2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.5"
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
45 MV_IO_BAR
= 2, /* offset 0x18: IO space */
46 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
48 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
52 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
53 MV_SATAHC0_REG_BASE
= 0x20000,
54 MV_FLASH_CTL
= 0x1046c,
55 MV_GPIO_PORT_CTL
= 0x104f0,
56 MV_RESET_CFG
= 0x180d8,
58 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
59 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
60 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
61 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
63 MV_USE_Q_DEPTH
= ATA_DEF_QUEUE
,
66 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
68 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
69 * CRPB needs alignment on a 256B boundary. Size == 256B
70 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
71 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
73 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
74 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
76 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
77 MV_PORT_PRIV_DMA_SZ
= (MV_CRQB_Q_SZ
+ MV_CRPB_Q_SZ
+ MV_SG_TBL_SZ
),
80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
86 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
87 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
88 MV_COMMON_FLAGS
= (ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
89 ATA_FLAG_SATA_RESET
| ATA_FLAG_MMIO
),
90 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
92 CRQB_FLAG_READ
= (1 << 0),
94 CRQB_CMD_ADDR_SHIFT
= 8,
95 CRQB_CMD_CS
= (0x2 << 11),
96 CRQB_CMD_LAST
= (1 << 15),
98 CRPB_FLAG_STATUS_SHIFT
= 8,
100 EPRD_FLAG_END_OF_TBL
= (1 << 31),
102 /* PCI interface registers */
104 PCI_COMMAND_OFS
= 0xc00,
106 PCI_MAIN_CMD_STS_OFS
= 0xd30,
107 STOP_PCI_MASTER
= (1 << 2),
108 PCI_MASTER_EMPTY
= (1 << 3),
109 GLOB_SFT_RST
= (1 << 4),
112 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
113 MV_PCI_DISC_TIMER
= 0xd04,
114 MV_PCI_MSI_TRIGGER
= 0xc38,
115 MV_PCI_SERR_MASK
= 0xc28,
116 MV_PCI_XBAR_TMOUT
= 0x1d04,
117 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
118 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
119 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
120 MV_PCI_ERR_COMMAND
= 0x1d50,
122 PCI_IRQ_CAUSE_OFS
= 0x1d58,
123 PCI_IRQ_MASK_OFS
= 0x1d5c,
124 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
126 HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
127 HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
128 PORT0_ERR
= (1 << 0), /* shift by port # */
129 PORT0_DONE
= (1 << 1), /* shift by port # */
130 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
131 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
133 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
134 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
135 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
136 GPIO_INT
= (1 << 22),
137 SELF_INT
= (1 << 23),
138 TWSI_INT
= (1 << 24),
139 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
140 HC_MAIN_MASKED_IRQS
= (TRAN_LO_DONE
| TRAN_HI_DONE
|
141 PORTS_0_7_COAL_DONE
| GPIO_INT
| TWSI_INT
|
144 /* SATAHC registers */
147 HC_IRQ_CAUSE_OFS
= 0x14,
148 CRPB_DMA_DONE
= (1 << 0), /* shift by port # */
149 HC_IRQ_COAL
= (1 << 4), /* IRQ coalescing */
150 DEV_IRQ
= (1 << 8), /* shift by port # */
152 /* Shadow block registers */
154 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
157 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
158 SATA_ACTIVE_OFS
= 0x350,
165 SATA_INTERFACE_CTL
= 0x050,
167 MV_M2_PREAMP_MASK
= 0x7e0,
171 EDMA_CFG_Q_DEPTH
= 0, /* queueing disabled */
172 EDMA_CFG_NCQ
= (1 << 5),
173 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
174 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
175 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
177 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
178 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
179 EDMA_ERR_D_PAR
= (1 << 0),
180 EDMA_ERR_PRD_PAR
= (1 << 1),
181 EDMA_ERR_DEV
= (1 << 2),
182 EDMA_ERR_DEV_DCON
= (1 << 3),
183 EDMA_ERR_DEV_CON
= (1 << 4),
184 EDMA_ERR_SERR
= (1 << 5),
185 EDMA_ERR_SELF_DIS
= (1 << 7),
186 EDMA_ERR_BIST_ASYNC
= (1 << 8),
187 EDMA_ERR_CRBQ_PAR
= (1 << 9),
188 EDMA_ERR_CRPB_PAR
= (1 << 10),
189 EDMA_ERR_INTRL_PAR
= (1 << 11),
190 EDMA_ERR_IORDY
= (1 << 12),
191 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13),
192 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15),
193 EDMA_ERR_LNK_DATA_RX
= (0xf << 17),
194 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21),
195 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26),
196 EDMA_ERR_TRANS_PROTO
= (1 << 31),
197 EDMA_ERR_FATAL
= (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
198 EDMA_ERR_DEV_DCON
| EDMA_ERR_CRBQ_PAR
|
199 EDMA_ERR_CRPB_PAR
| EDMA_ERR_INTRL_PAR
|
200 EDMA_ERR_IORDY
| EDMA_ERR_LNK_CTRL_RX_2
|
201 EDMA_ERR_LNK_DATA_RX
|
202 EDMA_ERR_LNK_DATA_TX
|
203 EDMA_ERR_TRANS_PROTO
),
205 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
206 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
208 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
209 EDMA_REQ_Q_PTR_SHIFT
= 5,
211 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
212 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
213 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
214 EDMA_RSP_Q_PTR_SHIFT
= 3,
221 EDMA_IORDY_TMOUT
= 0x34,
224 /* Host private flags (hp_flags) */
225 MV_HP_FLAG_MSI
= (1 << 0),
226 MV_HP_ERRATA_50XXB0
= (1 << 1),
227 MV_HP_ERRATA_50XXB2
= (1 << 2),
228 MV_HP_ERRATA_60X1B2
= (1 << 3),
229 MV_HP_ERRATA_60X1C0
= (1 << 4),
230 MV_HP_50XX
= (1 << 5),
232 /* Port private flags (pp_flags) */
233 MV_PP_FLAG_EDMA_EN
= (1 << 0),
234 MV_PP_FLAG_EDMA_DS_ACT
= (1 << 1),
237 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
238 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
241 /* Our DMA boundary is determined by an ePRD being unable to handle
242 * anything larger than 64KB
244 MV_DMA_BOUNDARY
= 0xffffU
,
246 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
248 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
259 /* Command ReQuest Block: 32B */
267 /* Command ResPonse Block: 8B */
274 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
282 struct mv_port_priv
{
283 struct mv_crqb
*crqb
;
285 struct mv_crpb
*crpb
;
287 struct mv_sg
*sg_tbl
;
288 dma_addr_t sg_tbl_dma
;
290 unsigned req_producer
; /* cp of req_in_ptr */
291 unsigned rsp_consumer
; /* cp of rsp_out_ptr */
295 struct mv_port_signal
{
302 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
304 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
305 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
307 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
309 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
310 void (*reset_bus
)(struct pci_dev
*pdev
, void __iomem
*mmio
);
313 struct mv_host_priv
{
315 struct mv_port_signal signal
[8];
316 const struct mv_hw_ops
*ops
;
319 static void mv_irq_clear(struct ata_port
*ap
);
