2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: gc.c,v 1.148 2005/04/09 10:47:00 dedekind Exp $
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info
*c
,
25 struct jffs2_inode_cache
*ic
,
26 struct jffs2_raw_node_ref
*raw
);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
28 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fd
);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
30 struct jffs2_inode_info
*f
, struct jffs2_full_dirent
*fd
);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
32 struct jffs2_inode_info
*f
, struct jffs2_full_dirent
*fd
);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
34 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fn
,
35 uint32_t start
, uint32_t end
);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
37 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fn
,
38 uint32_t start
, uint32_t end
);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
40 struct jffs2_raw_node_ref
*raw
, struct jffs2_inode_info
*f
);
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock
*jffs2_find_gc_block(struct jffs2_sb_info
*c
)
45 struct jffs2_eraseblock
*ret
;
46 struct list_head
*nextlist
= NULL
;
47 int n
= jiffies
% 128;
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
54 if (!list_empty(&c
->bad_used_list
) && c
->nr_free_blocks
> c
->resv_blocks_gcbad
) {
55 D1(printk(KERN_DEBUG
"Picking block from bad_used_list to GC next\n"));
56 nextlist
= &c
->bad_used_list
;
57 } else if (n
< 50 && !list_empty(&c
->erasable_list
)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG
"Picking block from erasable_list to GC next\n"));
61 nextlist
= &c
->erasable_list
;
62 } else if (n
< 110 && !list_empty(&c
->very_dirty_list
)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG
"Picking block from very_dirty_list to GC next\n"));
65 nextlist
= &c
->very_dirty_list
;
66 } else if (n
< 126 && !list_empty(&c
->dirty_list
)) {
67 D1(printk(KERN_DEBUG
"Picking block from dirty_list to GC next\n"));
68 nextlist
= &c
->dirty_list
;
69 } else if (!list_empty(&c
->clean_list
)) {
70 D1(printk(KERN_DEBUG
"Picking block from clean_list to GC next\n"));
71 nextlist
= &c
->clean_list
;
72 } else if (!list_empty(&c
->dirty_list
)) {
73 D1(printk(KERN_DEBUG
"Picking block from dirty_list to GC next (clean_list was empty)\n"));
75 nextlist
= &c
->dirty_list
;
76 } else if (!list_empty(&c
->very_dirty_list
)) {
77 D1(printk(KERN_DEBUG
"Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist
= &c
->very_dirty_list
;
79 } else if (!list_empty(&c
->erasable_list
)) {
80 D1(printk(KERN_DEBUG
"Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
82 nextlist
= &c
->erasable_list
;
83 } else if (!list_empty(&c
->erasable_pending_wbuf_list
)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG
"Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c
->erase_completion_lock
);
87 jffs2_flush_wbuf_pad(c
);
88 spin_lock(&c
->erase_completion_lock
);
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE
"jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
96 ret
= list_entry(nextlist
->next
, struct jffs2_eraseblock
, list
);
99 ret
->gc_node
= ret
->first_node
;
101 printk(KERN_WARNING
"Eep. ret->gc_node for block at 0x%08x is NULL\n", ret
->offset
);
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret
->wasted_size
) {
107 D1(printk(KERN_DEBUG
"Converting wasted_size %08x to dirty_size\n", ret
->wasted_size
));
108 ret
->dirty_size
+= ret
->wasted_size
;
109 c
->wasted_size
-= ret
->wasted_size
;
110 c
->dirty_size
+= ret
->wasted_size
;
111 ret
->wasted_size
= 0;
114 D2(jffs2_dump_block_lists(c
));
118 /* jffs2_garbage_collect_pass
119 * Make a single attempt to progress GC. Move one node, and possibly
120 * start erasing one eraseblock.
122 int jffs2_garbage_collect_pass(struct jffs2_sb_info
*c
)
124 struct jffs2_inode_info
*f
;
125 struct jffs2_inode_cache
*ic
;
126 struct jffs2_eraseblock
*jeb
;
127 struct jffs2_raw_node_ref
*raw
;
128 int ret
= 0, inum
, nlink
;
130 if (down_interruptible(&c
->alloc_sem
))
134 spin_lock(&c
->erase_completion_lock
);
135 if (!c
->unchecked_size
)
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
141 /* checked_ino is protected by the alloc_sem */
142 if (c
->checked_ino
> c
->highest_ino
) {
143 printk(KERN_CRIT
"Checked all inodes but still 0x%x bytes of unchecked space?\n",
145 D2(jffs2_dump_block_lists(c
));
146 spin_unlock(&c
->erase_completion_lock
);
150 spin_unlock(&c
->erase_completion_lock
);
152 spin_lock(&c
->inocache_lock
);
154 ic
= jffs2_get_ino_cache(c
, c
->checked_ino
++);
157 spin_unlock(&c
->inocache_lock
);
162 D1(printk(KERN_DEBUG
"Skipping check of ino #%d with nlink zero\n",
164 spin_unlock(&c
->inocache_lock
);
168 case INO_STATE_CHECKEDABSENT
:
169 case INO_STATE_PRESENT
:
170 D1(printk(KERN_DEBUG
"Skipping ino #%u already checked\n", ic
->ino
));
171 spin_unlock(&c
->inocache_lock
);
175 case INO_STATE_CHECKING
:
176 printk(KERN_WARNING
