Linux 3.1.9
[linux/fpc-iii.git] / fs / udf / inode.c
blob262050f2eb6c4ec5ff33f8b3c0d9038aac2fbbde
1 /*
2 * inode.c
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
17 * HISTORY
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
41 #include "udf_i.h"
42 #include "udf_sb.h"
44 MODULE_AUTHOR("Ben Fennema");
45 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46 MODULE_LICENSE("GPL");
48 #define EXTENT_MERGE_SIZE 5
50 static mode_t udf_convert_permissions(struct fileEntry *);
51 static int udf_update_inode(struct inode *, int);
52 static void udf_fill_inode(struct inode *, struct buffer_head *);
53 static int udf_sync_inode(struct inode *inode);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
71 void udf_evict_inode(struct inode *inode)
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
87 "inode size %llu different from extent length %llu. "
88 "Filesystem need not be standards compliant.\n",
89 inode->i_sb->s_id, inode->i_ino, inode->i_mode,
90 (unsigned long long)inode->i_size,
91 (unsigned long long)iinfo->i_lenExtents);
93 kfree(iinfo->i_ext.i_data);
94 iinfo->i_ext.i_data = NULL;
95 if (want_delete) {
96 udf_free_inode(inode);
100 static int udf_writepage(struct page *page, struct writeback_control *wbc)
102 return block_write_full_page(page, udf_get_block, wbc);
105 static int udf_readpage(struct file *file, struct page *page)
107 return block_read_full_page(page, udf_get_block);
110 static int udf_write_begin(struct file *file, struct address_space *mapping,
111 loff_t pos, unsigned len, unsigned flags,
112 struct page **pagep, void **fsdata)
114 int ret;
116 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
117 if (unlikely(ret)) {
118 struct inode *inode = mapping->host;
119 struct udf_inode_info *iinfo = UDF_I(inode);
120 loff_t isize = inode->i_size;
122 if (pos + len > isize) {
123 truncate_pagecache(inode, pos + len, isize);
124 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
125 down_write(&iinfo->i_data_sem);
126 udf_truncate_extents(inode);
127 up_write(&iinfo->i_data_sem);
132 return ret;
135 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
137 return generic_block_bmap(mapping, block, udf_get_block);
140 const struct address_space_operations udf_aops = {
141 .readpage = udf_readpage,
142 .writepage = udf_writepage,
143 .write_begin = udf_write_begin,
144 .write_end = generic_write_end,
145 .bmap = udf_bmap,
149 * Expand file stored in ICB to a normal one-block-file
151 * This function requires i_data_sem for writing and releases it.
152 * This function requires i_mutex held
154 int udf_expand_file_adinicb(struct inode *inode)
156 struct page *page;
157 char *kaddr;
158 struct udf_inode_info *iinfo = UDF_I(inode);
159 int err;
160 struct writeback_control udf_wbc = {
161 .sync_mode = WB_SYNC_NONE,
162 .nr_to_write = 1,
165 if (!iinfo->i_lenAlloc) {
166 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
167 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
168 else
169 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
170 /* from now on we have normal address_space methods */
171 inode->i_data.a_ops = &udf_aops;
172 up_write(&iinfo->i_data_sem);
173 mark_inode_dirty(inode);
174 return 0;
177 * Release i_data_sem so that we can lock a page - page lock ranks
178 * above i_data_sem. i_mutex still protects us against file changes.
180 up_write(&iinfo->i_data_sem);
182 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
183 if (!page)
184 return -ENOMEM;
186 if (!PageUptodate(page)) {
187 kaddr = kmap(page);
188 memset(kaddr + iinfo->i_lenAlloc, 0x00,
189 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
190 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
191 iinfo->i_lenAlloc);
192 flush_dcache_page(page);
193 SetPageUptodate(page);
194 kunmap(page);
196 down_write(&iinfo->i_data_sem);
197 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
198 iinfo->i_lenAlloc);
199 iinfo->i_lenAlloc = 0;
200 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
201 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
202 else
203 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
204 /* from now on we have normal address_space methods */
205 inode->i_data.a_ops = &udf_aops;
206 up_write(&iinfo->i_data_sem);
207 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
208 if (err) {
209 /* Restore everything back so that we don't lose data... */
210 lock_page(page);
211 kaddr = kmap(page);
212 down_write(&iinfo->i_data_sem);
213 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
214 inode->i_size);
215 kunmap(page);
216 unlock_page(page);
217 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
218 inode->i_data.a_ops = &udf_adinicb_aops;
219 up_write(&iinfo->i_data_sem);
221 page_cache_release(page);
222 mark_inode_dirty(inode);
224 return err;
227 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
228 int *err)
230 int newblock;
231 struct buffer_head *dbh = NULL;
232 struct kernel_lb_addr eloc;
233 uint8_t alloctype;
234 struct extent_position epos;
236 struct udf_fileident_bh sfibh, dfibh;
237 loff_t f_pos = udf_ext0_offset(inode);
238 int size = udf_ext0_offset(inode) + inode->i_size;
239 struct fileIdentDesc cfi, *sfi, *dfi;
240 struct udf_inode_info *iinfo = UDF_I(inode);
242 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
243 alloctype = ICBTAG_FLAG_AD_SHORT;
244 else
245 alloctype = ICBTAG_FLAG_AD_LONG;
247 if (!inode->i_size) {
248 iinfo->i_alloc_type = alloctype;
249 mark_inode_dirty(inode);
250 return NULL;
253 /* alloc block, and copy data to it */
254 *block = udf_new_block(inode->i_sb, inode,
255 iinfo->i_location.partitionReferenceNum,
256 iinfo->i_location.logicalBlockNum, err);
257 if (!(*block))
258 return NULL;
259 newblock = udf_get_pblock(inode->i_sb, *block,
260 iinfo->i_location.partitionReferenceNum,
262 if (!newblock)
263 return NULL;
264 dbh = udf_tgetblk(inode->i_sb, newblock);
265 if (!dbh)
266 return NULL;
267 lock_buffer(dbh);
268 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
269 set_buffer_uptodate(dbh);
270 unlock_buffer(dbh);
271 mark_buffer_dirty_inode(dbh, inode);
273 sfibh.soffset = sfibh.eoffset =
274 f_pos & (inode->i_sb->s_blocksize - 1);
275 sfibh.sbh = sfibh.ebh = NULL;
276 dfibh.soffset = dfibh.eoffset = 0;
277 dfibh.sbh = dfibh.ebh = dbh;
278 while (f_pos < size) {
279 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
280 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
281 NULL, NULL, NULL);
282 if (!sfi) {
283 brelse(dbh);
284 return NULL;
286 iinfo->i_alloc_type = alloctype;
287 sfi->descTag.tagLocation = cpu_to_le32(*block);
288 dfibh.soffset = dfibh.eoffset;
289 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
290 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
291 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
292 sfi->fileIdent +
293 le16_to_cpu(sfi->lengthOfImpUse))) {
294 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
295 brelse(dbh);
296 return NULL;
299 mark_buffer_dirty_inode(dbh, inode);
301 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
302 iinfo->i_lenAlloc);
303 iinfo->i_lenAlloc = 0;
304 eloc.logicalBlockNum = *block;
305 eloc.partitionReferenceNum =
306 iinfo->i_location.partitionReferenceNum;
307 iinfo->i_lenExtents = inode->i_size;
308 epos.bh = NULL;
309 epos.block = iinfo->i_location;
310 epos.offset = udf_file_entry_alloc_offset(inode);
311 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
312 /* UniqueID stuff */
314 brelse(epos.bh);
315 mark_inode_dirty(inode);
316 return dbh;
