2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
7 #define _LARGEFILE64_SOURCE
17 #include <sys/param.h>
18 #include <sys/types.h>
21 #include <sys/eventfd.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
30 #include <netinet/in.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
45 #include <linux/pci_regs.h>
47 #ifndef VIRTIO_F_ANY_LAYOUT
48 #define VIRTIO_F_ANY_LAYOUT 27
52 * We can ignore the 43 include files we need for this program, but I do want
53 * to draw attention to the use of kernel-style types.
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
58 * use %llu in printf for any u64.
60 typedef unsigned long long u64
;
66 #define VIRTIO_CONFIG_NO_LEGACY
67 #define VIRTIO_PCI_NO_LEGACY
68 #define VIRTIO_BLK_NO_LEGACY
69 #define VIRTIO_NET_NO_LEGACY
71 /* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
72 #include "../../include/uapi/linux/virtio_config.h"
73 #include "../../include/uapi/linux/virtio_net.h"
74 #include "../../include/uapi/linux/virtio_blk.h"
75 #include "../../include/uapi/linux/virtio_console.h"
76 #include "../../include/uapi/linux/virtio_rng.h"
77 #include <linux/virtio_ring.h>
78 #include "../../include/uapi/linux/virtio_pci.h"
79 #include <asm/bootparam.h>
80 #include "../../include/linux/lguest_launcher.h"
82 #define BRIDGE_PFX "bridge:"
84 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
86 /* We can have up to 256 pages for devices. */
87 #define DEVICE_PAGES 256
88 /* This will occupy 3 pages: it must be a power of 2. */
89 #define VIRTQUEUE_NUM 256
92 * verbose is both a global flag and a macro. The C preprocessor allows
93 * this, and although I wouldn't recommend it, it works quite nicely here.
96 #define verbose(args...) \
97 do { if (verbose) printf(args); } while(0)
100 /* The pointer to the start of guest memory. */
101 static void *guest_base
;
102 /* The maximum guest physical address allowed, and maximum possible. */
103 static unsigned long guest_limit
, guest_max
, guest_mmio
;
104 /* The /dev/lguest file descriptor. */
105 static int lguest_fd
;
107 /* a per-cpu variable indicating whose vcpu is currently running */
108 static unsigned int __thread cpu_id
;
110 /* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
111 #define MAX_PCI_DEVICES 32
113 /* This is our list of devices. */
115 /* Counter to assign interrupt numbers. */
116 unsigned int next_irq
;
118 /* Counter to print out convenient device numbers. */
119 unsigned int device_num
;
122 struct device
*pci
[MAX_PCI_DEVICES
];
125 /* The list of Guest devices, based on command line arguments. */
126 static struct device_list devices
;
129 * Just like struct virtio_pci_cfg_cap in uapi/linux/virtio_pci.h,
130 * but uses a u32 explicitly for the data.
132 struct virtio_pci_cfg_cap_u32
{
133 struct virtio_pci_cap cap
;
134 u32 pci_cfg_data
; /* Data for BAR access. */
137 struct virtio_pci_mmio
{
138 struct virtio_pci_common_cfg cfg
;
142 /* Device-specific configuration follows this. */
145 /* This is the layout (little-endian) of the PCI config space. */
147 u16 vendor_id
, device_id
;
149 u8 revid
, prog_if
, subclass
, class;
150 u8 cacheline_size
, lat_timer
, header_type
, bist
;
153 u16 subsystem_vendor_id
, subsystem_device_id
;
154 u32 expansion_rom_addr
;
155 u8 capabilities
, reserved1
[3];
157 u8 irq_line
, irq_pin
, min_grant
, max_latency
;
159 /* Now, this is the linked capability list. */
160 struct virtio_pci_cap common
;
161 struct virtio_pci_notify_cap notify
;
162 struct virtio_pci_cap isr
;
163 struct virtio_pci_cap device
;
164 struct virtio_pci_cfg_cap_u32 cfg_access
;
167 /* The device structure describes a single device. */
169 /* The name of this device, for --verbose. */
172 /* Any queues attached to this device */
173 struct virtqueue
*vq
;
175 /* Is it operational */
178 /* Has it written FEATURES_OK but not re-checked it? */
179 bool wrote_features_ok
;
181 /* PCI configuration */
183 struct pci_config config
;
184 u32 config_words
[sizeof(struct pci_config
) / sizeof(u32
)];
187 /* Features we offer, and those accepted. */
188 u64 features
, features_accepted
;
190 /* Device-specific config hangs off the end of this. */
191 struct virtio_pci_mmio
*mmio
;
193 /* PCI MMIO resources (all in BAR0) */
197 /* Device-specific data. */
201 /* The virtqueue structure describes a queue attached to a device. */
203 struct virtqueue
*next
;
205 /* Which device owns me. */
208 /* Name for printing errors. */
211 /* The actual ring of buffers. */
214 /* The information about this virtqueue (we only use queue_size on) */
215 struct virtio_pci_common_cfg pci_config
;
217 /* Last available index we saw. */
220 /* How many are used since we sent last irq? */
221 unsigned int pending_used
;
223 /* Eventfd where Guest notifications arrive. */
226 /* Function for the thread which is servicing this virtqueue. */
227 void (*service
)(struct virtqueue
*vq
);
231 /* Remember the arguments to the program so we can "reboot" */
232 static char **main_args
;
234 /* The original tty settings to restore on exit. */
235 static struct termios orig_term
;
238 * We have to be careful with barriers: our devices are all run in separate
239 * threads and so we need to make sure that changes visible to the Guest happen
242 #define wmb() __asm__ __volatile__("" : : : "memory")
243 #define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
244 #define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
246 /* Wrapper for the last available index. Makes it easier to change. */
247 #define lg_last_avail(vq) ((vq)->last_avail_idx)
250 * The virtio configuration space is defined to be little-endian. x86 is
251 * little-endian too, but it's nice to be explicit so we have these helpers.
253 #define cpu_to_le16(v16) (v16)
254 #define cpu_to_le32(v32) (v32)
255 #define cpu_to_le64(v64) (v64)
256 #define le16_to_cpu(v16) (v16)
257 #define le32_to_cpu(v32) (v32)
258 #define le64_to_cpu(v64) (v64)
261 * A real device would ignore weird/non-compliant driver behaviour. We
262 * stop and flag it, to help debugging Linux problems.
264 #define bad_driver(d, fmt, ...) \
265 errx(1, "%s: bad driver: " fmt, (d)->name, ## __VA_ARGS__)
266 #define bad_driver_vq(vq, fmt, ...) \
267 errx(1, "%s vq %s: bad driver: " fmt, (vq)->dev->name, \
268 vq->name, ## __VA_ARGS__)
270 /* Is this iovec empty? */
271 static bool iov_empty(const struct iovec iov
[], unsigned int num_iov
)
275 for (i
= 0; i
< num_iov
; i
++)
281 /* Take len bytes from the front of this iovec. */
282 static void iov_consume(struct device
*d
,
283 struct iovec iov
[], unsigned num_iov
,
284 void *dest
, unsigned len
)
288 for (i
= 0; i
< num_iov
; i
++) {
291 used
= iov
[i
].iov_len
< len
? iov
[i
].iov_len
: len
;
293 memcpy(dest
, iov
[i
].iov_base
, used
);
296 iov
[i
].iov_base
+= used
;
297 iov
[i
].iov_len
-= used
;
301 bad_driver(d
, "iovec too short!");
305 * The Launcher code itself takes us out into userspace, that scary place where
306 * pointers run wild and free! Unfortunately, like most userspace programs,
307 * it's quite boring (which is why everyone likes to hack on the kernel!).
308 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
309 * you through this section. Or, maybe not.
311 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
312 * memory and stores it in "guest_base". In other words, Guest physical ==
313 * Launcher virtual with an offset.
315 * This can be tough to get your head around, but usually it just means that we
316 * use these trivial conversion functions when the Guest gives us its
317 * "physical" addresses:
319 static void *from_guest_phys(unsigned long addr
)
321 return guest_base
+ addr
;
324 static unsigned long to_guest_phys(const void *addr
)
326 return (addr
- guest_base
);
330 * Loading the Kernel.
332 * We start with couple of simple helper routines. open_or_die() avoids
333 * error-checking code cluttering the callers:
335 static int open_or_die(const char *name
, int flags
)
337 int fd
= open(name
, flags
);
339 err(1, "Failed to open %s", name
);
343 /* map_zeroed_pages() takes a number of pages. */
344 static void *map_zeroed_pages(unsigned int num
)
346 int fd
= open_or_die("/dev/zero", O_RDONLY
);
350 * We use a private mapping (ie. if we write to the page, it will be
351 * copied). We allocate an extra two pages PROT_NONE to act as guard
352 * pages against read/write attempts that exceed allocated space.
354 addr
= mmap(NULL
, getpagesize() * (num
+2),
355 PROT_NONE
, MAP_PRIVATE
, fd
, 0);
357 if (addr
== MAP_FAILED
)
358 err(1, "Mmapping %u pages of /dev/zero", num
);
360 if (mprotect(addr
+ getpagesize(), getpagesize() * num
,
361 PROT_READ
|PROT_WRITE
) == -1)
362 err(1, "mprotect rw %u pages failed", num
);
365 * One neat mmap feature is that you can close the fd, and it
370 /* Return address after PROT_NONE page */
371 return addr
+ getpagesize();
374 /* Get some bytes which won't be mapped into the guest. */
375 static unsigned long get_mmio_region(size_t size
)
377 unsigned long addr
= guest_mmio
;
383 /* Size has to be a power of 2 (and multiple of 16) */
384 for (i
= 1; i
< size
; i
<<= 1);
392 * This routine is used to load the kernel or initrd. It tries mmap, but if
393 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
394 * it falls back to reading the memory in.
396 static void map_at(int fd
, void *addr
, unsigned long offset
, unsigned long len
)
401 * We map writable even though for some segments are marked read-only.
402 * The kernel really wants to be writable: it patches its own
405 * MAP_PRIVATE means that the page won't be copied until a write is
406 * done to it. This allows us to share untouched memory between
409 if (mmap(addr
, len
, PROT_READ
|PROT_WRITE
,
410 MAP_FIXED
|MAP_PRIVATE
, fd
, offset
) != MAP_FAILED
)
413 /* pread does a seek and a read in one shot: saves a few lines. */
414 r
= pread(fd
, addr
, len
, offset
);
416 err(1, "Reading offset %lu len %lu gave %zi", offset
, len
, r
);
420 * This routine takes an open vmlinux image, which is in ELF, and maps it into
421 * the Guest memory. ELF = Embedded Linking Format, which is the format used
422 * by all modern binaries on Linux including the kernel.
424 * The ELF headers give *two* addresses: a physical address, and a virtual
425 * address. We use the physical address; the Guest will map itself to the
428 * We return the starting address.
430 static unsigned long map_elf(int elf_fd
, const Elf32_Ehdr
*ehdr
)
432 Elf32_Phdr phdr
[ehdr
->e_phnum
];
436 * Sanity checks on the main ELF header: an x86 executable with a
437 * reasonable number of correctly-sized program headers.
439 if (ehdr
->e_type
!= ET_EXEC
440 || ehdr
->e_machine
!= EM_386
441 || ehdr
->e_phentsize
!= sizeof(Elf32_Phdr
)
442 || ehdr
->e_phnum
< 1 || ehdr
->e_phnum
> 65536U/sizeof(Elf32_Phdr
))
443 errx(1, "Malformed elf header");
446 * An ELF executable contains an ELF header and a number of "program"
447 * headers which indicate which parts ("segments") of the program to
451 /* We read in all the program headers at once: */
452 if (lseek(elf_fd
, ehdr
->e_phoff
, SEEK_SET
) < 0)
453 err(1, "Seeking to program headers");
454 if (read(elf_fd
, phdr
, sizeof(phdr
)) != sizeof(phdr
))
455 err(1, "Reading program headers");
458 * Try all the headers: there are usually only three. A read-only one,
459 * a read-write one, and a "note" section which we don't load.
461 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
462 /* If this isn't a loadable segment, we ignore it */
463 if (phdr
[i
].p_type
!= PT_LOAD
)
466 verbose("Section %i: size %i addr %p\n",
467 i
, phdr
[i
].p_memsz
, (void *)phdr
[i
].p_paddr
);
469 /* We map this section of the file at its physical address. */
470 map_at(elf_fd
, from_guest_phys(phdr
[i
].p_paddr
),
471 phdr
[i
].p_offset
, phdr
[i
].p_filesz
);
474 /* The entry point is given in the ELF header. */
475 return ehdr
->e_entry
;
479 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
480 * to jump into it and it will unpack itself. We used to have to perform some
481 * hairy magic because the unpacking code scared me.
483 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
484 * a small patch to jump over the tricky bits in the Guest, so now we just read
485 * the funky header so we know where in the file to load, and away we go!
