dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / sound / pci / rme9652 / hdspm.c
blob1a0c0d16a279a4d588e1c791c9df2e8c17642cdb
1 /*
2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s)
4 * Copyright (c) 2003 Winfried Ritsch (IEM)
5 * code based on hdsp.c Paul Davis
6 * Marcus Andersson
7 * Thomas Charbonnel
8 * Modified 2006-06-01 for AES32 support by Remy Bruno
9 * <remy.bruno@trinnov.com>
11 * Modified 2009-04-13 for proper metering by Florian Faber
12 * <faber@faberman.de>
14 * Modified 2009-04-14 for native float support by Florian Faber
15 * <faber@faberman.de>
17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18 * <faber@faberman.de>
20 * Modified 2009-04-30 added hw serial number support by Florian Faber
22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 /* ************* Register Documentation *******************************************************
44 * Work in progress! Documentation is based on the code in this file.
46 * --------- HDSPM_controlRegister ---------
47 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
48 * :||||.||||:||||.||||:||||.||||:||||.||||:
49 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
50 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
51 * :||||.||||:||||.||||:||||.||||:||||.||||:
52 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
53 * : . : . : . : x . : HDSPM_AudioInterruptEnable \_ setting both bits
54 * : . : . : . : . x: HDSPM_Start / enables audio IO
55 * : . : . : . : x. : HDSPM_ClockModeMaster - 1: Master, 0: Slave
56 * : . : . : . : .210 : HDSPM_LatencyMask - 3 Bit value for latency
57 * : . : . : . : . : 0:64, 1:128, 2:256, 3:512,
58 * : . : . : . : . : 4:1024, 5:2048, 6:4096, 7:8192
59 * :x . : . : . x:xx . : HDSPM_FrequencyMask
60 * : . : . : . :10 . : HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
61 * : . : . : . x: . : <MADI> HDSPM_DoubleSpeed
62 * :x . : . : . : . : <MADI> HDSPM_QuadSpeed
63 * : . 3 : . 10: 2 . : . : HDSPM_SyncRefMask :
64 * : . : . x: . : . : HDSPM_SyncRef0
65 * : . : . x : . : . : HDSPM_SyncRef1
66 * : . : . : x . : . : <AES32> HDSPM_SyncRef2
67 * : . x : . : . : . : <AES32> HDSPM_SyncRef3
68 * : . : . 10: . : . : <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
69 * : . 3 : . 10: 2 . : . : <AES32> 0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
70 * : . x : . : . : . : <MADIe> HDSPe_FLOAT_FORMAT
71 * : . : . : x . : . : <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
72 * : . : . :x . : . : <MADI> HDSPM_InputSelect1
73 * : . : .x : . : . : <MADI> HDSPM_clr_tms
74 * : . : . : . x : . : <MADI> HDSPM_TX_64ch
75 * : . : . : . x : . : <AES32> HDSPM_Emphasis
76 * : . : . : .x : . : <MADI> HDSPM_AutoInp
77 * : . : . x : . : . : <MADI> HDSPM_SMUX
78 * : . : .x : . : . : <MADI> HDSPM_clr_tms
79 * : . : x. : . : . : <MADI> HDSPM_taxi_reset
80 * : . x: . : . : . : <MADI> HDSPM_LineOut
81 * : . x: . : . : . : <AES32> ??????????????????
82 * : . : x. : . : . : <AES32> HDSPM_WCK48
83 * : . : . : .x : . : <AES32> HDSPM_Dolby
84 * : . : x . : . : . : HDSPM_Midi0InterruptEnable
85 * : . :x . : . : . : HDSPM_Midi1InterruptEnable
86 * : . : x . : . : . : HDSPM_Midi2InterruptEnable
87 * : . x : . : . : . : <MADI> HDSPM_Midi3InterruptEnable
88 * : . x : . : . : . : <AES32> HDSPM_DS_DoubleWire
89 * : .x : . : . : . : <AES32> HDSPM_QS_DoubleWire
90 * : x. : . : . : . : <AES32> HDSPM_QS_QuadWire
91 * : . : . : . x : . : <AES32> HDSPM_Professional
92 * : x . : . : . : . : HDSPM_wclk_sel
93 * : . : . : . : . :
94 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
95 * :||||.||||:||||.||||:||||.||||:||||.||||:
96 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
97 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
98 * :||||.||||:||||.||||:||||.||||:||||.||||:
99 * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
103 * AIO / RayDAT only
105 * ------------ HDSPM_WR_SETTINGS ----------
106 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
107 * :1098.7654:3210.9876:5432.1098:7654.3210:
108 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
109 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
110 * :||||.||||:||||.||||:||||.||||:||||.||||:
111 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
112 * : . : . : . : . x: HDSPM_c0Master 1: Master, 0: Slave
113 * : . : . : . : . x : HDSPM_c0_SyncRef0
114 * : . : . : . : . x : HDSPM_c0_SyncRef1
115 * : . : . : . : .x : HDSPM_c0_SyncRef2
116 * : . : . : . : x. : HDSPM_c0_SyncRef3
117 * : . : . : . : 3.210 : HDSPM_c0_SyncRefMask:
118 * : . : . : . : . : RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
119 * : . : . : . : . : 9:TCO, 10:SyncIn
120 * : . : . : . : . : AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
121 * : . : . : . : . : 9:TCO, 10:SyncIn
122 * : . : . : . : . :
123 * : . : . : . : . :
124 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
125 * :1098.7654:3210.9876:5432.1098:7654.3210:
126 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
127 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
128 * :||||.||||:||||.||||:||||.||||:||||.||||:
129 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
132 #include <linux/init.h>
133 #include <linux/delay.h>
134 #include <linux/interrupt.h>
135 #include <linux/module.h>
136 #include <linux/slab.h>
137 #include <linux/pci.h>
138 #include <linux/math64.h>
139 #include <linux/io.h>
140 #include <linux/nospec.h>
142 #include <sound/core.h>
143 #include <sound/control.h>
144 #include <sound/pcm.h>
145 #include <sound/pcm_params.h>
146 #include <sound/info.h>
147 #include <sound/asoundef.h>
148 #include <sound/rawmidi.h>
149 #include <sound/hwdep.h>
150 #include <sound/initval.h>
152 #include <sound/hdspm.h>
154 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
155 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
156 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
158 module_param_array(index, int, NULL, 0444);
159 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
161 module_param_array(id, charp, NULL, 0444);
162 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
164 module_param_array(enable, bool, NULL, 0444);
165 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
168 MODULE_AUTHOR
170 "Winfried Ritsch <ritsch_AT_iem.at>, "
171 "Paul Davis <paul@linuxaudiosystems.com>, "
172 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
173 "Remy Bruno <remy.bruno@trinnov.com>, "
174 "Florian Faber <faberman@linuxproaudio.org>, "
175 "Adrian Knoth <adi@drcomp.erfurt.thur.de>"
177 MODULE_DESCRIPTION("RME HDSPM");
178 MODULE_LICENSE("GPL");
179 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
181 /* --- Write registers. ---
182 These are defined as byte-offsets from the iobase value. */
184 #define HDSPM_WR_SETTINGS 0
185 #define HDSPM_outputBufferAddress 32
186 #define HDSPM_inputBufferAddress 36
187 #define HDSPM_controlRegister 64
188 #define HDSPM_interruptConfirmation 96
189 #define HDSPM_control2Reg 256 /* not in specs ???????? */
190 #define HDSPM_freqReg 256 /* for setting arbitrary clock values (DDS feature) */
191 #define HDSPM_midiDataOut0 352 /* just believe in old code */
192 #define HDSPM_midiDataOut1 356
193 #define HDSPM_eeprom_wr 384 /* for AES32 */
195 /* DMA enable for 64 channels, only Bit 0 is relevant */
196 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */
197 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */
199 /* 16 page addresses for each of the 64 channels DMA buffer in and out
200 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
201 #define HDSPM_pageAddressBufferOut 8192
202 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4)
204 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */
206 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */
208 /* --- Read registers. ---
209 These are defined as byte-offsets from the iobase value */
210 #define HDSPM_statusRegister 0
211 /*#define HDSPM_statusRegister2 96 */
212 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
213 * offset 192, for AES32 *and* MADI
214 * => need to check that offset 192 is working on MADI */
215 #define HDSPM_statusRegister2 192
216 #define HDSPM_timecodeRegister 128
218 /* AIO, RayDAT */
219 #define HDSPM_RD_STATUS_0 0
220 #define HDSPM_RD_STATUS_1 64
221 #define HDSPM_RD_STATUS_2 128
222 #define HDSPM_RD_STATUS_3 192
224 #define HDSPM_RD_TCO 256
225 #define HDSPM_RD_PLL_FREQ 512
226 #define HDSPM_WR_TCO 128
228 #define HDSPM_TCO1_TCO_lock 0x00000001
229 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002
230 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004
231 #define HDSPM_TCO1_LTC_Input_valid 0x00000008
232 #define HDSPM_TCO1_WCK_Input_valid 0x00000010
233 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020
234 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040
236 #define HDSPM_TCO1_set_TC 0x00000100
237 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200
238 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400
239 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800
241 #define HDSPM_TCO2_TC_run 0x00010000
242 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000
243 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000
244 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000
245 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000
246 #define HDSPM_TCO2_set_jam_sync 0x00200000
247 #define HDSPM_TCO2_set_flywheel 0x00400000
249 #define HDSPM_TCO2_set_01_4 0x01000000
250 #define HDSPM_TCO2_set_pull_down 0x02000000
251 #define HDSPM_TCO2_set_pull_up 0x04000000
252 #define HDSPM_TCO2_set_freq 0x08000000
253 #define HDSPM_TCO2_set_term_75R 0x10000000
254 #define HDSPM_TCO2_set_input_LSB 0x20000000
255 #define HDSPM_TCO2_set_input_MSB 0x40000000
256 #define HDSPM_TCO2_set_freq_from_app 0x80000000
259 #define HDSPM_midiDataOut0 352
260 #define HDSPM_midiDataOut1 356
261 #define HDSPM_midiDataOut2 368
263 #define HDSPM_midiDataIn0 360
264 #define HDSPM_midiDataIn1 364
265 #define HDSPM_midiDataIn2 372
266 #define HDSPM_midiDataIn3 376
268 /* status is data bytes in MIDI-FIFO (0-128) */
269 #define HDSPM_midiStatusOut0 384
270 #define HDSPM_midiStatusOut1 388
271 #define HDSPM_midiStatusOut2 400
273 #define HDSPM_midiStatusIn0 392
274 #define HDSPM_midiStatusIn1 396
275 #define HDSPM_midiStatusIn2 404
276 #define HDSPM_midiStatusIn3 408
279 /* the meters are regular i/o-mapped registers, but offset
280 considerably from the rest. the peak registers are reset
281 when read; the least-significant 4 bits are full-scale counters;
282 the actual peak value is in the most-significant 24 bits.
285 #define HDSPM_MADI_INPUT_PEAK 4096
286 #define HDSPM_MADI_PLAYBACK_PEAK 4352
287 #define HDSPM_MADI_OUTPUT_PEAK 4608
289 #define HDSPM_MADI_INPUT_RMS_L 6144
290 #define HDSPM_MADI_PLAYBACK_RMS_L 6400
291 #define HDSPM_MADI_OUTPUT_RMS_L 6656
293 #define HDSPM_MADI_INPUT_RMS_H 7168
294 #define HDSPM_MADI_PLAYBACK_RMS_H 7424
295 #define HDSPM_MADI_OUTPUT_RMS_H 7680
297 /* --- Control Register bits --------- */
298 #define HDSPM_Start (1<<0) /* start engine */
300 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */
301 #define HDSPM_Latency1 (1<<2) /* where n is defined */
302 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */
304 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */
305 #define HDSPM_c0Master 0x1 /* Master clock bit in settings
306 register [RayDAT, AIO] */
308 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
310 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
311 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
312 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
313 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
315 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
316 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
317 56channelMODE=0 */ /* MADI ONLY*/
318 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
320 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
321 0=off, 1=on */ /* MADI ONLY */
322 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
324 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
325 * -- MADI ONLY
327 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
329 #define HDSPM_SyncRef2 (1<<13)
330 #define HDSPM_SyncRef3 (1<<25)
332 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
333 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
334 AES additional bits in
335 lower 5 Audiodatabits ??? */
336 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
337 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
339 #define HDSPM_Midi0InterruptEnable 0x0400000
340 #define HDSPM_Midi1InterruptEnable 0x0800000
341 #define HDSPM_Midi2InterruptEnable 0x0200000
342 #define HDSPM_Midi3InterruptEnable 0x4000000
344 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
345 #define HDSPe_FLOAT_FORMAT 0x2000000
347 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
348 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
349 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
351 #define HDSPM_wclk_sel (1<<30)
353 /* additional control register bits for AIO*/
354 #define HDSPM_c0_Wck48 0x20 /* also RayDAT */
355 #define HDSPM_c0_Input0 0x1000
356 #define HDSPM_c0_Input1 0x2000
357 #define HDSPM_c0_Spdif_Opt 0x4000
358 #define HDSPM_c0_Pro 0x8000
359 #define HDSPM_c0_clr_tms 0x10000
360 #define HDSPM_c0_AEB1 0x20000
361 #define HDSPM_c0_AEB2 0x40000
362 #define HDSPM_c0_LineOut 0x80000
363 #define HDSPM_c0_AD_GAIN0 0x100000
364 #define HDSPM_c0_AD_GAIN1 0x200000
365 #define HDSPM_c0_DA_GAIN0 0x400000
366 #define HDSPM_c0_DA_GAIN1 0x800000
367 #define HDSPM_c0_PH_GAIN0 0x1000000
368 #define HDSPM_c0_PH_GAIN1 0x2000000
369 #define HDSPM_c0_Sym6db 0x4000000
372 /* --- bit helper defines */
373 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
374 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\
375 HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
376 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
377 #define HDSPM_InputOptical 0
378 #define HDSPM_InputCoaxial (HDSPM_InputSelect0)
379 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\
380 HDSPM_SyncRef2|HDSPM_SyncRef3)
382 #define HDSPM_c0_SyncRef0 0x2
383 #define HDSPM_c0_SyncRef1 0x4
384 #define HDSPM_c0_SyncRef2 0x8
385 #define HDSPM_c0_SyncRef3 0x10
386 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
387 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
389 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */
390 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */
391 #define HDSPM_SYNC_FROM_TCO 2
392 #define HDSPM_SYNC_FROM_SYNC_IN 3
394 #define HDSPM_Frequency32KHz HDSPM_Frequency0
395 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1
396 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0)
397 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
398 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
399 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
400 HDSPM_Frequency0)
401 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
402 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
403 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\
404 HDSPM_Frequency0)
407 /* Synccheck Status */
408 #define HDSPM_SYNC_CHECK_NO_LOCK 0
409 #define HDSPM_SYNC_CHECK_LOCK 1
410 #define HDSPM_SYNC_CHECK_SYNC 2
412 /* AutoSync References - used by "autosync_ref" control switch */
413 #define HDSPM_AUTOSYNC_FROM_WORD 0
414 #define HDSPM_AUTOSYNC_FROM_MADI 1
415 #define HDSPM_AUTOSYNC_FROM_TCO 2
416 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3
417 #define HDSPM_AUTOSYNC_FROM_NONE 4
419 /* Possible sources of MADI input */
420 #define HDSPM_OPTICAL 0 /* optical */
421 #define HDSPM_COAXIAL 1 /* BNC */
423 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask)
424 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1))
426 #define hdspm_encode_in(x) (((x)&0x3)<<14)
427 #define hdspm_decode_in(x) (((x)>>14)&0x3)
429 /* --- control2 register bits --- */
430 #define HDSPM_TMS (1<<0)
431 #define HDSPM_TCK (1<<1)
432 #define HDSPM_TDI (1<<2)
433 #define HDSPM_JTAG (1<<3)
434 #define HDSPM_PWDN (1<<4)
435 #define HDSPM_PROGRAM (1<<5)
436 #define HDSPM_CONFIG_MODE_0 (1<<6)
437 #define HDSPM_CONFIG_MODE_1 (1<<7)
438 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/
439 #define HDSPM_BIGENDIAN_MODE (1<<9)
440 #define HDSPM_RD_MULTIPLE (1<<10)
442 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
443 that do not conflict with specific bits for AES32 seem to be valid also
444 for the AES32
446 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
447 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */
448 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1
449 * (like inp0)
452 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */
453 #define HDSPM_madiSync (1<<18) /* MADI is in sync */
455 #define HDSPM_tcoLockMadi 0x00000020 /* Optional TCO locked status for HDSPe MADI*/
456 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
458 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
459 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
461 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
462 /* since 64byte accurate, last 6 bits are not used */
466 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
468 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */
469 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */
470 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */
471 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */
473 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with
474 * Interrupt
476 #define HDSPM_tco_detect 0x08000000
477 #define HDSPM_tcoLockAes 0x20000000 /* Optional TCO locked status for HDSPe AES */
479 #define HDSPM_s2_tco_detect 0x00000040
480 #define HDSPM_s2_AEBO_D 0x00000080
481 #define HDSPM_s2_AEBI_D 0x00000100
484 #define HDSPM_midi0IRQPending 0x40000000
485 #define HDSPM_midi1IRQPending 0x80000000
486 #define HDSPM_midi2IRQPending 0x20000000
487 #define HDSPM_midi2IRQPendingAES 0x00000020
488 #define HDSPM_midi3IRQPending 0x00200000
490 /* --- status bit helpers */
491 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\
492 HDSPM_madiFreq2|HDSPM_madiFreq3)
493 #define HDSPM_madiFreq32 (HDSPM_madiFreq0)
494 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1)
495 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1)
496 #define HDSPM_madiFreq64 (HDSPM_madiFreq2)
497 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2)
498 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2)
499 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
500 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
501 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
503 /* Status2 Register bits */ /* MADI ONLY */
505 #define HDSPM_version0 (1<<0) /* not really defined but I guess */
506 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */
507 #define HDSPM_version2 (1<<2)
509 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */
510 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */
512 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */
513 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */
514 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, 111=128 */
515 #define HDSPM_wc_freq3 0x800 /* 1000=176.4, 1001=192 */
517 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */
518 #define HDSPM_SyncRef1 0x20000
520 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */
521 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */
522 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */
524 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
526 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
527 HDSPM_wc_freq3)
528 #define HDSPM_wcFreq32 (HDSPM_wc_freq0)
529 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1)
530 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1)
531 #define HDSPM_wcFreq64 (HDSPM_wc_freq2)
532 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2)
533 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2)
534 #define HDSPM_wcFreq128 (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
535 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
536 #define HDSPM_wcFreq192 (HDSPM_wc_freq0|HDSPM_wc_freq3)
538 #define HDSPM_status1_F_0 0x0400000
539 #define HDSPM_status1_F_1 0x0800000
540 #define HDSPM_status1_F_2 0x1000000
541 #define HDSPM_status1_F_3 0x2000000
542 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
545 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
546 HDSPM_SelSyncRef2)
547 #define HDSPM_SelSyncRef_WORD 0
548 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
549 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1)
550 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
551 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
552 HDSPM_SelSyncRef2)
555 For AES32, bits for status, status2 and timecode are different
557 /* status */
558 #define HDSPM_AES32_wcLock 0x0200000
559 #define HDSPM_AES32_wcSync 0x0100000
560 #define HDSPM_AES32_wcFreq_bit 22
561 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
562 HDSPM_bit2freq */
563 #define HDSPM_AES32_syncref_bit 16
564 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
566 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
567 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
568 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
569 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
570 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
571 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
572 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
573 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
574 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
575 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
576 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
577 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
579 /* status2 */
580 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
581 #define HDSPM_LockAES 0x80
582 #define HDSPM_LockAES1 0x80
583 #define HDSPM_LockAES2 0x40
584 #define HDSPM_LockAES3 0x20
585 #define HDSPM_LockAES4 0x10
586 #define HDSPM_LockAES5 0x8
587 #define HDSPM_LockAES6 0x4
588 #define HDSPM_LockAES7 0x2
589 #define HDSPM_LockAES8 0x1
591 Timecode
592 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
593 AES i+1
594 bits 3210
595 0001 32kHz
596 0010 44.1kHz
597 0011 48kHz
598 0100 64kHz
599 0101 88.2kHz
600 0110 96kHz
601 0111 128kHz
602 1000 176.4kHz
603 1001 192kHz
604 NB: Timecode register doesn't seem to work on AES32 card revision 230
607 /* Mixer Values */
608 #define UNITY_GAIN 32768 /* = 65536/2 */
609 #define MINUS_INFINITY_GAIN 0
611 /* Number of channels for different Speed Modes */
612 #define MADI_SS_CHANNELS 64
613 #define MADI_DS_CHANNELS 32
614 #define MADI_QS_CHANNELS 16
616 #define RAYDAT_SS_CHANNELS 36
617 #define RAYDAT_DS_CHANNELS 20
618 #define RAYDAT_QS_CHANNELS 12
620 #define AIO_IN_SS_CHANNELS 14
621 #define AIO_IN_DS_CHANNELS 10
622 #define AIO_IN_QS_CHANNELS 8
623 #define AIO_OUT_SS_CHANNELS 16
624 #define AIO_OUT_DS_CHANNELS 12
625 #define AIO_OUT_QS_CHANNELS 10
627 #define AES32_CHANNELS 16
629 /* the size of a substream (1 mono data stream) */
630 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024)
631 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
633 /* the size of the area we need to allocate for DMA transfers. the
634 size is the same regardless of the number of channels, and
635 also the latency to use.
636 for one direction !!!