319 static int udf_get_block(struct inode *inode, sector_t block,
320 struct buffer_head *bh_result, int create)
322 int err, new;
323 struct buffer_head *bh;
324 sector_t phys = 0;
325 struct udf_inode_info *iinfo;
327 if (!create) {
328 phys = udf_block_map(inode, block);
329 if (phys)
330 map_bh(bh_result, inode->i_sb, phys);
331 return 0;
334 err = -EIO;
335 new = 0;
336 bh = NULL;
337 iinfo = UDF_I(inode);
339 down_write(&iinfo->i_data_sem);
340 if (block == iinfo->i_next_alloc_block + 1) {
341 iinfo->i_next_alloc_block++;
342 iinfo->i_next_alloc_goal++;
345 err = 0;
347 bh = inode_getblk(inode, block, &err, &phys, &new);
348 BUG_ON(bh);
349 if (err)
350 goto abort;
351 BUG_ON(!phys);
353 if (new)
354 set_buffer_new(bh_result);
355 map_bh(bh_result, inode->i_sb, phys);
357 abort:
358 up_write(&iinfo->i_data_sem);
359 return err;
362 static struct buffer_head *udf_getblk(struct inode *inode, long block,
363 int create, int *err)
365 struct buffer_head *bh;
366 struct buffer_head dummy;
368 dummy.b_state = 0;
369 dummy.b_blocknr = -1000;
370 *err = udf_get_block(inode, block, &dummy, create);
371 if (!*err && buffer_mapped(&dummy)) {
372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
373 if (buffer_new(&dummy)) {
374 lock_buffer(bh);
375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
376 set_buffer_uptodate(bh);
377 unlock_buffer(bh);
378 mark_buffer_dirty_inode(bh, inode);
380 return bh;
383 return NULL;
386 /* Extend the file by 'blocks' blocks, return the number of extents added */
387 static int udf_do_extend_file(struct inode *inode,
388 struct extent_position *last_pos,
389 struct kernel_long_ad *last_ext,
390 sector_t blocks)
392 sector_t add;
393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 struct super_block *sb = inode->i_sb;
395 struct kernel_lb_addr prealloc_loc = {};
396 int prealloc_len = 0;
397 struct udf_inode_info *iinfo;
398 int err;
400 /* The previous extent is fake and we should not extend by anything
401 * - there's nothing to do... */
402 if (!blocks && fake)
403 return 0;
405 iinfo = UDF_I(inode);
406 /* Round the last extent up to a multiple of block size */
407 if (last_ext->extLength & (sb->s_blocksize - 1)) {
408 last_ext->extLength =
409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
412 iinfo->i_lenExtents =
413 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
414 ~(sb->s_blocksize - 1);
417 /* Last extent are just preallocated blocks? */
418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
419 EXT_NOT_RECORDED_ALLOCATED) {
420 /* Save the extent so that we can reattach it to the end */
421 prealloc_loc = last_ext->extLocation;
422 prealloc_len = last_ext->extLength;
423 /* Mark the extent as a hole */
424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
426 last_ext->extLocation.logicalBlockNum = 0;
427 last_ext->extLocation.partitionReferenceNum = 0;
430 /* Can we merge with the previous extent? */
431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
432 EXT_NOT_RECORDED_NOT_ALLOCATED) {
433 add = ((1 << 30) - sb->s_blocksize -
434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
435 sb->s_blocksize_bits;
436 if (add > blocks)
437 add = blocks;
438 blocks -= add;
439 last_ext->extLength += add << sb->s_blocksize_bits;
442 if (fake) {
443 udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 last_ext->extLength, 1);
445 count++;
446 } else
447 udf_write_aext(inode, last_pos, &last_ext->extLocation,
448 last_ext->extLength, 1);
450 /* Managed to do everything necessary? */
451 if (!blocks)
452 goto out;
454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
455 last_ext->extLocation.logicalBlockNum = 0;
456 last_ext->extLocation.partitionReferenceNum = 0;
457 add = (1 << (30-sb->s_blocksize_bits)) - 1;
458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
459 (add << sb->s_blocksize_bits);
461 /* Create enough extents to cover the whole hole */
462 while (blocks > add) {
463 blocks -= add;
464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
465 last_ext->extLength, 1);
466 if (err)
467 return err;
468 count++;
470 if (blocks) {
471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
472 (blocks << sb->s_blocksize_bits);
473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
474 last_ext->extLength, 1);
475 if (err)
476 return err;
477 count++;
480 out:
481 /* Do we have some preallocated blocks saved? */
482 if (prealloc_len) {
483 err = udf_add_aext(inode, last_pos, &prealloc_loc,
484 prealloc_len, 1);
485 if (err)
486 return err;
487 last_ext->extLocation = prealloc_loc;
488 last_ext->extLength = prealloc_len;
489 count++;
492 /* last_pos should point to the last written extent... */
493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
494 last_pos->offset -= sizeof(struct short_ad);
495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
496 last_pos->offset -= sizeof(struct long_ad);
497 else
498 return -EIO;
500 return count;
503 static int udf_extend_file(struct inode *inode, loff_t newsize)
506 struct extent_position epos;
507 struct kernel_lb_addr eloc;
508 uint32_t elen;
509 int8_t etype;
510 struct super_block *sb = inode->i_sb;
511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
512 int adsize;
513 struct udf_inode_info *iinfo = UDF_I(inode);
514 struct kernel_long_ad extent;
515 int err;
517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
518 adsize = sizeof(struct short_ad);
519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
520 adsize = sizeof(struct long_ad);
521 else
522 BUG();
524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
526 /* File has extent covering the new size (could happen when extending
527 * inside a block)? */
528 if (etype != -1)
529 return 0;
530 if (newsize & (sb->s_blocksize - 1))
531 offset++;
532 /* Extended file just to the boundary of the last file block? */
533 if (offset == 0)
534 return 0;
536 /* Truncate is extending the file by 'offset' blocks */
537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
539 /* File has no extents at all or has empty last
540 * indirect extent! Create a fake extent... */
541 extent.extLocation.logicalBlockNum = 0;
542 extent.extLocation.partitionReferenceNum = 0;
543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
544 } else {
545 epos.offset -= adsize;
546 etype = udf_next_aext(inode, &epos, &extent.extLocation,
547 &extent.extLength, 0);
548 extent.extLength |= etype << 30;
550 err = udf_do_extend_file(inode, &epos, &extent, offset);
551 if (err < 0)
552 goto out;
553 err = 0;
554 iinfo->i_lenExtents = newsize;
555 out:
556 brelse(epos.bh);
557 return err;
560 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
561 int *err, sector_t *phys, int *new)
563 static sector_t last_block;
564 struct buffer_head *result = NULL;
565 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
566 struct extent_position prev_epos, cur_epos, next_epos;
567 int count = 0, startnum = 0, endnum = 0;
568 uint32_t elen = 0, tmpelen;
569 struct kernel_lb_addr eloc, tmpeloc;
570 int c = 1;
571 loff_t lbcount = 0, b_off = 0;
572 uint32_t newblocknum, newblock;
573 sector_t offset = 0;
574 int8_t etype;
575 struct udf_inode_info *iinfo = UDF_I(inode);
576 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
577 int lastblock = 0;
579 prev_epos.offset = udf_file_entry_alloc_offset(inode);
580 prev_epos.block = iinfo->i_location;
581 prev_epos.bh = NULL;
582 cur_epos = next_epos = prev_epos;
583 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
585 /* find the extent which contains the block we are looking for.
