s390: include: Remove redundant license text
[linux/fpc-iii.git] / fs / ext4 / super.c
blob0556cd036b69ebc4c06e8497216182b8144198c1
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
87 * Lock ordering
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
178 return;
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
185 void *ret;
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
195 void *ret;
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
338 * started already
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
377 ext4_process_freed_data(sb, txn->t_tid);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
388 spin_unlock(&sbi->s_md_lock);
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
406 static void ext4_handle_error(struct super_block *sb)
408 if (sb_rdonly(sb))
409 return;
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
443 struct va_format vaf;
444 va_list args;
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
449 if (ext4_error_ratelimit(sb)) {
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
456 va_end(args);
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
466 va_list args;
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 return;
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
484 else
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
489 va_end(args);
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
499 va_list args;
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 return;
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
512 if (IS_ERR(path))
513 path = "(unknown)";
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
523 else
524 printk(KERN_CRIT
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
529 va_end(args);
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 char nbuf[16])
538 char *errstr = NULL;
540 switch (errno) {
541 case -EFSCORRUPTED:
542 errstr = "Corrupt filesystem";
543 break;
544 case -EFSBADCRC:
545 errstr = "Filesystem failed CRC";
546 break;
547 case -EIO:
548 errstr = "IO failure";
549 break;
550 case -ENOMEM:
551 errstr = "Out of memory";
552 break;
553 case -EROFS:
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
557 else
558 errstr = "Readonly filesystem";
559 break;
560 default:
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
563 * NULL. */
564 if (nbuf) {
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 errstr = nbuf;
569 break;
572 return errstr;
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
581 char nbuf[16];
582 const char *errstr;
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 return;
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
589 * an error. */
590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
591 return;
593 if (ext4_error_ratelimit(sb)) {
594 errstr = ext4_decode_error(sb, errno, nbuf);
595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
596 sb->s_id, function, line, errstr);
599 save_error_info(sb, function, line);
600 ext4_handle_error(sb);
604 * ext4_abort is a much stronger failure handler than ext4_error. The
605 * abort function may be used to deal with unrecoverable failures such
606 * as journal IO errors or ENOMEM at a critical moment in log management.
608 * We unconditionally force the filesystem into an ABORT|READONLY state,
609 * unless the error response on the fs has been set to panic in which
610 * case we take the easy way out and panic immediately.
613 void __ext4_abort(struct super_block *sb, const char *function,
614 unsigned int line, const char *fmt, ...)
616 struct va_format vaf;
617 va_list args;
619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
620 return;
622 save_error_info(sb, function, line);
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
627 sb->s_id, function, line, &vaf);
628 va_end(args);
630 if (sb_rdonly(sb) == 0) {
631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634 * Make sure updated value of ->s_mount_flags will be visible
635 * before ->s_flags update
637 smp_wmb();
638 sb->s_flags |= MS_RDONLY;
639 if (EXT4_SB(sb)->s_journal)
640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
641 save_error_info(sb, function, line);
643 if (test_opt(sb, ERRORS_PANIC)) {
644 if (EXT4_SB(sb)->s_journal &&
645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
646 return;
647 panic("EXT4-fs panic from previous error\n");
651 void __ext4_msg(struct super_block *sb,
652 const char *prefix, const char *fmt, ...)
654 struct va_format vaf;
655 va_list args;
657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
658 return;
660 va_start(args, fmt);
661 vaf.fmt = fmt;
662 vaf.va = &args;
663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
664 va_end(args);
667 #define ext4_warning_ratelimit(sb) \
668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
669 "EXT4-fs warning")
671 void __ext4_warning(struct super_block *sb, const char *function,
672 unsigned int line, const char *fmt, ...)
674 struct va_format vaf;
675 va_list args;
677 if (!ext4_warning_ratelimit(sb))
678 return;
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
688 void __ext4_warning_inode(const struct inode *inode, const char *function,
689 unsigned int line, const char *fmt, ...)
691 struct va_format vaf;
692 va_list args;
694 if (!ext4_warning_ratelimit(inode->i_sb))
695 return;
697 va_start(args, fmt);
698 vaf.fmt = fmt;
699 vaf.va = &args;
700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
702 function, line, inode->i_ino, current->comm, &vaf);
703 va_end(args);
706 void __ext4_grp_locked_error(const char *function, unsigned int line,
707 struct super_block *sb, ext4_group_t grp,
708 unsigned long ino, ext4_fsblk_t block,
709 const char *fmt, ...)
710 __releases(bitlock)
711 __acquires(bitlock)
713 struct va_format vaf;
714 va_list args;
715 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
718 return;
720 es->s_last_error_ino = cpu_to_le32(ino);
721 es->s_last_error_block = cpu_to_le64(block);
722 __save_error_info(sb, function, line);
724 if (ext4_error_ratelimit(sb)) {
725 va_start(args, fmt);
726 vaf.fmt = fmt;
727 vaf.va = &args;
728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
729 sb->s_id, function, line, grp);
730 if (ino)
731 printk(KERN_CONT "inode %lu: ", ino);
732 if (block)
733 printk(KERN_CONT "block %llu:",
734 (unsigned long long) block);
735 printk(KERN_CONT "%pV\n", &vaf);
736 va_end(args);
739 if (test_opt(sb, ERRORS_CONT)) {
740 ext4_commit_super(sb, 0);
741 return;
744 ext4_unlock_group(sb, grp);
745 ext4_handle_error(sb);
747 * We only get here in the ERRORS_RO case; relocking the group
748 * may be dangerous, but nothing bad will happen since the
749 * filesystem will have already been marked read/only and the
750 * journal has been aborted. We return 1 as a hint to callers
751 * who might what to use the return value from
752 * ext4_grp_locked_error() to distinguish between the
753 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
754 * aggressively from the ext4 function in question, with a
755 * more appropriate error code.
757 ext4_lock_group(sb, grp);
758 return;
761 void ext4_update_dynamic_rev(struct super_block *sb)
763 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
766 return;
768 ext4_warning(sb,
769 "updating to rev %d because of new feature flag, "
770 "running e2fsck is recommended",
771 EXT4_DYNAMIC_REV);
773 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
774 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
775 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
776 /* leave es->s_feature_*compat flags alone */
777 /* es->s_uuid will be set by e2fsck if empty */
780 * The rest of the superblock fields should be zero, and if not it
781 * means they are likely already in use, so leave them alone. We
782 * can leave it up to e2fsck to clean up any inconsistencies there.
