serial: pxa: fine-tune clk useage
[linux/fpc-iii.git] / drivers / hwmon / lm90.c
blob863412a02bdd1484434583625d8670fa1d8b6079
1 /*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 2003-2010 Jean Delvare <khali@linux-fr.org>
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy.
11 * This driver also supports the LM89 and LM99, two other sensor chips
12 * made by National Semiconductor. Both have an increased remote
13 * temperature measurement accuracy (1 degree), and the LM99
14 * additionally shifts remote temperatures (measured and limits) by 16
15 * degrees, which allows for higher temperatures measurement.
16 * Note that there is no way to differentiate between both chips.
17 * When device is auto-detected, the driver will assume an LM99.
19 * This driver also supports the LM86, another sensor chip made by
20 * National Semiconductor. It is exactly similar to the LM90 except it
21 * has a higher accuracy.
23 * This driver also supports the ADM1032, a sensor chip made by Analog
24 * Devices. That chip is similar to the LM90, with a few differences
25 * that are not handled by this driver. Among others, it has a higher
26 * accuracy than the LM90, much like the LM86 does.
28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29 * chips made by Maxim. These chips are similar to the LM86.
30 * Note that there is no easy way to differentiate between the three
31 * variants. We use the device address to detect MAX6659, which will result
32 * in a detection as max6657 if it is on address 0x4c. The extra address
33 * and features of the MAX6659 are only supported if the chip is configured
34 * explicitly as max6659, or if its address is not 0x4c.
35 * These chips lack the remote temperature offset feature.
37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38 * MAX6692 chips made by Maxim. These are again similar to the LM86,
39 * but they use unsigned temperature values and can report temperatures
40 * from 0 to 145 degrees.
42 * This driver also supports the MAX6680 and MAX6681, two other sensor
43 * chips made by Maxim. These are quite similar to the other Maxim
44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45 * be treated identically.
47 * This driver also supports the MAX6695 and MAX6696, two other sensor
48 * chips made by Maxim. These are also quite similar to other Maxim
49 * chips, but support three temperature sensors instead of two. MAX6695
50 * and MAX6696 only differ in the pinout so they can be treated identically.
52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54 * and extended mode. They are mostly compatible with LM90 except for a data
55 * format difference for the temperature value registers.
57 * This driver also supports the SA56004 from Philips. This device is
58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
60 * This driver also supports the G781 from GMT. This device is compatible
61 * with the ADM1032.
63 * Since the LM90 was the first chipset supported by this driver, most
64 * comments will refer to this chipset, but are actually general and
65 * concern all supported chipsets, unless mentioned otherwise.
67 * This program is free software; you can redistribute it and/or modify
68 * it under the terms of the GNU General Public License as published by
69 * the Free Software Foundation; either version 2 of the License, or
70 * (at your option) any later version.
72 * This program is distributed in the hope that it will be useful,
73 * but WITHOUT ANY WARRANTY; without even the implied warranty of
74 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
75 * GNU General Public License for more details.
77 * You should have received a copy of the GNU General Public License
78 * along with this program; if not, write to the Free Software
79 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/slab.h>
85 #include <linux/jiffies.h>
86 #include <linux/i2c.h>
87 #include <linux/hwmon-sysfs.h>
88 #include <linux/hwmon.h>
89 #include <linux/err.h>
90 #include <linux/mutex.h>
91 #include <linux/sysfs.h>
94 * Addresses to scan
95 * Address is fully defined internally and cannot be changed except for
96 * MAX6659, MAX6680 and MAX6681.
97 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
98 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
99 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
100 * have address 0x4d.
101 * MAX6647 has address 0x4e.
102 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
103 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
104 * 0x4c, 0x4d or 0x4e.
105 * SA56004 can have address 0x48 through 0x4F.
108 static const unsigned short normal_i2c[] = {
109 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
110 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
112 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
113 max6646, w83l771, max6696, sa56004, g781 };
116 * The LM90 registers
119 #define LM90_REG_R_MAN_ID 0xFE
120 #define LM90_REG_R_CHIP_ID 0xFF
121 #define LM90_REG_R_CONFIG1 0x03
122 #define LM90_REG_W_CONFIG1 0x09
123 #define LM90_REG_R_CONFIG2 0xBF
124 #define LM90_REG_W_CONFIG2 0xBF
125 #define LM90_REG_R_CONVRATE 0x04
126 #define LM90_REG_W_CONVRATE 0x0A
127 #define LM90_REG_R_STATUS 0x02
128 #define LM90_REG_R_LOCAL_TEMP 0x00
129 #define LM90_REG_R_LOCAL_HIGH 0x05
130 #define LM90_REG_W_LOCAL_HIGH 0x0B
131 #define LM90_REG_R_LOCAL_LOW 0x06
132 #define LM90_REG_W_LOCAL_LOW 0x0C
133 #define LM90_REG_R_LOCAL_CRIT 0x20
134 #define LM90_REG_W_LOCAL_CRIT 0x20
135 #define LM90_REG_R_REMOTE_TEMPH 0x01
136 #define LM90_REG_R_REMOTE_TEMPL 0x10
137 #define LM90_REG_R_REMOTE_OFFSH 0x11
138 #define LM90_REG_W_REMOTE_OFFSH 0x11
139 #define LM90_REG_R_REMOTE_OFFSL 0x12
140 #define LM90_REG_W_REMOTE_OFFSL 0x12
141 #define LM90_REG_R_REMOTE_HIGHH 0x07
142 #define LM90_REG_W_REMOTE_HIGHH 0x0D
143 #define LM90_REG_R_REMOTE_HIGHL 0x13