"Inode #%u is in state %d during CRC check phase!\n", ic
->ino
, ic
->state
);
177 spin_unlock(&c
->inocache_lock
);
180 case INO_STATE_READING
:
181 /* We need to wait for it to finish, lest we move on
182 and trigger the BUG() above while we haven't yet
183 finished checking all its nodes */
184 D1(printk(KERN_DEBUG
"Waiting for ino #%u to finish reading\n", ic
->ino
));
186 sleep_on_spinunlock(&c
->inocache_wq
, &c
->inocache_lock
);
192 case INO_STATE_UNCHECKED
:
195 ic
->state
= INO_STATE_CHECKING
;
196 spin_unlock(&c
->inocache_lock
);
198 D1(printk(KERN_DEBUG
"jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic
->ino
));
200 ret
= jffs2_do_crccheck_inode(c
, ic
);
202 printk(KERN_WARNING
"Returned error for crccheck of ino #%u. Expect badness...\n", ic
->ino
);
204 jffs2_set_inocache_state(c
, ic
, INO_STATE_CHECKEDABSENT
);
209 /* First, work out which block we're garbage-collecting */
213 jeb
= jffs2_find_gc_block(c
);
216 D1 (printk(KERN_NOTICE
"jffs2: Couldn't find erase block to garbage collect!\n"));
217 spin_unlock(&c
->erase_completion_lock
);
222 D1(printk(KERN_DEBUG
"GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb
->offset
, jeb
->used_size
, jeb
->dirty_size
, jeb
->free_size
));
224 printk(KERN_DEBUG
"Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c
->nextblock
->offset
, c
->nextblock
->used_size
, c
->nextblock
->dirty_size
, c
->nextblock
->wasted_size
, c
->nextblock
->free_size
));
226 if (!jeb
->used_size
) {
233 while(ref_obsolete(raw
)) {
234 D1(printk(KERN_DEBUG
"Node at 0x%08x is obsolete... skipping\n", ref_offset(raw
)));
235 raw
= raw
->next_phys
;
236 if (unlikely(!raw
)) {
237 printk(KERN_WARNING
"eep. End of raw list while still supposedly nodes to GC\n");
238 printk(KERN_WARNING
"erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
239 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
);
241 spin_unlock(&c
->erase_completion_lock
);
248 D1(printk(KERN_DEBUG
"Going to garbage collect node at 0x%08x\n", ref_offset(raw
)));
250 if (!raw
->next_in_ino
) {
251 /* Inode-less node. Clean marker, snapshot or something like that */
252 /* FIXME: If it's something that needs to be copied, including something
253 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
254 spin_unlock(&c
->erase_completion_lock
);
255 jffs2_mark_node_obsolete(c
, raw
);
260 ic
= jffs2_raw_ref_to_ic(raw
);
262 /* We need to hold the inocache. Either the erase_completion_lock or
263 the inocache_lock are sufficient; we trade down since the inocache_lock
264 causes less contention. */
265 spin_lock(&c
->inocache_lock
);
267 spin_unlock(&c
->erase_completion_lock
);
269 D1(printk(KERN_DEBUG
"jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb
->offset
, ref_offset(raw
), ref_flags(raw
), ic
->ino
));
271 /* Three possibilities:
272 1. Inode is already in-core. We must iget it and do proper
273 updating to its fragtree, etc.
274 2. Inode is not in-core, node is REF_PRISTINE. We lock the
275 inocache to prevent a read_inode(), copy the node intact.
276 3. Inode is not in-core, node is not pristine. We must iget()
277 and take the slow path.
281 case INO_STATE_CHECKEDABSENT
:
282 /* It's been checked, but it's not currently in-core.
283 We can just copy any pristine nodes, but have
284 to prevent anyone else from doing read_inode() while
285 we're at it, so we set the state accordingly */
286 if (ref_flags(raw
) == REF_PRISTINE
)
287 ic
->state
= INO_STATE_GC
;
289 D1(printk(KERN_DEBUG
"Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
294 case INO_STATE_PRESENT
:
295 /* It's in-core. GC must iget() it. */
298 case INO_STATE_UNCHECKED
:
299 case INO_STATE_CHECKING
:
301 /* Should never happen. We should have finished checking
302 by the time we actually start doing any GC, and since
303 we're holding the alloc_sem, no other garbage collection
306 printk(KERN_CRIT
"Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
309 spin_unlock(&c
->inocache_lock
);
312 case INO_STATE_READING
:
313 /* Someone's currently trying to read it. We must wait for
314 them to finish and then go through the full iget() route
315 to do the GC. However, sometimes read_inode() needs to get
316 the alloc_sem() (for marking nodes invalid) so we must
317 drop the alloc_sem before sleeping. */
320 D1(printk(KERN_DEBUG
"jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
321 ic
->ino
, ic
->state
));
322 sleep_on_spinunlock(&c
->inocache_wq
, &c
->inocache_lock
);
323 /* And because we dropped the alloc_sem we must start again from the
324 beginning. Ponder chance of livelock here -- we're returning success
325 without actually making any progress.
327 Q: What are the chances that the inode is back in INO_STATE_READING
328 again by the time we next enter this function? And that this happens
329 enough times to cause a real delay?
331 A: Small enough that I don't care :)
336 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
337 node intact, and we don't have to muck about with the fragtree etc.
