Merge 5.0-rc6 into driver-core-next
[linux/fpc-iii.git] / mm / memory.c
blobe11ca9dd823f20c60dd0c20ff7567e34a84a1dda
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 static int __init disable_randmaps(char *s)
121 randomize_va_space = 0;
122 return 1;
124 __setup("norandmaps", disable_randmaps);
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
129 unsigned long highest_memmap_pfn __read_mostly;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init init_zero_pfn(void)
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
139 core_initcall(init_zero_pfn);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct *mm)
146 int i;
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
154 current->rss_stat.events = 0;
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 struct task_struct *task = current;
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct *task)
187 #endif /* SPLIT_RSS_COUNTING */
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 unsigned long addr)
196 pgtable_t token = pmd_pgtable(*pmd);
197 pmd_clear(pmd);
198 pte_free_tlb(tlb, token, addr);
199 mm_dec_nr_ptes(tlb->mm);
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 unsigned long addr, unsigned long end,
204 unsigned long floor, unsigned long ceiling)
206 pmd_t *pmd;
207 unsigned long next;
208 unsigned long start;
210 start = addr;
211 pmd = pmd_offset(pud, addr);
212 do {
213 next = pmd_addr_end(addr, end);
214 if (pmd_none_or_clear_bad(pmd))
215 continue;
216 free_pte_range(tlb, pmd, addr);
217 } while (pmd++, addr = next, addr != end);
219 start &= PUD_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PUD_MASK;
224 if (!ceiling)
225 return;
227 if (end - 1 > ceiling - 1)
228 return;
230 pmd = pmd_offset(pud, start);
231 pud_clear(pud);
232 pmd_free_tlb(tlb, pmd, start);
233 mm_dec_nr_pmds(tlb->mm);
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
240 pud_t *pud;
241 unsigned long next;
242 unsigned long start;
244 start = addr;
245 pud = pud_offset(p4d, addr);
246 do {
247 next = pud_addr_end(addr, end);
248 if (pud_none_or_clear_bad(pud))
249 continue;
250 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251 } while (pud++, addr = next, addr != end);
253 start &= P4D_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= P4D_MASK;
258 if (!ceiling)
259 return;
261 if (end - 1 > ceiling - 1)
262 return;
264 pud = pud_offset(p4d, start);
265 p4d_clear(p4d);
266 pud_free_tlb(tlb, pud, start);
267 mm_dec_nr_puds(tlb->mm);
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
274 p4d_t *p4d;
275 unsigned long next;
276 unsigned long start;
278 start = addr;
279 p4d = p4d_offset(pgd, addr);
280 do {
281 next = p4d_addr_end(addr, end);
282 if (p4d_none_or_clear_bad(p4d))
283 continue;
284 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 } while (p4d++, addr = next, addr != end);
287 start &= PGDIR_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= PGDIR_MASK;
292 if (!ceiling)
293 return;
295 if (end - 1 > ceiling - 1)
296 return;
298 p4d = p4d_offset(pgd, start);
299 pgd_clear(pgd);
300 p4d_free_tlb(tlb, p4d, start);
304 * This function frees user-level page tables of a process.
306 void free_pgd_range(struct mmu_gather *tlb,
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
310 pgd_t *pgd;
311 unsigned long next;
314 * The next few lines have given us lots of grief...
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359 pgd = pgd_offset(tlb->mm, addr);
360 do {
361 next = pgd_addr_end(addr, end);
362 if (pgd_none_or_clear_bad(pgd))
363 continue;
364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365 } while (pgd++, addr = next, addr != end);
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369 unsigned long floor, unsigned long ceiling)
371 while (vma) {
372 struct vm_area_struct *next = vma->vm_next;
373 unsigned long addr = vma->vm_start;
376 * Hide vma from rmap and truncate_pagecache before freeing
377 * pgtables
379 unlink_anon_vmas(vma);
380 unlink_file_vma(vma);
382 if (is_vm_hugetlb_page(vma)) {
383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384 floor, next ? next->vm_start : ceiling);
385 } else {
387 * Optimization: gather nearby vmas into one call down
389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390 && !is_vm_hugetlb_page(next)) {
391 vma = next;
392 next = vma->vm_next;
393 unlink_anon_vmas(vma);
394 unlink_file_vma(vma);
396 free_pgd_range(tlb, addr, vma->vm_end,
397 floor, next ? next->vm_start : ceiling);
399 vma = next;
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 spinlock_t *ptl;
406 pgtable_t new = pte_alloc_one(mm);
407 if (!new)
408 return -ENOMEM;
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 ptl = pmd_lock(mm, pmd);
426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
427 mm_inc_nr_ptes(mm);
428 pmd_populate(mm, pmd, new);
429 new = NULL;
431 spin_unlock(ptl);
432 if (new)
433 pte_free(mm, new);
434 return 0;
437 int __pte_alloc_kernel(pmd_t *pmd)
439 pte_t *new = pte_alloc_one_kernel(&init_mm);
440 if (!new)
441 return -ENOMEM;
443 smp_wmb(); /* See comment in __pte_alloc */
445 spin_lock(&init_mm.page_table_lock);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 pmd_populate_kernel(&init_mm, pmd, new);
448 new = NULL;
450 spin_unlock(&init_mm.page_table_lock);
451 if (new)
452 pte_free_kernel(&init_mm, new);
453 return 0;
456 static inline void init_rss_vec(int *rss)
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 int i;
465 if (current->mm == mm)
466 sync_mm_rss(mm);
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 p4d_t *p4d = p4d_offset(pgd, addr);
484 pud_t *pud = pud_offset(p4d, addr);
485 pmd_t *pmd = pmd_offset(pud, addr);
486 struct address_space *mapping;
487 pgoff_t index;
488 static unsigned long resume;
489 static unsigned long nr_shown;
490 static unsigned long nr_unshown;
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
496 if (nr_shown == 60) {
497 if (time_before(jiffies, resume)) {
498 nr_unshown++;
499 return;
501 if (nr_unshown) {
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
506 nr_shown = 0;
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
515 current->comm,
516 (long long)pte_val(pte), (long long)pmd_val(*pmd));
517 if (page)
518 dump_page(page, "bad pte");
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 vma->vm_file,
523 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 mapping ? mapping->a_ops->readpage : NULL);
526 dump_stack();
527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
540 * described below.
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 * And for normal mappings this is false.
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 pte_t pte, bool with_public_device)
575 unsigned long pfn = pte_pfn(pte);
577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578 if (likely(!pte_special(pte)))
579 goto check_pfn;
580 if (vma->vm_ops && vma->vm_ops->find_special_page)
581 return vma->vm_ops->find_special_page(vma, addr);
582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 return NULL;
584 if (is_zero_pfn(pfn))
585 return NULL;
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
593 * ...).
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
599 if (likely(pfn <= highest_memmap_pfn)) {
600 struct page *page = pfn_to_page(pfn);
602 if (is_device_public_page(page)) {
603 if (with_public_device)
604 return page;
605 return NULL;
609 if (pte_devmap(pte))
610 return NULL;
612 print_bad_pte(vma, addr, pte, NULL);
613 return NULL;
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
633 if (is_zero_pfn(pfn))
634 return NULL;
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
646 out:
647 return pfn_to_page(pfn);
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
654 unsigned long pfn = pmd_pfn(pmd);
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
676 if (pmd_devmap(pmd))
677 return NULL;
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
687 out:
688 return pfn_to_page(pfn);
690 #endif
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 unsigned long addr, int *rss)
703 unsigned long vm_flags = vma->vm_flags;
704 pte_t pte = *src_pte;
705 struct page *page;
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
709 swp_entry_t entry = pte_to_swp_entry(pte);
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
727 rss[mm_counter(page)]++;
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
732 * COW mappings require pages in both
733 * parent and child to be set to read.
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
771 goto out_set_pte;
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
784 * If it's a shared mapping, mark it clean in
785 * the child
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
794 page_dup_rmap(page, false);
795 rss[mm_counter(page)]++;
796 } else if (pte_devmap(pte)) {
797 page = pte_page(pte);
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 if (is_device_public_page(page)) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
811 out_set_pte:
812 set_pte_at(dst_mm, addr, dst_pte, pte);
813 return 0;
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 unsigned long addr, unsigned long end)
820 pte_t *orig_src_pte, *orig_dst_pte;
821 pte_t *src_pte, *dst_pte;
822 spinlock_t *src_ptl, *dst_ptl;
823 int progress = 0;
824 int rss[NR_MM_COUNTERS];
825 swp_entry_t entry = (swp_entry_t){0};
827 again:
828 init_rss_vec(rss);
830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831 if (!dst_pte)
832 return -ENOMEM;
833 src_pte = pte_offset_map(src_pmd, addr);
834 src_ptl = pte_lockptr(src_mm, src_pmd);
835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836 orig_src_pte = src_pte;
837 orig_dst_pte = dst_pte;
838 arch_enter_lazy_mmu_mode();
840 do {
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
845 if (progress >= 32) {
846 progress = 0;
847 if (need_resched() ||
848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849 break;
851 if (pte_none(*src_pte)) {
852 progress++;
853 continue;
855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 vma, addr, rss);
857 if (entry.val)
858 break;
859 progress += 8;
860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862 arch_leave_lazy_mmu_mode();
863 spin_unlock(src_ptl);
864 pte_unmap(orig_src_pte);
865 add_mm_rss_vec(dst_mm, rss);
866 pte_unmap_unlock(orig_dst_pte, dst_ptl);
867 cond_resched();
869 if (entry.val) {
870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 return -ENOMEM;
872 progress = 0;
874 if (addr != end)
875 goto again;
876 return 0;
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
883 pmd_t *src_pmd, *dst_pmd;
884 unsigned long next;
886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 if (!dst_pmd)
888 return -ENOMEM;
889 src_pmd = pmd_offset(src_pud, addr);
890 do {
891 next = pmd_addr_end(addr, end);
892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 || pmd_devmap(*src_pmd)) {
894 int err;
895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896 err = copy_huge_pmd(dst_mm, src_mm,
897 dst_pmd, src_pmd, addr, vma);
898 if (err == -ENOMEM)
899 return -ENOMEM;
900 if (!err)
901 continue;
902 /* fall through */
904 if (pmd_none_or_clear_bad(src_pmd))
905 continue;
906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 vma, addr, next))
908 return -ENOMEM;
909 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 return 0;
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
917 pud_t *src_pud, *dst_pud;
918 unsigned long next;
920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921 if (!dst_pud)
922 return -ENOMEM;
923 src_pud = pud_offset(src_p4d, addr);
924 do {
925 next = pud_addr_end(addr, end);
926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 int err;
929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 err = copy_huge_pud(dst_mm, src_mm,
931 dst_pud, src_pud, addr, vma);
932 if (err == -ENOMEM)
933 return -ENOMEM;
934 if (!err)
935 continue;
936 /* fall through */
938 if (pud_none_or_clear_bad(src_pud))
939 continue;
940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 vma, addr, next))
942 return -ENOMEM;
943 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 return 0;
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end)
951 p4d_t *src_p4d, *dst_p4d;
952 unsigned long next;
954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 if (!dst_p4d)
956 return -ENOMEM;
957 src_p4d = p4d_offset(src_pgd, addr);
958 do {
959 next = p4d_addr_end(addr, end);
960 if (p4d_none_or_clear_bad(src_p4d))
961 continue;
962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 return 0;
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 struct vm_area_struct *vma)
972 pgd_t *src_pgd, *dst_pgd;
973 unsigned long next;
974 unsigned long addr = vma->vm_start;
975 unsigned long end = vma->vm_end;
976 struct mmu_notifier_range range;
977 bool is_cow;
978 int ret;
981 * Don't copy ptes where a page fault will fill them correctly.
982 * Fork becomes much lighter when there are big shared or private
983 * readonly mappings. The tradeoff is that copy_page_range is more
984 * efficient than faulting.
986 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
987 !vma->anon_vma)
988 return 0;
990 if (is_vm_hugetlb_page(vma))
991 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 * We do not free on error cases below as remove_vma
996 * gets called on error from higher level routine
998 ret = track_pfn_copy(vma);
999 if (ret)
1000 return ret;
1004 * We need to invalidate the secondary MMU mappings only when
1005 * there could be a permission downgrade on the ptes of the
1006 * parent mm. And a permission downgrade will only happen if
1007 * is_cow_mapping() returns true.
1009 is_cow = is_cow_mapping(vma->vm_flags);
1011 if (is_cow) {
1012 mmu_notifier_range_init(&range, src_mm, addr, end);
1013 mmu_notifier_invalidate_range_start(&range);
1016 ret = 0;
1017 dst_pgd = pgd_offset(dst_mm, addr);
1018 src_pgd = pgd_offset(src_mm, addr);
1019 do {
1020 next = pgd_addr_end(addr, end);
1021 if (pgd_none_or_clear_bad(src_pgd))
1022 continue;
1023 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024 vma, addr, next))) {
1025 ret = -ENOMEM;
1026 break;
1028 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030 if (is_cow)
1031 mmu_notifier_invalidate_range_end(&range);
1032 return ret;
1035 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma, pmd_t *pmd,
1037 unsigned long addr, unsigned long end,
1038 struct zap_details *details)
1040 struct mm_struct *mm = tlb->mm;
1041 int force_flush = 0;
1042 int rss[NR_MM_COUNTERS];
1043 spinlock_t *ptl;
1044 pte_t *start_pte;
1045 pte_t *pte;
1046 swp_entry_t entry;
1048 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1049 again:
1050 init_rss_vec(rss);
1051 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1052 pte = start_pte;
1053 flush_tlb_batched_pending(mm);
1054 arch_enter_lazy_mmu_mode();
1055 do {
1056 pte_t ptent = *pte;
1057 if (pte_none(ptent))
1058 continue;
1060 if (pte_present(ptent)) {
1061 struct page *page;
1063 page = _vm_normal_page(vma, addr, ptent, true);
1064 if (unlikely(details) && page) {
1066 * unmap_shared_mapping_pages() wants to
1067 * invalidate cache without truncating:
1068 * unmap shared but keep private pages.