144 #define LM90_REG_W_REMOTE_HIGHL 0x13
145 #define LM90_REG_R_REMOTE_LOWH 0x08
146 #define LM90_REG_W_REMOTE_LOWH 0x0E
147 #define LM90_REG_R_REMOTE_LOWL 0x14
148 #define LM90_REG_W_REMOTE_LOWL 0x14
149 #define LM90_REG_R_REMOTE_CRIT 0x19
150 #define LM90_REG_W_REMOTE_CRIT 0x19
151 #define LM90_REG_R_TCRIT_HYST 0x21
152 #define LM90_REG_W_TCRIT_HYST 0x21
154 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
156 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
157 #define MAX6696_REG_R_STATUS2 0x12
158 #define MAX6659_REG_R_REMOTE_EMERG 0x16
159 #define MAX6659_REG_W_REMOTE_EMERG 0x16
160 #define MAX6659_REG_R_LOCAL_EMERG 0x17
161 #define MAX6659_REG_W_LOCAL_EMERG 0x17
163 /* SA56004 registers */
165 #define SA56004_REG_R_LOCAL_TEMPL 0x22
167 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
168 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
171 * Device flags
173 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
174 /* Device features */
175 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
176 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
177 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
178 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
179 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
180 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
183 * Driver data (common to all clients)
186 static const struct i2c_device_id lm90_id[] = {
187 { "adm1032", adm1032 },
188 { "adt7461", adt7461 },
189 { "adt7461a", adt7461 },
190 { "g781", g781 },
191 { "lm90", lm90 },
192 { "lm86", lm86 },
193 { "lm89", lm86 },
194 { "lm99", lm99 },
195 { "max6646", max6646 },
196 { "max6647", max6646 },
197 { "max6649", max6646 },
198 { "max6657", max6657 },
199 { "max6658", max6657 },
200 { "max6659", max6659 },
201 { "max6680", max6680 },
202 { "max6681", max6680 },
203 { "max6695", max6696 },
204 { "max6696", max6696 },
205 { "nct1008", adt7461 },
206 { "w83l771", w83l771 },
207 { "sa56004", sa56004 },
210 MODULE_DEVICE_TABLE(i2c, lm90_id);
213 * chip type specific parameters
215 struct lm90_params {
216 u32 flags; /* Capabilities */
217 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
218 /* Upper 8 bits for max6695/96 */
219 u8 max_convrate; /* Maximum conversion rate register value */
220 u8 reg_local_ext; /* Extended local temp register (optional) */
223 static const struct lm90_params lm90_params[] = {
224 [adm1032] = {
225 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
226 | LM90_HAVE_BROKEN_ALERT,
227 .alert_alarms = 0x7c,
228 .max_convrate = 10,
230 [adt7461] = {
231 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
232 | LM90_HAVE_BROKEN_ALERT,
233 .alert_alarms = 0x7c,
234 .max_convrate = 10,
236 [g781] = {
237 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
238 | LM90_HAVE_BROKEN_ALERT,
239 .alert_alarms = 0x7c,
240 .max_convrate = 8,
242 [lm86] = {
243 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
244 .alert_alarms = 0x7b,
245 .max_convrate = 9,
247 [lm90] = {
248 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
249 .alert_alarms = 0x7b,
250 .max_convrate = 9,
252 [lm99] = {
253 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
254 .alert_alarms = 0x7b,
255 .max_convrate = 9,
257 [max6646] = {
258 .alert_alarms = 0x7c,
259 .max_convrate = 6,
260 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
262 [max6657] = {
263 .alert_alarms = 0x7c,
264 .max_convrate = 8,
265 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
267 [max6659] = {
268 .flags = LM90_HAVE_EMERGENCY,
269 .alert_alarms = 0x7c,
270 .max_convrate = 8,
271 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
273 [max6680] = {
274 .flags = LM90_HAVE_OFFSET,
275 .alert_alarms = 0x7c,
276 .max_convrate = 7,
278 [max6696] = {
279 .flags = LM90_HAVE_EMERGENCY
280 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
281 .alert_alarms = 0x187c,
282 .max_convrate = 6,
283 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
285 [w83l771] = {
286 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
287 .alert_alarms = 0x7c,
288 .max_convrate = 8,
290 [sa56004] = {
291 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
292 .alert_alarms = 0x7b,
293 .max_convrate = 9,
294 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
299 * Client data (each client gets its own)
302 struct lm90_data {
303 struct device *hwmon_dev;
304 struct mutex update_lock;
305 char valid; /* zero until following fields are valid */
306 unsigned long last_updated; /* in jiffies */
307 int kind;
308 u32 flags;
310 int update_interval; /* in milliseconds */
312 u8 config_orig; /* Original configuration register value */
313 u8 convrate_orig; /* Original conversion rate register value */
314 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
315 /* Upper 8 bits for max6695/96 */
316 u8 max_convrate; /* Maximum conversion rate */
317 u8 reg_local_ext; /* local extension register offset */
319 /* registers values */
320 s8 temp8[8]; /* 0: local low limit
321 * 1: local high limit
322 * 2: local critical limit
323 * 3: remote critical limit
324 * 4: local emergency limit (max6659 and max6695/96)
325 * 5: remote emergency limit (max6659 and max6695/96)
326 * 6: remote 2 critical limit (max6695/96 only)
327 * 7: remote 2 emergency limit (max6695/96 only)
329 s16 temp11[8]; /* 0: remote input
330 * 1: remote low limit
331 * 2: remote high limit
332 * 3: remote offset (except max6646, max6657/58/59,
333 * and max6695/96)
334 * 4: local input
335 * 5: remote 2 input (max6695/96 only)
336 * 6: remote 2 low limit (max6695/96 only)
337 * 7: remote 2 high limit (max6695/96 only)
339 u8 temp_hyst;
340 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
344 * Support functions
348 * The ADM1032 supports PEC but not on write byte transactions, so we need
349 * to explicitly ask for a transaction without PEC.
