2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <asm/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly
;
114 unsigned int sysctl_net_busy_poll __read_mostly
;
117 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
118 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
119 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
121 static int sock_close(struct inode
*inode
, struct file
*file
);
122 static unsigned int sock_poll(struct file
*file
,
123 struct poll_table_struct
*wait
);
124 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
126 static long compat_sock_ioctl(struct file
*file
,
127 unsigned int cmd
, unsigned long arg
);
129 static int sock_fasync(int fd
, struct file
*filp
, int on
);
130 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
131 int offset
, size_t size
, loff_t
*ppos
, int more
);
132 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
133 struct pipe_inode_info
*pipe
, size_t len
,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops
= {
142 .owner
= THIS_MODULE
,
144 .read_iter
= sock_read_iter
,
145 .write_iter
= sock_write_iter
,
147 .unlocked_ioctl
= sock_ioctl
,
149 .compat_ioctl
= compat_sock_ioctl
,
152 .release
= sock_close
,
153 .fasync
= sock_fasync
,
154 .sendpage
= sock_sendpage
,
155 .splice_write
= generic_splice_sendpage
,
156 .splice_read
= sock_splice_read
,
160 * The protocol list. Each protocol is registered in here.
163 static DEFINE_SPINLOCK(net_family_lock
);
164 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Statistics counters of the socket lists
170 static DEFINE_PER_CPU(int, sockets_in_use
);
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
191 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
195 if (copy_from_user(kaddr
, uaddr
, ulen
))
197 return audit_sockaddr(ulen
, kaddr
);
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
217 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
218 void __user
*uaddr
, int __user
*ulen
)
223 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
224 err
= get_user(len
, ulen
);
232 if (audit_sockaddr(klen
, kaddr
))
234 if (copy_to_user(uaddr
, kaddr
, len
))
238 * "fromlen shall refer to the value before truncation.."
241 return __put_user(klen
, ulen
);
244 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
246 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
248 struct socket_alloc
*ei
;
249 struct socket_wq
*wq
;
251 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
254 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
256 kmem_cache_free(sock_inode_cachep
, ei
);
259 init_waitqueue_head(&wq
->wait
);
260 wq
->fasync_list
= NULL
;
262 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
264 ei
->socket
.state
= SS_UNCONNECTED
;
265 ei
->socket
.flags
= 0;
266 ei
->socket
.ops
= NULL
;
267 ei
->socket
.sk
= NULL
;
268 ei
->socket
.file
= NULL
;
270 return &ei
->vfs_inode
;
273 static void sock_destroy_inode(struct inode
*inode
)
275 struct socket_alloc
*ei
;
276 struct socket_wq
*wq
;
278 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
279 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
281 kmem_cache_free(sock_inode_cachep
, ei
);
284 static void init_once(void *foo
)
286 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
288 inode_init_once(&ei
->vfs_inode
);
291 static int init_inodecache(void)
293 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc
),
296 (SLAB_HWCACHE_ALIGN
|
297 SLAB_RECLAIM_ACCOUNT
|
300 if (sock_inode_cachep
== NULL
)
305 static const struct super_operations sockfs_ops
= {
306 .alloc_inode
= sock_alloc_inode
,
307 .destroy_inode
= sock_destroy_inode
,
308 .statfs
= simple_statfs
,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
316 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
317 d_inode(dentry
)->i_ino
);
320 static const struct dentry_operations sockfs_dentry_operations
= {
321 .d_dname
= sockfs_dname
,
324 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
325 int flags
, const char *dev_name
, void *data
)
327 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
328 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
331 static struct vfsmount
*sock_mnt __read_mostly
;
333 static struct file_system_type sock_fs_type
= {
335 .mount
= sockfs_mount
,
336 .kill_sb
= kill_anon_super
,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
358 struct qstr name
= { .name
= "" };
364 name
.len
= strlen(name
.name
);
365 } else if (sock
->sk
) {
366 name
.name
= sock
->sk
->sk_prot_creator
->name
;
367 name
.len
= strlen(name
.name
);
369 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
370 if (unlikely(!path
.dentry
))
371 return ERR_PTR(-ENOMEM
);
372 path
.mnt
= mntget(sock_mnt
);
374 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
376 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
379 /* drop dentry, keep inode */
380 ihold(d_inode(path
.dentry
));
386 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
387 file
->private_data
= sock
;
390 EXPORT_SYMBOL(sock_alloc_file
);
392 static int sock_map_fd(struct socket
*sock
, int flags
)
394 struct file
*newfile
;
395 int fd
= get_unused_fd_flags(flags
);
396 if (unlikely(fd
< 0))
399 newfile
= sock_alloc_file(sock
, flags
, NULL
);
400 if (likely(!IS_ERR(newfile
))) {
401 fd_install(fd
, newfile
);
406 return PTR_ERR(newfile
);
409 struct socket
*sock_from_file(struct file
*file
, int *err
)
411 if (file
->f_op
== &socket_file_ops
)
412 return file
->private_data
; /* set in sock_map_fd */
417 EXPORT_SYMBOL(sock_from_file
);
420 * sockfd_lookup - Go from a file number to its socket slot
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket
*sockfd_lookup(int fd
, int *err
)
443 sock
= sock_from_file(file
, err
);
448 EXPORT_SYMBOL(sockfd_lookup
);
450 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
452 struct fd f
= fdget(fd
);
457 sock
= sock_from_file(f
.file
, err
);
459 *fput_needed
= f
.flags
;
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
471 const char *name
, void *value
, size_t size
)
473 const char *proto_name
;
478 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
479 proto_name
= dentry
->d_name
.name
;
480 proto_size
= strlen(proto_name
);
484 if (proto_size
+ 1 > size
)
487 strncpy(value
, proto_name
, proto_size
+ 1);
489 error
= proto_size
+ 1;
496 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
502 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
512 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
517 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
524 static const struct inode_operations sockfs_inode_ops
= {
525 .getxattr
= sockfs_getxattr
,
526 .listxattr
= sockfs_listxattr
,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
537 static struct socket
*sock_alloc(void)
542 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
546 sock
= SOCKET_I(inode
);
548 kmemcheck_annotate_bitfield(sock
, type
);
549 inode
->i_ino
= get_next_ino();
550 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
551 inode
->i_uid
= current_fsuid();
552 inode
->i_gid
= current_fsgid();
553 inode
->i_op
= &sockfs_inode_ops
;
555 this_cpu_add(sockets_in_use
, 1);
560 * sock_release - close a socket
561 * @sock: socket to close
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
568 void sock_release(struct socket