1070 if (details->check_mapping &&
1071 details->check_mapping != page_rmapping(page))
1072 continue;
1074 ptent = ptep_get_and_clear_full(mm, addr, pte,
1075 tlb->fullmm);
1076 tlb_remove_tlb_entry(tlb, pte, addr);
1077 if (unlikely(!page))
1078 continue;
1080 if (!PageAnon(page)) {
1081 if (pte_dirty(ptent)) {
1082 force_flush = 1;
1083 set_page_dirty(page);
1085 if (pte_young(ptent) &&
1086 likely(!(vma->vm_flags & VM_SEQ_READ)))
1087 mark_page_accessed(page);
1089 rss[mm_counter(page)]--;
1090 page_remove_rmap(page, false);
1091 if (unlikely(page_mapcount(page) < 0))
1092 print_bad_pte(vma, addr, ptent, page);
1093 if (unlikely(__tlb_remove_page(tlb, page))) {
1094 force_flush = 1;
1095 addr += PAGE_SIZE;
1096 break;
1098 continue;
1101 entry = pte_to_swp_entry(ptent);
1102 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103 struct page *page = device_private_entry_to_page(entry);
1105 if (unlikely(details && details->check_mapping)) {
1107 * unmap_shared_mapping_pages() wants to
1108 * invalidate cache without truncating:
1109 * unmap shared but keep private pages.
1111 if (details->check_mapping !=
1112 page_rmapping(page))
1113 continue;
1116 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117 rss[mm_counter(page)]--;
1118 page_remove_rmap(page, false);
1119 put_page(page);
1120 continue;
1123 /* If details->check_mapping, we leave swap entries. */
1124 if (unlikely(details))
1125 continue;
1127 entry = pte_to_swp_entry(ptent);
1128 if (!non_swap_entry(entry))
1129 rss[MM_SWAPENTS]--;
1130 else if (is_migration_entry(entry)) {
1131 struct page *page;
1133 page = migration_entry_to_page(entry);
1134 rss[mm_counter(page)]--;
1136 if (unlikely(!free_swap_and_cache(entry)))
1137 print_bad_pte(vma, addr, ptent, NULL);
1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
1141 add_mm_rss_vec(mm, rss);
1142 arch_leave_lazy_mmu_mode();
1144 /* Do the actual TLB flush before dropping ptl */
1145 if (force_flush)
1146 tlb_flush_mmu_tlbonly(tlb);
1147 pte_unmap_unlock(start_pte, ptl);
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1155 if (force_flush) {
1156 force_flush = 0;
1157 tlb_flush_mmu_free(tlb);
1158 if (addr != end)
1159 goto again;
1162 return addr;
1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1166 struct vm_area_struct *vma, pud_t *pud,
1167 unsigned long addr, unsigned long end,
1168 struct zap_details *details)
1170 pmd_t *pmd;
1171 unsigned long next;
1173 pmd = pmd_offset(pud, addr);
1174 do {
1175 next = pmd_addr_end(addr, end);
1176 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177 if (next - addr != HPAGE_PMD_SIZE)
1178 __split_huge_pmd(vma, pmd, addr, false, NULL);
1179 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1180 goto next;
1181 /* fall through */
1184 * Here there can be other concurrent MADV_DONTNEED or
1185 * trans huge page faults running, and if the pmd is
1186 * none or trans huge it can change under us. This is
1187 * because MADV_DONTNEED holds the mmap_sem in read
1188 * mode.
1190 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1191 goto next;
1192 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1193 next:
1194 cond_resched();
1195 } while (pmd++, addr = next, addr != end);
1197 return addr;
1200 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1201 struct vm_area_struct *vma, p4d_t *p4d,
1202 unsigned long addr, unsigned long end,
1203 struct zap_details *details)
1205 pud_t *pud;
1206 unsigned long next;
1208 pud = pud_offset(p4d, addr);
1209 do {
1210 next = pud_addr_end(addr, end);
1211 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1212 if (next - addr != HPAGE_PUD_SIZE) {
1213 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1214 split_huge_pud(vma, pud, addr);
1215 } else if (zap_huge_pud(tlb, vma, pud, addr))
1216 goto next;
1217 /* fall through */
1219 if (pud_none_or_clear_bad(pud))
1220 continue;
1221 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1222 next:
1223 cond_resched();
1224 } while (pud++, addr = next, addr != end);
1226 return addr;
1229 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pgd_t *pgd,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1234 p4d_t *p4d;
1235 unsigned long next;
1237 p4d = p4d_offset(pgd, addr);
1238 do {
1239 next = p4d_addr_end(addr, end);
1240 if (p4d_none_or_clear_bad(p4d))
1241 continue;
1242 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1243 } while (p4d++, addr = next, addr != end);
1245 return addr;
1248 void unmap_page_range(struct mmu_gather *tlb,
1249 struct vm_area_struct *vma,
1250 unsigned long addr, unsigned long end,
1251 struct zap_details *details)
1253 pgd_t *pgd;
1254 unsigned long next;
1256 BUG_ON(addr >= end);
1257 tlb_start_vma(tlb, vma);
1258 pgd = pgd_offset(vma->vm_mm, addr);
1259 do {
1260 next = pgd_addr_end(addr, end);
1261 if (pgd_none_or_clear_bad(pgd))
1262 continue;
1263 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1264 } while (pgd++, addr = next, addr != end);
1265 tlb_end_vma(tlb, vma);
1269 static void unmap_single_vma(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma, unsigned long start_addr,
1271 unsigned long end_addr,
1272 struct zap_details *details)
1274 unsigned long start = max(vma->vm_start, start_addr);
1275 unsigned long end;
1277 if (start >= vma->vm_end)
1278 return;
1279 end = min(vma->vm_end, end_addr);
1280 if (end <= vma->vm_start)
1281 return;
1283 if (vma->vm_file)
1284 uprobe_munmap(vma, start, end);
1286 if (unlikely(vma->vm_flags & VM_PFNMAP))
1287 untrack_pfn(vma, 0, 0);
1289 if (start != end) {
1290 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 * It is undesirable to test vma->vm_file as it
1293 * should be non-null for valid hugetlb area.
1294 * However, vm_file will be NULL in the error
1295 * cleanup path of mmap_region. When
1296 * hugetlbfs ->mmap method fails,
1297 * mmap_region() nullifies vma->vm_file
1298 * before calling this function to clean up.
1299 * Since no pte has actually been setup, it is
1300 * safe to do nothing in this case.
1302 if (vma->vm_file) {
1303 i_mmap_lock_write(vma->vm_file->f_mapping);
1304 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1305 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 } else
1308 unmap_page_range(tlb, vma, start, end, details);
1313 * unmap_vmas - unmap a range of memory covered by a list of vma's
1314 * @tlb: address of the caller's struct mmu_gather
1315 * @vma: the starting vma
1316 * @start_addr: virtual address at which to start unmapping
1317 * @end_addr: virtual address at which to end unmapping
1319 * Unmap all pages in the vma list.
1321 * Only addresses between `start' and `end' will be unmapped.
1323 * The VMA list must be sorted in ascending virtual address order.
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns. So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1330 void unmap_vmas(struct mmu_gather *tlb,
1331 struct vm_area_struct *vma, unsigned long start_addr,
1332 unsigned long end_addr)
1334 struct mmu_notifier_range range;
1336 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1337 mmu_notifier_invalidate_range_start(&range);
1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340 mmu_notifier_invalidate_range_end(&range);
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
1346 * @start: starting address of pages to zap
1347 * @size: number of bytes to zap
1349 * Caller must protect the VMA list
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352 unsigned long size)
1354 struct mmu_notifier_range range;
1355 struct mmu_gather tlb;
1357 lru_add_drain();
1358 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1359 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1360 update_hiwater_rss(vma->vm_mm);
1361 mmu_notifier_invalidate_range_start(&range);
1362 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1363 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1364 mmu_notifier_invalidate_range_end(&range);
1365 tlb_finish_mmu(&tlb, start, range.end);
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1375 * The range must fit into one VMA.
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378 unsigned long size, struct zap_details *details)
1380 struct mmu_notifier_range range;
1381 struct mmu_gather tlb;
1383 lru_add_drain();
1384 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1385 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1386 update_hiwater_rss(vma->vm_mm);
1387 mmu_notifier_invalidate_range_start(&range);
1388 unmap_single_vma(&tlb, vma, address, range.end, details);
1389 mmu_notifier_invalidate_range_end(&range);
1390 tlb_finish_mmu(&tlb, address, range.end);
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 * The entire address range must be fully contained within the vma.
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size)
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
1409 return;
1411 zap_page_range_single(vma, address, size, NULL);
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 spinlock_t **ptl)
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1439 * This is the old fallback for page remapping.
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
1448 struct mm_struct *mm = vma->vm_mm;
1449 int retval;
1450 pte_t *pte;
1451 spinlock_t *ptl;
1453 retval = -EINVAL;
1454 if (PageAnon(page))
1455 goto out;
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
1458 pte = get_locked_pte(mm, addr, &ptl);
1459 if (!pte)
1460 goto out;
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
1467 inc_mm_counter_fast(mm, mm_counter_file(page));
1468 page_add_file_rmap(page, false);
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 retval = 0;
1472 pte_unmap_unlock(pte, ptl);
1473 return retval;
1474 out_unlock:
1475 pte_unmap_unlock(pte, ptl);
1476 out:
1477 return retval;
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
1492 * (see split_page()).
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1500 * The page does not need to be reserved.
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1519 return insert_page(vma, addr, page, vma->vm_page_prot);
1521 EXPORT_SYMBOL(vm_insert_page);
1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 pfn_t pfn, pgprot_t prot, bool mkwrite)
1526 struct mm_struct *mm = vma->vm_mm;
1527 pte_t *pte, entry;
1528 spinlock_t *ptl;
1530 pte = get_locked_pte(mm, addr, &ptl);
1531 if (!pte)
1532 return VM_FAULT_OOM;
1533 if (!pte_none(*pte)) {
1534 if (mkwrite) {
1536 * For read faults on private mappings the PFN passed
1537 * in may not match the PFN we have mapped if the
1538 * mapped PFN is a writeable COW page. In the mkwrite
1539 * case we are creating a writable PTE for a shared
1540 * mapping and we expect the PFNs to match. If they
1541 * don't match, we are likely racing with block
1542 * allocation and mapping invalidation so just skip the
1543 * update.
1545 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1546 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1547 goto out_unlock;
1549 entry = *pte;
1550 goto out_mkwrite;
1551 } else
1552 goto out_unlock;
1555 /* Ok, finally just insert the thing.. */
1556 if (pfn_t_devmap(pfn))
1557 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1558 else
1559 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1561 out_mkwrite:
1562 if (mkwrite) {
1563 entry = pte_mkyoung(entry);
1564 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1567 set_pte_at(mm, addr, pte, entry);
1568 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1570 out_unlock:
1571 pte_unmap_unlock(pte, ptl);
1572 return VM_FAULT_NOPAGE;
1576 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 * @pgprot: pgprot flags for the inserted page
1582 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1583 * to override pgprot on a per-page basis.
1585 * This only makes sense for IO mappings, and it makes no sense for
1586 * COW mappings. In general, using multiple vmas is preferable;
1587 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1588 * impractical.
1590 * Context: Process context. May allocate using %GFP_KERNEL.
1591 * Return: vm_fault_t value.
1593 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1594 unsigned long pfn, pgprot_t pgprot)
1597 * Technically, architectures with pte_special can avoid all these
1598 * restrictions (same for remap_pfn_range). However we would like
1599 * consistency in testing and feature parity among all, so we should
1600 * try to keep these invariants in place for everybody.
1602 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1603 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1604 (VM_PFNMAP|VM_MIXEDMAP));
1605 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1606 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1608 if (addr < vma->vm_start || addr >= vma->vm_end)
1609 return VM_FAULT_SIGBUS;
1611 if (!pfn_modify_allowed(pfn, pgprot))
1612 return VM_FAULT_SIGBUS;
1614 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1616 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1617 false);
1619 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1622 * vmf_insert_pfn - insert single pfn into user vma
1623 * @vma: user vma to map to
1624 * @addr: target user address of this page
1625 * @pfn: source kernel pfn
1627 * Similar to vm_insert_page, this allows drivers to insert individual pages
1628 * they've allocated into a user vma. Same comments apply.
1630 * This function should only be called from a vm_ops->fault handler, and
1631 * in that case the handler should return the result of this function.
1633 * vma cannot be a COW mapping.
1635 * As this is called only for pages that do not currently exist, we
1636 * do not need to flush old virtual caches or the TLB.
1638 * Context: Process context. May allocate using %GFP_KERNEL.
1639 * Return: vm_fault_t value.