787 * Open the external journal device
789 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 struct block_device *bdev;
792 char b[BDEVNAME_SIZE];
794 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
795 if (IS_ERR(bdev))
796 goto fail;
797 return bdev;
799 fail:
800 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
801 __bdevname(dev, b), PTR_ERR(bdev));
802 return NULL;
806 * Release the journal device
808 static void ext4_blkdev_put(struct block_device *bdev)
810 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
813 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 struct block_device *bdev;
816 bdev = sbi->journal_bdev;
817 if (bdev) {
818 ext4_blkdev_put(bdev);
819 sbi->journal_bdev = NULL;
823 static inline struct inode *orphan_list_entry(struct list_head *l)
825 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
828 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 struct list_head *l;
832 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
833 le32_to_cpu(sbi->s_es->s_last_orphan));
835 printk(KERN_ERR "sb_info orphan list:\n");
836 list_for_each(l, &sbi->s_orphan) {
837 struct inode *inode = orphan_list_entry(l);
838 printk(KERN_ERR " "
839 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
840 inode->i_sb->s_id, inode->i_ino, inode,
841 inode->i_mode, inode->i_nlink,
842 NEXT_ORPHAN(inode));
846 #ifdef CONFIG_QUOTA
847 static int ext4_quota_off(struct super_block *sb, int type);
849 static inline void ext4_quota_off_umount(struct super_block *sb)
851 int type;
853 /* Use our quota_off function to clear inode flags etc. */
854 for (type = 0; type < EXT4_MAXQUOTAS; type++)
855 ext4_quota_off(sb, type);
857 #else
858 static inline void ext4_quota_off_umount(struct super_block *sb)
861 #endif
863 static void ext4_put_super(struct super_block *sb)
865 struct ext4_sb_info *sbi = EXT4_SB(sb);
866 struct ext4_super_block *es = sbi->s_es;
867 int aborted = 0;
868 int i, err;
870 ext4_unregister_li_request(sb);
871 ext4_quota_off_umount(sb);
873 flush_workqueue(sbi->rsv_conversion_wq);
874 destroy_workqueue(sbi->rsv_conversion_wq);
876 if (sbi->s_journal) {
877 aborted = is_journal_aborted(sbi->s_journal);
878 err = jbd2_journal_destroy(sbi->s_journal);
879 sbi->s_journal = NULL;
880 if ((err < 0) && !aborted)
881 ext4_abort(sb, "Couldn't clean up the journal");
884 ext4_unregister_sysfs(sb);
885 ext4_es_unregister_shrinker(sbi);
886 del_timer_sync(&sbi->s_err_report);
887 ext4_release_system_zone(sb);
888 ext4_mb_release(sb);
889 ext4_ext_release(sb);
891 if (!sb_rdonly(sb) && !aborted) {
892 ext4_clear_feature_journal_needs_recovery(sb);
893 es->s_state = cpu_to_le16(sbi->s_mount_state);
895 if (!sb_rdonly(sb))
896 ext4_commit_super(sb, 1);
898 for (i = 0; i < sbi->s_gdb_count; i++)
899 brelse(sbi->s_group_desc[i]);
900 kvfree(sbi->s_group_desc);
901 kvfree(sbi->s_flex_groups);
902 percpu_counter_destroy(&sbi->s_freeclusters_counter);
903 percpu_counter_destroy(&sbi->s_freeinodes_counter);
904 percpu_counter_destroy(&sbi->s_dirs_counter);
905 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
906 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
907 #ifdef CONFIG_QUOTA
908 for (i = 0; i < EXT4_MAXQUOTAS; i++)
909 kfree(sbi->s_qf_names[i]);
910 #endif
912 /* Debugging code just in case the in-memory inode orphan list
913 * isn't empty. The on-disk one can be non-empty if we've
914 * detected an error and taken the fs readonly, but the
915 * in-memory list had better be clean by this point. */
916 if (!list_empty(&sbi->s_orphan))
917 dump_orphan_list(sb, sbi);
918 J_ASSERT(list_empty(&sbi->s_orphan));
920 sync_blockdev(sb->s_bdev);
921 invalidate_bdev(sb->s_bdev);
922 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
924 * Invalidate the journal device's buffers. We don't want them
925 * floating about in memory - the physical journal device may
926 * hotswapped, and it breaks the `ro-after' testing code.
928 sync_blockdev(sbi->journal_bdev);
929 invalidate_bdev(sbi->journal_bdev);
930 ext4_blkdev_remove(sbi);
932 if (sbi->s_ea_inode_cache) {
933 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
934 sbi->s_ea_inode_cache = NULL;
936 if (sbi->s_ea_block_cache) {
937 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
938 sbi->s_ea_block_cache = NULL;
940 if (sbi->s_mmp_tsk)
941 kthread_stop(sbi->s_mmp_tsk);
942 brelse(sbi->s_sbh);
943 sb->s_fs_info = NULL;
945 * Now that we are completely done shutting down the
946 * superblock, we need to actually destroy the kobject.