*sock
)
571 struct module
*owner
= sock
->ops
->owner
;
573 sock
->ops
->release(sock
);
578 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
579 pr_err("%s: fasync list not empty!\n", __func__
);
581 this_cpu_sub(sockets_in_use
, 1);
583 iput(SOCK_INODE(sock
));
588 EXPORT_SYMBOL(sock_release
);
590 void __sock_tx_timestamp(const struct sock
*sk
, __u8
*tx_flags
)
592 u8 flags
= *tx_flags
;
594 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
595 flags
|= SKBTX_HW_TSTAMP
;
597 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
598 flags
|= SKBTX_SW_TSTAMP
;
600 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
601 flags
|= SKBTX_SCHED_TSTAMP
;
603 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)
604 flags
|= SKBTX_ACK_TSTAMP
;
608 EXPORT_SYMBOL(__sock_tx_timestamp
);
610 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
612 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
613 BUG_ON(ret
== -EIOCBQUEUED
);
617 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
619 int err
= security_socket_sendmsg(sock
, msg
,
622 return err
?: sock_sendmsg_nosec(sock
, msg
);
624 EXPORT_SYMBOL(sock_sendmsg
);
626 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
627 struct kvec
*vec
, size_t num
, size_t size
)
629 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
630 return sock_sendmsg(sock
, msg
);
632 EXPORT_SYMBOL(kernel_sendmsg
);
635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
637 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
640 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
641 struct scm_timestamping tss
;
643 struct skb_shared_hwtstamps
*shhwtstamps
=
646 /* Race occurred between timestamp enabling and packet
647 receiving. Fill in the current time for now. */
648 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
649 __net_timestamp(skb
);
651 if (need_software_tstamp
) {
652 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
654 skb_get_timestamp(skb
, &tv
);
655 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
659 skb_get_timestampns(skb
, &ts
);
660 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
665 memset(&tss
, 0, sizeof(tss
));
666 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
667 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
670 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
671 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
674 put_cmsg(msg
, SOL_SOCKET
,
675 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
679 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
684 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
686 if (!skb
->wifi_acked_valid
)
689 ack
= skb
->wifi_acked
;
691 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
695 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
698 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
699 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
700 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
703 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
706 sock_recv_timestamp(msg
, sk
, skb
);
707 sock_recv_drops(msg
, sk
, skb
);
709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
711 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
712 size_t size
, int flags
)
714 return sock
->ops
->recvmsg(sock
, msg
, size
, flags
);
717 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
720 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
722 return err
?: sock_recvmsg_nosec(sock
, msg
, size
, flags
);
724 EXPORT_SYMBOL(sock_recvmsg
);
727 * kernel_recvmsg - Receive a message from a socket (kernel space)
728 * @sock: The socket to receive the message from
729 * @msg: Received message
730 * @vec: Input s/g array for message data
731 * @num: Size of input s/g array
732 * @size: Number of bytes to read
733 * @flags: Message flags (MSG_DONTWAIT, etc...)
735 * On return the msg structure contains the scatter/gather array passed in the
736 * vec argument. The array is modified so that it consists of the unfilled
737 * portion of the original array.
739 * The returned value is the total number of bytes received, or an error.
741 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
742 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
744 mm_segment_t oldfs
= get_fs();
747 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
749 result
= sock_recvmsg(sock
, msg
, size
, flags
);
753 EXPORT_SYMBOL(kernel_recvmsg
);
755 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
756 int offset
, size_t size
, loff_t
*ppos
, int more
)
761 sock
= file
->private_data
;
763 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
764 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
767 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
770 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
771 struct pipe_inode_info
*pipe
, size_t len
,
774 struct socket
*sock
= file
->private_data
;
776 if (unlikely(!sock
->ops
->splice_read
))
779 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
782 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
784 struct file
*file
= iocb
->ki_filp
;
785 struct socket
*sock
= file
->private_data
;
786 struct msghdr msg
= {.msg_iter
= *to
,
790 if (file
->f_flags
& O_NONBLOCK
)
791 msg
.msg_flags
= MSG_DONTWAIT
;
793 if (iocb
->ki_pos
!= 0)
796 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
799 res
= sock_recvmsg(sock
, &msg
, iov_iter_count(to
), msg
.msg_flags
);
804 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
806 struct file
*file
= iocb
->ki_filp
;
807 struct socket
*sock
= file
->private_data
;
808 struct msghdr msg
= {.msg_iter
= *from
,
812 if (iocb
->ki_pos
!= 0)
815 if (file
->f_flags
& O_NONBLOCK
)
816 msg
.msg_flags
= MSG_DONTWAIT
;
818 if (sock
->type
== SOCK_SEQPACKET
)
819 msg
.msg_flags
|= MSG_EOR
;
821 res
= sock_sendmsg(sock
, &msg
);
822 *from
= msg
.msg_iter
;
827 * Atomic setting of ioctl hooks to avoid race
828 * with module unload.
831 static DEFINE_MUTEX(br_ioctl_mutex
);
832 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
834 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
836 mutex_lock(&br_ioctl_mutex
);
837 br_ioctl_hook
= hook
;
838 mutex_unlock(&br_ioctl_mutex
);
840 EXPORT_SYMBOL(brioctl_set
);
842 static DEFINE_MUTEX(vlan_ioctl_mutex
);
843 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
845 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
847 mutex_lock(&vlan_ioctl_mutex
);
848 vlan_ioctl_hook
= hook
;
849 mutex_unlock(&vlan_ioctl_mutex
);
851 EXPORT_SYMBOL(vlan_ioctl_set
);
853 static DEFINE_MUTEX(dlci_ioctl_mutex
);
854 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
856 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
858 mutex_lock(&dlci_ioctl_mutex
);
859 dlci_ioctl_hook
= hook
;
860 mutex_unlock(&dlci_ioctl_mutex
);
862 EXPORT_SYMBOL(dlci_ioctl_set
);
864 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
865 unsigned int cmd
, unsigned long arg
)
868 void __user
*argp
= (void __user
*)arg
;
870 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
873 * If this ioctl is unknown try to hand it down
876 if (err
== -ENOIOCTLCMD
)
877 err
= dev_ioctl(net
, cmd
, argp
);
883 * With an ioctl, arg may well be a user mode pointer, but we don't know
884 * what to do with it - that's up to the protocol still.