1641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642 unsigned long pfn)
1644 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1646 EXPORT_SYMBOL(vmf_insert_pfn);
1648 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1650 /* these checks mirror the abort conditions in vm_normal_page */
1651 if (vma->vm_flags & VM_MIXEDMAP)
1652 return true;
1653 if (pfn_t_devmap(pfn))
1654 return true;
1655 if (pfn_t_special(pfn))
1656 return true;
1657 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1658 return true;
1659 return false;
1662 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1663 unsigned long addr, pfn_t pfn, bool mkwrite)
1665 pgprot_t pgprot = vma->vm_page_prot;
1666 int err;
1668 BUG_ON(!vm_mixed_ok(vma, pfn));
1670 if (addr < vma->vm_start || addr >= vma->vm_end)
1671 return VM_FAULT_SIGBUS;
1673 track_pfn_insert(vma, &pgprot, pfn);
1675 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1676 return VM_FAULT_SIGBUS;
1679 * If we don't have pte special, then we have to use the pfn_valid()
1680 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1681 * refcount the page if pfn_valid is true (hence insert_page rather
1682 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1683 * without pte special, it would there be refcounted as a normal page.
1685 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1686 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1687 struct page *page;
1690 * At this point we are committed to insert_page()
1691 * regardless of whether the caller specified flags that
1692 * result in pfn_t_has_page() == false.
1694 page = pfn_to_page(pfn_t_to_pfn(pfn));
1695 err = insert_page(vma, addr, page, pgprot);
1696 } else {
1697 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1700 if (err == -ENOMEM)
1701 return VM_FAULT_OOM;
1702 if (err < 0 && err != -EBUSY)
1703 return VM_FAULT_SIGBUS;
1705 return VM_FAULT_NOPAGE;
1708 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1709 pfn_t pfn)
1711 return __vm_insert_mixed(vma, addr, pfn, false);
1713 EXPORT_SYMBOL(vmf_insert_mixed);
1716 * If the insertion of PTE failed because someone else already added a
1717 * different entry in the mean time, we treat that as success as we assume
1718 * the same entry was actually inserted.
1720 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1721 unsigned long addr, pfn_t pfn)
1723 return __vm_insert_mixed(vma, addr, pfn, true);
1725 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1728 * maps a range of physical memory into the requested pages. the old
1729 * mappings are removed. any references to nonexistent pages results
1730 * in null mappings (currently treated as "copy-on-access")
1732 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1733 unsigned long addr, unsigned long end,
1734 unsigned long pfn, pgprot_t prot)
1736 pte_t *pte;
1737 spinlock_t *ptl;
1738 int err = 0;
1740 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1741 if (!pte)
1742 return -ENOMEM;
1743 arch_enter_lazy_mmu_mode();
1744 do {
1745 BUG_ON(!pte_none(*pte));
1746 if (!pfn_modify_allowed(pfn, prot)) {
1747 err = -EACCES;
1748 break;
1750 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1751 pfn++;
1752 } while (pte++, addr += PAGE_SIZE, addr != end);
1753 arch_leave_lazy_mmu_mode();
1754 pte_unmap_unlock(pte - 1, ptl);
1755 return err;
1758 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1759 unsigned long addr, unsigned long end,
1760 unsigned long pfn, pgprot_t prot)
1762 pmd_t *pmd;
1763 unsigned long next;
1764 int err;
1766 pfn -= addr >> PAGE_SHIFT;
1767 pmd = pmd_alloc(mm, pud, addr);
1768 if (!pmd)
1769 return -ENOMEM;
1770 VM_BUG_ON(pmd_trans_huge(*pmd));
1771 do {
1772 next = pmd_addr_end(addr, end);
1773 err = remap_pte_range(mm, pmd, addr, next,
1774 pfn + (addr >> PAGE_SHIFT), prot);
1775 if (err)
1776 return err;
1777 } while (pmd++, addr = next, addr != end);
1778 return 0;
1781 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1782 unsigned long addr, unsigned long end,
1783 unsigned long pfn, pgprot_t prot)
1785 pud_t *pud;
1786 unsigned long next;
1787 int err;
1789 pfn -= addr >> PAGE_SHIFT;
1790 pud = pud_alloc(mm, p4d, addr);
1791 if (!pud)
1792 return -ENOMEM;
1793 do {
1794 next = pud_addr_end(addr, end);
1795 err = remap_pmd_range(mm, pud, addr, next,
1796 pfn + (addr >> PAGE_SHIFT), prot);
1797 if (err)
1798 return err;
1799 } while (pud++, addr = next, addr != end);
1800 return 0;
1803 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1804 unsigned long addr, unsigned long end,
1805 unsigned long pfn, pgprot_t prot)
1807 p4d_t *p4d;
1808 unsigned long next;
1809 int err;
1811 pfn -= addr >> PAGE_SHIFT;
1812 p4d = p4d_alloc(mm, pgd, addr);
1813 if (!p4d)
1814 return -ENOMEM;
1815 do {
1816 next = p4d_addr_end(addr, end);
1817 err = remap_pud_range(mm, p4d, addr, next,
1818 pfn + (addr >> PAGE_SHIFT), prot);
1819 if (err)
1820 return err;
1821 } while (p4d++, addr = next, addr != end);
1822 return 0;
1826 * remap_pfn_range - remap kernel memory to userspace
1827 * @vma: user vma to map to
1828 * @addr: target user address to start at
1829 * @pfn: physical address of kernel memory
1830 * @size: size of map area
1831 * @prot: page protection flags for this mapping
1833 * Note: this is only safe if the mm semaphore is held when called.
1835 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1836 unsigned long pfn, unsigned long size, pgprot_t prot)
1838 pgd_t *pgd;
1839 unsigned long next;
1840 unsigned long end = addr + PAGE_ALIGN(size);
1841 struct mm_struct *mm = vma->vm_mm;
1842 unsigned long remap_pfn = pfn;
1843 int err;
1846 * Physically remapped pages are special. Tell the
1847 * rest of the world about it:
1848 * VM_IO tells people not to look at these pages
1849 * (accesses can have side effects).
1850 * VM_PFNMAP tells the core MM that the base pages are just
1851 * raw PFN mappings, and do not have a "struct page" associated
1852 * with them.
1853 * VM_DONTEXPAND
1854 * Disable vma merging and expanding with mremap().
1855 * VM_DONTDUMP
1856 * Omit vma from core dump, even when VM_IO turned off.
1858 * There's a horrible special case to handle copy-on-write
1859 * behaviour that some programs depend on. We mark the "original"
1860 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1861 * See vm_normal_page() for details.
1863 if (is_cow_mapping(vma->vm_flags)) {
1864 if (addr != vma->vm_start || end != vma->vm_end)
1865 return -EINVAL;
1866 vma->vm_pgoff = pfn;
1869 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1870 if (err)
1871 return -EINVAL;
1873 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1875 BUG_ON(addr >= end);
1876 pfn -= addr >> PAGE_SHIFT;
1877 pgd = pgd_offset(mm, addr);
1878 flush_cache_range(vma, addr, end);
1879 do {
1880 next = pgd_addr_end(addr, end);
1881 err = remap_p4d_range(mm, pgd, addr, next,
1882 pfn + (addr >> PAGE_SHIFT), prot);
1883 if (err)
1884 break;
1885 } while (pgd++, addr = next, addr != end);
1887 if (err)
1888 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1890 return err;
1892 EXPORT_SYMBOL(remap_pfn_range);
1895 * vm_iomap_memory - remap memory to userspace
1896 * @vma: user vma to map to
1897 * @start: start of area
1898 * @len: size of area
1900 * This is a simplified io_remap_pfn_range() for common driver use. The
1901 * driver just needs to give us the physical memory range to be mapped,
1902 * we'll figure out the rest from the vma information.
1904 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1905 * whatever write-combining details or similar.
1907 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1909 unsigned long vm_len, pfn, pages;
1911 /* Check that the physical memory area passed in looks valid */
1912 if (start + len < start)
1913 return -EINVAL;
1915 * You *really* shouldn't map things that aren't page-aligned,
1916 * but we've historically allowed it because IO memory might
1917 * just have smaller alignment.
1919 len += start & ~PAGE_MASK;
1920 pfn = start >> PAGE_SHIFT;
1921 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1922 if (pfn + pages < pfn)
1923 return -EINVAL;
1925 /* We start the mapping 'vm_pgoff' pages into the area */
1926 if (vma->vm_pgoff > pages)
1927 return -EINVAL;
1928 pfn += vma->vm_pgoff;
1929 pages -= vma->vm_pgoff;
1931 /* Can we fit all of the mapping? */
1932 vm_len = vma->vm_end - vma->vm_start;
1933 if (vm_len >> PAGE_SHIFT > pages)
1934 return -EINVAL;
1936 /* Ok, let it rip */
1937 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1939 EXPORT_SYMBOL(vm_iomap_memory);
1941 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1942 unsigned long addr, unsigned long end,
1943 pte_fn_t fn, void *data)
1945 pte_t *pte;
1946 int err;
1947 pgtable_t token;
1948 spinlock_t *uninitialized_var(ptl);
1950 pte = (mm == &init_mm) ?
1951 pte_alloc_kernel(pmd, addr) :
1952 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1953 if (!pte)
1954 return -ENOMEM;
1956 BUG_ON(pmd_huge(*pmd));
1958 arch_enter_lazy_mmu_mode();
1960 token = pmd_pgtable(*pmd);
1962 do {
1963 err = fn(pte++, token, addr, data);
1964 if (err)
1965 break;
1966 } while (addr += PAGE_SIZE, addr != end);
1968 arch_leave_lazy_mmu_mode();
1970 if (mm != &init_mm)
1971 pte_unmap_unlock(pte-1, ptl);
1972 return err;
1975 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1976 unsigned long addr, unsigned long end,
1977 pte_fn_t fn, void *data)
1979 pmd_t *pmd;
1980 unsigned long next;
1981 int err;
1983 BUG_ON(pud_huge(*pud));
1985 pmd = pmd_alloc(mm, pud, addr);
1986 if (!pmd)
1987 return -ENOMEM;
1988 do {
1989 next = pmd_addr_end(addr, end);
1990 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1991 if (err)
1992 break;
1993 } while (pmd++, addr = next, addr != end);
1994 return err;
1997 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1998 unsigned long addr, unsigned long end,
1999 pte_fn_t fn, void *data)
2001 pud_t *pud;
2002 unsigned long next;
2003 int err;
2005 pud = pud_alloc(mm, p4d, addr);
2006 if (!pud)
2007 return -ENOMEM;
2008 do {
2009 next = pud_addr_end(addr, end);
2010 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2011 if (err)
2012 break;
2013 } while (pud++, addr = next, addr != end);
2014 return err;
2017 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2018 unsigned long addr, unsigned long end,
2019 pte_fn_t fn, void *data)
2021 p4d_t *p4d;
2022 unsigned long next;
2023 int err;
2025 p4d = p4d_alloc(mm, pgd, addr);
2026 if (!p4d)
2027 return -ENOMEM;
2028 do {
2029 next = p4d_addr_end(addr, end);
2030 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2031 if (err)
2032 break;
2033 } while (p4d++, addr = next, addr != end);
2034 return err;
2038 * Scan a region of virtual memory, filling in page tables as necessary
2039 * and calling a provided function on each leaf page table.
2041 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2042 unsigned long size, pte_fn_t fn, void *data)
2044 pgd_t *pgd;
2045 unsigned long next;
2046 unsigned long end = addr + size;
2047 int err;
2049 if (WARN_ON(addr >= end))
2050 return -EINVAL;
2052 pgd = pgd_offset(mm, addr);
2053 do {
2054 next = pgd_addr_end(addr, end);
2055 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2056 if (err)
2057 break;
2058 } while (pgd++, addr = next, addr != end);
2060 return err;
2062 EXPORT_SYMBOL_GPL(apply_to_page_range);
2065 * handle_pte_fault chooses page fault handler according to an entry which was
2066 * read non-atomically. Before making any commitment, on those architectures
2067 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2068 * parts, do_swap_page must check under lock before unmapping the pte and
2069 * proceeding (but do_wp_page is only called after already making such a check;
2070 * and do_anonymous_page can safely check later on).
2072 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2073 pte_t *page_table, pte_t orig_pte)
2075 int same = 1;
2076 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2077 if (sizeof(pte_t) > sizeof(unsigned long)) {
2078 spinlock_t *ptl = pte_lockptr(mm, pmd);
2079 spin_lock(ptl);
2080 same = pte_same(*page_table, orig_pte);
2081 spin_unlock(ptl);
2083 #endif
2084 pte_unmap(page_table);
2085 return same;
2088 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2090 debug_dma_assert_idle(src);
2093 * If the source page was a PFN mapping, we don't have
2094 * a "struct page" for it. We do a best-effort copy by
2095 * just copying from the original user address. If that
2096 * fails, we just zero-fill it. Live with it.
2098 if (unlikely(!src)) {
2099 void *kaddr = kmap_atomic(dst);
2100 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2103 * This really shouldn't fail, because the page is there
2104 * in the page tables. But it might just be unreadable,
2105 * in which case we just give up and fill the result with
2106 * zeroes.
2108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2109 clear_page(kaddr);
2110 kunmap_atomic(kaddr);
2111 flush_dcache_page(dst);
2112 } else
2113 copy_user_highpage(dst, src, va, vma);
2116 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2118 struct file *vm_file = vma->vm_file;
2120 if (vm_file)
2121 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2124 * Special mappings (e.g. VDSO) do not have any file so fake
2125 * a default GFP_KERNEL for them.
