dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / net / socket.c
blob0c544ae48eac74986f8954b62864426b5ec9cf25
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <asm/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .release = sock_close,
153 .fasync = sock_fasync,
154 .sendpage = sock_sendpage,
155 .splice_write = generic_splice_sendpage,
156 .splice_read = sock_splice_read,
160 * The protocol list. Each protocol is registered in here.
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 * Statistics counters of the socket lists
170 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Support routines.
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 return -EINVAL;
193 if (ulen == 0)
194 return 0;
195 if (copy_from_user(kaddr, uaddr, ulen))
196 return -EFAULT;
197 return audit_sockaddr(ulen, kaddr);
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
211 * accessible.
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 void __user *uaddr, int __user *ulen)
220 int err;
221 int len;
223 BUG_ON(klen > sizeof(struct sockaddr_storage));
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0)
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
241 return __put_user(klen, ulen);
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 static struct inode *sock_alloc_inode(struct super_block *sb)
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 wq->flags = 0;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
284 static void init_once(void *foo)
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
288 inode_init_once(&ei->vfs_inode);
291 static int init_inodecache(void)
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 d_inode(dentry)->i_ino);
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 static struct vfsmount *sock_mnt __read_mostly;
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
374 d_instantiate(path.dentry, SOCK_INODE(sock));
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (IS_ERR(file)) {
379 /* drop dentry, keep inode */
380 ihold(d_inode(path.dentry));
381 path_put(&path);
382 return file;
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
390 EXPORT_SYMBOL(sock_alloc_file);
392 static int sock_map_fd(struct socket *sock, int flags)
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
409 struct socket *sock_from_file(struct file *file, int *err)
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
414 *err = -ENOTSOCK;
415 return NULL;
417 EXPORT_SYMBOL(sock_from_file);
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket *sockfd_lookup(int fd, int *err)
434 struct file *file;
435 struct socket *sock;
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
448 EXPORT_SYMBOL(sockfd_lookup);
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 struct fd f = fdget(fd);
453 struct socket *sock;
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
462 fdput(f);
464 return NULL;
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
473 const char *proto_name;
474 size_t proto_size;
475 int error;
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
487 strncpy(value, proto_name, proto_size + 1);
489 error = proto_size + 1;
492 out:
493 return error;
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
499 ssize_t len;
500 ssize_t used = 0;
502 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
521 return used;
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
537 static struct socket *sock_alloc(void)
539 struct inode *inode;
540 struct socket *sock;
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
546 sock = SOCKET_I(inode);
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
560 * sock_release - close a socket
561 * @sock: socket to close
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
568 void sock_release(struct socket *sock)
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
581 this_cpu_sub(sockets_in_use, 1);
582 if (!sock->file) {
583 iput(SOCK_INODE(sock));
584 return;
586 sock->file = NULL;
588 EXPORT_SYMBOL(sock_release);
590 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
592 u8 flags = *tx_flags;
594 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 flags |= SKBTX_HW_TSTAMP;
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 flags |= SKBTX_SW_TSTAMP;
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 flags |= SKBTX_SCHED_TSTAMP;
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
604 flags |= SKBTX_ACK_TSTAMP;
606 *tx_flags = flags;
608 EXPORT_SYMBOL(__sock_tx_timestamp);
610 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
612 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
613 BUG_ON(ret == -EIOCBQUEUED);
614 return ret;
617 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
619 int err = security_socket_sendmsg(sock, msg,
620 msg_data_left(msg));
622 return err ?: sock_sendmsg_nosec(sock, msg);
624 EXPORT_SYMBOL(sock_sendmsg);
626 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
627 struct kvec *vec, size_t num, size_t size)
629 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
630 return sock_sendmsg(sock, msg);
632 EXPORT_SYMBOL(kernel_sendmsg);
635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
638 struct sk_buff *skb)
640 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
641 struct scm_timestamping tss;
642 int empty = 1;
643 struct skb_shared_hwtstamps *shhwtstamps =
644 skb_hwtstamps(skb);
646 /* Race occurred between timestamp enabling and packet
647 receiving. Fill in the current time for now. */
648 if (need_software_tstamp && skb->tstamp.tv64 == 0)
649 __net_timestamp(skb);
651 if (need_software_tstamp) {
652 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
653 struct timeval tv;
654 skb_get_timestamp(skb, &tv);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
656 sizeof(tv), &tv);
657 } else {
658 struct timespec ts;
659 skb_get_timestampns(skb, &ts);
660 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
661 sizeof(ts), &ts);
665 memset(&tss, 0, sizeof(tss));
666 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
667 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
668 empty = 0;
669 if (shhwtstamps &&
670 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
671 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
672 empty = 0;
673 if (!empty)
674 put_cmsg(msg, SOL_SOCKET,
675 SCM_TIMESTAMPING, sizeof(tss), &tss);
677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
680 struct sk_buff *skb)
682 int ack;
684 if (!sock_flag(sk, SOCK_WIFI_STATUS))
685 return;
686 if (!skb->wifi_acked_valid)
687 return;
689 ack = skb->wifi_acked;
691 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
696 struct sk_buff *skb)
698 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
699 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
700 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
704 struct sk_buff *skb)
706 sock_recv_timestamp(msg, sk, skb);
707 sock_recv_drops(msg, sk, skb);
709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
711 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
712 size_t size, int flags)
714 return sock->ops->recvmsg(sock, msg, size, flags);
717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
718 int flags)
720 int err = security_socket_recvmsg(sock, msg, size, flags);
722 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
724 EXPORT_SYMBOL(sock_recvmsg);
727 * kernel_recvmsg - Receive a message from a socket (kernel space)
728 * @sock: The socket to receive the message from
729 * @msg: Received message
730 * @vec: Input s/g array for message data
731 * @num: Size of input s/g array
732 * @size: Number of bytes to read
733 * @flags: Message flags (MSG_DONTWAIT, etc...)
735 * On return the msg structure contains the scatter/gather array passed in the
736 * vec argument. The array is modified so that it consists of the unfilled
737 * portion of the original array.
739 * The returned value is the total number of bytes received, or an error.
741 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
742 struct kvec *vec, size_t num, size_t size, int flags)
744 mm_segment_t oldfs = get_fs();
745 int result;
747 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
748 set_fs(KERNEL_DS);
749 result = sock_recvmsg(sock, msg, size, flags);
750 set_fs(oldfs);
751 return result;
753 EXPORT_SYMBOL(kernel_recvmsg);
755 static ssize_t sock_sendpage(struct file *file, struct page *page,
756 int offset, size_t size, loff_t *ppos, int more)
758 struct socket *sock;
759 int flags;
761 sock = file->private_data;
763 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
764 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
765 flags |= more;
767 return kernel_sendpage(sock, page, offset, size, flags);
770 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
771 struct pipe_inode_info *pipe, size_t len,
772 unsigned int flags)
774 struct socket *sock = file->private_data;
776 if (unlikely(!sock->ops->splice_read))
777 return -EINVAL;
779 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
782 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
784 struct file *file = iocb->ki_filp;
785 struct socket *sock = file->private_data;
786 struct msghdr msg = {.msg_iter = *to,
787 .msg_iocb = iocb};
788 ssize_t res;
790 if (file->f_flags & O_NONBLOCK)
791 msg.msg_flags = MSG_DONTWAIT;
793 if (iocb->ki_pos != 0)
794 return -ESPIPE;
796 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
797 return 0;
799 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
800 *to = msg.msg_iter;
801 return res;
804 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
806 struct file *file = iocb->ki_filp;
807 struct socket *sock = file->private_data;
808 struct msghdr msg = {.msg_iter = *from,
809 .msg_iocb = iocb};
810 ssize_t res;
812 if (iocb->ki_pos != 0)
813 return -ESPIPE;
815 if (file->f_flags & O_NONBLOCK)
816 msg.msg_flags = MSG_DONTWAIT;
818 if (sock->type == SOCK_SEQPACKET)
819 msg.msg_flags |= MSG_EOR;
821 res = sock_sendmsg(sock, &msg);
822 *from = msg.msg_iter;
823 return res;
827 * Atomic setting of ioctl hooks to avoid race
828 * with module unload.
831 static DEFINE_MUTEX(br_ioctl_mutex);
832 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
834 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
836 mutex_lock(&br_ioctl_mutex);
837 br_ioctl_hook = hook;
838 mutex_unlock(&br_ioctl_mutex);
840 EXPORT_SYMBOL(brioctl_set);
842 static DEFINE_MUTEX(vlan_ioctl_mutex);
843 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
845 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
847 mutex_lock(&vlan_ioctl_mutex);
848 vlan_ioctl_hook = hook;
849 mutex_unlock(&vlan_ioctl_mutex);
851 EXPORT_SYMBOL(vlan_ioctl_set);
853 static DEFINE_MUTEX(dlci_ioctl_mutex);
854 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
856 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
858 mutex_lock(&dlci_ioctl_mutex);
859 dlci_ioctl_hook = hook;
860 mutex_unlock(&dlci_ioctl_mutex);
862 EXPORT_SYMBOL(dlci_ioctl_set);
864 static long sock_do_ioctl(struct net *net, struct socket *sock,
865 unsigned int cmd, unsigned long arg)
867 int err;
868 void __user *argp = (void __user *)arg;
870 err = sock->ops->ioctl(sock, cmd, arg);
873 * If this ioctl is unknown try to hand it down
874 * to the NIC driver.