586 alternate between laarr[0] and laarr[1] for locations of the
587 current extent, and the previous extent */
588 do {
589 if (prev_epos.bh != cur_epos.bh) {
590 brelse(prev_epos.bh);
591 get_bh(cur_epos.bh);
592 prev_epos.bh = cur_epos.bh;
594 if (cur_epos.bh != next_epos.bh) {
595 brelse(cur_epos.bh);
596 get_bh(next_epos.bh);
597 cur_epos.bh = next_epos.bh;
600 lbcount += elen;
602 prev_epos.block = cur_epos.block;
603 cur_epos.block = next_epos.block;
605 prev_epos.offset = cur_epos.offset;
606 cur_epos.offset = next_epos.offset;
608 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
609 if (etype == -1)
610 break;
612 c = !c;
614 laarr[c].extLength = (etype << 30) | elen;
615 laarr[c].extLocation = eloc;
617 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
618 pgoal = eloc.logicalBlockNum +
619 ((elen + inode->i_sb->s_blocksize - 1) >>
620 inode->i_sb->s_blocksize_bits);
622 count++;
623 } while (lbcount + elen <= b_off);
625 b_off -= lbcount;
626 offset = b_off >> inode->i_sb->s_blocksize_bits;
628 * Move prev_epos and cur_epos into indirect extent if we are at
629 * the pointer to it
631 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
632 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
634 /* if the extent is allocated and recorded, return the block
635 if the extent is not a multiple of the blocksize, round up */
637 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
638 if (elen & (inode->i_sb->s_blocksize - 1)) {
639 elen = EXT_RECORDED_ALLOCATED |
640 ((elen + inode->i_sb->s_blocksize - 1) &
641 ~(inode->i_sb->s_blocksize - 1));
642 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
644 brelse(prev_epos.bh);
645 brelse(cur_epos.bh);
646 brelse(next_epos.bh);
647 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
648 *phys = newblock;
649 return NULL;
652 last_block = block;
653 /* Are we beyond EOF? */
654 if (etype == -1) {
655 int ret;
657 if (count) {
658 if (c)
659 laarr[0] = laarr[1];
660 startnum = 1;
661 } else {
662 /* Create a fake extent when there's not one */
663 memset(&laarr[0].extLocation, 0x00,
664 sizeof(struct kernel_lb_addr));
665 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
666 /* Will udf_do_extend_file() create real extent from
667 a fake one? */
668 startnum = (offset > 0);
670 /* Create extents for the hole between EOF and offset */
671 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
672 if (ret < 0) {
673 brelse(prev_epos.bh);
674 brelse(cur_epos.bh);
675 brelse(next_epos.bh);
676 *err = ret;
677 return NULL;
679 c = 0;
680 offset = 0;
681 count += ret;
682 /* We are not covered by a preallocated extent? */
683 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
684 EXT_NOT_RECORDED_ALLOCATED) {
685 /* Is there any real extent? - otherwise we overwrite
686 * the fake one... */
687 if (count)
688 c = !c;
689 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
690 inode->i_sb->s_blocksize;
691 memset(&laarr[c].extLocation, 0x00,
692 sizeof(struct kernel_lb_addr));
693 count++;
694 endnum++;
696 endnum = c + 1;
697 lastblock = 1;
698 } else {
699 endnum = startnum = ((count > 2) ? 2 : count);
701 /* if the current extent is in position 0,
702 swap it with the previous */
703 if (!c && count != 1) {
704 laarr[2] = laarr[0];
705 laarr[0] = laarr[1];
706 laarr[1] = laarr[2];
707 c = 1;
710 /* if the current block is located in an extent,
711 read the next extent */
712 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
713 if (etype != -1) {
714 laarr[c + 1].extLength = (etype << 30) | elen;
715 laarr[c + 1].extLocation = eloc;
716 count++;
717 startnum++;
718 endnum++;
719 } else
720 lastblock = 1;
723 /* if the current extent is not recorded but allocated, get the
724 * block in the extent corresponding to the requested block */
725 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
726 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
727 else { /* otherwise, allocate a new block */
728 if (iinfo->i_next_alloc_block == block)
729 goal = iinfo->i_next_alloc_goal;
731 if (!goal) {
732 if (!(goal = pgoal)) /* XXX: what was intended here? */
733 goal = iinfo->i_location.logicalBlockNum + 1;
736 newblocknum = udf_new_block(inode->i_sb, inode,
737 iinfo->i_location.partitionReferenceNum,
738 goal, err);
739 if (!newblocknum) {
740 brelse(prev_epos.bh);
741 *err = -ENOSPC;
742 return NULL;
744 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
747 /* if the extent the requsted block is located in contains multiple
748 * blocks, split the extent into at most three extents. blocks prior
749 * to requested block, requested block, and blocks after requested
750 * block */
751 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
753 #ifdef UDF_PREALLOCATE
754 /* We preallocate blocks only for regular files. It also makes sense
755 * for directories but there's a problem when to drop the
756 * preallocation. We might use some delayed work for that but I feel
757 * it's overengineering for a filesystem like UDF. */
758 if (S_ISREG(inode->i_mode))
759 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
760 #endif
762 /* merge any continuous blocks in laarr */
763 udf_merge_extents(inode, laarr, &endnum);
765 /* write back the new extents, inserting new extents if the new number
766 * of extents is greater than the old number, and deleting extents if
767 * the new number of extents is less than the old number */
768 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
770 brelse(prev_epos.bh);
772 newblock = udf_get_pblock(inode->i_sb, newblocknum,
773 iinfo->i_location.partitionReferenceNum, 0);
774 if (!newblock)
775 return NULL;
776 *phys = newblock;
777 *err = 0;
778 *new = 1;
779 iinfo->i_next_alloc_block = block;
780 iinfo->i_next_alloc_goal = newblocknum;
781 inode->i_ctime = current_fs_time(inode->i_sb);
783 if (IS_SYNC(inode))
784 udf_sync_inode(inode);
785 else
786 mark_inode_dirty(inode);
788 return result;
791 static void udf_split_extents(struct inode *inode, int *c, int offset,
792 int newblocknum,
793 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
794 int *endnum)
796 unsigned long blocksize = inode->i_sb->s_blocksize;
797 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
799 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
800 (laarr[*c].extLength >> 30) ==
801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802 int curr = *c;
803 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
804 blocksize - 1) >> blocksize_bits;
805 int8_t etype = (laarr[curr].extLength >> 30);
807 if (blen == 1)
809 else if (!offset || blen == offset + 1) {
810 laarr[curr + 2] = laarr[curr + 1];
811 laarr[curr + 1] = laarr[curr];
812 } else {
813 laarr[curr + 3] = laarr[curr + 1];
814 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
817 if (offset) {
818 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
819 udf_free_blocks(inode->i_sb, inode,
820 &laarr[curr].extLocation,
821 0, offset);
822 laarr[curr].extLength =
823 EXT_NOT_RECORDED_NOT_ALLOCATED |
824 (offset << blocksize_bits);
825 laarr[curr].extLocation.logicalBlockNum = 0;
826 laarr[curr].extLocation.