338 because we know it's not in-core. If it _was_ in-core, we go through
339 all the iget() crap anyway */
341 if (ic
->state
== INO_STATE_GC
) {
342 spin_unlock(&c
->inocache_lock
);
344 ret
= jffs2_garbage_collect_pristine(c
, ic
, raw
);
346 spin_lock(&c
->inocache_lock
);
347 ic
->state
= INO_STATE_CHECKEDABSENT
;
348 wake_up(&c
->inocache_wq
);
350 if (ret
!= -EBADFD
) {
351 spin_unlock(&c
->inocache_lock
);
355 /* Fall through if it wanted us to, with inocache_lock held */
358 /* Prevent the fairly unlikely race where the gcblock is
359 entirely obsoleted by the final close of a file which had
360 the only valid nodes in the block, followed by erasure,
361 followed by freeing of the ic because the erased block(s)
362 held _all_ the nodes of that inode.... never been seen but
363 it's vaguely possible. */
367 spin_unlock(&c
->inocache_lock
);
369 f
= jffs2_gc_fetch_inode(c
, inum
, nlink
);
379 ret
= jffs2_garbage_collect_live(c
, jeb
, raw
, f
);
381 jffs2_gc_release_inode(c
, f
);
387 /* If we've finished this block, start it erasing */
388 spin_lock(&c
->erase_completion_lock
);
391 if (c
->gcblock
&& !c
->gcblock
->used_size
) {
392 D1(printk(KERN_DEBUG
"Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c
->gcblock
->offset
));
393 /* We're GC'ing an empty block? */
394 list_add_tail(&c
->gcblock
->list
, &c
->erase_pending_list
);
396 c
->nr_erasing_blocks
++;
397 jffs2_erase_pending_trigger(c
);
399 spin_unlock(&c
->erase_completion_lock
);
404 static int jffs2_garbage_collect_live(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
405 struct jffs2_raw_node_ref
*raw
, struct jffs2_inode_info
*f
)
407 struct jffs2_node_frag
*frag
;
408 struct jffs2_full_dnode
*fn
= NULL
;
409 struct jffs2_full_dirent
*fd
;
410 uint32_t start
= 0, end
= 0, nrfrags
= 0;
415 /* Now we have the lock for this inode. Check that it's still the one at the head
418 spin_lock(&c
->erase_completion_lock
);
420 if (c
->gcblock
!= jeb
) {
421 spin_unlock(&c
->erase_completion_lock
);
422 D1(printk(KERN_DEBUG
"GC block is no longer gcblock. Restart\n"));
425 if (ref_obsolete(raw
)) {
426 spin_unlock(&c
->erase_completion_lock
);
427 D1(printk(KERN_DEBUG
"node to be GC'd was obsoleted in the meantime.\n"));
428 /* They'll call again */
431 spin_unlock(&c
->erase_completion_lock
);
433 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
434 if (f
->metadata
&& f
->metadata
->raw
== raw
) {
436 ret
= jffs2_garbage_collect_metadata(c
, jeb
, f
, fn
);
440 /* FIXME. Read node and do lookup? */
441 for (frag
= frag_first(&f
->fragtree
); frag
; frag
= frag_next(frag
)) {
442 if (frag
->node
&& frag
->node
->raw
== raw
) {
444 end
= frag
->ofs
+ frag
->size
;
447 if (nrfrags
== frag
->node
->frags
)
448 break; /* We've found them all */
452 if (ref_flags(raw
) == REF_PRISTINE
) {
453 ret
= jffs2_garbage_collect_pristine(c
, f
->inocache
, raw
);
455 /* Urgh. Return it sensibly. */
456 frag
->node
->raw
= f
->inocache
->nodes
;
461 /* We found a datanode. Do the GC */
462 if((start
>> PAGE_CACHE_SHIFT
) < ((end
-1) >> PAGE_CACHE_SHIFT
)) {
463 /* It crosses a page boundary. Therefore, it must be a hole. */
464 ret
= jffs2_garbage_collect_hole(c
, jeb
, f
, fn
, start
, end
);
466 /* It could still be a hole. But we GC the page this way anyway */
467 ret
= jffs2_garbage_collect_dnode(c
, jeb
, f
, fn
, start
, end
);
472 /* Wasn't a dnode. Try dirent */
473 for (fd
= f
->dents
; fd
; fd
=fd
->next
) {
479 ret
= jffs2_garbage_collect_dirent(c
, jeb
, f
, fd
);
481 ret
= jffs2_garbage_collect_deletion_dirent(c
, jeb
, f
, fd
);
483 printk(KERN_WARNING
"Raw node at 0x%08x wasn't in node lists for ino #%u\n",
484 ref_offset(raw
), f
->inocache
->ino
);
485 if (ref_obsolete(raw
)) {
486 printk(KERN_WARNING
"But it's obsolete so we don't mind too much\n");
497 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info
*c
,
498 struct jffs2_inode_cache
*ic
,
499 struct jffs2_raw_node_ref
*raw
)
501 union jffs2_node_union
*node
;
502 struct jffs2_raw_node_ref
*nraw
;
505 uint32_t phys_ofs
, alloclen
;
506 uint32_t crc
, rawlen
;
509 D1(printk(KERN_DEBUG
"Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw
)));
511 rawlen
= ref_totlen(c
, c
->gcblock
, raw
);
513 /* Ask for a small amount of space (or the totlen if smaller) because we
514 don't want to force wastage of the end of a block if splitting would
516 ret
= jffs2_reserve_space_gc(c
, min_t(uint32_t, sizeof(struct jffs2_raw_inode
) + JFFS2_MIN_DATA_LEN
,
517 rawlen
), &phys_ofs
, &alloclen
);
521 if (alloclen
< rawlen
) {
522 /* Doesn't fit untouched. We'll go the old route and split it */
526 node
= kmalloc(rawlen
, GFP_KERNEL
);
530 ret
= jffs2_flash_read(c
, ref_offset(raw
), rawlen
, &retlen
, (char *)node
);
531 if (!ret
&& retlen
!= rawlen
)
536 crc
= crc32(0, node
, sizeof(struct jffs2_unknown_node
)-4);