948 kobject_put(&sbi->s_kobj);
949 wait_for_completion(&sbi->s_kobj_unregister);
950 if (sbi->s_chksum_driver)
951 crypto_free_shash(sbi->s_chksum_driver);
952 kfree(sbi->s_blockgroup_lock);
953 fs_put_dax(sbi->s_daxdev);
954 kfree(sbi);
957 static struct kmem_cache *ext4_inode_cachep;
960 * Called inside transaction, so use GFP_NOFS
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
964 struct ext4_inode_info *ei;
966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 if (!ei)
968 return NULL;
970 ei->vfs_inode.i_version = 1;
971 spin_lock_init(&ei->i_raw_lock);
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ext4_es_init_tree(&ei->i_es_tree);
975 rwlock_init(&ei->i_es_lock);
976 INIT_LIST_HEAD(&ei->i_es_list);
977 ei->i_es_all_nr = 0;
978 ei->i_es_shk_nr = 0;
979 ei->i_es_shrink_lblk = 0;
980 ei->i_reserved_data_blocks = 0;
981 ei->i_da_metadata_calc_len = 0;
982 ei->i_da_metadata_calc_last_lblock = 0;
983 spin_lock_init(&(ei->i_block_reservation_lock));
984 #ifdef CONFIG_QUOTA
985 ei->i_reserved_quota = 0;
986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
987 #endif
988 ei->jinode = NULL;
989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990 spin_lock_init(&ei->i_completed_io_lock);
991 ei->i_sync_tid = 0;
992 ei->i_datasync_tid = 0;
993 atomic_set(&ei->i_unwritten, 0);
994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995 return &ei->vfs_inode;
998 static int ext4_drop_inode(struct inode *inode)
1000 int drop = generic_drop_inode(inode);
1002 trace_ext4_drop_inode(inode, drop);
1003 return drop;
1006 static void ext4_i_callback(struct rcu_head *head)
1008 struct inode *inode = container_of(head, struct inode, i_rcu);
1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1012 static void ext4_destroy_inode(struct inode *inode)
1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015 ext4_msg(inode->i_sb, KERN_ERR,
1016 "Inode %lu (%p): orphan list check failed!",
1017 inode->i_ino, EXT4_I(inode));
1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019 EXT4_I(inode), sizeof(struct ext4_inode_info),
1020 true);
1021 dump_stack();
1023 call_rcu(&inode->i_rcu, ext4_i_callback);
1026 static void init_once(void *foo)
1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1030 INIT_LIST_HEAD(&ei->i_orphan);
1031 init_rwsem(&ei->xattr_sem);
1032 init_rwsem(&ei->i_data_sem);
1033 init_rwsem(&ei->i_mmap_sem);
1034 inode_init_once(&ei->vfs_inode);
1037 static int __init init_inodecache(void)
1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040 sizeof(struct ext4_inode_info),
1041 0, (SLAB_RECLAIM_ACCOUNT|
1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043 init_once);
1044 if (ext4_inode_cachep == NULL)
1045 return -ENOMEM;
1046 return 0;
1049 static void destroy_inodecache(void)
1052 * Make sure all delayed rcu free inodes are flushed before we
1053 * destroy cache.
1055 rcu_barrier();
1056 kmem_cache_destroy(ext4_inode_cachep);
1059 void ext4_clear_inode(struct inode *inode)
1061 invalidate_inode_buffers(inode);
1062 clear_inode(inode);
1063 dquot_drop(inode);
1064 ext4_discard_preallocations(inode);
1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066 if (EXT4_I(inode)->jinode) {
1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068 EXT4_I(inode)->jinode);
1069 jbd2_free_inode(EXT4_I(inode)->jinode);
1070 EXT4_I(inode)->jinode = NULL;
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 fscrypt_put_encryption_info(inode, NULL);
1074 #endif
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078 u64 ino, u32 generation)
1080 struct inode *inode;
1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083 return ERR_PTR(-ESTALE);
1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085 return ERR_PTR(-ESTALE);
1087 /* iget isn't really right if the inode is currently unallocated!!
1089 * ext4_read_inode will return a bad_inode if the inode had been
1090 * deleted, so we should be safe.
1092 * Currently we don't know the generation for parent directory, so
1093 * a generation of 0 means "accept any"
1095 inode = ext4_iget_normal(sb, ino);
1096 if (IS_ERR(inode))
1097 return ERR_CAST(inode);
1098 if (generation && inode->i_generation != generation) {
1099 iput(inode);
1100 return ERR_PTR(-ESTALE);
1103 return inode;
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107 int fh_len, int fh_type)
1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110 ext4_nfs_get_inode);
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114 int fh_len, int fh_type)
1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117 ext4_nfs_get_inode);
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device. Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127 gfp_t wait)
1129 journal_t *journal = EXT4_SB(sb)->s_journal;
1131 WARN_ON(PageChecked(page));
1132 if (!page_has_buffers(page))
1133 return 0;
1134 if (journal)
1135 return jbd2_journal_try_to_free_buffers(journal, page,
1136 wait & ~__GFP_DIRECT_RECLAIM);
1137 return try_to_free_buffers(page);
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148 void *fs_data)
1150 handle_t *handle = fs_data;
1151 int res, res2, credits, retries = 0;
1154 * Encrypting the root directory is not allowed because e2fsck expects
1155 * lost+found to exist and be unencrypted, and encrypting the root
1156 * directory would imply encrypting the lost+found directory as well as
1157 * the filename "lost+found" itself.
1159 if (inode->i_ino == EXT4_ROOT_INO)
1160 return -EPERM;
1162 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1163 return -EINVAL;
1165 res = ext4_convert_inline_data(inode);
1166 if (res)
1167 return res;
1170 * If a journal handle was specified, then the encryption context is
1171 * being set on a new inode via inheritance and is part of a larger
1172 * transaction to create the inode. Otherwise the encryption context is
1173 * being set on an existing inode in its own transaction. Only in the
1174 * latter case should the "retry on ENOSPC" logic be used.