827 partitionReferenceNum = 0;
828 } else
829 laarr[curr].extLength = (etype << 30) |
830 (offset << blocksize_bits);
831 curr++;
832 (*c)++;
833 (*endnum)++;
836 laarr[curr].extLocation.logicalBlockNum = newblocknum;
837 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
838 laarr[curr].extLocation.partitionReferenceNum =
839 UDF_I(inode)->i_location.partitionReferenceNum;
840 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
841 blocksize;
842 curr++;
844 if (blen != offset + 1) {
845 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
846 laarr[curr].extLocation.logicalBlockNum +=
847 offset + 1;
848 laarr[curr].extLength = (etype << 30) |
849 ((blen - (offset + 1)) << blocksize_bits);
850 curr++;
851 (*endnum)++;
856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
857 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
858 int *endnum)
860 int start, length = 0, currlength = 0, i;
862 if (*endnum >= (c + 1)) {
863 if (!lastblock)
864 return;
865 else
866 start = c;
867 } else {
868 if ((laarr[c + 1].extLength >> 30) ==
869 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
870 start = c + 1;
871 length = currlength =
872 (((laarr[c + 1].extLength &
873 UDF_EXTENT_LENGTH_MASK) +
874 inode->i_sb->s_blocksize - 1) >>
875 inode->i_sb->s_blocksize_bits);
876 } else
877 start = c;
880 for (i = start + 1; i <= *endnum; i++) {
881 if (i == *endnum) {
882 if (lastblock)
883 length += UDF_DEFAULT_PREALLOC_BLOCKS;
884 } else if ((laarr[i].extLength >> 30) ==
885 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
886 length += (((laarr[i].extLength &
887 UDF_EXTENT_LENGTH_MASK) +
888 inode->i_sb->s_blocksize - 1) >>
889 inode->i_sb->s_blocksize_bits);
890 } else
891 break;
894 if (length) {
895 int next = laarr[start].extLocation.logicalBlockNum +
896 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
897 inode->i_sb->s_blocksize - 1) >>
898 inode->i_sb->s_blocksize_bits);
899 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
900 laarr[start].extLocation.partitionReferenceNum,
901 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
902 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
903 currlength);
904 if (numalloc) {
905 if (start == (c + 1))
906 laarr[start].extLength +=
907 (numalloc <<
908 inode->i_sb->s_blocksize_bits);
909 else {
910 memmove(&laarr[c + 2], &laarr[c + 1],
911 sizeof(struct long_ad) * (*endnum - (c + 1)));
912 (*endnum)++;
913 laarr[c + 1].extLocation.logicalBlockNum = next;
914 laarr[c + 1].extLocation.partitionReferenceNum =
915 laarr[c].extLocation.
916 partitionReferenceNum;
917 laarr[c + 1].extLength =
918 EXT_NOT_RECORDED_ALLOCATED |
919 (numalloc <<
920 inode->i_sb->s_blocksize_bits);
921 start = c + 1;
924 for (i = start + 1; numalloc && i < *endnum; i++) {
925 int elen = ((laarr[i].extLength &
926 UDF_EXTENT_LENGTH_MASK) +
927 inode->i_sb->s_blocksize - 1) >>
928 inode->i_sb->s_blocksize_bits;
930 if (elen > numalloc) {
931 laarr[i].extLength -=
932 (numalloc <<
933 inode->i_sb->s_blocksize_bits);
934 numalloc = 0;
935 } else {
936 numalloc -= elen;
937 if (*endnum > (i + 1))
938 memmove(&laarr[i],
939 &laarr[i + 1],
940 sizeof(struct long_ad) *
941 (*endnum - (i + 1)));
942 i--;
943 (*endnum)--;
946 UDF_I(inode)->i_lenExtents +=
947 numalloc << inode->i_sb->s_blocksize_bits;
952 static void udf_merge_extents(struct inode *inode,
953 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
954 int *endnum)
956 int i;
957 unsigned long blocksize = inode->i_sb->s_blocksize;
958 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
960 for (i = 0; i < (*endnum - 1); i++) {
961 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
962 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
964 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
965 (((li->extLength >> 30) ==
966 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
967 ((lip1->extLocation.logicalBlockNum -
968 li->extLocation.logicalBlockNum) ==
969 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
970 blocksize - 1) >> blocksize_bits)))) {
972 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
973 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
974 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
975 lip1->extLength = (lip1->extLength -
976 (li->extLength &
977 UDF_EXTENT_LENGTH_MASK) +
978 UDF_EXTENT_LENGTH_MASK) &
979 ~(blocksize - 1);
980 li->extLength = (li->extLength &
981 UDF_EXTENT_FLAG_MASK) +
982 (UDF_EXTENT_LENGTH_MASK + 1) -
983 blocksize;
984 lip1->extLocation.logicalBlockNum =
985 li->extLocation.logicalBlockNum +
986 ((li->extLength &
987 UDF_EXTENT_LENGTH_MASK) >>
988 blocksize_bits);
989 } else {
990 li->extLength = lip1->extLength +
991 (((li->extLength &
992 UDF_EXTENT_LENGTH_MASK) +
993 blocksize - 1) & ~(blocksize - 1));
994 if (*endnum > (i + 2))
995 memmove(&laarr[i + 1], &laarr[i + 2],
996 sizeof(struct long_ad) *
997 (*endnum - (i + 2)));
998 i--;
999 (*endnum)--;
1001 } else if (((li->extLength >> 30) ==
1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1003 ((lip1->extLength >> 30) ==
1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1005 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1006 ((li->extLength &
1007 UDF_EXTENT_LENGTH_MASK) +
1008 blocksize - 1) >> blocksize_bits);
1009 li->extLocation.logicalBlockNum = 0;
1010 li->extLocation.partitionReferenceNum = 0;
1012 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1013 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1014 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1015 lip1->extLength = (lip1->extLength -
1016 (li->extLength &
1017 UDF_EXTENT_LENGTH_MASK) +
1018 UDF_EXTENT_LENGTH_MASK) &
1019 ~(blocksize - 1);
1020 li->extLength = (li->extLength &
1021 UDF_EXTENT_FLAG_MASK) +
1022 (UDF_EXTENT_LENGTH_MASK + 1) -
1023 blocksize;
1024 } else {
1025 li->extLength = lip1->extLength +
1026 (((li->extLength &
1027 UDF_EXTENT_LENGTH_MASK) +
1028 blocksize - 1) & ~(blocksize - 1));
1029 if (*endnum > (i + 2))
1030 memmove(&laarr[i + 1], &laarr[i + 2],
1031 sizeof(struct long_ad) *
1032 (*endnum - (i + 2)));
1033 i--;
1034 (*endnum)--;
1036 } else if ((li->extLength >> 30) ==
1037 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1038 udf_free_blocks(inode->i_sb, inode,
1039 &li->extLocation, 0,
1040 ((li->extLength &
1041 UDF_EXTENT_LENGTH_MASK) +
1042 blocksize - 1) >> blocksize_bits);
1043 li->extLocation.logicalBlockNum = 0;
1044 li->extLocation.partitionReferenceNum = 0;
1045 li->extLength = (li->extLength &
1046 UDF_EXTENT_LENGTH_MASK) |
1047 EXT_NOT_RECORDED_NOT_ALLOCATED;
1052 static void udf_update_extents(struct inode *inode,
1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054 int startnum, int endnum,
1055 struct extent_position *epos)
1057 int start = 0, i;
1058 struct kernel_lb_addr tmploc;
1059 uint32_t tmplen;
1061 if (startnum > endnum) {
1062 for (i = 0; i < (startnum - endnum); i++)
1063 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1064 laarr[i].extLength);
1065 } else if (startnum < endnum) {
1066 for (i = 0; i < (endnum - startnum); i++) {
1067 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1068 laarr[i].extLength);
1069 udf_next_aext(inode, epos, &laarr[i].extLocation,
1070 &laarr[i].extLength, 1);
1071 start++;
1075 for (i = start; i < endnum; i++) {
1076 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1077 udf_write_aext(inode, epos, &laarr[i].extLocation,
1078 laarr[i].extLength, 1);
1082 struct buffer_head *udf_bread(struct inode *inode, int block,
1083 int create, int *err)
1085 struct buffer_head *bh = NULL;
1087 bh = udf_getblk(inode, block, create, err);
1088 if (!bh)
1089 return NULL;
1091 if (buffer_uptodate(bh))
1092 return bh;
1094 ll_rw_block(READ, 1, &bh);
1096 wait_on_buffer(bh);
1097 if (buffer_uptodate(bh))
1098 return bh;
1100 brelse(bh);
1101 *err = -EIO;
1102 return NULL;
1105 int udf_setsize(struct inode *inode, loff_t newsize)
1107 int err;
1108 struct udf_inode_info *iinfo;
1109 int bsize = 1 << inode->i_blkbits;
1111 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1112 S_ISLNK(inode->i_mode)))
1113 return -EINVAL;
1114 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1115 return -EPERM;
1117 iinfo = UDF_I(inode);
1118 if (newsize > inode->i_size) {
1119 down_write(&iinfo->i_data_sem);
1120 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1121 if (bsize <
1122 (udf_file_entry_alloc_offset(inode) + newsize)) {
1123 err = udf_expand_file_adinicb(inode);
1124 if (err)
1125 return err;
1126 down_write(&iinfo->i_data_sem);
1127 } else
1128 iinfo->i_lenAlloc = newsize;
1130 err = udf_extend_file(inode, newsize);
1131 if (err) {
1132 up_write(&iinfo->i_data_sem);
1133 return err;
1135 truncate_setsize(inode, newsize);
1136 up_write(&iinfo->i_data_sem);
1137 } else {
1138 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1139 down_write(&iinfo->i_data_sem);
1140 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1141 0x00, bsize - newsize -
1142 udf_file_entry_alloc_offset(inode));
1143 iinfo->i_lenAlloc = newsize;
1144 truncate_setsize(inode, newsize);
1145 up_write(&iinfo->i_data_sem);
1146 goto update_time;
1148 err = block_truncate_page(inode->i_mapping, newsize,
1149 udf_get_block);
1150 if (err)
1151 return err;
1152 down_write(&iinfo->i_data_sem);
1153 truncate_setsize(inode, newsize);
1154 udf_truncate_extents(inode);
1155 up_write(&iinfo->i_data_sem);
1157 update_time:
1158 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1159 if (IS_SYNC(inode))
1160 udf_sync_inode(inode);
1161 else
1162 mark_inode_dirty(inode);
1163 return 0;
1166 static void __udf_read_inode(struct inode *inode)
1168 struct buffer_head *bh = NULL;
1169 struct fileEntry *fe;
1170 uint16_t ident;
1171 struct udf_inode_info *iinfo = UDF_I(inode);
1174 * Set defaults, but the inode is still incomplete!