537 if (je32_to_cpu(node
->u
.hdr_crc
) != crc
) {
538 printk(KERN_WARNING
"Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
539 ref_offset(raw
), je32_to_cpu(node
->u
.hdr_crc
), crc
);
543 switch(je16_to_cpu(node
->u
.nodetype
)) {
544 case JFFS2_NODETYPE_INODE
:
545 crc
= crc32(0, node
, sizeof(node
->i
)-8);
546 if (je32_to_cpu(node
->i
.node_crc
) != crc
) {
547 printk(KERN_WARNING
"Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
548 ref_offset(raw
), je32_to_cpu(node
->i
.node_crc
), crc
);
552 if (je32_to_cpu(node
->i
.dsize
)) {
553 crc
= crc32(0, node
->i
.data
, je32_to_cpu(node
->i
.csize
));
554 if (je32_to_cpu(node
->i
.data_crc
) != crc
) {
555 printk(KERN_WARNING
"Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
556 ref_offset(raw
), je32_to_cpu(node
->i
.data_crc
), crc
);
562 case JFFS2_NODETYPE_DIRENT
:
563 crc
= crc32(0, node
, sizeof(node
->d
)-8);
564 if (je32_to_cpu(node
->d
.node_crc
) != crc
) {
565 printk(KERN_WARNING
"Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
566 ref_offset(raw
), je32_to_cpu(node
->d
.node_crc
), crc
);
571 crc
= crc32(0, node
->d
.name
, node
->d
.nsize
);
572 if (je32_to_cpu(node
->d
.name_crc
) != crc
) {
573 printk(KERN_WARNING
"Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
574 ref_offset(raw
), je32_to_cpu(node
->d
.name_crc
), crc
);
580 printk(KERN_WARNING
"Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
581 ref_offset(raw
), je16_to_cpu(node
->u
.nodetype
));
585 nraw
= jffs2_alloc_raw_node_ref();
591 /* OK, all the CRCs are good; this node can just be copied as-is. */
593 nraw
->flash_offset
= phys_ofs
;
594 nraw
->__totlen
= rawlen
;
595 nraw
->next_phys
= NULL
;
597 ret
= jffs2_flash_write(c
, phys_ofs
, rawlen
, &retlen
, (char *)node
);
599 if (ret
|| (retlen
!= rawlen
)) {
600 printk(KERN_NOTICE
"Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
601 rawlen
, phys_ofs
, ret
, retlen
);
603 /* Doesn't belong to any inode */
604 nraw
->next_in_ino
= NULL
;
606 nraw
->flash_offset
|= REF_OBSOLETE
;
607 jffs2_add_physical_node_ref(c
, nraw
);
608 jffs2_mark_node_obsolete(c
, nraw
);
610 printk(KERN_NOTICE
"Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw
->flash_offset
);
611 jffs2_free_raw_node_ref(nraw
);
613 if (!retried
&& (nraw
= jffs2_alloc_raw_node_ref())) {
614 /* Try to reallocate space and retry */
616 struct jffs2_eraseblock
*jeb
= &c
->blocks
[phys_ofs
/ c
->sector_size
];
620 D1(printk(KERN_DEBUG
"Retrying failed write of REF_PRISTINE node.\n"));
622 ACCT_SANITY_CHECK(c
,jeb
);
623 D1(ACCT_PARANOIA_CHECK(jeb
));
625 ret
= jffs2_reserve_space_gc(c
, rawlen
, &phys_ofs
, &dummy
);
628 D1(printk(KERN_DEBUG
"Allocated space at 0x%08x to retry failed write.\n", phys_ofs
));
630 ACCT_SANITY_CHECK(c
,jeb
);
631 D1(ACCT_PARANOIA_CHECK(jeb
));
635 D1(printk(KERN_DEBUG
"Failed to allocate space to retry failed write: %d!\n", ret
));
636 jffs2_free_raw_node_ref(nraw
);
639 jffs2_free_raw_node_ref(nraw
);
644 nraw
->flash_offset
|= REF_PRISTINE
;
645 jffs2_add_physical_node_ref(c
, nraw
);
647 /* Link into per-inode list. This is safe because of the ic
648 state being INO_STATE_GC. Note that if we're doing this
649 for an inode which is in-core, the 'nraw' pointer is then
650 going to be fetched from ic->nodes by our caller. */
651 spin_lock(&c
->erase_completion_lock
);
652 nraw
->next_in_ino
= ic
->nodes
;
654 spin_unlock(&c
->erase_completion_lock
);
656 jffs2_mark_node_obsolete(c
, raw
);
657 D1(printk(KERN_DEBUG
"WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw
)));
667 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
668 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fn
)
670 struct jffs2_full_dnode
*new_fn
;
671 struct jffs2_raw_inode ri
;
672 struct jffs2_node_frag
*last_frag
;
674 char *mdata
= NULL
, mdatalen
= 0;
675 uint32_t alloclen
, phys_ofs
, ilen
;
678 if (S_ISBLK(JFFS2_F_I_MODE(f
)) ||
679 S_ISCHR(JFFS2_F_I_MODE(f
)) ) {
680 /* For these, we don't actually need to read the old node */
681 /* FIXME: for minor or major > 255. */
682 dev
= cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f
) << 8) |
683 JFFS2_F_I_RDEV_MIN(f
)));
684 mdata
= (char *)&dev
;
685 mdatalen
= sizeof(dev
);
686 D1(printk(KERN_DEBUG
"jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen
));
687 } else if (S_ISLNK(JFFS2_F_I_MODE(f
))) {
689 mdata
= kmalloc(fn
->size
, GFP_KERNEL
);
691 printk(KERN_WARNING
"kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
694 ret
= jffs2_read_dnode(c
, f
, fn
, mdata
, 0, mdatalen
);
696 printk(KERN_WARNING
"read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret
);
700 D1(printk(KERN_DEBUG
"jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen
));
704 ret
= jffs2_reserve_space_gc(c
, sizeof(ri
) + mdatalen
, &phys_ofs
, &alloclen
);
706 printk(KERN_WARNING
"jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
707 sizeof(ri
)+ mdatalen
, ret
);
711 last_frag
= frag_last(&f
->fragtree
);
713 /* Fetch the inode length from the fragtree rather then
714 * from i_size since i_size may have not been updated yet */
715 ilen
= last_frag
->ofs
+ last_frag
->size
;
717 ilen
= JFFS2_F_I_SIZE(f
);
719 memset(&ri
, 0, sizeof(ri
));
720 ri
.magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
721 ri
.nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
722 ri
.totlen
= cpu_to_je32(sizeof(ri
) + mdatalen
);
723 ri
.hdr_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(struct jffs2_unknown_node
)-4));
725 ri
.ino
= cpu_to_je32(f
->inocache
->ino
);
726 ri
.version
= cpu_to_je32(++f
->highest_version
);
727 ri
.mode
= cpu_to_jemode(JFFS2_F_I_MODE(f
));
728 ri
.uid
= cpu_to_je16(JFFS2_F_I_UID(f
));
729 ri
.gid
= cpu_to_je16(JFFS2_F_I_GID(f
));
730 ri
.isize
= cpu_to_je32(ilen
);
731 ri
.atime
= cpu_to_je32(JFFS2_F_I_ATIME(f
));
732 ri
.ctime
= cpu_to_je32(JFFS2_F_I_CTIME(f
));
733 ri
.mtime
= cpu_to_je32(JFFS2_F_I_MTIME(f
));
734 ri
.offset
= cpu_to_je32(0);
735 ri
.csize
= cpu_to_je32(mdatalen
);
736 ri
.dsize
= cpu_to_je32(mdatalen
);
737 ri
.compr
= JFFS2_COMPR_NONE
;
738 ri
.node_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(ri
)-8));
739 ri
.data_crc
= cpu_to_je32(crc32(0, mdata
, mdatalen
));
741 new_fn
= jffs2_write_dnode(c
, f
, &ri
, mdata
, mdatalen
, phys_ofs
, ALLOC_GC
);
743 if (IS_ERR(new_fn
)) {
744 printk(KERN_WARNING
"Error writing new dnode: %ld\n", PTR_ERR(new_fn
));
745 ret
= PTR_ERR(new_fn
);
748 jffs2_mark_node_obsolete(c
, fn
->raw
);
749 jffs2_free_full_dnode(fn
);
750 f
->metadata
= new_fn
;
752 if (S_ISLNK(JFFS2_F_I_MODE(f
)))
757 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
758 struct jffs2_inode_info
*f
, struct jffs2_full_dirent
*fd
)
760 struct jffs2_full_dirent
*new_fd
;
761 struct jffs2_raw_dirent rd
;
762 uint32_t alloclen
, phys_ofs
;
765 rd
.magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
766 rd
.nodetype
= cpu_to_je16(JFFS2_NODETYPE_DIRENT
);
767 rd
.nsize
= strlen(fd
->name
);
768 rd
.totlen
= cpu_to_je32(sizeof(rd
) + rd
.nsize
);
769 rd
.hdr_crc
= cpu_to_je32(crc32(0, &rd
, sizeof(struct jffs2_unknown_node
)-4));
771 rd
.pino
= cpu_to_je32(f
->inocache
->ino
);
772 rd
.version
= cpu_to_je32(++f
->highest_version
);
773 rd
.ino
= cpu_to_je32(fd
->ino
);
774 rd
.mctime
= cpu_to_je32(max(JFFS2_F_I_MTIME(f
), JFFS2_F_I_CTIME(f
)));
776 rd
.node_crc
= cpu_to_je32(crc32(0, &rd
, sizeof(rd
)-8));
777 rd
.name_crc
= cpu_to_je32(crc32(0, fd
->name
, rd
.nsize
));
779 ret
= jffs2_reserve_space_gc(c
, sizeof(rd
)+rd
.nsize
, &phys_ofs
, &alloclen
);
781 printk(KERN_WARNING
"jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
782 sizeof(rd
)+rd
.nsize
, ret
);
785 new_fd
= jffs2_write_dirent(c
, f
, &rd
, fd
->name
, rd
.nsize
, phys_ofs
, ALLOC_GC
);
787 if (IS_ERR(new_fd
)) {
788 printk(KERN_WARNING
"jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd
));
789 return PTR_ERR(new_fd
);
791 jffs2_add_fd_to_list(c
, new_fd
, &f
->dents
);
795 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
796 struct jffs2_inode_info
*f
, struct jffs2_full_dirent
*fd
)
798 struct jffs2_full_dirent
**fdp
= &f
->dents
;
801 /* On a medium where we can't actually mark nodes obsolete
802 pernamently, such as NAND flash, we need to work out
803 whether this deletion dirent is still needed to actively
804 delete a 'real' dirent with the same name that's still
805 somewhere else on the flash. */
806 if (!jffs2_can_mark_obsolete(c
)) {
807 struct jffs2_raw_dirent
*rd
;
808 struct jffs2_raw_node_ref
*raw
;
811 int name_len
= strlen(fd
->name
);
812 uint32_t name_crc
= crc32(0, fd
->name
, name_len
);
813 uint32_t rawlen
= ref_totlen(c
, jeb
, fd
->raw
);
815 rd
= kmalloc(rawlen
, GFP_KERNEL
);
819 /* Prevent the erase code from nicking the obsolete node refs while
820 we're looking at them. I really don't like this extra lock but
821 can't see any alternative. Suggestions on a postcard to... */
822 down(&c
->erase_free_sem
);
824 for (raw
= f
->inocache
->nodes
; raw
!= (void *)f
->inocache
; raw
= raw
->next_in_ino
) {
826 /* We only care about obsolete ones */
827 if (!(ref_obsolete(raw
)))
830 /* Any dirent with the same name is going to have the same length... */
831 if (ref_totlen(c
, NULL
, raw
) != rawlen
)
834 /* Doesn't matter if there's one in the same erase block. We're going to
835 delete it too at the same time. */
836 if (SECTOR_ADDR(raw
->flash_offset
) == SECTOR_ADDR(fd
->raw
->flash_offset
))
839 D1(printk(KERN_DEBUG
"Check potential deletion dirent at %08x\n", ref_offset(raw
)));
841 /* This is an obsolete node belonging to the same directory, and it's of the right
842 length. We need to take a closer look...*/
843 ret
= jffs2_flash_read(c
, ref_offset(raw
), rawlen
, &retlen