1177 if (handle) {
1178 res = ext4_xattr_set_handle(handle, inode,
1179 EXT4_XATTR_INDEX_ENCRYPTION,
1180 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1181 ctx, len, 0);
1182 if (!res) {
1183 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1184 ext4_clear_inode_state(inode,
1185 EXT4_STATE_MAY_INLINE_DATA);
1187 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1188 * S_DAX may be disabled
1190 ext4_set_inode_flags(inode);
1192 return res;
1195 res = dquot_initialize(inode);
1196 if (res)
1197 return res;
1198 retry:
1199 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1200 &credits);
1201 if (res)
1202 return res;
1204 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1205 if (IS_ERR(handle))
1206 return PTR_ERR(handle);
1208 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1209 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1210 ctx, len, 0);
1211 if (!res) {
1212 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1214 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1215 * S_DAX may be disabled
1217 ext4_set_inode_flags(inode);
1218 res = ext4_mark_inode_dirty(handle, inode);
1219 if (res)
1220 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1222 res2 = ext4_journal_stop(handle);
1224 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1225 goto retry;
1226 if (!res)
1227 res = res2;
1228 return res;
1231 static bool ext4_dummy_context(struct inode *inode)
1233 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1236 static unsigned ext4_max_namelen(struct inode *inode)
1238 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1239 EXT4_NAME_LEN;
1242 static const struct fscrypt_operations ext4_cryptops = {
1243 .key_prefix = "ext4:",
1244 .get_context = ext4_get_context,
1245 .set_context = ext4_set_context,
1246 .dummy_context = ext4_dummy_context,
1247 .empty_dir = ext4_empty_dir,
1248 .max_namelen = ext4_max_namelen,
1250 #endif
1252 #ifdef CONFIG_QUOTA
1253 static const char * const quotatypes[] = INITQFNAMES;
1254 #define QTYPE2NAME(t) (quotatypes[t])
1256 static int ext4_write_dquot(struct dquot *dquot);
1257 static int ext4_acquire_dquot(struct dquot *dquot);
1258 static int ext4_release_dquot(struct dquot *dquot);
1259 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1260 static int ext4_write_info(struct super_block *sb, int type);
1261 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1262 const struct path *path);
1263 static int ext4_quota_on_mount(struct super_block *sb, int type);
1264 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1265 size_t len, loff_t off);
1266 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1267 const char *data, size_t len, loff_t off);
1268 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1269 unsigned int flags);
1270 static int ext4_enable_quotas(struct super_block *sb);
1271 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1273 static struct dquot **ext4_get_dquots(struct inode *inode)
1275 return EXT4_I(inode)->i_dquot;
1278 static const struct dquot_operations ext4_quota_operations = {
1279 .get_reserved_space = ext4_get_reserved_space,
1280 .write_dquot = ext4_write_dquot,
1281 .acquire_dquot = ext4_acquire_dquot,
1282 .release_dquot = ext4_release_dquot,
1283 .mark_dirty = ext4_mark_dquot_dirty,
1284 .write_info = ext4_write_info,
1285 .alloc_dquot = dquot_alloc,
1286 .destroy_dquot = dquot_destroy,
1287 .get_projid = ext4_get_projid,
1288 .get_inode_usage = ext4_get_inode_usage,
1289 .get_next_id = ext4_get_next_id,
1292 static const struct quotactl_ops ext4_qctl_operations = {
1293 .quota_on = ext4_quota_on,
1294 .quota_off = ext4_quota_off,
1295 .quota_sync = dquot_quota_sync,
1296 .get_state = dquot_get_state,
1297 .set_info = dquot_set_dqinfo,
1298 .get_dqblk = dquot_get_dqblk,
1299 .set_dqblk = dquot_set_dqblk,
1300 .get_nextdqblk = dquot_get_next_dqblk,
1302 #endif
1304 static const struct super_operations ext4_sops = {
1305 .alloc_inode = ext4_alloc_inode,
1306 .destroy_inode = ext4_destroy_inode,
1307 .write_inode = ext4_write_inode,
1308 .dirty_inode = ext4_dirty_inode,
1309 .drop_inode = ext4_drop_inode,
1310 .evict_inode = ext4_evict_inode,
1311 .put_super = ext4_put_super,
1312 .sync_fs = ext4_sync_fs,
1313 .freeze_fs = ext4_freeze,
1314 .unfreeze_fs = ext4_unfreeze,
1315 .statfs = ext4_statfs,
1316 .remount_fs = ext4_remount,
1317 .show_options = ext4_show_options,
1318 #ifdef CONFIG_QUOTA
1319 .quota_read = ext4_quota_read,
1320 .quota_write = ext4_quota_write,
1321 .get_dquots = ext4_get_dquots,
1322 #endif
1323 .bdev_try_to_free_page = bdev_try_to_free_page,
1326 static const struct export_operations ext4_export_ops = {
1327 .fh_to_dentry = ext4_fh_to_dentry,
1328 .fh_to_parent = ext4_fh_to_parent,
1329 .get_parent = ext4_get_parent,
1332 enum {
1333 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1334 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1335 Opt_nouid32, Opt_debug, Opt_removed,
1336 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1337 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1338 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1339 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1340 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1341 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1342 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1343 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1344 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1345 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1346 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1347 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1348 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1349 Opt_inode_readahead_blks, Opt_journal_ioprio,
1350 Opt_dioread_nolock, Opt_dioread_lock,
1351 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1352 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1355 static const match_table_t tokens = {
1356 {Opt_bsd_df, "bsddf"},
1357 {Opt_minix_df, "minixdf"},
1358 {Opt_grpid, "grpid"},
1359 {Opt_grpid, "bsdgroups"},
1360 {Opt_nogrpid, "nogrpid"},
1361 {Opt_nogrpid, "sysvgroups"},
1362 {Opt_resgid, "resgid=%u"},
1363 {Opt_resuid, "resuid=%u"},
1364 {Opt_sb, "sb=%u"},
1365 {Opt_err_cont, "errors=continue"},
1366 {Opt_err_panic, "errors=panic"},
1367 {Opt_err_ro, "errors=remount-ro"},
1368 {Opt_nouid32, "nouid32"},
1369 {Opt_debug, "debug"},
1370 {Opt_removed, "oldalloc"},
1371 {Opt_removed, "orlov"},
1372 {Opt_user_xattr, "user_xattr"},
1373 {Opt_nouser_xattr, "nouser_xattr"},
1374 {Opt_acl, "acl"},
1375 {Opt_noacl, "noacl"},
1376 {Opt_noload, "norecovery"},
1377 {Opt_noload, "noload"},
1378 {Opt_removed, "nobh"},
1379 {Opt_removed, "bh"},
1380 {Opt_commit, "commit=%u"},
1381 {Opt_min_batch_time, "min_batch_time=%u"},
1382 {Opt_max_batch_time, "max_batch_time=%u"},
1383 {Opt_journal_dev, "journal_dev=%u"},
1384 {Opt_journal_path, "journal_path=%s"},
1385 {Opt_journal_checksum, "journal_checksum"},
1386 {Opt_nojournal_checksum, "nojournal_checksum"},
1387 {Opt_journal_async_commit, "journal_async_commit"},
1388 {Opt_abort, "abort"},