487 static unsigned long load_bzimage(int fd
)
489 struct boot_params boot
;
491 /* Modern bzImages get loaded at 1M. */
492 void *p
= from_guest_phys(0x100000);
495 * Go back to the start of the file and read the header. It should be
496 * a Linux boot header (see Documentation/x86/boot.txt)
498 lseek(fd
, 0, SEEK_SET
);
499 read(fd
, &boot
, sizeof(boot
));
501 /* Inside the setup_hdr, we expect the magic "HdrS" */
502 if (memcmp(&boot
.hdr
.header
, "HdrS", 4) != 0)
503 errx(1, "This doesn't look like a bzImage to me");
505 /* Skip over the extra sectors of the header. */
506 lseek(fd
, (boot
.hdr
.setup_sects
+1) * 512, SEEK_SET
);
508 /* Now read everything into memory. in nice big chunks. */
509 while ((r
= read(fd
, p
, 65536)) > 0)
512 /* Finally, code32_start tells us where to enter the kernel. */
513 return boot
.hdr
.code32_start
;
517 * Loading the kernel is easy when it's a "vmlinux", but most kernels
518 * come wrapped up in the self-decompressing "bzImage" format. With a little
519 * work, we can load those, too.
521 static unsigned long load_kernel(int fd
)
525 /* Read in the first few bytes. */
526 if (read(fd
, &hdr
, sizeof(hdr
)) != sizeof(hdr
))
527 err(1, "Reading kernel");
529 /* If it's an ELF file, it starts with "\177ELF" */
530 if (memcmp(hdr
.e_ident
, ELFMAG
, SELFMAG
) == 0)
531 return map_elf(fd
, &hdr
);
533 /* Otherwise we assume it's a bzImage, and try to load it. */
534 return load_bzimage(fd
);
538 * This is a trivial little helper to align pages. Andi Kleen hated it because
539 * it calls getpagesize() twice: "it's dumb code."
541 * Kernel guys get really het up about optimization, even when it's not
542 * necessary. I leave this code as a reaction against that.
544 static inline unsigned long page_align(unsigned long addr
)
546 /* Add upwards and truncate downwards. */
547 return ((addr
+ getpagesize()-1) & ~(getpagesize()-1));
551 * An "initial ram disk" is a disk image loaded into memory along with the
552 * kernel which the kernel can use to boot from without needing any drivers.
553 * Most distributions now use this as standard: the initrd contains the code to
554 * load the appropriate driver modules for the current machine.
556 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
557 * kernels. He sent me this (and tells me when I break it).
559 static unsigned long load_initrd(const char *name
, unsigned long mem
)
565 ifd
= open_or_die(name
, O_RDONLY
);
566 /* fstat() is needed to get the file size. */
567 if (fstat(ifd
, &st
) < 0)
568 err(1, "fstat() on initrd '%s'", name
);
571 * We map the initrd at the top of memory, but mmap wants it to be
572 * page-aligned, so we round the size up for that.
574 len
= page_align(st
.st_size
);
575 map_at(ifd
, from_guest_phys(mem
- len
), 0, st
.st_size
);
577 * Once a file is mapped, you can close the file descriptor. It's a
578 * little odd, but quite useful.
581 verbose("mapped initrd %s size=%lu @ %p\n", name
, len
, (void*)mem
-len
);
583 /* We return the initrd size. */
589 * Simple routine to roll all the commandline arguments together with spaces
592 static void concat(char *dst
, char *args
[])
594 unsigned int i
, len
= 0;
596 for (i
= 0; args
[i
]; i
++) {
598 strcat(dst
+len
, " ");
601 strcpy(dst
+len
, args
[i
]);
602 len
+= strlen(args
[i
]);
604 /* In case it's empty. */
609 * This is where we actually tell the kernel to initialize the Guest. We
610 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
611 * the base of Guest "physical" memory, the top physical page to allow and the
612 * entry point for the Guest.
614 static void tell_kernel(unsigned long start
)
616 unsigned long args
[] = { LHREQ_INITIALIZE
,
617 (unsigned long)guest_base
,
618 guest_limit
/ getpagesize(), start
,
619 (guest_mmio
+getpagesize()-1) / getpagesize() };
620 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
621 guest_base
, guest_base
+ guest_limit
,
622 guest_limit
, guest_mmio
);
623 lguest_fd
= open_or_die("/dev/lguest", O_RDWR
);
624 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
625 err(1, "Writing to /dev/lguest");
632 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
633 * We need to make sure it's not trying to reach into the Launcher itself, so
634 * we have a convenient routine which checks it and exits with an error message
635 * if something funny is going on:
637 static void *_check_pointer(struct device
*d
,
638 unsigned long addr
, unsigned int size
,
642 * Check if the requested address and size exceeds the allocated memory,
643 * or addr + size wraps around.
645 if ((addr
+ size
) > guest_limit
|| (addr
+ size
) < addr
)
646 bad_driver(d
, "%s:%i: Invalid address %#lx",
647 __FILE__
, line
, addr
);
649 * We return a pointer for the caller's convenience, now we know it's
652 return from_guest_phys(addr
);
654 /* A macro which transparently hands the line number to the real function. */
655 #define check_pointer(d,addr,size) _check_pointer(d, addr, size, __LINE__)
658 * Each buffer in the virtqueues is actually a chain of descriptors. This
659 * function returns the next descriptor in the chain, or vq->vring.num if we're
662 static unsigned next_desc(struct device
*d
, struct vring_desc
*desc
,
663 unsigned int i
, unsigned int max
)
667 /* If this descriptor says it doesn't chain, we're done. */
668 if (!(desc
[i
].flags
& VRING_DESC_F_NEXT
))
671 /* Check they're not leading us off end of descriptors. */
673 /* Make sure compiler knows to grab that: we don't want it changing! */
677 bad_driver(d
, "Desc next is %u", next
);
683 * This actually sends the interrupt for this virtqueue, if we've used a
686 static void trigger_irq(struct virtqueue
*vq
)
688 unsigned long buf
[] = { LHREQ_IRQ
, vq
->dev
->config
.irq_line
};
690 /* Don't inform them if nothing used. */
691 if (!vq
->pending_used
)
693 vq
->pending_used
= 0;
698 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
699 * The driver MUST set flags to 0 or 1.
701 if (vq
->vring
.avail
->flags
> 1)
702 bad_driver_vq(vq
, "avail->flags = %u\n", vq
->vring
.avail
->flags
);
707 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
709 * - The device MUST ignore the used_event value.
710 * - After the device writes a descriptor index into the used ring:
711 * - If flags is 1, the device SHOULD NOT send an interrupt.
712 * - If flags is 0, the device MUST send an interrupt.
714 if (vq
->vring
.avail
->flags
& VRING_AVAIL_F_NO_INTERRUPT
) {
721 * If MSI-X capability is disabled, the device MUST set the Queue
722 * Interrupt bit in ISR status before sending a virtqueue notification
725 vq
->dev
->mmio
->isr
= 0x1;
727 /* Send the Guest an interrupt tell them we used something up. */
728 if (write(lguest_fd
, buf
, sizeof(buf
)) != 0)
729 err(1, "Triggering irq %i", vq
->dev
->config
.irq_line
);
733 * This looks in the virtqueue for the first available buffer, and converts
734 * it to an iovec for convenient access. Since descriptors consist of some
735 * number of output then some number of input descriptors, it's actually two
736 * iovecs, but we pack them into one and note how many of each there were.
738 * This function waits if necessary, and returns the descriptor number found.
740 static unsigned wait_for_vq_desc(struct virtqueue
*vq
,
742 unsigned int *out_num
, unsigned int *in_num
)
744 unsigned int i
, head
, max
;
745 struct vring_desc
*desc
;
746 u16 last_avail
= lg_last_avail(vq
);
751 * The driver MUST handle spurious interrupts from the device.
753 * That's why this is a while loop.
756 /* There's nothing available? */
757 while (last_avail
== vq
->vring
.avail
->idx
) {
761 * Since we're about to sleep, now is a good time to tell the
762 * Guest about what we've used up to now.
766 /* OK, now we need to know about added descriptors. */
767 vq
->vring
.used
->flags
&= ~VRING_USED_F_NO_NOTIFY
;
770 * They could have slipped one in as we were doing that: make
771 * sure it's written, then check again.
774 if (last_avail
!= vq
->vring
.avail
->idx
) {
775 vq
->vring
.used
->flags
|= VRING_USED_F_NO_NOTIFY
;
779 /* Nothing new? Wait for eventfd to tell us they refilled. */
780 if (read(vq
->eventfd
, &event
, sizeof(event
)) != sizeof(event
))
781 errx(1, "Event read failed?");
783 /* We don't need to be notified again. */
784 vq
->vring
.used
->flags
|= VRING_USED_F_NO_NOTIFY
;
787 /* Check it isn't doing very strange things with descriptor numbers. */
788 if ((u16
)(vq
->vring
.avail
->idx
- last_avail
) > vq
->vring
.num
)
789 bad_driver_vq(vq
, "Guest moved used index from %u to %u",
790 last_avail
, vq
->vring
.avail
->idx
);
793 * Make sure we read the descriptor number *after* we read the ring
794 * update; don't let the cpu or compiler change the order.
799 * Grab the next descriptor number they're advertising, and increment
800 * the index we've seen.
802 head
= vq
->vring
.avail
->ring
[last_avail
% vq
->vring
.num
];
805 /* If their number is silly, that's a fatal mistake. */
806 if (head
>= vq
->vring
.num
)
807 bad_driver_vq(vq
, "Guest says index %u is available", head
);
809 /* When we start there are none of either input nor output. */
810 *out_num
= *in_num
= 0;
813 desc
= vq
->vring
.desc
;
817 * We have to read the descriptor after we read the descriptor number,
818 * but there's a data dependency there so the CPU shouldn't reorder
819 * that: no rmb() required.
824 * If this is an indirect entry, then this buffer contains a
825 * descriptor table which we handle as if it's any normal
828 if (desc
[i
].flags
& VRING_DESC_F_INDIRECT
) {
831 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
832 * flag unless the VIRTIO_F_INDIRECT_DESC feature was
835 if (!(vq
->dev
->features_accepted
&
836 (1<<VIRTIO_RING_F_INDIRECT_DESC
)))
837 bad_driver_vq(vq
, "vq indirect not negotiated");
842 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
843 * flag within an indirect descriptor (ie. only one
844 * table per descriptor).
846 if (desc
!= vq
->vring
.desc
)
847 bad_driver_vq(vq
, "Indirect within indirect");
850 * Proposed update VIRTIO-134 spells this out:
852 * A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT
853 * and VIRTQ_DESC_F_NEXT in flags.
855 if (desc
[i
].flags
& VRING_DESC_F_NEXT
)
856 bad_driver_vq(vq
, "indirect and next together");
858 if (desc
[i
].len
% sizeof(struct vring_desc
))
860 "Invalid size for indirect table");
864 * The device MUST ignore the write-only flag
865 * (flags&VIRTQ_DESC_F_WRITE) in the descriptor that
866 * refers to an indirect table.
868 * We ignore it here: :)
871 max
= desc
[i
].len
/ sizeof(struct vring_desc
);
872 desc
= check_pointer(vq
->dev
, desc
[i
].addr
, desc
[i
].len
);
877 * A driver MUST NOT create a descriptor chain longer
878 * than the Queue Size of the device.
880 if (max
> vq
->pci_config
.queue_size
)
882 "indirect has too many entries");
885 /* Grab the first descriptor, and check it's OK. */
886 iov
[*out_num
+ *in_num
].iov_len
= desc
[i
].len
;
887 iov
[*out_num
+ *in_num
].iov_base
888 = check_pointer(vq
->dev
, desc
[i
].addr
, desc
[i
].len
);
889 /* If this is an input descriptor, increment that count. */
890 if (desc
[i
].flags
& VRING_DESC_F_WRITE
)
894 * If it's an output descriptor, they're all supposed
895 * to come before any input descriptors.
899 "Descriptor has out after in");
903 /* If we've got too many, that implies a descriptor loop. */
904 if (*out_num
+ *in_num
> max
)
905 bad_driver_vq(vq
, "Looped descriptor");
906 } while ((i
= next_desc(vq
->dev
, desc
, i
, max
)) != max
);
912 * After we've used one of their buffers, we tell the Guest about it. Sometime
913 * later we'll want to send them an interrupt using trigger_irq(); note that
914 * wait_for_vq_desc() does that for us if it has to wait.
916 static void add_used(struct virtqueue
*vq
, unsigned int head
, int len
)
918 struct vring_used_elem
*used
;
921 * The virtqueue contains a ring of used buffers. Get a pointer to the
922 * next entry in that used ring.
924 used
= &vq
->vring
.used
->ring
[vq
->vring
.used
->idx
% vq
->vring
.num
];
927 /* Make sure buffer is written before we update index. */
929 vq
->vring
.used
->idx
++;
933 /* And here's the combo meal deal. Supersize me! */
934 static void add_used_and_trigger(struct virtqueue
*vq
, unsigned head
, int len
)
936 add_used(vq
, head
, len
);
943 * We associate some data with the console for our exit hack.