887 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
891 void __user
*argp
= (void __user
*)arg
;
895 sock
= file
->private_data
;
898 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
899 err
= dev_ioctl(net
, cmd
, argp
);
901 #ifdef CONFIG_WEXT_CORE
902 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
903 err
= dev_ioctl(net
, cmd
, argp
);
910 if (get_user(pid
, (int __user
*)argp
))
912 f_setown(sock
->file
, pid
, 1);
917 err
= put_user(f_getown(sock
->file
),
926 request_module("bridge");
928 mutex_lock(&br_ioctl_mutex
);
930 err
= br_ioctl_hook(net
, cmd
, argp
);
931 mutex_unlock(&br_ioctl_mutex
);
936 if (!vlan_ioctl_hook
)
937 request_module("8021q");
939 mutex_lock(&vlan_ioctl_mutex
);
941 err
= vlan_ioctl_hook(net
, argp
);
942 mutex_unlock(&vlan_ioctl_mutex
);
947 if (!dlci_ioctl_hook
)
948 request_module("dlci");
950 mutex_lock(&dlci_ioctl_mutex
);
952 err
= dlci_ioctl_hook(cmd
, argp
);
953 mutex_unlock(&dlci_ioctl_mutex
);
956 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
962 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
965 struct socket
*sock
= NULL
;
967 err
= security_socket_create(family
, type
, protocol
, 1);
978 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
990 EXPORT_SYMBOL(sock_create_lite
);
992 /* No kernel lock held - perfect */
993 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
995 unsigned int busy_flag
= 0;
999 * We can't return errors to poll, so it's either yes or no.
1001 sock
= file
->private_data
;
1003 if (sk_can_busy_loop(sock
->sk
)) {
1004 /* this socket can poll_ll so tell the system call */
1005 busy_flag
= POLL_BUSY_LOOP
;
1007 /* once, only if requested by syscall */
1008 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1009 sk_busy_loop(sock
->sk
, 1);
1012 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1015 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1017 struct socket
*sock
= file
->private_data
;
1019 return sock
->ops
->mmap(file
, sock
, vma
);
1022 static int sock_close(struct inode
*inode
, struct file
*filp
)
1024 sock_release(SOCKET_I(inode
));
1029 * Update the socket async list
1031 * Fasync_list locking strategy.
1033 * 1. fasync_list is modified only under process context socket lock
1034 * i.e. under semaphore.
1035 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 * or under socket lock
1039 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1041 struct socket
*sock
= filp
->private_data
;
1042 struct sock
*sk
= sock
->sk
;
1043 struct socket_wq
*wq
;
1049 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1050 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1052 if (!wq
->fasync_list
)
1053 sock_reset_flag(sk
, SOCK_FASYNC
);
1055 sock_set_flag(sk
, SOCK_FASYNC
);
1061 /* This function may be called only under rcu_lock */
1063 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1065 if (!wq
|| !wq
->fasync_list
)
1069 case SOCK_WAKE_WAITD
:
1070 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1073 case SOCK_WAKE_SPACE
:
1074 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1079 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1082 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1087 EXPORT_SYMBOL(sock_wake_async
);
1089 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1090 struct socket
**res
, int kern
)
1093 struct socket
*sock
;
1094 const struct net_proto_family
*pf
;
1097 * Check protocol is in range
1099 if (family
< 0 || family
>= NPROTO
)
1100 return -EAFNOSUPPORT
;
1101 if (type
< 0 || type
>= SOCK_MAX
)
1106 This uglymoron is moved from INET layer to here to avoid
1107 deadlock in module load.
1109 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1113 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 err
= security_socket_create(family
, type
, protocol
, kern
);
1124 * Allocate the socket and allow the family to set things up. if
1125 * the protocol is 0, the family is instructed to select an appropriate
1128 sock
= sock_alloc();
1130 net_warn_ratelimited("socket: no more sockets\n");
1131 return -ENFILE
; /* Not exactly a match, but its the
1132 closest posix thing */
1137 #ifdef CONFIG_MODULES
1138 /* Attempt to load a protocol module if the find failed.
1140 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1141 * requested real, full-featured networking support upon configuration.
1142 * Otherwise module support will break!
1144 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1145 request_module("net-pf-%d", family
);
1149 pf
= rcu_dereference(net_families
[family
]);
1150 err
= -EAFNOSUPPORT
;
1155 * We will call the ->create function, that possibly is in a loadable
1156 * module, so we have to bump that loadable module refcnt first.
1158 if (!try_module_get(pf
->owner
))
1161 /* Now protected by module ref count */
1164 err
= pf
->create(net
, sock
, protocol
, kern
);
1166 goto out_module_put
;
1169 * Now to bump the refcnt of the [loadable] module that owns this
1170 * socket at sock_release time we decrement its refcnt.
1172 if (!try_module_get(sock
->ops
->owner
))
1173 goto out_module_busy
;
1176 * Now that we're done with the ->create function, the [loadable]
1177 * module can have its refcnt decremented
1179 module_put(pf
->owner
);
1180 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1182 goto out_sock_release
;
1188 err
= -EAFNOSUPPORT
;
1191 module_put(pf
->owner
);
1198 goto out_sock_release
;
1200 EXPORT_SYMBOL(__sock_create
);
1202 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1204 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1206 EXPORT_SYMBOL(sock_create
);
1208 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1210 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1212 EXPORT_SYMBOL(sock_create_kern
);
1214 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1217 struct socket
*sock
;
1220 /* Check the SOCK_* constants for consistency. */
1221 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1222 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1223 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1224 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1226 flags
= type
& ~SOCK_TYPE_MASK
;
1227 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1229 type
&= SOCK_TYPE_MASK
;
1231 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1232 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1234 retval
= sock_create(family
, type
, protocol
, &sock
);
1238 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1243 /* It may be already another descriptor 8) Not kernel problem. */
1252 * Create a pair of connected sockets.
1255 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1256 int __user
*, usockvec
)
1258 struct socket
*sock1
, *sock2
;
1260 struct file
*newfile1
, *newfile2
;
1263 flags
= type
& ~SOCK_TYPE_MASK
;
1264 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1266 type
&= SOCK_TYPE_MASK
;
1268 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1269 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1272 * Obtain the first socket and check if the underlying protocol
1273 * supports the socketpair call.
1276 err
= sock_create(family
, type
, protocol
, &sock1
);
1280 err
= sock_create(family
, type
, protocol
, &sock2
);
1284 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1286 goto out_release_both
;
1288 fd1
= get_unused_fd_flags(flags
);
1289 if (unlikely(fd1
< 0)) {
1291 goto out_release_both
;
1294 fd2
= get_unused_fd_flags(flags
);
1295 if (unlikely(fd2
< 0)) {
1297 goto out_put_unused_1
;
1300 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1301 if (IS_ERR(newfile1
)) {
1302 err
= PTR_ERR(newfile1
);
1303 goto out_put_unused_both
;
1306 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1307 if (IS_ERR(newfile2
)) {
1308 err
= PTR_ERR(newfile2
);
1312 err
= put_user(fd1
, &usockvec
[0]);
1316 err
= put_user(fd2
, &usockvec
[1]);
1320 audit_fd_pair(fd1
, fd2
);
1322 fd_install(fd1
, newfile1
);
1323 fd_install(fd2
, newfile2
);
1324 /* fd1 and fd2 may be already another descriptors.
