence between an RDMA
624 * READ and the following SEND.
625 * We could either do this all the time
626 * or when requested by the user. Right now, we let
627 * the application choose.
629 if (rm->rdma.op_active && rm->rdma.op_fence)
630 send_flags = IB_SEND_FENCE;
633 * We could be copying the header into the unused tail of the page.
634 * That would need to be changed in the future when those pages might
635 * be mapped userspace pages or page cache pages. So instead we always
636 * use a second sge and our long-lived ring of mapped headers. We send
637 * the header after the data so that the data payload can be aligned on
638 * the receiver.
641 /* handle a 0-len message */
642 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
643 rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
644 goto add_header;
647 /* if there's data reference it with a chain of work reqs */
648 for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
649 unsigned int len;
651 send = &ic->i_sends[pos];
653 len = min(RDS_FRAG_SIZE,
654 ib_sg_dma_len(dev, scat) - rm->data.op_dmaoff);
655 rds_iw_xmit_populate_wr(ic, send, pos,
656 ib_sg_dma_address(dev, scat) + rm->data.op_dmaoff, len,
657 send_flags);
660 * We want to delay signaling completions just enough to get
661 * the batching benefits but not so much that we create dead time
662 * on the wire.
664 if (ic->i_unsignaled_wrs-- == 0) {
665 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
666 send->s_send_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
669 ic->i_unsignaled_bytes -= len;
670 if (ic->i_unsignaled_bytes <= 0) {
671 ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
672 send->s_send_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
676 * Always signal the last one if we're stopping due to flow control.
678 if (flow_controlled && i == (work_alloc-1))
679 send->s_send_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
681 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
682 &send->s_send_wr, send->s_send_wr.num_sge, send->s_send_wr.next);
684 sent += len;
685 rm->data.op_dmaoff += len;
686 if (rm->data.op_dmaoff == ib_sg_dma_len(dev, scat)) {
687 scat++;
688 rm->data.op_dmaoff = 0;
689 rm->data.op_dmasg++;
692 add_header:
693 /* Tack on the header after the data. The header SGE should already
694 * have been set up to point to the right header buffer. */
695 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
697 if (0) {
698 struct rds_header *hdr = &ic->i_send_hdrs[pos];
700 printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
701 be16_to_cpu(hdr->h_dport),
702 hdr->h_flags,
703 be32_to_cpu(hdr->h_len));
705 if (adv_credits) {
706 struct rds_header *hdr = &ic->i_send_hdrs[pos];
708 /* add credit and redo the header checksum */
709 hdr->h_credit = adv_credits;
710 rds_message_make_checksum(hdr);
711 adv_credits = 0;
712 rds_iw_stats_inc(s_iw_tx_credit_updates);
715 if (prev)
716 prev->s_send_wr.next = &send->s_send_wr;
717 prev = send;
719 pos = (pos + 1) % ic->i_send_ring.w_nr;
722 /* Account the RDS header in the number of bytes we sent, but just once.
723 * The caller has no concept of fragmentation. */
724 if (hdr_off == 0)
725 sent += sizeof(struct rds_header);
727 /* if we finished the message then send completion owns it */
728 if (scat == &rm->data.op_sg[rm->data.op_count]) {
729 prev->s_rm = ic->i_rm;
730 prev->s_send_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
731 ic->i_rm = NULL;
734 if (i < work_alloc) {
735 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
736 work_alloc = i;
738 if (ic->i_flowctl && i < credit_alloc)
739 rds_iw_send_add_credits(conn, credit_alloc - i);
741 /* XXX need to worry about failed_wr and partial sends. */
742 failed_wr = &first->s_send_wr;
743 ret = ib_post_send(ic->i_cm_id->qp, &first->s_send_wr, &failed_wr);
744 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
745 first, &first->s_send_wr, ret, failed_wr);
746 BUG_ON(failed_wr != &first->s_send_wr);
747 if (ret) {
748 printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
749 "returned %d\n", &conn->c_faddr, ret);
750 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
751 if (prev->s_rm) {
752 ic->i_rm = prev->s_rm;
753 prev->s_rm = NULL;
755 goto out;
758 ret = sent;
759 out:
760 BUG_ON(adv_credits);
761 return ret;
764 static int rds_iw_build_send_reg(struct rds_iw_send_work *send,
765 struct scatterlist *sg,
766 int sg_nents)
768 int n;
770 n = ib_map_mr_sg(send->s_mr, sg, sg_nents, PAGE_SIZE);
771 if (unlikely(n != sg_nents))
772 return n < 0 ? n : -EINVAL;
774 send->s_reg_wr.wr.opcode = IB_WR_REG_MR;
775 send->s_reg_wr.wr.wr_id = 0;
776 send->s_reg_wr.wr.num_sge = 0;
777 send->s_reg_wr.mr = send->s_mr;
778 send->s_reg_wr.key = send->s_mr->rkey;
779 send->s_reg_wr.access = IB_ACCESS_REMOTE_WRITE;
781 ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
783 return 0;
786 int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
788 struct rds_iw_connection *ic = conn->c_transport_data;
789 struct rds_iw_send_work *send = NULL;
790 struct rds_iw_send_work *first;
791 struct rds_iw_send_work *prev;
792 struct ib_send_wr *failed_wr;
793 struct rds_iw_device *rds_iwdev;
794 struct scatterlist *scat;
795 unsigned long len;
796 u64 remote_addr = op->op_remote_addr;
797 u32 pos, fr_pos;
798 u32 work_alloc;
799 u32 i;
800 u32 j;
801 int sent;
802 int ret;
803 int num_sge;
804 int sg_nents;
806 rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);
808 /* map the message the first time we see it */
809 if (!op->op_mapped) {
810 op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
811 op->op_sg, op->op_nents, (op->op_write) ?