876 if (err == -ENOIOCTLCMD)
877 err = dev_ioctl(net, cmd, argp);
879 return err;
883 * With an ioctl, arg may well be a user mode pointer, but we don't know
884 * what to do with it - that's up to the protocol still.
887 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
889 struct socket *sock;
890 struct sock *sk;
891 void __user *argp = (void __user *)arg;
892 int pid, err;
893 struct net *net;
895 sock = file->private_data;
896 sk = sock->sk;
897 net = sock_net(sk);
898 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
899 err = dev_ioctl(net, cmd, argp);
900 } else
901 #ifdef CONFIG_WEXT_CORE
902 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
903 err = dev_ioctl(net, cmd, argp);
904 } else
905 #endif
906 switch (cmd) {
907 case FIOSETOWN:
908 case SIOCSPGRP:
909 err = -EFAULT;
910 if (get_user(pid, (int __user *)argp))
911 break;
912 f_setown(sock->file, pid, 1);
913 err = 0;
914 break;
915 case FIOGETOWN:
916 case SIOCGPGRP:
917 err = put_user(f_getown(sock->file),
918 (int __user *)argp);
919 break;
920 case SIOCGIFBR:
921 case SIOCSIFBR:
922 case SIOCBRADDBR:
923 case SIOCBRDELBR:
924 err = -ENOPKG;
925 if (!br_ioctl_hook)
926 request_module("bridge");
928 mutex_lock(&br_ioctl_mutex);
929 if (br_ioctl_hook)
930 err = br_ioctl_hook(net, cmd, argp);
931 mutex_unlock(&br_ioctl_mutex);
932 break;
933 case SIOCGIFVLAN:
934 case SIOCSIFVLAN:
935 err = -ENOPKG;
936 if (!vlan_ioctl_hook)
937 request_module("8021q");
939 mutex_lock(&vlan_ioctl_mutex);
940 if (vlan_ioctl_hook)
941 err = vlan_ioctl_hook(net, argp);
942 mutex_unlock(&vlan_ioctl_mutex);
943 break;
944 case SIOCADDDLCI:
945 case SIOCDELDLCI:
946 err = -ENOPKG;
947 if (!dlci_ioctl_hook)
948 request_module("dlci");
950 mutex_lock(&dlci_ioctl_mutex);
951 if (dlci_ioctl_hook)
952 err = dlci_ioctl_hook(cmd, argp);
953 mutex_unlock(&dlci_ioctl_mutex);
954 break;
955 default:
956 err = sock_do_ioctl(net, sock, cmd, arg);
957 break;
959 return err;
962 int sock_create_lite(int family, int type, int protocol, struct socket **res)
964 int err;
965 struct socket *sock = NULL;
967 err = security_socket_create(family, type, protocol, 1);
968 if (err)
969 goto out;
971 sock = sock_alloc();
972 if (!sock) {
973 err = -ENOMEM;
974 goto out;
977 sock->type = type;
978 err = security_socket_post_create(sock, family, type, protocol, 1);
979 if (err)
980 goto out_release;
982 out:
983 *res = sock;
984 return err;
985 out_release:
986 sock_release(sock);
987 sock = NULL;
988 goto out;
990 EXPORT_SYMBOL(sock_create_lite);
992 /* No kernel lock held - perfect */
993 static unsigned int sock_poll(struct file *file, poll_table *wait)
995 unsigned int busy_flag = 0;
996 struct socket *sock;
999 * We can't return errors to poll, so it's either yes or no.
1001 sock = file->private_data;
1003 if (sk_can_busy_loop(sock->sk)) {
1004 /* this socket can poll_ll so tell the system call */
1005 busy_flag = POLL_BUSY_LOOP;
1007 /* once, only if requested by syscall */
1008 if (wait && (wait->_key & POLL_BUSY_LOOP))
1009 sk_busy_loop(sock->sk, 1);
1012 return busy_flag | sock->ops->poll(file, sock, wait);
1015 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 struct socket *sock = file->private_data;
1019 return sock->ops->mmap(file, sock, vma);
1022 static int sock_close(struct inode *inode, struct file *filp)
1024 sock_release(SOCKET_I(inode));
1025 return 0;
1029 * Update the socket async list
1031 * Fasync_list locking strategy.
1033 * 1. fasync_list is modified only under process context socket lock
1034 * i.e. under semaphore.
1035 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 * or under socket lock
1039 static int sock_fasync(int fd, struct file *filp, int on)
1041 struct socket *sock = filp->private_data;
1042 struct sock *sk = sock->sk;
1043 struct socket_wq *wq;
1045 if (sk == NULL)
1046 return -EINVAL;
1048 lock_sock(sk);
1049 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050 fasync_helper(fd, filp, on, &wq->fasync_list);
1052 if (!wq->fasync_list)
1053 sock_reset_flag(sk, SOCK_FASYNC);
1054 else
1055 sock_set_flag(sk, SOCK_FASYNC);
1057 release_sock(sk);
1058 return 0;
1061 /* This function may be called only under rcu_lock */
1063 int sock_wake_async(struct socket_wq *wq, int how, int band)
1065 if (!wq || !wq->fasync_list)
1066 return -1;
1068 switch (how) {
1069 case SOCK_WAKE_WAITD:
1070 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071 break;
1072 goto call_kill;
1073 case SOCK_WAKE_SPACE:
1074 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075 break;
1076 /* fall through */
1077 case SOCK_WAKE_IO:
1078 call_kill:
1079 kill_fasync(&wq->fasync_list, SIGIO, band);
1080 break;
1081 case SOCK_WAKE_URG:
1082 kill_fasync(&wq->fasync_list, SIGURG, band);
1085 return 0;
1087 EXPORT_SYMBOL(sock_wake_async);
1089 int __sock_create(struct net *net, int family, int type, int protocol,
1090 struct socket **res, int kern)
1092 int err;
1093 struct socket *sock;
1094 const struct net_proto_family *pf;
1097 * Check protocol is in range
1099 if (family < 0 || family >= NPROTO)
1100 return -EAFNOSUPPORT;
1101 if (type < 0 || type >= SOCK_MAX)
1102 return -EINVAL;
1104 /* Compatibility.
1106 This uglymoron is moved from INET layer to here to avoid
1107 deadlock in module load.
1109 if (family == PF_INET && type == SOCK_PACKET) {
1110 static int warned;
1111 if (!warned) {
1112 warned = 1;
1113 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1114 current->comm);
1116 family = PF_PACKET;
1119 err = security_socket_create(family, type, protocol, kern);
1120 if (err)
1121 return err;
1124 * Allocate the socket and allow the family to set things up. if
1125 * the protocol is 0, the family is instructed to select an appropriate
1126 * default.
1128 sock = sock_alloc();
1129 if (!sock) {
1130 net_warn_ratelimited("socket: no more sockets\n");
1131 return -ENFILE; /* Not exactly a match, but its the
1132 closest posix thing */
1135 sock->type = type;
1137 #ifdef CONFIG_MODULES
1138 /* Attempt to load a protocol module if the find failed.
1140 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1141 * requested real, full-featured networking support upon configuration.
1142 * Otherwise module support will break!
1144 if (rcu_access_pointer(net_families[family]) == NULL)
1145 request_module("net-pf-%d", family);
1146 #endif
1148 rcu_read_lock();
1149 pf = rcu_dereference(net_families[family]);
1150 err = -EAFNOSUPPORT;
1151 if (!pf)
1152 goto out_release;
1155 * We will call the ->create function, that possibly is in a loadable
1156 * module, so we have to bump that loadable module refcnt first.
1158 if (!try_module_get(pf->owner))
1159 goto out_release;
1161 /* Now protected by module ref count */
1162 rcu_read_unlock();
1164 err = pf->create(net, sock, protocol, kern);
1165 if (err < 0)
1166 goto out_module_put;
1169 * Now to bump the refcnt of the [loadable] module that owns this
1170 * socket at sock_release time we decrement its refcnt.