1175 * Note: get_new_inode() sets the following on a new inode:
1176 * i_sb = sb
1177 * i_no = ino
1178 * i_flags = sb->s_flags
1179 * i_state = 0
1180 * clean_inode(): zero fills and sets
1181 * i_count = 1
1182 * i_nlink = 1
1183 * i_op = NULL;
1185 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1186 if (!bh) {
1187 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1188 inode->i_ino);
1189 make_bad_inode(inode);
1190 return;
1193 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1194 ident != TAG_IDENT_USE) {
1195 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1196 "failed ident=%d\n", inode->i_ino, ident);
1197 brelse(bh);
1198 make_bad_inode(inode);
1199 return;
1202 fe = (struct fileEntry *)bh->b_data;
1204 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1205 struct buffer_head *ibh;
1207 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1208 &ident);
1209 if (ident == TAG_IDENT_IE && ibh) {
1210 struct buffer_head *nbh = NULL;
1211 struct kernel_lb_addr loc;
1212 struct indirectEntry *ie;
1214 ie = (struct indirectEntry *)ibh->b_data;
1215 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1217 if (ie->indirectICB.extLength &&
1218 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1219 &ident))) {
1220 if (ident == TAG_IDENT_FE ||
1221 ident == TAG_IDENT_EFE) {
1222 memcpy(&iinfo->i_location,
1223 &loc,
1224 sizeof(struct kernel_lb_addr));
1225 brelse(bh);
1226 brelse(ibh);
1227 brelse(nbh);
1228 __udf_read_inode(inode);
1229 return;
1231 brelse(nbh);
1234 brelse(ibh);
1235 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1236 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1237 le16_to_cpu(fe->icbTag.strategyType));
1238 brelse(bh);
1239 make_bad_inode(inode);
1240 return;
1242 udf_fill_inode(inode, bh);
1244 brelse(bh);
1247 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1249 struct fileEntry *fe;
1250 struct extendedFileEntry *efe;
1251 int offset;
1252 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1253 struct udf_inode_info *iinfo = UDF_I(inode);
1255 fe = (struct fileEntry *)bh->b_data;
1256 efe = (struct extendedFileEntry *)bh->b_data;
1258 if (fe->icbTag.strategyType == cpu_to_le16(4))
1259 iinfo->i_strat4096 = 0;
1260 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1261 iinfo->i_strat4096 = 1;
1263 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1264 ICBTAG_FLAG_AD_MASK;
1265 iinfo->i_unique = 0;
1266 iinfo->i_lenEAttr = 0;
1267 iinfo->i_lenExtents = 0;
1268 iinfo->i_lenAlloc = 0;
1269 iinfo->i_next_alloc_block = 0;
1270 iinfo->i_next_alloc_goal = 0;
1271 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1272 iinfo->i_efe = 1;
1273 iinfo->i_use = 0;
1274 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1275 sizeof(struct extendedFileEntry))) {
1276 make_bad_inode(inode);
1277 return;
1279 memcpy(iinfo->i_ext.i_data,
1280 bh->b_data + sizeof(struct extendedFileEntry),
1281 inode->i_sb->s_blocksize -
1282 sizeof(struct extendedFileEntry));
1283 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1284 iinfo->i_efe = 0;
1285 iinfo->i_use = 0;
1286 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1287 sizeof(struct fileEntry))) {
1288 make_bad_inode(inode);
1289 return;
1291 memcpy(iinfo->i_ext.i_data,
1292 bh->b_data + sizeof(struct fileEntry),
1293 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1294 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1295 iinfo->i_efe = 0;
1296 iinfo->i_use = 1;
1297 iinfo->i_lenAlloc = le32_to_cpu(
1298 ((struct unallocSpaceEntry *)bh->b_data)->
1299 lengthAllocDescs);
1300 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1301 sizeof(struct unallocSpaceEntry))) {
1302 make_bad_inode(inode);
1303 return;
1305 memcpy(iinfo->i_ext.i_data,
1306 bh->b_data + sizeof(struct unallocSpaceEntry),
1307 inode->i_sb->s_blocksize -
1308 sizeof(struct unallocSpaceEntry));
1309 return;
1312 read_lock(&sbi->s_cred_lock);
1313 inode->i_uid = le32_to_cpu(fe->uid);
1314 if (inode->i_uid == -1 ||
1315 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1316 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1317 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1319 inode->i_gid = le32_to_cpu(fe->gid);
1320 if (inode->i_gid == -1 ||
1321 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1322 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1323 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1325 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1326 sbi->s_fmode != UDF_INVALID_MODE)
1327 inode->i_mode = sbi->s_fmode;
1328 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1329 sbi->s_dmode != UDF_INVALID_MODE)
1330 inode->i_mode = sbi->s_dmode;
1331 else
1332 inode->i_mode = udf_convert_permissions(fe);
1333 inode->i_mode &= ~sbi->s_umask;
1334 read_unlock(&sbi->s_cred_lock);
1336 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1337 if (!inode->i_nlink)
1338 inode->i_nlink = 1;
1340 inode->i_size = le64_to_cpu(fe->informationLength);
1341 iinfo->i_lenExtents = inode->i_size;
1343 if (iinfo->i_efe == 0) {
1344 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1345 (inode->i_sb->s_blocksize_bits - 9);
1347 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1348 inode->i_atime = sbi->s_record_time;
1350 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1351 fe->modificationTime))
1352 inode->i_mtime = sbi->s_record_time;
1354 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1355 inode->i_ctime = sbi->s_record_time;
1357 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1358 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1359 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1360 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1361 } else {
1362 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1363 (inode->i_sb->s_blocksize_bits - 9);
1365 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1366 inode->i_atime = sbi->s_record_time;
1368 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1369 efe->modificationTime))
1370 inode->i_mtime = sbi->s_record_time;
1372 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1373 iinfo->i_crtime = sbi->s_record_time;
1375 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1376 inode->i_ctime = sbi->s_record_time;
1378 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1379 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1380 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1381 offset = sizeof(struct extendedFileEntry) +
1382 iinfo->i_lenEAttr;
1385 switch (fe->icbTag.fileType) {
1386 case ICBTAG_FILE_TYPE_DIRECTORY:
1387 inode->i_op = &udf_dir_inode_operations;
1388 inode->i_fop = &udf_dir_operations;
1389 inode->i_mode |= S_IFDIR;
1390 inc_nlink(inode);
1391 break;
1392 case ICBTAG_FILE_TYPE_REALTIME:
1393 case ICBTAG_FILE_TYPE_REGULAR:
1394 case ICBTAG_FILE_TYPE_UNDEF:
1395 case ICBTAG_FILE_TYPE_VAT20:
1396 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1397 inode->i_data.a_ops = &udf_adinicb_aops;
1398 else
1399 inode->i_data.a_ops = &udf_aops;
1400 inode->i_op = &udf_file_inode_operations;
1401 inode->i_fop = &udf_file_operations;
1402 inode->i_mode |= S_IFREG;
1403 break;
1404 case ICBTAG_FILE_TYPE_BLOCK:
1405 inode->i_mode |= S_IFBLK;
1406 break;
1407 case ICBTAG_FILE_TYPE_CHAR:
1408 inode->i_mode |= S_IFCHR;
1409 break;
1410 case ICBTAG_FILE_TYPE_FIFO:
1411 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1412 break;
1413 case ICBTAG_FILE_TYPE_SOCKET:
1414 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1415 break;
1416 case ICBTAG_FILE_TYPE_SYMLINK:
1417 inode->i_data.a_ops = &udf_symlink_aops;
1418 inode->i_op = &udf_symlink_inode_operations;
1419 inode->i_mode = S_IFLNK | S_IRWXUGO;
1420 break;