1389 {Opt_data_journal, "data=journal"},
1390 {Opt_data_ordered, "data=ordered"},
1391 {Opt_data_writeback, "data=writeback"},
1392 {Opt_data_err_abort, "data_err=abort"},
1393 {Opt_data_err_ignore, "data_err=ignore"},
1394 {Opt_offusrjquota, "usrjquota="},
1395 {Opt_usrjquota, "usrjquota=%s"},
1396 {Opt_offgrpjquota, "grpjquota="},
1397 {Opt_grpjquota, "grpjquota=%s"},
1398 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1399 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1400 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1401 {Opt_grpquota, "grpquota"},
1402 {Opt_noquota, "noquota"},
1403 {Opt_quota, "quota"},
1404 {Opt_usrquota, "usrquota"},
1405 {Opt_prjquota, "prjquota"},
1406 {Opt_barrier, "barrier=%u"},
1407 {Opt_barrier, "barrier"},
1408 {Opt_nobarrier, "nobarrier"},
1409 {Opt_i_version, "i_version"},
1410 {Opt_dax, "dax"},
1411 {Opt_stripe, "stripe=%u"},
1412 {Opt_delalloc, "delalloc"},
1413 {Opt_lazytime, "lazytime"},
1414 {Opt_nolazytime, "nolazytime"},
1415 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1416 {Opt_nodelalloc, "nodelalloc"},
1417 {Opt_removed, "mblk_io_submit"},
1418 {Opt_removed, "nomblk_io_submit"},
1419 {Opt_block_validity, "block_validity"},
1420 {Opt_noblock_validity, "noblock_validity"},
1421 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1422 {Opt_journal_ioprio, "journal_ioprio=%u"},
1423 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1424 {Opt_auto_da_alloc, "auto_da_alloc"},
1425 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1426 {Opt_dioread_nolock, "dioread_nolock"},
1427 {Opt_dioread_lock, "dioread_lock"},
1428 {Opt_discard, "discard"},
1429 {Opt_nodiscard, "nodiscard"},
1430 {Opt_init_itable, "init_itable=%u"},
1431 {Opt_init_itable, "init_itable"},
1432 {Opt_noinit_itable, "noinit_itable"},
1433 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1434 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1435 {Opt_nombcache, "nombcache"},
1436 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1437 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1438 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1439 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1440 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1441 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1442 {Opt_err, NULL},
1445 static ext4_fsblk_t get_sb_block(void **data)
1447 ext4_fsblk_t sb_block;
1448 char *options = (char *) *data;
1450 if (!options || strncmp(options, "sb=", 3) != 0)
1451 return 1; /* Default location */
1453 options += 3;
1454 /* TODO: use simple_strtoll with >32bit ext4 */
1455 sb_block = simple_strtoul(options, &options, 0);
1456 if (*options && *options != ',') {
1457 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1458 (char *) *data);
1459 return 1;
1461 if (*options == ',')
1462 options++;
1463 *data = (void *) options;
1465 return sb_block;
1468 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1469 static const char deprecated_msg[] =
1470 "Mount option \"%s\" will be removed by %s\n"
1471 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1473 #ifdef CONFIG_QUOTA
1474 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1476 struct ext4_sb_info *sbi = EXT4_SB(sb);
1477 char *qname;
1478 int ret = -1;
1480 if (sb_any_quota_loaded(sb) &&
1481 !sbi->s_qf_names[qtype]) {
1482 ext4_msg(sb, KERN_ERR,
1483 "Cannot change journaled "
1484 "quota options when quota turned on");
1485 return -1;
1487 if (ext4_has_feature_quota(sb)) {
1488 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1489 "ignored when QUOTA feature is enabled");
1490 return 1;
1492 qname = match_strdup(args);
1493 if (!qname) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Not enough memory for storing quotafile name");
1496 return -1;
1498 if (sbi->s_qf_names[qtype]) {
1499 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1500 ret = 1;
1501 else
1502 ext4_msg(sb, KERN_ERR,
1503 "%s quota file already specified",
1504 QTYPE2NAME(qtype));
1505 goto errout;
1507 if (strchr(qname, '/')) {
1508 ext4_msg(sb, KERN_ERR,
1509 "quotafile must be on filesystem root");
1510 goto errout;
1512 sbi->s_qf_names[qtype] = qname;
1513 set_opt(sb, QUOTA);
1514 return 1;
1515 errout:
1516 kfree(qname);
1517 return ret;
1520 static int clear_qf_name(struct super_block *sb, int qtype)
1523 struct ext4_sb_info *sbi = EXT4_SB(sb);
1525 if (sb_any_quota_loaded(sb) &&
1526 sbi->s_qf_names[qtype]) {
1527 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1528 " when quota turned on");
1529 return -1;
1531 kfree(sbi->s_qf_names[qtype]);
1532 sbi->s_qf_names[qtype] = NULL;
1533 return 1;
1535 #endif
1537 #define MOPT_SET 0x0001
1538 #define MOPT_CLEAR 0x0002
1539 #define MOPT_NOSUPPORT 0x0004
1540 #define MOPT_EXPLICIT 0x0008
1541 #define MOPT_CLEAR_ERR 0x0010
1542 #define MOPT_GTE0 0x0020
1543 #ifdef CONFIG_QUOTA
1544 #define MOPT_Q 0
1545 #define MOPT_QFMT 0x0040
1546 #else
1547 #define MOPT_Q MOPT_NOSUPPORT
1548 #define MOPT_QFMT MOPT_NOSUPPORT
1549 #endif
1550 #define MOPT_DATAJ 0x0080
1551 #define MOPT_NO_EXT2 0x0100
1552 #define MOPT_NO_EXT3 0x0200
1553 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1554 #define MOPT_STRING 0x0400
1556 static const struct mount_opts {
1557 int token;
1558 int mount_opt;
1559 int flags;
1560 } ext4_mount_opts[] = {
1561 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1562 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1563 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1564 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1565 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1566 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1567 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568 MOPT_EXT4_ONLY | MOPT_SET},
1569 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570 MOPT_EXT4_ONLY | MOPT_CLEAR},
1571 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1572 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1573 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1574 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1575 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1576 MOPT_EXT4_ONLY | MOPT_CLEAR},
1577 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1581 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1582 EXT4_MOUNT_JOURNAL_CHECKSUM),
1583 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1584 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1585 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1586 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1587 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1588 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589 MOPT_NO_EXT2},
1590 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591 MOPT_NO_EXT2},
1592 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1593 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1594 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1595 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1596 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1597 {Opt_commit, 0, MOPT_GTE0},