2127 return GFP_KERNEL;
2131 * Notify the address space that the page is about to become writable so that
2132 * it can prohibit this or wait for the page to get into an appropriate state.
2134 * We do this without the lock held, so that it can sleep if it needs to.
2136 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2138 vm_fault_t ret;
2139 struct page *page = vmf->page;
2140 unsigned int old_flags = vmf->flags;
2142 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2144 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2145 /* Restore original flags so that caller is not surprised */
2146 vmf->flags = old_flags;
2147 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2148 return ret;
2149 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2150 lock_page(page);
2151 if (!page->mapping) {
2152 unlock_page(page);
2153 return 0; /* retry */
2155 ret |= VM_FAULT_LOCKED;
2156 } else
2157 VM_BUG_ON_PAGE(!PageLocked(page), page);
2158 return ret;
2162 * Handle dirtying of a page in shared file mapping on a write fault.
2164 * The function expects the page to be locked and unlocks it.
2166 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2167 struct page *page)
2169 struct address_space *mapping;
2170 bool dirtied;
2171 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2173 dirtied = set_page_dirty(page);
2174 VM_BUG_ON_PAGE(PageAnon(page), page);
2176 * Take a local copy of the address_space - page.mapping may be zeroed
2177 * by truncate after unlock_page(). The address_space itself remains
2178 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2179 * release semantics to prevent the compiler from undoing this copying.
2181 mapping = page_rmapping(page);
2182 unlock_page(page);
2184 if ((dirtied || page_mkwrite) && mapping) {
2186 * Some device drivers do not set page.mapping
2187 * but still dirty their pages
2189 balance_dirty_pages_ratelimited(mapping);
2192 if (!page_mkwrite)
2193 file_update_time(vma->vm_file);
2197 * Handle write page faults for pages that can be reused in the current vma
2199 * This can happen either due to the mapping being with the VM_SHARED flag,
2200 * or due to us being the last reference standing to the page. In either
2201 * case, all we need to do here is to mark the page as writable and update
2202 * any related book-keeping.
2204 static inline void wp_page_reuse(struct vm_fault *vmf)
2205 __releases(vmf->ptl)
2207 struct vm_area_struct *vma = vmf->vma;
2208 struct page *page = vmf->page;
2209 pte_t entry;
2211 * Clear the pages cpupid information as the existing
2212 * information potentially belongs to a now completely
2213 * unrelated process.
2215 if (page)
2216 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2218 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2219 entry = pte_mkyoung(vmf->orig_pte);
2220 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2221 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2222 update_mmu_cache(vma, vmf->address, vmf->pte);
2223 pte_unmap_unlock(vmf->pte, vmf->ptl);
2227 * Handle the case of a page which we actually need to copy to a new page.
2229 * Called with mmap_sem locked and the old page referenced, but
2230 * without the ptl held.
2232 * High level logic flow:
2234 * - Allocate a page, copy the content of the old page to the new one.
2235 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2236 * - Take the PTL. If the pte changed, bail out and release the allocated page
2237 * - If the pte is still the way we remember it, update the page table and all
2238 * relevant references. This includes dropping the reference the page-table
2239 * held to the old page, as well as updating the rmap.
2240 * - In any case, unlock the PTL and drop the reference we took to the old page.
2242 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2244 struct vm_area_struct *vma = vmf->vma;
2245 struct mm_struct *mm = vma->vm_mm;
2246 struct page *old_page = vmf->page;
2247 struct page *new_page = NULL;
2248 pte_t entry;
2249 int page_copied = 0;
2250 struct mem_cgroup *memcg;
2251 struct mmu_notifier_range range;
2253 if (unlikely(anon_vma_prepare(vma)))
2254 goto oom;
2256 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2257 new_page = alloc_zeroed_user_highpage_movable(vma,
2258 vmf->address);
2259 if (!new_page)
2260 goto oom;
2261 } else {
2262 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2263 vmf->address);
2264 if (!new_page)
2265 goto oom;
2266 cow_user_page(new_page, old_page, vmf->address, vma);
2269 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2270 goto oom_free_new;
2272 __SetPageUptodate(new_page);
2274 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2275 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2276 mmu_notifier_invalidate_range_start(&range);
2279 * Re-check the pte - we dropped the lock
2281 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2282 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2283 if (old_page) {
2284 if (!PageAnon(old_page)) {
2285 dec_mm_counter_fast(mm,
2286 mm_counter_file(old_page));
2287 inc_mm_counter_fast(mm, MM_ANONPAGES);
2289 } else {
2290 inc_mm_counter_fast(mm, MM_ANONPAGES);
2292 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2293 entry = mk_pte(new_page, vma->vm_page_prot);
2294 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2296 * Clear the pte entry and flush it first, before updating the
2297 * pte with the new entry. This will avoid a race condition
2298 * seen in the presence of one thread doing SMC and another
2299 * thread doing COW.
2301 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2302 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2303 mem_cgroup_commit_charge(new_page, memcg, false, false);
2304 lru_cache_add_active_or_unevictable(new_page, vma);
2306 * We call the notify macro here because, when using secondary
2307 * mmu page tables (such as kvm shadow page tables), we want the
2308 * new page to be mapped directly into the secondary page table.
2310 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2311 update_mmu_cache(vma, vmf->address, vmf->pte);
2312 if (old_page) {
2314 * Only after switching the pte to the new page may
2315 * we remove the mapcount here. Otherwise another
2316 * process may come and find the rmap count decremented
2317 * before the pte is switched to the new page, and
2318 * "reuse" the old page writing into it while our pte
2319 * here still points into it and can be read by other
2320 * threads.
2322 * The critical issue is to order this
2323 * page_remove_rmap with the ptp_clear_flush above.
2324 * Those stores are ordered by (if nothing else,)
2325 * the barrier present in the atomic_add_negative
2326 * in page_remove_rmap.
2328 * Then the TLB flush in ptep_clear_flush ensures that
2329 * no process can access the old page before the
2330 * decremented mapcount is visible. And the old page
2331 * cannot be reused until after the decremented
2332 * mapcount is visible. So transitively, TLBs to
2333 * old page will be flushed before it can be reused.
2335 page_remove_rmap(old_page, false);
2338 /* Free the old page.. */
2339 new_page = old_page;
2340 page_copied = 1;
2341 } else {
2342 mem_cgroup_cancel_charge(new_page, memcg, false);
2345 if (new_page)
2346 put_page(new_page);
2348 pte_unmap_unlock(vmf->pte, vmf->ptl);
2350 * No need to double call mmu_notifier->invalidate_range() callback as
2351 * the above ptep_clear_flush_notify() did already call it.
2353 mmu_notifier_invalidate_range_only_end(&range);
2354 if (old_page) {
2356 * Don't let another task, with possibly unlocked vma,
2357 * keep the mlocked page.
2359 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2360 lock_page(old_page); /* LRU manipulation */
2361 if (PageMlocked(old_page))
2362 munlock_vma_page(old_page);
2363 unlock_page(old_page);
2365 put_page(old_page);
2367 return page_copied ? VM_FAULT_WRITE : 0;
2368 oom_free_new:
2369 put_page(new_page);
2370 oom:
2371 if (old_page)
2372 put_page(old_page);
2373 return VM_FAULT_OOM;
2377 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2378 * writeable once the page is prepared
2380 * @vmf: structure describing the fault
2382 * This function handles all that is needed to finish a write page fault in a
2383 * shared mapping due to PTE being read-only once the mapped page is prepared.
2384 * It handles locking of PTE and modifying it. The function returns
2385 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2386 * lock.
2388 * The function expects the page to be locked or other protection against
2389 * concurrent faults / writeback (such as DAX radix tree locks).
2391 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2393 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2394 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2395 &vmf->ptl);
2397 * We might have raced with another page fault while we released the
2398 * pte_offset_map_lock.
2400 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2401 pte_unmap_unlock(vmf->pte, vmf->ptl);
2402 return VM_FAULT_NOPAGE;
2404 wp_page_reuse(vmf);
2405 return 0;
2409 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2410 * mapping
2412 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2414 struct vm_area_struct *vma = vmf->vma;
2416 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2417 vm_fault_t ret;
2419 pte_unmap_unlock(vmf->pte, vmf->ptl);
2420 vmf->flags |= FAULT_FLAG_MKWRITE;
2421 ret = vma->vm_ops->pfn_mkwrite(vmf);
2422 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2423 return ret;
2424 return finish_mkwrite_fault(vmf);
2426 wp_page_reuse(vmf);
2427 return VM_FAULT_WRITE;
2430 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2431 __releases(vmf->ptl)
2433 struct vm_area_struct *vma = vmf->vma;
2435 get_page(vmf->page);
2437 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2438 vm_fault_t tmp;
2440 pte_unmap_unlock(vmf->pte, vmf->ptl);
2441 tmp = do_page_mkwrite(vmf);
2442 if (unlikely(!tmp || (tmp &
2443 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2444 put_page(vmf->page);
2445 return tmp;
2447 tmp = finish_mkwrite_fault(vmf);
2448 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2449 unlock_page(vmf->page);
2450 put_page(vmf->page);
2451 return tmp;
2453 } else {
2454 wp_page_reuse(vmf);
2455 lock_page(vmf->page);
2457 fault_dirty_shared_page(vma, vmf->page);
2458 put_page(vmf->page);
2460 return VM_FAULT_WRITE;
2464 * This routine handles present pages, when users try to write
2465 * to a shared page. It is done by copying the page to a new address
2466 * and decrementing the shared-page counter for the old page.
2468 * Note that this routine assumes that the protection checks have been
2469 * done by the caller (the low-level page fault routine in most cases).
2470 * Thus we can safely just mark it writable once we've done any necessary
2471 * COW.
2473 * We also mark the page dirty at this point even though the page will
2474 * change only once the write actually happens. This avoids a few races,
2475 * and potentially makes it more efficient.
2477 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2478 * but allow concurrent faults), with pte both mapped and locked.
2479 * We return with mmap_sem still held, but pte unmapped and unlocked.
2481 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2482 __releases(vmf->ptl)
2484 struct vm_area_struct *vma = vmf->vma;
2486 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2487 if (!vmf->page) {
2489 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2490 * VM_PFNMAP VMA.
2492 * We should not cow pages in a shared writeable mapping.
2493 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2495 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2496 (VM_WRITE|VM_SHARED))
2497 return wp_pfn_shared(vmf);
2499 pte_unmap_unlock(vmf->pte, vmf->ptl);
2500 return wp_page_copy(vmf);
2504 * Take out anonymous pages first, anonymous shared vmas are
2505 * not dirty accountable.
2507 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2508 int total_map_swapcount;
2509 if (!trylock_page(vmf->page)) {
2510 get_page(vmf->page);
2511 pte_unmap_unlock(vmf->pte, vmf->ptl);
2512 lock_page(vmf->page);
2513 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2514 vmf->address, &vmf->ptl);
2515 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2516 unlock_page(vmf->page);
2517 pte_unmap_unlock(vmf->pte, vmf->ptl);
2518 put_page(vmf->page);
2519 return 0;
2521 put_page(vmf->page);
2523 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2524 if (total_map_swapcount == 1) {
2526 * The page is all ours. Move it to
2527 * our anon_vma so the rmap code will
2528 * not search our parent or siblings.
2529 * Protected against the rmap code by
2530 * the page lock.
2532 page_move_anon_rmap(vmf->page, vma);
2534 unlock_page(vmf->page);
2535 wp_page_reuse(vmf);
2536 return VM_FAULT_WRITE;
2538 unlock_page(vmf->page);
2539 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2540 (VM_WRITE|VM_SHARED))) {
2541 return wp_page_shared(vmf);
2545 * Ok, we need to copy. Oh, well..
2547 get_page(vmf->page);
2549 pte_unmap_unlock(vmf->pte, vmf->ptl);
2550 return wp_page_copy(vmf);
2553 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2554 unsigned long start_addr, unsigned long end_addr,
2555 struct zap_details *details)
2557 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2560 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2561 struct zap_details *details)
2563 struct vm_area_struct *vma;
2564 pgoff_t vba, vea, zba, zea;
2566 vma_interval_tree_foreach(vma, root,
2567 details->first_index, details->last_index) {
2569 vba = vma->vm_pgoff;
2570 vea = vba + vma_pages(vma) - 1;
2571 zba = details->first_index;
2572 if (zba < vba)
2573 zba = vba;
2574 zea = details->last_index;
2575 if (zea > vea)
2576 zea = vea;
2578 unmap_mapping_range_vma(vma,
2579 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2580 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2581 details);
2586 * unmap_mapping_pages() - Unmap pages from processes.
2587 * @mapping: The address space containing pages to be unmapped.
2588 * @start: Index of first page to be unmapped.
2589 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2590 * @even_cows: Whether to unmap even private COWed pages.
2592 * Unmap the pages in this address space from any userspace process which
2593 * has them mmaped. Generally, you want to remove COWed pages as well when
2594 * a file is being truncated, but not when invalidating pages from the page
2595 * cache.
2597 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2598 pgoff_t nr, bool even_cows)
2600 struct zap_details details = { };
2602 details.check_mapping = even_cows ? NULL : mapping;
2603 details.first_index = start;
2604 details.last_index = start + nr - 1;
2605 if (details.last_index < details.first_index)
2606 details.last_index = ULONG_MAX;
2608 i_mmap_lock_write(mapping);
2609 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2610 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2611 i_mmap_unlock_write(mapping);
2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2616 * address_space corresponding to the specified byte range in the underlying
2617 * file.