1172 if (!try_module_get(sock->ops->owner))
1173 goto out_module_busy;
1176 * Now that we're done with the ->create function, the [loadable]
1177 * module can have its refcnt decremented
1179 module_put(pf->owner);
1180 err = security_socket_post_create(sock, family, type, protocol, kern);
1181 if (err)
1182 goto out_sock_release;
1183 *res = sock;
1185 return 0;
1187 out_module_busy:
1188 err = -EAFNOSUPPORT;
1189 out_module_put:
1190 sock->ops = NULL;
1191 module_put(pf->owner);
1192 out_sock_release:
1193 sock_release(sock);
1194 return err;
1196 out_release:
1197 rcu_read_unlock();
1198 goto out_sock_release;
1200 EXPORT_SYMBOL(__sock_create);
1202 int sock_create(int family, int type, int protocol, struct socket **res)
1204 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1206 EXPORT_SYMBOL(sock_create);
1208 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1210 return __sock_create(net, family, type, protocol, res, 1);
1212 EXPORT_SYMBOL(sock_create_kern);
1214 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1216 int retval;
1217 struct socket *sock;
1218 int flags;
1220 /* Check the SOCK_* constants for consistency. */
1221 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1222 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1223 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1224 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1226 flags = type & ~SOCK_TYPE_MASK;
1227 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1228 return -EINVAL;
1229 type &= SOCK_TYPE_MASK;
1231 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1232 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1234 retval = sock_create(family, type, protocol, &sock);
1235 if (retval < 0)
1236 goto out;
1238 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1239 if (retval < 0)
1240 goto out_release;
1242 out:
1243 /* It may be already another descriptor 8) Not kernel problem. */
1244 return retval;
1246 out_release:
1247 sock_release(sock);
1248 return retval;
1252 * Create a pair of connected sockets.
1255 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1256 int __user *, usockvec)
1258 struct socket *sock1, *sock2;
1259 int fd1, fd2, err;
1260 struct file *newfile1, *newfile2;
1261 int flags;
1263 flags = type & ~SOCK_TYPE_MASK;
1264 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1265 return -EINVAL;
1266 type &= SOCK_TYPE_MASK;
1268 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1269 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1272 * Obtain the first socket and check if the underlying protocol
1273 * supports the socketpair call.
1276 err = sock_create(family, type, protocol, &sock1);
1277 if (err < 0)
1278 goto out;
1280 err = sock_create(family, type, protocol, &sock2);
1281 if (err < 0)
1282 goto out_release_1;
1284 err = sock1->ops->socketpair(sock1, sock2);
1285 if (err < 0)
1286 goto out_release_both;
1288 fd1 = get_unused_fd_flags(flags);
1289 if (unlikely(fd1 < 0)) {
1290 err = fd1;
1291 goto out_release_both;
1294 fd2 = get_unused_fd_flags(flags);
1295 if (unlikely(fd2 < 0)) {
1296 err = fd2;
1297 goto out_put_unused_1;
1300 newfile1 = sock_alloc_file(sock1, flags, NULL);
1301 if (IS_ERR(newfile1)) {
1302 err = PTR_ERR(newfile1);
1303 goto out_put_unused_both;
1306 newfile2 = sock_alloc_file(sock2, flags, NULL);
1307 if (IS_ERR(newfile2)) {
1308 err = PTR_ERR(newfile2);
1309 goto out_fput_1;
1312 err = put_user(fd1, &usockvec[0]);
1313 if (err)
1314 goto out_fput_both;
1316 err = put_user(fd2, &usockvec[1]);
1317 if (err)
1318 goto out_fput_both;
1320 audit_fd_pair(fd1, fd2);
1322 fd_install(fd1, newfile1);
1323 fd_install(fd2, newfile2);
1324 /* fd1 and fd2 may be already another descriptors.
1325 * Not kernel problem.
1328 return 0;
1330 out_fput_both:
1331 fput(newfile2);
1332 fput(newfile1);
1333 put_unused_fd(fd2);
1334 put_unused_fd(fd1);
1335 goto out;
1337 out_fput_1:
1338 fput(newfile1);
1339 put_unused_fd(fd2);
1340 put_unused_fd(fd1);
1341 sock_release(sock2);
1342 goto out;
1344 out_put_unused_both:
1345 put_unused_fd(fd2);
1346 out_put_unused_1:
1347 put_unused_fd(fd1);
1348 out_release_both:
1349 sock_release(sock2);
1350 out_release_1:
1351 sock_release(sock1);
1352 out:
1353 return err;
1357 * Bind a name to a socket. Nothing much to do here since it's
1358 * the protocol's responsibility to handle the local address.
1360 * We move the socket address to kernel space before we call
1361 * the protocol layer (having also checked the address is ok).
1364 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1366 struct socket *sock;
1367 struct sockaddr_storage address;
1368 int err, fput_needed;
1370 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1371 if (sock) {
1372 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1373 if (err >= 0) {
1374 err = security_socket_bind(sock,
1375 (struct sockaddr *)&address,
1376 addrlen);
1377 if (!err)
1378 err = sock->ops->bind(sock,
1379 (struct sockaddr *)
1380 &address, addrlen);
1382 fput_light(sock->file, fput_needed);
1384 return err;
1388 * Perform a listen. Basically, we allow the protocol to do anything
1389 * necessary for a listen, and if that works, we mark the socket as
1390 * ready for listening.
1393 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1395 struct socket *sock;
1396 int err, fput_needed;
1397 int somaxconn;
1399 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1400 if (sock) {
1401 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1402 if ((unsigned int)backlog > somaxconn)
1403 backlog = somaxconn;
1405 err = security_socket_listen(sock, backlog);
1406 if (!err)
1407 err = sock->ops->listen(sock, backlog);
1409 fput_light(sock->file, fput_needed);
1411 return err;
1415 * For accept, we attempt to create a new socket, set up the link
1416 * with the client, wake up the client, then return the new
1417 * connected fd. We collect the address of the connector in kernel
1418 * space and move it to user at the very end. This is unclean because
1419 * we open the socket then return an error.
1421 * 1003.1g adds the ability to recvmsg() to query connection pending
1422 * status to recvmsg. We need to add that support in a way thats
1423 * clean when we restucture accept also.
1426 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1427 int __user *, upeer_addrlen, int, flags)
1429 struct socket *sock, *newsock;
1430 struct file *newfile;
1431 int err, len, newfd, fput_needed;
1432 struct sockaddr_storage address;
1434 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1435 return -EINVAL;
1437 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1438 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1440 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1441 if (!sock)
1442 goto out;
1444 err = -ENFILE;
1445 newsock = sock_alloc();
1446 if (!newsock)
1447 goto out_put;
1449 newsock->type = sock->type;
1450 newsock->ops = sock->ops;
1453 * We don't need try_module_get here, as the listening socket (sock)
1454 * has the protocol module (sock->ops->owner) held.
1456 __module_get(newsock->ops->owner);
1458 newfd = get_unused_fd_flags(flags);
1459 if (unlikely(newfd < 0)) {
1460 err = newfd;
1461 sock_release(newsock);
1462 goto out_put;
1464 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1465 if (IS_ERR(newfile)) {
1466 err = PTR_ERR(newfile);
1467 put_unused_fd(newfd);
1468 sock_release(newsock);
1469 goto out_put;
1472 err = security_socket_accept(sock, newsock);
1473 if (err)
1474 goto out_fd;
1476 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1477 if (err < 0)
1478 goto out_fd;
1480 if (upeer_sockaddr) {
1481 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1482 &len, 2) < 0) {
1483 err = -ECONNABORTED;
1484 goto out_fd;
1486 err = move_addr_to_user(&address,
1487 len, upeer_sockaddr, upeer_addrlen);
1488 if (err < 0)
1489 goto out_fd;
1492 /* File flags are not inherited via accept() unlike another OSes. */
1494 fd_install(newfd, newfile);
1495 err = newfd;
1497 out_put:
1498 fput_light(sock->file, fput_needed);
1499 out:
1500 return err;
1501 out_fd:
1502 fput(newfile);
1503 put_unused_fd(newfd);
1504 goto out_put;
1507 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508 int __user *, upeer_addrlen)
1510 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1514 * Attempt to connect to a socket with the server address. The address
1515 * is in user space so we verify it is OK and move it to kernel space.
1517 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1518 * break bindings
1520 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1521 * other SEQPACKET protocols that take time to connect() as it doesn't
1522 * include the -EINPROGRESS status for such sockets.
1525 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1526 int, addrlen)
1528 struct socket *sock;
1529 struct sockaddr_storage address;
1530 int err, fput_needed;
1532 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 if (!sock)
1534 goto out;
1535 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1536 if (err < 0)
1537 goto out_put;
1539 err =
1540 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1541 if (err)
1542 goto out_put;
1544 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1545 sock->file->f_flags);
1546 out_put:
1547 fput_light(sock->file, fput_needed);
1548 out:
1549 return err;
1553 * Get the local address ('name') of a socket object. Move the obtained
1554 * name to user space.
1557 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1558 int __user *, usockaddr_len)
1560 struct socket *sock;
1561 struct sockaddr_storage address;
1562 int len, err, fput_needed;
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 if (!sock)
1566 goto out;
1568 err = security_socket_getsockname(sock);
1569 if (err)
1570 goto out_put;
1572 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1573 if (err)
1574 goto out_put;
1575 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1577 out_put:
1578 fput_light(sock->file, fput_needed);
1579 out:
1580 return err;
1584 * Get the remote address ('name') of a socket object. Move the obtained
1585 * name to user space.