320 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
321 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
322 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
323 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
324 static void mv_phy_reset(struct ata_port
*ap
);
325 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
);
326 static void mv_host_stop(struct ata_host_set
*host_set
);
327 static int mv_port_start(struct ata_port
*ap
);
328 static void mv_port_stop(struct ata_port
*ap
);
329 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
330 static int mv_qc_issue(struct ata_queued_cmd
*qc
);
331 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
,
332 struct pt_regs
*regs
);
333 static void mv_eng_timeout(struct ata_port
*ap
);
334 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
336 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
338 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
339 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
341 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
343 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
344 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
346 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
348 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
349 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
351 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
353 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
354 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
355 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
356 unsigned int port_no
);
357 static void mv_stop_and_reset(struct ata_port
*ap
);
359 static struct scsi_host_template mv_sht
= {
360 .module
= THIS_MODULE
,
362 .ioctl
= ata_scsi_ioctl
,
363 .queuecommand
= ata_scsi_queuecmd
,
364 .eh_strategy_handler
= ata_scsi_error
,
365 .can_queue
= MV_USE_Q_DEPTH
,
366 .this_id
= ATA_SHT_THIS_ID
,
367 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
368 .max_sectors
= ATA_MAX_SECTORS
,
369 .cmd_per_lun
= ATA_SHT_CMD_PER_LUN
,
370 .emulated
= ATA_SHT_EMULATED
,
371 .use_clustering
= ATA_SHT_USE_CLUSTERING
,
372 .proc_name
= DRV_NAME
,
373 .dma_boundary
= MV_DMA_BOUNDARY
,
374 .slave_configure
= ata_scsi_slave_config
,
375 .bios_param
= ata_std_bios_param
,
379 static const struct ata_port_operations mv5_ops
= {
380 .port_disable
= ata_port_disable
,
382 .tf_load
= ata_tf_load
,
383 .tf_read
= ata_tf_read
,
384 .check_status
= ata_check_status
,
385 .exec_command
= ata_exec_command
,
386 .dev_select
= ata_std_dev_select
,
388 .phy_reset
= mv_phy_reset
,
390 .qc_prep
= mv_qc_prep
,
391 .qc_issue
= mv_qc_issue
,
393 .eng_timeout
= mv_eng_timeout
,
395 .irq_handler
= mv_interrupt
,
396 .irq_clear
= mv_irq_clear
,
398 .scr_read
= mv5_scr_read
,
399 .scr_write
= mv5_scr_write
,
401 .port_start
= mv_port_start
,
402 .port_stop
= mv_port_stop
,
403 .host_stop
= mv_host_stop
,
406 static const struct ata_port_operations mv6_ops
= {
407 .port_disable
= ata_port_disable
,
409 .tf_load
= ata_tf_load
,
410 .tf_read
= ata_tf_read
,
411 .check_status
= ata_check_status
,
412 .exec_command
= ata_exec_command
,
413 .dev_select
= ata_std_dev_select
,
415 .phy_reset
= mv_phy_reset
,
417 .qc_prep
= mv_qc_prep
,
418 .qc_issue
= mv_qc_issue
,
420 .eng_timeout
= mv_eng_timeout
,
422 .irq_handler
= mv_interrupt
,
423 .irq_clear
= mv_irq_clear
,
425 .scr_read
= mv_scr_read
,
426 .scr_write
= mv_scr_write
,
428 .port_start
= mv_port_start
,
429 .port_stop
= mv_port_stop
,
430 .host_stop
= mv_host_stop
,
433 static struct ata_port_info mv_port_info
[] = {
436 .host_flags
= MV_COMMON_FLAGS
,
437 .pio_mask
= 0x1f, /* pio0-4 */
438 .udma_mask
= 0x7f, /* udma0-6 */
439 .port_ops
= &mv5_ops
,
443 .host_flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
444 .pio_mask
= 0x1f, /* pio0-4 */
445 .udma_mask
= 0x7f, /* udma0-6 */
446 .port_ops
= &mv5_ops
,
450 .host_flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
451 .pio_mask
= 0x1f, /* pio0-4 */
452 .udma_mask
= 0x7f, /* udma0-6 */
453 .port_ops
= &mv5_ops
,
457 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
458 .pio_mask
= 0x1f, /* pio0-4 */
459 .udma_mask
= 0x7f, /* udma0-6 */
460 .port_ops
= &mv6_ops
,
464 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
466 .pio_mask
= 0x1f, /* pio0-4 */
467 .udma_mask
= 0x7f, /* udma0-6 */
468 .port_ops
= &mv6_ops
,
472 static const struct pci_device_id mv_pci_tbl
[] = {
473 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5040), 0, 0, chip_504x
},
474 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5041), 0, 0, chip_504x
},
475 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5080), 0, 0, chip_5080
},
476 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5081), 0, 0, chip_508x
},
478 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6040), 0, 0, chip_604x
},
479 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6041), 0, 0, chip_604x
},
480 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6080), 0, 0, chip_608x
},
481 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6081), 0, 0, chip_608x
},
483 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2
, 0x0241), 0, 0, chip_604x
},
484 {} /* terminate list */
487 static struct pci_driver mv_pci_driver
= {
489 .id_table
= mv_pci_tbl
,
490 .probe
= mv_init_one
,
491 .remove
= ata_pci_remove_one
,
494 static const struct mv_hw_ops mv5xxx_ops
= {
495 .phy_errata
= mv5_phy_errata
,
496 .enable_leds
= mv5_enable_leds
,
497 .read_preamp
= mv5_read_preamp
,
498 .reset_hc
= mv5_reset_hc
,
499 .reset_flash
= mv5_reset_flash
,
500 .reset_bus
= mv5_reset_bus
,
503 static const struct mv_hw_ops mv6xxx_ops
= {
504 .phy_errata
= mv6_phy_errata
,
505 .enable_leds
= mv6_enable_leds
,
506 .read_preamp
= mv6_read_preamp
,
507 .reset_hc
= mv6_reset_hc
,
508 .reset_flash
= mv6_reset_flash
,
509 .reset_bus
= mv_reset_pci_bus
,
516 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
519 (void) readl(addr
); /* flush to avoid PCI posted write */
522 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
524 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
527 static inline unsigned int mv_hc_from_port(unsigned int port
)
529 return port
>> MV_PORT_HC_SHIFT
;
532 static inline unsigned int mv_hardport_from_port(unsigned int port
)
534 return port
& MV_PORT_MASK
;
537 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
540 return mv_hc_base(base
, mv_hc_from_port(port
));
543 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
545 return mv_hc_base_from_port(base
, port
) +
546 MV_SATAHC_ARBTR_REG_SZ
+
547 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
550 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
552 return mv_port_base(ap
->host_set
->mmio_base
, ap
->port_no
);
555 static inline int mv_get_hc_count(unsigned long host_flags
)
557 return ((host_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
560 static void mv_irq_clear(struct ata_port
*ap
)
565 * mv_start_dma - Enable eDMA engine
566 * @base: port base address
567 * @pp: port private data
569 * Verify the local cache of the eDMA state is accurate with an
573 * Inherited from caller.