2619 * @mapping: the address space containing mmaps to be unmapped.
2620 * @holebegin: byte in first page to unmap, relative to the start of
2621 * the underlying file. This will be rounded down to a PAGE_SIZE
2622 * boundary. Note that this is different from truncate_pagecache(), which
2623 * must keep the partial page. In contrast, we must get rid of
2624 * partial pages.
2625 * @holelen: size of prospective hole in bytes. This will be rounded
2626 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2627 * end of the file.
2628 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2629 * but 0 when invalidating pagecache, don't throw away private data.
2631 void unmap_mapping_range(struct address_space *mapping,
2632 loff_t const holebegin, loff_t const holelen, int even_cows)
2634 pgoff_t hba = holebegin >> PAGE_SHIFT;
2635 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2637 /* Check for overflow. */
2638 if (sizeof(holelen) > sizeof(hlen)) {
2639 long long holeend =
2640 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2641 if (holeend & ~(long long)ULONG_MAX)
2642 hlen = ULONG_MAX - hba + 1;
2645 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2647 EXPORT_SYMBOL(unmap_mapping_range);
2650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2651 * but allow concurrent faults), and pte mapped but not yet locked.
2652 * We return with pte unmapped and unlocked.
2654 * We return with the mmap_sem locked or unlocked in the same cases
2655 * as does filemap_fault().
2657 vm_fault_t do_swap_page(struct vm_fault *vmf)
2659 struct vm_area_struct *vma = vmf->vma;
2660 struct page *page = NULL, *swapcache;
2661 struct mem_cgroup *memcg;
2662 swp_entry_t entry;
2663 pte_t pte;
2664 int locked;
2665 int exclusive = 0;
2666 vm_fault_t ret = 0;
2668 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2669 goto out;
2671 entry = pte_to_swp_entry(vmf->orig_pte);
2672 if (unlikely(non_swap_entry(entry))) {
2673 if (is_migration_entry(entry)) {
2674 migration_entry_wait(vma->vm_mm, vmf->pmd,
2675 vmf->address);
2676 } else if (is_device_private_entry(entry)) {
2678 * For un-addressable device memory we call the pgmap
2679 * fault handler callback. The callback must migrate
2680 * the page back to some CPU accessible page.
2682 ret = device_private_entry_fault(vma, vmf->address, entry,
2683 vmf->flags, vmf->pmd);
2684 } else if (is_hwpoison_entry(entry)) {
2685 ret = VM_FAULT_HWPOISON;
2686 } else {
2687 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2688 ret = VM_FAULT_SIGBUS;
2690 goto out;
2694 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2695 page = lookup_swap_cache(entry, vma, vmf->address);
2696 swapcache = page;
2698 if (!page) {
2699 struct swap_info_struct *si = swp_swap_info(entry);
2701 if (si->flags & SWP_SYNCHRONOUS_IO &&
2702 __swap_count(si, entry) == 1) {
2703 /* skip swapcache */
2704 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2705 vmf->address);
2706 if (page) {
2707 __SetPageLocked(page);
2708 __SetPageSwapBacked(page);
2709 set_page_private(page, entry.val);
2710 lru_cache_add_anon(page);
2711 swap_readpage(page, true);
2713 } else {
2714 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2715 vmf);
2716 swapcache = page;
2719 if (!page) {
2721 * Back out if somebody else faulted in this pte
2722 * while we released the pte lock.
2724 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2725 vmf->address, &vmf->ptl);
2726 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2727 ret = VM_FAULT_OOM;
2728 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2729 goto unlock;
2732 /* Had to read the page from swap area: Major fault */
2733 ret = VM_FAULT_MAJOR;
2734 count_vm_event(PGMAJFAULT);
2735 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2736 } else if (PageHWPoison(page)) {
2738 * hwpoisoned dirty swapcache pages are kept for killing
2739 * owner processes (which may be unknown at hwpoison time)
2741 ret = VM_FAULT_HWPOISON;
2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743 goto out_release;
2746 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2748 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2749 if (!locked) {
2750 ret |= VM_FAULT_RETRY;
2751 goto out_release;
2755 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2756 * release the swapcache from under us. The page pin, and pte_same
2757 * test below, are not enough to exclude that. Even if it is still
2758 * swapcache, we need to check that the page's swap has not changed.
2760 if (unlikely((!PageSwapCache(page) ||
2761 page_private(page) != entry.val)) && swapcache)
2762 goto out_page;
2764 page = ksm_might_need_to_copy(page, vma, vmf->address);
2765 if (unlikely(!page)) {
2766 ret = VM_FAULT_OOM;
2767 page = swapcache;
2768 goto out_page;
2771 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2772 &memcg, false)) {
2773 ret = VM_FAULT_OOM;
2774 goto out_page;
2778 * Back out if somebody else already faulted in this pte.
2780 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2781 &vmf->ptl);
2782 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2783 goto out_nomap;
2785 if (unlikely(!PageUptodate(page))) {
2786 ret = VM_FAULT_SIGBUS;
2787 goto out_nomap;
2791 * The page isn't present yet, go ahead with the fault.
2793 * Be careful about the sequence of operations here.
2794 * To get its accounting right, reuse_swap_page() must be called
2795 * while the page is counted on swap but not yet in mapcount i.e.
2796 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2797 * must be called after the swap_free(), or it will never succeed.
2800 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2801 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2802 pte = mk_pte(page, vma->vm_page_prot);
2803 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2804 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2805 vmf->flags &= ~FAULT_FLAG_WRITE;
2806 ret |= VM_FAULT_WRITE;
2807 exclusive = RMAP_EXCLUSIVE;
2809 flush_icache_page(vma, page);
2810 if (pte_swp_soft_dirty(vmf->orig_pte))
2811 pte = pte_mksoft_dirty(pte);
2812 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2813 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2814 vmf->orig_pte = pte;
2816 /* ksm created a completely new copy */
2817 if (unlikely(page != swapcache && swapcache)) {
2818 page_add_new_anon_rmap(page, vma, vmf->address, false);
2819 mem_cgroup_commit_charge(page, memcg, false, false);
2820 lru_cache_add_active_or_unevictable(page, vma);
2821 } else {
2822 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2823 mem_cgroup_commit_charge(page, memcg, true, false);
2824 activate_page(page);
2827 swap_free(entry);
2828 if (mem_cgroup_swap_full(page) ||
2829 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2830 try_to_free_swap(page);
2831 unlock_page(page);
2832 if (page != swapcache && swapcache) {
2834 * Hold the lock to avoid the swap entry to be reused
2835 * until we take the PT lock for the pte_same() check
2836 * (to avoid false positives from pte_same). For
2837 * further safety release the lock after the swap_free
2838 * so that the swap count won't change under a
2839 * parallel locked swapcache.
2841 unlock_page(swapcache);
2842 put_page(swapcache);
2845 if (vmf->flags & FAULT_FLAG_WRITE) {
2846 ret |= do_wp_page(vmf);
2847 if (ret & VM_FAULT_ERROR)
2848 ret &= VM_FAULT_ERROR;
2849 goto out;
2852 /* No need to invalidate - it was non-present before */
2853 update_mmu_cache(vma, vmf->address, vmf->pte);
2854 unlock:
2855 pte_unmap_unlock(vmf->pte, vmf->ptl);
2856 out:
2857 return ret;
2858 out_nomap:
2859 mem_cgroup_cancel_charge(page, memcg, false);
2860 pte_unmap_unlock(vmf->pte, vmf->ptl);
2861 out_page:
2862 unlock_page(page);
2863 out_release:
2864 put_page(page);
2865 if (page != swapcache && swapcache) {
2866 unlock_page(swapcache);
2867 put_page(swapcache);
2869 return ret;
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2877 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2879 struct vm_area_struct *vma = vmf->vma;
2880 struct mem_cgroup *memcg;
2881 struct page *page;
2882 vm_fault_t ret = 0;
2883 pte_t entry;
2885 /* File mapping without ->vm_ops ? */
2886 if (vma->vm_flags & VM_SHARED)
2887 return VM_FAULT_SIGBUS;
2890 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2891 * pte_offset_map() on pmds where a huge pmd might be created
2892 * from a different thread.
2894 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2895 * parallel threads are excluded by other means.
2897 * Here we only have down_read(mmap_sem).
2899 if (pte_alloc(vma->vm_mm, vmf->pmd))
2900 return VM_FAULT_OOM;
2902 /* See the comment in pte_alloc_one_map() */
2903 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2904 return 0;
2906 /* Use the zero-page for reads */
2907 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2908 !mm_forbids_zeropage(vma->vm_mm)) {
2909 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2910 vma->vm_page_prot));
2911 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2912 vmf->address, &vmf->ptl);
2913 if (!pte_none(*vmf->pte))
2914 goto unlock;
2915 ret = check_stable_address_space(vma->vm_mm);
2916 if (ret)
2917 goto unlock;
2918 /* Deliver the page fault to userland, check inside PT lock */
2919 if (userfaultfd_missing(vma)) {
2920 pte_unmap_unlock(vmf->pte, vmf->ptl);
2921 return handle_userfault(vmf, VM_UFFD_MISSING);
2923 goto setpte;
2926 /* Allocate our own private page. */
2927 if (unlikely(anon_vma_prepare(vma)))
2928 goto oom;
2929 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2930 if (!page)
2931 goto oom;
2933 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2934 false))
2935 goto oom_free_page;
2938 * The memory barrier inside __SetPageUptodate makes sure that
2939 * preceeding stores to the page contents become visible before
2940 * the set_pte_at() write.
2942 __SetPageUptodate(page);
2944 entry = mk_pte(page, vma->vm_page_prot);
2945 if (vma->vm_flags & VM_WRITE)
2946 entry = pte_mkwrite(pte_mkdirty(entry));
2948 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2949 &vmf->ptl);
2950 if (!pte_none(*vmf->pte))
2951 goto release;
2953 ret = check_stable_address_space(vma->vm_mm);
2954 if (ret)
2955 goto release;
2957 /* Deliver the page fault to userland, check inside PT lock */
2958 if (userfaultfd_missing(vma)) {
2959 pte_unmap_unlock(vmf->pte, vmf->ptl);
2960 mem_cgroup_cancel_charge(page, memcg, false);
2961 put_page(page);
2962 return handle_userfault(vmf, VM_UFFD_MISSING);
2965 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2966 page_add_new_anon_rmap(page, vma, vmf->address, false);
2967 mem_cgroup_commit_charge(page, memcg, false, false);
2968 lru_cache_add_active_or_unevictable(page, vma);
2969 setpte:
2970 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2972 /* No need to invalidate - it was non-present before */
2973 update_mmu_cache(vma, vmf->address, vmf->pte);
2974 unlock:
2975 pte_unmap_unlock(vmf->pte, vmf->ptl);
2976 return ret;
2977 release:
2978 mem_cgroup_cancel_charge(page, memcg, false);
2979 put_page(page);
2980 goto unlock;
2981 oom_free_page:
2982 put_page(page);
2983 oom:
2984 return VM_FAULT_OOM;
2988 * The mmap_sem must have been held on entry, and may have been
2989 * released depending on flags and vma->vm_ops->fault() return value.
2990 * See filemap_fault() and __lock_page_retry().
2992 static vm_fault_t __do_fault(struct vm_fault *vmf)
2994 struct vm_area_struct *vma = vmf->vma;
2995 vm_fault_t ret;
2998 * Preallocate pte before we take page_lock because this might lead to
2999 * deadlocks for memcg reclaim which waits for pages under writeback:
3000 * lock_page(A)
3001 * SetPageWriteback(A)
3002 * unlock_page(A)
3003 * lock_page(B)
3004 * lock_page(B)
3005 * pte_alloc_pne
3006 * shrink_page_list
3007 * wait_on_page_writeback(A)
3008 * SetPageWriteback(B)
3009 * unlock_page(B)
3010 * # flush A, B to clear the writeback
3012 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3013 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3014 if (!vmf->prealloc_pte)
3015 return VM_FAULT_OOM;
3016 smp_wmb(); /* See comment in __pte_alloc() */
3019 ret = vma->vm_ops->fault(vmf);
3020 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3021 VM_FAULT_DONE_COW)))
3022 return ret;
3024 if (unlikely(PageHWPoison(vmf->page))) {
3025 if (ret & VM_FAULT_LOCKED)
3026 unlock_page(vmf->page);
3027 put_page(vmf->page);
3028 vmf->page = NULL;
3029 return VM_FAULT_HWPOISON;
3032 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3033 lock_page(vmf->page);
3034 else
3035 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3037 return ret;
3041 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3042 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3043 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3044 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3046 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3048 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3051 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3053 struct vm_area_struct *vma = vmf->vma;
3055 if (!pmd_none(*vmf->pmd))
3056 goto map_pte;
3057 if (vmf->prealloc_pte) {
3058 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3059 if (unlikely(!pmd_none(*vmf->pmd))) {
3060 spin_unlock(vmf->ptl);
3061 goto map_pte;
3064 mm_inc_nr_ptes(vma->vm_mm);
3065 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3066 spin_unlock(vmf->ptl);
3067 vmf->prealloc_pte = NULL;
3068 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3069 return VM_FAULT_OOM;
3071 map_pte:
3073 * If a huge pmd materialized under us just retry later. Use
3074 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3075 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3076 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3077 * running immediately after a huge pmd fault in a different thread of
3078 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3079 * All we have to ensure is that it is a regular pmd that we can walk
3080 * with pte_offset_map() and we can do that through an atomic read in
3081 * C, which is what pmd_trans_unstable() provides.