351 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
353 return i2c_smbus_xfer(client->adapter, client->addr,
354 client->flags & ~I2C_CLIENT_PEC,
355 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
359 * It is assumed that client->update_lock is held (unless we are in
360 * detection or initialization steps). This matters when PEC is enabled,
361 * because we don't want the address pointer to change between the write
362 * byte and the read byte transactions.
364 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
366 int err;
368 if (client->flags & I2C_CLIENT_PEC) {
369 err = adm1032_write_byte(client, reg);
370 if (err >= 0)
371 err = i2c_smbus_read_byte(client);
372 } else
373 err = i2c_smbus_read_byte_data(client, reg);
375 if (err < 0) {
376 dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
377 reg, err);
378 return err;
380 *value = err;
382 return 0;
385 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
387 int err;
388 u8 oldh, newh, l;
391 * There is a trick here. We have to read two registers to have the
392 * sensor temperature, but we have to beware a conversion could occur
393 * between the readings. The datasheet says we should either use
394 * the one-shot conversion register, which we don't want to do
395 * (disables hardware monitoring) or monitor the busy bit, which is
396 * impossible (we can't read the values and monitor that bit at the
397 * exact same time). So the solution used here is to read the high
398 * byte once, then the low byte, then the high byte again. If the new
399 * high byte matches the old one, then we have a valid reading. Else
400 * we have to read the low byte again, and now we believe we have a
401 * correct reading.
403 if ((err = lm90_read_reg(client, regh, &oldh))
404 || (err = lm90_read_reg(client, regl, &l))
405 || (err = lm90_read_reg(client, regh, &newh)))
406 return err;
407 if (oldh != newh) {
408 err = lm90_read_reg(client, regl, &l);
409 if (err)
410 return err;
412 *value = (newh << 8) | l;
414 return 0;
418 * client->update_lock must be held when calling this function (unless we are
419 * in detection or initialization steps), and while a remote channel other
420 * than channel 0 is selected. Also, calling code must make sure to re-select
421 * external channel 0 before releasing the lock. This is necessary because
422 * various registers have different meanings as a result of selecting a
423 * non-default remote channel.
425 static inline void lm90_select_remote_channel(struct i2c_client *client,
426 struct lm90_data *data,
427 int channel)
429 u8 config;
431 if (data->kind == max6696) {
432 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
433 config &= ~0x08;
434 if (channel)
435 config |= 0x08;
436 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
437 config);
442 * Set conversion rate.
443 * client->update_lock must be held when calling this function (unless we are
444 * in detection or initialization steps).
446 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
447 unsigned int interval)
449 int i;
450 unsigned int update_interval;
452 /* Shift calculations to avoid rounding errors */
453 interval <<= 6;
455 /* find the nearest update rate */
456 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
457 i < data->max_convrate; i++, update_interval >>= 1)
458 if (interval >= update_interval * 3 / 4)
459 break;
461 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
462 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
465 static struct lm90_data *lm90_update_device(struct device *dev)
467 struct i2c_client *client = to_i2c_client(dev);
468 struct lm90_data *data = i2c_get_clientdata(client);
469 unsigned long next_update;
471 mutex_lock(&data->update_lock);
473 next_update = data->last_updated
474 + msecs_to_jiffies(data->update_interval) + 1;
475 if (time_after(jiffies, next_update) || !data->valid) {
476 u8 h, l;
477 u8 alarms;
479 dev_dbg(&client->dev, "Updating lm90 data.\n");
480 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]);
481 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]);
482 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]);
483 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]);
484 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
486 if (data->reg_local_ext) {
487 lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
488 data->reg_local_ext,
489 &data->temp11[4]);
490 } else {
491 if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
492 &h) == 0)
493 data->temp11[4] = h << 8;
495 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
496 LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]);
498 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
499 data->temp11[1] = h << 8;
500 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
501 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
502 &l) == 0)
503 data->temp11[1] |= l;
505 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
506 data->temp11[2] = h << 8;
507 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
508 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
509 &l) == 0)
510 data->temp11[2] |= l;
513 if (data->flags & LM90_HAVE_OFFSET) {
514 if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
515 &h) == 0
516 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
517 &l) == 0)
518 data->temp11[3] = (h << 8) | l;
520 if (data->flags & LM90_HAVE_EMERGENCY) {
521 lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
522 &data->temp8[4]);
523 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
524 &data->temp8[5]);
526 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
527 data->alarms = alarms; /* save as 16 bit value */
529 if (data->kind == max6696) {
530 lm90_select_remote_channel(client, data, 1);
531 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
532 &data->temp8[6]);
533 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
534 &data->temp8[7]);
535 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
536 LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]);
537 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
538 data->temp11[6] = h << 8;
539 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
540 data->temp11[7] = h << 8;
541 lm90_select_remote_channel(client, data, 0);
543 if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
544 &alarms))
545 data->alarms |= alarms << 8;
549 * Re-enable ALERT# output if it was originally enabled and
550 * relevant alarms are all clear
552 if ((data->config_orig & 0x80) == 0
553 && (data->alarms & data->alert_alarms) == 0) {
554 u8 config;
556 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
557 if (config & 0x80) {
558 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
559 i2c_smbus_write_byte_data(client,
560 LM90_REG_W_CONFIG1,
561 config & ~0x80);
565 data->last_updated = jiffies;
566 data->valid = 1;
569 mutex_unlock(&data->update_lock);
571 return data;
575 * Conversions
576 * For local temperatures and limits, critical limits and the hysteresis
577 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
578 * For remote temperatures and limits, it uses signed 11-bit values with
579 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
580 * Maxim chips use unsigned values.