575 static void mv_start_dma(void __iomem
*base
, struct mv_port_priv
*pp
)
577 if (!(MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
)) {
578 writelfl(EDMA_EN
, base
+ EDMA_CMD_OFS
);
579 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
581 assert(EDMA_EN
& readl(base
+ EDMA_CMD_OFS
));
585 * mv_stop_dma - Disable eDMA engine
586 * @ap: ATA channel to manipulate
588 * Verify the local cache of the eDMA state is accurate with an
592 * Inherited from caller.
594 static void mv_stop_dma(struct ata_port
*ap
)
596 void __iomem
*port_mmio
= mv_ap_base(ap
);
597 struct mv_port_priv
*pp
= ap
->private_data
;
601 if (MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
) {
602 /* Disable EDMA if active. The disable bit auto clears.
604 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
605 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
607 assert(!(EDMA_EN
& readl(port_mmio
+ EDMA_CMD_OFS
)));
610 /* now properly wait for the eDMA to stop */
611 for (i
= 1000; i
> 0; i
--) {
612 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
613 if (!(EDMA_EN
& reg
)) {
620 printk(KERN_ERR
"ata%u: Unable to stop eDMA\n", ap
->id
);
621 /* FIXME: Consider doing a reset here to recover */
626 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
629 for (b
= 0; b
< bytes
; ) {
630 DPRINTK("%p: ", start
+ b
);
631 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
632 printk("%08x ",readl(start
+ b
));
640 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
645 for (b
= 0; b
< bytes
; ) {
646 DPRINTK("%02x: ", b
);
647 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
648 (void) pci_read_config_dword(pdev
,b
,&dw
);
656 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
657 struct pci_dev
*pdev
)
660 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
661 port
>> MV_PORT_HC_SHIFT
);
662 void __iomem
*port_base
;
663 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
666 start_hc
= start_port
= 0;
667 num_ports
= 8; /* shld be benign for 4 port devs */
670 start_hc
= port
>> MV_PORT_HC_SHIFT
;
672 num_ports
= num_hcs
= 1;
674 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
675 num_ports
> 1 ? num_ports
- 1 : start_port
);
678 DPRINTK("PCI config space regs:\n");
679 mv_dump_pci_cfg(pdev
, 0x68);
681 DPRINTK("PCI regs:\n");
682 mv_dump_mem(mmio_base
+0xc00, 0x3c);
683 mv_dump_mem(mmio_base
+0xd00, 0x34);
684 mv_dump_mem(mmio_base
+0xf00, 0x4);
685 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
686 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
687 hc_base
= mv_hc_base(mmio_base
, port
>> MV_PORT_HC_SHIFT
);
688 DPRINTK("HC regs (HC %i):\n", hc
);
689 mv_dump_mem(hc_base
, 0x1c);
691 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
692 port_base
= mv_port_base(mmio_base
, p
);
693 DPRINTK("EDMA regs (port %i):\n",p
);
694 mv_dump_mem(port_base
, 0x54);
695 DPRINTK("SATA regs (port %i):\n",p
);
696 mv_dump_mem(port_base
+0x300, 0x60);
701 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
709 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
712 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
721 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
723 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
725 if (0xffffffffU
!= ofs
) {
726 return readl(mv_ap_base(ap
) + ofs
);
732 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
734 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
736 if (0xffffffffU
!= ofs
) {
737 writelfl(val
, mv_ap_base(ap
) + ofs
);
742 * mv_host_stop - Host specific cleanup/stop routine.
743 * @host_set: host data structure
745 * Disable ints, cleanup host memory, call general purpose
749 * Inherited from caller.
751 static void mv_host_stop(struct ata_host_set
*host_set
)
753 struct mv_host_priv
*hpriv
= host_set
->private_data
;
754 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
756 if (hpriv
->hp_flags
& MV_HP_FLAG_MSI
) {
757 pci_disable_msi(pdev
);
762 ata_host_stop(host_set
);
765 static inline void mv_priv_free(struct mv_port_priv
*pp
, struct device
*dev
)
767 dma_free_coherent(dev
, MV_PORT_PRIV_DMA_SZ
, pp
->crpb
, pp
->crpb_dma
);
771 * mv_port_start - Port specific init/start routine.
772 * @ap: ATA channel to manipulate
774 * Allocate and point to DMA memory, init port private memory,
778 * Inherited from caller.
780 static int mv_port_start(struct ata_port
*ap
)
782 struct device
*dev
= ap
->host_set
->dev
;
783 struct mv_port_priv
*pp
;
784 void __iomem
*port_mmio
= mv_ap_base(ap
);
789 pp
= kmalloc(sizeof(*pp
), GFP_KERNEL
);
792 memset(pp
, 0, sizeof(*pp
));
794 mem
= dma_alloc_coherent(dev
, MV_PORT_PRIV_DMA_SZ
, &mem_dma
,
798 memset(mem
, 0, MV_PORT_PRIV_DMA_SZ
);
800 rc
= ata_pad_alloc(ap
, dev
);
804 /* First item in chunk of DMA memory:
805 * 32-slot command request table (CRQB), 32 bytes each in size
808 pp
->crqb_dma
= mem_dma
;
810 mem_dma
+= MV_CRQB_Q_SZ
;
813 * 32-slot command response table (CRPB), 8 bytes each in size
816 pp
->crpb_dma
= mem_dma
;
818 mem_dma
+= MV_CRPB_Q_SZ
;
821 * Table of scatter-gather descriptors (ePRD), 16 bytes each
824 pp
->sg_tbl_dma
= mem_dma
;
826 writelfl(EDMA_CFG_Q_DEPTH
| EDMA_CFG_RD_BRST_EXT
|
827 EDMA_CFG_WR_BUFF_LEN
, port_mmio
+ EDMA_CFG_OFS
);
829 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
830 writelfl(pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
,
831 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
833 writelfl(0, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
834 writelfl(0, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
836 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
837 writelfl(pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
,
838 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
840 pp
->req_producer
= pp
->rsp_consumer
= 0;
842 /* Don't turn on EDMA here...do it before DMA commands only. Else
843 * we'll be unable to send non-data, PIO, etc due to restricted access
846 ap
->private_data
= pp
;
850 mv_priv_free(pp
, dev
);
858 * mv_port_stop - Port specific cleanup/stop routine.
859 * @ap: ATA channel to manipulate
861 * Stop DMA, cleanup port memory.
864 * This routine uses the host_set lock to protect the DMA stop.