638 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
639 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
641 #define HDSPM_RAYDAT_REV 211
642 #define HDSPM_AIO_REV 212
643 #define HDSPM_MADIFACE_REV 213
645 /* speed factor modes */
646 #define HDSPM_SPEED_SINGLE 0
647 #define HDSPM_SPEED_DOUBLE 1
648 #define HDSPM_SPEED_QUAD 2
650 /* names for speed modes */
651 static char *hdspm_speed_names[] = { "single", "double", "quad" };
653 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
654 "AES1", "AES2", "AES3", "AES4",
655 "AES5", "AES6", "AES7", "AES8",
656 "TCO", "Sync In"
658 static const char *const texts_autosync_aes[] = { "Word Clock",
659 "AES1", "AES2", "AES3", "AES4",
660 "AES5", "AES6", "AES7", "AES8",
661 "Sync In"
663 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
664 "MADI", "TCO", "Sync In" };
665 static const char *const texts_autosync_madi[] = { "Word Clock",
666 "MADI", "Sync In" };
668 static const char *const texts_autosync_raydat_tco[] = {
669 "Word Clock",
670 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
671 "AES", "SPDIF", "TCO", "Sync In"
673 static const char *const texts_autosync_raydat[] = {
674 "Word Clock",
675 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
676 "AES", "SPDIF", "Sync In"
678 static const char *const texts_autosync_aio_tco[] = {
679 "Word Clock",
680 "ADAT", "AES", "SPDIF", "TCO", "Sync In"
682 static const char *const texts_autosync_aio[] = { "Word Clock",
683 "ADAT", "AES", "SPDIF", "Sync In" };
685 static const char *const texts_freq[] = {
686 "No Lock",
687 "32 kHz",
688 "44.1 kHz",
689 "48 kHz",
690 "64 kHz",
691 "88.2 kHz",
692 "96 kHz",
693 "128 kHz",
694 "176.4 kHz",
695 "192 kHz"
698 static char *texts_ports_madi[] = {
699 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
700 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
701 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
702 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
703 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
704 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
705 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
706 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
707 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
708 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
709 "MADI.61", "MADI.62", "MADI.63", "MADI.64",
713 static char *texts_ports_raydat_ss[] = {
714 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
715 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
716 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
717 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
718 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
719 "ADAT4.7", "ADAT4.8",
720 "AES.L", "AES.R",
721 "SPDIF.L", "SPDIF.R"
724 static char *texts_ports_raydat_ds[] = {
725 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
726 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
727 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
728 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
729 "AES.L", "AES.R",
730 "SPDIF.L", "SPDIF.R"
733 static char *texts_ports_raydat_qs[] = {
734 "ADAT1.1", "ADAT1.2",
735 "ADAT2.1", "ADAT2.2",
736 "ADAT3.1", "ADAT3.2",
737 "ADAT4.1", "ADAT4.2",
738 "AES.L", "AES.R",
739 "SPDIF.L", "SPDIF.R"
743 static char *texts_ports_aio_in_ss[] = {
744 "Analogue.L", "Analogue.R",
745 "AES.L", "AES.R",
746 "SPDIF.L", "SPDIF.R",
747 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
748 "ADAT.7", "ADAT.8",
749 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
752 static char *texts_ports_aio_out_ss[] = {
753 "Analogue.L", "Analogue.R",
754 "AES.L", "AES.R",
755 "SPDIF.L", "SPDIF.R",
756 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
757 "ADAT.7", "ADAT.8",
758 "Phone.L", "Phone.R",
759 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
762 static char *texts_ports_aio_in_ds[] = {
763 "Analogue.L", "Analogue.R",
764 "AES.L", "AES.R",
765 "SPDIF.L", "SPDIF.R",
766 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
767 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
770 static char *texts_ports_aio_out_ds[] = {
771 "Analogue.L", "Analogue.R",
772 "AES.L", "AES.R",
773 "SPDIF.L", "SPDIF.R",
774 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
775 "Phone.L", "Phone.R",
776 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
779 static char *texts_ports_aio_in_qs[] = {
780 "Analogue.L", "Analogue.R",
781 "AES.L", "AES.R",
782 "SPDIF.L", "SPDIF.R",
783 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
784 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
787 static char *texts_ports_aio_out_qs[] = {
788 "Analogue.L", "Analogue.R",
789 "AES.L", "AES.R",
790 "SPDIF.L", "SPDIF.R",
791 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
792 "Phone.L", "Phone.R",
793 "AEB.1", "AEB.2", "AEB.3", "AEB.4"
796 static char *texts_ports_aes32[] = {
797 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
798 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
799 "AES.15", "AES.16"
802 /* These tables map the ALSA channels 1..N to the channels that we
803 need to use in order to find the relevant channel buffer. RME
804 refers to this kind of mapping as between "the ADAT channel and
805 the DMA channel." We index it using the logical audio channel,
806 and the value is the DMA channel (i.e. channel buffer number)
807 where the data for that channel can be read/written from/to.
810 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
811 0, 1, 2, 3, 4, 5, 6, 7,
812 8, 9, 10, 11, 12, 13, 14, 15,
813 16, 17, 18, 19, 20, 21, 22, 23,
814 24, 25, 26, 27, 28, 29, 30, 31,
815 32, 33, 34, 35, 36, 37, 38, 39,
816 40, 41, 42, 43, 44, 45, 46, 47,
817 48, 49, 50, 51, 52, 53, 54, 55,
818 56, 57, 58, 59, 60, 61, 62, 63
821 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
822 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */
823 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */
824 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */
825 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */
826 0, 1, /* AES */
827 2, 3, /* SPDIF */
828 -1, -1, -1, -1,
829 -1, -1, -1, -1, -1, -1, -1, -1,
830 -1, -1, -1, -1, -1, -1, -1, -1,
831 -1, -1, -1, -1, -1, -1, -1, -1,
834 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
835 4, 5, 6, 7, /* ADAT 1 */
836 8, 9, 10, 11, /* ADAT 2 */
837 12, 13, 14, 15, /* ADAT 3 */
838 16, 17, 18, 19, /* ADAT 4 */
839 0, 1, /* AES */
840 2, 3, /* SPDIF */
841 -1, -1, -1, -1,
842 -1, -1, -1, -1, -1, -1, -1, -1,
843 -1, -1, -1, -1, -1, -1, -1, -1,
844 -1, -1, -1, -1, -1, -1, -1, -1,
845 -1, -1, -1, -1, -1, -1, -1, -1,
846 -1, -1, -1, -1, -1, -1, -1, -1,
849 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
850 4, 5, /* ADAT 1 */
851 6, 7, /* ADAT 2 */
852 8, 9, /* ADAT 3 */
853 10, 11, /* ADAT 4 */
854 0, 1, /* AES */
855 2, 3, /* SPDIF */
856 -1, -1, -1, -1,
857 -1, -1, -1, -1, -1, -1, -1, -1,
858 -1, -1, -1, -1, -1, -1, -1, -1,
859 -1, -1, -1, -1, -1, -1, -1, -1,
860 -1, -1, -1, -1, -1, -1, -1, -1,
861 -1, -1, -1, -1, -1, -1, -1, -1,
862 -1, -1, -1, -1, -1, -1, -1, -1,
865 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
866 0, 1, /* line in */
867 8, 9, /* aes in, */
868 10, 11, /* spdif in */
869 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */
870 2, 3, 4, 5, /* AEB */
871 -1, -1, -1, -1, -1, -1,
872 -1, -1, -1, -1, -1, -1, -1, -1,
873 -1, -1, -1, -1, -1, -1, -1, -1,
874 -1, -1, -1, -1, -1, -1, -1, -1,
875 -1, -1, -1, -1, -1, -1, -1, -1,
876 -1, -1, -1, -1, -1, -1, -1, -1,
879 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
880 0, 1, /* line out */
881 8, 9, /* aes out */
882 10, 11, /* spdif out */
883 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */
884 6, 7, /* phone out */
885 2, 3, 4, 5, /* AEB */
886 -1, -1, -1, -1,
887 -1, -1, -1, -1, -1, -1, -1, -1,
888 -1, -1, -1, -1, -1, -1, -1, -1,
889 -1, -1, -1, -1, -1, -1, -1, -1,
890 -1, -1, -1, -1, -1, -1, -1, -1,
891 -1, -1, -1, -1, -1, -1, -1, -1,
894 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
895 0, 1, /* line in */
896 8, 9, /* aes in */
897 10, 11, /* spdif in */
898 12, 14, 16, 18, /* adat in */
899 2, 3, 4, 5, /* AEB */
900 -1, -1,
901 -1, -1, -1, -1, -1, -1, -1, -1,
902 -1, -1, -1, -1, -1, -1, -1, -1,
903 -1, -1, -1, -1, -1, -1, -1, -1,
904 -1, -1, -1, -1, -1, -1, -1, -1,
905 -1, -1, -1, -1, -1, -1, -1, -1,
906 -1, -1, -1, -1, -1, -1, -1, -1
909 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
910 0, 1, /* line out */
911 8, 9, /* aes out */
912 10, 11, /* spdif out */
913 12, 14, 16, 18, /* adat out */
914 6, 7, /* phone out */
915 2, 3, 4, 5, /* AEB */
916 -1, -1, -1, -1, -1, -1, -1, -1,
917 -1, -1, -1, -1, -1, -1, -1, -1,
918 -1, -1, -1, -1, -1, -1, -1, -1,
919 -1, -1, -1, -1, -1, -1, -1, -1,
920 -1, -1, -1, -1, -1, -1, -1, -1,
921 -1, -1, -1, -1, -1, -1, -1, -1
924 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
925 0, 1, /* line in */
926 8, 9, /* aes in */
927 10, 11, /* spdif in */
928 12, 16, /* adat in */
929 2, 3, 4, 5, /* AEB */
930 -1, -1, -1, -1,
931 -1, -1, -1, -1, -1, -1, -1, -1,
932 -1, -1, -1, -1, -1, -1, -1, -1,
933 -1, -1, -1, -1, -1, -1, -1, -1,
934 -1, -1, -1, -1, -1, -1, -1, -1,
935 -1, -1, -1, -1, -1, -1, -1, -1,
936 -1, -1, -1, -1, -1, -1, -1, -1
939 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
940 0, 1, /* line out */
941 8, 9, /* aes out */
942 10, 11, /* spdif out */
943 12, 16, /* adat out */
944 6, 7, /* phone out */
945 2, 3, 4, 5, /* AEB */
946 -1, -1,
947 -1, -1, -1, -1, -1, -1, -1, -1,
948 -1, -1, -1, -1, -1, -1, -1, -1,
949 -1, -1, -1, -1, -1, -1, -1, -1,
950 -1, -1, -1, -1, -1, -1, -1, -1,
951 -1, -1, -1, -1, -1, -1, -1, -1,
952 -1, -1, -1, -1, -1, -1, -1, -1
955 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
956 0, 1, 2, 3, 4, 5, 6, 7,
957 8, 9, 10, 11, 12, 13, 14, 15,
958 -1, -1, -1, -1, -1, -1, -1, -1,
959 -1, -1, -1, -1, -1, -1, -1, -1,
960 -1, -1, -1, -1, -1, -1, -1, -1,
961 -1, -1, -1, -1, -1, -1, -1, -1,
962 -1, -1, -1, -1, -1, -1, -1, -1,
963 -1, -1, -1, -1, -1, -1, -1, -1
966 struct hdspm_midi {
967 struct hdspm *hdspm;
968 int id;
969 struct snd_rawmidi *rmidi;
970 struct snd_rawmidi_substream *input;
971 struct snd_rawmidi_substream *output;
972 char istimer; /* timer in use */
973 struct timer_list timer;
974 spinlock_t lock;
975 int pending;
976 int dataIn;
977 int statusIn;
978 int dataOut;
979 int statusOut;
980 int ie;
981 int irq;
984 struct hdspm_tco {
985 int input; /* 0: LTC, 1:Video, 2: WC*/
986 int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
987 int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
988 int samplerate; /* 0=44.1, 1=48, 2= freq from app */
989 int pull; /* 0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
990 int term; /* 0 = off, 1 = on */
993 struct hdspm {
994 spinlock_t lock;
995 /* only one playback and/or capture stream */
996 struct snd_pcm_substream *capture_substream;
997 struct snd_pcm_substream *playback_substream;
999 char *card_name; /* for procinfo */
1000 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
1002 uint8_t io_type;
1004 int monitor_outs; /* set up monitoring outs init flag */
1006 u32 control_register; /* cached value */
1007 u32 control2_register; /* cached value */
1008 u32 settings_register; /* cached value for AIO / RayDat (sync reference, master/slave) */
1010 struct hdspm_midi midi[4];
1011 struct tasklet_struct midi_tasklet;
1013 size_t period_bytes;
1014 unsigned char ss_in_channels;
1015 unsigned char ds_in_channels;
1016 unsigned char qs_in_channels;
1017 unsigned char ss_out_channels;
1018 unsigned char ds_out_channels;
1019 unsigned char qs_out_channels;
1021 unsigned char max_channels_in;
1022 unsigned char max_channels_out;
1024 signed char *channel_map_in;
1025 signed char *channel_map_out;
1027 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1028 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1030 char **port_names_in;
1031 char **port_names_out;
1033 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
1034 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
1036 unsigned char *playback_buffer; /* suitably aligned address */
1037 unsigned char *capture_buffer; /* suitably aligned address */
1039 pid_t capture_pid; /* process id which uses capture */
1040 pid_t playback_pid; /* process id which uses capture */
1041 int running; /* running status */
1043 int last_external_sample_rate; /* samplerate mystic ... */
1044 int last_internal_sample_rate;
1045 int system_sample_rate;
1047 int dev; /* Hardware vars... */
1048 int irq;
1049 unsigned long port;
1050 void __iomem *iobase;
1052 int irq_count; /* for debug */
1053 int midiPorts;
1055 struct snd_card *card; /* one card */
1056 struct snd_pcm *pcm; /* has one pcm */
1057 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */
1058 struct pci_dev *pci; /* and an pci info */
1060 /* Mixer vars */
1061 /* fast alsa mixer */
1062 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1063 /* but input to much, so not used */
1064 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1065 /* full mixer accessible over mixer ioctl or hwdep-device */
1066 struct hdspm_mixer *mixer;
1068 struct hdspm_tco *tco; /* NULL if no TCO detected */
1070 const char *const *texts_autosync;
1071 int texts_autosync_items;
1073 cycles_t last_interrupt;
1075 unsigned int serial;
1077 struct hdspm_peak_rms peak_rms;
1081 static const struct pci_device_id snd_hdspm_ids[] = {
1083 .vendor = PCI_VENDOR_ID_XILINX,
1084 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1085 .subvendor = PCI_ANY_ID,
1086 .subdevice = PCI_ANY_ID,
1087 .class = 0,
1088 .class_mask = 0,
1089 .driver_data = 0},
1090 {0,}
1093 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1095 /* prototypes */
1096 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1097 struct hdspm *hdspm);
1098 static int snd_hdspm_create_pcm(struct snd_card *card,
1099 struct hdspm *hdspm);
1101 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1102 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1103 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1104 static int hdspm_autosync_ref(struct hdspm *hdspm);
1105 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1106 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1107 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1108 static void hdspm_set_sgbuf(struct hdspm *hdspm,
1109 struct snd_pcm_substream *substream,
1110 unsigned int reg, int channels);
1112 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1113 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1114 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1115 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1117 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1118 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1119 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1123 static inline int HDSPM_bit2freq(int n)
1125 static const int bit2freq_tab[] = {
1126 0, 32000, 44100, 48000, 64000, 88200,
1127 96000, 128000, 176400, 192000 };
1128 if (n < 1 || n > 9)
1129 return 0;
1130 return bit2freq_tab[n];
1133 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1135 return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1139 /* Write/read to/from HDSPM with Adresses in Bytes
1140 not words but only 32Bit writes are allowed */
1142 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1143 unsigned int val)
1145 writel(val, hdspm->iobase + reg);
1148 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1150 return readl(hdspm->iobase + reg);
1153 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1154 mixer is write only on hardware so we have to cache him for read
1155 each fader is a u32, but uses only the first 16 bit */
1157 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1158 unsigned int in)
1160 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1161 return 0;
1163 return hdspm->mixer->ch[chan].in[in];
1166 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1167 unsigned int pb)
1169 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1170 return 0;
1171 return hdspm->mixer->ch[chan].pb[pb];
1174 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1175 unsigned int in, unsigned short data)
1177 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1178 return -1;
1180 hdspm_write(hdspm,
1181 HDSPM_MADI_mixerBase +
1182 ((in + 128 * chan) * sizeof(u32)),
1183 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1184 return 0;
1187 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1188 unsigned int pb, unsigned short data)
1190 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1191 return -1;
1193 hdspm_write(hdspm,
1194 HDSPM_MADI_mixerBase +
1195 ((64 + pb + 128 * chan) * sizeof(u32)),
1196 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1197 return 0;
1201 /* enable DMA for specific channels, now available for DSP-MADI */
1202 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1204 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1207 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1209 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1212 /* check if same process is writing and reading */
1213 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1215 unsigned long flags;
1216 int ret = 1;
1218 spin_lock_irqsave(&hdspm->lock, flags);
1219 if ((hdspm->playback_pid != hdspm->capture_pid) &&
1220 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1221 ret = 0;
1223 spin_unlock_irqrestore(&hdspm->lock, flags);
1224 return ret;
1227 /* round arbitary sample rates to commonly known rates */
1228 static int hdspm_round_frequency(int rate)
1230 if (rate < 38050)
1231 return 32000;
1232 if (rate < 46008)
1233 return 44100;
1234 else
1235 return 48000;
1238 /* QS and DS rates normally can not be detected
1239 * automatically by the card. Only exception is MADI
1240 * in 96k frame mode.
1242 * So if we read SS values (32 .. 48k), check for
1243 * user-provided DS/QS bits in the control register
1244 * and multiply the base frequency accordingly.
1246 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1248 if (rate <= 48000) {
1249 if (hdspm->control_register & HDSPM_QuadSpeed)
1250 return rate * 4;
1251 else if (hdspm->control_register &
1252 HDSPM_DoubleSpeed)
1253 return rate * 2;
1255 return rate;
1258 /* check for external sample rate, returns the sample rate in Hz*/
1259 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1261 unsigned int status, status2;
1262 int syncref, rate = 0, rate_bits;
1264 switch (hdspm->io_type) {
1265 case AES32:
1266 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1267 status = hdspm_read(hdspm, HDSPM_statusRegister);
1269 syncref = hdspm_autosync_ref(hdspm);
1270 switch (syncref) {
1271 case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1272 /* Check WC sync and get sample rate */
1273 if (hdspm_wc_sync_check(hdspm))
1274 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1275 break;
1277 case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1278 case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1279 case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1280 case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1281 case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1282 case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1283 case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1284 case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1285 /* Check AES sync and get sample rate */
1286 if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1287 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1288 syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1289 break;
1292 case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1293 /* Check TCO sync and get sample rate */
1294 if (hdspm_tco_sync_check(hdspm))
1295 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1296 break;
1297 default:
1298 return 0;
1299 } /* end switch(syncref) */
1300 break;
1302 case MADIface:
1303 status = hdspm_read(hdspm, HDSPM_statusRegister);
1305 if (!(status & HDSPM_madiLock)) {
1306 rate = 0; /* no lock */
1307 } else {
1308 switch (status & (HDSPM_status1_freqMask)) {
1309 case HDSPM_status1_F_0*1:
1310 rate = 32000; break;
1311 case HDSPM_status1_F_0*2:
1312 rate = 44100; break;
1313 case HDSPM_status1_F_0*3:
1314 rate = 48000; break;
1315 case HDSPM_status1_F_0*4:
1316 rate = 64000; break;
1317 case HDSPM_status1_F_0*5:
1318 rate = 88200; break;
1319 case HDSPM_status1_F_0*6:
1320 rate = 96000; break;
1321 case HDSPM_status1_F_0*7:
1322 rate = 128000; break;
1323 case HDSPM_status1_F_0*8:
1324 rate = 176400; break;
1325 case HDSPM_status1_F_0*9:
1326 rate = 192000; break;
1327 default:
1328 rate = 0; break;
1332 break;
1334 case MADI:
1335 case AIO:
1336 case RayDAT:
1337 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1338 status = hdspm_read(hdspm, HDSPM_statusRegister);
1339 rate = 0;
1341 /* if wordclock has synced freq and wordclock is valid */
1342 if ((status2 & HDSPM_wcLock) != 0 &&
1343 (status2 & HDSPM_SelSyncRef0) == 0) {
1345 rate_bits = status2 & HDSPM_wcFreqMask;
1348 switch (rate_bits) {
1349 case HDSPM_wcFreq32:
1350 rate = 32000;
1351 break;
1352 case HDSPM_wcFreq44_1:
1353 rate = 44100;
1354 break;
1355 case HDSPM_wcFreq48:
1356 rate = 48000;
1357 break;
1358 case HDSPM_wcFreq64:
1359 rate = 64000;
1360 break;
1361 case HDSPM_wcFreq88_2:
1362 rate = 88200;
1363 break;
1364 case HDSPM_wcFreq96:
1365 rate = 96000;
1366 break;
1367 case HDSPM_wcFreq128:
1368 rate = 128000;
1369 break;
1370 case HDSPM_wcFreq176_4:
1371 rate = 176400;
1372 break;
1373 case HDSPM_wcFreq192:
1374 rate = 192000;
1375 break;
1376 default:
1377 rate = 0;
1378 break;
1382 /* if rate detected and Syncref is Word than have it,
1383 * word has priority to MADI
1385 if (rate != 0 &&
1386 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1387 return hdspm_rate_multiplier(hdspm, rate);
1389 /* maybe a madi input (which is taken if sel sync is madi) */
1390 if (status & HDSPM_madiLock) {
1391 rate_bits = status & HDSPM_madiFreqMask;
1393 switch (rate_bits) {
1394 case HDSPM_madiFreq32:
1395 rate = 32000;
1396 break;
1397 case HDSPM_madiFreq44_1:
1398 rate = 44100;
1399 break;
1400 case HDSPM_madiFreq48:
1401 rate = 48000;
1402 break;
1403 case HDSPM_madiFreq64:
1404 rate = 64000;
1405 break;
1406 case HDSPM_madiFreq88_2:
1407 rate = 88200;
1408 break;
1409 case HDSPM_madiFreq96:
1410 rate = 96000;
1411 break;
1412 case HDSPM_madiFreq128:
1413 rate = 128000;
1414 break;
1415 case HDSPM_madiFreq176_4:
1416 rate = 176400;
1417 break;
1418 case HDSPM_madiFreq192:
1419 rate = 192000;
1420 break;
1421 default:
1422 rate = 0;
1423 break;
1426 } /* endif HDSPM_madiLock */
1428 /* check sample rate from TCO or SYNC_IN */
1430 bool is_valid_input = 0;
1431 bool has_sync = 0;
1433 syncref = hdspm_autosync_ref(hdspm);
1434 if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1435 is_valid_input = 1;
1436 has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1437 hdspm_tco_sync_check(hdspm));
1438 } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1439 is_valid_input = 1;
1440 has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1441 hdspm_sync_in_sync_check(hdspm));
1444 if (is_valid_input && has_sync) {
1445 rate = hdspm_round_frequency(
1446 hdspm_get_pll_freq(hdspm));
1450 rate = hdspm_rate_multiplier(hdspm, rate);
1452 break;
1455 return rate;
1458 /* return latency in samples per period */
1459 static int hdspm_get_latency(struct hdspm *hdspm)
1461 int n;
1463 n = hdspm_decode_latency(hdspm->control_register);
1465 /* Special case for new RME cards with 32 samples period size.
1466 * The three latency bits in the control register
1467 * (HDSP_LatencyMask) encode latency values of 64 samples as
1468 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1469 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1470 * it corresponds to 32 samples.
1472 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1473 n = -1;
1475 return 1 << (n + 6);
1478 /* Latency function */
1479 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1481 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1485 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1487 int position;
1489 position = hdspm_read(hdspm, HDSPM_statusRegister);
1491 switch (hdspm->io_type) {
1492 case RayDAT:
1493 case AIO:
1494 position &= HDSPM_BufferPositionMask;
1495 position /= 4; /* Bytes per sample */
1496 break;
1497 default:
1498 position = (position & HDSPM_BufferID) ?
1499 (hdspm->period_bytes / 4) : 0;
1502 return position;
1506 static inline void hdspm_start_audio(struct hdspm * s)
1508 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1509 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1512 static inline void hdspm_stop_audio(struct hdspm * s)
1514 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1515 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1518 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1519 static void hdspm_silence_playback(struct hdspm *hdspm)
1521 int i;
1522 int n = hdspm->period_bytes;
1523 void *buf = hdspm->playback_buffer;
1525 if (buf == NULL)
1526 return;
1528 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1529 memset(buf, 0, n);
1530 buf += HDSPM_CHANNEL_BUFFER_BYTES;
1534 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1536 int n;
1538 spin_lock_irq(&s->lock);
1540 if (32 == frames) {
1541 /* Special case for new RME cards like RayDAT/AIO which
1542 * support period sizes of 32 samples. Since latency is
1543 * encoded in the three bits of HDSP_LatencyMask, we can only
1544 * have values from 0 .. 7. While 0 still means 64 samples and
1545 * 6 represents 4096 samples on all cards, 7 represents 8192
1546 * on older cards and 32 samples on new cards.