1421 case ICBTAG_FILE_TYPE_MAIN:
1422 udf_debug("METADATA FILE-----\n");
1423 break;
1424 case ICBTAG_FILE_TYPE_MIRROR:
1425 udf_debug("METADATA MIRROR FILE-----\n");
1426 break;
1427 case ICBTAG_FILE_TYPE_BITMAP:
1428 udf_debug("METADATA BITMAP FILE-----\n");
1429 break;
1430 default:
1431 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1432 "file type=%d\n", inode->i_ino,
1433 fe->icbTag.fileType);
1434 make_bad_inode(inode);
1435 return;
1437 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1438 struct deviceSpec *dsea =
1439 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1440 if (dsea) {
1441 init_special_inode(inode, inode->i_mode,
1442 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1443 le32_to_cpu(dsea->minorDeviceIdent)));
1444 /* Developer ID ??? */
1445 } else
1446 make_bad_inode(inode);
1450 static int udf_alloc_i_data(struct inode *inode, size_t size)
1452 struct udf_inode_info *iinfo = UDF_I(inode);
1453 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1455 if (!iinfo->i_ext.i_data) {
1456 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1457 "no free memory\n", inode->i_ino);
1458 return -ENOMEM;
1461 return 0;
1464 static mode_t udf_convert_permissions(struct fileEntry *fe)
1466 mode_t mode;
1467 uint32_t permissions;
1468 uint32_t flags;
1470 permissions = le32_to_cpu(fe->permissions);
1471 flags = le16_to_cpu(fe->icbTag.flags);
1473 mode = ((permissions) & S_IRWXO) |
1474 ((permissions >> 2) & S_IRWXG) |
1475 ((permissions >> 4) & S_IRWXU) |
1476 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1477 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1478 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1480 return mode;
1483 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1485 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1488 static int udf_sync_inode(struct inode *inode)
1490 return udf_update_inode(inode, 1);
1493 static int udf_update_inode(struct inode *inode, int do_sync)
1495 struct buffer_head *bh = NULL;
1496 struct fileEntry *fe;
1497 struct extendedFileEntry *efe;
1498 uint32_t udfperms;
1499 uint16_t icbflags;
1500 uint16_t crclen;
1501 int err = 0;
1502 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1503 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1504 struct udf_inode_info *iinfo = UDF_I(inode);
1506 bh = udf_tgetblk(inode->i_sb,
1507 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1508 if (!bh) {
1509 udf_debug("getblk failure\n");
1510 return -ENOMEM;
1513 lock_buffer(bh);
1514 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1515 fe = (struct fileEntry *)bh->b_data;
1516 efe = (struct extendedFileEntry *)bh->b_data;
1518 if (iinfo->i_use) {
1519 struct unallocSpaceEntry *use =
1520 (struct unallocSpaceEntry *)bh->b_data;
1522 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1523 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1524 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1525 sizeof(struct unallocSpaceEntry));
1526 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1527 use->descTag.tagLocation =
1528 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1529 crclen = sizeof(struct unallocSpaceEntry) +
1530 iinfo->i_lenAlloc - sizeof(struct tag);
1531 use->descTag.descCRCLength = cpu_to_le16(crclen);
1532 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1533 sizeof(struct tag),
1534 crclen));
1535 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1537 goto out;
1540 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1541 fe->uid = cpu_to_le32(-1);
1542 else
1543 fe->uid = cpu_to_le32(inode->i_uid);
1545 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1546 fe->gid = cpu_to_le32(-1);
1547 else
1548 fe->gid = cpu_to_le32(inode->i_gid);
1550 udfperms = ((inode->i_mode & S_IRWXO)) |
1551 ((inode->i_mode & S_IRWXG) << 2) |
1552 ((inode->i_mode & S_IRWXU) << 4);
1554 udfperms |= (le32_to_cpu(fe->permissions) &
1555 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1556 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1557 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1558 fe->permissions = cpu_to_le32(udfperms);
1560 if (S_ISDIR(inode->i_mode))
1561 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1562 else
1563 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1565 fe->informationLength = cpu_to_le64(inode->i_size);
1567 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1568 struct regid *eid;
1569 struct deviceSpec *dsea =
1570 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1571 if (!dsea) {
1572 dsea = (struct deviceSpec *)
1573 udf_add_extendedattr(inode,
1574 sizeof(struct deviceSpec) +
1575 sizeof(struct regid), 12, 0x3);
1576 dsea->attrType = cpu_to_le32(12);
1577 dsea->attrSubtype = 1;
1578 dsea->attrLength = cpu_to_le32(
1579 sizeof(struct deviceSpec) +
1580 sizeof(struct regid));
1581 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1583 eid = (struct regid *)dsea->impUse;
1584 memset(eid, 0, sizeof(struct regid));
1585 strcpy(eid->ident, UDF_ID_DEVELOPER);
1586 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1587 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1588 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1589 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1592 if (iinfo->i_efe == 0) {
1593 memcpy(bh->b_data + sizeof(struct fileEntry),
1594 iinfo->i_ext.i_data,
1595 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1596 fe->logicalBlocksRecorded = cpu_to_le64(
1597 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1598 (blocksize_bits - 9));
1600 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1601 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1602 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1603 memset(&(fe->impIdent), 0, sizeof(struct regid));
1604 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1605 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1606 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1607 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1608 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1609 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1610 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1611 crclen = sizeof(struct fileEntry);
1612 } else {
1613 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1614 iinfo->i_ext.i_data,
1615 inode->i_sb->s_blocksize -
1616 sizeof(struct extendedFileEntry));
1617 efe->objectSize = cpu_to_le64(inode->i_size);
1618 efe->logicalBlocksRecorded = cpu_to_le64(
1619 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1620 (blocksize_bits - 9));
1622 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1623 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1624 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1625 iinfo->i_crtime = inode->i_atime;
1627 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1628 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1629 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1630 iinfo->i_crtime = inode->i_mtime;
1632 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1633 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1634 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1635 iinfo->i_crtime = inode->i_ctime;
1637 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1638 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1639 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1640 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1642 memset(&(efe->impIdent), 0, sizeof(struct regid));