945 struct console_abort
{
946 /* How many times have they hit ^C? */
948 /* When did they start? */
949 struct timeval start
;
952 /* This is the routine which handles console input (ie. stdin). */
953 static void console_input(struct virtqueue
*vq
)
956 unsigned int head
, in_num
, out_num
;
957 struct console_abort
*abort
= vq
->dev
->priv
;
958 struct iovec iov
[vq
->vring
.num
];
960 /* Make sure there's a descriptor available. */
961 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
963 bad_driver_vq(vq
, "Output buffers in console in queue?");
965 /* Read into it. This is where we usually wait. */
966 len
= readv(STDIN_FILENO
, iov
, in_num
);
968 /* Ran out of input? */
969 warnx("Failed to get console input, ignoring console.");
971 * For simplicity, dying threads kill the whole Launcher. So
978 /* Tell the Guest we used a buffer. */
979 add_used_and_trigger(vq
, head
, len
);
982 * Three ^C within one second? Exit.
984 * This is such a hack, but works surprisingly well. Each ^C has to
985 * be in a buffer by itself, so they can't be too fast. But we check
986 * that we get three within about a second, so they can't be too
989 if (len
!= 1 || ((char *)iov
[0].iov_base
)[0] != 3) {
995 if (abort
->count
== 1)
996 gettimeofday(&abort
->start
, NULL
);
997 else if (abort
->count
== 3) {
999 gettimeofday(&now
, NULL
);
1000 /* Kill all Launcher processes with SIGINT, like normal ^C */
1001 if (now
.tv_sec
<= abort
->start
.tv_sec
+1)
1007 /* This is the routine which handles console output (ie. stdout). */
1008 static void console_output(struct virtqueue
*vq
)
1010 unsigned int head
, out
, in
;
1011 struct iovec iov
[vq
->vring
.num
];
1013 /* We usually wait in here, for the Guest to give us something. */
1014 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1016 bad_driver_vq(vq
, "Input buffers in console output queue?");
1018 /* writev can return a partial write, so we loop here. */
1019 while (!iov_empty(iov
, out
)) {
1020 int len
= writev(STDOUT_FILENO
, iov
, out
);
1022 warn("Write to stdout gave %i (%d)", len
, errno
);
1025 iov_consume(vq
->dev
, iov
, out
, NULL
, len
);
1029 * We're finished with that buffer: if we're going to sleep,
1030 * wait_for_vq_desc() will prod the Guest with an interrupt.
1032 add_used(vq
, head
, 0);
1038 * Handling output for network is also simple: we get all the output buffers
1039 * and write them to /dev/net/tun.
1045 static void net_output(struct virtqueue
*vq
)
1047 struct net_info
*net_info
= vq
->dev
->priv
;
1048 unsigned int head
, out
, in
;
1049 struct iovec iov
[vq
->vring
.num
];
1051 /* We usually wait in here for the Guest to give us a packet. */
1052 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1054 bad_driver_vq(vq
, "Input buffers in net output queue?");
1056 * Send the whole thing through to /dev/net/tun. It expects the exact
1057 * same format: what a coincidence!
1059 if (writev(net_info
->tunfd
, iov
, out
) < 0)
1060 warnx("Write to tun failed (%d)?", errno
);
1063 * Done with that one; wait_for_vq_desc() will send the interrupt if
1064 * all packets are processed.
1066 add_used(vq
, head
, 0);
1070 * Handling network input is a bit trickier, because I've tried to optimize it.
1072 * First we have a helper routine which tells is if from this file descriptor
1073 * (ie. the /dev/net/tun device) will block:
1075 static bool will_block(int fd
)
1078 struct timeval zero
= { 0, 0 };
1081 return select(fd
+1, &fdset
, NULL
, NULL
, &zero
) != 1;
1085 * This handles packets coming in from the tun device to our Guest. Like all
1086 * service routines, it gets called again as soon as it returns, so you don't
1087 * see a while(1) loop here.
1089 static void net_input(struct virtqueue
*vq
)
1092 unsigned int head
, out
, in
;
1093 struct iovec iov
[vq
->vring
.num
];
1094 struct net_info
*net_info
= vq
->dev
->priv
;
1097 * Get a descriptor to write an incoming packet into. This will also
1098 * send an interrupt if they're out of descriptors.
1100 head
= wait_for_vq_desc(vq
, iov
, &out
, &in
);
1102 bad_driver_vq(vq
, "Output buffers in net input queue?");
1105 * If it looks like we'll block reading from the tun device, send them
1108 if (vq
->pending_used
&& will_block(net_info
->tunfd
))
1112 * Read in the packet. This is where we normally wait (when there's no
1113 * incoming network traffic).
1115 len
= readv(net_info
->tunfd
, iov
, in
);
1117 warn("Failed to read from tun (%d).", errno
);
1120 * Mark that packet buffer as used, but don't interrupt here. We want
1121 * to wait until we've done as much work as we can.
1123 add_used(vq
, head
, len
);
1127 /* This is the helper to create threads: run the service routine in a loop. */
1128 static int do_thread(void *_vq
)
1130 struct virtqueue
*vq
= _vq
;
1138 * When a child dies, we kill our entire process group with SIGTERM. This
1139 * also has the side effect that the shell restores the console for us!
1141 static void kill_launcher(int signal
)
1146 static void reset_vq_pci_config(struct virtqueue
*vq
)
1148 vq
->pci_config
.queue_size
= VIRTQUEUE_NUM
;
1149 vq
->pci_config
.queue_enable
= 0;
1152 static void reset_device(struct device
*dev
)
1154 struct virtqueue
*vq
;
1156 verbose("Resetting device %s\n", dev
->name
);
1158 /* Clear any features they've acked. */
1159 dev
->features_accepted
= 0;
1161 /* We're going to be explicitly killing threads, so ignore them. */
1162 signal(SIGCHLD
, SIG_IGN
);
1167 * The device MUST present a 0 in queue_enable on reset.
1169 * This means we set it here, and reset the saved ones in every vq.
1171 dev
->mmio
->cfg
.queue_enable
= 0;
1173 /* Get rid of the virtqueue threads */
1174 for (vq
= dev
->vq
; vq
; vq
= vq
->next
) {
1175 vq
->last_avail_idx
= 0;
1176 reset_vq_pci_config(vq
);
1177 if (vq
->thread
!= (pid_t
)-1) {
1178 kill(vq
->thread
, SIGTERM
);
1179 waitpid(vq
->thread
, NULL
, 0);
1180 vq
->thread
= (pid_t
)-1;
1183 dev
->running
= false;
1184 dev
->wrote_features_ok
= false;
1186 /* Now we care if threads die. */
1187 signal(SIGCHLD
, (void *)kill_launcher
);
1190 static void cleanup_devices(void)
1194 for (i
= 1; i
< MAX_PCI_DEVICES
; i
++) {
1195 struct device
*d
= devices
.pci
[i
];
1201 /* If we saved off the original terminal settings, restore them now. */
1202 if (orig_term
.c_lflag
& (ISIG
|ICANON
|ECHO
))
1203 tcsetattr(STDIN_FILENO
, TCSANOW
, &orig_term
);
1207 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1211 /* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1212 static struct device pci_host_bridge
;
1214 static void init_pci_host_bridge(void)
1216 pci_host_bridge
.name
= "PCI Host Bridge";
1217 pci_host_bridge
.config
.class = 0x06; /* bridge */
1218 pci_host_bridge
.config
.subclass
= 0; /* host bridge */
1219 devices
.pci
[0] = &pci_host_bridge
;
1222 /* The IO ports used to read the PCI config space. */
1223 #define PCI_CONFIG_ADDR 0xCF8
1224 #define PCI_CONFIG_DATA 0xCFC
1227 * Not really portable, but does help readability: this is what the Guest
1228 * writes to the PCI_CONFIG_ADDR IO port.
1230 union pci_config_addr
{
1234 unsigned funcnum
: 3;
1237 unsigned reserved
: 7;
1238 unsigned enabled
: 1;
1244 * We cache what they wrote to the address port, so we know what they're
1245 * talking about when they access the data port.
1247 static union pci_config_addr pci_config_addr
;
1249 static struct device
*find_pci_device(unsigned int index
)
1251 return devices
.pci
[index
];
1254 /* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1255 static void ioread(u16 off
, u32 v
, u32 mask
, u32
*val
)
1258 assert(mask
== 0xFF || mask
== 0xFFFF || mask
== 0xFFFFFFFF);
1259 *val
= (v
>> (off
* 8)) & mask
;
1262 /* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1263 static void iowrite(u16 off
, u32 v
, u32 mask
, u32
*dst
)
1266 assert(mask
== 0xFF || mask
== 0xFFFF || mask
== 0xFFFFFFFF);
1267 *dst
&= ~(mask
<< (off
* 8));
1268 *dst
|= (v
& mask
) << (off
* 8);
1272 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1275 static struct device
*dev_and_reg(u32
*reg
)
1277 if (!pci_config_addr
.bits
.enabled
)
1280 if (pci_config_addr
.bits
.funcnum
!= 0)
1283 if (pci_config_addr
.bits
.busnum
!= 0)
1286 if (pci_config_addr
.bits
.offset
* 4 >= sizeof(struct pci_config
))
1289 *reg
= pci_config_addr
.bits
.offset
;
1290 return find_pci_device(pci_config_addr
.bits
.devnum
);
1294 * We can get invalid combinations of values while they're writing, so we
1295 * only fault if they try to write with some invalid bar/offset/length.
1297 static bool valid_bar_access(struct device
*d
,
1298 struct virtio_pci_cfg_cap_u32
*cfg_access
)
1300 /* We only have 1 bar (BAR0) */
1301 if (cfg_access
->cap
.bar
!= 0)
1304 /* Check it's within BAR0. */
1305 if (cfg_access
->cap
.offset
>= d
->mmio_size
1306 || cfg_access
->cap
.offset
+ cfg_access
->cap
.length
> d
->mmio_size
)
1309 /* Check length is 1, 2 or 4. */
1310 if (cfg_access
->cap
.length
!= 1
1311 && cfg_access
->cap
.length
!= 2
1312 && cfg_access
->cap
.length
!= 4)
1318 * The driver MUST NOT write a cap.offset which is not a multiple of
1319 * cap.length (ie. all accesses MUST be aligned).
1321 if (cfg_access
->cap
.offset
% cfg_access
->cap
.length
!= 0)
1324 /* Return pointer into word in BAR0. */
1328 /* Is this accessing the PCI config address port?. */
1329 static bool is_pci_addr_port(u16 port
)
1331 return port
>= PCI_CONFIG_ADDR
&& port
< PCI_CONFIG_ADDR
+ 4;
1334 static bool pci_addr_iowrite(u16 port
, u32 mask
, u32 val
)
1336 iowrite(port
- PCI_CONFIG_ADDR
, val
, mask
,
1337 &pci_config_addr
.val
);
1338 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1339 pci_config_addr
.bits
.enabled
? "" : " DISABLED",
1341 pci_config_addr
.bits
.busnum
,
1342 pci_config_addr
.bits
.devnum
,
1343 pci_config_addr
.bits
.funcnum
,
1344 pci_config_addr
.bits
.offset
);
1348 static void pci_addr_ioread(u16 port
, u32 mask
, u32
*val
)
1350 ioread(port
- PCI_CONFIG_ADDR
, pci_config_addr
.val
, mask
, val
);
1353 /* Is this accessing the PCI config data port?. */
1354 static bool is_pci_data_port(u16 port
)
1356 return port
>= PCI_CONFIG_DATA
&& port
< PCI_CONFIG_DATA
+ 4;
1359 static void emulate_mmio_write(struct device
*d
, u32 off
, u32 val
, u32 mask
);
1361 static bool pci_data_iowrite(u16 port
, u32 mask
, u32 val
)
1364 struct device
*d
= dev_and_reg(®
);
1366 /* Complain if they don't belong to a device. */
1370 /* They can do 1 byte writes, etc. */
1371 portoff
= port
- PCI_CONFIG_DATA
;
1374 * PCI uses a weird way to determine the BAR size: the OS
1375 * writes all 1's, and sees which ones stick.