1325 * Not kernel problem.
1341 sock_release(sock2
);
1344 out_put_unused_both
:
1349 sock_release(sock2
);
1351 sock_release(sock1
);
1357 * Bind a name to a socket. Nothing much to do here since it's
1358 * the protocol's responsibility to handle the local address.
1360 * We move the socket address to kernel space before we call
1361 * the protocol layer (having also checked the address is ok).
1364 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1366 struct socket
*sock
;
1367 struct sockaddr_storage address
;
1368 int err
, fput_needed
;
1370 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1372 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1374 err
= security_socket_bind(sock
,
1375 (struct sockaddr
*)&address
,
1378 err
= sock
->ops
->bind(sock
,
1382 fput_light(sock
->file
, fput_needed
);
1388 * Perform a listen. Basically, we allow the protocol to do anything
1389 * necessary for a listen, and if that works, we mark the socket as
1390 * ready for listening.
1393 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1395 struct socket
*sock
;
1396 int err
, fput_needed
;
1399 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1401 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1402 if ((unsigned int)backlog
> somaxconn
)
1403 backlog
= somaxconn
;
1405 err
= security_socket_listen(sock
, backlog
);
1407 err
= sock
->ops
->listen(sock
, backlog
);
1409 fput_light(sock
->file
, fput_needed
);
1415 * For accept, we attempt to create a new socket, set up the link
1416 * with the client, wake up the client, then return the new
1417 * connected fd. We collect the address of the connector in kernel
1418 * space and move it to user at the very end. This is unclean because
1419 * we open the socket then return an error.
1421 * 1003.1g adds the ability to recvmsg() to query connection pending
1422 * status to recvmsg. We need to add that support in a way thats
1423 * clean when we restucture accept also.
1426 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1427 int __user
*, upeer_addrlen
, int, flags
)
1429 struct socket
*sock
, *newsock
;
1430 struct file
*newfile
;
1431 int err
, len
, newfd
, fput_needed
;
1432 struct sockaddr_storage address
;
1434 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1437 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1438 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1440 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1445 newsock
= sock_alloc();
1449 newsock
->type
= sock
->type
;
1450 newsock
->ops
= sock
->ops
;
1453 * We don't need try_module_get here, as the listening socket (sock)
1454 * has the protocol module (sock->ops->owner) held.
1456 __module_get(newsock
->ops
->owner
);
1458 newfd
= get_unused_fd_flags(flags
);
1459 if (unlikely(newfd
< 0)) {
1461 sock_release(newsock
);
1464 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1465 if (IS_ERR(newfile
)) {
1466 err
= PTR_ERR(newfile
);
1467 put_unused_fd(newfd
);
1468 sock_release(newsock
);
1472 err
= security_socket_accept(sock
, newsock
);
1476 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1480 if (upeer_sockaddr
) {
1481 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1483 err
= -ECONNABORTED
;
1486 err
= move_addr_to_user(&address
,
1487 len
, upeer_sockaddr
, upeer_addrlen
);
1492 /* File flags are not inherited via accept() unlike another OSes. */
1494 fd_install(newfd
, newfile
);
1498 fput_light(sock
->file
, fput_needed
);
1503 put_unused_fd(newfd
);
1507 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1508 int __user
*, upeer_addrlen
)
1510 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1514 * Attempt to connect to a socket with the server address. The address
1515 * is in user space so we verify it is OK and move it to kernel space.
1517 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1520 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1521 * other SEQPACKET protocols that take time to connect() as it doesn't
1522 * include the -EINPROGRESS status for such sockets.
1525 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1528 struct socket
*sock
;
1529 struct sockaddr_storage address
;
1530 int err
, fput_needed
;
1532 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1535 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1540 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1544 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1545 sock
->file
->f_flags
);
1547 fput_light(sock
->file
, fput_needed
);
1553 * Get the local address ('name') of a socket object. Move the obtained
1554 * name to user space.
1557 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1558 int __user
*, usockaddr_len
)
1560 struct socket
*sock
;
1561 struct sockaddr_storage address
;
1562 int len
, err
, fput_needed
;
1564 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1568 err
= security_socket_getsockname(sock
);
1572 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1575 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1578 fput_light(sock
->file
, fput_needed
);
1584 * Get the remote address ('name') of a socket object. Move the obtained
1585 * name to user space.
1588 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1589 int __user
*, usockaddr_len
)
1591 struct socket
*sock
;
1592 struct sockaddr_storage address
;
1593 int len
, err
, fput_needed
;
1595 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1597 err
= security_socket_getpeername(sock
);
1599 fput_light(sock
->file
, fput_needed
);
1604 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1607 err
= move_addr_to_user(&address
, len
, usockaddr
,
1609 fput_light(sock
->file
, fput_needed
);
1615 * Send a datagram to a given address. We move the address into kernel
1616 * space and check the user space data area is readable before invoking
1620 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1621 unsigned int, flags
, struct sockaddr __user
*, addr
,
1624 struct socket
*sock
;
1625 struct sockaddr_storage address
;
1631 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1634 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1638 msg
.msg_name
= NULL
;
1639 msg
.msg_control
= NULL
;
1640 msg
.msg_controllen
= 0;
1641 msg
.msg_namelen
= 0;
1643 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1646 msg
.msg_name
= (struct sockaddr
*)&address
;
1647 msg
.msg_namelen
= addr_len
;
1649 if (sock
->file
->f_flags
& O_NONBLOCK
)
1650 flags
|= MSG_DONTWAIT
;
1651 msg
.msg_flags
= flags
;
1652 err
= sock_sendmsg(sock
, &msg
);
1655 fput_light(sock
->file
, fput_needed
);
1661 * Send a datagram down a socket.
1664 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1665 unsigned int, flags
)
1667 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1671 * Receive a frame from the socket and optionally record the address of the
1672 * sender. We verify the buffers are writable and if needed move the
1673 * sender address from kernel to user space.
1676 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1677 unsigned int, flags
, struct sockaddr __user
*, addr
,
1678 int __user
*, addr_len
)
1680 struct socket
*sock
;
1683 struct sockaddr_storage address
;
1687 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1690 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1694 msg
.msg_control
= NULL
;
1695 msg
.msg_controllen
= 0;
1696 /* Save some cycles and don't copy the address if not needed */
1697 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1698 /* We assume all kernel code knows the size of sockaddr_storage */
1699 msg
.msg_namelen
= 0;
1700 msg
.msg_iocb
= NULL
;
1702 if (sock
->file
->f_flags
& O_NONBLOCK
)
1703 flags
|= MSG_DONTWAIT
;
1704 err
= sock_recvmsg(sock
, &msg
, iov_iter_count(&msg
.msg_iter
), flags
);
1706 if (err
>= 0 && addr
!= NULL
) {
1707 err2
= move_addr_to_user(&address
,
1708 msg
.msg_namelen
, addr
, addr_len
);
1713 fput_light(sock
->file
, fput_needed
);
1719 * Receive a datagram from a socket.