1643 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1644 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1645 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1646 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1647 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1648 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1649 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1650 crclen = sizeof(struct extendedFileEntry);
1652 if (iinfo->i_strat4096) {
1653 fe->icbTag.strategyType = cpu_to_le16(4096);
1654 fe->icbTag.strategyParameter = cpu_to_le16(1);
1655 fe->icbTag.numEntries = cpu_to_le16(2);
1656 } else {
1657 fe->icbTag.strategyType = cpu_to_le16(4);
1658 fe->icbTag.numEntries = cpu_to_le16(1);
1661 if (S_ISDIR(inode->i_mode))
1662 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1663 else if (S_ISREG(inode->i_mode))
1664 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1665 else if (S_ISLNK(inode->i_mode))
1666 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1667 else if (S_ISBLK(inode->i_mode))
1668 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1669 else if (S_ISCHR(inode->i_mode))
1670 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1671 else if (S_ISFIFO(inode->i_mode))
1672 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1673 else if (S_ISSOCK(inode->i_mode))
1674 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1676 icbflags = iinfo->i_alloc_type |
1677 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1678 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1679 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1680 (le16_to_cpu(fe->icbTag.flags) &
1681 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1682 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1684 fe->icbTag.flags = cpu_to_le16(icbflags);
1685 if (sbi->s_udfrev >= 0x0200)
1686 fe->descTag.descVersion = cpu_to_le16(3);
1687 else
1688 fe->descTag.descVersion = cpu_to_le16(2);
1689 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1690 fe->descTag.tagLocation = cpu_to_le32(
1691 iinfo->i_location.logicalBlockNum);
1692 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1693 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1694 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1695 crclen));
1696 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1698 out:
1699 set_buffer_uptodate(bh);
1700 unlock_buffer(bh);
1702 /* write the data blocks */
1703 mark_buffer_dirty(bh);
1704 if (do_sync) {
1705 sync_dirty_buffer(bh);
1706 if (buffer_write_io_error(bh)) {
1707 printk(KERN_WARNING "IO error syncing udf inode "
1708 "[%s:%08lx]\n", inode->i_sb->s_id,
1709 inode->i_ino);
1710 err = -EIO;
1713 brelse(bh);
1715 return err;
1718 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1720 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1721 struct inode *inode = iget_locked(sb, block);
1723 if (!inode)
1724 return NULL;
1726 if (inode->i_state & I_NEW) {
1727 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1728 __udf_read_inode(inode);
1729 unlock_new_inode(inode);
1732 if (is_bad_inode(inode))
1733 goto out_iput;
1735 if (ino->logicalBlockNum >= UDF_SB(sb)->
1736 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1737 udf_debug("block=%d, partition=%d out of range\n",
1738 ino->logicalBlockNum, ino->partitionReferenceNum);
1739 make_bad_inode(inode);
1740 goto out_iput;
1743 return inode;
1745 out_iput:
1746 iput(inode);
1747 return NULL;
1750 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1751 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1753 int adsize;
1754 struct short_ad *sad = NULL;
1755 struct long_ad *lad = NULL;
1756 struct allocExtDesc *aed;
1757 uint8_t *ptr;
1758 struct udf_inode_info *iinfo = UDF_I(inode);
1760 if (!epos->bh)
1761 ptr = iinfo->i_ext.i_data + epos->offset -
1762 udf_file_entry_alloc_offset(inode) +
1763 iinfo->i_lenEAttr;
1764 else
1765 ptr = epos->bh->b_data + epos->offset;
1767 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1768 adsize = sizeof(struct short_ad);
1769 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1770 adsize = sizeof(struct long_ad);
1771 else
1772 return -EIO;
1774 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1775 unsigned char *sptr, *dptr;
1776 struct buffer_head *nbh;
1777 int err, loffset;
1778 struct kernel_lb_addr obloc = epos->block;
1780 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1781 obloc.partitionReferenceNum,
1782 obloc.logicalBlockNum, &err);
1783 if (!epos->block.logicalBlockNum)
1784 return -ENOSPC;
1785 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1786 &epos->block,
1787 0));
1788 if (!nbh)
1789 return -EIO;
1790 lock_buffer(nbh);
1791 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1792 set_buffer_uptodate(nbh);
1793 unlock_buffer(nbh);
1794 mark_buffer_dirty_inode(nbh, inode);
1796 aed = (struct allocExtDesc *)(nbh->b_data);
1797 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1798 aed->previousAllocExtLocation =
1799 cpu_to_le32(obloc.logicalBlockNum);
1800 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1801 loffset = epos->offset;
1802 aed->lengthAllocDescs = cpu_to_le32(adsize);
1803 sptr = ptr - adsize;
1804 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1805 memcpy(dptr, sptr, adsize);
1806 epos->offset = sizeof(struct allocExtDesc) + adsize;
1807 } else {
1808 loffset = epos->offset + adsize;
1809 aed->lengthAllocDescs = cpu_to_le32(0);
1810 sptr = ptr;
1811 epos->offset = sizeof(struct allocExtDesc);
1813 if (epos->bh) {
1814 aed = (struct allocExtDesc *)epos->bh->b_data;
1815 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1816 } else {
1817 iinfo->i_lenAlloc += adsize;
1818 mark_inode_dirty(inode);
1821 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1822 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1823 epos->block.logicalBlockNum, sizeof(struct tag));
1824 else
1825 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1826 epos->block.logicalBlockNum, sizeof(struct tag));
1827 switch (iinfo->i_alloc_type) {
1828 case ICBTAG_FLAG_AD_SHORT:
1829 sad = (struct short_ad *)sptr;
1830 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1831 inode->i_sb->s_blocksize);
1832 sad->extPosition =
1833 cpu_to_le32(epos->block.logicalBlockNum);
1834 break;
1835 case ICBTAG_FLAG_AD_LONG:
1836 lad = (struct long_ad *)sptr;
1837 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1838 inode->i_sb->s_blocksize);
1839 lad->extLocation = cpu_to_lelb(epos->block);
1840 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1841 break;
1843 if (epos->bh) {
1844 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1845 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1846 udf_update_tag(epos->bh->b_data, loffset);
1847 else
1848 udf_update_tag(epos->bh->b_data,
1849 sizeof(struct allocExtDesc));
1850 mark_buffer_dirty_inode(epos->bh, inode);
1851 brelse(epos->bh);
1852 } else {
1853 mark_inode_dirty(inode);
1855 epos->bh = nbh;
1858 udf_write_aext(inode, epos, eloc, elen, inc);
1860 if (!epos->bh) {
1861 iinfo->i_lenAlloc += adsize;
1862 mark_inode_dirty(inode);
1863 } else {
1864 aed = (struct allocExtDesc *)epos->bh->b_data;
1865 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1866 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1867 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1868 udf_update_tag(epos->bh->b_data,
1869 epos->offset + (inc ? 0 : adsize));
1870 else
1871 udf_update_tag(epos->bh->b_data,
1872 sizeof(struct allocExtDesc));
1873 mark_buffer_dirty_inode(epos->bh, inode);
1876 return 0;
1879 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1880 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1882 int adsize;
1883 uint8_t *ptr;
1884 struct short_ad *sad;
1885 struct long_ad *lad;
1886 struct udf_inode_info *iinfo = UDF_I(inode);
1888 if (!epos->bh)