1377 if (&d
->config_words
[reg
] == &d
->config
.bar
[0]) {
1380 iowrite(portoff
, val
, mask
, &d
->config
.bar
[0]);
1381 for (i
= 0; (1 << i
) < d
->mmio_size
; i
++)
1382 d
->config
.bar
[0] &= ~(1 << i
);
1384 } else if ((&d
->config_words
[reg
] > &d
->config
.bar
[0]
1385 && &d
->config_words
[reg
] <= &d
->config
.bar
[6])
1386 || &d
->config_words
[reg
] == &d
->config
.expansion_rom_addr
) {
1387 /* Allow writing to any other BAR, or expansion ROM */
1388 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1390 /* We let them overide latency timer and cacheline size */
1391 } else if (&d
->config_words
[reg
] == (void *)&d
->config
.cacheline_size
) {
1392 /* Only let them change the first two fields. */
1393 if (mask
== 0xFFFFFFFF)
1395 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1397 } else if (&d
->config_words
[reg
] == (void *)&d
->config
.command
1398 && mask
== 0xFFFF) {
1399 /* Ignore command writes. */
1401 } else if (&d
->config_words
[reg
]
1402 == (void *)&d
->config
.cfg_access
.cap
.bar
1403 || &d
->config_words
[reg
]
1404 == &d
->config
.cfg_access
.cap
.length
1405 || &d
->config_words
[reg
]
1406 == &d
->config
.cfg_access
.cap
.offset
) {
1409 * The VIRTIO_PCI_CAP_PCI_CFG capability
1410 * provides a backdoor to access the MMIO
1411 * regions without mapping them. Weird, but
1414 iowrite(portoff
, val
, mask
, &d
->config_words
[reg
]);
1416 } else if (&d
->config_words
[reg
] == &d
->config
.cfg_access
.pci_cfg_data
) {
1422 * Upon detecting driver write access to pci_cfg_data, the
1423 * device MUST execute a write access at offset cap.offset at
1424 * BAR selected by cap.bar using the first cap.length bytes
1425 * from pci_cfg_data.
1429 if (!valid_bar_access(d
, &d
->config
.cfg_access
))
1432 iowrite(portoff
, val
, mask
, &d
->config
.cfg_access
.pci_cfg_data
);
1435 * Now emulate a write. The mask we use is set by
1436 * len, *not* this write!
1438 write_mask
= (1ULL<<(8*d
->config
.cfg_access
.cap
.length
)) - 1;
1439 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1440 d
->config
.cfg_access
.pci_cfg_data
, write_mask
,
1441 d
->config
.cfg_access
.cap
.bar
,
1442 d
->config
.cfg_access
.cap
.offset
,
1443 d
->config
.cfg_access
.cap
.length
);
1445 emulate_mmio_write(d
, d
->config
.cfg_access
.cap
.offset
,
1446 d
->config
.cfg_access
.pci_cfg_data
,
1454 * The driver MUST NOT write into any field of the capability
1455 * structure, with the exception of those with cap_type
1456 * VIRTIO_PCI_CAP_PCI_CFG...
1461 static u32
emulate_mmio_read(struct device
*d
, u32 off
, u32 mask
);
1463 static void pci_data_ioread(u16 port
, u32 mask
, u32
*val
)
1466 struct device
*d
= dev_and_reg(®
);
1471 /* Read through the PCI MMIO access window is special */
1472 if (&d
->config_words
[reg
] == &d
->config
.cfg_access
.pci_cfg_data
) {
1478 * Upon detecting driver read access to pci_cfg_data, the
1479 * device MUST execute a read access of length cap.length at
1480 * offset cap.offset at BAR selected by cap.bar and store the
1481 * first cap.length bytes in pci_cfg_data.
1484 if (!valid_bar_access(d
, &d
->config
.cfg_access
))
1486 "Invalid cfg_access to bar%u, offset %u len %u",
1487 d
->config
.cfg_access
.cap
.bar
,
1488 d
->config
.cfg_access
.cap
.offset
,
1489 d
->config
.cfg_access
.cap
.length
);
1492 * Read into the window. The mask we use is set by
1493 * len, *not* this read!
1495 read_mask
= (1ULL<<(8*d
->config
.cfg_access
.cap
.length
))-1;
1496 d
->config
.cfg_access
.pci_cfg_data
1497 = emulate_mmio_read(d
,
1498 d
->config
.cfg_access
.cap
.offset
,
1500 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1501 d
->config
.cfg_access
.pci_cfg_data
, read_mask
,
1502 d
->config
.cfg_access
.cap
.bar
,
1503 d
->config
.cfg_access
.cap
.offset
,
1504 d
->config
.cfg_access
.cap
.length
);
1506 ioread(port
- PCI_CONFIG_DATA
, d
->config_words
[reg
], mask
, val
);
1510 * This is where we emulate a handful of Guest instructions. It's ugly
1511 * and we used to do it in the kernel but it grew over time.
1515 * We use the ptrace syscall's pt_regs struct to talk about registers
1516 * to lguest: these macros convert the names to the offsets.
1518 #define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1519 #define setreg(name, val) \
1520 setreg_off(offsetof(struct user_regs_struct, name), (val))
1522 static u32
getreg_off(size_t offset
)
1525 unsigned long args
[] = { LHREQ_GETREG
, offset
};
1527 if (pwrite(lguest_fd
, args
, sizeof(args
), cpu_id
) < 0)
1528 err(1, "Getting register %u", offset
);
1529 if (pread(lguest_fd
, &r
, sizeof(r
), cpu_id
) != sizeof(r
))
1530 err(1, "Reading register %u", offset
);
1535 static void setreg_off(size_t offset
, u32 val
)
1537 unsigned long args
[] = { LHREQ_SETREG
, offset
, val
};
1539 if (pwrite(lguest_fd
, args
, sizeof(args
), cpu_id
) < 0)
1540 err(1, "Setting register %u", offset
);
1543 /* Get register by instruction encoding */
1544 static u32
getreg_num(unsigned regnum
, u32 mask
)
1546 /* 8 bit ops use regnums 4-7 for high parts of word */
1547 if (mask
== 0xFF && (regnum
& 0x4))
1548 return getreg_num(regnum
& 0x3, 0xFFFF) >> 8;
1551 case 0: return getreg(eax
) & mask
;
1552 case 1: return getreg(ecx
) & mask
;
1553 case 2: return getreg(edx
) & mask
;
1554 case 3: return getreg(ebx
) & mask
;
1555 case 4: return getreg(esp
) & mask
;
1556 case 5: return getreg(ebp
) & mask
;
1557 case 6: return getreg(esi
) & mask
;
1558 case 7: return getreg(edi
) & mask
;
1563 /* Set register by instruction encoding */
1564 static void setreg_num(unsigned regnum
, u32 val
, u32 mask
)
1566 /* Don't try to set bits out of range */
1567 assert(~(val
& ~mask
));
1569 /* 8 bit ops use regnums 4-7 for high parts of word */
1570 if (mask
== 0xFF && (regnum
& 0x4)) {
1571 /* Construct the 16 bits we want. */
1572 val
= (val
<< 8) | getreg_num(regnum
& 0x3, 0xFF);
1573 setreg_num(regnum
& 0x3, val
, 0xFFFF);
1578 case 0: setreg(eax
, val
| (getreg(eax
) & ~mask
)); return;
1579 case 1: setreg(ecx
, val
| (getreg(ecx
) & ~mask
)); return;
1580 case 2: setreg(edx
, val
| (getreg(edx
) & ~mask
)); return;
1581 case 3: setreg(ebx
, val
| (getreg(ebx
) & ~mask
)); return;
1582 case 4: setreg(esp
, val
| (getreg(esp
) & ~mask
)); return;
1583 case 5: setreg(ebp
, val
| (getreg(ebp
) & ~mask
)); return;
1584 case 6: setreg(esi
, val
| (getreg(esi
) & ~mask
)); return;
1585 case 7: setreg(edi
, val
| (getreg(edi
) & ~mask
)); return;
1590 /* Get bytes of displacement appended to instruction, from r/m encoding */
1591 static u32
insn_displacement_len(u8 mod_reg_rm
)
1593 /* Switch on the mod bits */
1594 switch (mod_reg_rm
>> 6) {
1596 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1597 if ((mod_reg_rm
& 0x7) == 0x5)
1599 /* Normally, mod == 0 means no literal displacement */
1602 /* One byte displacement */
1605 /* Four byte displacement */
1614 static void emulate_insn(const u8 insn
[])
1616 unsigned long args
[] = { LHREQ_TRAP
, 13 };
1617 unsigned int insnlen
= 0, in
= 0, small_operand
= 0, byte_access
;
1618 unsigned int eax
, port
, mask
;
1620 * Default is to return all-ones on IO port reads, which traditionally
1621 * means "there's nothing there".
1623 u32 val
= 0xFFFFFFFF;
1626 * This must be the Guest kernel trying to do something, not userspace!
1627 * The bottom two bits of the CS segment register are the privilege
1630 if ((getreg(xcs
) & 3) != 0x1)
1633 /* Decoding x86 instructions is icky. */
1636 * Around 2.6.33, the kernel started using an emulation for the
1637 * cmpxchg8b instruction in early boot on many configurations. This
1638 * code isn't paravirtualized, and it tries to disable interrupts.
1639 * Ignore it, which will Mostly Work.
1641 if (insn
[insnlen
] == 0xfa) {
1642 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1648 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1650 if (insn
[insnlen
] == 0x66) {
1652 /* The instruction is 1 byte so far, read the next byte. */
1656 /* If the lower bit isn't set, it's a single byte access */
1657 byte_access
= !(insn
[insnlen
] & 1);
1660 * Now we can ignore the lower bit and decode the 4 opcodes
1661 * we need to emulate.
1663 switch (insn
[insnlen
] & 0xFE) {
1664 case 0xE4: /* in <next byte>,%al */
1665 port
= insn
[insnlen
+1];
1669 case 0xEC: /* in (%dx),%al */
1670 port
= getreg(edx
) & 0xFFFF;
1674 case 0xE6: /* out %al,<next byte> */
1675 port
= insn
[insnlen
+1];
1678 case 0xEE: /* out %al,(%dx) */
1679 port
= getreg(edx
) & 0xFFFF;
1683 /* OK, we don't know what this is, can't emulate. */
1687 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1690 else if (small_operand
)
1696 * If it was an "IN" instruction, they expect the result to be read
1697 * into %eax, so we change %eax.
1702 /* This is the PS/2 keyboard status; 1 means ready for output */
1705 else if (is_pci_addr_port(port
))
1706 pci_addr_ioread(port
, mask
, &val
);
1707 else if (is_pci_data_port(port
))
1708 pci_data_ioread(port
, mask
, &val
);
1710 /* Clear the bits we're about to read */
1712 /* Copy bits in from val. */
1714 /* Now update the register. */
1717 if (is_pci_addr_port(port
)) {
1718 if (!pci_addr_iowrite(port
, mask
, eax
))
1720 } else if (is_pci_data_port(port
)) {
1721 if (!pci_data_iowrite(port
, mask
, eax
))
1724 /* There are many other ports, eg. CMOS clock, serial
1725 * and parallel ports, so we ignore them all. */
1728 verbose("IO %s of %x to %u: %#08x\n",
1729 in
? "IN" : "OUT", mask
, port
, eax
);
1731 /* Finally, we've "done" the instruction, so move past it. */
1732 setreg(eip
, getreg(eip
) + insnlen
);
1736 warnx("Attempt to %s port %u (%#x mask)",
1737 in
? "read from" : "write to", port
, mask
);
1740 /* Inject trap into Guest. */
1741 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
1742 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip
));
1745 static struct device
*find_mmio_region(unsigned long paddr
, u32
*off
)
1749 for (i
= 1; i
< MAX_PCI_DEVICES
; i
++) {
1750 struct device
*d
= devices
.pci
[i
];
1754 if (paddr
< d
->mmio_addr
)
1756 if (paddr
>= d
->mmio_addr
+ d
->mmio_size
)
1758 *off
= paddr
- d
->mmio_addr
;
1764 /* FIXME: Use vq array. */
1765 static struct virtqueue
*vq_by_num(struct device
*d
, u32 num
)
1767 struct virtqueue
*vq
= d
->vq
;
1775 static void save_vq_config(const struct virtio_pci_common_cfg
*cfg
,
1776 struct virtqueue
*vq
)
1778 vq
->pci_config
= *cfg
;
1781 static void restore_vq_config(struct virtio_pci_common_cfg
*cfg
,
1782 struct virtqueue
*vq
)
1784 /* Only restore the per-vq part */
1785 size_t off
= offsetof(struct virtio_pci_common_cfg
, queue_size
);
1787 memcpy((void *)cfg
+ off
, (void *)&vq
->pci_config
+ off
,
1788 sizeof(*cfg
) - off
);
1794 * The driver MUST configure the other virtqueue fields before
1795 * enabling the virtqueue with queue_enable.
1797 * When they enable the virtqueue, we check that their setup is valid.
1799 static void check_virtqueue(struct device
*d
, struct virtqueue
*vq
)
1801 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1802 if (vq
->pci_config
.queue_desc_hi
1803 || vq
->pci_config
.queue_avail_hi
1804 || vq
->pci_config
.queue_used_hi
)
1805 bad_driver_vq(vq
, "invalid 64-bit queue address");
1810 * The driver MUST ensure that the physical address of the first byte
1811 * of each virtqueue part is a multiple of the specified alignment
1812 * value in the above table.