1548 * In other words, period size in samples is calculated by
1549 * 2^(n+6) with n ranging from 0 .. 7.
1551 n = 7;
1552 } else {
1553 frames >>= 7;
1554 n = 0;
1555 while (frames) {
1556 n++;
1557 frames >>= 1;
1561 s->control_register &= ~HDSPM_LatencyMask;
1562 s->control_register |= hdspm_encode_latency(n);
1564 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1566 hdspm_compute_period_size(s);
1568 spin_unlock_irq(&s->lock);
1570 return 0;
1573 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1575 u64 freq_const;
1577 if (period == 0)
1578 return 0;
1580 switch (hdspm->io_type) {
1581 case MADI:
1582 case AES32:
1583 freq_const = 110069313433624ULL;
1584 break;
1585 case RayDAT:
1586 case AIO:
1587 freq_const = 104857600000000ULL;
1588 break;
1589 case MADIface:
1590 freq_const = 131072000000000ULL;
1591 break;
1592 default:
1593 snd_BUG();
1594 return 0;
1597 return div_u64(freq_const, period);
1601 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1603 u64 n;
1605 if (snd_BUG_ON(rate <= 0))
1606 return;
1608 if (rate >= 112000)
1609 rate /= 4;
1610 else if (rate >= 56000)
1611 rate /= 2;
1613 switch (hdspm->io_type) {
1614 case MADIface:
1615 n = 131072000000000ULL; /* 125 MHz */
1616 break;
1617 case MADI:
1618 case AES32:
1619 n = 110069313433624ULL; /* 105 MHz */
1620 break;
1621 case RayDAT:
1622 case AIO:
1623 n = 104857600000000ULL; /* 100 MHz */
1624 break;
1625 default:
1626 snd_BUG();
1627 return;
1630 n = div_u64(n, rate);
1631 /* n should be less than 2^32 for being written to FREQ register */
1632 snd_BUG_ON(n >> 32);
1633 hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1636 /* dummy set rate lets see what happens */
1637 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1639 int current_rate;
1640 int rate_bits;
1641 int not_set = 0;
1642 int current_speed, target_speed;
1644 /* ASSUMPTION: hdspm->lock is either set, or there is no need for
1645 it (e.g. during module initialization).
1648 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1650 /* SLAVE --- */
1651 if (called_internally) {
1653 /* request from ctl or card initialization
1654 just make a warning an remember setting
1655 for future master mode switching */
1657 dev_warn(hdspm->card->dev,
1658 "Warning: device is not running as a clock master.\n");
1659 not_set = 1;
1660 } else {
1662 /* hw_param request while in AutoSync mode */
1663 int external_freq =
1664 hdspm_external_sample_rate(hdspm);
1666 if (hdspm_autosync_ref(hdspm) ==
1667 HDSPM_AUTOSYNC_FROM_NONE) {
1669 dev_warn(hdspm->card->dev,
1670 "Detected no Externel Sync\n");
1671 not_set = 1;
1673 } else if (rate != external_freq) {
1675 dev_warn(hdspm->card->dev,
1676 "Warning: No AutoSync source for requested rate\n");
1677 not_set = 1;
1682 current_rate = hdspm->system_sample_rate;
1684 /* Changing between Singe, Double and Quad speed is not
1685 allowed if any substreams are open. This is because such a change
1686 causes a shift in the location of the DMA buffers and a reduction
1687 in the number of available buffers.
1689 Note that a similar but essentially insoluble problem exists for
1690 externally-driven rate changes. All we can do is to flag rate
1691 changes in the read/write routines.
1694 if (current_rate <= 48000)
1695 current_speed = HDSPM_SPEED_SINGLE;
1696 else if (current_rate <= 96000)
1697 current_speed = HDSPM_SPEED_DOUBLE;
1698 else
1699 current_speed = HDSPM_SPEED_QUAD;
1701 if (rate <= 48000)
1702 target_speed = HDSPM_SPEED_SINGLE;
1703 else if (rate <= 96000)
1704 target_speed = HDSPM_SPEED_DOUBLE;
1705 else
1706 target_speed = HDSPM_SPEED_QUAD;
1708 switch (rate) {
1709 case 32000:
1710 rate_bits = HDSPM_Frequency32KHz;
1711 break;
1712 case 44100:
1713 rate_bits = HDSPM_Frequency44_1KHz;
1714 break;
1715 case 48000:
1716 rate_bits = HDSPM_Frequency48KHz;
1717 break;
1718 case 64000:
1719 rate_bits = HDSPM_Frequency64KHz;
1720 break;
1721 case 88200:
1722 rate_bits = HDSPM_Frequency88_2KHz;
1723 break;
1724 case 96000:
1725 rate_bits = HDSPM_Frequency96KHz;
1726 break;
1727 case 128000:
1728 rate_bits = HDSPM_Frequency128KHz;
1729 break;
1730 case 176400:
1731 rate_bits = HDSPM_Frequency176_4KHz;
1732 break;
1733 case 192000:
1734 rate_bits = HDSPM_Frequency192KHz;
1735 break;
1736 default:
1737 return -EINVAL;
1740 if (current_speed != target_speed
1741 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1742 dev_err(hdspm->card->dev,
1743 "cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n",
1744 hdspm_speed_names[current_speed],
1745 hdspm_speed_names[target_speed],
1746 hdspm->capture_pid, hdspm->playback_pid);
1747 return -EBUSY;
1750 hdspm->control_register &= ~HDSPM_FrequencyMask;
1751 hdspm->control_register |= rate_bits;
1752 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1754 /* For AES32, need to set DDS value in FREQ register
1755 For MADI, also apparently */
1756 hdspm_set_dds_value(hdspm, rate);
1758 if (AES32 == hdspm->io_type && rate != current_rate)
1759 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1761 hdspm->system_sample_rate = rate;
1763 if (rate <= 48000) {
1764 hdspm->channel_map_in = hdspm->channel_map_in_ss;
1765 hdspm->channel_map_out = hdspm->channel_map_out_ss;
1766 hdspm->max_channels_in = hdspm->ss_in_channels;
1767 hdspm->max_channels_out = hdspm->ss_out_channels;
1768 hdspm->port_names_in = hdspm->port_names_in_ss;
1769 hdspm->port_names_out = hdspm->port_names_out_ss;
1770 } else if (rate <= 96000) {
1771 hdspm->channel_map_in = hdspm->channel_map_in_ds;
1772 hdspm->channel_map_out = hdspm->channel_map_out_ds;
1773 hdspm->max_channels_in = hdspm->ds_in_channels;
1774 hdspm->max_channels_out = hdspm->ds_out_channels;
1775 hdspm->port_names_in = hdspm->port_names_in_ds;
1776 hdspm->port_names_out = hdspm->port_names_out_ds;
1777 } else {
1778 hdspm->channel_map_in = hdspm->channel_map_in_qs;
1779 hdspm->channel_map_out = hdspm->channel_map_out_qs;
1780 hdspm->max_channels_in = hdspm->qs_in_channels;
1781 hdspm->max_channels_out = hdspm->qs_out_channels;
1782 hdspm->port_names_in = hdspm->port_names_in_qs;
1783 hdspm->port_names_out = hdspm->port_names_out_qs;
1786 if (not_set != 0)
1787 return -1;
1789 return 0;
1792 /* mainly for init to 0 on load */
1793 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1795 int i, j;
1796 unsigned int gain;
1798 if (sgain > UNITY_GAIN)
1799 gain = UNITY_GAIN;
1800 else if (sgain < 0)
1801 gain = 0;
1802 else
1803 gain = sgain;
1805 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1806 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1807 hdspm_write_in_gain(hdspm, i, j, gain);
1808 hdspm_write_pb_gain(hdspm, i, j, gain);
1812 /*----------------------------------------------------------------------------
1813 MIDI
1814 ----------------------------------------------------------------------------*/
1816 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1817 int id)
1819 /* the hardware already does the relevant bit-mask with 0xff */
1820 return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1823 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1824 int val)
1826 /* the hardware already does the relevant bit-mask with 0xff */
1827 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1830 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1832 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1835 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1837 int fifo_bytes_used;
1839 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1841 if (fifo_bytes_used < 128)
1842 return 128 - fifo_bytes_used;
1843 else
1844 return 0;
1847 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1849 while (snd_hdspm_midi_input_available (hdspm, id))
1850 snd_hdspm_midi_read_byte (hdspm, id);
1853 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1855 unsigned long flags;
1856 int n_pending;
1857 int to_write;
1858 int i;
1859 unsigned char buf[128];
1861 /* Output is not interrupt driven */
1863 spin_lock_irqsave (&hmidi->lock, flags);
1864 if (hmidi->output &&
1865 !snd_rawmidi_transmit_empty (hmidi->output)) {
1866 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1867 hmidi->id);
1868 if (n_pending > 0) {
1869 if (n_pending > (int)sizeof (buf))
1870 n_pending = sizeof (buf);
1872 to_write = snd_rawmidi_transmit (hmidi->output, buf,
1873 n_pending);
1874 if (to_write > 0) {
1875 for (i = 0; i < to_write; ++i)
1876 snd_hdspm_midi_write_byte (hmidi->hdspm,
1877 hmidi->id,
1878 buf[i]);
1882 spin_unlock_irqrestore (&hmidi->lock, flags);
1883 return 0;
1886 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1888 unsigned char buf[128]; /* this buffer is designed to match the MIDI
1889 * input FIFO size
1891 unsigned long flags;
1892 int n_pending;
1893 int i;
1895 spin_lock_irqsave (&hmidi->lock, flags);
1896 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1897 if (n_pending > 0) {
1898 if (hmidi->input) {
1899 if (n_pending > (int)sizeof (buf))
1900 n_pending = sizeof (buf);
1901 for (i = 0; i < n_pending; ++i)
1902 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1903 hmidi->id);
1904 if (n_pending)
1905 snd_rawmidi_receive (hmidi->input, buf,
1906 n_pending);
1907 } else {
1908 /* flush the MIDI input FIFO */
1909 while (n_pending--)
1910 snd_hdspm_midi_read_byte (hmidi->hdspm,
1911 hmidi->id);
1914 hmidi->pending = 0;
1915 spin_unlock_irqrestore(&hmidi->lock, flags);
1917 spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1918 hmidi->hdspm->control_register |= hmidi->ie;
1919 hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1920 hmidi->hdspm->control_register);
1921 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1923 return snd_hdspm_midi_output_write (hmidi);
1926 static void
1927 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1929 struct hdspm *hdspm;
1930 struct hdspm_midi *hmidi;
1931 unsigned long flags;
1933 hmidi = substream->rmidi->private_data;
1934 hdspm = hmidi->hdspm;
1936 spin_lock_irqsave (&hdspm->lock, flags);
1937 if (up) {
1938 if (!(hdspm->control_register & hmidi->ie)) {
1939 snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1940 hdspm->control_register |= hmidi->ie;
1942 } else {
1943 hdspm->control_register &= ~hmidi->ie;
1946 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1947 spin_unlock_irqrestore (&hdspm->lock, flags);
1950 static void snd_hdspm_midi_output_timer(unsigned long data)
1952 struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1953 unsigned long flags;
1955 snd_hdspm_midi_output_write(hmidi);
1956 spin_lock_irqsave (&hmidi->lock, flags);
1958 /* this does not bump hmidi->istimer, because the
1959 kernel automatically removed the timer when it
1960 expired, and we are now adding it back, thus
1961 leaving istimer wherever it was set before.
1964 if (hmidi->istimer)
1965 mod_timer(&hmidi->timer, 1 + jiffies);
1967 spin_unlock_irqrestore (&hmidi->lock, flags);
1970 static void
1971 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1973 struct hdspm_midi *hmidi;
1974 unsigned long flags;
1976 hmidi = substream->rmidi->private_data;
1977 spin_lock_irqsave (&hmidi->lock, flags);
1978 if (up) {
1979 if (!hmidi->istimer) {
1980 setup_timer(&hmidi->timer, snd_hdspm_midi_output_timer,
1981 (unsigned long) hmidi);
1982 mod_timer(&hmidi->timer, 1 + jiffies);
1983 hmidi->istimer++;
1985 } else {
1986 if (hmidi->istimer && --hmidi->istimer <= 0)
1987 del_timer (&hmidi->timer);
1989 spin_unlock_irqrestore (&hmidi->lock, flags);
1990 if (up)
1991 snd_hdspm_midi_output_write(hmidi);
1994 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1996 struct hdspm_midi *hmidi;
1998 hmidi = substream->rmidi->private_data;
1999 spin_lock_irq (&hmidi->lock);
2000 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
2001 hmidi->input = substream;
2002 spin_unlock_irq (&hmidi->lock);
2004 return 0;
2007 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2009 struct hdspm_midi *hmidi;
2011 hmidi = substream->rmidi->private_data;
2012 spin_lock_irq (&hmidi->lock);
2013 hmidi->output = substream;
2014 spin_unlock_irq (&hmidi->lock);
2016 return 0;
2019 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2021 struct hdspm_midi *hmidi;
2023 snd_hdspm_midi_input_trigger (substream, 0);
2025 hmidi = substream->rmidi->private_data;
2026 spin_lock_irq (&hmidi->lock);
2027 hmidi->input = NULL;
2028 spin_unlock_irq (&hmidi->lock);
2030 return 0;
2033 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2035 struct hdspm_midi *hmidi;
2037 snd_hdspm_midi_output_trigger (substream, 0);
2039 hmidi = substream->rmidi->private_data;
2040 spin_lock_irq (&hmidi->lock);
2041 hmidi->output = NULL;
2042 spin_unlock_irq (&hmidi->lock);
2044 return 0;
2047 static struct snd_rawmidi_ops snd_hdspm_midi_output =
2049 .open = snd_hdspm_midi_output_open,
2050 .close = snd_hdspm_midi_output_close,
2051 .trigger = snd_hdspm_midi_output_trigger,
2054 static struct snd_rawmidi_ops snd_hdspm_midi_input =
2056 .open = snd_hdspm_midi_input_open,
2057 .close = snd_hdspm_midi_input_close,
2058 .trigger = snd_hdspm_midi_input_trigger,
2061 static int snd_hdspm_create_midi(struct snd_card *card,
2062 struct hdspm *hdspm, int id)
2064 int err;
2065 char buf[32];
2067 hdspm->midi[id].id = id;
2068 hdspm->midi[id].hdspm = hdspm;
2069 spin_lock_init (&hdspm->midi[id].lock);
2071 if (0 == id) {
2072 if (MADIface == hdspm->io_type) {
2073 /* MIDI-over-MADI on HDSPe MADIface */
2074 hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2075 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2076 hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2077 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2078 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2079 hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2080 } else {
2081 hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2082 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2083 hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2084 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2085 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2086 hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2088 } else if (1 == id) {
2089 hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2090 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2091 hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2092 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2093 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2094 hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2095 } else if ((2 == id) && (MADI == hdspm->io_type)) {
2096 /* MIDI-over-MADI on HDSPe MADI */
2097 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2098 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2099 hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2100 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2101 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2102 hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2103 } else if (2 == id) {
2104 /* TCO MTC, read only */
2105 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2106 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2107 hdspm->midi[2].dataOut = -1;
2108 hdspm->midi[2].statusOut = -1;
2109 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2110 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2111 } else if (3 == id) {
2112 /* TCO MTC on HDSPe MADI */
2113 hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2114 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2115 hdspm->midi[3].dataOut = -1;
2116 hdspm->midi[3].statusOut = -1;
2117 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2118 hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2121 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2122 (MADIface == hdspm->io_type)))) {
2123 if ((id == 0) && (MADIface == hdspm->io_type)) {
2124 sprintf(buf, "%s MIDIoverMADI", card->shortname);
2125 } else if ((id == 2) && (MADI == hdspm->io_type)) {
2126 sprintf(buf, "%s MIDIoverMADI", card->shortname);
2127 } else {
2128 sprintf(buf, "%s MIDI %d", card->shortname, id+1);
2130 err = snd_rawmidi_new(card, buf, id, 1, 1,
2131 &hdspm->midi[id].rmidi);
2132 if (err < 0)
2133 return err;
2135 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
2136 card->id, id+1);
2137 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2139 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2140 SNDRV_RAWMIDI_STREAM_OUTPUT,
2141 &snd_hdspm_midi_output);
2142 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2143 SNDRV_RAWMIDI_STREAM_INPUT,
2144 &snd_hdspm_midi_input);
2146 hdspm->midi[id].rmidi->info_flags |=
2147 SNDRV_RAWMIDI_INFO_OUTPUT |
2148 SNDRV_RAWMIDI_INFO_INPUT |
2149 SNDRV_RAWMIDI_INFO_DUPLEX;
2150 } else {
2151 /* TCO MTC, read only */
2152 sprintf(buf, "%s MTC %d", card->shortname, id+1);
2153 err = snd_rawmidi_new(card, buf, id, 1, 1,
2154 &hdspm->midi[id].rmidi);
2155 if (err < 0)
2156 return err;
2158 sprintf(hdspm->midi[id].rmidi->name,
2159 "%s MTC %d", card->id, id+1);
2160 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2162 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2163 SNDRV_RAWMIDI_STREAM_INPUT,
2164 &snd_hdspm_midi_input);
2166 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2169 return 0;
2173 static void hdspm_midi_tasklet(unsigned long arg)
2175 struct hdspm *hdspm = (struct hdspm *)arg;
2176 int i = 0;
2178 while (i < hdspm->midiPorts) {
2179 if (hdspm->midi[i].pending)
2180 snd_hdspm_midi_input_read(&hdspm->midi[i]);
2182 i++;
2187 /*-----------------------------------------------------------------------------
2188 Status Interface
2189 ----------------------------------------------------------------------------*/
2191 /* get the system sample rate which is set */
2194 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2196 unsigned int period, rate;
2198 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2199 rate = hdspm_calc_dds_value(hdspm, period);
2201 return rate;
2205 * Calculate the real sample rate from the
2206 * current DDS value.
2208 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2210 unsigned int rate;
2212 rate = hdspm_get_pll_freq(hdspm);
2214 if (rate > 207000) {
2215 /* Unreasonable high sample rate as seen on PCI MADI cards. */
2216 if (0 == hdspm_system_clock_mode(hdspm)) {
2217 /* master mode, return internal sample rate */
2218 rate = hdspm->system_sample_rate;
2219 } else {
2220 /* slave mode, return external sample rate */
2221 rate = hdspm_external_sample_rate(hdspm);
2222 if (!rate)
2223 rate = hdspm->system_sample_rate;
2227 return rate;
2231 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2232 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2233 .name = xname, \
2234 .index = xindex, \
2235 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2236 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2237 .info = snd_hdspm_info_system_sample_rate, \
2238 .put = snd_hdspm_put_system_sample_rate, \
2239 .get = snd_hdspm_get_system_sample_rate \
2242 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2243 struct snd_ctl_elem_info *uinfo)
2245 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2246 uinfo->count = 1;
2247 uinfo->value.integer.min = 27000;
2248 uinfo->value.integer.max = 207000;
2249 uinfo->value.integer.step = 1;
2250 return 0;
2254 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2255 struct snd_ctl_elem_value *
2256 ucontrol)
2258 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2260 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2261 return 0;
2264 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2265 struct snd_ctl_elem_value *
2266 ucontrol)
2268 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2269 int rate = ucontrol->value.integer.value[0];
2271 if (rate < 27000 || rate > 207000)
2272 return -EINVAL;
2273 hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]);
2274 return 0;
2279 * Returns the WordClock sample rate class for the given card.
2281 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2283 int status;
2285 switch (hdspm->io_type) {
2286 case RayDAT:
2287 case AIO:
2288 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2289 return (status >> 16) & 0xF;
2290 break;
2291 case AES32:
2292 status = hdspm_read(hdspm, HDSPM_statusRegister);
2293 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2294 default:
2295 break;
2299 return 0;
2304 * Returns the TCO sample rate class for the given card.
2306 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2308 int status;
2310 if (hdspm->tco) {
2311 switch (hdspm->io_type) {
2312 case RayDAT:
2313 case AIO:
2314 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2315 return (status >> 20) & 0xF;
2316 break;
2317 case AES32:
2318 status = hdspm_read(hdspm, HDSPM_statusRegister);
2319 return (status >> 1) & 0xF;
2320 default:
2321 break;
2325 return 0;
2330 * Returns the SYNC_IN sample rate class for the given card.
2332 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2334 int status;
2336 if (hdspm->tco) {
2337 switch (hdspm->io_type) {
2338 case RayDAT:
2339 case AIO:
2340 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2341 return (status >> 12) & 0xF;
2342 break;
2343 default:
2344 break;
2348 return 0;
2352 * Returns the AES sample rate class for the given card.
2354 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2356 int timecode;
2358 switch (hdspm->io_type) {
2359 case AES32:
2360 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2361 return (timecode >> (4*index)) & 0xF;
2362 break;
2363 default:
2364 break;
2366 return 0;
2370 * Returns the sample rate class for input source <idx> for
2371 * 'new style' cards like the AIO and RayDAT.
2373 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2375 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2377 return (status >> (idx*4)) & 0xF;
2380 #define ENUMERATED_CTL_INFO(info, texts) \
2381 snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2384 /* Helper function to query the external sample rate and return the
2385 * corresponding enum to be returned to userspace.