1588 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1589 int __user *, usockaddr_len)
1591 struct socket *sock;
1592 struct sockaddr_storage address;
1593 int len, err, fput_needed;
1595 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 if (sock != NULL) {
1597 err = security_socket_getpeername(sock);
1598 if (err) {
1599 fput_light(sock->file, fput_needed);
1600 return err;
1603 err =
1604 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1606 if (!err)
1607 err = move_addr_to_user(&address, len, usockaddr,
1608 usockaddr_len);
1609 fput_light(sock->file, fput_needed);
1611 return err;
1615 * Send a datagram to a given address. We move the address into kernel
1616 * space and check the user space data area is readable before invoking
1617 * the protocol.
1620 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1621 unsigned int, flags, struct sockaddr __user *, addr,
1622 int, addr_len)
1624 struct socket *sock;
1625 struct sockaddr_storage address;
1626 int err;
1627 struct msghdr msg;
1628 struct iovec iov;
1629 int fput_needed;
1631 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1632 if (unlikely(err))
1633 return err;
1634 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1635 if (!sock)
1636 goto out;
1638 msg.msg_name = NULL;
1639 msg.msg_control = NULL;
1640 msg.msg_controllen = 0;
1641 msg.msg_namelen = 0;
1642 if (addr) {
1643 err = move_addr_to_kernel(addr, addr_len, &address);
1644 if (err < 0)
1645 goto out_put;
1646 msg.msg_name = (struct sockaddr *)&address;
1647 msg.msg_namelen = addr_len;
1649 if (sock->file->f_flags & O_NONBLOCK)
1650 flags |= MSG_DONTWAIT;
1651 msg.msg_flags = flags;
1652 err = sock_sendmsg(sock, &msg);
1654 out_put:
1655 fput_light(sock->file, fput_needed);
1656 out:
1657 return err;
1661 * Send a datagram down a socket.
1664 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1665 unsigned int, flags)
1667 return sys_sendto(fd, buff, len, flags, NULL, 0);
1671 * Receive a frame from the socket and optionally record the address of the
1672 * sender. We verify the buffers are writable and if needed move the
1673 * sender address from kernel to user space.
1676 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1677 unsigned int, flags, struct sockaddr __user *, addr,
1678 int __user *, addr_len)
1680 struct socket *sock;
1681 struct iovec iov;
1682 struct msghdr msg;
1683 struct sockaddr_storage address;
1684 int err, err2;
1685 int fput_needed;
1687 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1688 if (unlikely(err))
1689 return err;
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (!sock)
1692 goto out;
1694 msg.msg_control = NULL;
1695 msg.msg_controllen = 0;
1696 /* Save some cycles and don't copy the address if not needed */
1697 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1698 /* We assume all kernel code knows the size of sockaddr_storage */
1699 msg.msg_namelen = 0;
1700 msg.msg_iocb = NULL;
1701 msg.msg_flags = 0;
1702 if (sock->file->f_flags & O_NONBLOCK)
1703 flags |= MSG_DONTWAIT;
1704 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1706 if (err >= 0 && addr != NULL) {
1707 err2 = move_addr_to_user(&address,
1708 msg.msg_namelen, addr, addr_len);
1709 if (err2 < 0)
1710 err = err2;
1713 fput_light(sock->file, fput_needed);
1714 out:
1715 return err;
1719 * Receive a datagram from a socket.
1722 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1723 unsigned int, flags)
1725 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729 * Set a socket option. Because we don't know the option lengths we have
1730 * to pass the user mode parameter for the protocols to sort out.
1733 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1734 char __user *, optval, int, optlen)
1736 int err, fput_needed;
1737 struct socket *sock;
1739 if (optlen < 0)
1740 return -EINVAL;
1742 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1743 if (sock != NULL) {
1744 err = security_socket_setsockopt(sock, level, optname);
1745 if (err)
1746 goto out_put;
1748 if (level == SOL_SOCKET)
1749 err =
1750 sock_setsockopt(sock, level, optname, optval,
1751 optlen);
1752 else
1753 err =
1754 sock->ops->setsockopt(sock, level, optname, optval,
1755 optlen);
1756 out_put:
1757 fput_light(sock->file, fput_needed);
1759 return err;
1763 * Get a socket option. Because we don't know the option lengths we have
1764 * to pass a user mode parameter for the protocols to sort out.
1767 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1768 char __user *, optval, int __user *, optlen)
1770 int err, fput_needed;
1771 struct socket *sock;
1773 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1774 if (sock != NULL) {
1775 err = security_socket_getsockopt(sock, level, optname);
1776 if (err)
1777 goto out_put;
1779 if (level == SOL_SOCKET)
1780 err =
1781 sock_getsockopt(sock, level, optname, optval,
1782 optlen);
1783 else
1784 err =
1785 sock->ops->getsockopt(sock, level, optname, optval,
1786 optlen);
1787 out_put:
1788 fput_light(sock->file, fput_needed);
1790 return err;
1794 * Shutdown a socket.
1797 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1799 int err, fput_needed;
1800 struct socket *sock;
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (sock != NULL) {
1804 err = security_socket_shutdown(sock, how);
1805 if (!err)
1806 err = sock->ops->shutdown(sock, how);
1807 fput_light(sock->file, fput_needed);
1809 return err;
1812 /* A couple of helpful macros for getting the address of the 32/64 bit
1813 * fields which are the same type (int / unsigned) on our platforms.
1815 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1816 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1817 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1819 struct used_address {
1820 struct sockaddr_storage name;
1821 unsigned int name_len;
1824 static int copy_msghdr_from_user(struct msghdr *kmsg,
1825 struct user_msghdr __user *umsg,
1826 struct sockaddr __user **save_addr,
1827 struct iovec **iov)
1829 struct sockaddr __user *uaddr;
1830 struct iovec __user *uiov;
1831 size_t nr_segs;
1832 ssize_t err;
1834 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1835 __get_user(uaddr, &umsg->msg_name) ||
1836 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1837 __get_user(uiov, &umsg->msg_iov) ||
1838 __get_user(nr_segs, &umsg->msg_iovlen) ||
1839 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1840 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1841 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1842 return -EFAULT;
1844 if (!uaddr)
1845 kmsg->msg_namelen = 0;
1847 if (kmsg->msg_namelen < 0)
1848 return -EINVAL;
1850 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1851 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1853 if (save_addr)
1854 *save_addr = uaddr;
1856 if (uaddr && kmsg->msg_namelen) {
1857 if (!save_addr) {
1858 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1859 kmsg->msg_name);
1860 if (err < 0)
1861 return err;
1863 } else {
1864 kmsg->msg_name = NULL;
1865 kmsg->msg_namelen = 0;
1868 if (nr_segs > UIO_MAXIOV)
1869 return -EMSGSIZE;
1871 kmsg->msg_iocb = NULL;
1873 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1874 UIO_FASTIOV, iov, &kmsg->msg_iter);
1877 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1878 struct msghdr *msg_sys, unsigned int flags,
1879 struct used_address *used_address)
1881 struct compat_msghdr __user *msg_compat =
1882 (struct compat_msghdr __user *)msg;
1883 struct sockaddr_storage address;
1884 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1885 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1886 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1887 /* 20 is size of ipv6_pktinfo */
1888 unsigned char *ctl_buf = ctl;
1889 int ctl_len;
1890 ssize_t err;
1892 msg_sys->msg_name = &address;
1894 if (MSG_CMSG_COMPAT & flags)
1895 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1896 else
1897 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1898 if (err < 0)
1899 return err;
1901 err = -ENOBUFS;
1903 if (msg_sys->msg_controllen > INT_MAX)
1904 goto out_freeiov;
1905 ctl_len = msg_sys->msg_controllen;
1906 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1907 err =
1908 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1909 sizeof(ctl));
1910 if (err)
1911 goto out_freeiov;
1912 ctl_buf = msg_sys->msg_control;
1913 ctl_len = msg_sys->msg_controllen;
1914 } else if (ctl_len) {
1915 if (ctl_len > sizeof(ctl)) {
1916 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1917 if (ctl_buf == NULL)
1918 goto out_freeiov;
1920 err = -EFAULT;
1922 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1923 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1924 * checking falls down on this.
1926 if (copy_from_user(ctl_buf,
1927 (void __user __force *)msg_sys->msg_control,
1928 ctl_len))
1929 goto out_freectl;
1930 msg_sys->msg_control = ctl_buf;
1932 msg_sys->msg_flags = flags;
1934 if (sock->file->f_flags & O_NONBLOCK)
1935 msg_sys->msg_flags |= MSG_DONTWAIT;
1937 * If this is sendmmsg() and current destination address is same as
1938 * previously succeeded address, omit asking LSM's decision.