1814 if (vq
->pci_config
.queue_desc_lo
% 16
1815 || vq
->pci_config
.queue_avail_lo
% 2
1816 || vq
->pci_config
.queue_used_lo
% 4)
1817 bad_driver_vq(vq
, "invalid alignment in queue addresses");
1819 /* Initialize the virtqueue and check they're all in range. */
1820 vq
->vring
.num
= vq
->pci_config
.queue_size
;
1821 vq
->vring
.desc
= check_pointer(vq
->dev
,
1822 vq
->pci_config
.queue_desc_lo
,
1823 sizeof(*vq
->vring
.desc
) * vq
->vring
.num
);
1824 vq
->vring
.avail
= check_pointer(vq
->dev
,
1825 vq
->pci_config
.queue_avail_lo
,
1826 sizeof(*vq
->vring
.avail
)
1827 + (sizeof(vq
->vring
.avail
->ring
[0])
1829 vq
->vring
.used
= check_pointer(vq
->dev
,
1830 vq
->pci_config
.queue_used_lo
,
1831 sizeof(*vq
->vring
.used
)
1832 + (sizeof(vq
->vring
.used
->ring
[0])
1838 * The driver MUST initialize flags in the used ring to 0
1839 * when allocating the used ring.
1841 if (vq
->vring
.used
->flags
!= 0)
1842 bad_driver_vq(vq
, "invalid initial used.flags %#x",
1843 vq
->vring
.used
->flags
);
1846 static void start_virtqueue(struct virtqueue
*vq
)
1849 * Create stack for thread. Since the stack grows upwards, we point
1850 * the stack pointer to the end of this region.
1852 char *stack
= malloc(32768);
1854 /* Create a zero-initialized eventfd. */
1855 vq
->eventfd
= eventfd(0, 0);
1856 if (vq
->eventfd
< 0)
1857 err(1, "Creating eventfd");
1860 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1861 * we get a signal if it dies.
1863 vq
->thread
= clone(do_thread
, stack
+ 32768, CLONE_VM
| SIGCHLD
, vq
);
1864 if (vq
->thread
== (pid_t
)-1)
1865 err(1, "Creating clone");
1868 static void start_virtqueues(struct device
*d
)
1870 struct virtqueue
*vq
;
1872 for (vq
= d
->vq
; vq
; vq
= vq
->next
) {
1873 if (vq
->pci_config
.queue_enable
)
1874 start_virtqueue(vq
);
1878 static void emulate_mmio_write(struct device
*d
, u32 off
, u32 val
, u32 mask
)
1880 struct virtqueue
*vq
;
1883 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature_select
):
1887 * The device MUST present the feature bits it is offering in
1888 * device_feature, starting at bit device_feature_select ∗ 32
1889 * for any device_feature_select written by the driver
1892 d
->mmio
->cfg
.device_feature
= d
->features
;
1894 d
->mmio
->cfg
.device_feature
= (d
->features
>> 32);
1896 d
->mmio
->cfg
.device_feature
= 0;
1897 goto feature_write_through32
;
1898 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature_select
):
1900 bad_driver(d
, "Unexpected driver select %u", val
);
1901 goto feature_write_through32
;
1902 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature
):
1903 if (d
->mmio
->cfg
.guest_feature_select
== 0) {
1904 d
->features_accepted
&= ~((u64
)0xFFFFFFFF);
1905 d
->features_accepted
|= val
;
1907 assert(d
->mmio
->cfg
.guest_feature_select
== 1);
1908 d
->features_accepted
&= 0xFFFFFFFF;
1909 d
->features_accepted
|= ((u64
)val
) << 32;
1914 * The driver MUST NOT accept a feature which the device did
1917 if (d
->features_accepted
& ~d
->features
)
1918 bad_driver(d
, "over-accepted features %#llx of %#llx",
1919 d
->features_accepted
, d
->features
);
1920 goto feature_write_through32
;
1921 case offsetof(struct virtio_pci_mmio
, cfg
.device_status
): {
1924 verbose("%s: device status -> %#x\n", d
->name
, val
);
1928 * The device MUST reset when 0 is written to device_status,
1929 * and present a 0 in device_status once that is done.
1933 goto write_through8
;
1936 /* 2.1.1: The driver MUST NOT clear a device status bit. */
1937 if (d
->mmio
->cfg
.device_status
& ~val
)
1938 bad_driver(d
, "unset of device status bit %#x -> %#x",
1939 d
->mmio
->cfg
.device_status
, val
);
1944 * The device MUST NOT consume buffers or notify the driver
1947 if (val
& VIRTIO_CONFIG_S_DRIVER_OK
1948 && !(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
))
1949 start_virtqueues(d
);
1954 * The driver MUST follow this sequence to initialize a device:
1955 * - Reset the device.
1956 * - Set the ACKNOWLEDGE status bit: the guest OS has
1957 * notice the device.
1958 * - Set the DRIVER status bit: the guest OS knows how
1959 * to drive the device.
1960 * - Read device feature bits, and write the subset
1961 * of feature bits understood by the OS and driver
1962 * to the device. During this step the driver MAY
1963 * read (but MUST NOT write) the device-specific
1964 * configuration fields to check that it can
1965 * support the device before accepting it.
1966 * - Set the FEATURES_OK status bit. The driver
1967 * MUST not accept new feature bits after this
1969 * - Re-read device status to ensure the FEATURES_OK
1970 * bit is still set: otherwise, the device does
1971 * not support our subset of features and the
1972 * device is unusable.
1973 * - Perform device-specific setup, including
1974 * discovery of virtqueues for the device,
1975 * optional per-bus setup, reading and possibly
1976 * writing the device’s virtio configuration
1977 * space, and population of virtqueues.
1978 * - Set the DRIVER_OK status bit. At this point the
1982 switch (val
& ~d
->mmio
->cfg
.device_status
) {
1983 case VIRTIO_CONFIG_S_DRIVER_OK
:
1984 prev
|= VIRTIO_CONFIG_S_FEATURES_OK
; /* fall thru */
1985 case VIRTIO_CONFIG_S_FEATURES_OK
:
1986 prev
|= VIRTIO_CONFIG_S_DRIVER
; /* fall thru */
1987 case VIRTIO_CONFIG_S_DRIVER
:
1988 prev
|= VIRTIO_CONFIG_S_ACKNOWLEDGE
; /* fall thru */
1989 case VIRTIO_CONFIG_S_ACKNOWLEDGE
:
1992 bad_driver(d
, "unknown device status bit %#x -> %#x",
1993 d
->mmio
->cfg
.device_status
, val
);
1995 if (d
->mmio
->cfg
.device_status
!= prev
)
1996 bad_driver(d
, "unexpected status transition %#x -> %#x",
1997 d
->mmio
->cfg
.device_status
, val
);
1999 /* If they just wrote FEATURES_OK, we make sure they read */
2000 switch (val
& ~d
->mmio
->cfg
.device_status
) {
2001 case VIRTIO_CONFIG_S_FEATURES_OK
:
2002 d
->wrote_features_ok
= true;
2004 case VIRTIO_CONFIG_S_DRIVER_OK
:
2005 if (d
->wrote_features_ok
)
2006 bad_driver(d
, "did not re-read FEATURES_OK");
2009 goto write_through8
;
2011 case offsetof(struct virtio_pci_mmio
, cfg
.queue_select
):
2012 vq
= vq_by_num(d
, val
);
2016 * The device MUST present a 0 in queue_size if the virtqueue
2017 * corresponding to the current queue_select is unavailable.
2020 d
->mmio
->cfg
.queue_size
= 0;
2021 goto write_through16
;
2023 /* Save registers for old vq, if it was a valid vq */
2024 if (d
->mmio
->cfg
.queue_size
)
2025 save_vq_config(&d
->mmio
->cfg
,
2026 vq_by_num(d
, d
->mmio
->cfg
.queue_select
));
2027 /* Restore the registers for the queue they asked for */
2028 restore_vq_config(&d
->mmio
->cfg
, vq
);
2029 goto write_through16
;
2030 case offsetof(struct virtio_pci_mmio
, cfg
.queue_size
):
2034 * The driver MUST NOT write a value which is not a power of 2
2038 bad_driver(d
, "invalid queue size %u", val
);
2039 if (d
->mmio
->cfg
.queue_enable
)
2040 bad_driver(d
, "changing queue size on live device");
2041 goto write_through16
;
2042 case offsetof(struct virtio_pci_mmio
, cfg
.queue_msix_vector
):
2043 bad_driver(d
, "attempt to set MSIX vector to %u", val
);
2044 case offsetof(struct virtio_pci_mmio
, cfg
.queue_enable
): {
2045 struct virtqueue
*vq
= vq_by_num(d
, d
->mmio
->cfg
.queue_select
);
2050 * The driver MUST NOT write a 0 to queue_enable.
2053 bad_driver(d
, "setting queue_enable to %u", val
);
2058 * 7. Perform device-specific setup, including discovery of
2059 * virtqueues for the device, optional per-bus setup,
2060 * reading and possibly writing the device’s virtio
2061 * configuration space, and population of virtqueues.
2062 * 8. Set the DRIVER_OK status bit.
2064 * All our devices require all virtqueues to be enabled, so
2065 * they should have done that before setting DRIVER_OK.
2067 if (d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
)
2068 bad_driver(d
, "enabling vq after DRIVER_OK");
2070 d
->mmio
->cfg
.queue_enable
= val
;
2071 save_vq_config(&d
->mmio
->cfg
, vq
);
2072 check_virtqueue(d
, vq
);
2073 goto write_through16
;
2075 case offsetof(struct virtio_pci_mmio
, cfg
.queue_notify_off
):
2076 bad_driver(d
, "attempt to write to queue_notify_off");
2077 case offsetof(struct virtio_pci_mmio
, cfg
.queue_desc_lo
):
2078 case offsetof(struct virtio_pci_mmio
, cfg
.queue_desc_hi
):
2079 case offsetof(struct virtio_pci_mmio
, cfg
.queue_avail_lo
):
2080 case offsetof(struct virtio_pci_mmio
, cfg
.queue_avail_hi
):
2081 case offsetof(struct virtio_pci_mmio
, cfg
.queue_used_lo
):
2082 case offsetof(struct virtio_pci_mmio
, cfg
.queue_used_hi
):
2086 * The driver MUST configure the other virtqueue fields before
2087 * enabling the virtqueue with queue_enable.
2089 if (d
->mmio
->cfg
.queue_enable
)
2090 bad_driver(d
, "changing queue on live device");
2095 * The driver MUST follow this sequence to initialize a device:
2097 * 5. Set the FEATURES_OK status bit. The driver MUST not
2098 * accept new feature bits after this step.
2100 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_FEATURES_OK
))
2101 bad_driver(d
, "setting up vq before FEATURES_OK");
2104 * 6. Re-read device status to ensure the FEATURES_OK bit is
2107 if (d
->wrote_features_ok
)
2108 bad_driver(d
, "didn't re-read FEATURES_OK before setup");
2110 goto write_through32
;
2111 case offsetof(struct virtio_pci_mmio
, notify
):
2112 vq
= vq_by_num(d
, val
);
2114 bad_driver(d
, "Invalid vq notification on %u", val
);
2115 /* Notify the process handling this vq by adding 1 to eventfd */
2116 write(vq
->eventfd
, "\1\0\0\0\0\0\0\0", 8);
2117 goto write_through16
;
2118 case offsetof(struct virtio_pci_mmio
, isr
):
2119 bad_driver(d
, "Unexpected write to isr");
2120 /* Weird corner case: write to emerg_wr of console */
2121 case sizeof(struct virtio_pci_mmio
)
2122 + offsetof(struct virtio_console_config
, emerg_wr
):
2123 if (strcmp(d
->name
, "console") == 0) {
2125 write(STDOUT_FILENO
, &c
, 1);
2126 goto write_through32
;
2128 /* Fall through... */
2133 * The driver MUST NOT write to device_feature, num_queues,
2134 * config_generation or queue_notify_off.
2136 bad_driver(d
, "Unexpected write to offset %u", off
);
2139 feature_write_through32
:
2143 * The driver MUST follow this sequence to initialize a device:
2145 * - Set the DRIVER status bit: the guest OS knows how
2146 * to drive the device.
2147 * - Read device feature bits, and write the subset
2148 * of feature bits understood by the OS and driver
2151 * - Set the FEATURES_OK status bit. The driver MUST not
2152 * accept new feature bits after this step.
2154 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2155 bad_driver(d
, "feature write before VIRTIO_CONFIG_S_DRIVER");
2156 if (d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_FEATURES_OK
)
2157 bad_driver(d
, "feature write after VIRTIO_CONFIG_S_FEATURES_OK");
2162 * The driver MUST access each field using the “natural” access
2163 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2164 * 16-bit fields and 8-bit accesses for 8-bit fields.
2167 if (mask
!= 0xFFFFFFFF) {
2168 bad_driver(d
, "non-32-bit write to offset %u (%#x)",
2172 memcpy((char *)d
->mmio
+ off
, &val
, 4);
2177 bad_driver(d
, "non-16-bit write to offset %u (%#x)",
2179 memcpy((char *)d
->mmio
+ off
, &val
, 2);
2184 bad_driver(d
, "non-8-bit write to offset %u (%#x)",
2186 memcpy((char *)d
->mmio
+ off
, &val
, 1);
2190 static u32
emulate_mmio_read(struct device
*d
, u32 off
, u32 mask
)
2196 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature_select
):
2197 case offsetof(struct virtio_pci_mmio
, cfg
.device_feature
):
2198 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature_select
):
2199 case offsetof(struct virtio_pci_mmio
, cfg
.guest_feature
):
2203 * The driver MUST follow this sequence to initialize a device:
2205 * - Set the DRIVER status bit: the guest OS knows how
2206 * to drive the device.
