Linux 2.6.14.1
[linux/fpc-iii.git] / include / asm-parisc / system.h
blob26ff844a21c18a36eed14cccdb951e68d8411187
1 #ifndef __PARISC_SYSTEM_H
2 #define __PARISC_SYSTEM_H
4 #include <linux/config.h>
5 #include <asm/psw.h>
7 /* The program status word as bitfields. */
8 struct pa_psw {
9 unsigned int y:1;
10 unsigned int z:1;
11 unsigned int rv:2;
12 unsigned int w:1;
13 unsigned int e:1;
14 unsigned int s:1;
15 unsigned int t:1;
17 unsigned int h:1;
18 unsigned int l:1;
19 unsigned int n:1;
20 unsigned int x:1;
21 unsigned int b:1;
22 unsigned int c:1;
23 unsigned int v:1;
24 unsigned int m:1;
26 unsigned int cb:8;
28 unsigned int o:1;
29 unsigned int g:1;
30 unsigned int f:1;
31 unsigned int r:1;
32 unsigned int q:1;
33 unsigned int p:1;
34 unsigned int d:1;
35 unsigned int i:1;
38 #ifdef __LP64__
39 #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4))
40 #else
41 #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW))
42 #endif
44 struct task_struct;
46 extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *);
48 #define switch_to(prev, next, last) do { \
49 (last) = _switch_to(prev, next); \
50 } while(0)
54 /* interrupt control */
55 #define local_save_flags(x) __asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory")
56 #define local_irq_disable() __asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
57 #define local_irq_enable() __asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
59 #define local_irq_save(x) \
60 __asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" )
61 #define local_irq_restore(x) \
62 __asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" )
64 #define irqs_disabled() \
65 ({ \
66 unsigned long flags; \
67 local_save_flags(flags); \
68 (flags & PSW_I) == 0; \
71 #define mfctl(reg) ({ \
72 unsigned long cr; \
73 __asm__ __volatile__( \
74 "mfctl " #reg ",%0" : \
75 "=r" (cr) \
76 ); \
77 cr; \
80 #define mtctl(gr, cr) \
81 __asm__ __volatile__("mtctl %0,%1" \
82 : /* no outputs */ \
83 : "r" (gr), "i" (cr) : "memory")
85 /* these are here to de-mystefy the calling code, and to provide hooks */
86 /* which I needed for debugging EIEM problems -PB */
87 #define get_eiem() mfctl(15)
88 static inline void set_eiem(unsigned long val)
90 mtctl(val, 15);
93 #define mfsp(reg) ({ \
94 unsigned long cr; \
95 __asm__ __volatile__( \
96 "mfsp " #reg ",%0" : \
97 "=r" (cr) \
98 ); \
99 cr; \
102 #define mtsp(gr, cr) \
103 __asm__ __volatile__("mtsp %0,%1" \
104 : /* no outputs */ \
105 : "r" (gr), "i" (cr) : "memory")
109 ** This is simply the barrier() macro from linux/kernel.h but when serial.c
110 ** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h
111 ** hasn't yet been included yet so it fails, thus repeating the macro here.
113 ** PA-RISC architecture allows for weakly ordered memory accesses although
114 ** none of the processors use it. There is a strong ordered bit that is
115 ** set in the O-bit of the page directory entry. Operating systems that
116 ** can not tolerate out of order accesses should set this bit when mapping
117 ** pages. The O-bit of the PSW should also be set to 1 (I don't believe any
118 ** of the processor implemented the PSW O-bit). The PCX-W ERS states that
119 ** the TLB O-bit is not implemented so the page directory does not need to
120 ** have the O-bit set when mapping pages (section 3.1). This section also
121 ** states that the PSW Y, Z, G, and O bits are not implemented.
122 ** So it looks like nothing needs to be done for parisc-linux (yet).
123 ** (thanks to chada for the above comment -ggg)
125 ** The __asm__ op below simple prevents gcc/ld from reordering
126 ** instructions across the mb() "call".
128 #define mb() __asm__ __volatile__("":::"memory") /* barrier() */
129 #define rmb() mb()
130 #define wmb() mb()
131 #define smp_mb() mb()
132 #define smp_rmb() mb()
133 #define smp_wmb() mb()
134 #define smp_read_barrier_depends() do { } while(0)
135 #define read_barrier_depends() do { } while(0)
137 #define set_mb(var, value) do { var = value; mb(); } while (0)
138 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
141 /* LDCW, the only atomic read-write operation PA-RISC has. *sigh*. */
142 #define __ldcw(a) ({ \
143 unsigned __ret; \
144 __asm__ __volatile__("ldcw 0(%1),%0" : "=r" (__ret) : "r" (a)); \
145 __ret; \
148 /* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data,
149 and GCC only guarantees 8-byte alignment for stack locals, we can't
150 be assured of 16-byte alignment for atomic lock data even if we
151 specify "__attribute ((aligned(16)))" in the type declaration. So,
152 we use a struct containing an array of four ints for the atomic lock
153 type and dynamically select the 16-byte aligned int from the array
154 for the semaphore. */
155 #define __PA_LDCW_ALIGNMENT 16
156 #define __ldcw_align(a) ({ \
157 unsigned long __ret = (unsigned long) &(a)->lock[0]; \
158 __ret = (__ret + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1); \
159 (volatile unsigned int *) __ret; \
162 #ifdef CONFIG_SMP
163 # define __lock_aligned __attribute__((__section__(".data.lock_aligned")))
164 #endif
166 #define KERNEL_START (0x10100000 - 0x1000)
168 /* This is for the serialisation of PxTLB broadcasts. At least on the
169 * N class systems, only one PxTLB inter processor broadcast can be
170 * active at any one time on the Merced bus. This tlb purge
171 * synchronisation is fairly lightweight and harmless so we activate
172 * it on all SMP systems not just the N class. */
173 #ifdef CONFIG_SMP
174 extern spinlock_t pa_tlb_lock;
176 #define purge_tlb_start(x) spin_lock(&pa_tlb_lock)
177 #define purge_tlb_end(x) spin_unlock(&pa_tlb_lock)
179 #else
181 #define purge_tlb_start(x) do { } while(0)
182 #define purge_tlb_end(x) do { } while (0)
184 #endif
186 #define arch_align_stack(x) (x)
188 #endif