Merge 5.0-rc6 into driver-core-next
[linux/fpc-iii.git] / arch / arm / mm / fault-armv.c
blob4d75dae5ac96256447ebec5b0460831595dcfdbe
1 /*
2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15 #include <linux/vmalloc.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/gfp.h>
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
26 #include "mm.h"
28 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
30 #if __LINUX_ARM_ARCH__ < 6
32 * We take the easy way out of this problem - we make the
33 * PTE uncacheable. However, we leave the write buffer on.
35 * Note that the pte lock held when calling update_mmu_cache must also
36 * guard the pte (somewhere else in the same mm) that we modify here.
37 * Therefore those configurations which might call adjust_pte (those
38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 unsigned long pfn, pte_t *ptep)
43 pte_t entry = *ptep;
44 int ret;
47 * If this page is present, it's actually being shared.
49 ret = pte_present(entry);
52 * If this page isn't present, or is already setup to
53 * fault (ie, is old), we can safely ignore any issues.
55 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 flush_cache_page(vma, address, pfn);
57 outer_flush_range((pfn << PAGE_SHIFT),
58 (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 pte_val(entry) &= ~L_PTE_MT_MASK;
60 pte_val(entry) |= shared_pte_mask;
61 set_pte_at(vma->vm_mm, address, ptep, entry);
62 flush_tlb_page(vma, address);
65 return ret;
68 #if USE_SPLIT_PTE_PTLOCKS
70 * If we are using split PTE locks, then we need to take the page
71 * lock here. Otherwise we are using shared mm->page_table_lock
72 * which is already locked, thus cannot take it.
74 static inline void do_pte_lock(spinlock_t *ptl)
77 * Use nested version here to indicate that we are already
78 * holding one similar spinlock.
80 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
83 static inline void do_pte_unlock(spinlock_t *ptl)
85 spin_unlock(ptl);
87 #else /* !USE_SPLIT_PTE_PTLOCKS */
88 static inline void do_pte_lock(spinlock_t *ptl) {}
89 static inline void do_pte_unlock(spinlock_t *ptl) {}
90 #endif /* USE_SPLIT_PTE_PTLOCKS */
92 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
93 unsigned long pfn)
95 spinlock_t *ptl;
96 pgd_t *pgd;
97 pud_t *pud;
98 pmd_t *pmd;
99 pte_t *pte;
100 int ret;
102 pgd = pgd_offset(vma->vm_mm, address);
103 if (pgd_none_or_clear_bad(pgd))
104 return 0;
106 pud = pud_offset(pgd, address);
107 if (pud_none_or_clear_bad(pud))
108 return 0;
110 pmd = pmd_offset(pud, address);
111 if (pmd_none_or_clear_bad(pmd))
112 return 0;
115 * This is called while another page table is mapped, so we
116 * must use the nested version. This also means we need to
117 * open-code the spin-locking.
119 ptl = pte_lockptr(vma->vm_mm, pmd);
120 pte = pte_offset_map(pmd, address);
121 do_pte_lock(ptl);
123 ret = do_adjust_pte(vma, address, pfn, pte);
125 do_pte_unlock(ptl);
126 pte_unmap(pte);
128 return ret;
131 static void
132 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133 unsigned long addr, pte_t *ptep, unsigned long pfn)
135 struct mm_struct *mm = vma->vm_mm;
136 struct vm_area_struct *mpnt;
137 unsigned long offset;
138 pgoff_t pgoff;
139 int aliases = 0;
141 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
144 * If we have any shared mappings that are in the same mm
145 * space, then we need to handle them specially to maintain
146 * cache coherency.
148 flush_dcache_mmap_lock(mapping);
149 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
151 * If this VMA is not in our MM, we can ignore it.
152 * Note that we intentionally mask out the VMA
153 * that we are fixing up.
155 if (mpnt->vm_mm != mm || mpnt == vma)
156 continue;
157 if (!(mpnt->vm_flags & VM_MAYSHARE))
158 continue;
159 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
160 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162 flush_dcache_mmap_unlock(mapping);
163 if (aliases)
164 do_adjust_pte(vma, addr, pfn, ptep);
168 * Take care of architecture specific things when placing a new PTE into
169 * a page table, or changing an existing PTE. Basically, there are two
170 * things that we need to take care of:
172 * 1. If PG_dcache_clean is not set for the page, we need to ensure
173 * that any cache entries for the kernels virtual memory
174 * range are written back to the page.
175 * 2. If we have multiple shared mappings of the same space in
176 * an object, we need to deal with the cache aliasing issues.
178 * Note that the pte lock will be held.
180 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
181 pte_t *ptep)
183 unsigned long pfn = pte_pfn(*ptep);
184 struct address_space *mapping;
185 struct page *page;
187 if (!pfn_valid(pfn))
188 return;
191 * The zero page is never written to, so never has any dirty
192 * cache lines, and therefore never needs to be flushed.
194 page = pfn_to_page(pfn);
195 if (page == ZERO_PAGE(0))
196 return;
198 mapping = page_mapping_file(page);
199 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
200 __flush_dcache_page(mapping, page);
201 if (mapping) {
202 if (cache_is_vivt())
203 make_coherent(mapping, vma, addr, ptep, pfn);
204 else if (vma->vm_flags & VM_EXEC)
205 __flush_icache_all();
208 #endif /* __LINUX_ARM_ARCH__ < 6 */
211 * Check whether the write buffer has physical address aliasing
212 * issues. If it has, we need to avoid them for the case where
213 * we have several shared mappings of the same object in user
214 * space.
216 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218 register unsigned long zero = 0, one = 1, val;
220 local_irq_disable();
221 mb();
222 *p1 = one;
223 mb();
224 *p2 = zero;
225 mb();
226 val = *p1;
227 mb();
228 local_irq_enable();
229 return val != zero;
232 void __init check_writebuffer_bugs(void)
234 struct page *page;
235 const char *reason;
236 unsigned long v = 1;
238 pr_info("CPU: Testing write buffer coherency: ");
240 page = alloc_page(GFP_KERNEL);
241 if (page) {
242 unsigned long *p1, *p2;
243 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
244 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246 p1 = vmap(&page, 1, VM_IOREMAP, prot);
247 p2 = vmap(&page, 1, VM_IOREMAP, prot);
249 if (p1 && p2) {
250 v = check_writebuffer(p1, p2);
251 reason = "enabling work-around";
252 } else {
253 reason = "unable to map memory\n";
256 vunmap(p1);
257 vunmap(p2);
258 put_page(page);
259 } else {
260 reason = "unable to grab page\n";
263 if (v) {
264 pr_cont("failed, %s\n", reason);
265 shared_pte_mask = L_PTE_MT_UNCACHED;
266 } else {
267 pr_cont("ok\n");