1722 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1723 unsigned int, flags
)
1725 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1729 * Set a socket option. Because we don't know the option lengths we have
1730 * to pass the user mode parameter for the protocols to sort out.
1733 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1734 char __user
*, optval
, int, optlen
)
1736 int err
, fput_needed
;
1737 struct socket
*sock
;
1742 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1744 err
= security_socket_setsockopt(sock
, level
, optname
);
1748 if (level
== SOL_SOCKET
)
1750 sock_setsockopt(sock
, level
, optname
, optval
,
1754 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1757 fput_light(sock
->file
, fput_needed
);
1763 * Get a socket option. Because we don't know the option lengths we have
1764 * to pass a user mode parameter for the protocols to sort out.
1767 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1768 char __user
*, optval
, int __user
*, optlen
)
1770 int err
, fput_needed
;
1771 struct socket
*sock
;
1773 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1775 err
= security_socket_getsockopt(sock
, level
, optname
);
1779 if (level
== SOL_SOCKET
)
1781 sock_getsockopt(sock
, level
, optname
, optval
,
1785 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1788 fput_light(sock
->file
, fput_needed
);
1794 * Shutdown a socket.
1797 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1799 int err
, fput_needed
;
1800 struct socket
*sock
;
1802 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1804 err
= security_socket_shutdown(sock
, how
);
1806 err
= sock
->ops
->shutdown(sock
, how
);
1807 fput_light(sock
->file
, fput_needed
);
1812 /* A couple of helpful macros for getting the address of the 32/64 bit
1813 * fields which are the same type (int / unsigned) on our platforms.
1815 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1816 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1817 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1819 struct used_address
{
1820 struct sockaddr_storage name
;
1821 unsigned int name_len
;
1824 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1825 struct user_msghdr __user
*umsg
,
1826 struct sockaddr __user
**save_addr
,
1829 struct sockaddr __user
*uaddr
;
1830 struct iovec __user
*uiov
;
1834 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1835 __get_user(uaddr
, &umsg
->msg_name
) ||
1836 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1837 __get_user(uiov
, &umsg
->msg_iov
) ||
1838 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1839 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1840 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1841 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1845 kmsg
->msg_namelen
= 0;
1847 if (kmsg
->msg_namelen
< 0)
1850 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1851 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1856 if (uaddr
&& kmsg
->msg_namelen
) {
1858 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1864 kmsg
->msg_name
= NULL
;
1865 kmsg
->msg_namelen
= 0;
1868 if (nr_segs
> UIO_MAXIOV
)
1871 kmsg
->msg_iocb
= NULL
;
1873 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1874 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1877 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1878 struct msghdr
*msg_sys
, unsigned int flags
,
1879 struct used_address
*used_address
)
1881 struct compat_msghdr __user
*msg_compat
=
1882 (struct compat_msghdr __user
*)msg
;
1883 struct sockaddr_storage address
;
1884 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1885 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1886 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1887 /* 20 is size of ipv6_pktinfo */
1888 unsigned char *ctl_buf
= ctl
;
1892 msg_sys
->msg_name
= &address
;
1894 if (MSG_CMSG_COMPAT
& flags
)
1895 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1897 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1903 if (msg_sys
->msg_controllen
> INT_MAX
)
1905 ctl_len
= msg_sys
->msg_controllen
;
1906 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1908 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1912 ctl_buf
= msg_sys
->msg_control
;
1913 ctl_len
= msg_sys
->msg_controllen
;
1914 } else if (ctl_len
) {
1915 if (ctl_len
> sizeof(ctl
)) {
1916 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1917 if (ctl_buf
== NULL
)
1922 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1923 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1924 * checking falls down on this.
1926 if (copy_from_user(ctl_buf
,
1927 (void __user __force
*)msg_sys
->msg_control
,
1930 msg_sys
->msg_control
= ctl_buf
;
1932 msg_sys
->msg_flags
= flags
;
1934 if (sock
->file
->f_flags
& O_NONBLOCK
)
1935 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1937 * If this is sendmmsg() and current destination address is same as
1938 * previously succeeded address, omit asking LSM's decision.
1939 * used_address->name_len is initialized to UINT_MAX so that the first
1940 * destination address never matches.
1942 if (used_address
&& msg_sys
->msg_name
&&
1943 used_address
->name_len
== msg_sys
->msg_namelen
&&
1944 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1945 used_address
->name_len
)) {
1946 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1949 err
= sock_sendmsg(sock
, msg_sys
);
1951 * If this is sendmmsg() and sending to current destination address was
1952 * successful, remember it.