1939 * used_address->name_len is initialized to UINT_MAX so that the first
1940 * destination address never matches.
1942 if (used_address && msg_sys->msg_name &&
1943 used_address->name_len == msg_sys->msg_namelen &&
1944 !memcmp(&used_address->name, msg_sys->msg_name,
1945 used_address->name_len)) {
1946 err = sock_sendmsg_nosec(sock, msg_sys);
1947 goto out_freectl;
1949 err = sock_sendmsg(sock, msg_sys);
1951 * If this is sendmmsg() and sending to current destination address was
1952 * successful, remember it.
1954 if (used_address && err >= 0) {
1955 used_address->name_len = msg_sys->msg_namelen;
1956 if (msg_sys->msg_name)
1957 memcpy(&used_address->name, msg_sys->msg_name,
1958 used_address->name_len);
1961 out_freectl:
1962 if (ctl_buf != ctl)
1963 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1964 out_freeiov:
1965 kfree(iov);
1966 return err;
1970 * BSD sendmsg interface
1973 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1975 int fput_needed, err;
1976 struct msghdr msg_sys;
1977 struct socket *sock;
1979 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1980 if (!sock)
1981 goto out;
1983 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1985 fput_light(sock->file, fput_needed);
1986 out:
1987 return err;
1990 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1992 if (flags & MSG_CMSG_COMPAT)
1993 return -EINVAL;
1994 return __sys_sendmsg(fd, msg, flags);
1998 * Linux sendmmsg interface
2001 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2002 unsigned int flags)
2004 int fput_needed, err, datagrams;
2005 struct socket *sock;
2006 struct mmsghdr __user *entry;
2007 struct compat_mmsghdr __user *compat_entry;
2008 struct msghdr msg_sys;
2009 struct used_address used_address;
2011 if (vlen > UIO_MAXIOV)
2012 vlen = UIO_MAXIOV;
2014 datagrams = 0;
2016 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2017 if (!sock)
2018 return err;
2020 used_address.name_len = UINT_MAX;
2021 entry = mmsg;
2022 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2023 err = 0;
2025 while (datagrams < vlen) {
2026 if (MSG_CMSG_COMPAT & flags) {
2027 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2028 &msg_sys, flags, &used_address);
2029 if (err < 0)
2030 break;
2031 err = __put_user(err, &compat_entry->msg_len);
2032 ++compat_entry;
2033 } else {
2034 err = ___sys_sendmsg(sock,
2035 (struct user_msghdr __user *)entry,
2036 &msg_sys, flags, &used_address);
2037 if (err < 0)
2038 break;
2039 err = put_user(err, &entry->msg_len);
2040 ++entry;
2043 if (err)
2044 break;
2045 ++datagrams;
2046 if (msg_data_left(&msg_sys))
2047 break;
2050 fput_light(sock->file, fput_needed);
2052 /* We only return an error if no datagrams were able to be sent */
2053 if (datagrams != 0)
2054 return datagrams;
2056 return err;
2059 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2060 unsigned int, vlen, unsigned int, flags)
2062 if (flags & MSG_CMSG_COMPAT)
2063 return -EINVAL;
2064 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2067 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2068 struct msghdr *msg_sys, unsigned int flags, int nosec)
2070 struct compat_msghdr __user *msg_compat =
2071 (struct compat_msghdr __user *)msg;
2072 struct iovec iovstack[UIO_FASTIOV];
2073 struct iovec *iov = iovstack;
2074 unsigned long cmsg_ptr;
2075 int total_len, len;
2076 ssize_t err;
2078 /* kernel mode address */
2079 struct sockaddr_storage addr;
2081 /* user mode address pointers */
2082 struct sockaddr __user *uaddr;
2083 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085 msg_sys->msg_name = &addr;
2087 if (MSG_CMSG_COMPAT & flags)
2088 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2089 else
2090 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2091 if (err < 0)
2092 return err;
2093 total_len = iov_iter_count(&msg_sys->msg_iter);
2095 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2096 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098 /* We assume all kernel code knows the size of sockaddr_storage */
2099 msg_sys->msg_namelen = 0;
2101 if (sock->file->f_flags & O_NONBLOCK)
2102 flags |= MSG_DONTWAIT;
2103 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2104 total_len, flags);
2105 if (err < 0)
2106 goto out_freeiov;
2107 len = err;
2109 if (uaddr != NULL) {
2110 err = move_addr_to_user(&addr,
2111 msg_sys->msg_namelen, uaddr,
2112 uaddr_len);
2113 if (err < 0)
2114 goto out_freeiov;
2116 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2117 COMPAT_FLAGS(msg));
2118 if (err)
2119 goto out_freeiov;
2120 if (MSG_CMSG_COMPAT & flags)
2121 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2122 &msg_compat->msg_controllen);
2123 else
2124 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2125 &msg->msg_controllen);
2126 if (err)
2127 goto out_freeiov;
2128 err = len;
2130 out_freeiov:
2131 kfree(iov);
2132 return err;
2136 * BSD recvmsg interface
2139 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141 int fput_needed, err;
2142 struct msghdr msg_sys;
2143 struct socket *sock;
2145 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 if (!sock)
2147 goto out;
2149 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151 fput_light(sock->file, fput_needed);
2152 out:
2153 return err;
2156 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2157 unsigned int, flags)
2159 if (flags & MSG_CMSG_COMPAT)
2160 return -EINVAL;
2161 return __sys_recvmsg(fd, msg, flags);
2165 * Linux recvmmsg interface
2168 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2169 unsigned int flags, struct timespec *timeout)
2171 int fput_needed, err, datagrams;
2172 struct socket *sock;
2173 struct mmsghdr __user *entry;
2174 struct compat_mmsghdr __user *compat_entry;
2175 struct msghdr msg_sys;
2176 struct timespec end_time;
2178 if (timeout &&
2179 poll_select_set_timeout(&end_time, timeout->tv_sec,
2180 timeout->tv_nsec))
2181 return -EINVAL;
2183 datagrams = 0;
2185 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 if (!sock)
2187 return err;
2189 err = sock_error(sock->sk);
2190 if (err) {
2191 datagrams = err;
2192 goto out_put;
2195 entry = mmsg;
2196 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2198 while (datagrams < vlen) {
2200 * No need to ask LSM for more than the first datagram.
2202 if (MSG_CMSG_COMPAT & flags) {
2203 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2204 &msg_sys, flags & ~MSG_WAITFORONE,
2205 datagrams);
2206 if (err < 0)
2207 break;
2208 err = __put_user(err, &compat_entry->msg_len);
2209 ++compat_entry;
2210 } else {
2211 err = ___sys_recvmsg(sock,
2212 (struct user_msghdr __user *)entry,
2213 &msg_sys, flags & ~MSG_WAITFORONE,
2214 datagrams);
2215 if (err < 0)
2216 break;
2217 err = put_user(err, &entry->msg_len);
2218 ++entry;
2221 if (err)
2222 break;
2223 ++datagrams;
2225 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2226 if (flags & MSG_WAITFORONE)
2227 flags |= MSG_DONTWAIT;
2229 if (timeout) {
2230 ktime_get_ts(timeout);
2231 *timeout = timespec_sub(end_time, *timeout);
2232 if (timeout->tv_sec < 0) {
2233 timeout->tv_sec = timeout->tv_nsec = 0;
2234 break;
2237 /* Timeout, return less than vlen datagrams */
2238 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2239 break;
2242 /* Out of band data, return right away */
2243 if (msg_sys.msg_flags & MSG_OOB)
2244 break;
2247 if (err == 0)
2248 goto out_put;
2250 if (datagrams == 0) {
2251 datagrams = err;
2252 goto out_put;
2256 * We may return less entries than requested (vlen) if the
2257 * sock is non block and there aren't enough datagrams...
2259 if (err != -EAGAIN) {
2261 * ... or if recvmsg returns an error after we
2262 * received some datagrams, where we record the
2263 * error to return on the next call or if the
2264 * app asks about it using getsockopt(SO_ERROR).
2266 sock->sk->sk_err = -err;
2268 out_put:
2269 fput_light(sock->file, fput_needed);
2271 return datagrams;
2274 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275 unsigned int, vlen, unsigned int, flags,
2276 struct timespec __user *, timeout)
2278 int datagrams;
2279 struct timespec timeout_sys;
2281 if (flags & MSG_CMSG_COMPAT)
2282 return -EINVAL;
2284 if (!timeout)
2285 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2287 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288 return -EFAULT;
2290 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2292 if (datagrams > 0 &&
2293 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294 datagrams = -EFAULT;
2296 return datagrams;
2299 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2300 /* Argument list sizes for sys_socketcall */
2301 #define AL(x) ((x) * sizeof(unsigned long))
2302 static const unsigned char nargs[21] = {
2303 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306 AL(4), AL(5), AL(4)
2309 #undef AL
2312 * System call vectors.
2314 * Argument checking cleaned up. Saved 20% in size.