, (char *)rd
);
845 printk(KERN_WARNING
"jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret
, ref_offset(raw
));
846 /* If we can't read it, we don't need to continue to obsolete it. Continue */
849 if (retlen
!= rawlen
) {
850 printk(KERN_WARNING
"jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
851 retlen
, rawlen
, ref_offset(raw
));
855 if (je16_to_cpu(rd
->nodetype
) != JFFS2_NODETYPE_DIRENT
)
858 /* If the name CRC doesn't match, skip */
859 if (je32_to_cpu(rd
->name_crc
) != name_crc
)
862 /* If the name length doesn't match, or it's another deletion dirent, skip */
863 if (rd
->nsize
!= name_len
|| !je32_to_cpu(rd
->ino
))
866 /* OK, check the actual name now */
867 if (memcmp(rd
->name
, fd
->name
, name_len
))
870 /* OK. The name really does match. There really is still an older node on
871 the flash which our deletion dirent obsoletes. So we have to write out
872 a new deletion dirent to replace it */
873 up(&c
->erase_free_sem
);
875 D1(printk(KERN_DEBUG
"Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
876 ref_offset(fd
->raw
), fd
->name
, ref_offset(raw
), je32_to_cpu(rd
->ino
)));
879 return jffs2_garbage_collect_dirent(c
, jeb
, f
, fd
);
882 up(&c
->erase_free_sem
);
886 /* No need for it any more. Just mark it obsolete and remove it from the list */
896 printk(KERN_WARNING
"Deletion dirent \"%s\" not found in list for ino #%u\n", fd
->name
, f
->inocache
->ino
);
898 jffs2_mark_node_obsolete(c
, fd
->raw
);
899 jffs2_free_full_dirent(fd
);
903 static int jffs2_garbage_collect_hole(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
904 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fn
,
905 uint32_t start
, uint32_t end
)
907 struct jffs2_raw_inode ri
;
908 struct jffs2_node_frag
*frag
;
909 struct jffs2_full_dnode
*new_fn
;
910 uint32_t alloclen
, phys_ofs
, ilen
;
913 D1(printk(KERN_DEBUG
"Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
914 f
->inocache
->ino
, start
, end
));
916 memset(&ri
, 0, sizeof(ri
));
921 /* It's partially obsoleted by a later write. So we have to
922 write it out again with the _same_ version as before */
923 ret
= jffs2_flash_read(c
, ref_offset(fn
->raw
), sizeof(ri
), &readlen
, (char *)&ri
);
924 if (readlen
!= sizeof(ri
) || ret
) {
925 printk(KERN_WARNING
"Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret
, readlen
);
928 if (je16_to_cpu(ri
.nodetype
) != JFFS2_NODETYPE_INODE
) {
929 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
931 je16_to_cpu(ri
.nodetype
), JFFS2_NODETYPE_INODE
);
934 if (je32_to_cpu(ri
.totlen
) != sizeof(ri
)) {
935 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
937 je32_to_cpu(ri
.totlen
), sizeof(ri
));
940 crc
= crc32(0, &ri
, sizeof(ri
)-8);
941 if (crc
!= je32_to_cpu(ri
.node_crc
)) {
942 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
944 je32_to_cpu(ri
.node_crc
), crc
);
945 /* FIXME: We could possibly deal with this by writing new holes for each frag */
946 printk(KERN_WARNING
"Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
947 start
, end
, f
->inocache
->ino
);
950 if (ri
.compr
!= JFFS2_COMPR_ZERO
) {
951 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn
->raw
));
952 printk(KERN_WARNING
"Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
953 start
, end
, f
->inocache
->ino
);
958 ri
.magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
959 ri
.nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
960 ri
.totlen
= cpu_to_je32(sizeof(ri
));
961 ri
.hdr_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(struct jffs2_unknown_node
)-4));
963 ri
.ino
= cpu_to_je32(f
->inocache
->ino
);
964 ri
.version
= cpu_to_je32(++f
->highest_version
);
965 ri
.offset
= cpu_to_je32(start
);
966 ri
.dsize
= cpu_to_je32(end
- start
);
967 ri
.csize
= cpu_to_je32(0);
968 ri
.compr
= JFFS2_COMPR_ZERO
;
971 frag
= frag_last(&f
->fragtree
);
973 /* Fetch the inode length from the fragtree rather then
974 * from i_size since i_size may have not been updated yet */
975 ilen
= frag
->ofs
+ frag
->size
;
977 ilen
= JFFS2_F_I_SIZE(f
);
979 ri
.mode
= cpu_to_jemode(JFFS2_F_I_MODE(f
));
980 ri
.uid
= cpu_to_je16(JFFS2_F_I_UID(f
));
981 ri
.gid
= cpu_to_je16(JFFS2_F_I_GID(f
));
982 ri
.isize
= cpu_to_je32(ilen
);
983 ri
.atime
= cpu_to_je32(JFFS2_F_I_ATIME(f
));
984 ri
.ctime
= cpu_to_je32(JFFS2_F_I_CTIME(f
));
985 ri
.mtime
= cpu_to_je32(JFFS2_F_I_MTIME(f
));
986 ri
.data_crc
= cpu_to_je32(0);
987 ri
.node_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(ri
)-8));
989 ret
= jffs2_reserve_space_gc(c
, sizeof(ri
), &phys_ofs
, &alloclen
);
991 printk(KERN_WARNING
"jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
995 new_fn
= jffs2_write_dnode(c
, f
, &ri
, NULL
, 0, phys_ofs
, ALLOC_GC
);
997 if (IS_ERR(new_fn
)) {
998 printk(KERN_WARNING
"Error writing new hole node: %ld\n", PTR_ERR(new_fn
));