1954 if (used_address
&& err
>= 0) {
1955 used_address
->name_len
= msg_sys
->msg_namelen
;
1956 if (msg_sys
->msg_name
)
1957 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1958 used_address
->name_len
);
1963 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1970 * BSD sendmsg interface
1973 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
1975 int fput_needed
, err
;
1976 struct msghdr msg_sys
;
1977 struct socket
*sock
;
1979 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1983 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
1985 fput_light(sock
->file
, fput_needed
);
1990 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
1992 if (flags
& MSG_CMSG_COMPAT
)
1994 return __sys_sendmsg(fd
, msg
, flags
);
1998 * Linux sendmmsg interface
2001 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2004 int fput_needed
, err
, datagrams
;
2005 struct socket
*sock
;
2006 struct mmsghdr __user
*entry
;
2007 struct compat_mmsghdr __user
*compat_entry
;
2008 struct msghdr msg_sys
;
2009 struct used_address used_address
;
2011 if (vlen
> UIO_MAXIOV
)
2016 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2020 used_address
.name_len
= UINT_MAX
;
2022 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2025 while (datagrams
< vlen
) {
2026 if (MSG_CMSG_COMPAT
& flags
) {
2027 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2028 &msg_sys
, flags
, &used_address
);
2031 err
= __put_user(err
, &compat_entry
->msg_len
);
2034 err
= ___sys_sendmsg(sock
,
2035 (struct user_msghdr __user
*)entry
,
2036 &msg_sys
, flags
, &used_address
);
2039 err
= put_user(err
, &entry
->msg_len
);
2046 if (msg_data_left(&msg_sys
))
2050 fput_light(sock
->file
, fput_needed
);
2052 /* We only return an error if no datagrams were able to be sent */
2059 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2060 unsigned int, vlen
, unsigned int, flags
)
2062 if (flags
& MSG_CMSG_COMPAT
)
2064 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2067 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2068 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2070 struct compat_msghdr __user
*msg_compat
=
2071 (struct compat_msghdr __user
*)msg
;
2072 struct iovec iovstack
[UIO_FASTIOV
];
2073 struct iovec
*iov
= iovstack
;
2074 unsigned long cmsg_ptr
;
2078 /* kernel mode address */
2079 struct sockaddr_storage addr
;
2081 /* user mode address pointers */
2082 struct sockaddr __user
*uaddr
;
2083 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2085 msg_sys
->msg_name
= &addr
;
2087 if (MSG_CMSG_COMPAT
& flags
)
2088 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2090 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2093 total_len
= iov_iter_count(&msg_sys
->msg_iter
);
2095 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2096 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2098 /* We assume all kernel code knows the size of sockaddr_storage */
2099 msg_sys
->msg_namelen
= 0;
2101 if (sock
->file
->f_flags
& O_NONBLOCK
)
2102 flags
|= MSG_DONTWAIT
;
2103 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2109 if (uaddr
!= NULL
) {
2110 err
= move_addr_to_user(&addr
,
2111 msg_sys
->msg_namelen
, uaddr
,
2116 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2120 if (MSG_CMSG_COMPAT
& flags
)
2121 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2122 &msg_compat
->msg_controllen
);
2124 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2125 &msg
->msg_controllen
);
2136 * BSD recvmsg interface
2139 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2141 int fput_needed
, err
;
2142 struct msghdr msg_sys
;
2143 struct socket
*sock
;
2145 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2149 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2151 fput_light(sock
->file
, fput_needed
);
2156 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2157 unsigned int, flags
)
2159 if (flags
& MSG_CMSG_COMPAT
)
2161 return __sys_recvmsg(fd
, msg
, flags
);
2165 * Linux recvmmsg interface
2168 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2169 unsigned int flags
, struct timespec
*timeout
)
2171 int fput_needed
, err
, datagrams
;
2172 struct socket
*sock
;
2173 struct mmsghdr __user
*entry
;
2174 struct compat_mmsghdr __user
*compat_entry
;
2175 struct msghdr msg_sys
;
2176 struct timespec end_time
;
2179 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2185 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2189 err
= sock_error(sock
->sk
);
2196 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2198 while (datagrams
< vlen
) {
2200 * No need to ask LSM for more than the first datagram.
2202 if (MSG_CMSG_COMPAT
& flags
) {
2203 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2204 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2208 err
= __put_user(err
, &compat_entry
->msg_len
);
2211 err
= ___sys_recvmsg(sock
,
2212 (struct user_msghdr __user
*)entry
,
2213 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2217 err
= put_user(err
, &entry
->msg_len
);
2225 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2226 if (flags
& MSG_WAITFORONE
)
2227 flags
|= MSG_DONTWAIT
;
2230 ktime_get_ts(timeout
);
2231 *timeout
= timespec_sub(end_time
, *timeout
);
2232 if (timeout
->tv_sec
< 0) {
2233 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2237 /* Timeout, return less than vlen datagrams */
2238 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2242 /* Out of band data, return right away */
2243 if (msg_sys
.msg_flags
& MSG_OOB
)
2250 if (datagrams
== 0) {
2256 * We may return less entries than requested (vlen) if the
2257 * sock is non block and there aren't enough datagrams...
2259 if (err
!= -EAGAIN
) {
2261 * ... or if recvmsg returns an error after we
2262 * received some datagrams, where we record the
2263 * error to return on the next call or if the
2264 * app asks about it using getsockopt(SO_ERROR).
2266 sock
->sk
->sk_err
= -err
;
2269 fput_light(sock
->file
, fput_needed
);
2274 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2275 unsigned int, vlen
, unsigned int, flags
,
2276 struct timespec __user
*, timeout
)
2279 struct timespec timeout_sys
;
2281 if (flags
& MSG_CMSG_COMPAT
)
2285 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2287 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2290 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2292 if (datagrams
> 0 &&
2293 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2294 datagrams
= -EFAULT
;
2299 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2300 /* Argument list sizes for sys_socketcall */
2301 #define AL(x) ((x) * sizeof(unsigned long))
2302 static const unsigned char nargs
[21] = {
2303 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2312 * System call vectors.
2314 * Argument checking cleaned up. Saved 20% in size.
2315 * This function doesn't need to set the kernel lock because
2316 * it is set by the callees.
2319 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2321 unsigned long a
[AUDITSC_ARGS
];
2322 unsigned long a0
, a1
;
2326 if (call
< 1 || call
> SYS_SENDMMSG
)
2328 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2331 if (len
> sizeof(a
))
2334 /* copy_from_user should be SMP safe. */
2335 if (copy_from_user(a
, args
, len
))
2338 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2347 err
= sys_socket(a0
, a1
, a
[2]);
2350 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2353 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2356 err
= sys_listen(a0
, a1
);
2359 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2360 (int __user
*)a
[2], 0);
2362 case SYS_GETSOCKNAME
:
2364 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2365 (int __user
*)a
[2]);
2367 case SYS_GETPEERNAME
:
2369 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2370 (int __user
*)a
[2]);
2372 case SYS_SOCKETPAIR
:
2373 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2376 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2379 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2380 (struct sockaddr __user
*)a
[4], a
[5]);
2383 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2386 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2387 (struct sockaddr __user
*)a
[4],
2388 (int __user
*)a
[5]);
2391 err
= sys_shutdown(a0
, a1
);
2393 case SYS_SETSOCKOPT
:
2394 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2396 case SYS_GETSOCKOPT
:
2398 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2399 (int __user
*)a
[4]);
2402 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2405 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2408 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2411 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2412 (struct timespec __user
*)a
[4]);
2415 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2416 (int __user
*)a
[2], a
[3]);
2425 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2428 * sock_register - add a socket protocol handler
2429 * @ops: description of protocol
2431 * This function is called by a protocol handler that wants to
2432 * advertise its address family, and have it linked into the
2433 * socket interface. The value ops->family corresponds to the
2434 * socket system call protocol family.
2436 int sock_register(const struct net_proto_family
*ops
)
2440 if (ops
->family
>= NPROTO
) {
2441 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2445 spin_lock(&net_family_lock
);
2446 if (rcu_dereference_protected(net_families
[ops
->family
],
2447 lockdep_is_held(&net_family_lock
)))
2450 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2453 spin_unlock(&net_family_lock
);
2455 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2458 EXPORT_SYMBOL(sock_register
);
2461 * sock_unregister - remove a protocol handler
2462 * @family: protocol family to remove
2464 * This function is called by a protocol handler that wants to
2465 * remove its address family, and have it unlinked from the
2466 * new socket creation.