866 static void mv_port_stop(struct ata_port
*ap
)
868 struct device
*dev
= ap
->host_set
->dev
;
869 struct mv_port_priv
*pp
= ap
->private_data
;
872 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
874 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
876 ap
->private_data
= NULL
;
877 ata_pad_free(ap
, dev
);
878 mv_priv_free(pp
, dev
);
883 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
884 * @qc: queued command whose SG list to source from
886 * Populate the SG list and mark the last entry.
889 * Inherited from caller.
891 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
893 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
895 struct scatterlist
*sg
;
897 ata_for_each_sg(sg
, qc
) {
899 u32 sg_len
, len
, offset
;
901 addr
= sg_dma_address(sg
);
902 sg_len
= sg_dma_len(sg
);
905 offset
= addr
& MV_DMA_BOUNDARY
;
907 if ((offset
+ sg_len
) > 0x10000)
908 len
= 0x10000 - offset
;
910 pp
->sg_tbl
[i
].addr
= cpu_to_le32(addr
& 0xffffffff);
911 pp
->sg_tbl
[i
].addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
912 pp
->sg_tbl
[i
].flags_size
= cpu_to_le32(len
);
917 if (!sg_len
&& ata_sg_is_last(sg
, qc
))
918 pp
->sg_tbl
[i
].flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
925 static inline unsigned mv_inc_q_index(unsigned *index
)
927 *index
= (*index
+ 1) & MV_MAX_Q_DEPTH_MASK
;
931 static inline void mv_crqb_pack_cmd(u16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
933 *cmdw
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
934 (last
? CRQB_CMD_LAST
: 0);
938 * mv_qc_prep - Host specific command preparation.
939 * @qc: queued command to prepare
941 * This routine simply redirects to the general purpose routine
942 * if command is not DMA. Else, it handles prep of the CRQB
943 * (command request block), does some sanity checking, and calls
944 * the SG load routine.
947 * Inherited from caller.
949 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
951 struct ata_port
*ap
= qc
->ap
;
952 struct mv_port_priv
*pp
= ap
->private_data
;
954 struct ata_taskfile
*tf
;
957 if (ATA_PROT_DMA
!= qc
->tf
.protocol
) {
961 /* the req producer index should be the same as we remember it */
962 assert(((readl(mv_ap_base(qc
->ap
) + EDMA_REQ_Q_IN_PTR_OFS
) >>
963 EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) ==
966 /* Fill in command request block
968 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
969 flags
|= CRQB_FLAG_READ
;
971 assert(MV_MAX_Q_DEPTH
> qc
->tag
);
972 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
974 pp
->crqb
[pp
->req_producer
].sg_addr
=
975 cpu_to_le32(pp
->sg_tbl_dma
& 0xffffffff);
976 pp
->crqb
[pp
->req_producer
].sg_addr_hi
=
977 cpu_to_le32((pp
->sg_tbl_dma
>> 16) >> 16);
978 pp
->crqb
[pp
->req_producer
].ctrl_flags
= cpu_to_le16(flags
);
980 cw
= &pp
->crqb
[pp
->req_producer
].ata_cmd
[0];
983 /* Sadly, the CRQB cannot accomodate all registers--there are
984 * only 11 bytes...so we must pick and choose required
985 * registers based on the command. So, we drop feature and
986 * hob_feature for [RW] DMA commands, but they are needed for
987 * NCQ. NCQ will drop hob_nsect.
989 switch (tf
->command
) {
991 case ATA_CMD_READ_EXT
:
993 case ATA_CMD_WRITE_EXT
:
994 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
996 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
997 case ATA_CMD_FPDMA_READ
:
998 case ATA_CMD_FPDMA_WRITE
:
999 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1000 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1002 #endif /* FIXME: remove this line when NCQ added */
1004 /* The only other commands EDMA supports in non-queued and
1005 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1006 * of which are defined/used by Linux. If we get here, this
1007 * driver needs work.
1009 * FIXME: modify libata to give qc_prep a return value and
1010 * return error here.
1012 BUG_ON(tf
->command
);
1015 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1016 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1017 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1018 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1019 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1020 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1021 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1022 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1023 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1025 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
)) {
1032 * mv_qc_issue - Initiate a command to the host
1033 * @qc: queued command to start
1035 * This routine simply redirects to the general purpose routine
1036 * if command is not DMA. Else, it sanity checks our local
1037 * caches of the request producer/consumer indices then enables
1038 * DMA and bumps the request producer index.
1041 * Inherited from caller.
1043 static int mv_qc_issue(struct ata_queued_cmd
*qc
)
1045 void __iomem
*port_mmio
= mv_ap_base(qc
->ap
);
1046 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1049 if (ATA_PROT_DMA
!= qc
->tf
.protocol
) {
1050 /* We're about to send a non-EDMA capable command to the
1051 * port. Turn off EDMA so there won't be problems accessing
1052 * shadow block, etc registers.
1054 mv_stop_dma(qc
->ap
);
1055 return ata_qc_issue_prot(qc
);
1058 in_ptr
= readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1060 /* the req producer index should be the same as we remember it */
1061 assert(((in_ptr
>> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) ==
1063 /* until we do queuing, the queue should be empty at this point */
1064 assert(((in_ptr
>> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) ==
1065 ((readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
) >>
1066 EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
));
1068 mv_inc_q_index(&pp
->req_producer
); /* now incr producer index */
1070 mv_start_dma(port_mmio
, pp
);
1072 /* and write the request in pointer to kick the EDMA to life */
1073 in_ptr
&= EDMA_REQ_Q_BASE_LO_MASK
;
1074 in_ptr
|= pp
->req_producer
<< EDMA_REQ_Q_PTR_SHIFT
;
1075 writelfl(in_ptr
, port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1081 * mv_get_crpb_status - get status from most recently completed cmd
1082 * @ap: ATA channel to manipulate
1084 * This routine is for use when the port is in DMA mode, when it
1085 * will be using the CRPB (command response block) method of
1086 * returning command completion information. We assert indices
1087 * are good, grab status, and bump the response consumer index to
1088 * prove that we're up to date.
1091 * Inherited from caller.
1093 static u8
mv_get_crpb_status(struct ata_port
*ap
)
1095 void __iomem
*port_mmio
= mv_ap_base(ap
);
1096 struct mv_port_priv
*pp
= ap
->private_data
;
1099 out_ptr
= readl(port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1101 /* the response consumer index should be the same as we remember it */
1102 assert(((out_ptr
>> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) ==
1105 /* increment our consumer index... */
1106 pp
->rsp_consumer
= mv_inc_q_index(&pp
->rsp_consumer
);
1108 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1109 assert(((readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
) >>
1110 EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) ==
1113 /* write out our inc'd consumer index so EDMA knows we're caught up */
1114 out_ptr
&= EDMA_RSP_Q_BASE_LO_MASK
;
1115 out_ptr
|= pp
->rsp_consumer
<< EDMA_RSP_Q_PTR_SHIFT
;
1116 writelfl(out_ptr
, port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1118 /* Return ATA status register for completed CRPB */
1119 return (pp
->crpb
[pp
->rsp_consumer
].flags
>> CRPB_FLAG_STATUS_SHIFT
);
1123 * mv_err_intr - Handle error interrupts on the port
1124 * @ap: ATA channel to manipulate
1126 * In most cases, just clear the interrupt and move on. However,
1127 * some cases require an eDMA reset, which is done right before
1128 * the COMRESET in mv_phy_reset(). The SERR case requires a
1129 * clear of pending errors in the SATA SERROR register. Finally,
1130 * if the port disabled DMA, update our cached copy to match.