2315 * This function doesn't need to set the kernel lock because
2316 * it is set by the callees.
2319 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2321 unsigned long a[AUDITSC_ARGS];
2322 unsigned long a0, a1;
2323 int err;
2324 unsigned int len;
2326 if (call < 1 || call > SYS_SENDMMSG)
2327 return -EINVAL;
2328 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2330 len = nargs[call];
2331 if (len > sizeof(a))
2332 return -EINVAL;
2334 /* copy_from_user should be SMP safe. */
2335 if (copy_from_user(a, args, len))
2336 return -EFAULT;
2338 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2339 if (err)
2340 return err;
2342 a0 = a[0];
2343 a1 = a[1];
2345 switch (call) {
2346 case SYS_SOCKET:
2347 err = sys_socket(a0, a1, a[2]);
2348 break;
2349 case SYS_BIND:
2350 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2351 break;
2352 case SYS_CONNECT:
2353 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2354 break;
2355 case SYS_LISTEN:
2356 err = sys_listen(a0, a1);
2357 break;
2358 case SYS_ACCEPT:
2359 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2360 (int __user *)a[2], 0);
2361 break;
2362 case SYS_GETSOCKNAME:
2363 err =
2364 sys_getsockname(a0, (struct sockaddr __user *)a1,
2365 (int __user *)a[2]);
2366 break;
2367 case SYS_GETPEERNAME:
2368 err =
2369 sys_getpeername(a0, (struct sockaddr __user *)a1,
2370 (int __user *)a[2]);
2371 break;
2372 case SYS_SOCKETPAIR:
2373 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2374 break;
2375 case SYS_SEND:
2376 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2377 break;
2378 case SYS_SENDTO:
2379 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2380 (struct sockaddr __user *)a[4], a[5]);
2381 break;
2382 case SYS_RECV:
2383 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2384 break;
2385 case SYS_RECVFROM:
2386 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2387 (struct sockaddr __user *)a[4],
2388 (int __user *)a[5]);
2389 break;
2390 case SYS_SHUTDOWN:
2391 err = sys_shutdown(a0, a1);
2392 break;
2393 case SYS_SETSOCKOPT:
2394 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2395 break;
2396 case SYS_GETSOCKOPT:
2397 err =
2398 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2399 (int __user *)a[4]);
2400 break;
2401 case SYS_SENDMSG:
2402 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2403 break;
2404 case SYS_SENDMMSG:
2405 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2406 break;
2407 case SYS_RECVMSG:
2408 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2409 break;
2410 case SYS_RECVMMSG:
2411 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2412 (struct timespec __user *)a[4]);
2413 break;
2414 case SYS_ACCEPT4:
2415 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2416 (int __user *)a[2], a[3]);
2417 break;
2418 default:
2419 err = -EINVAL;
2420 break;
2422 return err;
2425 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2428 * sock_register - add a socket protocol handler
2429 * @ops: description of protocol
2431 * This function is called by a protocol handler that wants to
2432 * advertise its address family, and have it linked into the
2433 * socket interface. The value ops->family corresponds to the
2434 * socket system call protocol family.
2436 int sock_register(const struct net_proto_family *ops)
2438 int err;
2440 if (ops->family >= NPROTO) {
2441 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2442 return -ENOBUFS;
2445 spin_lock(&net_family_lock);
2446 if (rcu_dereference_protected(net_families[ops->family],
2447 lockdep_is_held(&net_family_lock)))
2448 err = -EEXIST;
2449 else {
2450 rcu_assign_pointer(net_families[ops->family], ops);
2451 err = 0;
2453 spin_unlock(&net_family_lock);
2455 pr_info("NET: Registered protocol family %d\n", ops->family);
2456 return err;
2458 EXPORT_SYMBOL(sock_register);
2461 * sock_unregister - remove a protocol handler
2462 * @family: protocol family to remove
2464 * This function is called by a protocol handler that wants to
2465 * remove its address family, and have it unlinked from the
2466 * new socket creation.
2468 * If protocol handler is a module, then it can use module reference
2469 * counts to protect against new references. If protocol handler is not
2470 * a module then it needs to provide its own protection in
2471 * the ops->create routine.
2473 void sock_unregister(int family)
2475 BUG_ON(family < 0 || family >= NPROTO);
2477 spin_lock(&net_family_lock);
2478 RCU_INIT_POINTER(net_families[family], NULL);
2479 spin_unlock(&net_family_lock);
2481 synchronize_rcu();
2483 pr_info("NET: Unregistered protocol family %d\n", family);
2485 EXPORT_SYMBOL(sock_unregister);
2487 static int __init sock_init(void)
2489 int err;
2491 * Initialize the network sysctl infrastructure.
2493 err = net_sysctl_init();
2494 if (err)
2495 goto out;
2498 * Initialize skbuff SLAB cache
2500 skb_init();
2503 * Initialize the protocols module.
2506 init_inodecache();
2508 err = register_filesystem(&sock_fs_type);
2509 if (err)
2510 goto out_fs;
2511 sock_mnt = kern_mount(&sock_fs_type);
2512 if (IS_ERR(sock_mnt)) {
2513 err = PTR_ERR(sock_mnt);
2514 goto out_mount;
2517 /* The real protocol initialization is performed in later initcalls.
2520 #ifdef CONFIG_NETFILTER
2521 err = netfilter_init();
2522 if (err)
2523 goto out;
2524 #endif
2526 ptp_classifier_init();
2528 out:
2529 return err;
2531 out_mount:
2532 unregister_filesystem(&sock_fs_type);
2533 out_fs:
2534 goto out;
2537 core_initcall(sock_init); /* early initcall */
2539 static int __init jit_init(void)
2541 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2542 bpf_jit_enable = 1;
2543 #endif
2544 return 0;
2546 pure_initcall(jit_init);
2548 #ifdef CONFIG_PROC_FS
2549 void socket_seq_show(struct seq_file *seq)
2551 int cpu;
2552 int counter = 0;
2554 for_each_possible_cpu(cpu)
2555 counter += per_cpu(sockets_in_use, cpu);
2557 /* It can be negative, by the way. 8) */
2558 if (counter < 0)
2559 counter = 0;
2561 seq_printf(seq, "sockets: used %d\n", counter);
2563 #endif /* CONFIG_PROC_FS */
2565 #ifdef CONFIG_COMPAT
2566 static int do_siocgstamp(struct net *net, struct socket *sock,
2567 unsigned int cmd, void __user *up)
2569 mm_segment_t old_fs = get_fs();
2570 struct timeval ktv;
2571 int err;
2573 set_fs(KERNEL_DS);
2574 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2575 set_fs(old_fs);
2576 if (!err)
2577 err = compat_put_timeval(&ktv, up);
2579 return err;
2582 static int do_siocgstampns(struct net *net, struct socket *sock,
2583 unsigned int cmd, void __user *up)
2585 mm_segment_t old_fs = get_fs();
2586 struct timespec kts;
2587 int err;
2589 set_fs(KERNEL_DS);
2590 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2591 set_fs(old_fs);
2592 if (!err)
2593 err = compat_put_timespec(&kts, up);
2595 return err;
2598 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2600 struct ifreq __user *uifr;
2601 int err;
2603 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2604 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2605 return -EFAULT;
2607 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2608 if (err)
2609 return err;
2611 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2612 return -EFAULT;
2614 return 0;
2617 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2619 struct compat_ifconf ifc32;
2620 struct ifconf ifc;
2621 struct ifconf __user *uifc;
2622 struct compat_ifreq __user *ifr32;
2623 struct ifreq __user *ifr;
2624 unsigned int i, j;
2625 int err;
2627 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2628 return -EFAULT;
2630 memset(&ifc, 0, sizeof(ifc));
2631 if (ifc32.ifcbuf == 0) {
2632 ifc32.ifc_len = 0;
2633 ifc.ifc_len = 0;
2634 ifc.ifc_req = NULL;
2635 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2636 } else {
2637 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2638 sizeof(struct ifreq);
2639 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2640 ifc.ifc_len = len;
2641 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2642 ifr32 = compat_ptr(ifc32.ifcbuf);
2643 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2644 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2645 return -EFAULT;
2646 ifr++;
2647 ifr32++;
2650 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2651 return -EFAULT;
2653 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2654 if (err)
2655 return err;
2657 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2658 return -EFAULT;
2660 ifr = ifc.ifc_req;
2661 ifr32 = compat_ptr(ifc32.ifcbuf);
2662 for (i = 0, j = 0;
2663 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2664 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2665 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2666 return -EFAULT;
2667 ifr32++;
2668 ifr++;
2671 if (ifc32.ifcbuf == 0) {
2672 /* Translate from 64-bit structure multiple to
2673 * a 32-bit one.