2468 * If protocol handler is a module, then it can use module reference
2469 * counts to protect against new references. If protocol handler is not
2470 * a module then it needs to provide its own protection in
2471 * the ops->create routine.
2473 void sock_unregister(int family
)
2475 BUG_ON(family
< 0 || family
>= NPROTO
);
2477 spin_lock(&net_family_lock
);
2478 RCU_INIT_POINTER(net_families
[family
], NULL
);
2479 spin_unlock(&net_family_lock
);
2483 pr_info("NET: Unregistered protocol family %d\n", family
);
2485 EXPORT_SYMBOL(sock_unregister
);
2487 static int __init
sock_init(void)
2491 * Initialize the network sysctl infrastructure.
2493 err
= net_sysctl_init();
2498 * Initialize skbuff SLAB cache
2503 * Initialize the protocols module.
2508 err
= register_filesystem(&sock_fs_type
);
2511 sock_mnt
= kern_mount(&sock_fs_type
);
2512 if (IS_ERR(sock_mnt
)) {
2513 err
= PTR_ERR(sock_mnt
);
2517 /* The real protocol initialization is performed in later initcalls.
2520 #ifdef CONFIG_NETFILTER
2521 err
= netfilter_init();
2526 ptp_classifier_init();
2532 unregister_filesystem(&sock_fs_type
);
2537 core_initcall(sock_init
); /* early initcall */
2539 static int __init
jit_init(void)
2541 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2546 pure_initcall(jit_init
);
2548 #ifdef CONFIG_PROC_FS
2549 void socket_seq_show(struct seq_file
*seq
)
2554 for_each_possible_cpu(cpu
)
2555 counter
+= per_cpu(sockets_in_use
, cpu
);
2557 /* It can be negative, by the way. 8) */
2561 seq_printf(seq
, "sockets: used %d\n", counter
);
2563 #endif /* CONFIG_PROC_FS */
2565 #ifdef CONFIG_COMPAT
2566 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2567 unsigned int cmd
, void __user
*up
)
2569 mm_segment_t old_fs
= get_fs();
2574 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2577 err
= compat_put_timeval(&ktv
, up
);
2582 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2583 unsigned int cmd
, void __user
*up
)
2585 mm_segment_t old_fs
= get_fs();
2586 struct timespec kts
;
2590 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2593 err
= compat_put_timespec(&kts
, up
);
2598 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2600 struct ifreq __user
*uifr
;
2603 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2604 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2607 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2611 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2617 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2619 struct compat_ifconf ifc32
;
2621 struct ifconf __user
*uifc
;
2622 struct compat_ifreq __user
*ifr32
;
2623 struct ifreq __user
*ifr
;
2627 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2630 memset(&ifc
, 0, sizeof(ifc
));
2631 if (ifc32
.ifcbuf
== 0) {
2635 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2637 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2638 sizeof(struct ifreq
);
2639 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2641 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2642 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2643 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2644 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2650 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2653 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2657 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2661 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2663 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2664 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2665 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2671 if (ifc32
.ifcbuf
== 0) {
2672 /* Translate from 64-bit structure multiple to
2676 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2681 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2687 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2689 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2690 bool convert_in
= false, convert_out
= false;
2691 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2692 struct ethtool_rxnfc __user
*rxnfc
;
2693 struct ifreq __user
*ifr
;
2694 u32 rule_cnt
= 0, actual_rule_cnt
;
2699 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2702 compat_rxnfc
= compat_ptr(data
);
2704 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2707 /* Most ethtool structures are defined without padding.
2708 * Unfortunately struct ethtool_rxnfc is an exception.
2713 case ETHTOOL_GRXCLSRLALL
:
2714 /* Buffer size is variable */
2715 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2717 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2719 buf_size
+= rule_cnt
* sizeof(u32
);
2721 case ETHTOOL_GRXRINGS
:
2722 case ETHTOOL_GRXCLSRLCNT
:
2723 case ETHTOOL_GRXCLSRULE
:
2724 case ETHTOOL_SRXCLSRLINS
:
2727 case ETHTOOL_SRXCLSRLDEL
:
2728 buf_size
+= sizeof(struct ethtool_rxnfc
);
2733 ifr
= compat_alloc_user_space(buf_size
);
2734 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2736 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2739 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2740 &ifr
->ifr_ifru
.ifru_data
))
2744 /* We expect there to be holes between fs.m_ext and
2745 * fs.ring_cookie and at the end of fs, but nowhere else.
2747 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2748 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2749 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2750 sizeof(rxnfc
->fs
.m_ext
));
2752 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2753 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2754 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2755 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2757 if (copy_in_user(rxnfc
, compat_rxnfc
,
2758 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2759 (void __user
*)rxnfc
) ||
2760 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2761 &compat_rxnfc
->fs
.ring_cookie
,
2762 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2763 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2764 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2765 sizeof(rxnfc
->rule_cnt
)))
2769 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2774 if (copy_in_user(compat_rxnfc
, rxnfc
,
2775 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2776 (const void __user
*)rxnfc
) ||
2777 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2778 &rxnfc
->fs
.ring_cookie
,
2779 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2780 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2781 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2782 sizeof(rxnfc
->rule_cnt
)))
2785 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2786 /* As an optimisation, we only copy the actual
2787 * number of rules that the underlying
2788 * function returned. Since Mallory might
2789 * change the rule count in user memory, we
2790 * check that it is less than the rule count
2791 * originally given (as the user buffer size),
2792 * which has been range-checked.