2387 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2389 int rate = hdspm_external_sample_rate(hdspm);
2390 int i, selected_rate = 0;
2391 for (i = 1; i < 10; i++)
2392 if (HDSPM_bit2freq(i) == rate) {
2393 selected_rate = i;
2394 break;
2396 return selected_rate;
2400 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2401 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2402 .name = xname, \
2403 .private_value = xindex, \
2404 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2405 .info = snd_hdspm_info_autosync_sample_rate, \
2406 .get = snd_hdspm_get_autosync_sample_rate \
2410 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2411 struct snd_ctl_elem_info *uinfo)
2413 ENUMERATED_CTL_INFO(uinfo, texts_freq);
2414 return 0;
2418 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2419 struct snd_ctl_elem_value *
2420 ucontrol)
2422 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2424 switch (hdspm->io_type) {
2425 case RayDAT:
2426 switch (kcontrol->private_value) {
2427 case 0:
2428 ucontrol->value.enumerated.item[0] =
2429 hdspm_get_wc_sample_rate(hdspm);
2430 break;
2431 case 7:
2432 ucontrol->value.enumerated.item[0] =
2433 hdspm_get_tco_sample_rate(hdspm);
2434 break;
2435 case 8:
2436 ucontrol->value.enumerated.item[0] =
2437 hdspm_get_sync_in_sample_rate(hdspm);
2438 break;
2439 default:
2440 ucontrol->value.enumerated.item[0] =
2441 hdspm_get_s1_sample_rate(hdspm,
2442 kcontrol->private_value-1);
2444 break;
2446 case AIO:
2447 switch (kcontrol->private_value) {
2448 case 0: /* WC */
2449 ucontrol->value.enumerated.item[0] =
2450 hdspm_get_wc_sample_rate(hdspm);
2451 break;
2452 case 4: /* TCO */
2453 ucontrol->value.enumerated.item[0] =
2454 hdspm_get_tco_sample_rate(hdspm);
2455 break;
2456 case 5: /* SYNC_IN */
2457 ucontrol->value.enumerated.item[0] =
2458 hdspm_get_sync_in_sample_rate(hdspm);
2459 break;
2460 default:
2461 ucontrol->value.enumerated.item[0] =
2462 hdspm_get_s1_sample_rate(hdspm,
2463 kcontrol->private_value-1);
2465 break;
2467 case AES32:
2469 switch (kcontrol->private_value) {
2470 case 0: /* WC */
2471 ucontrol->value.enumerated.item[0] =
2472 hdspm_get_wc_sample_rate(hdspm);
2473 break;
2474 case 9: /* TCO */
2475 ucontrol->value.enumerated.item[0] =
2476 hdspm_get_tco_sample_rate(hdspm);
2477 break;
2478 case 10: /* SYNC_IN */
2479 ucontrol->value.enumerated.item[0] =
2480 hdspm_get_sync_in_sample_rate(hdspm);
2481 break;
2482 case 11: /* External Rate */
2483 ucontrol->value.enumerated.item[0] =
2484 hdspm_external_rate_to_enum(hdspm);
2485 break;
2486 default: /* AES1 to AES8 */
2487 ucontrol->value.enumerated.item[0] =
2488 hdspm_get_aes_sample_rate(hdspm,
2489 kcontrol->private_value -
2490 HDSPM_AES32_AUTOSYNC_FROM_AES1);
2491 break;
2493 break;
2495 case MADI:
2496 case MADIface:
2497 ucontrol->value.enumerated.item[0] =
2498 hdspm_external_rate_to_enum(hdspm);
2499 break;
2500 default:
2501 break;
2504 return 0;
2508 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2509 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2510 .name = xname, \
2511 .index = xindex, \
2512 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2513 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2514 .info = snd_hdspm_info_system_clock_mode, \
2515 .get = snd_hdspm_get_system_clock_mode, \
2516 .put = snd_hdspm_put_system_clock_mode, \
2521 * Returns the system clock mode for the given card.
2522 * @returns 0 - master, 1 - slave
2524 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2526 switch (hdspm->io_type) {
2527 case AIO:
2528 case RayDAT:
2529 if (hdspm->settings_register & HDSPM_c0Master)
2530 return 0;
2531 break;
2533 default:
2534 if (hdspm->control_register & HDSPM_ClockModeMaster)
2535 return 0;
2538 return 1;
2543 * Sets the system clock mode.
2544 * @param mode 0 - master, 1 - slave
2546 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2548 hdspm_set_toggle_setting(hdspm,
2549 (hdspm_is_raydat_or_aio(hdspm)) ?
2550 HDSPM_c0Master : HDSPM_ClockModeMaster,
2551 (0 == mode));
2555 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2556 struct snd_ctl_elem_info *uinfo)
2558 static const char *const texts[] = { "Master", "AutoSync" };
2559 ENUMERATED_CTL_INFO(uinfo, texts);
2560 return 0;
2563 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2564 struct snd_ctl_elem_value *ucontrol)
2566 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2568 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2569 return 0;
2572 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2573 struct snd_ctl_elem_value *ucontrol)
2575 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2576 int val;
2578 if (!snd_hdspm_use_is_exclusive(hdspm))
2579 return -EBUSY;
2581 val = ucontrol->value.enumerated.item[0];
2582 if (val < 0)
2583 val = 0;
2584 else if (val > 1)
2585 val = 1;
2587 hdspm_set_system_clock_mode(hdspm, val);
2589 return 0;
2593 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2594 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2595 .name = xname, \
2596 .index = xindex, \
2597 .info = snd_hdspm_info_clock_source, \
2598 .get = snd_hdspm_get_clock_source, \
2599 .put = snd_hdspm_put_clock_source \
2603 static int hdspm_clock_source(struct hdspm * hdspm)
2605 switch (hdspm->system_sample_rate) {
2606 case 32000: return 0;
2607 case 44100: return 1;
2608 case 48000: return 2;
2609 case 64000: return 3;
2610 case 88200: return 4;
2611 case 96000: return 5;
2612 case 128000: return 6;
2613 case 176400: return 7;
2614 case 192000: return 8;
2617 return -1;
2620 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2622 int rate;
2623 switch (mode) {
2624 case 0:
2625 rate = 32000; break;
2626 case 1:
2627 rate = 44100; break;
2628 case 2:
2629 rate = 48000; break;
2630 case 3:
2631 rate = 64000; break;
2632 case 4:
2633 rate = 88200; break;
2634 case 5:
2635 rate = 96000; break;
2636 case 6:
2637 rate = 128000; break;
2638 case 7:
2639 rate = 176400; break;
2640 case 8:
2641 rate = 192000; break;
2642 default:
2643 rate = 48000;
2645 hdspm_set_rate(hdspm, rate, 1);
2646 return 0;
2649 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2650 struct snd_ctl_elem_info *uinfo)
2652 return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1);
2655 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2656 struct snd_ctl_elem_value *ucontrol)
2658 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2660 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2661 return 0;
2664 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2665 struct snd_ctl_elem_value *ucontrol)
2667 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2668 int change;
2669 int val;
2671 if (!snd_hdspm_use_is_exclusive(hdspm))
2672 return -EBUSY;
2673 val = ucontrol->value.enumerated.item[0];
2674 if (val < 0)
2675 val = 0;
2676 if (val > 9)
2677 val = 9;
2678 spin_lock_irq(&hdspm->lock);
2679 if (val != hdspm_clock_source(hdspm))
2680 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2681 else
2682 change = 0;
2683 spin_unlock_irq(&hdspm->lock);
2684 return change;
2688 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2689 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2690 .name = xname, \
2691 .index = xindex, \
2692 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2693 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2694 .info = snd_hdspm_info_pref_sync_ref, \
2695 .get = snd_hdspm_get_pref_sync_ref, \
2696 .put = snd_hdspm_put_pref_sync_ref \
2701 * Returns the current preferred sync reference setting.
2702 * The semantics of the return value are depending on the
2703 * card, please see the comments for clarification.
2705 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2707 switch (hdspm->io_type) {
2708 case AES32:
2709 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2710 case 0: return 0; /* WC */
2711 case HDSPM_SyncRef0: return 1; /* AES 1 */
2712 case HDSPM_SyncRef1: return 2; /* AES 2 */
2713 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2714 case HDSPM_SyncRef2: return 4; /* AES 4 */
2715 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2716 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2717 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2718 return 7; /* AES 7 */
2719 case HDSPM_SyncRef3: return 8; /* AES 8 */
2720 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2722 break;
2724 case MADI:
2725 case MADIface:
2726 if (hdspm->tco) {
2727 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2728 case 0: return 0; /* WC */
2729 case HDSPM_SyncRef0: return 1; /* MADI */
2730 case HDSPM_SyncRef1: return 2; /* TCO */
2731 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2732 return 3; /* SYNC_IN */
2734 } else {
2735 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2736 case 0: return 0; /* WC */
2737 case HDSPM_SyncRef0: return 1; /* MADI */
2738 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2739 return 2; /* SYNC_IN */
2742 break;
2744 case RayDAT:
2745 if (hdspm->tco) {
2746 switch ((hdspm->settings_register &
2747 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2748 case 0: return 0; /* WC */
2749 case 3: return 1; /* ADAT 1 */
2750 case 4: return 2; /* ADAT 2 */
2751 case 5: return 3; /* ADAT 3 */
2752 case 6: return 4; /* ADAT 4 */
2753 case 1: return 5; /* AES */
2754 case 2: return 6; /* SPDIF */
2755 case 9: return 7; /* TCO */
2756 case 10: return 8; /* SYNC_IN */
2758 } else {
2759 switch ((hdspm->settings_register &
2760 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2761 case 0: return 0; /* WC */
2762 case 3: return 1; /* ADAT 1 */
2763 case 4: return 2; /* ADAT 2 */
2764 case 5: return 3; /* ADAT 3 */
2765 case 6: return 4; /* ADAT 4 */
2766 case 1: return 5; /* AES */
2767 case 2: return 6; /* SPDIF */
2768 case 10: return 7; /* SYNC_IN */
2772 break;
2774 case AIO:
2775 if (hdspm->tco) {
2776 switch ((hdspm->settings_register &
2777 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2778 case 0: return 0; /* WC */
2779 case 3: return 1; /* ADAT */
2780 case 1: return 2; /* AES */
2781 case 2: return 3; /* SPDIF */
2782 case 9: return 4; /* TCO */
2783 case 10: return 5; /* SYNC_IN */
2785 } else {
2786 switch ((hdspm->settings_register &
2787 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2788 case 0: return 0; /* WC */
2789 case 3: return 1; /* ADAT */
2790 case 1: return 2; /* AES */
2791 case 2: return 3; /* SPDIF */
2792 case 10: return 4; /* SYNC_IN */
2796 break;
2799 return -1;
2804 * Set the preferred sync reference to <pref>. The semantics
2805 * of <pref> are depending on the card type, see the comments
2806 * for clarification.
2808 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2810 int p = 0;
2812 switch (hdspm->io_type) {
2813 case AES32:
2814 hdspm->control_register &= ~HDSPM_SyncRefMask;
2815 switch (pref) {
2816 case 0: /* WC */
2817 break;
2818 case 1: /* AES 1 */
2819 hdspm->control_register |= HDSPM_SyncRef0;
2820 break;
2821 case 2: /* AES 2 */
2822 hdspm->control_register |= HDSPM_SyncRef1;
2823 break;
2824 case 3: /* AES 3 */
2825 hdspm->control_register |=
2826 HDSPM_SyncRef1+HDSPM_SyncRef0;
2827 break;
2828 case 4: /* AES 4 */
2829 hdspm->control_register |= HDSPM_SyncRef2;
2830 break;
2831 case 5: /* AES 5 */
2832 hdspm->control_register |=
2833 HDSPM_SyncRef2+HDSPM_SyncRef0;
2834 break;
2835 case 6: /* AES 6 */
2836 hdspm->control_register |=
2837 HDSPM_SyncRef2+HDSPM_SyncRef1;
2838 break;
2839 case 7: /* AES 7 */
2840 hdspm->control_register |=
2841 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2842 break;
2843 case 8: /* AES 8 */
2844 hdspm->control_register |= HDSPM_SyncRef3;
2845 break;
2846 case 9: /* TCO */
2847 hdspm->control_register |=
2848 HDSPM_SyncRef3+HDSPM_SyncRef0;
2849 break;
2850 default:
2851 return -1;
2854 break;
2856 case MADI:
2857 case MADIface:
2858 hdspm->control_register &= ~HDSPM_SyncRefMask;
2859 if (hdspm->tco) {
2860 switch (pref) {
2861 case 0: /* WC */
2862 break;
2863 case 1: /* MADI */
2864 hdspm->control_register |= HDSPM_SyncRef0;
2865 break;
2866 case 2: /* TCO */
2867 hdspm->control_register |= HDSPM_SyncRef1;
2868 break;
2869 case 3: /* SYNC_IN */
2870 hdspm->control_register |=
2871 HDSPM_SyncRef0+HDSPM_SyncRef1;
2872 break;
2873 default:
2874 return -1;
2876 } else {
2877 switch (pref) {
2878 case 0: /* WC */
2879 break;
2880 case 1: /* MADI */
2881 hdspm->control_register |= HDSPM_SyncRef0;
2882 break;
2883 case 2: /* SYNC_IN */
2884 hdspm->control_register |=
2885 HDSPM_SyncRef0+HDSPM_SyncRef1;
2886 break;
2887 default:
2888 return -1;
2892 break;
2894 case RayDAT:
2895 if (hdspm->tco) {
2896 switch (pref) {
2897 case 0: p = 0; break; /* WC */
2898 case 1: p = 3; break; /* ADAT 1 */
2899 case 2: p = 4; break; /* ADAT 2 */
2900 case 3: p = 5; break; /* ADAT 3 */
2901 case 4: p = 6; break; /* ADAT 4 */
2902 case 5: p = 1; break; /* AES */
2903 case 6: p = 2; break; /* SPDIF */
2904 case 7: p = 9; break; /* TCO */
2905 case 8: p = 10; break; /* SYNC_IN */
2906 default: return -1;
2908 } else {
2909 switch (pref) {
2910 case 0: p = 0; break; /* WC */
2911 case 1: p = 3; break; /* ADAT 1 */
2912 case 2: p = 4; break; /* ADAT 2 */
2913 case 3: p = 5; break; /* ADAT 3 */
2914 case 4: p = 6; break; /* ADAT 4 */
2915 case 5: p = 1; break; /* AES */
2916 case 6: p = 2; break; /* SPDIF */
2917 case 7: p = 10; break; /* SYNC_IN */
2918 default: return -1;
2921 break;
2923 case AIO:
2924 if (hdspm->tco) {
2925 switch (pref) {
2926 case 0: p = 0; break; /* WC */
2927 case 1: p = 3; break; /* ADAT */
2928 case 2: p = 1; break; /* AES */
2929 case 3: p = 2; break; /* SPDIF */
2930 case 4: p = 9; break; /* TCO */
2931 case 5: p = 10; break; /* SYNC_IN */
2932 default: return -1;
2934 } else {
2935 switch (pref) {
2936 case 0: p = 0; break; /* WC */
2937 case 1: p = 3; break; /* ADAT */
2938 case 2: p = 1; break; /* AES */
2939 case 3: p = 2; break; /* SPDIF */
2940 case 4: p = 10; break; /* SYNC_IN */
2941 default: return -1;
2944 break;
2947 switch (hdspm->io_type) {
2948 case RayDAT:
2949 case AIO:
2950 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2951 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2952 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2953 break;
2955 case MADI:
2956 case MADIface:
2957 case AES32:
2958 hdspm_write(hdspm, HDSPM_controlRegister,
2959 hdspm->control_register);
2962 return 0;
2966 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2967 struct snd_ctl_elem_info *uinfo)
2969 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2971 snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2973 return 0;
2976 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2977 struct snd_ctl_elem_value *ucontrol)
2979 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2980 int psf = hdspm_pref_sync_ref(hdspm);
2982 if (psf >= 0) {
2983 ucontrol->value.enumerated.item[0] = psf;
2984 return 0;
2987 return -1;
2990 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2991 struct snd_ctl_elem_value *ucontrol)
2993 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2994 int val, change = 0;
2996 if (!snd_hdspm_use_is_exclusive(hdspm))
2997 return -EBUSY;
2999 val = ucontrol->value.enumerated.item[0];
3001 if (val < 0)
3002 val = 0;
3003 else if (val >= hdspm->texts_autosync_items)
3004 val = hdspm->texts_autosync_items-1;
3006 spin_lock_irq(&hdspm->lock);
3007 if (val != hdspm_pref_sync_ref(hdspm))
3008 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3010 spin_unlock_irq(&hdspm->lock);
3011 return change;
3015 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3016 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3017 .name = xname, \
3018 .index = xindex, \
3019 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
3020 .info = snd_hdspm_info_autosync_ref, \
3021 .get = snd_hdspm_get_autosync_ref, \
3024 static int hdspm_autosync_ref(struct hdspm *hdspm)
3026 /* This looks at the autosync selected sync reference */
3027 if (AES32 == hdspm->io_type) {
3029 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3030 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3031 if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) &&
3032 (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) {
3033 return syncref;
3035 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3037 } else if (MADI == hdspm->io_type) {
3039 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3040 switch (status2 & HDSPM_SelSyncRefMask) {
3041 case HDSPM_SelSyncRef_WORD:
3042 return HDSPM_AUTOSYNC_FROM_WORD;
3043 case HDSPM_SelSyncRef_MADI:
3044 return HDSPM_AUTOSYNC_FROM_MADI;
3045 case HDSPM_SelSyncRef_TCO:
3046 return HDSPM_AUTOSYNC_FROM_TCO;
3047 case HDSPM_SelSyncRef_SyncIn:
3048 return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3049 case HDSPM_SelSyncRef_NVALID:
3050 return HDSPM_AUTOSYNC_FROM_NONE;
3051 default:
3052 return HDSPM_AUTOSYNC_FROM_NONE;
3056 return 0;
3060 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3061 struct snd_ctl_elem_info *uinfo)
3063 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3065 if (AES32 == hdspm->io_type) {
3066 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3067 "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3069 ENUMERATED_CTL_INFO(uinfo, texts);
3070 } else if (MADI == hdspm->io_type) {
3071 static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3072 "Sync In", "None" };
3074 ENUMERATED_CTL_INFO(uinfo, texts);
3076 return 0;
3079 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3080 struct snd_ctl_elem_value *ucontrol)
3082 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3084 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3085 return 0;
3090 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3091 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3092 .name = xname, \
3093 .access = SNDRV_CTL_ELEM_ACCESS_READ |\
3094 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3095 .info = snd_hdspm_info_tco_video_input_format, \
3096 .get = snd_hdspm_get_tco_video_input_format, \
3099 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3100 struct snd_ctl_elem_info *uinfo)
3102 static const char *const texts[] = {"No video", "NTSC", "PAL"};
3103 ENUMERATED_CTL_INFO(uinfo, texts);
3104 return 0;
3107 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3108 struct snd_ctl_elem_value *ucontrol)
3110 u32 status;
3111 int ret = 0;
3113 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3114 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3115 switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3116 HDSPM_TCO1_Video_Input_Format_PAL)) {
3117 case HDSPM_TCO1_Video_Input_Format_NTSC:
3118 /* ntsc */
3119 ret = 1;
3120 break;
3121 case HDSPM_TCO1_Video_Input_Format_PAL:
3122 /* pal */
3123 ret = 2;
3124 break;
3125 default:
3126 /* no video */
3127 ret = 0;
3128 break;
3130 ucontrol->value.enumerated.item[0] = ret;
3131 return 0;
3136 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3137 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3138 .name = xname, \
3139 .access = SNDRV_CTL_ELEM_ACCESS_READ |\
3140 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3141 .info = snd_hdspm_info_tco_ltc_frames, \
3142 .get = snd_hdspm_get_tco_ltc_frames, \
3145 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3146 struct snd_ctl_elem_info *uinfo)
3148 static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3149 "30 fps"};
3150 ENUMERATED_CTL_INFO(uinfo, texts);
3151 return 0;
3154 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3156 u32 status;
3157 int ret = 0;
3159 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3160 if (status & HDSPM_TCO1_LTC_Input_valid) {
3161 switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3162 HDSPM_TCO1_LTC_Format_MSB)) {
3163 case 0:
3164 /* 24 fps */
3165 ret = fps_24;
3166 break;
3167 case HDSPM_TCO1_LTC_Format_LSB:
3168 /* 25 fps */
3169 ret = fps_25;
3170 break;
3171 case HDSPM_TCO1_LTC_Format_MSB:
3172 /* 29.97 fps */
3173 ret = fps_2997;
3174 break;
3175 default:
3176 /* 30 fps */
3177 ret = fps_30;
3178 break;
3182 return ret;
3185 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3186 struct snd_ctl_elem_value *ucontrol)
3188 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3190 ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3191 return 0;
3194 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3195 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3196 .name = xname, \
3197 .private_value = xindex, \
3198 .info = snd_hdspm_info_toggle_setting, \
3199 .get = snd_hdspm_get_toggle_setting, \
3200 .put = snd_hdspm_put_toggle_setting \
3203 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3205 u32 reg;
3207 if (hdspm_is_raydat_or_aio(hdspm))
3208 reg = hdspm->settings_register;
3209 else
3210 reg = hdspm->control_register;
3212 return (reg & regmask) ? 1 : 0;
3215 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3217 u32 *reg;
3218 u32 target_reg;
3220 if (hdspm_is_raydat_or_aio(hdspm)) {
3221 reg = &(hdspm->settings_register);
3222 target_reg = HDSPM_WR_SETTINGS;
3223 } else {
3224 reg = &(hdspm->control_register);
3225 target_reg = HDSPM_controlRegister;
3228 if (out)
3229 *reg |= regmask;
3230 else
3231 *reg &= ~regmask;
3233 hdspm_write(hdspm, target_reg, *reg);
3235 return 0;
3238 #define snd_hdspm_info_toggle_setting snd_ctl_boolean_mono_info
3240 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3241 struct snd_ctl_elem_value *ucontrol)
3243 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3244 u32 regmask = kcontrol->private_value;
3246 spin_lock_irq(&hdspm->lock);
3247 ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3248 spin_unlock_irq(&hdspm->lock);
3249 return 0;
3252 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3253 struct snd_ctl_elem_value *ucontrol)
3255 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3256 u32 regmask = kcontrol->private_value;
3257 int change;
3258 unsigned int val;
3260 if (!snd_hdspm_use_is_exclusive(hdspm))
3261 return -EBUSY;
3262 val = ucontrol->value.integer.value[0] & 1;
3263 spin_lock_irq(&hdspm->lock);
3264 change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3265 hdspm_set_toggle_setting(hdspm, regmask, val);
3266 spin_unlock_irq(&hdspm->lock);
3267 return change;
3270 #define HDSPM_INPUT_SELECT(xname, xindex) \
3271 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3272 .name = xname, \
3273 .index = xindex, \
3274 .info = snd_hdspm_info_input_select, \
3275 .get = snd_hdspm_get_input_select, \
3276 .put = snd_hdspm_put_input_select \
3279 static int hdspm_input_select(struct hdspm * hdspm)
3281 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3284 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3286 if (out)
3287 hdspm->control_register |= HDSPM_InputSelect0;
3288 else
3289 hdspm->control_register &= ~HDSPM_InputSelect0;
3290 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3292 return 0;
3295 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3296 struct snd_ctl_elem_info *uinfo)
3298 static const char *const texts[] = { "optical", "coaxial" };
3299 ENUMERATED_CTL_INFO(uinfo, texts);
3300 return 0;
3303 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3304 struct snd_ctl_elem_value *ucontrol)
3306 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3308 spin_lock_irq(&hdspm->lock);
3309 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3310 spin_unlock_irq(&hdspm->lock);
3311 return 0;
3314 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3315 struct snd_ctl_elem_value *ucontrol)
3317 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3318 int change;
3319 unsigned int val;
3321 if (!snd_hdspm_use_is_exclusive(hdspm))
3322 return -EBUSY;
3323 val = ucontrol->value.integer.value[0] & 1;
3324 spin_lock_irq(&hdspm->lock);
3325 change = (int) val != hdspm_input_select(hdspm);
3326 hdspm_set_input_select(hdspm, val);
3327 spin_unlock_irq(&hdspm->lock);
3328 return change;
3332 #define HDSPM_DS_WIRE(xname, xindex) \
3333 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3334 .name = xname, \
3335 .index = xindex, \
3336 .info = snd_hdspm_info_ds_wire, \
3337 .get = snd_hdspm_get_ds_wire, \
3338 .put = snd_hdspm_put_ds_wire \
3341 static int hdspm_ds_wire(struct hdspm * hdspm)
3343 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3346 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3348 if (ds)
3349 hdspm->control_register |= HDSPM_DS_DoubleWire;
3350 else
3351 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3352 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3354 return 0;
3357 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3358 struct snd_ctl_elem_info *uinfo)
3360 static const char *const texts[] = { "Single", "Double" };
3361 ENUMERATED_CTL_INFO(uinfo, texts);
3362 return 0;
3365 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3366 struct snd_ctl_elem_value *ucontrol)
3368 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3370 spin_lock_irq(&hdspm->lock);
3371 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3372 spin_unlock_irq(&hdspm->lock);
3373 return 0;
3376 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3377 struct snd_ctl_elem_value *ucontrol)
3379 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3380 int change;
3381 unsigned int val;
3383 if (!snd_hdspm_use_is_exclusive(hdspm))
3384 return -EBUSY;
3385 val = ucontrol->value.integer.value[0] & 1;
3386 spin_lock_irq(&hdspm->lock);
3387 change = (int) val != hdspm_ds_wire(hdspm);
3388 hdspm_set_ds_wire(hdspm, val);
3389 spin_unlock_irq(&hdspm->lock);
3390 return change;
3394 #define HDSPM_QS_WIRE(xname, xindex) \
3395 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3396 .name = xname, \
3397 .index = xindex, \
3398 .info = snd_hdspm_info_qs_wire, \
3399 .get = snd_hdspm_get_qs_wire, \
3400 .put = snd_hdspm_put_qs_wire \
3403 static int hdspm_qs_wire(struct hdspm * hdspm)
3405 if (hdspm->control_register & HDSPM_QS_DoubleWire)
3406 return 1;
3407 if (hdspm->control_register & HDSPM_QS_QuadWire)
3408 return 2;
3409 return 0;
3412 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3414 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3415 switch (mode) {
3416 case 0:
3417 break;
3418 case 1:
3419 hdspm->control_register |= HDSPM_QS_DoubleWire;
3420 break;
3421 case 2:
3422 hdspm->control_register |= HDSPM_QS_QuadWire;
3423 break;
3425 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3427 return 0;
3430 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3431 struct snd_ctl_elem_info *uinfo)
3433 static const char *const texts[] = { "Single", "Double", "Quad" };
3434 ENUMERATED_CTL_INFO(uinfo, texts);
3435 return 0;
3438 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3439 struct snd_ctl_elem_value *ucontrol)
3441 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3443 spin_lock_irq(&hdspm->lock);
3444 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3445 spin_unlock_irq(&hdspm->lock);