583 static inline int temp_from_s8(s8 val)
585 return val * 1000;
588 static inline int temp_from_u8(u8 val)
590 return val * 1000;
593 static inline int temp_from_s16(s16 val)
595 return val / 32 * 125;
598 static inline int temp_from_u16(u16 val)
600 return val / 32 * 125;
603 static s8 temp_to_s8(long val)
605 if (val <= -128000)
606 return -128;
607 if (val >= 127000)
608 return 127;
609 if (val < 0)
610 return (val - 500) / 1000;
611 return (val + 500) / 1000;
614 static u8 temp_to_u8(long val)
616 if (val <= 0)
617 return 0;
618 if (val >= 255000)
619 return 255;
620 return (val + 500) / 1000;
623 static s16 temp_to_s16(long val)
625 if (val <= -128000)
626 return 0x8000;
627 if (val >= 127875)
628 return 0x7FE0;
629 if (val < 0)
630 return (val - 62) / 125 * 32;
631 return (val + 62) / 125 * 32;
634 static u8 hyst_to_reg(long val)
636 if (val <= 0)
637 return 0;
638 if (val >= 30500)
639 return 31;
640 return (val + 500) / 1000;
644 * ADT7461 in compatibility mode is almost identical to LM90 except that
645 * attempts to write values that are outside the range 0 < temp < 127 are
646 * treated as the boundary value.
648 * ADT7461 in "extended mode" operation uses unsigned integers offset by
649 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
651 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
653 if (data->flags & LM90_FLAG_ADT7461_EXT)
654 return (val - 64) * 1000;
655 else
656 return temp_from_s8(val);
659 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
661 if (data->flags & LM90_FLAG_ADT7461_EXT)
662 return (val - 0x4000) / 64 * 250;
663 else
664 return temp_from_s16(val);
667 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
669 if (data->flags & LM90_FLAG_ADT7461_EXT) {
670 if (val <= -64000)
671 return 0;
672 if (val >= 191000)
673 return 0xFF;
674 return (val + 500 + 64000) / 1000;
675 } else {
676 if (val <= 0)
677 return 0;
678 if (val >= 127000)
679 return 127;
680 return (val + 500) / 1000;
684 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
686 if (data->flags & LM90_FLAG_ADT7461_EXT) {
687 if (val <= -64000)
688 return 0;
689 if (val >= 191750)
690 return 0xFFC0;
691 return (val + 64000 + 125) / 250 * 64;
692 } else {
693 if (val <= 0)
694 return 0;
695 if (val >= 127750)
696 return 0x7FC0;
697 return (val + 125) / 250 * 64;
702 * Sysfs stuff
705 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
706 char *buf)
708 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
709 struct lm90_data *data = lm90_update_device(dev);
710 int temp;
712 if (data->kind == adt7461)
713 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
714 else if (data->kind == max6646)
715 temp = temp_from_u8(data->temp8[attr->index]);
716 else
717 temp = temp_from_s8(data->temp8[attr->index]);
719 /* +16 degrees offset for temp2 for the LM99 */
720 if (data->kind == lm99 && attr->index == 3)
721 temp += 16000;
723 return sprintf(buf, "%d\n", temp);
726 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
727 const char *buf, size_t count)
729 static const u8 reg[8] = {
730 LM90_REG_W_LOCAL_LOW,
731 LM90_REG_W_LOCAL_HIGH,
732 LM90_REG_W_LOCAL_CRIT,
733 LM90_REG_W_REMOTE_CRIT,
734 MAX6659_REG_W_LOCAL_EMERG,
735 MAX6659_REG_W_REMOTE_EMERG,
736 LM90_REG_W_REMOTE_CRIT,
737 MAX6659_REG_W_REMOTE_EMERG,
740 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
741 struct i2c_client *client = to_i2c_client(dev);
742 struct lm90_data *data = i2c_get_clientdata(client);
743 int nr = attr->index;
744 long val;
745 int err;
747 err = kstrtol(buf, 10, &val);
748 if (err < 0)
749 return err;
751 /* +16 degrees offset for temp2 for the LM99 */
752 if (data->kind == lm99 && attr->index == 3)
753 val -= 16000;
755 mutex_lock(&data->update_lock);
756 if (data->kind == adt7461)
757 data->temp8[nr] = temp_to_u8_adt7461(data, val);
758 else if (data->kind == max6646)
759 data->temp8[nr] = temp_to_u8(val);
760 else
761 data->temp8[nr] = temp_to_s8(val);
763 lm90_select_remote_channel(client, data, nr >= 6);
764 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
765 lm90_select_remote_channel(client, data, 0);
767 mutex_unlock(&data->update_lock);
768 return count;
771 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
772 char *buf)
774 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
775 struct lm90_data *data = lm90_update_device(dev);
776 int temp;
778 if (data->kind == adt7461)
779 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
780 else if (data->kind == max6646)
781 temp = temp_from_u16(data->temp11[attr->index]);
782 else
783 temp = temp_from_s16(data->temp11[attr->index]);
785 /* +16 degrees offset for temp2 for the LM99 */
786 if (data->kind == lm99 && attr->index <= 2)
787 temp += 16000;
789 return sprintf(buf, "%d\n", temp);
792 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
793 const char *buf, size_t count)
795 struct {
796 u8 high;
797 u8 low;
798 int channel;
799 } reg[5] = {
800 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
801 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
802 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
803 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
804 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
807 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
808 struct i2c_client *client = to_i2c_client(dev);
809 struct lm90_data *data = i2c_get_clientdata(client);
810 int nr = attr->nr;
811 int index = attr->index;
812 long val;
813 int err;
815 err = kstrtol(buf, 10, &val);
816 if (err < 0)
817 return err;
819 /* +16 degrees offset for temp2 for the LM99 */
820 if (data->kind == lm99 && index <= 2)
821 val -= 16000;
823 mutex_lock(&data->update_lock);
824 if (data->kind == adt7461)
825 data->temp11[index] = temp_to_u16_adt7461(data, val);
826 else if (data->kind == max6646)
827 data->temp11[index] = temp_to_u8(val) << 8;
828 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
829 data->temp11[index] = temp_to_s16(val);
830 else