1133 * Inherited from caller.
1135 static void mv_err_intr(struct ata_port
*ap
)
1137 void __iomem
*port_mmio
= mv_ap_base(ap
);
1138 u32 edma_err_cause
, serr
= 0;
1140 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1142 if (EDMA_ERR_SERR
& edma_err_cause
) {
1143 serr
= scr_read(ap
, SCR_ERROR
);
1144 scr_write_flush(ap
, SCR_ERROR
, serr
);
1146 if (EDMA_ERR_SELF_DIS
& edma_err_cause
) {
1147 struct mv_port_priv
*pp
= ap
->private_data
;
1148 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1150 DPRINTK(KERN_ERR
"ata%u: port error; EDMA err cause: 0x%08x "
1151 "SERR: 0x%08x\n", ap
->id
, edma_err_cause
, serr
);
1153 /* Clear EDMA now that SERR cleanup done */
1154 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1156 /* check for fatal here and recover if needed */
1157 if (EDMA_ERR_FATAL
& edma_err_cause
) {
1158 mv_stop_and_reset(ap
);
1163 * mv_host_intr - Handle all interrupts on the given host controller
1164 * @host_set: host specific structure
1165 * @relevant: port error bits relevant to this host controller
1166 * @hc: which host controller we're to look at
1168 * Read then write clear the HC interrupt status then walk each
1169 * port connected to the HC and see if it needs servicing. Port
1170 * success ints are reported in the HC interrupt status reg, the
1171 * port error ints are reported in the higher level main
1172 * interrupt status register and thus are passed in via the
1173 * 'relevant' argument.
1176 * Inherited from caller.
1178 static void mv_host_intr(struct ata_host_set
*host_set
, u32 relevant
,
1181 void __iomem
*mmio
= host_set
->mmio_base
;
1182 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1183 struct ata_port
*ap
;
1184 struct ata_queued_cmd
*qc
;
1186 int shift
, port
, port0
, hard_port
, handled
;
1187 unsigned int err_mask
;
1193 port0
= MV_PORTS_PER_HC
;
1196 /* we'll need the HC success int register in most cases */
1197 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1199 writelfl(~hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1202 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1203 hc
,relevant
,hc_irq_cause
);
1205 for (port
= port0
; port
< port0
+ MV_PORTS_PER_HC
; port
++) {
1206 ap
= host_set
->ports
[port
];
1207 hard_port
= port
& MV_PORT_MASK
; /* range 0-3 */
1208 handled
= 0; /* ensure ata_status is set if handled++ */
1210 if ((CRPB_DMA_DONE
<< hard_port
) & hc_irq_cause
) {
1211 /* new CRPB on the queue; just one at a time until NCQ
1213 ata_status
= mv_get_crpb_status(ap
);
1215 } else if ((DEV_IRQ
<< hard_port
) & hc_irq_cause
) {
1216 /* received ATA IRQ; read the status reg to clear INTRQ
1218 ata_status
= readb((void __iomem
*)
1219 ap
->ioaddr
.status_addr
);
1224 (ap
->flags
& (ATA_FLAG_PORT_DISABLED
| ATA_FLAG_NOINTR
)))
1227 err_mask
= ac_err_mask(ata_status
);
1229 shift
= port
<< 1; /* (port * 2) */
1230 if (port
>= MV_PORTS_PER_HC
) {
1231 shift
++; /* skip bit 8 in the HC Main IRQ reg */
1233 if ((PORT0_ERR
<< shift
) & relevant
) {
1235 err_mask
|= AC_ERR_OTHER
;
1239 if (handled
&& ap
) {
1240 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
1242 VPRINTK("port %u IRQ found for qc, "
1243 "ata_status 0x%x\n", port
,ata_status
);
1244 /* mark qc status appropriately */
1245 if (!(qc
->tf
.ctl
& ATA_NIEN
))
1246 ata_qc_complete(qc
, err_mask
);
1256 * @dev_instance: private data; in this case the host structure
1259 * Read the read only register to determine if any host
1260 * controllers have pending interrupts. If so, call lower level
1261 * routine to handle. Also check for PCI errors which are only
1265 * This routine holds the host_set lock while processing pending
1268 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
,
1269 struct pt_regs
*regs
)
1271 struct ata_host_set
*host_set
= dev_instance
;
1272 unsigned int hc
, handled
= 0, n_hcs
;
1273 void __iomem
*mmio
= host_set
->mmio_base
;
1276 irq_stat
= readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
);
1278 /* check the cases where we either have nothing pending or have read
1279 * a bogus register value which can indicate HW removal or PCI fault
1281 if (!irq_stat
|| (0xffffffffU
== irq_stat
)) {
1285 n_hcs
= mv_get_hc_count(host_set
->ports
[0]->flags
);
1286 spin_lock(&host_set
->lock
);
1288 for (hc
= 0; hc
< n_hcs
; hc
++) {
1289 u32 relevant
= irq_stat
& (HC0_IRQ_PEND
<< (hc
* HC_SHIFT
));
1291 mv_host_intr(host_set
, relevant
, hc
);
1295 if (PCI_ERR
& irq_stat
) {
1296 printk(KERN_ERR DRV_NAME
": PCI ERROR; PCI IRQ cause=0x%08x\n",
1297 readl(mmio
+ PCI_IRQ_CAUSE_OFS
));
1299 DPRINTK("All regs @ PCI error\n");
1300 mv_dump_all_regs(mmio
, -1, to_pci_dev(host_set
->dev
));
1302 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
1305 spin_unlock(&host_set
->lock
);
1307 return IRQ_RETVAL(handled
);
1310 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
1312 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
1313 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
1315 return hc_mmio
+ ofs
;
1318 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
1322 switch (sc_reg_in
) {
1326 ofs
= sc_reg_in
* sizeof(u32
);
1335 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
1337 void __iomem
*mmio
= mv5_phy_base(ap
->host_set
->mmio_base
, ap
->port_no
);
1338 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1340 if (ofs
!= 0xffffffffU
)
1341 return readl(mmio
+ ofs
);
1346 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1348 void __iomem
*mmio
= mv5_phy_base(ap
->host_set
->mmio_base
, ap
->port_no
);
1349 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1351 if (ofs
!= 0xffffffffU
)
1352 writelfl(val
, mmio
+ ofs
);
1355 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1360 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
1362 early_5080
= (pdev
->device
== 0x5080) && (rev_id
== 0);
1365 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1367 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1370 mv_reset_pci_bus(pdev
, mmio
);
1373 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1375 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL
);
1378 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1381 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
1384 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1386 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
1387 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
1390 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1394 writel(0, mmio
+ MV_GPIO_PORT_CTL
);
1396 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1398 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1400 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1403 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1406 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