999 return PTR_ERR(new_fn
);
1001 if (je32_to_cpu(ri
.version
) == f
->highest_version
) {
1002 jffs2_add_full_dnode_to_inode(c
, f
, new_fn
);
1004 jffs2_mark_node_obsolete(c
, f
->metadata
->raw
);
1005 jffs2_free_full_dnode(f
->metadata
);
1012 * We should only get here in the case where the node we are
1013 * replacing had more than one frag, so we kept the same version
1014 * number as before. (Except in case of error -- see 'goto fill;'
1017 D1(if(unlikely(fn
->frags
<= 1)) {
1018 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1019 fn
->frags
, je32_to_cpu(ri
.version
), f
->highest_version
,
1020 je32_to_cpu(ri
.ino
));
1023 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1024 mark_ref_normal(new_fn
->raw
);
1026 for (frag
= jffs2_lookup_node_frag(&f
->fragtree
, fn
->ofs
);
1027 frag
; frag
= frag_next(frag
)) {
1028 if (frag
->ofs
> fn
->size
+ fn
->ofs
)
1030 if (frag
->node
== fn
) {
1031 frag
->node
= new_fn
;
1037 printk(KERN_WARNING
"jffs2_garbage_collect_hole: Old node still has frags!\n");
1040 if (!new_fn
->frags
) {
1041 printk(KERN_WARNING
"jffs2_garbage_collect_hole: New node has no frags!\n");
1045 jffs2_mark_node_obsolete(c
, fn
->raw
);
1046 jffs2_free_full_dnode(fn
);
1051 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
1052 struct jffs2_inode_info
*f
, struct jffs2_full_dnode
*fn
,
1053 uint32_t start
, uint32_t end
)
1055 struct jffs2_full_dnode
*new_fn
;
1056 struct jffs2_raw_inode ri
;
1057 uint32_t alloclen
, phys_ofs
, offset
, orig_end
, orig_start
;
1059 unsigned char *comprbuf
= NULL
, *writebuf
;
1061 unsigned char *pg_ptr
;
1063 memset(&ri
, 0, sizeof(ri
));
1065 D1(printk(KERN_DEBUG
"Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1066 f
->inocache
->ino
, start
, end
));
1071 if (c
->nr_free_blocks
+ c
->nr_erasing_blocks
> c
->resv_blocks_gcmerge
) {
1072 /* Attempt to do some merging. But only expand to cover logically
1073 adjacent frags if the block containing them is already considered
1074 to be dirty. Otherwise we end up with GC just going round in
1075 circles dirtying the nodes it already wrote out, especially
1076 on NAND where we have small eraseblocks and hence a much higher
1077 chance of nodes having to be split to cross boundaries. */
1079 struct jffs2_node_frag
*frag
;
1082 min
= start
& ~(PAGE_CACHE_SIZE
-1);
1083 max
= min
+ PAGE_CACHE_SIZE
;
1085 frag
= jffs2_lookup_node_frag(&f
->fragtree
, start
);
1087 /* BUG_ON(!frag) but that'll happen anyway... */
1089 BUG_ON(frag
->ofs
!= start
);
1091 /* First grow down... */
1092 while((frag
= frag_prev(frag
)) && frag
->ofs
>= min
) {
1094 /* If the previous frag doesn't even reach the beginning, there's
1095 excessive fragmentation. Just merge. */
1096 if (frag
->ofs
> min
) {
1097 D1(printk(KERN_DEBUG
"Expanding down to cover partial frag (0x%x-0x%x)\n",
1098 frag
->ofs
, frag
->ofs
+frag
->size
));
1102 /* OK. This frag holds the first byte of the page. */
1103 if (!frag
->node
|| !frag
->node
->raw
) {
1104 D1(printk(KERN_DEBUG
"First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1105 frag
->ofs
, frag
->ofs
+frag
->size
));
1109 /* OK, it's a frag which extends to the beginning of the page. Does it live
1110 in a block which is still considered clean? If so, don't obsolete it.
1111 If not, cover it anyway. */
1113 struct jffs2_raw_node_ref
*raw
= frag
->node
->raw
;
1114 struct jffs2_eraseblock
*jeb
;
1116 jeb
= &c
->blocks
[raw
->flash_offset
/ c
->sector_size
];
1118 if (jeb
== c
->gcblock
) {
1119 D1(printk(KERN_DEBUG
"Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1120 frag
->ofs
, frag
->ofs
+frag
->size
, ref_offset(raw
)));
1124 if (!ISDIRTY(jeb
->dirty_size
+ jeb
->wasted_size
)) {
1125 D1(printk(KERN_DEBUG
"Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1126 frag
->ofs
, frag
->ofs
+frag
->size
, jeb
->offset
));
1130 D1(printk(KERN_DEBUG
"Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1131 frag
->ofs
, frag
->ofs
+frag
->size
, jeb
->offset
));
1139 /* Find last frag which is actually part of the node we're to GC. */
1140 frag
= jffs2_lookup_node_frag(&f
->fragtree
, end
-1);
1142 while((frag
= frag_next(frag
)) && frag
->ofs
+frag
->size
<= max
) {
1144 /* If the previous frag doesn't even reach the beginning, there's lots
1145 of fragmentation. Just merge. */
1146 if (frag
->ofs
+frag
->size
< max
) {
1147 D1(printk(KERN_DEBUG
"Expanding up to cover partial frag (0x%x-0x%x)\n",
1148 frag
->ofs
, frag
->ofs
+frag
->size
));
1149 end
= frag
->ofs
+ frag
->size
;
1153 if (!frag
->node
|| !frag
->node
->raw
) {
1154 D1(printk(KERN_DEBUG
"Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1155 frag
->ofs
, frag
->ofs
+frag
->size
));
1159 /* OK, it's a frag which extends to the beginning of the page. Does it live
1160 in a block which is still considered clean? If so, don't obsolete it.