3446 return 0;
3449 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3450 struct snd_ctl_elem_value *ucontrol)
3452 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3453 int change;
3454 int val;
3456 if (!snd_hdspm_use_is_exclusive(hdspm))
3457 return -EBUSY;
3458 val = ucontrol->value.integer.value[0];
3459 if (val < 0)
3460 val = 0;
3461 if (val > 2)
3462 val = 2;
3463 spin_lock_irq(&hdspm->lock);
3464 change = val != hdspm_qs_wire(hdspm);
3465 hdspm_set_qs_wire(hdspm, val);
3466 spin_unlock_irq(&hdspm->lock);
3467 return change;
3470 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3471 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3472 .name = xname, \
3473 .private_value = xindex, \
3474 .info = snd_hdspm_info_tristate, \
3475 .get = snd_hdspm_get_tristate, \
3476 .put = snd_hdspm_put_tristate \
3479 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3481 u32 reg = hdspm->settings_register & (regmask * 3);
3482 return reg / regmask;
3485 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3487 hdspm->settings_register &= ~(regmask * 3);
3488 hdspm->settings_register |= (regmask * mode);
3489 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3491 return 0;
3494 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3495 struct snd_ctl_elem_info *uinfo)
3497 u32 regmask = kcontrol->private_value;
3499 static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3500 static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3502 switch (regmask) {
3503 case HDSPM_c0_Input0:
3504 ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3505 break;
3506 default:
3507 ENUMERATED_CTL_INFO(uinfo, texts_levels);
3508 break;
3510 return 0;
3513 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3514 struct snd_ctl_elem_value *ucontrol)
3516 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3517 u32 regmask = kcontrol->private_value;
3519 spin_lock_irq(&hdspm->lock);
3520 ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3521 spin_unlock_irq(&hdspm->lock);
3522 return 0;
3525 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3526 struct snd_ctl_elem_value *ucontrol)
3528 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3529 u32 regmask = kcontrol->private_value;
3530 int change;
3531 int val;
3533 if (!snd_hdspm_use_is_exclusive(hdspm))
3534 return -EBUSY;
3535 val = ucontrol->value.integer.value[0];
3536 if (val < 0)
3537 val = 0;
3538 if (val > 2)
3539 val = 2;
3541 spin_lock_irq(&hdspm->lock);
3542 change = val != hdspm_tristate(hdspm, regmask);
3543 hdspm_set_tristate(hdspm, val, regmask);
3544 spin_unlock_irq(&hdspm->lock);
3545 return change;
3548 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3549 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3550 .name = xname, \
3551 .index = xindex, \
3552 .info = snd_hdspm_info_madi_speedmode, \
3553 .get = snd_hdspm_get_madi_speedmode, \
3554 .put = snd_hdspm_put_madi_speedmode \
3557 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3559 if (hdspm->control_register & HDSPM_QuadSpeed)
3560 return 2;
3561 if (hdspm->control_register & HDSPM_DoubleSpeed)
3562 return 1;
3563 return 0;
3566 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3568 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3569 switch (mode) {
3570 case 0:
3571 break;
3572 case 1:
3573 hdspm->control_register |= HDSPM_DoubleSpeed;
3574 break;
3575 case 2:
3576 hdspm->control_register |= HDSPM_QuadSpeed;
3577 break;
3579 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3581 return 0;
3584 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3585 struct snd_ctl_elem_info *uinfo)
3587 static const char *const texts[] = { "Single", "Double", "Quad" };
3588 ENUMERATED_CTL_INFO(uinfo, texts);
3589 return 0;
3592 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3593 struct snd_ctl_elem_value *ucontrol)
3595 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3597 spin_lock_irq(&hdspm->lock);
3598 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3599 spin_unlock_irq(&hdspm->lock);
3600 return 0;
3603 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3604 struct snd_ctl_elem_value *ucontrol)
3606 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3607 int change;
3608 int val;
3610 if (!snd_hdspm_use_is_exclusive(hdspm))
3611 return -EBUSY;
3612 val = ucontrol->value.integer.value[0];
3613 if (val < 0)
3614 val = 0;
3615 if (val > 2)
3616 val = 2;
3617 spin_lock_irq(&hdspm->lock);
3618 change = val != hdspm_madi_speedmode(hdspm);
3619 hdspm_set_madi_speedmode(hdspm, val);
3620 spin_unlock_irq(&hdspm->lock);
3621 return change;
3624 #define HDSPM_MIXER(xname, xindex) \
3625 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3626 .name = xname, \
3627 .index = xindex, \
3628 .device = 0, \
3629 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3630 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3631 .info = snd_hdspm_info_mixer, \
3632 .get = snd_hdspm_get_mixer, \
3633 .put = snd_hdspm_put_mixer \
3636 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3637 struct snd_ctl_elem_info *uinfo)
3639 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3640 uinfo->count = 3;
3641 uinfo->value.integer.min = 0;
3642 uinfo->value.integer.max = 65535;
3643 uinfo->value.integer.step = 1;
3644 return 0;
3647 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3648 struct snd_ctl_elem_value *ucontrol)
3650 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3651 int source;
3652 int destination;
3654 source = ucontrol->value.integer.value[0];
3655 if (source < 0)
3656 source = 0;
3657 else if (source >= 2 * HDSPM_MAX_CHANNELS)
3658 source = 2 * HDSPM_MAX_CHANNELS - 1;
3660 destination = ucontrol->value.integer.value[1];
3661 if (destination < 0)
3662 destination = 0;
3663 else if (destination >= HDSPM_MAX_CHANNELS)
3664 destination = HDSPM_MAX_CHANNELS - 1;
3666 spin_lock_irq(&hdspm->lock);
3667 if (source >= HDSPM_MAX_CHANNELS)
3668 ucontrol->value.integer.value[2] =
3669 hdspm_read_pb_gain(hdspm, destination,
3670 source - HDSPM_MAX_CHANNELS);
3671 else
3672 ucontrol->value.integer.value[2] =
3673 hdspm_read_in_gain(hdspm, destination, source);
3675 spin_unlock_irq(&hdspm->lock);
3677 return 0;
3680 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3681 struct snd_ctl_elem_value *ucontrol)
3683 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3684 int change;
3685 int source;
3686 int destination;
3687 int gain;
3689 if (!snd_hdspm_use_is_exclusive(hdspm))
3690 return -EBUSY;
3692 source = ucontrol->value.integer.value[0];
3693 destination = ucontrol->value.integer.value[1];
3695 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3696 return -1;
3697 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3698 return -1;
3700 gain = ucontrol->value.integer.value[2];
3702 spin_lock_irq(&hdspm->lock);
3704 if (source >= HDSPM_MAX_CHANNELS)
3705 change = gain != hdspm_read_pb_gain(hdspm, destination,
3706 source -
3707 HDSPM_MAX_CHANNELS);
3708 else
3709 change = gain != hdspm_read_in_gain(hdspm, destination,
3710 source);
3712 if (change) {
3713 if (source >= HDSPM_MAX_CHANNELS)
3714 hdspm_write_pb_gain(hdspm, destination,
3715 source - HDSPM_MAX_CHANNELS,
3716 gain);
3717 else
3718 hdspm_write_in_gain(hdspm, destination, source,
3719 gain);
3721 spin_unlock_irq(&hdspm->lock);
3723 return change;
3726 /* The simple mixer control(s) provide gain control for the
3727 basic 1:1 mappings of playback streams to output
3728 streams.
3731 #define HDSPM_PLAYBACK_MIXER \
3732 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3733 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3734 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3735 .info = snd_hdspm_info_playback_mixer, \
3736 .get = snd_hdspm_get_playback_mixer, \
3737 .put = snd_hdspm_put_playback_mixer \
3740 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3741 struct snd_ctl_elem_info *uinfo)
3743 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3744 uinfo->count = 1;
3745 uinfo->value.integer.min = 0;
3746 uinfo->value.integer.max = 64;
3747 uinfo->value.integer.step = 1;
3748 return 0;
3751 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3752 struct snd_ctl_elem_value *ucontrol)
3754 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3755 int channel;
3757 channel = ucontrol->id.index - 1;
3759 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3760 return -EINVAL;
3762 spin_lock_irq(&hdspm->lock);
3763 ucontrol->value.integer.value[0] =
3764 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3765 spin_unlock_irq(&hdspm->lock);
3767 return 0;
3770 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3771 struct snd_ctl_elem_value *ucontrol)
3773 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3774 int change;
3775 int channel;
3776 int gain;
3778 if (!snd_hdspm_use_is_exclusive(hdspm))
3779 return -EBUSY;
3781 channel = ucontrol->id.index - 1;
3783 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3784 return -EINVAL;
3786 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3788 spin_lock_irq(&hdspm->lock);
3789 change =
3790 gain != hdspm_read_pb_gain(hdspm, channel,
3791 channel);
3792 if (change)
3793 hdspm_write_pb_gain(hdspm, channel, channel,
3794 gain);
3795 spin_unlock_irq(&hdspm->lock);
3796 return change;
3799 #define HDSPM_SYNC_CHECK(xname, xindex) \
3800 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3801 .name = xname, \
3802 .private_value = xindex, \
3803 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3804 .info = snd_hdspm_info_sync_check, \
3805 .get = snd_hdspm_get_sync_check \
3808 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3809 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3810 .name = xname, \
3811 .private_value = xindex, \
3812 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3813 .info = snd_hdspm_tco_info_lock_check, \
3814 .get = snd_hdspm_get_sync_check \
3819 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3820 struct snd_ctl_elem_info *uinfo)
3822 static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3823 ENUMERATED_CTL_INFO(uinfo, texts);
3824 return 0;
3827 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3828 struct snd_ctl_elem_info *uinfo)
3830 static const char *const texts[] = { "No Lock", "Lock" };
3831 ENUMERATED_CTL_INFO(uinfo, texts);
3832 return 0;
3835 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3837 int status, status2;
3839 switch (hdspm->io_type) {
3840 case AES32:
3841 status = hdspm_read(hdspm, HDSPM_statusRegister);
3842 if (status & HDSPM_AES32_wcLock) {
3843 if (status & HDSPM_AES32_wcSync)
3844 return 2;
3845 else
3846 return 1;
3848 return 0;
3849 break;
3851 case MADI:
3852 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3853 if (status2 & HDSPM_wcLock) {
3854 if (status2 & HDSPM_wcSync)
3855 return 2;
3856 else
3857 return 1;
3859 return 0;
3860 break;
3862 case RayDAT:
3863 case AIO:
3864 status = hdspm_read(hdspm, HDSPM_statusRegister);
3866 if (status & 0x2000000)
3867 return 2;
3868 else if (status & 0x1000000)
3869 return 1;
3870 return 0;
3872 break;
3874 case MADIface:
3875 break;
3879 return 3;
3883 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3885 int status = hdspm_read(hdspm, HDSPM_statusRegister);
3886 if (status & HDSPM_madiLock) {
3887 if (status & HDSPM_madiSync)
3888 return 2;
3889 else
3890 return 1;
3892 return 0;
3896 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3898 int status, lock, sync;
3900 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3902 lock = (status & (0x1<<idx)) ? 1 : 0;
3903 sync = (status & (0x100<<idx)) ? 1 : 0;
3905 if (lock && sync)
3906 return 2;
3907 else if (lock)
3908 return 1;
3909 return 0;
3913 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3915 int status, lock = 0, sync = 0;
3917 switch (hdspm->io_type) {
3918 case RayDAT:
3919 case AIO:
3920 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3921 lock = (status & 0x400) ? 1 : 0;
3922 sync = (status & 0x800) ? 1 : 0;
3923 break;
3925 case MADI:
3926 status = hdspm_read(hdspm, HDSPM_statusRegister);
3927 lock = (status & HDSPM_syncInLock) ? 1 : 0;
3928 sync = (status & HDSPM_syncInSync) ? 1 : 0;
3929 break;
3931 case AES32:
3932 status = hdspm_read(hdspm, HDSPM_statusRegister2);
3933 lock = (status & 0x100000) ? 1 : 0;
3934 sync = (status & 0x200000) ? 1 : 0;
3935 break;
3937 case MADIface:
3938 break;
3941 if (lock && sync)
3942 return 2;
3943 else if (lock)
3944 return 1;
3946 return 0;
3949 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3951 int status2, lock, sync;
3952 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3954 lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3955 sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3957 if (sync)
3958 return 2;
3959 else if (lock)
3960 return 1;
3961 return 0;
3964 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3966 u32 status;
3967 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3969 return (status & mask) ? 1 : 0;
3973 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3975 int status;
3977 if (hdspm->tco) {
3978 switch (hdspm->io_type) {
3979 case MADI:
3980 status = hdspm_read(hdspm, HDSPM_statusRegister);
3981 if (status & HDSPM_tcoLockMadi) {
3982 if (status & HDSPM_tcoSync)
3983 return 2;
3984 else
3985 return 1;
3987 return 0;
3988 case AES32:
3989 status = hdspm_read(hdspm, HDSPM_statusRegister);
3990 if (status & HDSPM_tcoLockAes) {
3991 if (status & HDSPM_tcoSync)
3992 return 2;
3993 else
3994 return 1;
3996 return 0;
3997 case RayDAT:
3998 case AIO:
3999 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
4001 if (status & 0x8000000)
4002 return 2; /* Sync */
4003 if (status & 0x4000000)
4004 return 1; /* Lock */
4005 return 0; /* No signal */
4007 default:
4008 break;
4012 return 3; /* N/A */
4016 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4017 struct snd_ctl_elem_value *ucontrol)
4019 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4020 int val = -1;
4022 switch (hdspm->io_type) {
4023 case RayDAT:
4024 switch (kcontrol->private_value) {
4025 case 0: /* WC */
4026 val = hdspm_wc_sync_check(hdspm); break;
4027 case 7: /* TCO */
4028 val = hdspm_tco_sync_check(hdspm); break;
4029 case 8: /* SYNC IN */
4030 val = hdspm_sync_in_sync_check(hdspm); break;
4031 default:
4032 val = hdspm_s1_sync_check(hdspm,
4033 kcontrol->private_value-1);
4035 break;
4037 case AIO:
4038 switch (kcontrol->private_value) {
4039 case 0: /* WC */
4040 val = hdspm_wc_sync_check(hdspm); break;
4041 case 4: /* TCO */
4042 val = hdspm_tco_sync_check(hdspm); break;
4043 case 5: /* SYNC IN */
4044 val = hdspm_sync_in_sync_check(hdspm); break;
4045 default:
4046 val = hdspm_s1_sync_check(hdspm,
4047 kcontrol->private_value-1);
4049 break;
4051 case MADI:
4052 switch (kcontrol->private_value) {
4053 case 0: /* WC */
4054 val = hdspm_wc_sync_check(hdspm); break;
4055 case 1: /* MADI */
4056 val = hdspm_madi_sync_check(hdspm); break;
4057 case 2: /* TCO */
4058 val = hdspm_tco_sync_check(hdspm); break;
4059 case 3: /* SYNC_IN */
4060 val = hdspm_sync_in_sync_check(hdspm); break;
4062 break;
4064 case MADIface:
4065 val = hdspm_madi_sync_check(hdspm); /* MADI */
4066 break;
4068 case AES32:
4069 switch (kcontrol->private_value) {
4070 case 0: /* WC */
4071 val = hdspm_wc_sync_check(hdspm); break;
4072 case 9: /* TCO */
4073 val = hdspm_tco_sync_check(hdspm); break;
4074 case 10 /* SYNC IN */:
4075 val = hdspm_sync_in_sync_check(hdspm); break;
4076 default: /* AES1 to AES8 */
4077 val = hdspm_aes_sync_check(hdspm,
4078 kcontrol->private_value-1);
4080 break;
4084 if (hdspm->tco) {
4085 switch (kcontrol->private_value) {
4086 case 11:
4087 /* Check TCO for lock state of its current input */
4088 val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4089 break;
4090 case 12:
4091 /* Check TCO for valid time code on LTC input. */
4092 val = hdspm_tco_input_check(hdspm,
4093 HDSPM_TCO1_LTC_Input_valid);
4094 break;
4095 default:
4096 break;
4100 if (-1 == val)
4101 val = 3;
4103 ucontrol->value.enumerated.item[0] = val;
4104 return 0;
4110 * TCO controls
4112 static void hdspm_tco_write(struct hdspm *hdspm)
4114 unsigned int tc[4] = { 0, 0, 0, 0};
4116 switch (hdspm->tco->input) {
4117 case 0:
4118 tc[2] |= HDSPM_TCO2_set_input_MSB;
4119 break;
4120 case 1:
4121 tc[2] |= HDSPM_TCO2_set_input_LSB;
4122 break;
4123 default:
4124 break;
4127 switch (hdspm->tco->framerate) {
4128 case 1:
4129 tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4130 break;
4131 case 2:
4132 tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4133 break;
4134 case 3:
4135 tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4136 HDSPM_TCO1_set_drop_frame_flag;
4137 break;
4138 case 4:
4139 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4140 HDSPM_TCO1_LTC_Format_MSB;
4141 break;
4142 case 5:
4143 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4144 HDSPM_TCO1_LTC_Format_MSB +
4145 HDSPM_TCO1_set_drop_frame_flag;
4146 break;
4147 default:
4148 break;
4151 switch (hdspm->tco->wordclock) {
4152 case 1:
4153 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4154 break;
4155 case 2:
4156 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4157 break;
4158 default:
4159 break;
4162 switch (hdspm->tco->samplerate) {
4163 case 1:
4164 tc[2] |= HDSPM_TCO2_set_freq;
4165 break;
4166 case 2:
4167 tc[2] |= HDSPM_TCO2_set_freq_from_app;
4168 break;
4169 default:
4170 break;
4173 switch (hdspm->tco->pull) {
4174 case 1:
4175 tc[2] |= HDSPM_TCO2_set_pull_up;
4176 break;
4177 case 2:
4178 tc[2] |= HDSPM_TCO2_set_pull_down;
4179 break;
4180 case 3:
4181 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4182 break;
4183 case 4:
4184 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4185 break;
4186 default:
4187 break;
4190 if (1 == hdspm->tco->term) {
4191 tc[2] |= HDSPM_TCO2_set_term_75R;
4194 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4195 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4196 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4197 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4201 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4202 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4203 .name = xname, \
4204 .index = xindex, \
4205 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4206 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4207 .info = snd_hdspm_info_tco_sample_rate, \
4208 .get = snd_hdspm_get_tco_sample_rate, \
4209 .put = snd_hdspm_put_tco_sample_rate \
4212 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4213 struct snd_ctl_elem_info *uinfo)
4215 /* TODO freq from app could be supported here, see tco->samplerate */
4216 static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4217 ENUMERATED_CTL_INFO(uinfo, texts);
4218 return 0;
4221 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4222 struct snd_ctl_elem_value *ucontrol)
4224 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4226 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4228 return 0;
4231 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4232 struct snd_ctl_elem_value *ucontrol)
4234 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4236 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4237 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4239 hdspm_tco_write(hdspm);
4241 return 1;
4244 return 0;
4248 #define HDSPM_TCO_PULL(xname, xindex) \
4249 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4250 .name = xname, \
4251 .index = xindex, \
4252 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4253 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4254 .info = snd_hdspm_info_tco_pull, \
4255 .get = snd_hdspm_get_tco_pull, \
4256 .put = snd_hdspm_put_tco_pull \
4259 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4260 struct snd_ctl_elem_info *uinfo)
4262 static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4263 "+ 4 %", "- 4 %" };
4264 ENUMERATED_CTL_INFO(uinfo, texts);
4265 return 0;
4268 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4269 struct snd_ctl_elem_value *ucontrol)
4271 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4273 ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4275 return 0;
4278 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4279 struct snd_ctl_elem_value *ucontrol)
4281 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4283 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4284 hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4286 hdspm_tco_write(hdspm);
4288 return 1;
4291 return 0;
4294 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4295 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4296 .name = xname, \
4297 .index = xindex, \
4298 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4299 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4300 .info = snd_hdspm_info_tco_wck_conversion, \
4301 .get = snd_hdspm_get_tco_wck_conversion, \
4302 .put = snd_hdspm_put_tco_wck_conversion \
4305 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4306 struct snd_ctl_elem_info *uinfo)
4308 static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4309 ENUMERATED_CTL_INFO(uinfo, texts);
4310 return 0;
4313 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4314 struct snd_ctl_elem_value *ucontrol)
4316 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4318 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4320 return 0;
4323 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4324 struct snd_ctl_elem_value *ucontrol)
4326 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4328 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4329 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4331 hdspm_tco_write(hdspm);
4333 return 1;
4336 return 0;
4340 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4341 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4342 .name = xname, \
4343 .index = xindex, \
4344 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4345 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4346 .info = snd_hdspm_info_tco_frame_rate, \
4347 .get = snd_hdspm_get_tco_frame_rate, \
4348 .put = snd_hdspm_put_tco_frame_rate \
4351 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4352 struct snd_ctl_elem_info *uinfo)
4354 static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4355 "29.97 dfps", "30 fps", "30 dfps" };
4356 ENUMERATED_CTL_INFO(uinfo, texts);
4357 return 0;
4360 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4361 struct snd_ctl_elem_value *ucontrol)
4363 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4365 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4367 return 0;
4370 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4371 struct snd_ctl_elem_value *ucontrol)
4373 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4375 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4376 hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4378 hdspm_tco_write(hdspm);
4380 return 1;
4383 return 0;
4387 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4388 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4389 .name = xname, \
4390 .index = xindex, \
4391 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4392 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4393 .info = snd_hdspm_info_tco_sync_source, \
4394 .get = snd_hdspm_get_tco_sync_source, \
4395 .put = snd_hdspm_put_tco_sync_source \
4398 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4399 struct snd_ctl_elem_info *uinfo)
4401 static const char *const texts[] = { "LTC", "Video", "WCK" };
4402 ENUMERATED_CTL_INFO(uinfo, texts);
4403 return 0;
4406 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4407 struct snd_ctl_elem_value *ucontrol)
4409 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4411 ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4413 return 0;
4416 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4417 struct snd_ctl_elem_value *ucontrol)
4419 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4421 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4422 hdspm->tco->input = ucontrol->value.enumerated.item[0];
4424 hdspm_tco_write(hdspm);
4426 return 1;
4429 return 0;
4433 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4434 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4435 .name = xname, \
4436 .index = xindex, \
4437 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4438 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4439 .info = snd_hdspm_info_tco_word_term, \
4440 .get = snd_hdspm_get_tco_word_term, \
4441 .put = snd_hdspm_put_tco_word_term \
4444 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4445 struct snd_ctl_elem_info *uinfo)
4447 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4448 uinfo->count = 1;
4449 uinfo->value.integer.min = 0;
4450 uinfo->value.integer.max = 1;
4452 return 0;
4456 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4457 struct snd_ctl_elem_value *ucontrol)
4459 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4461 ucontrol->value.integer.value[0] = hdspm->tco->term;
4463 return 0;
4467 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4468 struct snd_ctl_elem_value *ucontrol)
4470 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4472 if (hdspm->tco->term != ucontrol->value.integer.value[0]) {
4473 hdspm->tco->term = ucontrol->value.integer.value[0];
4475 hdspm_tco_write(hdspm);
4477 return 1;
4480 return 0;
4486 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4487 HDSPM_MIXER("Mixer", 0),
4488 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4489 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4490 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4491 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4492 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4493 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4494 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4495 HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4496 HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4497 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4498 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4499 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4500 HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4501 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4502 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4503 HDSPM_INPUT_SELECT("Input Select", 0),
4504 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4508 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4509 HDSPM_MIXER("Mixer", 0),