2207 * - Read device feature bits, and write the subset
2208 * of feature bits understood by the OS and driver
2211 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2213 "feature read before VIRTIO_CONFIG_S_DRIVER");
2214 goto read_through32
;
2215 case offsetof(struct virtio_pci_mmio
, cfg
.msix_config
):
2216 bad_driver(d
, "read of msix_config");
2217 case offsetof(struct virtio_pci_mmio
, cfg
.num_queues
):
2218 goto read_through16
;
2219 case offsetof(struct virtio_pci_mmio
, cfg
.device_status
):
2220 /* As they did read, any write of FEATURES_OK is now fine. */
2221 d
->wrote_features_ok
= false;
2223 case offsetof(struct virtio_pci_mmio
, cfg
.config_generation
):
2227 * The device MUST present a changed config_generation after
2228 * the driver has read a device-specific configuration value
2229 * which has changed since any part of the device-specific
2230 * configuration was last read.
2232 * This is simple: none of our devices change config, so this
2236 case offsetof(struct virtio_pci_mmio
, notify
):
2240 * The driver MUST NOT notify the device before setting
2243 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER_OK
))
2244 bad_driver(d
, "notify before VIRTIO_CONFIG_S_DRIVER_OK");
2245 goto read_through16
;
2246 case offsetof(struct virtio_pci_mmio
, isr
):
2248 bad_driver(d
, "non-8-bit read from offset %u (%#x)",
2254 * The device MUST reset ISR status to 0 on driver read.
2258 case offsetof(struct virtio_pci_mmio
, padding
):
2259 bad_driver(d
, "read from padding (%#x)", getreg(eip
));
2261 /* Read from device config space, beware unaligned overflow */
2262 if (off
> d
->mmio_size
- 4)
2263 bad_driver(d
, "read past end (%#x)", getreg(eip
));
2267 * The driver MUST follow this sequence to initialize a device:
2269 * 3. Set the DRIVER status bit: the guest OS knows how to
2271 * 4. Read device feature bits, and write the subset of
2272 * feature bits understood by the OS and driver to the
2273 * device. During this step the driver MAY read (but MUST NOT
2274 * write) the device-specific configuration fields to check
2275 * that it can support the device before accepting it.
2277 if (!(d
->mmio
->cfg
.device_status
& VIRTIO_CONFIG_S_DRIVER
))
2279 "config read before VIRTIO_CONFIG_S_DRIVER");
2281 if (mask
== 0xFFFFFFFF)
2282 goto read_through32
;
2283 else if (mask
== 0xFFFF)
2284 goto read_through16
;
2292 * The driver MUST access each field using the “natural” access
2293 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2294 * 16-bit fields and 8-bit accesses for 8-bit fields.
2297 if (mask
!= 0xFFFFFFFF)
2298 bad_driver(d
, "non-32-bit read to offset %u (%#x)",
2300 memcpy(&val
, (char *)d
->mmio
+ off
, 4);
2305 bad_driver(d
, "non-16-bit read to offset %u (%#x)",
2307 memcpy(&val
, (char *)d
->mmio
+ off
, 2);
2312 bad_driver(d
, "non-8-bit read to offset %u (%#x)",
2314 memcpy(&val
, (char *)d
->mmio
+ off
, 1);
2318 static void emulate_mmio(unsigned long paddr
, const u8
*insn
)
2320 u32 val
, off
, mask
= 0xFFFFFFFF, insnlen
= 0;
2321 struct device
*d
= find_mmio_region(paddr
, &off
);
2322 unsigned long args
[] = { LHREQ_TRAP
, 14 };
2325 warnx("MMIO touching %#08lx (not a device)", paddr
);
2329 /* Prefix makes it a 16 bit op */
2330 if (insn
[0] == 0x66) {
2336 if (insn
[insnlen
] == 0x89) {
2337 /* Next byte is r/m byte: bits 3-5 are register. */
2338 val
= getreg_num((insn
[insnlen
+1] >> 3) & 0x7, mask
);
2339 emulate_mmio_write(d
, off
, val
, mask
);
2340 insnlen
+= 2 + insn_displacement_len(insn
[insnlen
+1]);
2341 } else if (insn
[insnlen
] == 0x8b) { /* ioread */
2342 /* Next byte is r/m byte: bits 3-5 are register. */
2343 val
= emulate_mmio_read(d
, off
, mask
);
2344 setreg_num((insn
[insnlen
+1] >> 3) & 0x7, val
, mask
);
2345 insnlen
+= 2 + insn_displacement_len(insn
[insnlen
+1]);
2346 } else if (insn
[0] == 0x88) { /* 8-bit iowrite */
2348 /* Next byte is r/m byte: bits 3-5 are register. */
2349 val
= getreg_num((insn
[1] >> 3) & 0x7, mask
);
2350 emulate_mmio_write(d
, off
, val
, mask
);
2351 insnlen
= 2 + insn_displacement_len(insn
[1]);
2352 } else if (insn
[0] == 0x8a) { /* 8-bit ioread */
2354 val
= emulate_mmio_read(d
, off
, mask
);
2355 setreg_num((insn
[1] >> 3) & 0x7, val
, mask
);
2356 insnlen
= 2 + insn_displacement_len(insn
[1]);
2358 warnx("Unknown MMIO instruction touching %#08lx:"
2359 " %02x %02x %02x %02x at %u",
2360 paddr
, insn
[0], insn
[1], insn
[2], insn
[3], getreg(eip
));
2362 /* Inject trap into Guest. */
2363 if (write(lguest_fd
, args
, sizeof(args
)) < 0)
2364 err(1, "Reinjecting trap 14 for fault at %#x",
2369 /* Finally, we've "done" the instruction, so move past it. */
2370 setreg(eip
, getreg(eip
) + insnlen
);
2376 * All devices need a descriptor so the Guest knows it exists, and a "struct
2377 * device" so the Launcher can keep track of it. We have common helper
2378 * routines to allocate and manage them.
2380 static void add_pci_virtqueue(struct device
*dev
,
2381 void (*service
)(struct virtqueue
*),
2384 struct virtqueue
**i
, *vq
= malloc(sizeof(*vq
));
2386 /* Initialize the virtqueue */
2388 vq
->last_avail_idx
= 0;
2393 * This is the routine the service thread will run, and its Process ID
2394 * once it's running.
2396 vq
->service
= service
;
2397 vq
->thread
= (pid_t
)-1;
2399 /* Initialize the configuration. */
2400 reset_vq_pci_config(vq
);
2401 vq
->pci_config
.queue_notify_off
= 0;
2403 /* Add one to the number of queues */
2404 vq
->dev
->mmio
->cfg
.num_queues
++;
2407 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
2410 for (i
= &dev
->vq
; *i
; i
= &(*i
)->next
);
2414 /* The Guest accesses the feature bits via the PCI common config MMIO region */
2415 static void add_pci_feature(struct device
*dev
, unsigned bit
)
2417 dev
->features
|= (1ULL << bit
);
2420 /* For devices with no config. */
2421 static void no_device_config(struct device
*dev
)
2423 dev
->mmio_addr
= get_mmio_region(dev
->mmio_size
);
2425 dev
->config
.bar
[0] = dev
->mmio_addr
;
2426 /* Bottom 4 bits must be zero */
2427 assert(~(dev
->config
.bar
[0] & 0xF));
2430 /* This puts the device config into BAR0 */
2431 static void set_device_config(struct device
*dev
, const void *conf
, size_t len
)
2434 dev
->mmio_size
+= len
;
2435 dev
->mmio
= realloc(dev
->mmio
, dev
->mmio_size
);
2436 memcpy(dev
->mmio
+ 1, conf
, len
);
2441 * The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG
2442 * capability for any device type which has a device-specific
2445 /* Hook up device cfg */
2446 dev
->config
.cfg_access
.cap
.cap_next
2447 = offsetof(struct pci_config
, device
);
2452 * The offset for the device-specific configuration MUST be 4-byte
2455 assert(dev
->config
.cfg_access
.cap
.cap_next
% 4 == 0);
2457 /* Fix up device cfg field length. */
2458 dev
->config
.device
.length
= len
;
2460 /* The rest is the same as the no-config case */
2461 no_device_config(dev
);
2464 static void init_cap(struct virtio_pci_cap
*cap
, size_t caplen
, int type
,
2465 size_t bar_offset
, size_t bar_bytes
, u8 next
)
2467 cap
->cap_vndr
= PCI_CAP_ID_VNDR
;
2468 cap
->cap_next
= next
;
2469 cap
->cap_len
= caplen
;
2470 cap
->cfg_type
= type
;
2472 memset(cap
->padding
, 0, sizeof(cap
->padding
));
2473 cap
->offset
= bar_offset
;
2474 cap
->length
= bar_bytes
;
2478 * This sets up the pci_config structure, as defined in the virtio 1.0
2479 * standard (and PCI standard).
2481 static void init_pci_config(struct pci_config
*pci
, u16 type
,
2482 u8
class, u8 subclass
)
2484 size_t bar_offset
, bar_len
;
2489 * The device MUST either present notify_off_multiplier as an even
2490 * power of 2, or present notify_off_multiplier as 0.
2494 * The device MUST initialize device status to 0 upon reset.
2496 memset(pci
, 0, sizeof(*pci
));
2498 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2499 pci
->vendor_id
= 0x1AF4;
2500 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2501 pci
->device_id
= 0x1040 + type
;
2504 * PCI have specific codes for different types of devices.
2505 * Linux doesn't care, but it's a good clue for people looking
2509 pci
->subclass
= subclass
;
2514 * Non-transitional devices SHOULD have a PCI Revision ID of 1 or
2522 * Non-transitional devices SHOULD have a PCI Subsystem Device ID of
2525 pci
->subsystem_device_id
= 0x40;
2527 /* We use our dummy interrupt controller, and irq_line is the irq */
2528 pci
->irq_line
= devices
.next_irq
++;
2531 /* Support for extended capabilities. */
2532 pci
->status
= (1 << 4);
2538 * The device MUST present at least one common configuration
2541 pci
->capabilities
= offsetof(struct pci_config
, common
);
2543 /* 4.1.4.3.1 ... offset MUST be 4-byte aligned. */
2544 assert(pci
->capabilities
% 4 == 0);
2546 bar_offset
= offsetof(struct virtio_pci_mmio
, cfg
);
2547 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->cfg
);
2548 init_cap(&pci
->common
, sizeof(pci
->common
), VIRTIO_PCI_CAP_COMMON_CFG
,
2549 bar_offset
, bar_len
,
2550 offsetof(struct pci_config
, notify
));
2555 * The device MUST present at least one notification capability.
2557 bar_offset
+= bar_len
;
2558 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->notify
);
2563 * The cap.offset MUST be 2-byte aligned.
2565 assert(pci
->common
.cap_next
% 2 == 0);
2567 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2571 * The value cap.length presented by the device MUST be at least 2 and
2572 * MUST be large enough to support queue notification offsets for all
2573 * supported queues in all possible configurations.
2575 assert(bar_len
>= 2);
2577 init_cap(&pci
->notify
.cap
, sizeof(pci
->notify
),
2578 VIRTIO_PCI_CAP_NOTIFY_CFG
,
2579 bar_offset
, bar_len
,
2580 offsetof(struct pci_config
, isr
));
2582 bar_offset
+= bar_len
;
2583 bar_len
= sizeof(((struct virtio_pci_mmio
*)0)->isr
);
2587 * The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG
2590 init_cap(&pci
->isr
, sizeof(pci
->isr
),
2591 VIRTIO_PCI_CAP_ISR_CFG
,
2592 bar_offset
, bar_len
,
2593 offsetof(struct pci_config
, cfg_access
));
2598 * The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG
2601 /* This doesn't have any presence in the BAR */
2602 init_cap(&pci
->cfg_access
.cap
, sizeof(pci
->cfg_access
),
2603 VIRTIO_PCI_CAP_PCI_CFG
,
2606 bar_offset
+= bar_len
+ sizeof(((struct virtio_pci_mmio
*)0)->padding
);
2607 assert(bar_offset
== sizeof(struct virtio_pci_mmio
));
2610 * This gets sewn in and length set in set_device_config().
2611 * Some devices don't have a device configuration interface, so
2612 * we never expose this if we don't call set_device_config().
2614 init_cap(&pci
->device
, sizeof(pci
->device
), VIRTIO_PCI_CAP_DEVICE_CFG
,
2619 * This routine does all the creation and setup of a new device, but we don't
2620 * actually place the MMIO region until we know the size (if any) of the
2621 * device-specific config. And we don't actually start the service threads
2624 * See what I mean about userspace being boring?