2675 i = ifc.ifc_len;
2676 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2677 ifc32.ifc_len = i;
2678 } else {
2679 ifc32.ifc_len = i;
2681 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2682 return -EFAULT;
2684 return 0;
2687 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2689 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2690 bool convert_in = false, convert_out = false;
2691 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2692 struct ethtool_rxnfc __user *rxnfc;
2693 struct ifreq __user *ifr;
2694 u32 rule_cnt = 0, actual_rule_cnt;
2695 u32 ethcmd;
2696 u32 data;
2697 int ret;
2699 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2700 return -EFAULT;
2702 compat_rxnfc = compat_ptr(data);
2704 if (get_user(ethcmd, &compat_rxnfc->cmd))
2705 return -EFAULT;
2707 /* Most ethtool structures are defined without padding.
2708 * Unfortunately struct ethtool_rxnfc is an exception.
2710 switch (ethcmd) {
2711 default:
2712 break;
2713 case ETHTOOL_GRXCLSRLALL:
2714 /* Buffer size is variable */
2715 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2716 return -EFAULT;
2717 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2718 return -ENOMEM;
2719 buf_size += rule_cnt * sizeof(u32);
2720 /* fall through */
2721 case ETHTOOL_GRXRINGS:
2722 case ETHTOOL_GRXCLSRLCNT:
2723 case ETHTOOL_GRXCLSRULE:
2724 case ETHTOOL_SRXCLSRLINS:
2725 convert_out = true;
2726 /* fall through */
2727 case ETHTOOL_SRXCLSRLDEL:
2728 buf_size += sizeof(struct ethtool_rxnfc);
2729 convert_in = true;
2730 break;
2733 ifr = compat_alloc_user_space(buf_size);
2734 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2736 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2737 return -EFAULT;
2739 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2740 &ifr->ifr_ifru.ifru_data))
2741 return -EFAULT;
2743 if (convert_in) {
2744 /* We expect there to be holes between fs.m_ext and
2745 * fs.ring_cookie and at the end of fs, but nowhere else.
2747 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2748 sizeof(compat_rxnfc->fs.m_ext) !=
2749 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2750 sizeof(rxnfc->fs.m_ext));
2751 BUILD_BUG_ON(
2752 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2753 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2754 offsetof(struct ethtool_rxnfc, fs.location) -
2755 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2757 if (copy_in_user(rxnfc, compat_rxnfc,
2758 (void __user *)(&rxnfc->fs.m_ext + 1) -
2759 (void __user *)rxnfc) ||
2760 copy_in_user(&rxnfc->fs.ring_cookie,
2761 &compat_rxnfc->fs.ring_cookie,
2762 (void __user *)(&rxnfc->fs.location + 1) -
2763 (void __user *)&rxnfc->fs.ring_cookie) ||
2764 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2765 sizeof(rxnfc->rule_cnt)))
2766 return -EFAULT;
2769 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2770 if (ret)
2771 return ret;
2773 if (convert_out) {
2774 if (copy_in_user(compat_rxnfc, rxnfc,
2775 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2776 (const void __user *)rxnfc) ||
2777 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2778 &rxnfc->fs.ring_cookie,
2779 (const void __user *)(&rxnfc->fs.location + 1) -
2780 (const void __user *)&rxnfc->fs.ring_cookie) ||
2781 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2782 sizeof(rxnfc->rule_cnt)))
2783 return -EFAULT;
2785 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2786 /* As an optimisation, we only copy the actual
2787 * number of rules that the underlying
2788 * function returned. Since Mallory might
2789 * change the rule count in user memory, we
2790 * check that it is less than the rule count
2791 * originally given (as the user buffer size),
2792 * which has been range-checked.
2794 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2795 return -EFAULT;
2796 if (actual_rule_cnt < rule_cnt)
2797 rule_cnt = actual_rule_cnt;
2798 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2799 &rxnfc->rule_locs[0],
2800 rule_cnt * sizeof(u32)))
2801 return -EFAULT;
2805 return 0;
2808 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2810 void __user *uptr;
2811 compat_uptr_t uptr32;
2812 struct ifreq __user *uifr;
2814 uifr = compat_alloc_user_space(sizeof(*uifr));
2815 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2816 return -EFAULT;
2818 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2819 return -EFAULT;
2821 uptr = compat_ptr(uptr32);
2823 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2824 return -EFAULT;
2826 return dev_ioctl(net, SIOCWANDEV, uifr);
2829 static int bond_ioctl(struct net *net, unsigned int cmd,
2830 struct compat_ifreq __user *ifr32)
2832 struct ifreq kifr;
2833 mm_segment_t old_fs;
2834 int err;
2836 switch (cmd) {
2837 case SIOCBONDENSLAVE:
2838 case SIOCBONDRELEASE:
2839 case SIOCBONDSETHWADDR:
2840 case SIOCBONDCHANGEACTIVE:
2841 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2842 return -EFAULT;
2844 old_fs = get_fs();
2845 set_fs(KERNEL_DS);
2846 err = dev_ioctl(net, cmd,
2847 (struct ifreq __user __force *) &kifr);
2848 set_fs(old_fs);
2850 return err;
2851 default:
2852 return -ENOIOCTLCMD;
2856 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2857 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2858 struct compat_ifreq __user *u_ifreq32)
2860 struct ifreq __user *u_ifreq64;
2861 char tmp_buf[IFNAMSIZ];
2862 void __user *data64;
2863 u32 data32;
2865 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2866 IFNAMSIZ))
2867 return -EFAULT;
2868 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2869 return -EFAULT;
2870 data64 = compat_ptr(data32);
2872 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2874 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2875 IFNAMSIZ))
2876 return -EFAULT;
2877 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2878 return -EFAULT;
2880 return dev_ioctl(net, cmd, u_ifreq64);
2883 static int dev_ifsioc(struct net *net, struct socket *sock,
2884 unsigned int cmd, struct compat_ifreq __user *uifr32)
2886 struct ifreq __user *uifr;
2887 int err;
2889 uifr = compat_alloc_user_space(sizeof(*uifr));
2890 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2891 return -EFAULT;
2893 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2895 if (!err) {
2896 switch (cmd) {
2897 case SIOCGIFFLAGS:
2898 case SIOCGIFMETRIC:
2899 case SIOCGIFMTU:
2900 case SIOCGIFMEM:
2901 case SIOCGIFHWADDR:
2902 case SIOCGIFINDEX:
2903 case SIOCGIFADDR:
2904 case SIOCGIFBRDADDR:
2905 case SIOCGIFDSTADDR:
2906 case SIOCGIFNETMASK:
2907 case SIOCGIFPFLAGS:
2908 case SIOCGIFTXQLEN:
2909 case SIOCGMIIPHY:
2910 case SIOCGMIIREG:
2911 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2912 err = -EFAULT;
2913 break;
2916 return err;
2919 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2920 struct compat_ifreq __user *uifr32)
2922 struct ifreq ifr;
2923 struct compat_ifmap __user *uifmap32;
2924 mm_segment_t old_fs;
2925 int err;
2927 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2928 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2929 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2930 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2931 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2932 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2933 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2934 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2935 if (err)
2936 return -EFAULT;
2938 old_fs = get_fs();
2939 set_fs(KERNEL_DS);
2940 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2941 set_fs(old_fs);
2943 if (cmd == SIOCGIFMAP && !err) {
2944 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2945 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2946 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2947 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2948 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2949 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2950 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2951 if (err)
2952 err = -EFAULT;
2954 return err;
2957 struct rtentry32 {
2958 u32 rt_pad1;
2959 struct sockaddr rt_dst; /* target address */
2960 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2961 struct sockaddr rt_genmask; /* target network mask (IP) */
2962 unsigned short rt_flags;
2963 short rt_pad2;
2964 u32 rt_pad3;
2965 unsigned char rt_tos;
2966 unsigned char rt_class;
2967 short rt_pad4;
2968 short rt_metric; /* +1 for binary compatibility! */
2969 /* char * */ u32 rt_dev; /* forcing the device at add */
2970 u32 rt_mtu; /* per route MTU/Window */
2971 u32 rt_window; /* Window clamping */
2972 unsigned short rt_irtt; /* Initial RTT */