4510 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4511 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4512 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4513 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4514 HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4515 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4516 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4517 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4518 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4521 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4522 HDSPM_MIXER("Mixer", 0),
4523 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4524 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4525 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4526 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4527 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4528 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4529 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4530 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4531 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4532 HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4533 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4534 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4535 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4536 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4537 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4538 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4539 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4540 HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4541 HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4542 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4543 HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4544 HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4545 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4546 HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4547 HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4548 HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4551 HDSPM_INPUT_SELECT("Input Select", 0),
4552 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4553 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4554 HDSPM_SPDIF_IN("SPDIF In", 0);
4555 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4556 HDSPM_INPUT_LEVEL("Input Level", 0);
4557 HDSPM_OUTPUT_LEVEL("Output Level", 0);
4558 HDSPM_PHONES("Phones", 0);
4562 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4563 HDSPM_MIXER("Mixer", 0),
4564 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4565 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4566 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4567 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4568 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4569 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4570 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4571 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4572 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4573 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4574 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4575 HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4576 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4577 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4578 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4579 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4580 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4581 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4582 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4583 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4584 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4585 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4586 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4587 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4590 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4591 HDSPM_MIXER("Mixer", 0),
4592 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4593 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4594 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4595 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4596 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4597 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4598 HDSPM_SYNC_CHECK("WC Sync Check", 0),
4599 HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4600 HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4601 HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4602 HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4603 HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4604 HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4605 HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4606 HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4607 HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4608 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4609 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4610 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4611 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4612 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4613 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4614 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4615 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4616 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4617 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4618 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4619 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4620 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4621 HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4622 HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4623 HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4624 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4625 HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4626 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4631 /* Control elements for the optional TCO module */
4632 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4633 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4634 HDSPM_TCO_PULL("TCO Pull", 0),
4635 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4636 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4637 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4638 HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4639 HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4640 HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4641 HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4642 HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4646 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4649 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4651 int i;
4653 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4654 if (hdspm->system_sample_rate > 48000) {
4655 hdspm->playback_mixer_ctls[i]->vd[0].access =
4656 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4657 SNDRV_CTL_ELEM_ACCESS_READ |
4658 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4659 } else {
4660 hdspm->playback_mixer_ctls[i]->vd[0].access =
4661 SNDRV_CTL_ELEM_ACCESS_READWRITE |
4662 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4664 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4665 SNDRV_CTL_EVENT_MASK_INFO,
4666 &hdspm->playback_mixer_ctls[i]->id);
4669 return 0;
4673 static int snd_hdspm_create_controls(struct snd_card *card,
4674 struct hdspm *hdspm)
4676 unsigned int idx, limit;
4677 int err;
4678 struct snd_kcontrol *kctl;
4679 struct snd_kcontrol_new *list = NULL;
4681 switch (hdspm->io_type) {
4682 case MADI:
4683 list = snd_hdspm_controls_madi;
4684 limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4685 break;
4686 case MADIface:
4687 list = snd_hdspm_controls_madiface;
4688 limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4689 break;
4690 case AIO:
4691 list = snd_hdspm_controls_aio;
4692 limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4693 break;
4694 case RayDAT:
4695 list = snd_hdspm_controls_raydat;
4696 limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4697 break;
4698 case AES32:
4699 list = snd_hdspm_controls_aes32;
4700 limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4701 break;
4704 if (NULL != list) {
4705 for (idx = 0; idx < limit; idx++) {
4706 err = snd_ctl_add(card,
4707 snd_ctl_new1(&list[idx], hdspm));
4708 if (err < 0)
4709 return err;
4714 /* create simple 1:1 playback mixer controls */
4715 snd_hdspm_playback_mixer.name = "Chn";
4716 if (hdspm->system_sample_rate >= 128000) {
4717 limit = hdspm->qs_out_channels;
4718 } else if (hdspm->system_sample_rate >= 64000) {
4719 limit = hdspm->ds_out_channels;
4720 } else {
4721 limit = hdspm->ss_out_channels;
4723 for (idx = 0; idx < limit; ++idx) {
4724 snd_hdspm_playback_mixer.index = idx + 1;
4725 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4726 err = snd_ctl_add(card, kctl);
4727 if (err < 0)
4728 return err;
4729 hdspm->playback_mixer_ctls[idx] = kctl;
4733 if (hdspm->tco) {
4734 /* add tco control elements */
4735 list = snd_hdspm_controls_tco;
4736 limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4737 for (idx = 0; idx < limit; idx++) {
4738 err = snd_ctl_add(card,
4739 snd_ctl_new1(&list[idx], hdspm));
4740 if (err < 0)
4741 return err;
4745 return 0;
4748 /*------------------------------------------------------------
4749 /proc interface
4750 ------------------------------------------------------------*/
4752 static void
4753 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4754 struct snd_info_buffer *buffer)
4756 struct hdspm *hdspm = entry->private_data;
4757 unsigned int status, control;
4758 int a, ltc, frames, seconds, minutes, hours;
4759 unsigned int period;
4760 u64 freq_const = 0;
4761 u32 rate;
4763 snd_iprintf(buffer, "--- TCO ---\n");
4765 status = hdspm_read(hdspm, HDSPM_statusRegister);
4766 control = hdspm->control_register;
4769 if (status & HDSPM_tco_detect) {
4770 snd_iprintf(buffer, "TCO module detected.\n");
4771 a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4772 if (a & HDSPM_TCO1_LTC_Input_valid) {
4773 snd_iprintf(buffer, " LTC valid, ");
4774 switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4775 HDSPM_TCO1_LTC_Format_MSB)) {
4776 case 0:
4777 snd_iprintf(buffer, "24 fps, ");
4778 break;
4779 case HDSPM_TCO1_LTC_Format_LSB:
4780 snd_iprintf(buffer, "25 fps, ");
4781 break;
4782 case HDSPM_TCO1_LTC_Format_MSB:
4783 snd_iprintf(buffer, "29.97 fps, ");
4784 break;
4785 default:
4786 snd_iprintf(buffer, "30 fps, ");
4787 break;
4789 if (a & HDSPM_TCO1_set_drop_frame_flag) {
4790 snd_iprintf(buffer, "drop frame\n");
4791 } else {
4792 snd_iprintf(buffer, "full frame\n");
4794 } else {
4795 snd_iprintf(buffer, " no LTC\n");
4797 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4798 snd_iprintf(buffer, " Video: NTSC\n");
4799 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4800 snd_iprintf(buffer, " Video: PAL\n");
4801 } else {
4802 snd_iprintf(buffer, " No video\n");
4804 if (a & HDSPM_TCO1_TCO_lock) {
4805 snd_iprintf(buffer, " Sync: lock\n");
4806 } else {
4807 snd_iprintf(buffer, " Sync: no lock\n");
4810 switch (hdspm->io_type) {
4811 case MADI:
4812 case AES32:
4813 freq_const = 110069313433624ULL;
4814 break;
4815 case RayDAT:
4816 case AIO:
4817 freq_const = 104857600000000ULL;
4818 break;
4819 case MADIface:
4820 break; /* no TCO possible */
4823 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4824 snd_iprintf(buffer, " period: %u\n", period);
4827 /* rate = freq_const/period; */
4828 rate = div_u64(freq_const, period);
4830 if (control & HDSPM_QuadSpeed) {
4831 rate *= 4;
4832 } else if (control & HDSPM_DoubleSpeed) {
4833 rate *= 2;
4836 snd_iprintf(buffer, " Frequency: %u Hz\n",
4837 (unsigned int) rate);
4839 ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4840 frames = ltc & 0xF;
4841 ltc >>= 4;
4842 frames += (ltc & 0x3) * 10;
4843 ltc >>= 4;
4844 seconds = ltc & 0xF;
4845 ltc >>= 4;
4846 seconds += (ltc & 0x7) * 10;
4847 ltc >>= 4;
4848 minutes = ltc & 0xF;
4849 ltc >>= 4;
4850 minutes += (ltc & 0x7) * 10;
4851 ltc >>= 4;
4852 hours = ltc & 0xF;
4853 ltc >>= 4;
4854 hours += (ltc & 0x3) * 10;
4855 snd_iprintf(buffer,
4856 " LTC In: %02d:%02d:%02d:%02d\n",
4857 hours, minutes, seconds, frames);
4859 } else {
4860 snd_iprintf(buffer, "No TCO module detected.\n");
4864 static void
4865 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4866 struct snd_info_buffer *buffer)
4868 struct hdspm *hdspm = entry->private_data;
4869 unsigned int status, status2;
4871 char *pref_sync_ref;
4872 char *autosync_ref;
4873 char *system_clock_mode;
4874 int x, x2;
4876 status = hdspm_read(hdspm, HDSPM_statusRegister);
4877 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4879 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4880 hdspm->card_name, hdspm->card->number + 1,
4881 hdspm->firmware_rev,
4882 (status2 & HDSPM_version0) |
4883 (status2 & HDSPM_version1) | (status2 &
4884 HDSPM_version2));
4886 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4887 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4888 hdspm->serial);
4890 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4891 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4893 snd_iprintf(buffer, "--- System ---\n");
4895 snd_iprintf(buffer,
4896 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4897 status & HDSPM_audioIRQPending,
4898 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4899 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4900 hdspm->irq_count);
4901 snd_iprintf(buffer,
4902 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4903 "estimated= %ld (bytes)\n",
4904 ((status & HDSPM_BufferID) ? 1 : 0),
4905 (status & HDSPM_BufferPositionMask),
4906 (status & HDSPM_BufferPositionMask) %
4907 (2 * (int)hdspm->period_bytes),
4908 ((status & HDSPM_BufferPositionMask) - 64) %
4909 (2 * (int)hdspm->period_bytes),
4910 (long) hdspm_hw_pointer(hdspm) * 4);
4912 snd_iprintf(buffer,
4913 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4914 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4915 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4916 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4917 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4918 snd_iprintf(buffer,
4919 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4920 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4921 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4922 snd_iprintf(buffer,
4923 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4924 "status2=0x%x\n",
4925 hdspm->control_register, hdspm->control2_register,
4926 status, status2);
4929 snd_iprintf(buffer, "--- Settings ---\n");
4931 x = hdspm_get_latency(hdspm);
4933 snd_iprintf(buffer,
4934 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4935 x, (unsigned long) hdspm->period_bytes);
4937 snd_iprintf(buffer, "Line out: %s\n",
4938 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4940 snd_iprintf(buffer,
4941 "ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4942 "Auto Input %s\n",
4943 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4944 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4945 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4948 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4949 system_clock_mode = "AutoSync";
4950 else
4951 system_clock_mode = "Master";
4952 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4954 switch (hdspm_pref_sync_ref(hdspm)) {
4955 case HDSPM_SYNC_FROM_WORD:
4956 pref_sync_ref = "Word Clock";
4957 break;
4958 case HDSPM_SYNC_FROM_MADI:
4959 pref_sync_ref = "MADI Sync";
4960 break;
4961 case HDSPM_SYNC_FROM_TCO:
4962 pref_sync_ref = "TCO";
4963 break;
4964 case HDSPM_SYNC_FROM_SYNC_IN:
4965 pref_sync_ref = "Sync In";
4966 break;
4967 default:
4968 pref_sync_ref = "XXXX Clock";
4969 break;
4971 snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4972 pref_sync_ref);
4974 snd_iprintf(buffer, "System Clock Frequency: %d\n",
4975 hdspm->system_sample_rate);
4978 snd_iprintf(buffer, "--- Status:\n");
4980 x = status & HDSPM_madiSync;
4981 x2 = status2 & HDSPM_wcSync;
4983 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4984 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4985 "NoLock",
4986 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4987 "NoLock");
4989 switch (hdspm_autosync_ref(hdspm)) {
4990 case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4991 autosync_ref = "Sync In";
4992 break;
4993 case HDSPM_AUTOSYNC_FROM_TCO:
4994 autosync_ref = "TCO";
4995 break;
4996 case HDSPM_AUTOSYNC_FROM_WORD:
4997 autosync_ref = "Word Clock";
4998 break;
4999 case HDSPM_AUTOSYNC_FROM_MADI:
5000 autosync_ref = "MADI Sync";
5001 break;
5002 case HDSPM_AUTOSYNC_FROM_NONE:
5003 autosync_ref = "Input not valid";
5004 break;
5005 default:
5006 autosync_ref = "---";
5007 break;
5009 snd_iprintf(buffer,
5010 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5011 autosync_ref, hdspm_external_sample_rate(hdspm),
5012 (status & HDSPM_madiFreqMask) >> 22,
5013 (status2 & HDSPM_wcFreqMask) >> 5);
5015 snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5016 (status & HDSPM_AB_int) ? "Coax" : "Optical",
5017 (status & HDSPM_RX_64ch) ? "64 channels" :
5018 "56 channels");
5020 /* call readout function for TCO specific status */
5021 snd_hdspm_proc_read_tco(entry, buffer);
5023 snd_iprintf(buffer, "\n");
5026 static void
5027 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5028 struct snd_info_buffer *buffer)
5030 struct hdspm *hdspm = entry->private_data;
5031 unsigned int status;
5032 unsigned int status2;
5033 unsigned int timecode;
5034 unsigned int wcLock, wcSync;
5035 int pref_syncref;
5036 char *autosync_ref;
5037 int x;
5039 status = hdspm_read(hdspm, HDSPM_statusRegister);
5040 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5041 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5043 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5044 hdspm->card_name, hdspm->card->number + 1,
5045 hdspm->firmware_rev);
5047 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5048 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5050 snd_iprintf(buffer, "--- System ---\n");
5052 snd_iprintf(buffer,
5053 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5054 status & HDSPM_audioIRQPending,
5055 (status & HDSPM_midi0IRQPending) ? 1 : 0,
5056 (status & HDSPM_midi1IRQPending) ? 1 : 0,
5057 hdspm->irq_count);
5058 snd_iprintf(buffer,
5059 "HW pointer: id = %d, rawptr = %d (%d->%d) "
5060 "estimated= %ld (bytes)\n",
5061 ((status & HDSPM_BufferID) ? 1 : 0),
5062 (status & HDSPM_BufferPositionMask),
5063 (status & HDSPM_BufferPositionMask) %
5064 (2 * (int)hdspm->period_bytes),
5065 ((status & HDSPM_BufferPositionMask) - 64) %
5066 (2 * (int)hdspm->period_bytes),
5067 (long) hdspm_hw_pointer(hdspm) * 4);
5069 snd_iprintf(buffer,
5070 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5071 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5072 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5073 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5074 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5075 snd_iprintf(buffer,
5076 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5077 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5078 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5079 snd_iprintf(buffer,
5080 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5081 "status2=0x%x\n",
5082 hdspm->control_register, hdspm->control2_register,
5083 status, status2);
5085 snd_iprintf(buffer, "--- Settings ---\n");
5087 x = hdspm_get_latency(hdspm);
5089 snd_iprintf(buffer,
5090 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5091 x, (unsigned long) hdspm->period_bytes);
5093 snd_iprintf(buffer, "Line out: %s\n",
5094 (hdspm->
5095 control_register & HDSPM_LineOut) ? "on " : "off");
5097 snd_iprintf(buffer,
5098 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5099 (hdspm->
5100 control_register & HDSPM_clr_tms) ? "on" : "off",
5101 (hdspm->
5102 control_register & HDSPM_Emphasis) ? "on" : "off",
5103 (hdspm->
5104 control_register & HDSPM_Dolby) ? "on" : "off");
5107 pref_syncref = hdspm_pref_sync_ref(hdspm);
5108 if (pref_syncref == 0)
5109 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5110 else
5111 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5112 pref_syncref);
5114 snd_iprintf(buffer, "System Clock Frequency: %d\n",
5115 hdspm->system_sample_rate);
5117 snd_iprintf(buffer, "Double speed: %s\n",
5118 hdspm->control_register & HDSPM_DS_DoubleWire?
5119 "Double wire" : "Single wire");
5120 snd_iprintf(buffer, "Quad speed: %s\n",
5121 hdspm->control_register & HDSPM_QS_DoubleWire?
5122 "Double wire" :
5123 hdspm->control_register & HDSPM_QS_QuadWire?
5124 "Quad wire" : "Single wire");
5126 snd_iprintf(buffer, "--- Status:\n");
5128 wcLock = status & HDSPM_AES32_wcLock;
5129 wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5131 snd_iprintf(buffer, "Word: %s Frequency: %d\n",
5132 (wcLock) ? (wcSync ? "Sync " : "Lock ") : "No Lock",
5133 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5135 for (x = 0; x < 8; x++) {
5136 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
5137 x+1,
5138 (status2 & (HDSPM_LockAES >> x)) ?
5139 "Sync " : "No Lock",
5140 HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5143 switch (hdspm_autosync_ref(hdspm)) {
5144 case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5145 autosync_ref = "None"; break;
5146 case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5147 autosync_ref = "Word Clock"; break;
5148 case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5149 autosync_ref = "AES1"; break;
5150 case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5151 autosync_ref = "AES2"; break;
5152 case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5153 autosync_ref = "AES3"; break;
5154 case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5155 autosync_ref = "AES4"; break;
5156 case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5157 autosync_ref = "AES5"; break;
5158 case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5159 autosync_ref = "AES6"; break;
5160 case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5161 autosync_ref = "AES7"; break;
5162 case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5163 autosync_ref = "AES8"; break;
5164 case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5165 autosync_ref = "TCO"; break;
5166 case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5167 autosync_ref = "Sync In"; break;
5168 default:
5169 autosync_ref = "---"; break;
5171 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5173 /* call readout function for TCO specific status */
5174 snd_hdspm_proc_read_tco(entry, buffer);
5176 snd_iprintf(buffer, "\n");
5179 static void
5180 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5181 struct snd_info_buffer *buffer)
5183 struct hdspm *hdspm = entry->private_data;
5184 unsigned int status1, status2, status3, i;
5185 unsigned int lock, sync;
5187 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5188 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5189 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5191 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5192 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5193 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5196 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5198 snd_iprintf(buffer, "Clock mode : %s\n",
5199 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5200 snd_iprintf(buffer, "System frequency: %d Hz\n",
5201 hdspm_get_system_sample_rate(hdspm));
5203 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5205 lock = 0x1;
5206 sync = 0x100;
5208 for (i = 0; i < 8; i++) {
5209 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5211 (status1 & lock) ? 1 : 0,
5212 (status1 & sync) ? 1 : 0,
5213 texts_freq[(status2 >> (i * 4)) & 0xF]);
5215 lock = lock<<1;
5216 sync = sync<<1;
5219 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5220 (status1 & 0x1000000) ? 1 : 0,
5221 (status1 & 0x2000000) ? 1 : 0,
5222 texts_freq[(status1 >> 16) & 0xF]);
5224 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5225 (status1 & 0x4000000) ? 1 : 0,
5226 (status1 & 0x8000000) ? 1 : 0,
5227 texts_freq[(status1 >> 20) & 0xF]);
5229 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5230 (status3 & 0x400) ? 1 : 0,
5231 (status3 & 0x800) ? 1 : 0,
5232 texts_freq[(status2 >> 12) & 0xF]);
5236 #ifdef CONFIG_SND_DEBUG
5237 static void
5238 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5239 struct snd_info_buffer *buffer)
5241 struct hdspm *hdspm = entry->private_data;
5243 int j,i;
5245 for (i = 0; i < 256 /* 1024*64 */; i += j) {
5246 snd_iprintf(buffer, "0x%08X: ", i);
5247 for (j = 0; j < 16; j += 4)
5248 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5249 snd_iprintf(buffer, "\n");
5252 #endif
5255 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5256 struct snd_info_buffer *buffer)
5258 struct hdspm *hdspm = entry->private_data;
5259 int i;
5261 snd_iprintf(buffer, "# generated by hdspm\n");
5263 for (i = 0; i < hdspm->max_channels_in; i++) {
5264 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5268 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5269 struct snd_info_buffer *buffer)
5271 struct hdspm *hdspm = entry->private_data;
5272 int i;
5274 snd_iprintf(buffer, "# generated by hdspm\n");
5276 for (i = 0; i < hdspm->max_channels_out; i++) {
5277 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5282 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5284 struct snd_info_entry *entry;
5286 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5287 switch (hdspm->io_type) {
5288 case AES32:
5289 snd_info_set_text_ops(entry, hdspm,
5290 snd_hdspm_proc_read_aes32);
5291 break;
5292 case MADI:
5293 snd_info_set_text_ops(entry, hdspm,
5294 snd_hdspm_proc_read_madi);
5295 break;
5296 case MADIface:
5297 /* snd_info_set_text_ops(entry, hdspm,
5298 snd_hdspm_proc_read_madiface); */
5299 break;
5300 case RayDAT:
5301 snd_info_set_text_ops(entry, hdspm,
5302 snd_hdspm_proc_read_raydat);
5303 break;
5304 case AIO:
5305 break;
5309 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5310 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5313 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5314 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5317 #ifdef CONFIG_SND_DEBUG
5318 /* debug file to read all hdspm registers */
5319 if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5320 snd_info_set_text_ops(entry, hdspm,
5321 snd_hdspm_proc_read_debug);
5322 #endif
5325 /*------------------------------------------------------------
5326 hdspm intitialize
5327 ------------------------------------------------------------*/
5329 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5331 /* ASSUMPTION: hdspm->lock is either held, or there is no need to
5332 hold it (e.g. during module initialization).