831 data->temp11[index] = temp_to_s8(val) << 8;
833 lm90_select_remote_channel(client, data, reg[nr].channel);
834 i2c_smbus_write_byte_data(client, reg[nr].high,
835 data->temp11[index] >> 8);
836 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
837 i2c_smbus_write_byte_data(client, reg[nr].low,
838 data->temp11[index] & 0xff);
839 lm90_select_remote_channel(client, data, 0);
841 mutex_unlock(&data->update_lock);
842 return count;
845 static ssize_t show_temphyst(struct device *dev,
846 struct device_attribute *devattr,
847 char *buf)
849 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
850 struct lm90_data *data = lm90_update_device(dev);
851 int temp;
853 if (data->kind == adt7461)
854 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
855 else if (data->kind == max6646)
856 temp = temp_from_u8(data->temp8[attr->index]);
857 else
858 temp = temp_from_s8(data->temp8[attr->index]);
860 /* +16 degrees offset for temp2 for the LM99 */
861 if (data->kind == lm99 && attr->index == 3)
862 temp += 16000;
864 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
867 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
868 const char *buf, size_t count)
870 struct i2c_client *client = to_i2c_client(dev);
871 struct lm90_data *data = i2c_get_clientdata(client);
872 long val;
873 int err;
874 int temp;
876 err = kstrtol(buf, 10, &val);
877 if (err < 0)
878 return err;
880 mutex_lock(&data->update_lock);
881 if (data->kind == adt7461)
882 temp = temp_from_u8_adt7461(data, data->temp8[2]);
883 else if (data->kind == max6646)
884 temp = temp_from_u8(data->temp8[2]);
885 else
886 temp = temp_from_s8(data->temp8[2]);
888 data->temp_hyst = hyst_to_reg(temp - val);
889 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
890 data->temp_hyst);
891 mutex_unlock(&data->update_lock);
892 return count;
895 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
896 char *buf)
898 struct lm90_data *data = lm90_update_device(dev);
899 return sprintf(buf, "%d\n", data->alarms);
902 static ssize_t show_alarm(struct device *dev, struct device_attribute
903 *devattr, char *buf)
905 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
906 struct lm90_data *data = lm90_update_device(dev);
907 int bitnr = attr->index;
909 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
912 static ssize_t show_update_interval(struct device *dev,
913 struct device_attribute *attr, char *buf)
915 struct lm90_data *data = dev_get_drvdata(dev);
917 return sprintf(buf, "%u\n", data->update_interval);
920 static ssize_t set_update_interval(struct device *dev,
921 struct device_attribute *attr,
922 const char *buf, size_t count)
924 struct i2c_client *client = to_i2c_client(dev);
925 struct lm90_data *data = i2c_get_clientdata(client);
926 unsigned long val;
927 int err;
929 err = kstrtoul(buf, 10, &val);
930 if (err)
931 return err;
933 mutex_lock(&data->update_lock);
934 lm90_set_convrate(client, data, SENSORS_LIMIT(val, 0, 100000));
935 mutex_unlock(&data->update_lock);
937 return count;
940 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4);
941 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0);
942 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
943 set_temp8, 0);
944 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
945 set_temp11, 0, 1);
946 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
947 set_temp8, 1);
948 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
949 set_temp11, 1, 2);
950 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
951 set_temp8, 2);
952 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
953 set_temp8, 3);
954 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
955 set_temphyst, 2);
956 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3);
957 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
958 set_temp11, 2, 3);
960 /* Individual alarm files */
961 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
962 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
963 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
964 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
965 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
966 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
967 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
968 /* Raw alarm file for compatibility */
969 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
971 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
972 set_update_interval);
974 static struct attribute *lm90_attributes[] = {
975 &sensor_dev_attr_temp1_input.dev_attr.attr,
976 &sensor_dev_attr_temp2_input.dev_attr.attr,
977 &sensor_dev_attr_temp1_min.dev_attr.attr,
978 &sensor_dev_attr_temp2_min.dev_attr.attr,
979 &sensor_dev_attr_temp1_max.dev_attr.attr,
980 &sensor_dev_attr_temp2_max.dev_attr.attr,
981 &sensor_dev_attr_temp1_crit.dev_attr.attr,
982 &sensor_dev_attr_temp2_crit.dev_attr.attr,
983 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
984 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
986 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
987 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
988 &sensor_dev_attr_temp2_fault.dev_attr.attr,
989 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
990 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
991 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
992 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
993 &dev_attr_alarms.attr,
994 &dev_attr_update_interval.attr,
995 NULL
998 static const struct attribute_group lm90_group = {
999 .attrs = lm90_attributes,
1003 * Additional attributes for devices with emergency sensors
1005 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1006 set_temp8, 4);
1007 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1008 set_temp8, 5);
1009 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1010 NULL, 4);
1011 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1012 NULL, 5);
1014 static struct attribute *lm90_emergency_attributes[] = {