3083 if (pmd_devmap_trans_unstable(vmf->pmd))
3084 return VM_FAULT_NOPAGE;
3087 * At this point we know that our vmf->pmd points to a page of ptes
3088 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3089 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3090 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3091 * be valid and we will re-check to make sure the vmf->pte isn't
3092 * pte_none() under vmf->ptl protection when we return to
3093 * alloc_set_pte().
3095 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096 &vmf->ptl);
3097 return 0;
3100 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3102 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3103 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3104 unsigned long haddr)
3106 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3107 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3108 return false;
3109 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3110 return false;
3111 return true;
3114 static void deposit_prealloc_pte(struct vm_fault *vmf)
3116 struct vm_area_struct *vma = vmf->vma;
3118 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3120 * We are going to consume the prealloc table,
3121 * count that as nr_ptes.
3123 mm_inc_nr_ptes(vma->vm_mm);
3124 vmf->prealloc_pte = NULL;
3127 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3129 struct vm_area_struct *vma = vmf->vma;
3130 bool write = vmf->flags & FAULT_FLAG_WRITE;
3131 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3132 pmd_t entry;
3133 int i;
3134 vm_fault_t ret;
3136 if (!transhuge_vma_suitable(vma, haddr))
3137 return VM_FAULT_FALLBACK;
3139 ret = VM_FAULT_FALLBACK;
3140 page = compound_head(page);
3143 * Archs like ppc64 need additonal space to store information
3144 * related to pte entry. Use the preallocated table for that.
3146 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3147 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3148 if (!vmf->prealloc_pte)
3149 return VM_FAULT_OOM;
3150 smp_wmb(); /* See comment in __pte_alloc() */
3153 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3154 if (unlikely(!pmd_none(*vmf->pmd)))
3155 goto out;
3157 for (i = 0; i < HPAGE_PMD_NR; i++)
3158 flush_icache_page(vma, page + i);
3160 entry = mk_huge_pmd(page, vma->vm_page_prot);
3161 if (write)
3162 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3164 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3165 page_add_file_rmap(page, true);
3167 * deposit and withdraw with pmd lock held
3169 if (arch_needs_pgtable_deposit())
3170 deposit_prealloc_pte(vmf);
3172 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3174 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3176 /* fault is handled */
3177 ret = 0;
3178 count_vm_event(THP_FILE_MAPPED);
3179 out:
3180 spin_unlock(vmf->ptl);
3181 return ret;
3183 #else
3184 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3186 BUILD_BUG();
3187 return 0;
3189 #endif
3192 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3193 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3195 * @vmf: fault environment
3196 * @memcg: memcg to charge page (only for private mappings)
3197 * @page: page to map
3199 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3200 * return.
3202 * Target users are page handler itself and implementations of
3203 * vm_ops->map_pages.
3205 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3206 struct page *page)
3208 struct vm_area_struct *vma = vmf->vma;
3209 bool write = vmf->flags & FAULT_FLAG_WRITE;
3210 pte_t entry;
3211 vm_fault_t ret;
3213 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3214 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3215 /* THP on COW? */
3216 VM_BUG_ON_PAGE(memcg, page);
3218 ret = do_set_pmd(vmf, page);
3219 if (ret != VM_FAULT_FALLBACK)
3220 return ret;
3223 if (!vmf->pte) {
3224 ret = pte_alloc_one_map(vmf);
3225 if (ret)
3226 return ret;
3229 /* Re-check under ptl */
3230 if (unlikely(!pte_none(*vmf->pte)))
3231 return VM_FAULT_NOPAGE;
3233 flush_icache_page(vma, page);
3234 entry = mk_pte(page, vma->vm_page_prot);
3235 if (write)
3236 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3237 /* copy-on-write page */
3238 if (write && !(vma->vm_flags & VM_SHARED)) {
3239 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3240 page_add_new_anon_rmap(page, vma, vmf->address, false);
3241 mem_cgroup_commit_charge(page, memcg, false, false);
3242 lru_cache_add_active_or_unevictable(page, vma);
3243 } else {
3244 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3245 page_add_file_rmap(page, false);
3247 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3249 /* no need to invalidate: a not-present page won't be cached */
3250 update_mmu_cache(vma, vmf->address, vmf->pte);
3252 return 0;
3257 * finish_fault - finish page fault once we have prepared the page to fault
3259 * @vmf: structure describing the fault
3261 * This function handles all that is needed to finish a page fault once the
3262 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3263 * given page, adds reverse page mapping, handles memcg charges and LRU
3264 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3265 * error.
3267 * The function expects the page to be locked and on success it consumes a
3268 * reference of a page being mapped (for the PTE which maps it).
3270 vm_fault_t finish_fault(struct vm_fault *vmf)
3272 struct page *page;
3273 vm_fault_t ret = 0;
3275 /* Did we COW the page? */
3276 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3277 !(vmf->vma->vm_flags & VM_SHARED))
3278 page = vmf->cow_page;
3279 else
3280 page = vmf->page;
3283 * check even for read faults because we might have lost our CoWed
3284 * page
3286 if (!(vmf->vma->vm_flags & VM_SHARED))
3287 ret = check_stable_address_space(vmf->vma->vm_mm);
3288 if (!ret)
3289 ret = alloc_set_pte(vmf, vmf->memcg, page);
3290 if (vmf->pte)
3291 pte_unmap_unlock(vmf->pte, vmf->ptl);
3292 return ret;
3295 static unsigned long fault_around_bytes __read_mostly =
3296 rounddown_pow_of_two(65536);
3298 #ifdef CONFIG_DEBUG_FS
3299 static int fault_around_bytes_get(void *data, u64 *val)
3301 *val = fault_around_bytes;
3302 return 0;
3306 * fault_around_bytes must be rounded down to the nearest page order as it's
3307 * what do_fault_around() expects to see.
3309 static int fault_around_bytes_set(void *data, u64 val)
3311 if (val / PAGE_SIZE > PTRS_PER_PTE)
3312 return -EINVAL;
3313 if (val > PAGE_SIZE)
3314 fault_around_bytes = rounddown_pow_of_two(val);
3315 else
3316 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3317 return 0;
3319 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3320 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3322 static int __init fault_around_debugfs(void)
3324 void *ret;
3326 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3327 &fault_around_bytes_fops);
3328 if (!ret)
3329 pr_warn("Failed to create fault_around_bytes in debugfs");
3330 return 0;
3332 late_initcall(fault_around_debugfs);
3333 #endif
3336 * do_fault_around() tries to map few pages around the fault address. The hope
3337 * is that the pages will be needed soon and this will lower the number of
3338 * faults to handle.
3340 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3341 * not ready to be mapped: not up-to-date, locked, etc.
3343 * This function is called with the page table lock taken. In the split ptlock
3344 * case the page table lock only protects only those entries which belong to
3345 * the page table corresponding to the fault address.
3347 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3348 * only once.
3350 * fault_around_bytes defines how many bytes we'll try to map.
3351 * do_fault_around() expects it to be set to a power of two less than or equal
3352 * to PTRS_PER_PTE.
3354 * The virtual address of the area that we map is naturally aligned to
3355 * fault_around_bytes rounded down to the machine page size
3356 * (and therefore to page order). This way it's easier to guarantee
3357 * that we don't cross page table boundaries.
3359 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3361 unsigned long address = vmf->address, nr_pages, mask;
3362 pgoff_t start_pgoff = vmf->pgoff;
3363 pgoff_t end_pgoff;
3364 int off;
3365 vm_fault_t ret = 0;
3367 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3368 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3370 vmf->address = max(address & mask, vmf->vma->vm_start);
3371 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3372 start_pgoff -= off;
3375 * end_pgoff is either the end of the page table, the end of
3376 * the vma or nr_pages from start_pgoff, depending what is nearest.
3378 end_pgoff = start_pgoff -
3379 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3380 PTRS_PER_PTE - 1;
3381 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3382 start_pgoff + nr_pages - 1);
3384 if (pmd_none(*vmf->pmd)) {
3385 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3386 if (!vmf->prealloc_pte)
3387 goto out;
3388 smp_wmb(); /* See comment in __pte_alloc() */
3391 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3393 /* Huge page is mapped? Page fault is solved */
3394 if (pmd_trans_huge(*vmf->pmd)) {
3395 ret = VM_FAULT_NOPAGE;
3396 goto out;
3399 /* ->map_pages() haven't done anything useful. Cold page cache? */
3400 if (!vmf->pte)
3401 goto out;
3403 /* check if the page fault is solved */
3404 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3405 if (!pte_none(*vmf->pte))
3406 ret = VM_FAULT_NOPAGE;
3407 pte_unmap_unlock(vmf->pte, vmf->ptl);
3408 out:
3409 vmf->address = address;
3410 vmf->pte = NULL;
3411 return ret;
3414 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3416 struct vm_area_struct *vma = vmf->vma;
3417 vm_fault_t ret = 0;
3420 * Let's call ->map_pages() first and use ->fault() as fallback
3421 * if page by the offset is not ready to be mapped (cold cache or
3422 * something).
3424 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3425 ret = do_fault_around(vmf);
3426 if (ret)
3427 return ret;
3430 ret = __do_fault(vmf);
3431 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432 return ret;
3434 ret |= finish_fault(vmf);
3435 unlock_page(vmf->page);
3436 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3437 put_page(vmf->page);
3438 return ret;
3441 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3443 struct vm_area_struct *vma = vmf->vma;
3444 vm_fault_t ret;
3446 if (unlikely(anon_vma_prepare(vma)))
3447 return VM_FAULT_OOM;
3449 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3450 if (!vmf->cow_page)
3451 return VM_FAULT_OOM;
3453 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3454 &vmf->memcg, false)) {
3455 put_page(vmf->cow_page);
3456 return VM_FAULT_OOM;
3459 ret = __do_fault(vmf);
3460 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3461 goto uncharge_out;
3462 if (ret & VM_FAULT_DONE_COW)
3463 return ret;
3465 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3466 __SetPageUptodate(vmf->cow_page);
3468 ret |= finish_fault(vmf);
3469 unlock_page(vmf->page);
3470 put_page(vmf->page);
3471 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3472 goto uncharge_out;
3473 return ret;
3474 uncharge_out:
3475 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3476 put_page(vmf->cow_page);
3477 return ret;
3480 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3482 struct vm_area_struct *vma = vmf->vma;
3483 vm_fault_t ret, tmp;
3485 ret = __do_fault(vmf);
3486 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487 return ret;
3490 * Check if the backing address space wants to know that the page is
3491 * about to become writable
3493 if (vma->vm_ops->page_mkwrite) {
3494 unlock_page(vmf->page);
3495 tmp = do_page_mkwrite(vmf);
3496 if (unlikely(!tmp ||
3497 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3498 put_page(vmf->page);
3499 return tmp;
3503 ret |= finish_fault(vmf);
3504 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3505 VM_FAULT_RETRY))) {
3506 unlock_page(vmf->page);
3507 put_page(vmf->page);
3508 return ret;
3511 fault_dirty_shared_page(vma, vmf->page);
3512 return ret;
3516 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3517 * but allow concurrent faults).
3518 * The mmap_sem may have been released depending on flags and our
3519 * return value. See filemap_fault() and __lock_page_or_retry().
3521 static vm_fault_t do_fault(struct vm_fault *vmf)
3523 struct vm_area_struct *vma = vmf->vma;
3524 vm_fault_t ret;
3527 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3529 if (!vma->vm_ops->fault) {
3531 * If we find a migration pmd entry or a none pmd entry, which
3532 * should never happen, return SIGBUS
3534 if (unlikely(!pmd_present(*vmf->pmd)))
3535 ret = VM_FAULT_SIGBUS;
3536 else {
3537 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3538 vmf->pmd,
3539 vmf->address,
3540 &vmf->ptl);
3542 * Make sure this is not a temporary clearing of pte
3543 * by holding ptl and checking again. A R/M/W update
3544 * of pte involves: take ptl, clearing the pte so that
3545 * we don't have concurrent modification by hardware
3546 * followed by an update.
3548 if (unlikely(pte_none(*vmf->pte)))
3549 ret = VM_FAULT_SIGBUS;
3550 else
3551 ret = VM_FAULT_NOPAGE;
3553 pte_unmap_unlock(vmf->pte, vmf->ptl);
3555 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3556 ret = do_read_fault(vmf);
3557 else if (!(vma->vm_flags & VM_SHARED))
3558 ret = do_cow_fault(vmf);
3559 else
3560 ret = do_shared_fault(vmf);
3562 /* preallocated pagetable is unused: free it */
3563 if (vmf->prealloc_pte) {
3564 pte_free(vma->vm_mm, vmf->prealloc_pte);
3565 vmf->prealloc_pte = NULL;
3567 return ret;
3570 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3571 unsigned long addr, int page_nid,
3572 int *flags)
3574 get_page(page);
3576 count_vm_numa_event(NUMA_HINT_FAULTS);
3577 if (page_nid == numa_node_id()) {
3578 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3579 *flags |= TNF_FAULT_LOCAL;
3582 return mpol_misplaced(page, vma, addr);
3585 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3587 struct vm_area_struct *vma = vmf->vma;
3588 struct page *page = NULL;
3589 int page_nid = -1;
3590 int last_cpupid;
3591 int target_nid;
3592 bool migrated = false;
3593 pte_t pte;
3594 bool was_writable = pte_savedwrite(vmf->orig_pte);
3595 int flags = 0;
3598 * The "pte" at this point cannot be used safely without
3599 * validation through pte_unmap_same(). It's of NUMA type but
3600 * the pfn may be screwed if the read is non atomic.