1598 {Opt_max_batch_time, 0, MOPT_GTE0},
1599 {Opt_min_batch_time, 0, MOPT_GTE0},
1600 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1601 {Opt_init_itable, 0, MOPT_GTE0},
1602 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1603 {Opt_stripe, 0, MOPT_GTE0},
1604 {Opt_resuid, 0, MOPT_GTE0},
1605 {Opt_resgid, 0, MOPT_GTE0},
1606 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1608 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1611 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1612 MOPT_NO_EXT2 | MOPT_DATAJ},
1613 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1614 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1615 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1616 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1617 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618 #else
1619 {Opt_acl, 0, MOPT_NOSUPPORT},
1620 {Opt_noacl, 0, MOPT_NOSUPPORT},
1621 #endif
1622 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1623 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1624 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1625 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1626 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627 MOPT_SET | MOPT_Q},
1628 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629 MOPT_SET | MOPT_Q},
1630 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1633 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1634 MOPT_CLEAR | MOPT_Q},
1635 {Opt_usrjquota, 0, MOPT_Q},
1636 {Opt_grpjquota, 0, MOPT_Q},
1637 {Opt_offusrjquota, 0, MOPT_Q},
1638 {Opt_offgrpjquota, 0, MOPT_Q},
1639 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1640 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1641 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1642 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1643 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1644 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1645 {Opt_err, 0, 0}
1648 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1649 substring_t *args, unsigned long *journal_devnum,
1650 unsigned int *journal_ioprio, int is_remount)
1652 struct ext4_sb_info *sbi = EXT4_SB(sb);
1653 const struct mount_opts *m;
1654 kuid_t uid;
1655 kgid_t gid;
1656 int arg = 0;
1658 #ifdef CONFIG_QUOTA
1659 if (token == Opt_usrjquota)
1660 return set_qf_name(sb, USRQUOTA, &args[0]);
1661 else if (token == Opt_grpjquota)
1662 return set_qf_name(sb, GRPQUOTA, &args[0]);
1663 else if (token == Opt_offusrjquota)
1664 return clear_qf_name(sb, USRQUOTA);
1665 else if (token == Opt_offgrpjquota)
1666 return clear_qf_name(sb, GRPQUOTA);
1667 #endif
1668 switch (token) {
1669 case Opt_noacl:
1670 case Opt_nouser_xattr:
1671 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1672 break;
1673 case Opt_sb:
1674 return 1; /* handled by get_sb_block() */
1675 case Opt_removed:
1676 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1677 return 1;
1678 case Opt_abort:
1679 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1680 return 1;
1681 case Opt_i_version:
1682 sb->s_flags |= SB_I_VERSION;
1683 return 1;
1684 case Opt_lazytime:
1685 sb->s_flags |= MS_LAZYTIME;
1686 return 1;
1687 case Opt_nolazytime:
1688 sb->s_flags &= ~MS_LAZYTIME;
1689 return 1;
1692 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1693 if (token == m->token)
1694 break;
1696 if (m->token == Opt_err) {
1697 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1698 "or missing value", opt);
1699 return -1;
1702 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1703 ext4_msg(sb, KERN_ERR,
1704 "Mount option \"%s\" incompatible with ext2", opt);
1705 return -1;
1707 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1708 ext4_msg(sb, KERN_ERR,
1709 "Mount option \"%s\" incompatible with ext3", opt);
1710 return -1;
1713 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714 return -1;
1715 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716 return -1;
1717 if (m->flags & MOPT_EXPLICIT) {
1718 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1719 set_opt2(sb, EXPLICIT_DELALLOC);
1720 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1721 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1722 } else
1723 return -1;
1725 if (m->flags & MOPT_CLEAR_ERR)
1726 clear_opt(sb, ERRORS_MASK);
1727 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1728 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1729 "options when quota turned on");
1730 return -1;
1733 if (m->flags & MOPT_NOSUPPORT) {
1734 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1735 } else if (token == Opt_commit) {
1736 if (arg == 0)
1737 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1738 sbi->s_commit_interval = HZ * arg;
1739 } else if (token == Opt_debug_want_extra_isize) {
1740 sbi->s_want_extra_isize = arg;
1741 } else if (token == Opt_max_batch_time) {
1742 sbi->s_max_batch_time = arg;
1743 } else if (token == Opt_min_batch_time) {
1744 sbi->s_min_batch_time = arg;
1745 } else if (token == Opt_inode_readahead_blks) {
1746 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1747 ext4_msg(sb, KERN_ERR,
1748 "EXT4-fs: inode_readahead_blks must be "
1749 "0 or a power of 2 smaller than 2^31");
1750 return -1;
1752 sbi->s_inode_readahead_blks = arg;
1753 } else if (token == Opt_init_itable) {
1754 set_opt(sb, INIT_INODE_TABLE);
1755 if (!args->from)
1756 arg = EXT4_DEF_LI_WAIT_MULT;
1757 sbi->s_li_wait_mult = arg;
1758 } else if (token == Opt_max_dir_size_kb) {
1759 sbi->s_max_dir_size_kb = arg;
1760 } else if (token == Opt_stripe) {
1761 sbi->s_stripe = arg;
1762 } else if (token == Opt_resuid) {
1763 uid = make_kuid(current_user_ns(), arg);
1764 if (!uid_valid(uid)) {
1765 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1766 return -1;
1768 sbi->s_resuid = uid;
1769 } else if (token == Opt_resgid) {
1770 gid = make_kgid(current_user_ns(), arg);
1771 if (!gid_valid(gid)) {
1772 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1773 return -1;
1775 sbi->s_resgid = gid;
1776 } else if (token == Opt_journal_dev) {
1777 if (is_remount) {
1778 ext4_msg(sb, KERN_ERR,
1779 "Cannot specify journal on remount");
1780 return -1;
1782 *journal_devnum = arg;
1783 } else if (token == Opt_journal_path) {
1784 char *journal_path;
1785 struct inode *journal_inode;
1786 struct path path;
1787 int error;
1789 if (is_remount) {
1790 ext4_msg(sb, KERN_ERR,
1791 "Cannot specify journal on remount");
1792 return -1;
1794 journal_path = match_strdup(&args[0]);
1795 if (!journal_path) {
1796 ext4_msg(sb, KERN_ERR, "error: could not dup "
1797 "journal device string");
1798 return -1;
1801 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802 if (error) {
1803 ext4_msg(sb, KERN_ERR, "error: could not find "
1804 "journal device path: error %d", error);
1805 kfree(journal_path);
1806 return -1;
1809 journal_inode = d_inode(path.dentry);
1810 if (!S_ISBLK(journal_inode->i_mode)) {
1811 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1812 "is not a block device", journal_path);
1813 path_put(&path);
1814 kfree(journal_path);
1815 return -1;