1015 &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1016 &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1017 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1018 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1019 NULL
1022 static const struct attribute_group lm90_emergency_group = {
1023 .attrs = lm90_emergency_attributes,
1026 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1027 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1029 static struct attribute *lm90_emergency_alarm_attributes[] = {
1030 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1031 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1032 NULL
1035 static const struct attribute_group lm90_emergency_alarm_group = {
1036 .attrs = lm90_emergency_alarm_attributes,
1040 * Additional attributes for devices with 3 temperature sensors
1042 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5);
1043 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1044 set_temp11, 3, 6);
1045 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1046 set_temp11, 4, 7);
1047 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1048 set_temp8, 6);
1049 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6);
1050 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1051 set_temp8, 7);
1052 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1053 NULL, 7);
1055 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1056 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1057 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1058 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1059 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1061 static struct attribute *lm90_temp3_attributes[] = {
1062 &sensor_dev_attr_temp3_input.dev_attr.attr,
1063 &sensor_dev_attr_temp3_min.dev_attr.attr,
1064 &sensor_dev_attr_temp3_max.dev_attr.attr,
1065 &sensor_dev_attr_temp3_crit.dev_attr.attr,
1066 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1067 &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1068 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1070 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1071 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1072 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1073 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1074 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1075 NULL
1078 static const struct attribute_group lm90_temp3_group = {
1079 .attrs = lm90_temp3_attributes,
1082 /* pec used for ADM1032 only */
1083 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1084 char *buf)
1086 struct i2c_client *client = to_i2c_client(dev);
1087 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1090 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1091 const char *buf, size_t count)
1093 struct i2c_client *client = to_i2c_client(dev);
1094 long val;
1095 int err;
1097 err = kstrtol(buf, 10, &val);
1098 if (err < 0)
1099 return err;
1101 switch (val) {
1102 case 0:
1103 client->flags &= ~I2C_CLIENT_PEC;
1104 break;
1105 case 1:
1106 client->flags |= I2C_CLIENT_PEC;
1107 break;
1108 default:
1109 return -EINVAL;
1112 return count;
1115 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1118 * Real code
1121 /* Return 0 if detection is successful, -ENODEV otherwise */
1122 static int lm90_detect(struct i2c_client *client,
1123 struct i2c_board_info *info)
1125 struct i2c_adapter *adapter = client->adapter;
1126 int address = client->addr;
1127 const char *name = NULL;
1128 int man_id, chip_id, config1, config2, convrate;
1130 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1131 return -ENODEV;
1133 /* detection and identification */
1134 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1135 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1136 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1137 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1138 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1139 return -ENODEV;
1141 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1142 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1143 if (config2 < 0)
1144 return -ENODEV;
1145 } else
1146 config2 = 0; /* Make compiler happy */
1148 if ((address == 0x4C || address == 0x4D)
1149 && man_id == 0x01) { /* National Semiconductor */
1150 if ((config1 & 0x2A) == 0x00
1151 && (config2 & 0xF8) == 0x00
1152 && convrate <= 0x09) {
1153 if (address == 0x4C
1154 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1155 name = "lm90";
1156 } else
1157 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1158 name = "lm99";
1159 dev_info(&adapter->dev,
1160 "Assuming LM99 chip at 0x%02x\n",
1161 address);
1162 dev_info(&adapter->dev,
1163 "If it is an LM89, instantiate it "
1164 "with the new_device sysfs "
1165 "interface\n");
1166 } else
1167 if (address == 0x4C
1168 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1169 name = "lm86";
1172 } else
1173 if ((address == 0x4C || address == 0x4D)
1174 && man_id == 0x41) { /* Analog Devices */
1175 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1176 && (config1 & 0x3F) == 0x00
1177 && convrate <= 0x0A) {
1178 name = "adm1032";
1180 * The ADM1032 supports PEC, but only if combined
1181 * transactions are not used.
1183 if (i2c_check_functionality(adapter,
1184 I2C_FUNC_SMBUS_BYTE))
1185 info->flags |= I2C_CLIENT_PEC;
1186 } else
1187 if (chip_id == 0x51 /* ADT7461 */
1188 && (config1 & 0x1B) == 0x00
1189 && convrate <= 0x0A) {
1190 name = "adt7461";
1191 } else
1192 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1193 && (config1 & 0x1B) == 0x00
1194 && convrate <= 0x0A) {
1195 name = "adt7461a";
1197 } else
1198 if (man_id == 0x4D) { /* Maxim */
1199 int emerg, emerg2, status2;
1202 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1203 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1204 * exists, both readings will reflect the same value. Otherwise,
1205 * the readings will be different.