1161 If not, cover it anyway. */
1163 struct jffs2_raw_node_ref
*raw
= frag
->node
->raw
;
1164 struct jffs2_eraseblock
*jeb
;
1166 jeb
= &c
->blocks
[raw
->flash_offset
/ c
->sector_size
];
1168 if (jeb
== c
->gcblock
) {
1169 D1(printk(KERN_DEBUG
"Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1170 frag
->ofs
, frag
->ofs
+frag
->size
, ref_offset(raw
)));
1171 end
= frag
->ofs
+ frag
->size
;
1174 if (!ISDIRTY(jeb
->dirty_size
+ jeb
->wasted_size
)) {
1175 D1(printk(KERN_DEBUG
"Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1176 frag
->ofs
, frag
->ofs
+frag
->size
, jeb
->offset
));
1180 D1(printk(KERN_DEBUG
"Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1181 frag
->ofs
, frag
->ofs
+frag
->size
, jeb
->offset
));
1182 end
= frag
->ofs
+ frag
->size
;
1186 D1(printk(KERN_DEBUG
"Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1187 orig_start
, orig_end
, start
, end
));
1189 D1(BUG_ON(end
> frag_last(&f
->fragtree
)->ofs
+ frag_last(&f
->fragtree
)->size
));
1190 BUG_ON(end
< orig_end
);
1191 BUG_ON(start
> orig_start
);
1194 /* First, use readpage() to read the appropriate page into the page cache */
1195 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1196 * triggered garbage collection in the first place?
1197 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1198 * page OK. We'll actually write it out again in commit_write, which is a little
1199 * suboptimal, but at least we're correct.
1201 pg_ptr
= jffs2_gc_fetch_page(c
, f
, start
, &pg
);
1203 if (IS_ERR(pg_ptr
)) {
1204 printk(KERN_WARNING
"read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr
));
1205 return PTR_ERR(pg_ptr
);
1209 while(offset
< orig_end
) {
1212 uint16_t comprtype
= JFFS2_COMPR_NONE
;
1214 ret
= jffs2_reserve_space_gc(c
, sizeof(ri
) + JFFS2_MIN_DATA_LEN
, &phys_ofs
, &alloclen
);
1217 printk(KERN_WARNING
"jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1218 sizeof(ri
)+ JFFS2_MIN_DATA_LEN
, ret
);
1221 cdatalen
= min_t(uint32_t, alloclen
- sizeof(ri
), end
- offset
);
1222 datalen
= end
- offset
;
1224 writebuf
= pg_ptr
+ (offset
& (PAGE_CACHE_SIZE
-1));
1226 comprtype
= jffs2_compress(c
, f
, writebuf
, &comprbuf
, &datalen
, &cdatalen
);
1228 ri
.magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
1229 ri
.nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
1230 ri
.totlen
= cpu_to_je32(sizeof(ri
) + cdatalen
);
1231 ri
.hdr_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(struct jffs2_unknown_node
)-4));
1233 ri
.ino
= cpu_to_je32(f
->inocache
->ino
);
1234 ri
.version
= cpu_to_je32(++f
->highest_version
);
1235 ri
.mode
= cpu_to_jemode(JFFS2_F_I_MODE(f
));
1236 ri
.uid
= cpu_to_je16(JFFS2_F_I_UID(f
));
1237 ri
.gid
= cpu_to_je16(JFFS2_F_I_GID(f
));
1238 ri
.isize
= cpu_to_je32(JFFS2_F_I_SIZE(f
));
1239 ri
.atime
= cpu_to_je32(JFFS2_F_I_ATIME(f
));
1240 ri
.ctime
= cpu_to_je32(JFFS2_F_I_CTIME(f
));
1241 ri
.mtime
= cpu_to_je32(JFFS2_F_I_MTIME(f
));
1242 ri
.offset
= cpu_to_je32(offset
);
1243 ri
.csize
= cpu_to_je32(cdatalen
);
1244 ri
.dsize
= cpu_to_je32(datalen
);
1245 ri
.compr
= comprtype
& 0xff;
1246 ri
.usercompr
= (comprtype
>> 8) & 0xff;
1247 ri
.node_crc
= cpu_to_je32(crc32(0, &ri
, sizeof(ri
)-8));
1248 ri
.data_crc
= cpu_to_je32(crc32(0, comprbuf
, cdatalen
));
1250 new_fn
= jffs2_write_dnode(c
, f
, &ri
, comprbuf
, cdatalen
, phys_ofs
, ALLOC_GC
);
1252 jffs2_free_comprbuf(comprbuf
, writebuf
);
1254 if (IS_ERR(new_fn
)) {
1255 printk(KERN_WARNING
"Error writing new dnode: %ld\n", PTR_ERR(new_fn
));
1256 ret
= PTR_ERR(new_fn
);
1259 ret
= jffs2_add_full_dnode_to_inode(c
, f
, new_fn
);
1262 jffs2_mark_node_obsolete(c
, f
->metadata
->raw
);
1263 jffs2_free_full_dnode(f
->metadata
);
1268 jffs2_gc_release_page(c
, pg_ptr
, &pg
);