2975 struct in6_rtmsg32 {
2976 struct in6_addr rtmsg_dst;
2977 struct in6_addr rtmsg_src;
2978 struct in6_addr rtmsg_gateway;
2979 u32 rtmsg_type;
2980 u16 rtmsg_dst_len;
2981 u16 rtmsg_src_len;
2982 u32 rtmsg_metric;
2983 u32 rtmsg_info;
2984 u32 rtmsg_flags;
2985 s32 rtmsg_ifindex;
2988 static int routing_ioctl(struct net *net, struct socket *sock,
2989 unsigned int cmd, void __user *argp)
2991 int ret;
2992 void *r = NULL;
2993 struct in6_rtmsg r6;
2994 struct rtentry r4;
2995 char devname[16];
2996 u32 rtdev;
2997 mm_segment_t old_fs = get_fs();
2999 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3000 struct in6_rtmsg32 __user *ur6 = argp;
3001 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3002 3 * sizeof(struct in6_addr));
3003 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3004 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3005 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3006 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3007 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3008 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3009 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3011 r = (void *) &r6;
3012 } else { /* ipv4 */
3013 struct rtentry32 __user *ur4 = argp;
3014 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3015 3 * sizeof(struct sockaddr));
3016 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3017 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3018 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3019 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3020 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3021 ret |= get_user(rtdev, &(ur4->rt_dev));
3022 if (rtdev) {
3023 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3024 r4.rt_dev = (char __user __force *)devname;
3025 devname[15] = 0;
3026 } else
3027 r4.rt_dev = NULL;
3029 r = (void *) &r4;
3032 if (ret) {
3033 ret = -EFAULT;
3034 goto out;
3037 set_fs(KERNEL_DS);
3038 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3039 set_fs(old_fs);
3041 out:
3042 return ret;
3045 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3046 * for some operations; this forces use of the newer bridge-utils that
3047 * use compatible ioctls
3049 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3051 compat_ulong_t tmp;
3053 if (get_user(tmp, argp))
3054 return -EFAULT;
3055 if (tmp == BRCTL_GET_VERSION)
3056 return BRCTL_VERSION + 1;
3057 return -EINVAL;
3060 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3061 unsigned int cmd, unsigned long arg)
3063 void __user *argp = compat_ptr(arg);
3064 struct sock *sk = sock->sk;
3065 struct net *net = sock_net(sk);
3067 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3068 return compat_ifr_data_ioctl(net, cmd, argp);
3070 switch (cmd) {
3071 case SIOCSIFBR:
3072 case SIOCGIFBR:
3073 return old_bridge_ioctl(argp);
3074 case SIOCGIFNAME:
3075 return dev_ifname32(net, argp);
3076 case SIOCGIFCONF:
3077 return dev_ifconf(net, argp);
3078 case SIOCETHTOOL:
3079 return ethtool_ioctl(net, argp);
3080 case SIOCWANDEV:
3081 return compat_siocwandev(net, argp);
3082 case SIOCGIFMAP:
3083 case SIOCSIFMAP:
3084 return compat_sioc_ifmap(net, cmd, argp);
3085 case SIOCBONDENSLAVE:
3086 case SIOCBONDRELEASE:
3087 case SIOCBONDSETHWADDR:
3088 case SIOCBONDCHANGEACTIVE:
3089 return bond_ioctl(net, cmd, argp);
3090 case SIOCADDRT:
3091 case SIOCDELRT:
3092 return routing_ioctl(net, sock, cmd, argp);
3093 case SIOCGSTAMP:
3094 return do_siocgstamp(net, sock, cmd, argp);
3095 case SIOCGSTAMPNS:
3096 return do_siocgstampns(net, sock, cmd, argp);
3097 case SIOCBONDSLAVEINFOQUERY:
3098 case SIOCBONDINFOQUERY:
3099 case SIOCSHWTSTAMP:
3100 case SIOCGHWTSTAMP:
3101 return compat_ifr_data_ioctl(net, cmd, argp);
3103 case FIOSETOWN:
3104 case SIOCSPGRP:
3105 case FIOGETOWN:
3106 case SIOCGPGRP:
3107 case SIOCBRADDBR:
3108 case SIOCBRDELBR:
3109 case SIOCGIFVLAN:
3110 case SIOCSIFVLAN:
3111 case SIOCADDDLCI:
3112 case SIOCDELDLCI:
3113 return sock_ioctl(file, cmd, arg);
3115 case SIOCGIFFLAGS:
3116 case SIOCSIFFLAGS:
3117 case SIOCGIFMETRIC:
3118 case SIOCSIFMETRIC:
3119 case SIOCGIFMTU:
3120 case SIOCSIFMTU:
3121 case SIOCGIFMEM:
3122 case SIOCSIFMEM:
3123 case SIOCGIFHWADDR:
3124 case SIOCSIFHWADDR:
3125 case SIOCADDMULTI:
3126 case SIOCDELMULTI:
3127 case SIOCGIFINDEX:
3128 case SIOCGIFADDR:
3129 case SIOCSIFADDR:
3130 case SIOCSIFHWBROADCAST:
3131 case SIOCDIFADDR:
3132 case SIOCGIFBRDADDR:
3133 case SIOCSIFBRDADDR:
3134 case SIOCGIFDSTADDR:
3135 case SIOCSIFDSTADDR:
3136 case SIOCGIFNETMASK:
3137 case SIOCSIFNETMASK:
3138 case SIOCSIFPFLAGS:
3139 case SIOCGIFPFLAGS:
3140 case SIOCGIFTXQLEN:
3141 case SIOCSIFTXQLEN:
3142 case SIOCBRADDIF:
3143 case SIOCBRDELIF:
3144 case SIOCSIFNAME:
3145 case SIOCGMIIPHY:
3146 case SIOCGMIIREG:
3147 case SIOCSMIIREG:
3148 return dev_ifsioc(net, sock, cmd, argp);
3150 case SIOCSARP:
3151 case SIOCGARP:
3152 case SIOCDARP:
3153 case SIOCATMARK:
3154 return sock_do_ioctl(net, sock, cmd, arg);
3157 return -ENOIOCTLCMD;
3160 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3161 unsigned long arg)
3163 struct socket *sock = file->private_data;
3164 int ret = -ENOIOCTLCMD;
3165 struct sock *sk;
3166 struct net *net;
3168 sk = sock->sk;
3169 net = sock_net(sk);
3171 if (sock->ops->compat_ioctl)
3172 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3174 if (ret == -ENOIOCTLCMD &&
3175 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3176 ret = compat_wext_handle_ioctl(net, cmd, arg);
3178 if (ret == -ENOIOCTLCMD)
3179 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3181 return ret;
3183 #endif
3185 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3187 return sock->ops->bind(sock, addr, addrlen);
3189 EXPORT_SYMBOL(kernel_bind);
3191 int kernel_listen(struct socket *sock, int backlog)
3193 return sock->ops->listen(sock, backlog);
3195 EXPORT_SYMBOL(kernel_listen);
3197 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3199 struct sock *sk = sock->sk;
3200 int err;
3202 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3203 newsock);
3204 if (err < 0)
3205 goto done;
3207 err = sock->ops->accept(sock, *newsock, flags);
3208 if (err < 0) {
3209 sock_release(*newsock);
3210 *newsock = NULL;
3211 goto done;
3214 (*newsock)->ops = sock->ops;
3215 __module_get((*newsock)->ops->owner);
3217 done:
3218 return err;
3220 EXPORT_SYMBOL(kernel_accept);
3222 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3223 int flags)
3225 return sock->ops->connect(sock, addr, addrlen, flags);
3227 EXPORT_SYMBOL(kernel_connect);
3229 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3230 int *addrlen)
3232 return sock->ops->getname(sock, addr, addrlen, 0);
3234 EXPORT_SYMBOL(kernel_getsockname);
3236 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3237 int *addrlen)
3239 return sock->ops->getname(sock, addr, addrlen, 1);
3241 EXPORT_SYMBOL(kernel_getpeername);
3243 int kernel_getsockopt(struct socket *sock, int level, int optname,
3244 char *optval, int *optlen)
3246 mm_segment_t oldfs = get_fs();
3247 char __user *uoptval;
3248 int __user *uoptlen;
3249 int err;
3251 uoptval = (char __user __force *) optval;
3252 uoptlen = (int __user __force *) optlen;
3254 set_fs(KERNEL_DS);
3255 if (level == SOL_SOCKET)
3256 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3257 else
3258 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3259 uoptlen);
3260 set_fs(oldfs);
3261 return err;
3263 EXPORT_SYMBOL(kernel_getsockopt);
3265 int kernel_setsockopt(struct socket *sock, int level, int optname,
3266 char *optval, unsigned int optlen)
3268 mm_segment_t oldfs = get_fs();
3269 char __user *uoptval;
3270 int err;
3272 uoptval = (char __user __force *) optval;
3274 set_fs(KERNEL_DS);
3275 if (level == SOL_SOCKET)
3276 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3277 else
3278 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3279 optlen);
3280 set_fs(oldfs);
3281 return err;
3283 EXPORT_SYMBOL(kernel_setsockopt);
3285 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3286 size_t size, int flags)
3288 if (sock->ops->sendpage)
3289 return sock->ops->sendpage(sock, page, offset, size, flags);
3291 return sock_no_sendpage(sock, page, offset, size, flags);
3293 EXPORT_SYMBOL(kernel_sendpage);
3295 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3297 mm_segment_t oldfs = get_fs();
3298 int err;
3300 set_fs(KERNEL_DS);
3301 err = sock->ops->ioctl(sock, cmd, arg);
3302 set_fs(oldfs);
3304 return err;
3306 EXPORT_SYMBOL(kernel_sock_ioctl);
3308 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3310 return sock->ops->shutdown(sock, how);
3312 EXPORT_SYMBOL(kernel_sock_shutdown);