1207 emerg = i2c_smbus_read_byte_data(client,
1208 MAX6659_REG_R_REMOTE_EMERG);
1209 man_id = i2c_smbus_read_byte_data(client,
1210 LM90_REG_R_MAN_ID);
1211 emerg2 = i2c_smbus_read_byte_data(client,
1212 MAX6659_REG_R_REMOTE_EMERG);
1213 status2 = i2c_smbus_read_byte_data(client,
1214 MAX6696_REG_R_STATUS2);
1215 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1216 return -ENODEV;
1219 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1220 * register. Reading from that address will return the last
1221 * read value, which in our case is those of the man_id
1222 * register. Likewise, the config1 register seems to lack a
1223 * low nibble, so the value will be those of the previous
1224 * read, so in our case those of the man_id register.
1225 * MAX6659 has a third set of upper temperature limit registers.
1226 * Those registers also return values on MAX6657 and MAX6658,
1227 * thus the only way to detect MAX6659 is by its address.
1228 * For this reason it will be mis-detected as MAX6657 if its
1229 * address is 0x4C.
1231 if (chip_id == man_id
1232 && (address == 0x4C || address == 0x4D || address == 0x4E)
1233 && (config1 & 0x1F) == (man_id & 0x0F)
1234 && convrate <= 0x09) {
1235 if (address == 0x4C)
1236 name = "max6657";
1237 else
1238 name = "max6659";
1239 } else
1241 * Even though MAX6695 and MAX6696 do not have a chip ID
1242 * register, reading it returns 0x01. Bit 4 of the config1
1243 * register is unused and should return zero when read. Bit 0 of
1244 * the status2 register is unused and should return zero when
1245 * read.
1247 * MAX6695 and MAX6696 have an additional set of temperature
1248 * limit registers. We can detect those chips by checking if
1249 * one of those registers exists.
1251 if (chip_id == 0x01
1252 && (config1 & 0x10) == 0x00
1253 && (status2 & 0x01) == 0x00
1254 && emerg == emerg2
1255 && convrate <= 0x07) {
1256 name = "max6696";
1257 } else
1259 * The chip_id register of the MAX6680 and MAX6681 holds the
1260 * revision of the chip. The lowest bit of the config1 register
1261 * is unused and should return zero when read, so should the
1262 * second to last bit of config1 (software reset).
1264 if (chip_id == 0x01
1265 && (config1 & 0x03) == 0x00
1266 && convrate <= 0x07) {
1267 name = "max6680";
1268 } else
1270 * The chip_id register of the MAX6646/6647/6649 holds the
1271 * revision of the chip. The lowest 6 bits of the config1
1272 * register are unused and should return zero when read.
1274 if (chip_id == 0x59
1275 && (config1 & 0x3f) == 0x00
1276 && convrate <= 0x07) {
1277 name = "max6646";
1279 } else
1280 if (address == 0x4C
1281 && man_id == 0x5C) { /* Winbond/Nuvoton */
1282 if ((config1 & 0x2A) == 0x00
1283 && (config2 & 0xF8) == 0x00) {
1284 if (chip_id == 0x01 /* W83L771W/G */
1285 && convrate <= 0x09) {
1286 name = "w83l771";
1287 } else
1288 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1289 && convrate <= 0x08) {
1290 name = "w83l771";
1293 } else
1294 if (address >= 0x48 && address <= 0x4F
1295 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1296 if (chip_id == 0x00
1297 && (config1 & 0x2A) == 0x00
1298 && (config2 & 0xFE) == 0x00
1299 && convrate <= 0x09) {
1300 name = "sa56004";
1302 } else
1303 if ((address == 0x4C || address == 0x4D)
1304 && man_id == 0x47) { /* GMT */
1305 if (chip_id == 0x01 /* G781 */
1306 && (config1 & 0x3F) == 0x00
1307 && convrate <= 0x08)
1308 name = "g781";
1311 if (!name) { /* identification failed */
1312 dev_dbg(&adapter->dev,
1313 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1314 "chip_id=0x%02X)\n", address, man_id, chip_id);
1315 return -ENODEV;
1318 strlcpy(info->type, name, I2C_NAME_SIZE);
1320 return 0;
1323 static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data)
1325 struct device *dev = &client->dev;
1327 if (data->flags & LM90_HAVE_TEMP3)
1328 sysfs_remove_group(&dev->kobj, &lm90_temp3_group);
1329 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1330 sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group);
1331 if (data->flags & LM90_HAVE_EMERGENCY)
1332 sysfs_remove_group(&dev->kobj, &lm90_emergency_group);
1333 if (data->flags & LM90_HAVE_OFFSET)
1334 device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr);
1335 device_remove_file(dev, &dev_attr_pec);
1336 sysfs_remove_group(&dev->kobj, &lm90_group);
1339 static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1341 /* Restore initial configuration */
1342 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1343 data->convrate_orig);
1344 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1345 data->config_orig);
1348 static void lm90_init_client(struct i2c_client *client)
1350 u8 config, convrate;
1351 struct lm90_data *data = i2c_get_clientdata(client);
1353 if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1354 dev_warn(&client->dev, "Failed to read convrate register!\n");
1355 convrate = LM90_DEF_CONVRATE_RVAL;
1357 data->convrate_orig = convrate;
1360 * Start the conversions.