2626 static struct device
*new_pci_device(const char *name
, u16 type
,
2627 u8
class, u8 subclass
)
2629 struct device
*dev
= malloc(sizeof(*dev
));
2631 /* Now we populate the fields one at a time. */
2634 dev
->running
= false;
2635 dev
->wrote_features_ok
= false;
2636 dev
->mmio_size
= sizeof(struct virtio_pci_mmio
);
2637 dev
->mmio
= calloc(1, dev
->mmio_size
);
2638 dev
->features
= (u64
)1 << VIRTIO_F_VERSION_1
;
2639 dev
->features_accepted
= 0;
2641 if (devices
.device_num
+ 1 >= MAX_PCI_DEVICES
)
2642 errx(1, "Can only handle 31 PCI devices");
2644 init_pci_config(&dev
->config
, type
, class, subclass
);
2645 assert(!devices
.pci
[devices
.device_num
+1]);
2646 devices
.pci
[++devices
.device_num
] = dev
;
2652 * Our first setup routine is the console. It's a fairly simple device, but
2653 * UNIX tty handling makes it uglier than it could be.
2655 static void setup_console(void)
2658 struct virtio_console_config conf
;
2660 /* If we can save the initial standard input settings... */
2661 if (tcgetattr(STDIN_FILENO
, &orig_term
) == 0) {
2662 struct termios term
= orig_term
;
2664 * Then we turn off echo, line buffering and ^C etc: We want a
2665 * raw input stream to the Guest.
2667 term
.c_lflag
&= ~(ISIG
|ICANON
|ECHO
);
2668 tcsetattr(STDIN_FILENO
, TCSANOW
, &term
);
2671 dev
= new_pci_device("console", VIRTIO_ID_CONSOLE
, 0x07, 0x00);
2673 /* We store the console state in dev->priv, and initialize it. */
2674 dev
->priv
= malloc(sizeof(struct console_abort
));
2675 ((struct console_abort
*)dev
->priv
)->count
= 0;
2678 * The console needs two virtqueues: the input then the output. When
2679 * they put something the input queue, we make sure we're listening to
2680 * stdin. When they put something in the output queue, we write it to
2683 add_pci_virtqueue(dev
, console_input
, "input");
2684 add_pci_virtqueue(dev
, console_output
, "output");
2686 /* We need a configuration area for the emerg_wr early writes. */
2687 add_pci_feature(dev
, VIRTIO_CONSOLE_F_EMERG_WRITE
);
2688 set_device_config(dev
, &conf
, sizeof(conf
));
2690 verbose("device %u: console\n", devices
.device_num
);
2695 * Inter-guest networking is an interesting area. Simplest is to have a
2696 * --sharenet=<name> option which opens or creates a named pipe. This can be
2697 * used to send packets to another guest in a 1:1 manner.
2699 * More sophisticated is to use one of the tools developed for project like UML
2702 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2703 * completely generic ("here's my vring, attach to your vring") and would work
2704 * for any traffic. Of course, namespace and permissions issues need to be
2705 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2706 * multiple inter-guest channels behind one interface, although it would
2707 * require some manner of hotplugging new virtio channels.
2709 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2712 static u32
str2ip(const char *ipaddr
)
2716 if (sscanf(ipaddr
, "%u.%u.%u.%u", &b
[0], &b
[1], &b
[2], &b
[3]) != 4)
2717 errx(1, "Failed to parse IP address '%s'", ipaddr
);
2718 return (b
[0] << 24) | (b
[1] << 16) | (b
[2] << 8) | b
[3];
2721 static void str2mac(const char *macaddr
, unsigned char mac
[6])
2724 if (sscanf(macaddr
, "%02x:%02x:%02x:%02x:%02x:%02x",
2725 &m
[0], &m
[1], &m
[2], &m
[3], &m
[4], &m
[5]) != 6)
2726 errx(1, "Failed to parse mac address '%s'", macaddr
);
2736 * This code is "adapted" from libbridge: it attaches the Host end of the
2737 * network device to the bridge device specified by the command line.
2739 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2740 * dislike bridging), and I just try not to break it.
2742 static void add_to_bridge(int fd
, const char *if_name
, const char *br_name
)
2748 errx(1, "must specify bridge name");
2750 ifidx
= if_nametoindex(if_name
);
2752 errx(1, "interface %s does not exist!", if_name
);
2754 strncpy(ifr
.ifr_name
, br_name
, IFNAMSIZ
);
2755 ifr
.ifr_name
[IFNAMSIZ
-1] = '\0';
2756 ifr
.ifr_ifindex
= ifidx
;
2757 if (ioctl(fd
, SIOCBRADDIF
, &ifr
) < 0)
2758 err(1, "can't add %s to bridge %s", if_name
, br_name
);
2762 * This sets up the Host end of the network device with an IP address, brings
2763 * it up so packets will flow, the copies the MAC address into the hwaddr
2766 static void configure_device(int fd
, const char *tapif
, u32 ipaddr
)
2769 struct sockaddr_in sin
;
2771 memset(&ifr
, 0, sizeof(ifr
));
2772 strcpy(ifr
.ifr_name
, tapif
);
2774 /* Don't read these incantations. Just cut & paste them like I did! */
2775 sin
.sin_family
= AF_INET
;
2776 sin
.sin_addr
.s_addr
= htonl(ipaddr
);
2777 memcpy(&ifr
.ifr_addr
, &sin
, sizeof(sin
));
2778 if (ioctl(fd
, SIOCSIFADDR
, &ifr
) != 0)
2779 err(1, "Setting %s interface address", tapif
);
2780 ifr
.ifr_flags
= IFF_UP
;
2781 if (ioctl(fd
, SIOCSIFFLAGS
, &ifr
) != 0)
2782 err(1, "Bringing interface %s up", tapif
);
2785 static int get_tun_device(char tapif
[IFNAMSIZ
])
2791 /* Start with this zeroed. Messy but sure. */
2792 memset(&ifr
, 0, sizeof(ifr
));
2795 * We open the /dev/net/tun device and tell it we want a tap device. A
2796 * tap device is like a tun device, only somehow different. To tell
2797 * the truth, I completely blundered my way through this code, but it
2800 netfd
= open_or_die("/dev/net/tun", O_RDWR
);
2801 ifr
.ifr_flags
= IFF_TAP
| IFF_NO_PI
| IFF_VNET_HDR
;
2802 strcpy(ifr
.ifr_name
, "tap%d");
2803 if (ioctl(netfd
, TUNSETIFF
, &ifr
) != 0)
2804 err(1, "configuring /dev/net/tun");
2806 if (ioctl(netfd
, TUNSETOFFLOAD
,
2807 TUN_F_CSUM
|TUN_F_TSO4
|TUN_F_TSO6
|TUN_F_TSO_ECN
) != 0)
2808 err(1, "Could not set features for tun device");
2811 * We don't need checksums calculated for packets coming in this
2814 ioctl(netfd
, TUNSETNOCSUM
, 1);
2817 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2818 * field at the end of the network header iff
2819 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2820 * that became the norm, but we need to tell the tun device
2821 * about our expanded header (which is called
2822 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2824 vnet_hdr_sz
= sizeof(struct virtio_net_hdr_v1
);
2825 if (ioctl(netfd
, TUNSETVNETHDRSZ
, &vnet_hdr_sz
) != 0)
2826 err(1, "Setting tun header size to %u", vnet_hdr_sz
);
2828 memcpy(tapif
, ifr
.ifr_name
, IFNAMSIZ
);
2833 * Our network is a Host<->Guest network. This can either use bridging or
2834 * routing, but the principle is the same: it uses the "tun" device to inject
2835 * packets into the Host as if they came in from a normal network card. We
2836 * just shunt packets between the Guest and the tun device.
2838 static void setup_tun_net(char *arg
)
2841 struct net_info
*net_info
= malloc(sizeof(*net_info
));
2843 u32 ip
= INADDR_ANY
;
2844 bool bridging
= false;
2845 char tapif
[IFNAMSIZ
], *p
;
2846 struct virtio_net_config conf
;
2848 net_info
->tunfd
= get_tun_device(tapif
);
2850 /* First we create a new network device. */
2851 dev
= new_pci_device("net", VIRTIO_ID_NET
, 0x02, 0x00);
2852 dev
->priv
= net_info
;
2854 /* Network devices need a recv and a send queue, just like console. */
2855 add_pci_virtqueue(dev
, net_input
, "rx");
2856 add_pci_virtqueue(dev
, net_output
, "tx");
2859 * We need a socket to perform the magic network ioctls to bring up the
2860 * tap interface, connect to the bridge etc. Any socket will do!
2862 ipfd
= socket(PF_INET
, SOCK_DGRAM
, IPPROTO_IP
);
2864 err(1, "opening IP socket");
2866 /* If the command line was --tunnet=bridge:<name> do bridging. */
2867 if (!strncmp(BRIDGE_PFX
, arg
, strlen(BRIDGE_PFX
))) {
2868 arg
+= strlen(BRIDGE_PFX
);
2872 /* A mac address may follow the bridge name or IP address */
2873 p
= strchr(arg
, ':');
2875 str2mac(p
+1, conf
.mac
);
2876 add_pci_feature(dev
, VIRTIO_NET_F_MAC
);
2880 /* arg is now either an IP address or a bridge name */
2882 add_to_bridge(ipfd
, tapif
, arg
);
2886 /* Set up the tun device. */
2887 configure_device(ipfd
, tapif
, ip
);
2889 /* Expect Guest to handle everything except UFO */
2890 add_pci_feature(dev
, VIRTIO_NET_F_CSUM
);
2891 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_CSUM
);
2892 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_TSO4
);
2893 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_TSO6
);
2894 add_pci_feature(dev
, VIRTIO_NET_F_GUEST_ECN
);
2895 add_pci_feature(dev
, VIRTIO_NET_F_HOST_TSO4
);
2896 add_pci_feature(dev
, VIRTIO_NET_F_HOST_TSO6
);
2897 add_pci_feature(dev
, VIRTIO_NET_F_HOST_ECN
);
2898 /* We handle indirect ring entries */
2899 add_pci_feature(dev
, VIRTIO_RING_F_INDIRECT_DESC
);
2900 set_device_config(dev
, &conf
, sizeof(conf
));
2902 /* We don't need the socket any more; setup is done. */
2906 verbose("device %u: tun %s attached to bridge: %s\n",
2907 devices
.device_num
, tapif
, arg
);
2909 verbose("device %u: tun %s: %s\n",
2910 devices
.device_num
, tapif
, arg
);
2914 /* This hangs off device->priv. */
2916 /* The size of the file. */
2919 /* The file descriptor for the file. */
2927 * The disk only has one virtqueue, so it only has one thread. It is really
2928 * simple: the Guest asks for a block number and we read or write that position
2931 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2932 * slow: the Guest waits until the read is finished before running anything
2933 * else, even if it could have been doing useful work.
2935 * We could have used async I/O, except it's reputed to suck so hard that
2936 * characters actually go missing from your code when you try to use it.
2938 static void blk_request(struct virtqueue
*vq
)
2940 struct vblk_info
*vblk
= vq
->dev
->priv
;
2941 unsigned int head
, out_num
, in_num
, wlen
;
2944 struct virtio_blk_outhdr out
;
2945 struct iovec iov
[vq
->vring
.num
];
2949 * Get the next request, where we normally wait. It triggers the
2950 * interrupt to acknowledge previously serviced requests (if any).
2952 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
2954 /* Copy the output header from the front of the iov (adjusts iov) */
2955 iov_consume(vq
->dev
, iov
, out_num
, &out
, sizeof(out
));
2957 /* Find and trim end of iov input array, for our status byte. */
2959 for (i
= out_num
+ in_num
- 1; i
>= out_num
; i
--) {
2960 if (iov
[i
].iov_len
> 0) {
2961 in
= iov
[i
].iov_base
+ iov
[i
].iov_len
- 1;
2967 bad_driver_vq(vq
, "Bad virtblk cmd with no room for status");
2970 * For historical reasons, block operations are expressed in 512 byte
2973 off
= out
.sector
* 512;
2975 if (out
.type
& VIRTIO_BLK_T_OUT
) {
2979 * Move to the right location in the block file. This can fail
2980 * if they try to write past end.
2982 if (lseek64(vblk
->fd
, off
, SEEK_SET
) != off
)
2983 err(1, "Bad seek to sector %llu", out
.sector
);
2985 ret
= writev(vblk
->fd
, iov
, out_num
);
2986 verbose("WRITE to sector %llu: %i\n", out
.sector
, ret
);
2989 * Grr... Now we know how long the descriptor they sent was, we
2990 * make sure they didn't try to write over the end of the block
2991 * file (possibly extending it).