1889 ptr = iinfo->i_ext.i_data + epos->offset -
1890 udf_file_entry_alloc_offset(inode) +
1891 iinfo->i_lenEAttr;
1892 else
1893 ptr = epos->bh->b_data + epos->offset;
1895 switch (iinfo->i_alloc_type) {
1896 case ICBTAG_FLAG_AD_SHORT:
1897 sad = (struct short_ad *)ptr;
1898 sad->extLength = cpu_to_le32(elen);
1899 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1900 adsize = sizeof(struct short_ad);
1901 break;
1902 case ICBTAG_FLAG_AD_LONG:
1903 lad = (struct long_ad *)ptr;
1904 lad->extLength = cpu_to_le32(elen);
1905 lad->extLocation = cpu_to_lelb(*eloc);
1906 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1907 adsize = sizeof(struct long_ad);
1908 break;
1909 default:
1910 return;
1913 if (epos->bh) {
1914 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1915 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1916 struct allocExtDesc *aed =
1917 (struct allocExtDesc *)epos->bh->b_data;
1918 udf_update_tag(epos->bh->b_data,
1919 le32_to_cpu(aed->lengthAllocDescs) +
1920 sizeof(struct allocExtDesc));
1922 mark_buffer_dirty_inode(epos->bh, inode);
1923 } else {
1924 mark_inode_dirty(inode);
1927 if (inc)
1928 epos->offset += adsize;
1931 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1932 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1934 int8_t etype;
1936 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1937 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1938 int block;
1939 epos->block = *eloc;
1940 epos->offset = sizeof(struct allocExtDesc);
1941 brelse(epos->bh);
1942 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1943 epos->bh = udf_tread(inode->i_sb, block);
1944 if (!epos->bh) {
1945 udf_debug("reading block %d failed!\n", block);
1946 return -1;
1950 return etype;
1953 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1954 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1956 int alen;
1957 int8_t etype;
1958 uint8_t *ptr;
1959 struct short_ad *sad;
1960 struct long_ad *lad;
1961 struct udf_inode_info *iinfo = UDF_I(inode);
1963 if (!epos->bh) {
1964 if (!epos->offset)
1965 epos->offset = udf_file_entry_alloc_offset(inode);
1966 ptr = iinfo->i_ext.i_data + epos->offset -
1967 udf_file_entry_alloc_offset(inode) +
1968 iinfo->i_lenEAttr;
1969 alen = udf_file_entry_alloc_offset(inode) +
1970 iinfo->i_lenAlloc;
1971 } else {
1972 if (!epos->offset)
1973 epos->offset = sizeof(struct allocExtDesc);
1974 ptr = epos->bh->b_data + epos->offset;
1975 alen = sizeof(struct allocExtDesc) +
1976 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1977 lengthAllocDescs);
1980 switch (iinfo->i_alloc_type) {
1981 case ICBTAG_FLAG_AD_SHORT:
1982 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1983 if (!sad)
1984 return -1;
1985 etype = le32_to_cpu(sad->extLength) >> 30;
1986 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1987 eloc->partitionReferenceNum =
1988 iinfo->i_location.partitionReferenceNum;
1989 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1990 break;
1991 case ICBTAG_FLAG_AD_LONG:
1992 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1993 if (!lad)
1994 return -1;
1995 etype = le32_to_cpu(lad->extLength) >> 30;
1996 *eloc = lelb_to_cpu(lad->extLocation);
1997 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1998 break;
1999 default:
2000 udf_debug("alloc_type = %d unsupported\n",
2001 iinfo->i_alloc_type);
2002 return -1;
2005 return etype;
2008 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2009 struct kernel_lb_addr neloc, uint32_t nelen)
2011 struct kernel_lb_addr oeloc;
2012 uint32_t oelen;
2013 int8_t etype;
2015 if (epos.bh)
2016 get_bh(epos.bh);
2018 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2019 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2020 neloc = oeloc;
2021 nelen = (etype << 30) | oelen;
2023 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2024 brelse(epos.bh);
2026 return (nelen >> 30);
2029 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2030 struct kernel_lb_addr eloc, uint32_t elen)
2032 struct extent_position oepos;
2033 int adsize;
2034 int8_t etype;
2035 struct allocExtDesc *aed;
2036 struct udf_inode_info *iinfo;
2038 if (epos.bh) {
2039 get_bh(epos.bh);
2040 get_bh(epos.bh);
2043 iinfo = UDF_I(inode);
2044 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2045 adsize = sizeof(struct short_ad);
2046 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2047 adsize = sizeof(struct long_ad);
2048 else
2049 adsize = 0;
2051 oepos = epos;
2052 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2053 return -1;
2055 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2056 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2057 if (oepos.bh != epos.bh) {
2058 oepos.block = epos.block;
2059 brelse(oepos.bh);
2060 get_bh(epos.bh);
2061 oepos.bh = epos.bh;
2062 oepos.offset = epos.offset - adsize;
2065 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2066 elen = 0;
2068 if (epos.bh != oepos.bh) {
2069 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2070 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2071 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2072 if (!oepos.bh) {
2073 iinfo->i_lenAlloc -= (adsize * 2);
2074 mark_inode_dirty(inode);
2075 } else {
2076 aed = (struct allocExtDesc *)oepos.bh->b_data;
2077 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2078 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2079 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2080 udf_update_tag(oepos.bh->b_data,
2081 oepos.offset - (2 * adsize));
2082 else
2083 udf_update_tag(oepos.bh->b_data,
2084 sizeof(struct allocExtDesc));
2085 mark_buffer_dirty_inode(oepos.bh, inode);
2087 } else {
2088 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2089 if (!oepos.bh) {
2090 iinfo->i_lenAlloc -= adsize;
2091 mark_inode_dirty(inode);
2092 } else {
2093 aed = (struct allocExtDesc *)oepos.bh->b_data;
2094 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2095 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2096 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2097 udf_update_tag(oepos.bh->b_data,
2098 epos.offset - adsize);
2099 else
2100 udf_update_tag(oepos.bh->b_data,
2101 sizeof(struct allocExtDesc));
2102 mark_buffer_dirty_inode(oepos.bh, inode);
2106 brelse(epos.bh);
2107 brelse(oepos.bh);
2109 return (elen >> 30);
2112 int8_t inode_bmap(struct inode *inode, sector_t block,
2113 struct extent_position *pos, struct kernel_lb_addr *eloc,
2114 uint32_t *elen, sector_t *offset)
2116 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2117 loff_t lbcount = 0, bcount =
2118 (loff_t) block << blocksize_bits;
2119 int8_t etype;
2120 struct udf_inode_info *iinfo;
2122 iinfo = UDF_I(inode);
2123 pos->offset = 0;
2124 pos->block = iinfo->i_location;
2125 pos->bh = NULL;
2126 *elen = 0;
2128 do {
2129 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2130 if (etype == -1) {
2131 *offset = (bcount - lbcount) >> blocksize_bits;
2132 iinfo->i_lenExtents = lbcount;
2133 return -1;
2135 lbcount += *elen;
2136 } while (lbcount <= bcount);
2138 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2140 return etype;
2143 long udf_block_map(struct inode *inode, sector_t block)
2145 struct kernel_lb_addr eloc;
2146 uint32_t elen;
2147 sector_t offset;
2148 struct extent_position epos = {};
2149 int ret;
2151 down_read(&UDF_I(inode)->i_data_sem);
2153 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2154 (EXT_RECORDED_ALLOCATED >> 30))
2155 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2156 else
2157 ret = 0;
2159 up_read(&UDF_I(inode)->i_data_sem);
2160 brelse(epos.bh);
2162 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2163 return udf_fixed_to_variable(ret);
2164 else
2165 return ret;