812 DMA_TO_DEVICE : DMA_FROM_DEVICE);
813 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
814 if (op->op_count == 0) {
815 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
816 ret = -ENOMEM; /* XXX ? */
817 goto out;
820 op->op_mapped = 1;
823 if (!op->op_write) {
824 /* Alloc space on the send queue for the fastreg */
825 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
826 if (work_alloc != 1) {
827 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
828 rds_iw_stats_inc(s_iw_tx_ring_full);
829 ret = -ENOMEM;
830 goto out;
835 * Instead of knowing how to return a partial rdma read/write we insist that there
836 * be enough work requests to send the entire message.
838 i = ceil(op->op_count, rds_iwdev->max_sge);
840 work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
841 if (work_alloc != i) {
842 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
843 rds_iw_stats_inc(s_iw_tx_ring_full);
844 ret = -ENOMEM;
845 goto out;
848 send = &ic->i_sends[pos];
849 if (!op->op_write) {
850 first = prev = &ic->i_sends[fr_pos];
851 } else {
852 first = send;
853 prev = NULL;
855 scat = &op->op_sg[0];
856 sent = 0;
857 num_sge = op->op_count;
858 sg_nents = 0;
860 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
861 send->s_rdma_wr.wr.send_flags = 0;
862 send->s_queued = jiffies;
865 * We want to delay signaling completions just enough to get
866 * the batching benefits but not so much that we create dead time on the wire.
868 if (ic->i_unsignaled_wrs-- == 0) {
869 ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
870 send->s_rdma_wr.wr.send_flags = IB_SEND_SIGNALED;
873 /* To avoid the need to have the plumbing to invalidate the fastreg_mr used
874 * for local access after RDS is finished with it, using
875 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
877 if (op->op_write)
878 send->s_rdma_wr.wr.opcode = IB_WR_RDMA_WRITE;
879 else
880 send->s_rdma_wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
882 send->s_rdma_wr.remote_addr = remote_addr;
883 send->s_rdma_wr.rkey = op->op_rkey;
884 send->s_op = op;
886 if (num_sge > rds_iwdev->max_sge) {
887 send->s_rdma_wr.wr.num_sge = rds_iwdev->max_sge;
888 num_sge -= rds_iwdev->max_sge;
889 } else
890 send->s_rdma_wr.wr.num_sge = num_sge;
892 send->s_rdma_wr.wr.next = NULL;
894 if (prev)
895 prev->s_send_wr.next = &send->s_rdma_wr.wr;
897 for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
898 scat != &op->op_sg[op->op_count]; j++) {
899 len = ib_sg_dma_len(ic->i_cm_id->device, scat);
901 if (send->s_rdma_wr.wr.opcode == IB_WR_RDMA_READ_WITH_INV)
902 sg_nents++;
903 else {
904 send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
905 send->s_sge[j].length = len;
906 send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
909 sent += len;
910 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
911 remote_addr += len;
913 scat++;
916 if (send->s_rdma_wr.wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
917 send->s_rdma_wr.wr.num_sge = 1;
918 send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
919 send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
920 send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
923 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
924 &send->s_rdma_wr,
925 send->s_rdma_wr.wr.num_sge,
926 send->s_rdma_wr.wr.next);
928 prev = send;
929 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
930 send = ic->i_sends;
933 /* if we finished the message then send completion owns it */
934 if (scat == &op->op_sg[op->op_count])
935 first->s_rdma_wr.wr.send_flags = IB_SEND_SIGNALED;
937 if (i < work_alloc) {
938 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
939 work_alloc = i;
942 /* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
943 * recommended. Putting the lkey on the wire is a security hole, as it can
944 * allow for memory access to all of memory on the remote system. Some
945 * adapters do not allow using the lkey for this at all. To bypass this use a
946 * fastreg_mr (or possibly a dma_mr)
948 if (!op->op_write) {
949 ret = rds_iw_build_send_reg(&ic->i_sends[fr_pos],
950 &op->op_sg[0], sg_nents);
951 if (ret) {
952 printk(KERN_WARNING "RDS/IW: failed to reg send mem\n");
953 goto out;
955 work_alloc++;
958 failed_wr = &first->s_rdma_wr.wr;
959 ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
960 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
961 first, &first->s_rdma_wr, ret, failed_wr);
962 BUG_ON(failed_wr != &first->s_rdma_wr.wr);
963 if (ret) {
964 printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
965 "returned %d\n", &conn->c_faddr, ret);
966 rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
967 goto out;
970 out:
971 return ret;
974 void rds_iw_xmit_complete(struct rds_connection *conn)
976 struct rds_iw_connection *ic = conn->c_transport_data;
978 /* We may have a pending ACK or window update we were unable
979 * to send previously (due to flow control). Try again. */
980 rds_iw_attempt_ack(ic);