1407 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1409 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
1412 tmp
= readl(phy_mmio
+ MV5_LT_MODE
);
1414 writel(tmp
, phy_mmio
+ MV5_LT_MODE
);
1416 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
1419 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
1422 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1424 tmp
|= hpriv
->signal
[port
].pre
;
1425 tmp
|= hpriv
->signal
[port
].amps
;
1426 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
1431 #define ZERO(reg) writel(0, port_mmio + (reg))
1432 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1435 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1437 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
1439 mv_channel_reset(hpriv
, mmio
, port
);
1441 ZERO(0x028); /* command */
1442 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
1443 ZERO(0x004); /* timer */
1444 ZERO(0x008); /* irq err cause */
1445 ZERO(0x00c); /* irq err mask */
1446 ZERO(0x010); /* rq bah */
1447 ZERO(0x014); /* rq inp */
1448 ZERO(0x018); /* rq outp */
1449 ZERO(0x01c); /* respq bah */
1450 ZERO(0x024); /* respq outp */
1451 ZERO(0x020); /* respq inp */
1452 ZERO(0x02c); /* test control */
1453 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
1457 #define ZERO(reg) writel(0, hc_mmio + (reg))
1458 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1461 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1469 tmp
= readl(hc_mmio
+ 0x20);
1472 writel(tmp
, hc_mmio
+ 0x20);
1476 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1479 unsigned int hc
, port
;
1481 for (hc
= 0; hc
< n_hc
; hc
++) {
1482 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
1483 mv5_reset_hc_port(hpriv
, mmio
,
1484 (hc
* MV_PORTS_PER_HC
) + port
);
1486 mv5_reset_one_hc(hpriv
, mmio
, hc
);
1493 #define ZERO(reg) writel(0, mmio + (reg))
1494 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1498 tmp
= readl(mmio
+ MV_PCI_MODE
);
1500 writel(tmp
, mmio
+ MV_PCI_MODE
);
1502 ZERO(MV_PCI_DISC_TIMER
);
1503 ZERO(MV_PCI_MSI_TRIGGER
);
1504 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
1505 ZERO(HC_MAIN_IRQ_MASK_OFS
);
1506 ZERO(MV_PCI_SERR_MASK
);
1507 ZERO(PCI_IRQ_CAUSE_OFS
);
1508 ZERO(PCI_IRQ_MASK_OFS
);
1509 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
1510 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
1511 ZERO(MV_PCI_ERR_ATTRIBUTE
);
1512 ZERO(MV_PCI_ERR_COMMAND
);
1516 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1520 mv5_reset_flash(hpriv
, mmio
);
1522 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL
);
1524 tmp
|= (1 << 5) | (1 << 6);
1525 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL
);
1529 * mv6_reset_hc - Perform the 6xxx global soft reset
1530 * @mmio: base address of the HBA
1532 * This routine only applies to 6xxx parts.
1535 * Inherited from caller.
1537 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1540 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
1544 /* Following procedure defined in PCI "main command and status
1548 writel(t
| STOP_PCI_MASTER
, reg
);
1550 for (i
= 0; i
< 1000; i
++) {
1553 if (PCI_MASTER_EMPTY
& t
) {
1557 if (!(PCI_MASTER_EMPTY
& t
)) {
1558 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
1566 writel(t
| GLOB_SFT_RST
, reg
);
1569 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
1571 if (!(GLOB_SFT_RST
& t
)) {
1572 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
1577 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1580 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
1583 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
1585 if (GLOB_SFT_RST
& t
) {
1586 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
1593 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1596 void __iomem
*port_mmio
;
1599 tmp
= readl(mmio
+ MV_RESET_CFG
);
1600 if ((tmp
& (1 << 0)) == 0) {
1601 hpriv
->signal
[idx
].amps
= 0x7 << 8;
1602 hpriv
->signal
[idx
].pre
= 0x1 << 5;
1606 port_mmio
= mv_port_base(mmio
, idx
);
1607 tmp
= readl(port_mmio
+ PHY_MODE2
);
1609 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
1610 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
1613 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1615 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL
);
1618 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1621 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1623 u32 hp_flags
= hpriv
->hp_flags
;
1625 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1627 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1630 if (fix_phy_mode2
) {
1631 m2
= readl(port_mmio
+ PHY_MODE2
);
1634 writel(m2
, port_mmio
+ PHY_MODE2
);
1638 m2
= readl(port_mmio
+ PHY_MODE2
);
1639 m2
&= ~((1 << 16) | (1 << 31));
1640 writel(m2
, port_mmio
+ PHY_MODE2
);
1645 /* who knows what this magic does */
1646 tmp
= readl(port_mmio
+ PHY_MODE3
);
1649 writel(tmp
, port_mmio
+ PHY_MODE3
);
1651 if (fix_phy_mode4
) {
1654 m4
= readl(port_mmio
+ PHY_MODE4
);
1656 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1657 tmp
= readl(port_mmio
+ 0x310);
1659 m4
= (m4
& ~(1 << 1)) | (1 << 0);
1661 writel(m4
, port_mmio
+ PHY_MODE4
);
1663 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1664 writel(tmp
, port_mmio
+ 0x310);
1667 /* Revert values of pre-emphasis and signal amps to the saved ones */
1668 m2
= readl(port_mmio
+ PHY_MODE2
);
1670 m2
&= ~MV_M2_PREAMP_MASK
;
1671 m2
|= hpriv
->signal
[port
].amps
;
1672 m2
|= hpriv
->signal
[port
].pre
;
1675 writel(m2
, port_mmio
+ PHY_MODE2
);
1678 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1679 unsigned int port_no
)
1681 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
1683 writelfl(ATA_RST
, port_mmio
+ EDMA_CMD_OFS
);
1685 if (IS_60XX(hpriv
)) {
1686 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
1687 ifctl
|= (1 << 12) | (1 << 7);
1688 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
1691 udelay(25); /* allow reset propagation */
1693 /* Spec never mentions clearing the bit. Marvell's driver does
1694 * clear the bit, however.
1696 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
1698 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
1704 static void mv_stop_and_reset(struct ata_port
*ap
)
1706 struct mv_host_priv
*hpriv
= ap
->host_set
->private_data
;
1707 void __iomem
*mmio
= ap
->host_set
->mmio_base
;
1711 mv_channel_reset(hpriv
, mmio
, ap
->port_no
);
1713 __mv_phy_reset(ap
, 0);
1716 static inline void __msleep(unsigned int msec
, int can_sleep
)
1725 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1726 * @ap: ATA channel to manipulate
1728 * Part of this is taken from __sata_phy_reset and modified to
1729 * not sleep since this routine gets called from interrupt level.