1818 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819 path_put(&path);
1820 kfree(journal_path);
1821 } else if (token == Opt_journal_ioprio) {
1822 if (arg > 7) {
1823 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1824 " (must be 0-7)");
1825 return -1;
1827 *journal_ioprio =
1828 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1829 } else if (token == Opt_test_dummy_encryption) {
1830 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1831 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1832 ext4_msg(sb, KERN_WARNING,
1833 "Test dummy encryption mode enabled");
1834 #else
1835 ext4_msg(sb, KERN_WARNING,
1836 "Test dummy encryption mount option ignored");
1837 #endif
1838 } else if (m->flags & MOPT_DATAJ) {
1839 if (is_remount) {
1840 if (!sbi->s_journal)
1841 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1842 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1843 ext4_msg(sb, KERN_ERR,
1844 "Cannot change data mode on remount");
1845 return -1;
1847 } else {
1848 clear_opt(sb, DATA_FLAGS);
1849 sbi->s_mount_opt |= m->mount_opt;
1851 #ifdef CONFIG_QUOTA
1852 } else if (m->flags & MOPT_QFMT) {
1853 if (sb_any_quota_loaded(sb) &&
1854 sbi->s_jquota_fmt != m->mount_opt) {
1855 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1856 "quota options when quota turned on");
1857 return -1;
1859 if (ext4_has_feature_quota(sb)) {
1860 ext4_msg(sb, KERN_INFO,
1861 "Quota format mount options ignored "
1862 "when QUOTA feature is enabled");
1863 return 1;
1865 sbi->s_jquota_fmt = m->mount_opt;
1866 #endif
1867 } else if (token == Opt_dax) {
1868 #ifdef CONFIG_FS_DAX
1869 ext4_msg(sb, KERN_WARNING,
1870 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1871 sbi->s_mount_opt |= m->mount_opt;
1872 #else
1873 ext4_msg(sb, KERN_INFO, "dax option not supported");
1874 return -1;
1875 #endif
1876 } else if (token == Opt_data_err_abort) {
1877 sbi->s_mount_opt |= m->mount_opt;
1878 } else if (token == Opt_data_err_ignore) {
1879 sbi->s_mount_opt &= ~m->mount_opt;
1880 } else {
1881 if (!args->from)
1882 arg = 1;
1883 if (m->flags & MOPT_CLEAR)
1884 arg = !arg;
1885 else if (unlikely(!(m->flags & MOPT_SET))) {
1886 ext4_msg(sb, KERN_WARNING,
1887 "buggy handling of option %s", opt);
1888 WARN_ON(1);
1889 return -1;
1891 if (arg != 0)
1892 sbi->s_mount_opt |= m->mount_opt;
1893 else
1894 sbi->s_mount_opt &= ~m->mount_opt;
1896 return 1;
1899 static int parse_options(char *options, struct super_block *sb,
1900 unsigned long *journal_devnum,
1901 unsigned int *journal_ioprio,
1902 int is_remount)
1904 struct ext4_sb_info *sbi = EXT4_SB(sb);
1905 char *p;
1906 substring_t args[MAX_OPT_ARGS];
1907 int token;
1909 if (!options)
1910 return 1;
1912 while ((p = strsep(&options, ",")) != NULL) {
1913 if (!*p)
1914 continue;
1916 * Initialize args struct so we know whether arg was
1917 * found; some options take optional arguments.
1919 args[0].to = args[0].from = NULL;
1920 token = match_token(p, tokens, args);
1921 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1922 journal_ioprio, is_remount) < 0)
1923 return 0;
1925 #ifdef CONFIG_QUOTA
1927 * We do the test below only for project quotas. 'usrquota' and
1928 * 'grpquota' mount options are allowed even without quota feature
1929 * to support legacy quotas in quota files.
1931 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1932 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1933 "Cannot enable project quota enforcement.");
1934 return 0;
1936 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1937 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1938 clear_opt(sb, USRQUOTA);
1940 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1941 clear_opt(sb, GRPQUOTA);
1943 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1944 ext4_msg(sb, KERN_ERR, "old and new quota "
1945 "format mixing");
1946 return 0;
1949 if (!sbi->s_jquota_fmt) {
1950 ext4_msg(sb, KERN_ERR, "journaled quota format "
1951 "not specified");
1952 return 0;
1955 #endif
1956 if (test_opt(sb, DIOREAD_NOLOCK)) {
1957 int blocksize =
1958 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1960 if (blocksize < PAGE_SIZE) {
1961 ext4_msg(sb, KERN_ERR, "can't mount with "
1962 "dioread_nolock if block size != PAGE_SIZE");
1963 return 0;
1966 return 1;
1969 static inline void ext4_show_quota_options(struct seq_file *seq,
1970 struct super_block *sb)
1972 #if defined(CONFIG_QUOTA)
1973 struct ext4_sb_info *sbi = EXT4_SB(sb);
1975 if (sbi->s_jquota_fmt) {
1976 char *fmtname = "";
1978 switch (sbi->s_jquota_fmt) {
1979 case QFMT_VFS_OLD:
1980 fmtname = "vfsold";
1981 break;
1982 case QFMT_VFS_V0:
1983 fmtname = "vfsv0";
1984 break;
1985 case QFMT_VFS_V1:
1986 fmtname = "vfsv1";
1987 break;
1989 seq_printf(seq, ",jqfmt=%s", fmtname);
1992 if (sbi->s_qf_names[USRQUOTA])
1993 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1995 if (sbi->s_qf_names[GRPQUOTA])
1996 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1997 #endif
2000 static const char *token2str(int token)
2002 const struct match_token *t;
2004 for (t = tokens; t->token != Opt_err; t++)
2005 if (t->token == token && !strchr(t->pattern, '='))
2006 break;
2007 return t->pattern;
2011 * Show an option if
2012 * - it's set to a non-default value OR
2013 * - if the per-sb default is different from the global default
2015 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2016 int nodefs)
2018 struct ext4_sb_info *sbi = EXT4_SB(sb);
2019 struct ext4_super_block *es = sbi->s_es;
2020 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2021 const struct mount_opts *m;
2022 char sep = nodefs ? '\n' : ',';
2024 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2025 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2027 if (sbi->s_sb_block != 1)
2028 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2030 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2031 int want_set = m->flags & MOPT_SET;
2032 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2033 (m->flags & MOPT_CLEAR_ERR))
2034 continue;
2035 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2036 continue; /* skip if same as the default */
2037 if ((want_set &&
2038 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2039 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2040 continue; /* select Opt_noFoo vs Opt_Foo */
2041 SEQ_OPTS_PRINT("%s", token2str(m->token));
2044 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2045 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2046 SEQ_OPTS_PRINT("resuid=%u",
2047 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2048 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2049 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2050 SEQ_OPTS_PRINT("resgid=%u",
2051 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2052 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2053 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2054 SEQ_OPTS_PUTS("errors=remount-ro");
2055 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2056 SEQ_OPTS_PUTS("errors=continue");