1362 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1363 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1364 dev_warn(&client->dev, "Initialization failed!\n");
1365 return;
1367 data->config_orig = config;
1369 /* Check Temperature Range Select */
1370 if (data->kind == adt7461) {
1371 if (config & 0x04)
1372 data->flags |= LM90_FLAG_ADT7461_EXT;
1376 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1377 * 0.125 degree resolution) and range (0x08, extend range
1378 * to -64 degree) mode for the remote temperature sensor.
1380 if (data->kind == max6680)
1381 config |= 0x18;
1384 * Select external channel 0 for max6695/96
1386 if (data->kind == max6696)
1387 config &= ~0x08;
1389 config &= 0xBF; /* run */
1390 if (config != data->config_orig) /* Only write if changed */
1391 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1394 static int lm90_probe(struct i2c_client *client,
1395 const struct i2c_device_id *id)
1397 struct device *dev = &client->dev;
1398 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1399 struct lm90_data *data;
1400 int err;
1402 data = devm_kzalloc(&client->dev, sizeof(struct lm90_data), GFP_KERNEL);
1403 if (!data)
1404 return -ENOMEM;
1406 i2c_set_clientdata(client, data);
1407 mutex_init(&data->update_lock);
1409 /* Set the device type */
1410 data->kind = id->driver_data;
1411 if (data->kind == adm1032) {
1412 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1413 client->flags &= ~I2C_CLIENT_PEC;
1417 * Different devices have different alarm bits triggering the
1418 * ALERT# output
1420 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1422 /* Set chip capabilities */
1423 data->flags = lm90_params[data->kind].flags;
1424 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1426 /* Set maximum conversion rate */
1427 data->max_convrate = lm90_params[data->kind].max_convrate;
1429 /* Initialize the LM90 chip */
1430 lm90_init_client(client);
1432 /* Register sysfs hooks */
1433 err = sysfs_create_group(&dev->kobj, &lm90_group);
1434 if (err)
1435 goto exit_restore;
1436 if (client->flags & I2C_CLIENT_PEC) {
1437 err = device_create_file(dev, &dev_attr_pec);
1438 if (err)
1439 goto exit_remove_files;
1441 if (data->flags & LM90_HAVE_OFFSET) {
1442 err = device_create_file(dev,
1443 &sensor_dev_attr_temp2_offset.dev_attr);
1444 if (err)
1445 goto exit_remove_files;
1447 if (data->flags & LM90_HAVE_EMERGENCY) {
1448 err = sysfs_create_group(&dev->kobj, &lm90_emergency_group);
1449 if (err)
1450 goto exit_remove_files;
1452 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1453 err = sysfs_create_group(&dev->kobj,
1454 &lm90_emergency_alarm_group);
1455 if (err)
1456 goto exit_remove_files;
1458 if (data->flags & LM90_HAVE_TEMP3) {
1459 err = sysfs_create_group(&dev->kobj, &lm90_temp3_group);
1460 if (err)
1461 goto exit_remove_files;
1464 data->hwmon_dev = hwmon_device_register(dev);
1465 if (IS_ERR(data->hwmon_dev)) {
1466 err = PTR_ERR(data->hwmon_dev);
1467 goto exit_remove_files;
1470 return 0;
1472 exit_remove_files:
1473 lm90_remove_files(client, data);
1474 exit_restore:
1475 lm90_restore_conf(client, data);
1476 return err;
1479 static int lm90_remove(struct i2c_client *client)
1481 struct lm90_data *data = i2c_get_clientdata(client);
1483 hwmon_device_unregister(data->hwmon_dev);
1484 lm90_remove_files(client, data);
1485 lm90_restore_conf(client, data);
1487 return 0;
1490 static void lm90_alert(struct i2c_client *client, unsigned int flag)
1492 struct lm90_data *data = i2c_get_clientdata(client);
1493 u8 config, alarms, alarms2 = 0;
1495 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
1497 if (data->kind == max6696)
1498 lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2);
1500 if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) {
1501 dev_info(&client->dev, "Everything OK\n");
1502 } else {
1503 if (alarms & 0x61)
1504 dev_warn(&client->dev,
1505 "temp%d out of range, please check!\n", 1);
1506 if (alarms & 0x1a)
1507 dev_warn(&client->dev,
1508 "temp%d out of range, please check!\n", 2);
1509 if (alarms & 0x04)
1510 dev_warn(&client->dev,
1511 "temp%d diode open, please check!\n", 2);
1513 if (alarms2 & 0x18)
1514 dev_warn(&client->dev,
1515 "temp%d out of range, please check!\n", 3);
1518 * Disable ALERT# output, because these chips don't implement
1519 * SMBus alert correctly; they should only hold the alert line
1520 * low briefly.
1522 if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1523 && (alarms & data->alert_alarms)) {
1524 dev_dbg(&client->dev, "Disabling ALERT#\n");
1525 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1526 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1527 config | 0x80);
1532 static struct i2c_driver lm90_driver = {
1533 .class = I2C_CLASS_HWMON,
1534 .driver = {
1535 .name = "lm90",
1537 .probe = lm90_probe,
1538 .remove = lm90_remove,
1539 .alert = lm90_alert,
1540 .id_table = lm90_id,
1541 .detect = lm90_detect,
1542 .address_list = normal_i2c,
1545 module_i2c_driver(lm90_driver);
1547 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
1548 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1549 MODULE_LICENSE("GPL");