2794 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2796 if (actual_rule_cnt
< rule_cnt
)
2797 rule_cnt
= actual_rule_cnt
;
2798 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2799 &rxnfc
->rule_locs
[0],
2800 rule_cnt
* sizeof(u32
)))
2808 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2811 compat_uptr_t uptr32
;
2812 struct ifreq __user
*uifr
;
2814 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2815 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2818 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2821 uptr
= compat_ptr(uptr32
);
2823 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2826 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2829 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2830 struct compat_ifreq __user
*ifr32
)
2833 mm_segment_t old_fs
;
2837 case SIOCBONDENSLAVE
:
2838 case SIOCBONDRELEASE
:
2839 case SIOCBONDSETHWADDR
:
2840 case SIOCBONDCHANGEACTIVE
:
2841 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2846 err
= dev_ioctl(net
, cmd
,
2847 (struct ifreq __user __force
*) &kifr
);
2852 return -ENOIOCTLCMD
;
2856 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2857 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2858 struct compat_ifreq __user
*u_ifreq32
)
2860 struct ifreq __user
*u_ifreq64
;
2861 char tmp_buf
[IFNAMSIZ
];
2862 void __user
*data64
;
2865 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2868 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2870 data64
= compat_ptr(data32
);
2872 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2874 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2877 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2880 return dev_ioctl(net
, cmd
, u_ifreq64
);
2883 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2884 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2886 struct ifreq __user
*uifr
;
2889 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2890 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2893 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2904 case SIOCGIFBRDADDR
:
2905 case SIOCGIFDSTADDR
:
2906 case SIOCGIFNETMASK
:
2911 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2919 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2920 struct compat_ifreq __user
*uifr32
)
2923 struct compat_ifmap __user
*uifmap32
;
2924 mm_segment_t old_fs
;
2927 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2928 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2929 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2930 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2931 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2932 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2933 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2934 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2940 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2943 if (cmd
== SIOCGIFMAP
&& !err
) {
2944 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2945 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2946 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2947 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2948 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2949 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2950 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2959 struct sockaddr rt_dst
; /* target address */
2960 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2961 struct sockaddr rt_genmask
; /* target network mask (IP) */
2962 unsigned short rt_flags
;
2965 unsigned char rt_tos
;
2966 unsigned char rt_class
;
2968 short rt_metric
; /* +1 for binary compatibility! */
2969 /* char * */ u32 rt_dev
; /* forcing the device at add */
2970 u32 rt_mtu
; /* per route MTU/Window */
2971 u32 rt_window
; /* Window clamping */
2972 unsigned short rt_irtt
; /* Initial RTT */
2975 struct in6_rtmsg32
{
2976 struct in6_addr rtmsg_dst
;
2977 struct in6_addr rtmsg_src
;
2978 struct in6_addr rtmsg_gateway
;
2988 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2989 unsigned int cmd
, void __user
*argp
)
2993 struct in6_rtmsg r6
;
2997 mm_segment_t old_fs
= get_fs();
2999 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3000 struct in6_rtmsg32 __user
*ur6
= argp
;
3001 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3002 3 * sizeof(struct in6_addr
));
3003 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3004 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3005 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3006 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3007 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3008 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3009 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3013 struct rtentry32 __user
*ur4
= argp
;
3014 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3015 3 * sizeof(struct sockaddr
));
3016 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3017 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3018 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3019 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3020 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3021 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3023 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3024 r4
.rt_dev
= (char __user __force
*)devname
;
3038 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3045 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3046 * for some operations; this forces use of the newer bridge-utils that
3047 * use compatible ioctls
3049 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3053 if (get_user(tmp
, argp
))
3055 if (tmp
== BRCTL_GET_VERSION
)
3056 return BRCTL_VERSION
+ 1;
3060 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3061 unsigned int cmd
, unsigned long arg
)
3063 void __user
*argp
= compat_ptr(arg
);
3064 struct sock
*sk
= sock
->sk
;
3065 struct net
*net
= sock_net(sk
);
3067 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3068 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3073 return old_bridge_ioctl(argp
);
3075 return dev_ifname32(net
, argp
);
3077 return dev_ifconf(net
, argp
);
3079 return ethtool_ioctl(net
, argp
);
3081 return compat_siocwandev(net
, argp
);
3084 return compat_sioc_ifmap(net
, cmd
, argp
);
3085 case SIOCBONDENSLAVE
:
3086 case SIOCBONDRELEASE
:
3087 case SIOCBONDSETHWADDR
:
3088 case SIOCBONDCHANGEACTIVE
:
3089 return bond_ioctl(net
, cmd
, argp
);
3092 return routing_ioctl(net
, sock
, cmd
, argp
);
3094 return do_siocgstamp(net
, sock
, cmd
, argp
);
3096 return do_siocgstampns(net
, sock
, cmd
, argp
);
3097 case SIOCBONDSLAVEINFOQUERY
:
3098 case SIOCBONDINFOQUERY
:
3101 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3113 return sock_ioctl(file
, cmd
, arg
);
3130 case SIOCSIFHWBROADCAST
:
3132 case SIOCGIFBRDADDR
:
3133 case SIOCSIFBRDADDR
:
3134 case SIOCGIFDSTADDR
:
3135 case SIOCSIFDSTADDR
:
3136 case SIOCGIFNETMASK
:
3137 case SIOCSIFNETMASK
:
3148 return dev_ifsioc(net
, sock
, cmd
, argp
);
3154 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3157 return -ENOIOCTLCMD
;
3160 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3163 struct socket
*sock
= file
->private_data
;
3164 int ret
= -ENOIOCTLCMD
;
3171 if (sock
->ops
->compat_ioctl
)
3172 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3174 if (ret
== -ENOIOCTLCMD
&&
3175 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3176 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3178 if (ret
== -ENOIOCTLCMD
)
3179 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3185 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3187 return sock
->ops
->bind(sock
, addr
, addrlen
);
3189 EXPORT_SYMBOL(kernel_bind
);
3191 int kernel_listen(struct socket
*sock
, int backlog
)
3193 return sock
->ops
->listen(sock
, backlog
);
3195 EXPORT_SYMBOL(kernel_listen
);
3197 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3199 struct sock
*sk
= sock
->sk
;
3202 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3207 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3209 sock_release(*newsock
);
3214 (*newsock
)->ops
= sock
->ops
;
3215 __module_get((*newsock
)->ops
->owner
);
3220 EXPORT_SYMBOL(kernel_accept
);
3222 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3225 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3227 EXPORT_SYMBOL(kernel_connect
);
3229 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3232 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3234 EXPORT_SYMBOL(kernel_getsockname
);
3236 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3239 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3241 EXPORT_SYMBOL(kernel_getpeername
);
3243 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3244 char *optval
, int *optlen
)
3246 mm_segment_t oldfs
= get_fs();
3247 char __user
*uoptval
;
3248 int __user
*uoptlen
;
3251 uoptval
= (char __user __force
*) optval
;
3252 uoptlen
= (int __user __force
*) optlen
;
3255 if (level
== SOL_SOCKET
)
3256 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3258 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3263 EXPORT_SYMBOL(kernel_getsockopt
);
3265 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3266 char *optval
, unsigned int optlen
)
3268 mm_segment_t oldfs
= get_fs();
3269 char __user
*uoptval
;
3272 uoptval
= (char __user __force
*) optval
;
3275 if (level
== SOL_SOCKET
)
3276 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3278 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3283 EXPORT_SYMBOL(kernel_setsockopt
);
3285 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3286 size_t size
, int flags
)
3288 if (sock
->ops
->sendpage
)
3289 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3291 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3293 EXPORT_SYMBOL(kernel_sendpage
);
3295 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3297 mm_segment_t oldfs
= get_fs();
3301 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3306 EXPORT_SYMBOL(kernel_sock_ioctl
);
3308 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3310 return sock
->ops
->shutdown(sock
, how
);
3312 EXPORT_SYMBOL(kernel_sock_shutdown
);