1732 * Inherited from caller. This is coded to safe to call at
1733 * interrupt level, i.e. it does not sleep.
1735 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
)
1737 struct mv_port_priv
*pp
= ap
->private_data
;
1738 struct mv_host_priv
*hpriv
= ap
->host_set
->private_data
;
1739 void __iomem
*port_mmio
= mv_ap_base(ap
);
1740 struct ata_taskfile tf
;
1741 struct ata_device
*dev
= &ap
->device
[0];
1742 unsigned long timeout
;
1746 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap
->port_no
, port_mmio
);
1748 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1749 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1750 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1752 /* Issue COMRESET via SControl */
1754 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1755 __msleep(1, can_sleep
);
1757 scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1758 __msleep(20, can_sleep
);
1760 timeout
= jiffies
+ msecs_to_jiffies(200);
1762 sstatus
= scr_read(ap
, SCR_STATUS
) & 0x3;
1763 if ((sstatus
== 3) || (sstatus
== 0))
1766 __msleep(1, can_sleep
);
1767 } while (time_before(jiffies
, timeout
));
1769 /* work around errata */
1770 if (IS_60XX(hpriv
) &&
1771 (sstatus
!= 0x0) && (sstatus
!= 0x113) && (sstatus
!= 0x123) &&
1773 goto comreset_retry
;
1775 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1776 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1777 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1779 if (sata_dev_present(ap
)) {
1782 printk(KERN_INFO
"ata%u: no device found (phy stat %08x)\n",
1783 ap
->id
, scr_read(ap
, SCR_STATUS
));
1784 ata_port_disable(ap
);
1787 ap
->cbl
= ATA_CBL_SATA
;
1789 /* even after SStatus reflects that device is ready,
1790 * it seems to take a while for link to be fully
1791 * established (and thus Status no longer 0x80/0x7F),
1792 * so we poll a bit for that, here.
1796 u8 drv_stat
= ata_check_status(ap
);
1797 if ((drv_stat
!= 0x80) && (drv_stat
!= 0x7f))
1799 __msleep(500, can_sleep
);
1804 tf
.lbah
= readb((void __iomem
*) ap
->ioaddr
.lbah_addr
);
1805 tf
.lbam
= readb((void __iomem
*) ap
->ioaddr
.lbam_addr
);
1806 tf
.lbal
= readb((void __iomem
*) ap
->ioaddr
.lbal_addr
);
1807 tf
.nsect
= readb((void __iomem
*) ap
->ioaddr
.nsect_addr
);
1809 dev
->class = ata_dev_classify(&tf
);
1810 if (!ata_dev_present(dev
)) {
1811 VPRINTK("Port disabled post-sig: No device present.\n");
1812 ata_port_disable(ap
);
1815 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1817 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1822 static void mv_phy_reset(struct ata_port
*ap
)
1824 __mv_phy_reset(ap
, 1);
1828 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1829 * @ap: ATA channel to manipulate
1831 * Intent is to clear all pending error conditions, reset the
1832 * chip/bus, fail the command, and move on.
1835 * This routine holds the host_set lock while failing the command.
1837 static void mv_eng_timeout(struct ata_port
*ap
)
1839 struct ata_queued_cmd
*qc
;
1840 unsigned long flags
;
1842 printk(KERN_ERR
"ata%u: Entering mv_eng_timeout\n",ap
->id
);
1843 DPRINTK("All regs @ start of eng_timeout\n");
1844 mv_dump_all_regs(ap
->host_set
->mmio_base
, ap
->port_no
,
1845 to_pci_dev(ap
->host_set
->dev
));
1847 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
1848 printk(KERN_ERR
"mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1849 ap
->host_set
->mmio_base
, ap
, qc
, qc
->scsicmd
,
1850 &qc
->scsicmd
->cmnd
);
1853 mv_stop_and_reset(ap
);
1856 printk(KERN_ERR
"ata%u: BUG: timeout without command\n",
1859 /* hack alert! We cannot use the supplied completion
1860 * function from inside the ->eh_strategy_handler() thread.
1861 * libata is the only user of ->eh_strategy_handler() in
1862 * any kernel, so the default scsi_done() assumes it is
1863 * not being called from the SCSI EH.
1865 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1866 qc
->scsidone
= scsi_finish_command
;
1867 ata_qc_complete(qc
, AC_ERR_OTHER
);
1868 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1873 * mv_port_init - Perform some early initialization on a single port.
1874 * @port: libata data structure storing shadow register addresses
1875 * @port_mmio: base address of the port
1877 * Initialize shadow register mmio addresses, clear outstanding
1878 * interrupts on the port, and unmask interrupts for the future
1879 * start of the port.
1882 * Inherited from caller.
1884 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
1886 unsigned long shd_base
= (unsigned long) port_mmio
+ SHD_BLK_OFS
;
1889 /* PIO related setup
1891 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
1893 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
1894 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
1895 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
1896 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
1897 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
1898 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
1900 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
1901 /* special case: control/altstatus doesn't have ATA_REG_ address */
1902 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
1905 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= 0;
1907 /* Clear any currently outstanding port interrupt conditions */
1908 serr_ofs
= mv_scr_offset(SCR_ERROR
);
1909 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
1910 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1912 /* unmask all EDMA error interrupts */
1913 writelfl(~0, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
1915 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1916 readl(port_mmio
+ EDMA_CFG_OFS
),
1917 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
1918 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
1921 static int mv_chip_id(struct pci_dev
*pdev
, struct mv_host_priv
*hpriv
,
1922 unsigned int board_idx
)
1925 u32 hp_flags
= hpriv
->hp_flags
;
1927 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
1931 hpriv
->ops
= &mv5xxx_ops
;
1932 hp_flags
|= MV_HP_50XX
;
1936 hp_flags
|= MV_HP_ERRATA_50XXB0
;
1939 hp_flags
|= MV_HP_ERRATA_50XXB2
;
1942 dev_printk(KERN_WARNING
, &pdev
->dev
,
1943 "Applying 50XXB2 workarounds to unknown rev\n");
1944 hp_flags
|= MV_HP_ERRATA_50XXB2
;
1951 hpriv
->ops
= &mv5xxx_ops
;
1952 hp_flags
|= MV_HP_50XX
;
1956 hp_flags
|= MV_HP_ERRATA_50XXB0
;
1959 hp_flags
|= MV_HP_ERRATA_50XXB2
;
1962 dev_printk(KERN_WARNING
, &pdev
->dev
,
1963 "Applying B2 workarounds to unknown rev\n");
1964 hp_flags
|= MV_HP_ERRATA_50XXB2
;
1971 hpriv
->ops
= &mv6xxx_ops
;
1975 hp_flags
|= MV_HP_ERRATA_60X1B2
;
1978 hp_flags
|= MV_HP_ERRATA_60X1C0
;
1981 dev_printk(KERN_WARNING
, &pdev
->dev
,
1982 "Applying B2 workarounds to unknown rev\n");
1983 hp_flags
|= MV_HP_ERRATA_60X1B2
;
1989 printk(KERN_ERR DRV_NAME
": BUG: invalid board index %u\n", board_idx
);
1993 hpriv
->hp_flags
= hp_flags
;
1999 * mv_init_host - Perform some early initialization of the host.