5335 /* set defaults: */
5337 hdspm->settings_register = 0;
5339 switch (hdspm->io_type) {
5340 case MADI:
5341 case MADIface:
5342 hdspm->control_register =
5343 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5344 break;
5346 case RayDAT:
5347 case AIO:
5348 hdspm->settings_register = 0x1 + 0x1000;
5349 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5350 * line_out */
5351 hdspm->control_register =
5352 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5353 break;
5355 case AES32:
5356 hdspm->control_register =
5357 HDSPM_ClockModeMaster | /* Master Clock Mode on */
5358 hdspm_encode_latency(7) | /* latency max=8192samples */
5359 HDSPM_SyncRef0 | /* AES1 is syncclock */
5360 HDSPM_LineOut | /* Analog output in */
5361 HDSPM_Professional; /* Professional mode */
5362 break;
5365 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5367 if (AES32 == hdspm->io_type) {
5368 /* No control2 register for AES32 */
5369 #ifdef SNDRV_BIG_ENDIAN
5370 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5371 #else
5372 hdspm->control2_register = 0;
5373 #endif
5375 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5377 hdspm_compute_period_size(hdspm);
5379 /* silence everything */
5381 all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5383 if (hdspm_is_raydat_or_aio(hdspm))
5384 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5386 /* set a default rate so that the channel map is set up. */
5387 hdspm_set_rate(hdspm, 48000, 1);
5389 return 0;
5393 /*------------------------------------------------------------
5394 interrupt
5395 ------------------------------------------------------------*/
5397 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5399 struct hdspm *hdspm = (struct hdspm *) dev_id;
5400 unsigned int status;
5401 int i, audio, midi, schedule = 0;
5402 /* cycles_t now; */
5404 status = hdspm_read(hdspm, HDSPM_statusRegister);
5406 audio = status & HDSPM_audioIRQPending;
5407 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5408 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5410 /* now = get_cycles(); */
5412 * LAT_2..LAT_0 period counter (win) counter (mac)
5413 * 6 4096 ~256053425 ~514672358
5414 * 5 2048 ~128024983 ~257373821
5415 * 4 1024 ~64023706 ~128718089
5416 * 3 512 ~32005945 ~64385999
5417 * 2 256 ~16003039 ~32260176
5418 * 1 128 ~7998738 ~16194507
5419 * 0 64 ~3998231 ~8191558
5422 dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n",
5423 now-hdspm->last_interrupt, status & 0xFFC0);
5424 hdspm->last_interrupt = now;
5427 if (!audio && !midi)
5428 return IRQ_NONE;
5430 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5431 hdspm->irq_count++;
5434 if (audio) {
5435 if (hdspm->capture_substream)
5436 snd_pcm_period_elapsed(hdspm->capture_substream);
5438 if (hdspm->playback_substream)
5439 snd_pcm_period_elapsed(hdspm->playback_substream);
5442 if (midi) {
5443 i = 0;
5444 while (i < hdspm->midiPorts) {
5445 if ((hdspm_read(hdspm,
5446 hdspm->midi[i].statusIn) & 0xff) &&
5447 (status & hdspm->midi[i].irq)) {
5448 /* we disable interrupts for this input until
5449 * processing is done
5451 hdspm->control_register &= ~hdspm->midi[i].ie;
5452 hdspm_write(hdspm, HDSPM_controlRegister,
5453 hdspm->control_register);
5454 hdspm->midi[i].pending = 1;
5455 schedule = 1;
5458 i++;
5461 if (schedule)
5462 tasklet_hi_schedule(&hdspm->midi_tasklet);
5465 return IRQ_HANDLED;
5468 /*------------------------------------------------------------
5469 pcm interface
5470 ------------------------------------------------------------*/
5473 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5474 *substream)
5476 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5477 return hdspm_hw_pointer(hdspm);
5481 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5483 struct snd_pcm_runtime *runtime = substream->runtime;
5484 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5485 struct snd_pcm_substream *other;
5487 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5488 other = hdspm->capture_substream;
5489 else
5490 other = hdspm->playback_substream;
5492 if (hdspm->running)
5493 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5494 else
5495 runtime->status->hw_ptr = 0;
5496 if (other) {
5497 struct snd_pcm_substream *s;
5498 struct snd_pcm_runtime *oruntime = other->runtime;
5499 snd_pcm_group_for_each_entry(s, substream) {
5500 if (s == other) {
5501 oruntime->status->hw_ptr =
5502 runtime->status->hw_ptr;
5503 break;
5507 return 0;
5510 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5511 struct snd_pcm_hw_params *params)
5513 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5514 int err;
5515 int i;
5516 pid_t this_pid;
5517 pid_t other_pid;
5519 spin_lock_irq(&hdspm->lock);
5521 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5522 this_pid = hdspm->playback_pid;
5523 other_pid = hdspm->capture_pid;
5524 } else {
5525 this_pid = hdspm->capture_pid;
5526 other_pid = hdspm->playback_pid;
5529 if (other_pid > 0 && this_pid != other_pid) {
5531 /* The other stream is open, and not by the same
5532 task as this one. Make sure that the parameters
5533 that matter are the same.
5536 if (params_rate(params) != hdspm->system_sample_rate) {
5537 spin_unlock_irq(&hdspm->lock);
5538 _snd_pcm_hw_param_setempty(params,
5539 SNDRV_PCM_HW_PARAM_RATE);
5540 return -EBUSY;
5543 if (params_period_size(params) != hdspm->period_bytes / 4) {
5544 spin_unlock_irq(&hdspm->lock);
5545 _snd_pcm_hw_param_setempty(params,
5546 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5547 return -EBUSY;
5551 /* We're fine. */
5552 spin_unlock_irq(&hdspm->lock);
5554 /* how to make sure that the rate matches an externally-set one ? */
5556 spin_lock_irq(&hdspm->lock);
5557 err = hdspm_set_rate(hdspm, params_rate(params), 0);
5558 if (err < 0) {
5559 dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err);
5560 spin_unlock_irq(&hdspm->lock);
5561 _snd_pcm_hw_param_setempty(params,
5562 SNDRV_PCM_HW_PARAM_RATE);
5563 return err;
5565 spin_unlock_irq(&hdspm->lock);
5567 err = hdspm_set_interrupt_interval(hdspm,
5568 params_period_size(params));
5569 if (err < 0) {
5570 dev_info(hdspm->card->dev,
5571 "err on hdspm_set_interrupt_interval: %d\n", err);
5572 _snd_pcm_hw_param_setempty(params,
5573 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5574 return err;
5577 /* Memory allocation, takashi's method, dont know if we should
5578 * spinlock
5580 /* malloc all buffer even if not enabled to get sure */
5581 /* Update for MADI rev 204: we need to allocate for all channels,
5582 * otherwise it doesn't work at 96kHz */
5584 err =
5585 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5586 if (err < 0) {
5587 dev_info(hdspm->card->dev,
5588 "err on snd_pcm_lib_malloc_pages: %d\n", err);
5589 return err;
5592 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5594 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5595 params_channels(params));
5597 for (i = 0; i < params_channels(params); ++i)
5598 snd_hdspm_enable_out(hdspm, i, 1);
5600 hdspm->playback_buffer =
5601 (unsigned char *) substream->runtime->dma_area;
5602 dev_dbg(hdspm->card->dev,
5603 "Allocated sample buffer for playback at %p\n",
5604 hdspm->playback_buffer);
5605 } else {
5606 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5607 params_channels(params));
5609 for (i = 0; i < params_channels(params); ++i)
5610 snd_hdspm_enable_in(hdspm, i, 1);
5612 hdspm->capture_buffer =
5613 (unsigned char *) substream->runtime->dma_area;
5614 dev_dbg(hdspm->card->dev,
5615 "Allocated sample buffer for capture at %p\n",
5616 hdspm->capture_buffer);
5620 dev_dbg(hdspm->card->dev,
5621 "Allocated sample buffer for %s at 0x%08X\n",
5622 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5623 "playback" : "capture",
5624 snd_pcm_sgbuf_get_addr(substream, 0));
5627 dev_dbg(hdspm->card->dev,
5628 "set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5629 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5630 "playback" : "capture",
5631 params_rate(params), params_channels(params),
5632 params_buffer_size(params));
5636 /* For AES cards, the float format bit is the same as the
5637 * preferred sync reference. Since we don't want to break
5638 * sync settings, we have to skip the remaining part of this
5639 * function.
5641 if (hdspm->io_type == AES32) {
5642 return 0;
5646 /* Switch to native float format if requested */
5647 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5648 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5649 dev_info(hdspm->card->dev,
5650 "Switching to native 32bit LE float format.\n");
5652 hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5653 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5654 if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5655 dev_info(hdspm->card->dev,
5656 "Switching to native 32bit LE integer format.\n");
5658 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5660 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5662 return 0;
5665 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5667 int i;
5668 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5670 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5672 /* params_channels(params) should be enough,
5673 but to get sure in case of error */
5674 for (i = 0; i < hdspm->max_channels_out; ++i)
5675 snd_hdspm_enable_out(hdspm, i, 0);
5677 hdspm->playback_buffer = NULL;
5678 } else {
5679 for (i = 0; i < hdspm->max_channels_in; ++i)
5680 snd_hdspm_enable_in(hdspm, i, 0);
5682 hdspm->capture_buffer = NULL;
5686 snd_pcm_lib_free_pages(substream);
5688 return 0;
5692 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5693 struct snd_pcm_channel_info *info)
5695 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5696 unsigned int channel = info->channel;
5698 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5699 if (snd_BUG_ON(channel >= hdspm->max_channels_out)) {
5700 dev_info(hdspm->card->dev,
5701 "snd_hdspm_channel_info: output channel out of range (%d)\n",
5702 channel);
5703 return -EINVAL;
5706 channel = array_index_nospec(channel, hdspm->max_channels_out);
5707 if (hdspm->channel_map_out[channel] < 0) {
5708 dev_info(hdspm->card->dev,
5709 "snd_hdspm_channel_info: output channel %d mapped out\n",
5710 channel);
5711 return -EINVAL;
5714 info->offset = hdspm->channel_map_out[channel] *
5715 HDSPM_CHANNEL_BUFFER_BYTES;
5716 } else {
5717 if (snd_BUG_ON(channel >= hdspm->max_channels_in)) {
5718 dev_info(hdspm->card->dev,
5719 "snd_hdspm_channel_info: input channel out of range (%d)\n",
5720 channel);
5721 return -EINVAL;
5724 channel = array_index_nospec(channel, hdspm->max_channels_in);
5725 if (hdspm->channel_map_in[channel] < 0) {
5726 dev_info(hdspm->card->dev,
5727 "snd_hdspm_channel_info: input channel %d mapped out\n",
5728 channel);
5729 return -EINVAL;
5732 info->offset = hdspm->channel_map_in[channel] *
5733 HDSPM_CHANNEL_BUFFER_BYTES;
5736 info->first = 0;
5737 info->step = 32;
5738 return 0;
5742 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5743 unsigned int cmd, void *arg)
5745 switch (cmd) {
5746 case SNDRV_PCM_IOCTL1_RESET:
5747 return snd_hdspm_reset(substream);
5749 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5751 struct snd_pcm_channel_info *info = arg;
5752 return snd_hdspm_channel_info(substream, info);
5754 default:
5755 break;
5758 return snd_pcm_lib_ioctl(substream, cmd, arg);
5761 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5763 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5764 struct snd_pcm_substream *other;
5765 int running;
5767 spin_lock(&hdspm->lock);
5768 running = hdspm->running;
5769 switch (cmd) {
5770 case SNDRV_PCM_TRIGGER_START:
5771 running |= 1 << substream->stream;
5772 break;
5773 case SNDRV_PCM_TRIGGER_STOP:
5774 running &= ~(1 << substream->stream);
5775 break;
5776 default:
5777 snd_BUG();
5778 spin_unlock(&hdspm->lock);
5779 return -EINVAL;
5781 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5782 other = hdspm->capture_substream;
5783 else
5784 other = hdspm->playback_substream;
5786 if (other) {
5787 struct snd_pcm_substream *s;
5788 snd_pcm_group_for_each_entry(s, substream) {
5789 if (s == other) {
5790 snd_pcm_trigger_done(s, substream);
5791 if (cmd == SNDRV_PCM_TRIGGER_START)
5792 running |= 1 << s->stream;
5793 else
5794 running &= ~(1 << s->stream);
5795 goto _ok;
5798 if (cmd == SNDRV_PCM_TRIGGER_START) {
5799 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5800 && substream->stream ==
5801 SNDRV_PCM_STREAM_CAPTURE)
5802 hdspm_silence_playback(hdspm);
5803 } else {
5804 if (running &&
5805 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5806 hdspm_silence_playback(hdspm);
5808 } else {
5809 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5810 hdspm_silence_playback(hdspm);
5812 _ok:
5813 snd_pcm_trigger_done(substream, substream);
5814 if (!hdspm->running && running)
5815 hdspm_start_audio(hdspm);
5816 else if (hdspm->running && !running)
5817 hdspm_stop_audio(hdspm);
5818 hdspm->running = running;
5819 spin_unlock(&hdspm->lock);
5821 return 0;
5824 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5826 return 0;
5829 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5830 .info = (SNDRV_PCM_INFO_MMAP |
5831 SNDRV_PCM_INFO_MMAP_VALID |
5832 SNDRV_PCM_INFO_NONINTERLEAVED |
5833 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5834 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5835 .rates = (SNDRV_PCM_RATE_32000 |
5836 SNDRV_PCM_RATE_44100 |
5837 SNDRV_PCM_RATE_48000 |
5838 SNDRV_PCM_RATE_64000 |
5839 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5840 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5841 .rate_min = 32000,
5842 .rate_max = 192000,
5843 .channels_min = 1,
5844 .channels_max = HDSPM_MAX_CHANNELS,
5845 .buffer_bytes_max =
5846 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5847 .period_bytes_min = (32 * 4),
5848 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5849 .periods_min = 2,
5850 .periods_max = 512,
5851 .fifo_size = 0
5854 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5855 .info = (SNDRV_PCM_INFO_MMAP |
5856 SNDRV_PCM_INFO_MMAP_VALID |
5857 SNDRV_PCM_INFO_NONINTERLEAVED |
5858 SNDRV_PCM_INFO_SYNC_START),
5859 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5860 .rates = (SNDRV_PCM_RATE_32000 |
5861 SNDRV_PCM_RATE_44100 |
5862 SNDRV_PCM_RATE_48000 |
5863 SNDRV_PCM_RATE_64000 |
5864 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5865 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5866 .rate_min = 32000,
5867 .rate_max = 192000,
5868 .channels_min = 1,
5869 .channels_max = HDSPM_MAX_CHANNELS,
5870 .buffer_bytes_max =
5871 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5872 .period_bytes_min = (32 * 4),
5873 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5874 .periods_min = 2,
5875 .periods_max = 512,
5876 .fifo_size = 0
5879 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5880 struct snd_pcm_hw_rule *rule)
5882 struct hdspm *hdspm = rule->private;
5883 struct snd_interval *c =
5884 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5885 struct snd_interval *r =
5886 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5888 if (r->min > 96000 && r->max <= 192000) {
5889 struct snd_interval t = {
5890 .min = hdspm->qs_in_channels,
5891 .max = hdspm->qs_in_channels,
5892 .integer = 1,
5894 return snd_interval_refine(c, &t);
5895 } else if (r->min > 48000 && r->max <= 96000) {
5896 struct snd_interval t = {
5897 .min = hdspm->ds_in_channels,
5898 .max = hdspm->ds_in_channels,
5899 .integer = 1,
5901 return snd_interval_refine(c, &t);
5902 } else if (r->max < 64000) {
5903 struct snd_interval t = {
5904 .min = hdspm->ss_in_channels,
5905 .max = hdspm->ss_in_channels,
5906 .integer = 1,
5908 return snd_interval_refine(c, &t);
5911 return 0;
5914 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5915 struct snd_pcm_hw_rule * rule)
5917 struct hdspm *hdspm = rule->private;
5918 struct snd_interval *c =
5919 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5920 struct snd_interval *r =
5921 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5923 if (r->min > 96000 && r->max <= 192000) {
5924 struct snd_interval t = {
5925 .min = hdspm->qs_out_channels,
5926 .max = hdspm->qs_out_channels,
5927 .integer = 1,
5929 return snd_interval_refine(c, &t);
5930 } else if (r->min > 48000 && r->max <= 96000) {
5931 struct snd_interval t = {
5932 .min = hdspm->ds_out_channels,
5933 .max = hdspm->ds_out_channels,
5934 .integer = 1,
5936 return snd_interval_refine(c, &t);
5937 } else if (r->max < 64000) {
5938 struct snd_interval t = {
5939 .min = hdspm->ss_out_channels,
5940 .max = hdspm->ss_out_channels,
5941 .integer = 1,
5943 return snd_interval_refine(c, &t);
5944 } else {
5946 return 0;
5949 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5950 struct snd_pcm_hw_rule * rule)
5952 struct hdspm *hdspm = rule->private;
5953 struct snd_interval *c =
5954 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5955 struct snd_interval *r =
5956 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5958 if (c->min >= hdspm->ss_in_channels) {
5959 struct snd_interval t = {
5960 .min = 32000,
5961 .max = 48000,
5962 .integer = 1,
5964 return snd_interval_refine(r, &t);
5965 } else if (c->max <= hdspm->qs_in_channels) {
5966 struct snd_interval t = {
5967 .min = 128000,
5968 .max = 192000,
5969 .integer = 1,
5971 return snd_interval_refine(r, &t);
5972 } else if (c->max <= hdspm->ds_in_channels) {
5973 struct snd_interval t = {
5974 .min = 64000,
5975 .max = 96000,
5976 .integer = 1,
5978 return snd_interval_refine(r, &t);
5981 return 0;
5983 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5984 struct snd_pcm_hw_rule *rule)
5986 struct hdspm *hdspm = rule->private;
5987 struct snd_interval *c =
5988 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5989 struct snd_interval *r =
5990 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5992 if (c->min >= hdspm->ss_out_channels) {
5993 struct snd_interval t = {
5994 .min = 32000,
5995 .max = 48000,
5996 .integer = 1,
5998 return snd_interval_refine(r, &t);
5999 } else if (c->max <= hdspm->qs_out_channels) {
6000 struct snd_interval t = {
6001 .min = 128000,
6002 .max = 192000,
6003 .integer = 1,
6005 return snd_interval_refine(r, &t);
6006 } else if (c->max <= hdspm->ds_out_channels) {
6007 struct snd_interval t = {
6008 .min = 64000,
6009 .max = 96000,
6010 .integer = 1,
6012 return snd_interval_refine(r, &t);
6015 return 0;
6018 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6019 struct snd_pcm_hw_rule *rule)
6021 unsigned int list[3];
6022 struct hdspm *hdspm = rule->private;
6023 struct snd_interval *c = hw_param_interval(params,
6024 SNDRV_PCM_HW_PARAM_CHANNELS);
6026 list[0] = hdspm->qs_in_channels;
6027 list[1] = hdspm->ds_in_channels;
6028 list[2] = hdspm->ss_in_channels;
6029 return snd_interval_list(c, 3, list, 0);
6032 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6033 struct snd_pcm_hw_rule *rule)
6035 unsigned int list[3];
6036 struct hdspm *hdspm = rule->private;
6037 struct snd_interval *c = hw_param_interval(params,
6038 SNDRV_PCM_HW_PARAM_CHANNELS);
6040 list[0] = hdspm->qs_out_channels;
6041 list[1] = hdspm->ds_out_channels;
6042 list[2] = hdspm->ss_out_channels;
6043 return snd_interval_list(c, 3, list, 0);
6047 static unsigned int hdspm_aes32_sample_rates[] = {
6048 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6051 static struct snd_pcm_hw_constraint_list
6052 hdspm_hw_constraints_aes32_sample_rates = {
6053 .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6054 .list = hdspm_aes32_sample_rates,
6055 .mask = 0
6058 static int snd_hdspm_open(struct snd_pcm_substream *substream)
6060 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6061 struct snd_pcm_runtime *runtime = substream->runtime;
6062 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6064 spin_lock_irq(&hdspm->lock);
6065 snd_pcm_set_sync(substream);
6066 runtime->hw = (playback) ? snd_hdspm_playback_subinfo :
6067 snd_hdspm_capture_subinfo;
6069 if (playback) {
6070 if (hdspm->capture_substream == NULL)
6071 hdspm_stop_audio(hdspm);
6073 hdspm->playback_pid = current->pid;
6074 hdspm->playback_substream = substream;
6075 } else {
6076 if (hdspm->playback_substream == NULL)
6077 hdspm_stop_audio(hdspm);
6079 hdspm->capture_pid = current->pid;
6080 hdspm->capture_substream = substream;
6083 spin_unlock_irq(&hdspm->lock);
6085 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6086 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6088 switch (hdspm->io_type) {
6089 case AIO:
6090 case RayDAT:
6091 snd_pcm_hw_constraint_minmax(runtime,
6092 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6093 32, 4096);
6094 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6095 snd_pcm_hw_constraint_single(runtime,
6096 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6097 16384);
6098 break;
6100 default:
6101 snd_pcm_hw_constraint_minmax(runtime,
6102 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6103 64, 8192);
6104 snd_pcm_hw_constraint_single(runtime,
6105 SNDRV_PCM_HW_PARAM_PERIODS, 2);
6106 break;
6109 if (AES32 == hdspm->io_type) {
6110 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6111 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6112 &hdspm_hw_constraints_aes32_sample_rates);
6113 } else {
6114 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6115 (playback ?