3602 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3603 spin_lock(vmf->ptl);
3604 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3605 pte_unmap_unlock(vmf->pte, vmf->ptl);
3606 goto out;
3610 * Make it present again, Depending on how arch implementes non
3611 * accessible ptes, some can allow access by kernel mode.
3613 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3614 pte = pte_modify(pte, vma->vm_page_prot);
3615 pte = pte_mkyoung(pte);
3616 if (was_writable)
3617 pte = pte_mkwrite(pte);
3618 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3619 update_mmu_cache(vma, vmf->address, vmf->pte);
3621 page = vm_normal_page(vma, vmf->address, pte);
3622 if (!page) {
3623 pte_unmap_unlock(vmf->pte, vmf->ptl);
3624 return 0;
3627 /* TODO: handle PTE-mapped THP */
3628 if (PageCompound(page)) {
3629 pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 return 0;
3634 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3635 * much anyway since they can be in shared cache state. This misses
3636 * the case where a mapping is writable but the process never writes
3637 * to it but pte_write gets cleared during protection updates and
3638 * pte_dirty has unpredictable behaviour between PTE scan updates,
3639 * background writeback, dirty balancing and application behaviour.
3641 if (!pte_write(pte))
3642 flags |= TNF_NO_GROUP;
3645 * Flag if the page is shared between multiple address spaces. This
3646 * is later used when determining whether to group tasks together
3648 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3649 flags |= TNF_SHARED;
3651 last_cpupid = page_cpupid_last(page);
3652 page_nid = page_to_nid(page);
3653 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3654 &flags);
3655 pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 if (target_nid == -1) {
3657 put_page(page);
3658 goto out;
3661 /* Migrate to the requested node */
3662 migrated = migrate_misplaced_page(page, vma, target_nid);
3663 if (migrated) {
3664 page_nid = target_nid;
3665 flags |= TNF_MIGRATED;
3666 } else
3667 flags |= TNF_MIGRATE_FAIL;
3669 out:
3670 if (page_nid != -1)
3671 task_numa_fault(last_cpupid, page_nid, 1, flags);
3672 return 0;
3675 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3677 if (vma_is_anonymous(vmf->vma))
3678 return do_huge_pmd_anonymous_page(vmf);
3679 if (vmf->vma->vm_ops->huge_fault)
3680 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3681 return VM_FAULT_FALLBACK;
3684 /* `inline' is required to avoid gcc 4.1.2 build error */
3685 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3687 if (vma_is_anonymous(vmf->vma))
3688 return do_huge_pmd_wp_page(vmf, orig_pmd);
3689 if (vmf->vma->vm_ops->huge_fault)
3690 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3692 /* COW handled on pte level: split pmd */
3693 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3694 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3696 return VM_FAULT_FALLBACK;
3699 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3701 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3704 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 /* No support for anonymous transparent PUD pages yet */
3708 if (vma_is_anonymous(vmf->vma))
3709 return VM_FAULT_FALLBACK;
3710 if (vmf->vma->vm_ops->huge_fault)
3711 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713 return VM_FAULT_FALLBACK;
3716 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719 /* No support for anonymous transparent PUD pages yet */
3720 if (vma_is_anonymous(vmf->vma))
3721 return VM_FAULT_FALLBACK;
3722 if (vmf->vma->vm_ops->huge_fault)
3723 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725 return VM_FAULT_FALLBACK;
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures). The early dirtying is also good on the i386.
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738 * concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our return value.
3741 * See filemap_fault() and __lock_page_or_retry().
3743 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3745 pte_t entry;
3747 if (unlikely(pmd_none(*vmf->pmd))) {
3749 * Leave __pte_alloc() until later: because vm_ops->fault may
3750 * want to allocate huge page, and if we expose page table
3751 * for an instant, it will be difficult to retract from
3752 * concurrent faults and from rmap lookups.
3754 vmf->pte = NULL;
3755 } else {
3756 /* See comment in pte_alloc_one_map() */
3757 if (pmd_devmap_trans_unstable(vmf->pmd))
3758 return 0;
3760 * A regular pmd is established and it can't morph into a huge
3761 * pmd from under us anymore at this point because we hold the
3762 * mmap_sem read mode and khugepaged takes it in write mode.
3763 * So now it's safe to run pte_offset_map().
3765 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3766 vmf->orig_pte = *vmf->pte;
3769 * some architectures can have larger ptes than wordsize,
3770 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3772 * accesses. The code below just needs a consistent view
3773 * for the ifs and we later double check anyway with the
3774 * ptl lock held. So here a barrier will do.
3776 barrier();
3777 if (pte_none(vmf->orig_pte)) {
3778 pte_unmap(vmf->pte);
3779 vmf->pte = NULL;
3783 if (!vmf->pte) {
3784 if (vma_is_anonymous(vmf->vma))
3785 return do_anonymous_page(vmf);
3786 else
3787 return do_fault(vmf);
3790 if (!pte_present(vmf->orig_pte))
3791 return do_swap_page(vmf);
3793 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3794 return do_numa_page(vmf);
3796 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3797 spin_lock(vmf->ptl);
3798 entry = vmf->orig_pte;
3799 if (unlikely(!pte_same(*vmf->pte, entry)))
3800 goto unlock;
3801 if (vmf->flags & FAULT_FLAG_WRITE) {
3802 if (!pte_write(entry))
3803 return do_wp_page(vmf);
3804 entry = pte_mkdirty(entry);
3806 entry = pte_mkyoung(entry);
3807 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3808 vmf->flags & FAULT_FLAG_WRITE)) {
3809 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3810 } else {
3812 * This is needed only for protection faults but the arch code
3813 * is not yet telling us if this is a protection fault or not.
3814 * This still avoids useless tlb flushes for .text page faults
3815 * with threads.
3817 if (vmf->flags & FAULT_FLAG_WRITE)
3818 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3820 unlock:
3821 pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 return 0;
3826 * By the time we get here, we already hold the mm semaphore
3828 * The mmap_sem may have been released depending on flags and our
3829 * return value. See filemap_fault() and __lock_page_or_retry().
3831 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3832 unsigned long address, unsigned int flags)
3834 struct vm_fault vmf = {
3835 .vma = vma,
3836 .address = address & PAGE_MASK,
3837 .flags = flags,
3838 .pgoff = linear_page_index(vma, address),
3839 .gfp_mask = __get_fault_gfp_mask(vma),
3841 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3842 struct mm_struct *mm = vma->vm_mm;
3843 pgd_t *pgd;
3844 p4d_t *p4d;
3845 vm_fault_t ret;
3847 pgd = pgd_offset(mm, address);
3848 p4d = p4d_alloc(mm, pgd, address);
3849 if (!p4d)
3850 return VM_FAULT_OOM;
3852 vmf.pud = pud_alloc(mm, p4d, address);
3853 if (!vmf.pud)
3854 return VM_FAULT_OOM;
3855 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3856 ret = create_huge_pud(&vmf);
3857 if (!(ret & VM_FAULT_FALLBACK))
3858 return ret;
3859 } else {
3860 pud_t orig_pud = *vmf.pud;
3862 barrier();
3863 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3865 /* NUMA case for anonymous PUDs would go here */
3867 if (dirty && !pud_write(orig_pud)) {
3868 ret = wp_huge_pud(&vmf, orig_pud);
3869 if (!(ret & VM_FAULT_FALLBACK))
3870 return ret;
3871 } else {
3872 huge_pud_set_accessed(&vmf, orig_pud);
3873 return 0;
3878 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3879 if (!vmf.pmd)
3880 return VM_FAULT_OOM;
3881 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3882 ret = create_huge_pmd(&vmf);
3883 if (!(ret & VM_FAULT_FALLBACK))
3884 return ret;
3885 } else {
3886 pmd_t orig_pmd = *vmf.pmd;
3888 barrier();
3889 if (unlikely(is_swap_pmd(orig_pmd))) {
3890 VM_BUG_ON(thp_migration_supported() &&
3891 !is_pmd_migration_entry(orig_pmd));
3892 if (is_pmd_migration_entry(orig_pmd))
3893 pmd_migration_entry_wait(mm, vmf.pmd);
3894 return 0;
3896 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3897 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3898 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3900 if (dirty && !pmd_write(orig_pmd)) {
3901 ret = wp_huge_pmd(&vmf, orig_pmd);
3902 if (!(ret & VM_FAULT_FALLBACK))
3903 return ret;
3904 } else {
3905 huge_pmd_set_accessed(&vmf, orig_pmd);
3906 return 0;
3911 return handle_pte_fault(&vmf);
3915 * By the time we get here, we already hold the mm semaphore
3917 * The mmap_sem may have been released depending on flags and our
3918 * return value. See filemap_fault() and __lock_page_or_retry().
3920 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3921 unsigned int flags)
3923 vm_fault_t ret;
3925 __set_current_state(TASK_RUNNING);
3927 count_vm_event(PGFAULT);
3928 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3930 /* do counter updates before entering really critical section. */
3931 check_sync_rss_stat(current);
3933 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3934 flags & FAULT_FLAG_INSTRUCTION,
3935 flags & FAULT_FLAG_REMOTE))
3936 return VM_FAULT_SIGSEGV;
3939 * Enable the memcg OOM handling for faults triggered in user
3940 * space. Kernel faults are handled more gracefully.
3942 if (flags & FAULT_FLAG_USER)
3943 mem_cgroup_enter_user_fault();
3945 if (unlikely(is_vm_hugetlb_page(vma)))
3946 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3947 else
3948 ret = __handle_mm_fault(vma, address, flags);
3950 if (flags & FAULT_FLAG_USER) {
3951 mem_cgroup_exit_user_fault();
3953 * The task may have entered a memcg OOM situation but
3954 * if the allocation error was handled gracefully (no
3955 * VM_FAULT_OOM), there is no need to kill anything.
3956 * Just clean up the OOM state peacefully.
3958 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3959 mem_cgroup_oom_synchronize(false);
3962 return ret;
3964 EXPORT_SYMBOL_GPL(handle_mm_fault);
3966 #ifndef __PAGETABLE_P4D_FOLDED
3968 * Allocate p4d page table.
3969 * We've already handled the fast-path in-line.
3971 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3973 p4d_t *new = p4d_alloc_one(mm, address);
3974 if (!new)
3975 return -ENOMEM;
3977 smp_wmb(); /* See comment in __pte_alloc */
3979 spin_lock(&mm->page_table_lock);
3980 if (pgd_present(*pgd)) /* Another has populated it */
3981 p4d_free(mm, new);
3982 else
3983 pgd_populate(mm, pgd, new);
3984 spin_unlock(&mm->page_table_lock);
3985 return 0;
3987 #endif /* __PAGETABLE_P4D_FOLDED */
3989 #ifndef __PAGETABLE_PUD_FOLDED
3991 * Allocate page upper directory.
3992 * We've already handled the fast-path in-line.
3994 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3996 pud_t *new = pud_alloc_one(mm, address);
3997 if (!new)
3998 return -ENOMEM;
4000 smp_wmb(); /* See comment in __pte_alloc */
4002 spin_lock(&mm->page_table_lock);
4003 #ifndef __ARCH_HAS_5LEVEL_HACK
4004 if (!p4d_present(*p4d)) {
4005 mm_inc_nr_puds(mm);
4006 p4d_populate(mm, p4d, new);
4007 } else /* Another has populated it */
4008 pud_free(mm, new);
4009 #else
4010 if (!pgd_present(*p4d)) {
4011 mm_inc_nr_puds(mm);
4012 pgd_populate(mm, p4d, new);
4013 } else /* Another has populated it */
4014 pud_free(mm, new);
4015 #endif /* __ARCH_HAS_5LEVEL_HACK */
4016 spin_unlock(&mm->page_table_lock);
4017 return 0;
4019 #endif /* __PAGETABLE_PUD_FOLDED */
4021 #ifndef __PAGETABLE_PMD_FOLDED
4023 * Allocate page middle directory.
4024 * We've already handled the fast-path in-line.