2000 * @pdev: host PCI device
2001 * @probe_ent: early data struct representing the host
2003 * If possible, do an early global reset of the host. Then do
2004 * our port init and clear/unmask all/relevant host interrupts.
2007 * Inherited from caller.
2009 static int mv_init_host(struct pci_dev
*pdev
, struct ata_probe_ent
*probe_ent
,
2010 unsigned int board_idx
)
2012 int rc
= 0, n_hc
, port
, hc
;
2013 void __iomem
*mmio
= probe_ent
->mmio_base
;
2014 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2016 /* global interrupt mask */
2017 writel(0, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2019 rc
= mv_chip_id(pdev
, hpriv
, board_idx
);
2023 n_hc
= mv_get_hc_count(probe_ent
->host_flags
);
2024 probe_ent
->n_ports
= MV_PORTS_PER_HC
* n_hc
;
2026 for (port
= 0; port
< probe_ent
->n_ports
; port
++)
2027 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
2029 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
2033 hpriv
->ops
->reset_flash(hpriv
, mmio
);
2034 hpriv
->ops
->reset_bus(pdev
, mmio
);
2035 hpriv
->ops
->enable_leds(hpriv
, mmio
);
2037 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2038 if (IS_60XX(hpriv
)) {
2039 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2041 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
2043 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
2046 hpriv
->ops
->phy_errata(hpriv
, mmio
, port
);
2049 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2050 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2051 mv_port_init(&probe_ent
->port
[port
], port_mmio
);
2054 for (hc
= 0; hc
< n_hc
; hc
++) {
2055 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2057 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2058 "(before clear)=0x%08x\n", hc
,
2059 readl(hc_mmio
+ HC_CFG_OFS
),
2060 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
2062 /* Clear any currently outstanding hc interrupt conditions */
2063 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2066 /* Clear any currently outstanding host interrupt conditions */
2067 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
2069 /* and unmask interrupt generation for host regs */
2070 writelfl(PCI_UNMASK_ALL_IRQS
, mmio
+ PCI_IRQ_MASK_OFS
);
2071 writelfl(~HC_MAIN_MASKED_IRQS
, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2073 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2074 "PCI int cause/mask=0x%08x/0x%08x\n",
2075 readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
),
2076 readl(mmio
+ HC_MAIN_IRQ_MASK_OFS
),
2077 readl(mmio
+ PCI_IRQ_CAUSE_OFS
),
2078 readl(mmio
+ PCI_IRQ_MASK_OFS
));
2085 * mv_print_info - Dump key info to kernel log for perusal.
2086 * @probe_ent: early data struct representing the host
2088 * FIXME: complete this.
2091 * Inherited from caller.
2093 static void mv_print_info(struct ata_probe_ent
*probe_ent
)
2095 struct pci_dev
*pdev
= to_pci_dev(probe_ent
->dev
);
2096 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2100 /* Use this to determine the HW stepping of the chip so we know
2101 * what errata to workaround
2103 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
2105 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
2108 else if (scc
== 0x01)
2113 dev_printk(KERN_INFO
, &pdev
->dev
,
2114 "%u slots %u ports %s mode IRQ via %s\n",
2115 (unsigned)MV_MAX_Q_DEPTH
, probe_ent
->n_ports
,
2116 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
2120 * mv_init_one - handle a positive probe of a Marvell host
2121 * @pdev: PCI device found
2122 * @ent: PCI device ID entry for the matched host
2125 * Inherited from caller.
2127 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2129 static int printed_version
= 0;
2130 struct ata_probe_ent
*probe_ent
= NULL
;
2131 struct mv_host_priv
*hpriv
;
2132 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
2133 void __iomem
*mmio_base
;
2134 int pci_dev_busy
= 0, rc
;
2136 if (!printed_version
++)
2137 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
2139 rc
= pci_enable_device(pdev
);
2144 rc
= pci_request_regions(pdev
, DRV_NAME
);
2150 probe_ent
= kmalloc(sizeof(*probe_ent
), GFP_KERNEL
);
2151 if (probe_ent
== NULL
) {
2153 goto err_out_regions
;
2156 memset(probe_ent
, 0, sizeof(*probe_ent
));
2157 probe_ent
->dev
= pci_dev_to_dev(pdev
);
2158 INIT_LIST_HEAD(&probe_ent
->node
);
2160 mmio_base
= pci_iomap(pdev
, MV_PRIMARY_BAR
, 0);
2161 if (mmio_base
== NULL
) {
2163 goto err_out_free_ent
;
2166 hpriv
= kmalloc(sizeof(*hpriv
), GFP_KERNEL
);
2169 goto err_out_iounmap
;
2171 memset(hpriv
, 0, sizeof(*hpriv
));
2173 probe_ent
->sht
= mv_port_info
[board_idx
].sht
;
2174 probe_ent
->host_flags
= mv_port_info
[board_idx
].host_flags
;
2175 probe_ent
->pio_mask
= mv_port_info
[board_idx
].pio_mask
;
2176 probe_ent
->udma_mask
= mv_port_info
[board_idx
].udma_mask
;
2177 probe_ent
->port_ops
= mv_port_info
[board_idx
].port_ops
;
2179 probe_ent
->irq
= pdev
->irq
;
2180 probe_ent
->irq_flags
= SA_SHIRQ
;
2181 probe_ent
->mmio_base
= mmio_base
;
2182 probe_ent
->private_data
= hpriv
;
2184 /* initialize adapter */
2185 rc
= mv_init_host(pdev
, probe_ent
, board_idx
);
2190 /* Enable interrupts */
2191 if (pci_enable_msi(pdev
) == 0) {
2192 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
2197 mv_dump_pci_cfg(pdev
, 0x68);
2198 mv_print_info(probe_ent
);
2200 if (ata_device_add(probe_ent
) == 0) {
2201 rc
= -ENODEV
; /* No devices discovered */
2202 goto err_out_dev_add
;
2209 if (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) {
2210 pci_disable_msi(pdev
);
2217 pci_iounmap(pdev
, mmio_base
);
2221 pci_release_regions(pdev
);
2223 if (!pci_dev_busy
) {
2224 pci_disable_device(pdev
);
2230 static int __init
mv_init(void)
2232 return pci_module_init(&mv_pci_driver
);
2235 static void __exit
mv_exit(void)
2237 pci_unregister_driver(&mv_pci_driver
);
2240 MODULE_AUTHOR("Brett Russ");
2241 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2242 MODULE_LICENSE("GPL");
2243 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
2244 MODULE_VERSION(DRV_VERSION
);
2246 module_init(mv_init
);
2247 module_exit(mv_exit
);