2993 if (ret
> 0 && off
+ ret
> vblk
->len
) {
2994 /* Trim it back to the correct length */
2995 ftruncate64(vblk
->fd
, vblk
->len
);
2996 /* Die, bad Guest, die. */
2997 bad_driver_vq(vq
, "Write past end %llu+%u", off
, ret
);
3001 *in
= (ret
>= 0 ? VIRTIO_BLK_S_OK
: VIRTIO_BLK_S_IOERR
);
3002 } else if (out
.type
& VIRTIO_BLK_T_FLUSH
) {
3004 ret
= fdatasync(vblk
->fd
);
3005 verbose("FLUSH fdatasync: %i\n", ret
);
3007 *in
= (ret
>= 0 ? VIRTIO_BLK_S_OK
: VIRTIO_BLK_S_IOERR
);
3012 * Move to the right location in the block file. This can fail
3013 * if they try to read past end.
3015 if (lseek64(vblk
->fd
, off
, SEEK_SET
) != off
)
3016 err(1, "Bad seek to sector %llu", out
.sector
);
3018 ret
= readv(vblk
->fd
, iov
+ out_num
, in_num
);
3020 wlen
= sizeof(*in
) + ret
;
3021 *in
= VIRTIO_BLK_S_OK
;
3024 *in
= VIRTIO_BLK_S_IOERR
;
3028 /* Finished that request. */
3029 add_used(vq
, head
, wlen
);
3032 /*L:198 This actually sets up a virtual block device. */
3033 static void setup_block_file(const char *filename
)
3036 struct vblk_info
*vblk
;
3037 struct virtio_blk_config conf
;
3039 /* Create the device. */
3040 dev
= new_pci_device("block", VIRTIO_ID_BLOCK
, 0x01, 0x80);
3042 /* The device has one virtqueue, where the Guest places requests. */
3043 add_pci_virtqueue(dev
, blk_request
, "request");
3045 /* Allocate the room for our own bookkeeping */
3046 vblk
= dev
->priv
= malloc(sizeof(*vblk
));
3048 /* First we open the file and store the length. */
3049 vblk
->fd
= open_or_die(filename
, O_RDWR
|O_LARGEFILE
);
3050 vblk
->len
= lseek64(vblk
->fd
, 0, SEEK_END
);
3052 /* Tell Guest how many sectors this device has. */
3053 conf
.capacity
= cpu_to_le64(vblk
->len
/ 512);
3056 * Tell Guest not to put in too many descriptors at once: two are used
3057 * for the in and out elements.
3059 add_pci_feature(dev
, VIRTIO_BLK_F_SEG_MAX
);
3060 conf
.seg_max
= cpu_to_le32(VIRTQUEUE_NUM
- 2);
3062 set_device_config(dev
, &conf
, sizeof(struct virtio_blk_config
));
3064 verbose("device %u: virtblock %llu sectors\n",
3065 devices
.device_num
, le64_to_cpu(conf
.capacity
));
3069 * Our random number generator device reads from /dev/urandom into the Guest's
3070 * input buffers. The usual case is that the Guest doesn't want random numbers
3071 * and so has no buffers although /dev/urandom is still readable, whereas
3072 * console is the reverse.
3074 * The same logic applies, however.
3080 static void rng_input(struct virtqueue
*vq
)
3083 unsigned int head
, in_num
, out_num
, totlen
= 0;
3084 struct rng_info
*rng_info
= vq
->dev
->priv
;
3085 struct iovec iov
[vq
->vring
.num
];
3087 /* First we need a buffer from the Guests's virtqueue. */
3088 head
= wait_for_vq_desc(vq
, iov
, &out_num
, &in_num
);
3090 bad_driver_vq(vq
, "Output buffers in rng?");
3093 * Just like the console write, we loop to cover the whole iovec.
3094 * In this case, short reads actually happen quite a bit.
3096 while (!iov_empty(iov
, in_num
)) {
3097 len
= readv(rng_info
->rfd
, iov
, in_num
);
3099 err(1, "Read from /dev/urandom gave %i", len
);
3100 iov_consume(vq
->dev
, iov
, in_num
, NULL
, len
);
3104 /* Tell the Guest about the new input. */
3105 add_used(vq
, head
, totlen
);
3109 * This creates a "hardware" random number device for the Guest.
3111 static void setup_rng(void)
3114 struct rng_info
*rng_info
= malloc(sizeof(*rng_info
));
3116 /* Our device's private info simply contains the /dev/urandom fd. */
3117 rng_info
->rfd
= open_or_die("/dev/urandom", O_RDONLY
);
3119 /* Create the new device. */
3120 dev
= new_pci_device("rng", VIRTIO_ID_RNG
, 0xff, 0);
3121 dev
->priv
= rng_info
;
3123 /* The device has one virtqueue, where the Guest places inbufs. */
3124 add_pci_virtqueue(dev
, rng_input
, "input");
3126 /* We don't have any configuration space */
3127 no_device_config(dev
);
3129 verbose("device %u: rng\n", devices
.device_num
);
3131 /* That's the end of device setup. */
3133 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
3134 static void __attribute__((noreturn
)) restart_guest(void)
3139 * Since we don't track all open fds, we simply close everything beyond
3142 for (i
= 3; i
< FD_SETSIZE
; i
++)
3145 /* Reset all the devices (kills all threads). */
3148 execv(main_args
[0], main_args
);
3149 err(1, "Could not exec %s", main_args
[0]);
3153 * Finally we reach the core of the Launcher which runs the Guest, serves
3154 * its input and output, and finally, lays it to rest.
3156 static void __attribute__((noreturn
)) run_guest(void)
3159 struct lguest_pending notify
;
3162 /* We read from the /dev/lguest device to run the Guest. */
3163 readval
= pread(lguest_fd
, ¬ify
, sizeof(notify
), cpu_id
);
3164 if (readval
== sizeof(notify
)) {
3165 if (notify
.trap
== 13) {
3166 verbose("Emulating instruction at %#x\n",
3168 emulate_insn(notify
.insn
);
3169 } else if (notify
.trap
== 14) {
3170 verbose("Emulating MMIO at %#x\n",
3172 emulate_mmio(notify
.addr
, notify
.insn
);
3174 errx(1, "Unknown trap %i addr %#08x\n",
3175 notify
.trap
, notify
.addr
);
3176 /* ENOENT means the Guest died. Reading tells us why. */
3177 } else if (errno
== ENOENT
) {
3178 char reason
[1024] = { 0 };
3179 pread(lguest_fd
, reason
, sizeof(reason
)-1, cpu_id
);
3180 errx(1, "%s", reason
);
3181 /* ERESTART means that we need to reboot the guest */
3182 } else if (errno
== ERESTART
) {
3184 /* Anything else means a bug or incompatible change. */
3186 err(1, "Running guest failed");
3190 * This is the end of the Launcher. The good news: we are over halfway
3191 * through! The bad news: the most fiendish part of the code still lies ahead
3194 * Are you ready? Take a deep breath and join me in the core of the Host, in
3198 static struct option opts
[] = {
3199 { "verbose", 0, NULL
, 'v' },
3200 { "tunnet", 1, NULL
, 't' },
3201 { "block", 1, NULL
, 'b' },
3202 { "rng", 0, NULL
, 'r' },
3203 { "initrd", 1, NULL
, 'i' },
3204 { "username", 1, NULL
, 'u' },
3205 { "chroot", 1, NULL
, 'c' },
3208 static void usage(void)
3210 errx(1, "Usage: lguest [--verbose] "
3211 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
3212 "|--block=<filename>|--initrd=<filename>]...\n"
3213 "<mem-in-mb> vmlinux [args...]");
3216 /*L:105 The main routine is where the real work begins: */
3217 int main(int argc
, char *argv
[])
3219 /* Memory, code startpoint and size of the (optional) initrd. */
3220 unsigned long mem
= 0, start
, initrd_size
= 0;
3221 /* Two temporaries. */
3223 /* The boot information for the Guest. */
3224 struct boot_params
*boot
;
3225 /* If they specify an initrd file to load. */
3226 const char *initrd_name
= NULL
;
3228 /* Password structure for initgroups/setres[gu]id */
3229 struct passwd
*user_details
= NULL
;
3231 /* Directory to chroot to */
3232 char *chroot_path
= NULL
;
3234 /* Save the args: we "reboot" by execing ourselves again. */
3238 * First we initialize the device list. We remember next interrupt
3239 * number to use for devices (1: remember that 0 is used by the timer).
3241 devices
.next_irq
= 1;
3243 /* We're CPU 0. In fact, that's the only CPU possible right now. */
3247 * We need to know how much memory so we can set up the device
3248 * descriptor and memory pages for the devices as we parse the command
3249 * line. So we quickly look through the arguments to find the amount
3252 for (i
= 1; i
< argc
; i
++) {
3253 if (argv
[i
][0] != '-') {
3254 mem
= atoi(argv
[i
]) * 1024 * 1024;
3256 * We start by mapping anonymous pages over all of
3257 * guest-physical memory range. This fills it with 0,
3258 * and ensures that the Guest won't be killed when it
3259 * tries to access it.
3261 guest_base
= map_zeroed_pages(mem
/ getpagesize()
3264 guest_max
= guest_mmio
= mem
+ DEVICE_PAGES
*getpagesize();
3269 /* We always have a console device, and it's always device 1. */
3272 /* The options are fairly straight-forward */
3273 while ((c
= getopt_long(argc
, argv
, "v", opts
, NULL
)) != EOF
) {
3279 setup_tun_net(optarg
);
3282 setup_block_file(optarg
);
3288 initrd_name
= optarg
;
3291 user_details
= getpwnam(optarg
);
3293 err(1, "getpwnam failed, incorrect username?");
3296 chroot_path
= optarg
;
3299 warnx("Unknown argument %s", argv
[optind
]);
3304 * After the other arguments we expect memory and kernel image name,
3305 * followed by command line arguments for the kernel.
3307 if (optind
+ 2 > argc
)
3310 verbose("Guest base is at %p\n", guest_base
);
3312 /* Initialize the (fake) PCI host bridge device. */
3313 init_pci_host_bridge();
3315 /* Now we load the kernel */
3316 start
= load_kernel(open_or_die(argv
[optind
+1], O_RDONLY
));
3318 /* Boot information is stashed at physical address 0 */
3319 boot
= from_guest_phys(0);
3321 /* Map the initrd image if requested (at top of physical memory) */
3323 initrd_size
= load_initrd(initrd_name
, mem
);
3325 * These are the location in the Linux boot header where the
3326 * start and size of the initrd are expected to be found.
3328 boot
->hdr
.ramdisk_image
= mem
- initrd_size
;
3329 boot
->hdr
.ramdisk_size
= initrd_size
;
3330 /* The bootloader type 0xFF means "unknown"; that's OK. */
3331 boot
->hdr
.type_of_loader
= 0xFF;
3335 * The Linux boot header contains an "E820" memory map: ours is a
3336 * simple, single region.
3338 boot
->e820_entries
= 1;
3339 boot
->e820_map
[0] = ((struct e820entry
) { 0, mem
, E820_RAM
});
3341 * The boot header contains a command line pointer: we put the command
3342 * line after the boot header.
3344 boot
->hdr
.cmd_line_ptr
= to_guest_phys(boot
+ 1);
3345 /* We use a simple helper to copy the arguments separated by spaces. */
3346 concat((char *)(boot
+ 1), argv
+optind
+2);
3348 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
3349 boot
->hdr
.kernel_alignment
= 0x1000000;
3351 /* Boot protocol version: 2.07 supports the fields for lguest. */
3352 boot
->hdr
.version
= 0x207;
3354 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
3355 boot
->hdr
.hardware_subarch
= 1;
3357 /* Tell the entry path not to try to reload segment registers. */
3358 boot
->hdr
.loadflags
|= KEEP_SEGMENTS
;
3360 /* We tell the kernel to initialize the Guest. */
3363 /* Ensure that we terminate if a device-servicing child dies. */
3364 signal(SIGCHLD
, kill_launcher
);
3366 /* If we exit via err(), this kills all the threads, restores tty. */
3367 atexit(cleanup_devices
);
3369 /* If requested, chroot to a directory */
3371 if (chroot(chroot_path
) != 0)
3372 err(1, "chroot(\"%s\") failed", chroot_path
);
3374 if (chdir("/") != 0)
3375 err(1, "chdir(\"/\") failed");
3377 verbose("chroot done\n");
3380 /* If requested, drop privileges */
3385 u
= user_details
->pw_uid
;
3386 g
= user_details
->pw_gid
;
3388 if (initgroups(user_details
->pw_name
, g
) != 0)
3389 err(1, "initgroups failed");
3391 if (setresgid(g
, g
, g
) != 0)
3392 err(1, "setresgid failed");
3394 if (setresuid(u
, u
, u
) != 0)
3395 err(1, "setresuid failed");
3397 verbose("Dropping privileges completed\n");
3400 /* Finally, run the Guest. This doesn't return. */
3406 * Mastery is done: you now know everything I do.
3408 * But surely you have seen code, features and bugs in your wanderings which
3409 * you now yearn to attack? That is the real game, and I look forward to you
3410 * patching and forking lguest into the Your-Name-Here-visor.
3412 * Farewell, and good coding!