6116 snd_hdspm_hw_rule_rate_out_channels :
6117 snd_hdspm_hw_rule_rate_in_channels), hdspm,
6118 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6121 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6122 (playback ? snd_hdspm_hw_rule_out_channels :
6123 snd_hdspm_hw_rule_in_channels), hdspm,
6124 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6126 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6127 (playback ? snd_hdspm_hw_rule_out_channels_rate :
6128 snd_hdspm_hw_rule_in_channels_rate), hdspm,
6129 SNDRV_PCM_HW_PARAM_RATE, -1);
6131 return 0;
6134 static int snd_hdspm_release(struct snd_pcm_substream *substream)
6136 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6137 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6139 spin_lock_irq(&hdspm->lock);
6141 if (playback) {
6142 hdspm->playback_pid = -1;
6143 hdspm->playback_substream = NULL;
6144 } else {
6145 hdspm->capture_pid = -1;
6146 hdspm->capture_substream = NULL;
6149 spin_unlock_irq(&hdspm->lock);
6151 return 0;
6154 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6156 /* we have nothing to initialize but the call is required */
6157 return 0;
6160 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6162 u32 val = readl(src);
6163 return copy_to_user(dest, &val, 4);
6166 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6167 unsigned int cmd, unsigned long arg)
6169 void __user *argp = (void __user *)arg;
6170 struct hdspm *hdspm = hw->private_data;
6171 struct hdspm_mixer_ioctl mixer;
6172 struct hdspm_config info;
6173 struct hdspm_status status;
6174 struct hdspm_version hdspm_version;
6175 struct hdspm_peak_rms *levels;
6176 struct hdspm_ltc ltc;
6177 unsigned int statusregister;
6178 long unsigned int s;
6179 int i = 0;
6181 switch (cmd) {
6183 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6184 levels = &hdspm->peak_rms;
6185 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6186 levels->input_peaks[i] =
6187 readl(hdspm->iobase +
6188 HDSPM_MADI_INPUT_PEAK + i*4);
6189 levels->playback_peaks[i] =
6190 readl(hdspm->iobase +
6191 HDSPM_MADI_PLAYBACK_PEAK + i*4);
6192 levels->output_peaks[i] =
6193 readl(hdspm->iobase +
6194 HDSPM_MADI_OUTPUT_PEAK + i*4);
6196 levels->input_rms[i] =
6197 ((uint64_t) readl(hdspm->iobase +
6198 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6199 (uint64_t) readl(hdspm->iobase +
6200 HDSPM_MADI_INPUT_RMS_L + i*4);
6201 levels->playback_rms[i] =
6202 ((uint64_t)readl(hdspm->iobase +
6203 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6204 (uint64_t)readl(hdspm->iobase +
6205 HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6206 levels->output_rms[i] =
6207 ((uint64_t)readl(hdspm->iobase +
6208 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6209 (uint64_t)readl(hdspm->iobase +
6210 HDSPM_MADI_OUTPUT_RMS_L + i*4);
6213 if (hdspm->system_sample_rate > 96000) {
6214 levels->speed = qs;
6215 } else if (hdspm->system_sample_rate > 48000) {
6216 levels->speed = ds;
6217 } else {
6218 levels->speed = ss;
6220 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6222 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6223 if (0 != s) {
6224 /* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu
6225 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6227 return -EFAULT;
6229 break;
6231 case SNDRV_HDSPM_IOCTL_GET_LTC:
6232 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6233 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6234 if (i & HDSPM_TCO1_LTC_Input_valid) {
6235 switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6236 HDSPM_TCO1_LTC_Format_MSB)) {
6237 case 0:
6238 ltc.format = fps_24;
6239 break;
6240 case HDSPM_TCO1_LTC_Format_LSB:
6241 ltc.format = fps_25;
6242 break;
6243 case HDSPM_TCO1_LTC_Format_MSB:
6244 ltc.format = fps_2997;
6245 break;
6246 default:
6247 ltc.format = fps_30;
6248 break;
6250 if (i & HDSPM_TCO1_set_drop_frame_flag) {
6251 ltc.frame = drop_frame;
6252 } else {
6253 ltc.frame = full_frame;
6255 } else {
6256 ltc.format = format_invalid;
6257 ltc.frame = frame_invalid;
6259 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6260 ltc.input_format = ntsc;
6261 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6262 ltc.input_format = pal;
6263 } else {
6264 ltc.input_format = no_video;
6267 s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6268 if (0 != s) {
6270 dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6271 return -EFAULT;
6274 break;
6276 case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6278 memset(&info, 0, sizeof(info));
6279 spin_lock_irq(&hdspm->lock);
6280 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6281 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6283 info.system_sample_rate = hdspm->system_sample_rate;
6284 info.autosync_sample_rate =
6285 hdspm_external_sample_rate(hdspm);
6286 info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6287 info.clock_source = hdspm_clock_source(hdspm);
6288 info.autosync_ref = hdspm_autosync_ref(hdspm);
6289 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6290 info.passthru = 0;
6291 spin_unlock_irq(&hdspm->lock);
6292 if (copy_to_user(argp, &info, sizeof(info)))
6293 return -EFAULT;
6294 break;
6296 case SNDRV_HDSPM_IOCTL_GET_STATUS:
6297 memset(&status, 0, sizeof(status));
6299 status.card_type = hdspm->io_type;
6301 status.autosync_source = hdspm_autosync_ref(hdspm);
6303 status.card_clock = 110069313433624ULL;
6304 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6306 switch (hdspm->io_type) {
6307 case MADI:
6308 case MADIface:
6309 status.card_specific.madi.sync_wc =
6310 hdspm_wc_sync_check(hdspm);
6311 status.card_specific.madi.sync_madi =
6312 hdspm_madi_sync_check(hdspm);
6313 status.card_specific.madi.sync_tco =
6314 hdspm_tco_sync_check(hdspm);
6315 status.card_specific.madi.sync_in =
6316 hdspm_sync_in_sync_check(hdspm);
6318 statusregister =
6319 hdspm_read(hdspm, HDSPM_statusRegister);
6320 status.card_specific.madi.madi_input =
6321 (statusregister & HDSPM_AB_int) ? 1 : 0;
6322 status.card_specific.madi.channel_format =
6323 (statusregister & HDSPM_RX_64ch) ? 1 : 0;
6324 /* TODO: Mac driver sets it when f_s>48kHz */
6325 status.card_specific.madi.frame_format = 0;
6327 default:
6328 break;
6331 if (copy_to_user(argp, &status, sizeof(status)))
6332 return -EFAULT;
6335 break;
6337 case SNDRV_HDSPM_IOCTL_GET_VERSION:
6338 memset(&hdspm_version, 0, sizeof(hdspm_version));
6340 hdspm_version.card_type = hdspm->io_type;
6341 strlcpy(hdspm_version.cardname, hdspm->card_name,
6342 sizeof(hdspm_version.cardname));
6343 hdspm_version.serial = hdspm->serial;
6344 hdspm_version.firmware_rev = hdspm->firmware_rev;
6345 hdspm_version.addons = 0;
6346 if (hdspm->tco)
6347 hdspm_version.addons |= HDSPM_ADDON_TCO;
6349 if (copy_to_user(argp, &hdspm_version,
6350 sizeof(hdspm_version)))
6351 return -EFAULT;
6352 break;
6354 case SNDRV_HDSPM_IOCTL_GET_MIXER:
6355 if (copy_from_user(&mixer, argp, sizeof(mixer)))
6356 return -EFAULT;
6357 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6358 sizeof(struct hdspm_mixer)))
6359 return -EFAULT;
6360 break;
6362 default:
6363 return -EINVAL;
6365 return 0;
6368 static struct snd_pcm_ops snd_hdspm_ops = {
6369 .open = snd_hdspm_open,
6370 .close = snd_hdspm_release,
6371 .ioctl = snd_hdspm_ioctl,
6372 .hw_params = snd_hdspm_hw_params,
6373 .hw_free = snd_hdspm_hw_free,
6374 .prepare = snd_hdspm_prepare,
6375 .trigger = snd_hdspm_trigger,
6376 .pointer = snd_hdspm_hw_pointer,
6377 .page = snd_pcm_sgbuf_ops_page,
6380 static int snd_hdspm_create_hwdep(struct snd_card *card,
6381 struct hdspm *hdspm)
6383 struct snd_hwdep *hw;
6384 int err;
6386 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6387 if (err < 0)
6388 return err;
6390 hdspm->hwdep = hw;
6391 hw->private_data = hdspm;
6392 strcpy(hw->name, "HDSPM hwdep interface");
6394 hw->ops.open = snd_hdspm_hwdep_dummy_op;
6395 hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6396 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6397 hw->ops.release = snd_hdspm_hwdep_dummy_op;
6399 return 0;
6403 /*------------------------------------------------------------
6404 memory interface
6405 ------------------------------------------------------------*/
6406 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6408 int err;
6409 struct snd_pcm *pcm;
6410 size_t wanted;
6412 pcm = hdspm->pcm;
6414 wanted = HDSPM_DMA_AREA_BYTES;
6416 err =
6417 snd_pcm_lib_preallocate_pages_for_all(pcm,
6418 SNDRV_DMA_TYPE_DEV_SG,
6419 snd_dma_pci_data(hdspm->pci),
6420 wanted,
6421 wanted);
6422 if (err < 0) {
6423 dev_dbg(hdspm->card->dev,
6424 "Could not preallocate %zd Bytes\n", wanted);
6426 return err;
6427 } else
6428 dev_dbg(hdspm->card->dev,
6429 " Preallocated %zd Bytes\n", wanted);
6431 return 0;
6435 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6436 struct snd_pcm_substream *substream,
6437 unsigned int reg, int channels)
6439 int i;
6441 /* continuous memory segment */
6442 for (i = 0; i < (channels * 16); i++)
6443 hdspm_write(hdspm, reg + 4 * i,
6444 snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6448 /* ------------- ALSA Devices ---------------------------- */
6449 static int snd_hdspm_create_pcm(struct snd_card *card,
6450 struct hdspm *hdspm)
6452 struct snd_pcm *pcm;
6453 int err;
6455 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6456 if (err < 0)
6457 return err;
6459 hdspm->pcm = pcm;
6460 pcm->private_data = hdspm;
6461 strcpy(pcm->name, hdspm->card_name);
6463 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6464 &snd_hdspm_ops);
6465 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6466 &snd_hdspm_ops);
6468 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6470 err = snd_hdspm_preallocate_memory(hdspm);
6471 if (err < 0)
6472 return err;
6474 return 0;
6477 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6479 int i;
6481 for (i = 0; i < hdspm->midiPorts; i++)
6482 snd_hdspm_flush_midi_input(hdspm, i);
6485 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6486 struct hdspm *hdspm)
6488 int err, i;
6490 dev_dbg(card->dev, "Create card...\n");
6491 err = snd_hdspm_create_pcm(card, hdspm);
6492 if (err < 0)
6493 return err;
6495 i = 0;
6496 while (i < hdspm->midiPorts) {
6497 err = snd_hdspm_create_midi(card, hdspm, i);
6498 if (err < 0) {
6499 return err;
6501 i++;
6504 err = snd_hdspm_create_controls(card, hdspm);
6505 if (err < 0)
6506 return err;
6508 err = snd_hdspm_create_hwdep(card, hdspm);
6509 if (err < 0)
6510 return err;
6512 dev_dbg(card->dev, "proc init...\n");
6513 snd_hdspm_proc_init(hdspm);
6515 hdspm->system_sample_rate = -1;
6516 hdspm->last_external_sample_rate = -1;
6517 hdspm->last_internal_sample_rate = -1;
6518 hdspm->playback_pid = -1;
6519 hdspm->capture_pid = -1;
6520 hdspm->capture_substream = NULL;
6521 hdspm->playback_substream = NULL;
6523 dev_dbg(card->dev, "Set defaults...\n");
6524 err = snd_hdspm_set_defaults(hdspm);
6525 if (err < 0)
6526 return err;
6528 dev_dbg(card->dev, "Update mixer controls...\n");
6529 hdspm_update_simple_mixer_controls(hdspm);
6531 dev_dbg(card->dev, "Initializeing complete ???\n");
6533 err = snd_card_register(card);
6534 if (err < 0) {
6535 dev_err(card->dev, "error registering card\n");
6536 return err;
6539 dev_dbg(card->dev, "... yes now\n");
6541 return 0;
6544 static int snd_hdspm_create(struct snd_card *card,
6545 struct hdspm *hdspm)
6548 struct pci_dev *pci = hdspm->pci;
6549 int err;
6550 unsigned long io_extent;
6552 hdspm->irq = -1;
6553 hdspm->card = card;
6555 spin_lock_init(&hdspm->lock);
6557 pci_read_config_word(hdspm->pci,
6558 PCI_CLASS_REVISION, &hdspm->firmware_rev);
6560 strcpy(card->mixername, "Xilinx FPGA");
6561 strcpy(card->driver, "HDSPM");
6563 switch (hdspm->firmware_rev) {
6564 case HDSPM_RAYDAT_REV:
6565 hdspm->io_type = RayDAT;
6566 hdspm->card_name = "RME RayDAT";
6567 hdspm->midiPorts = 2;
6568 break;
6569 case HDSPM_AIO_REV:
6570 hdspm->io_type = AIO;
6571 hdspm->card_name = "RME AIO";
6572 hdspm->midiPorts = 1;
6573 break;
6574 case HDSPM_MADIFACE_REV:
6575 hdspm->io_type = MADIface;
6576 hdspm->card_name = "RME MADIface";
6577 hdspm->midiPorts = 1;
6578 break;
6579 default:
6580 if ((hdspm->firmware_rev == 0xf0) ||
6581 ((hdspm->firmware_rev >= 0xe6) &&
6582 (hdspm->firmware_rev <= 0xea))) {
6583 hdspm->io_type = AES32;
6584 hdspm->card_name = "RME AES32";
6585 hdspm->midiPorts = 2;
6586 } else if ((hdspm->firmware_rev == 0xd2) ||
6587 ((hdspm->firmware_rev >= 0xc8) &&
6588 (hdspm->firmware_rev <= 0xcf))) {
6589 hdspm->io_type = MADI;
6590 hdspm->card_name = "RME MADI";
6591 hdspm->midiPorts = 3;
6592 } else {
6593 dev_err(card->dev,
6594 "unknown firmware revision %x\n",
6595 hdspm->firmware_rev);
6596 return -ENODEV;
6600 err = pci_enable_device(pci);
6601 if (err < 0)
6602 return err;
6604 pci_set_master(hdspm->pci);
6606 err = pci_request_regions(pci, "hdspm");
6607 if (err < 0)
6608 return err;
6610 hdspm->port = pci_resource_start(pci, 0);
6611 io_extent = pci_resource_len(pci, 0);
6613 dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n",
6614 hdspm->port, hdspm->port + io_extent - 1);
6616 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6617 if (!hdspm->iobase) {
6618 dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n",
6619 hdspm->port, hdspm->port + io_extent - 1);
6620 return -EBUSY;
6622 dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n",
6623 (unsigned long)hdspm->iobase, hdspm->port,
6624 hdspm->port + io_extent - 1);
6626 if (request_irq(pci->irq, snd_hdspm_interrupt,
6627 IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6628 dev_err(card->dev, "unable to use IRQ %d\n", pci->irq);
6629 return -EBUSY;
6632 dev_dbg(card->dev, "use IRQ %d\n", pci->irq);
6634 hdspm->irq = pci->irq;
6636 dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n",
6637 sizeof(struct hdspm_mixer));
6638 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6639 if (!hdspm->mixer) {
6640 dev_err(card->dev,
6641 "unable to kmalloc Mixer memory of %d Bytes\n",
6642 (int)sizeof(struct hdspm_mixer));
6643 return -ENOMEM;
6646 hdspm->port_names_in = NULL;
6647 hdspm->port_names_out = NULL;
6649 switch (hdspm->io_type) {
6650 case AES32:
6651 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6652 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6653 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6655 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6656 channel_map_aes32;
6657 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6658 channel_map_aes32;
6659 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6660 channel_map_aes32;
6661 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6662 texts_ports_aes32;
6663 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6664 texts_ports_aes32;
6665 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6666 texts_ports_aes32;
6668 hdspm->max_channels_out = hdspm->max_channels_in =
6669 AES32_CHANNELS;
6670 hdspm->port_names_in = hdspm->port_names_out =
6671 texts_ports_aes32;
6672 hdspm->channel_map_in = hdspm->channel_map_out =
6673 channel_map_aes32;
6675 break;
6677 case MADI:
6678 case MADIface:
6679 hdspm->ss_in_channels = hdspm->ss_out_channels =
6680 MADI_SS_CHANNELS;
6681 hdspm->ds_in_channels = hdspm->ds_out_channels =
6682 MADI_DS_CHANNELS;
6683 hdspm->qs_in_channels = hdspm->qs_out_channels =
6684 MADI_QS_CHANNELS;
6686 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6687 channel_map_unity_ss;
6688 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6689 channel_map_unity_ss;
6690 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6691 channel_map_unity_ss;
6693 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6694 texts_ports_madi;
6695 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6696 texts_ports_madi;
6697 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6698 texts_ports_madi;
6699 break;
6701 case AIO:
6702 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6703 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6704 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6705 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6706 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6707 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6709 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6710 dev_info(card->dev, "AEB input board found\n");
6711 hdspm->ss_in_channels += 4;
6712 hdspm->ds_in_channels += 4;
6713 hdspm->qs_in_channels += 4;
6716 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6717 dev_info(card->dev, "AEB output board found\n");
6718 hdspm->ss_out_channels += 4;
6719 hdspm->ds_out_channels += 4;
6720 hdspm->qs_out_channels += 4;
6723 hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6724 hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6725 hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6727 hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6728 hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6729 hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6731 hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6732 hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6733 hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6734 hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6735 hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6736 hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6738 break;
6740 case RayDAT:
6741 hdspm->ss_in_channels = hdspm->ss_out_channels =
6742 RAYDAT_SS_CHANNELS;
6743 hdspm->ds_in_channels = hdspm->ds_out_channels =
6744 RAYDAT_DS_CHANNELS;
6745 hdspm->qs_in_channels = hdspm->qs_out_channels =
6746 RAYDAT_QS_CHANNELS;
6748 hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6749 hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6751 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6752 channel_map_raydat_ss;
6753 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6754 channel_map_raydat_ds;
6755 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6756 channel_map_raydat_qs;
6757 hdspm->channel_map_in = hdspm->channel_map_out =
6758 channel_map_raydat_ss;
6760 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6761 texts_ports_raydat_ss;
6762 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6763 texts_ports_raydat_ds;
6764 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6765 texts_ports_raydat_qs;
6768 break;
6772 /* TCO detection */
6773 switch (hdspm->io_type) {
6774 case AIO:
6775 case RayDAT:
6776 if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6777 HDSPM_s2_tco_detect) {
6778 hdspm->midiPorts++;
6779 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6780 GFP_KERNEL);
6781 if (NULL != hdspm->tco) {
6782 hdspm_tco_write(hdspm);
6784 dev_info(card->dev, "AIO/RayDAT TCO module found\n");
6785 } else {
6786 hdspm->tco = NULL;
6788 break;
6790 case MADI:
6791 case AES32:
6792 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6793 hdspm->midiPorts++;
6794 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6795 GFP_KERNEL);
6796 if (NULL != hdspm->tco) {
6797 hdspm_tco_write(hdspm);
6799 dev_info(card->dev, "MADI/AES TCO module found\n");
6800 } else {
6801 hdspm->tco = NULL;
6803 break;
6805 default:
6806 hdspm->tco = NULL;
6809 /* texts */
6810 switch (hdspm->io_type) {
6811 case AES32:
6812 if (hdspm->tco) {
6813 hdspm->texts_autosync = texts_autosync_aes_tco;
6814 hdspm->texts_autosync_items =
6815 ARRAY_SIZE(texts_autosync_aes_tco);
6816 } else {
6817 hdspm->texts_autosync = texts_autosync_aes;
6818 hdspm->texts_autosync_items =
6819 ARRAY_SIZE(texts_autosync_aes);
6821 break;
6823 case MADI:
6824 if (hdspm->tco) {
6825 hdspm->texts_autosync = texts_autosync_madi_tco;
6826 hdspm->texts_autosync_items = 4;
6827 } else {
6828 hdspm->texts_autosync = texts_autosync_madi;
6829 hdspm->texts_autosync_items = 3;
6831 break;
6833 case MADIface:
6835 break;
6837 case RayDAT:
6838 if (hdspm->tco) {
6839 hdspm->texts_autosync = texts_autosync_raydat_tco;
6840 hdspm->texts_autosync_items = 9;
6841 } else {
6842 hdspm->texts_autosync = texts_autosync_raydat;
6843 hdspm->texts_autosync_items = 8;
6845 break;
6847 case AIO:
6848 if (hdspm->tco) {
6849 hdspm->texts_autosync = texts_autosync_aio_tco;
6850 hdspm->texts_autosync_items = 6;
6851 } else {
6852 hdspm->texts_autosync = texts_autosync_aio;
6853 hdspm->texts_autosync_items = 5;
6855 break;
6859 tasklet_init(&hdspm->midi_tasklet,
6860 hdspm_midi_tasklet, (unsigned long) hdspm);
6863 if (hdspm->io_type != MADIface) {
6864 hdspm->serial = (hdspm_read(hdspm,
6865 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6866 /* id contains either a user-provided value or the default
6867 * NULL. If it's the default, we're safe to
6868 * fill card->id with the serial number.
6870 * If the serial number is 0xFFFFFF, then we're dealing with
6871 * an old PCI revision that comes without a sane number. In
6872 * this case, we don't set card->id to avoid collisions
6873 * when running with multiple cards.
6875 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6876 sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6877 snd_card_set_id(card, card->id);
6881 dev_dbg(card->dev, "create alsa devices.\n");
6882 err = snd_hdspm_create_alsa_devices(card, hdspm);
6883 if (err < 0)
6884 return err;
6886 snd_hdspm_initialize_midi_flush(hdspm);
6888 return 0;
6892 static int snd_hdspm_free(struct hdspm * hdspm)
6895 if (hdspm->port) {
6897 /* stop th audio, and cancel all interrupts */
6898 hdspm->control_register &=
6899 ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6900 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6901 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6902 hdspm_write(hdspm, HDSPM_controlRegister,
6903 hdspm->control_register);
6906 if (hdspm->irq >= 0)
6907 free_irq(hdspm->irq, (void *) hdspm);
6909 kfree(hdspm->mixer);
6910 iounmap(hdspm->iobase);
6912 if (hdspm->port)
6913 pci_release_regions(hdspm->pci);
6915 pci_disable_device(hdspm->pci);
6916 return 0;
6920 static void snd_hdspm_card_free(struct snd_card *card)
6922 struct hdspm *hdspm = card->private_data;
6924 if (hdspm)
6925 snd_hdspm_free(hdspm);
6929 static int snd_hdspm_probe(struct pci_dev *pci,
6930 const struct pci_device_id *pci_id)
6932 static int dev;
6933 struct hdspm *hdspm;
6934 struct snd_card *card;
6935 int err;
6937 if (dev >= SNDRV_CARDS)
6938 return -ENODEV;
6939 if (!enable[dev]) {
6940 dev++;
6941 return -ENOENT;
6944 err = snd_card_new(&pci->dev, index[dev], id[dev],
6945 THIS_MODULE, sizeof(struct hdspm), &card);
6946 if (err < 0)
6947 return err;
6949 hdspm = card->private_data;
6950 card->private_free = snd_hdspm_card_free;
6951 hdspm->dev = dev;
6952 hdspm->pci = pci;
6954 err = snd_hdspm_create(card, hdspm);
6955 if (err < 0) {
6956 snd_card_free(card);
6957 return err;
6960 if (hdspm->io_type != MADIface) {
6961 sprintf(card->shortname, "%s_%x",
6962 hdspm->card_name,
6963 hdspm->serial);
6964 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6965 hdspm->card_name,
6966 hdspm->serial,
6967 hdspm->port, hdspm->irq);
6968 } else {
6969 sprintf(card->shortname, "%s", hdspm->card_name);
6970 sprintf(card->longname, "%s at 0x%lx, irq %d",
6971 hdspm->card_name, hdspm->port, hdspm->irq);
6974 err = snd_card_register(card);
6975 if (err < 0) {
6976 snd_card_free(card);
6977 return err;
6980 pci_set_drvdata(pci, card);
6982 dev++;
6983 return 0;
6986 static void snd_hdspm_remove(struct pci_dev *pci)
6988 snd_card_free(pci_get_drvdata(pci));
6991 static struct pci_driver hdspm_driver = {
6992 .name = KBUILD_MODNAME,
6993 .id_table = snd_hdspm_ids,
6994 .probe = snd_hdspm_probe,
6995 .remove = snd_hdspm_remove,
6998 module_pci_driver(hdspm_driver);