4026 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4028 spinlock_t *ptl;
4029 pmd_t *new = pmd_alloc_one(mm, address);
4030 if (!new)
4031 return -ENOMEM;
4033 smp_wmb(); /* See comment in __pte_alloc */
4035 ptl = pud_lock(mm, pud);
4036 #ifndef __ARCH_HAS_4LEVEL_HACK
4037 if (!pud_present(*pud)) {
4038 mm_inc_nr_pmds(mm);
4039 pud_populate(mm, pud, new);
4040 } else /* Another has populated it */
4041 pmd_free(mm, new);
4042 #else
4043 if (!pgd_present(*pud)) {
4044 mm_inc_nr_pmds(mm);
4045 pgd_populate(mm, pud, new);
4046 } else /* Another has populated it */
4047 pmd_free(mm, new);
4048 #endif /* __ARCH_HAS_4LEVEL_HACK */
4049 spin_unlock(ptl);
4050 return 0;
4052 #endif /* __PAGETABLE_PMD_FOLDED */
4054 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4055 struct mmu_notifier_range *range,
4056 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4058 pgd_t *pgd;
4059 p4d_t *p4d;
4060 pud_t *pud;
4061 pmd_t *pmd;
4062 pte_t *ptep;
4064 pgd = pgd_offset(mm, address);
4065 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4066 goto out;
4068 p4d = p4d_offset(pgd, address);
4069 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4070 goto out;
4072 pud = pud_offset(p4d, address);
4073 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4074 goto out;
4076 pmd = pmd_offset(pud, address);
4077 VM_BUG_ON(pmd_trans_huge(*pmd));
4079 if (pmd_huge(*pmd)) {
4080 if (!pmdpp)
4081 goto out;
4083 if (range) {
4084 mmu_notifier_range_init(range, mm, address & PMD_MASK,
4085 (address & PMD_MASK) + PMD_SIZE);
4086 mmu_notifier_invalidate_range_start(range);
4088 *ptlp = pmd_lock(mm, pmd);
4089 if (pmd_huge(*pmd)) {
4090 *pmdpp = pmd;
4091 return 0;
4093 spin_unlock(*ptlp);
4094 if (range)
4095 mmu_notifier_invalidate_range_end(range);
4098 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4099 goto out;
4101 if (range) {
4102 mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4103 (address & PAGE_MASK) + PAGE_SIZE);
4104 mmu_notifier_invalidate_range_start(range);
4106 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4107 if (!pte_present(*ptep))
4108 goto unlock;
4109 *ptepp = ptep;
4110 return 0;
4111 unlock:
4112 pte_unmap_unlock(ptep, *ptlp);
4113 if (range)
4114 mmu_notifier_invalidate_range_end(range);
4115 out:
4116 return -EINVAL;
4119 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4120 pte_t **ptepp, spinlock_t **ptlp)
4122 int res;
4124 /* (void) is needed to make gcc happy */
4125 (void) __cond_lock(*ptlp,
4126 !(res = __follow_pte_pmd(mm, address, NULL,
4127 ptepp, NULL, ptlp)));
4128 return res;
4131 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4132 struct mmu_notifier_range *range,
4133 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4135 int res;
4137 /* (void) is needed to make gcc happy */
4138 (void) __cond_lock(*ptlp,
4139 !(res = __follow_pte_pmd(mm, address, range,
4140 ptepp, pmdpp, ptlp)));
4141 return res;
4143 EXPORT_SYMBOL(follow_pte_pmd);
4146 * follow_pfn - look up PFN at a user virtual address
4147 * @vma: memory mapping
4148 * @address: user virtual address
4149 * @pfn: location to store found PFN
4151 * Only IO mappings and raw PFN mappings are allowed.
4153 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4155 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4156 unsigned long *pfn)
4158 int ret = -EINVAL;
4159 spinlock_t *ptl;
4160 pte_t *ptep;
4162 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4163 return ret;
4165 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4166 if (ret)
4167 return ret;
4168 *pfn = pte_pfn(*ptep);
4169 pte_unmap_unlock(ptep, ptl);
4170 return 0;
4172 EXPORT_SYMBOL(follow_pfn);
4174 #ifdef CONFIG_HAVE_IOREMAP_PROT
4175 int follow_phys(struct vm_area_struct *vma,
4176 unsigned long address, unsigned int flags,
4177 unsigned long *prot, resource_size_t *phys)
4179 int ret = -EINVAL;
4180 pte_t *ptep, pte;
4181 spinlock_t *ptl;
4183 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4184 goto out;
4186 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4187 goto out;
4188 pte = *ptep;
4190 if ((flags & FOLL_WRITE) && !pte_write(pte))
4191 goto unlock;
4193 *prot = pgprot_val(pte_pgprot(pte));
4194 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4196 ret = 0;
4197 unlock:
4198 pte_unmap_unlock(ptep, ptl);
4199 out:
4200 return ret;
4203 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4204 void *buf, int len, int write)
4206 resource_size_t phys_addr;
4207 unsigned long prot = 0;
4208 void __iomem *maddr;
4209 int offset = addr & (PAGE_SIZE-1);
4211 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4212 return -EINVAL;
4214 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4215 if (!maddr)
4216 return -ENOMEM;
4218 if (write)
4219 memcpy_toio(maddr + offset, buf, len);
4220 else
4221 memcpy_fromio(buf, maddr + offset, len);
4222 iounmap(maddr);
4224 return len;
4226 EXPORT_SYMBOL_GPL(generic_access_phys);
4227 #endif
4230 * Access another process' address space as given in mm. If non-NULL, use the
4231 * given task for page fault accounting.
4233 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4234 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4236 struct vm_area_struct *vma;
4237 void *old_buf = buf;
4238 int write = gup_flags & FOLL_WRITE;
4240 down_read(&mm->mmap_sem);
4241 /* ignore errors, just check how much was successfully transferred */
4242 while (len) {
4243 int bytes, ret, offset;
4244 void *maddr;
4245 struct page *page = NULL;
4247 ret = get_user_pages_remote(tsk, mm, addr, 1,
4248 gup_flags, &page, &vma, NULL);
4249 if (ret <= 0) {
4250 #ifndef CONFIG_HAVE_IOREMAP_PROT
4251 break;
4252 #else
4254 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4255 * we can access using slightly different code.
4257 vma = find_vma(mm, addr);
4258 if (!vma || vma->vm_start > addr)
4259 break;
4260 if (vma->vm_ops && vma->vm_ops->access)
4261 ret = vma->vm_ops->access(vma, addr, buf,
4262 len, write);
4263 if (ret <= 0)
4264 break;
4265 bytes = ret;
4266 #endif
4267 } else {
4268 bytes = len;
4269 offset = addr & (PAGE_SIZE-1);
4270 if (bytes > PAGE_SIZE-offset)
4271 bytes = PAGE_SIZE-offset;
4273 maddr = kmap(page);
4274 if (write) {
4275 copy_to_user_page(vma, page, addr,
4276 maddr + offset, buf, bytes);
4277 set_page_dirty_lock(page);
4278 } else {
4279 copy_from_user_page(vma, page, addr,
4280 buf, maddr + offset, bytes);
4282 kunmap(page);
4283 put_page(page);
4285 len -= bytes;
4286 buf += bytes;
4287 addr += bytes;
4289 up_read(&mm->mmap_sem);
4291 return buf - old_buf;
4295 * access_remote_vm - access another process' address space
4296 * @mm: the mm_struct of the target address space
4297 * @addr: start address to access
4298 * @buf: source or destination buffer
4299 * @len: number of bytes to transfer
4300 * @gup_flags: flags modifying lookup behaviour
4302 * The caller must hold a reference on @mm.
4304 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4305 void *buf, int len, unsigned int gup_flags)
4307 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4311 * Access another process' address space.
4312 * Source/target buffer must be kernel space,
4313 * Do not walk the page table directly, use get_user_pages
4315 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4316 void *buf, int len, unsigned int gup_flags)
4318 struct mm_struct *mm;
4319 int ret;
4321 mm = get_task_mm(tsk);
4322 if (!mm)
4323 return 0;
4325 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4327 mmput(mm);
4329 return ret;
4331 EXPORT_SYMBOL_GPL(access_process_vm);
4334 * Print the name of a VMA.
4336 void print_vma_addr(char *prefix, unsigned long ip)
4338 struct mm_struct *mm = current->mm;
4339 struct vm_area_struct *vma;
4342 * we might be running from an atomic context so we cannot sleep
4344 if (!down_read_trylock(&mm->mmap_sem))
4345 return;
4347 vma = find_vma(mm, ip);
4348 if (vma && vma->vm_file) {
4349 struct file *f = vma->vm_file;
4350 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4351 if (buf) {
4352 char *p;
4354 p = file_path(f, buf, PAGE_SIZE);
4355 if (IS_ERR(p))
4356 p = "?";
4357 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4358 vma->vm_start,
4359 vma->vm_end - vma->vm_start);
4360 free_page((unsigned long)buf);
4363 up_read(&mm->mmap_sem);
4366 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4367 void __might_fault(const char *file, int line)
4370 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4371 * holding the mmap_sem, this is safe because kernel memory doesn't
4372 * get paged out, therefore we'll never actually fault, and the
4373 * below annotations will generate false positives.
4375 if (uaccess_kernel())
4376 return;
4377 if (pagefault_disabled())
4378 return;
4379 __might_sleep(file, line, 0);
4380 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4381 if (current->mm)
4382 might_lock_read(&current->mm->mmap_sem);
4383 #endif
4385 EXPORT_SYMBOL(__might_fault);
4386 #endif
4388 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4390 * Process all subpages of the specified huge page with the specified
4391 * operation. The target subpage will be processed last to keep its
4392 * cache lines hot.
4394 static inline void process_huge_page(
4395 unsigned long addr_hint, unsigned int pages_per_huge_page,
4396 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4397 void *arg)
4399 int i, n, base, l;
4400 unsigned long addr = addr_hint &
4401 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4403 /* Process target subpage last to keep its cache lines hot */
4404 might_sleep();
4405 n = (addr_hint - addr) / PAGE_SIZE;
4406 if (2 * n <= pages_per_huge_page) {
4407 /* If target subpage in first half of huge page */
4408 base = 0;
4409 l = n;
4410 /* Process subpages at the end of huge page */
4411 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4412 cond_resched();
4413 process_subpage(addr + i * PAGE_SIZE, i, arg);
4415 } else {
4416 /* If target subpage in second half of huge page */
4417 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4418 l = pages_per_huge_page - n;
4419 /* Process subpages at the begin of huge page */
4420 for (i = 0; i < base; i++) {
4421 cond_resched();
4422 process_subpage(addr + i * PAGE_SIZE, i, arg);
4426 * Process remaining subpages in left-right-left-right pattern
4427 * towards the target subpage
4429 for (i = 0; i < l; i++) {
4430 int left_idx = base + i;
4431 int right_idx = base + 2 * l - 1 - i;
4433 cond_resched();
4434 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4435 cond_resched();
4436 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4440 static void clear_gigantic_page(struct page *page,
4441 unsigned long addr,
4442 unsigned int pages_per_huge_page)
4444 int i;
4445 struct page *p = page;
4447 might_sleep();
4448 for (i = 0; i < pages_per_huge_page;
4449 i++, p = mem_map_next(p, page, i)) {
4450 cond_resched();
4451 clear_user_highpage(p, addr + i * PAGE_SIZE);
4455 static void clear_subpage(unsigned long addr, int idx, void *arg)
4457 struct page *page = arg;
4459 clear_user_highpage(page + idx, addr);
4462 void clear_huge_page(struct page *page,
4463 unsigned long addr_hint, unsigned int pages_per_huge_page)
4465 unsigned long addr = addr_hint &
4466 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4468 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4469 clear_gigantic_page(page, addr, pages_per_huge_page);
4470 return;
4473 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4476 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4477 unsigned long addr,
4478 struct vm_area_struct *vma,
4479 unsigned int pages_per_huge_page)
4481 int i;
4482 struct page *dst_base = dst;
4483 struct page *src_base = src;
4485 for (i = 0; i < pages_per_huge_page; ) {
4486 cond_resched();
4487 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4489 i++;
4490 dst = mem_map_next(dst, dst_base, i);
4491 src = mem_map_next(src, src_base, i);
4495 struct copy_subpage_arg {
4496 struct page *dst;
4497 struct page *src;
4498 struct vm_area_struct *vma;
4501 static void copy_subpage(unsigned long addr, int idx, void *arg)
4503 struct copy_subpage_arg *copy_arg = arg;
4505 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4506 addr, copy_arg->vma);
4509 void copy_user_huge_page(struct page *dst, struct page *src,
4510 unsigned long addr_hint, struct vm_area_struct *vma,
4511 unsigned int pages_per_huge_page)
4513 unsigned long addr = addr_hint &
4514 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4515 struct copy_subpage_arg arg = {
4516 .dst = dst,
4517 .src = src,
4518 .vma = vma,
4521 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4522 copy_user_gigantic_page(dst, src, addr, vma,
4523 pages_per_huge_page);
4524 return;
4527 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4530 long copy_huge_page_from_user(struct page *dst_page,
4531 const void __user *usr_src,
4532 unsigned int pages_per_huge_page,
4533 bool allow_pagefault)
4535 void *src = (void *)usr_src;
4536 void *page_kaddr;
4537 unsigned long i, rc = 0;
4538 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4540 for (i = 0; i < pages_per_huge_page; i++) {
4541 if (allow_pagefault)
4542 page_kaddr = kmap(dst_page + i);
4543 else
4544 page_kaddr = kmap_atomic(dst_page + i);
4545 rc = copy_from_user(page_kaddr,
4546 (const void __user *)(src + i * PAGE_SIZE),
4547 PAGE_SIZE);
4548 if (allow_pagefault)
4549 kunmap(dst_page + i);
4550 else
4551 kunmap_atomic(page_kaddr);
4553 ret_val -= (PAGE_SIZE - rc);
4554 if (rc)
4555 break;
4557 cond_resched();
4559 return ret_val;
4561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4563 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4565 static struct kmem_cache *page_ptl_cachep;
4567 void __init ptlock_cache_init(void)
4569 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4570 SLAB_PANIC, NULL);
4573 bool ptlock_alloc(struct page *page)
4575 spinlock_t *ptl;
4577 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4578 if (!ptl)
4579 return false;
4580 page->ptl = ptl;
4581 return true;
4584 void ptlock_free(struct page *page)
4586 kmem_cache_free(page_ptl_cachep, page->ptl);
4588 #endif