2057 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2058 SEQ_OPTS_PUTS("errors=panic");
2059 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2060 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2061 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2062 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2063 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2064 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2065 if (sb->s_flags & SB_I_VERSION)
2066 SEQ_OPTS_PUTS("i_version");
2067 if (nodefs || sbi->s_stripe)
2068 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2069 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2070 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2071 SEQ_OPTS_PUTS("data=journal");
2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2073 SEQ_OPTS_PUTS("data=ordered");
2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2075 SEQ_OPTS_PUTS("data=writeback");
2077 if (nodefs ||
2078 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2079 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2080 sbi->s_inode_readahead_blks);
2082 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2083 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2084 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2085 if (nodefs || sbi->s_max_dir_size_kb)
2086 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2087 if (test_opt(sb, DATA_ERR_ABORT))
2088 SEQ_OPTS_PUTS("data_err=abort");
2090 ext4_show_quota_options(seq, sb);
2091 return 0;
2094 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2096 return _ext4_show_options(seq, root->d_sb, 0);
2099 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2101 struct super_block *sb = seq->private;
2102 int rc;
2104 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2105 rc = _ext4_show_options(seq, sb, 1);
2106 seq_puts(seq, "\n");
2107 return rc;
2110 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2111 int read_only)
2113 struct ext4_sb_info *sbi = EXT4_SB(sb);
2114 int res = 0;
2116 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2117 ext4_msg(sb, KERN_ERR, "revision level too high, "
2118 "forcing read-only mode");
2119 res = MS_RDONLY;
2121 if (read_only)
2122 goto done;
2123 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2124 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2125 "running e2fsck is recommended");
2126 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2127 ext4_msg(sb, KERN_WARNING,
2128 "warning: mounting fs with errors, "
2129 "running e2fsck is recommended");
2130 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2131 le16_to_cpu(es->s_mnt_count) >=
2132 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2133 ext4_msg(sb, KERN_WARNING,
2134 "warning: maximal mount count reached, "
2135 "running e2fsck is recommended");
2136 else if (le32_to_cpu(es->s_checkinterval) &&
2137 (le32_to_cpu(es->s_lastcheck) +
2138 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2139 ext4_msg(sb, KERN_WARNING,
2140 "warning: checktime reached, "
2141 "running e2fsck is recommended");
2142 if (!sbi->s_journal)
2143 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2144 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2145 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2146 le16_add_cpu(&es->s_mnt_count, 1);
2147 es->s_mtime = cpu_to_le32(get_seconds());
2148 ext4_update_dynamic_rev(sb);
2149 if (sbi->s_journal)
2150 ext4_set_feature_journal_needs_recovery(sb);
2152 ext4_commit_super(sb, 1);
2153 done:
2154 if (test_opt(sb, DEBUG))
2155 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2156 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157 sb->s_blocksize,
2158 sbi->s_groups_count,
2159 EXT4_BLOCKS_PER_GROUP(sb),
2160 EXT4_INODES_PER_GROUP(sb),
2161 sbi->s_mount_opt, sbi->s_mount_opt2);
2163 cleancache_init_fs(sb);
2164 return res;
2167 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2169 struct ext4_sb_info *sbi = EXT4_SB(sb);
2170 struct flex_groups *new_groups;
2171 int size;
2173 if (!sbi->s_log_groups_per_flex)
2174 return 0;
2176 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2177 if (size <= sbi->s_flex_groups_allocated)
2178 return 0;
2180 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2181 new_groups = kvzalloc(size, GFP_KERNEL);
2182 if (!new_groups) {
2183 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2184 size / (int) sizeof(struct flex_groups));
2185 return -ENOMEM;
2188 if (sbi->s_flex_groups) {
2189 memcpy(new_groups, sbi->s_flex_groups,
2190 (sbi->s_flex_groups_allocated *
2191 sizeof(struct flex_groups)));
2192 kvfree(sbi->s_flex_groups);
2194 sbi->s_flex_groups = new_groups;
2195 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2196 return 0;
2199 static int ext4_fill_flex_info(struct super_block *sb)
2201 struct ext4_sb_info *sbi = EXT4_SB(sb);
2202 struct ext4_group_desc *gdp = NULL;
2203 ext4_group_t flex_group;
2204 int i, err;
2206 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2207 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2208 sbi->s_log_groups_per_flex = 0;
2209 return 1;
2212 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2213 if (err)
2214 goto failed;
2216 for (i = 0; i < sbi->s_groups_count; i++) {
2217 gdp = ext4_get_group_desc(sb, i, NULL);
2219 flex_group = ext4_flex_group(sbi, i);
2220 atomic_add(ext4_free_inodes_count(sb, gdp),
2221 &sbi->s_flex_groups[flex_group].free_inodes);
2222 atomic64_add(ext4_free_group_clusters(sb, gdp),
2223 &sbi->s_flex_groups[flex_group].free_clusters);
2224 atomic_add(ext4_used_dirs_count(sb, gdp),
2225 &sbi->s_flex_groups[flex_group].used_dirs);
2228 return 1;
2229 failed:
2230 return 0;
2233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2234 struct ext4_group_desc *gdp)
2236 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237 __u16 crc = 0;
2238 __le32 le_group = cpu_to_le32(block_group);
2239 struct ext4_sb_info *sbi = EXT4_SB(sb);
2241 if (ext4_has_metadata_csum(sbi->s_sb)) {
2242 /* Use new metadata_csum algorithm */
2243 __u32 csum32;
2244 __u16 dummy_csum = 0;
2246 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247 sizeof(le_group));
2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2250 sizeof(dummy_csum));
2251 offset += sizeof(dummy_csum);
2252 if (offset < sbi->s_desc_size)
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2254 sbi->s_desc_size - offset);
2256 crc = csum32 & 0xFFFF;
2257 goto out;
2260 /* old crc16 code */
2261 if (!ext4_has_feature_gdt_csum(sb))
2262 return 0;
2264 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2265 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2266 crc = crc16(crc, (__u8 *)gdp, offset);
2267 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2268 /* for checksum of struct ext4_group_desc do the rest...*/
2269 if (ext4_has_feature_64bit(sb) &&
2270 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2271 crc = crc16(crc, (__u8 *)gdp + offset,
2272 le16_to_cpu(sbi->s_es->s_desc_size) -
2273 offset);
2275 out:
2276 return cpu_to_le16(crc);
2279 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2280 struct ext4_group_desc *gdp)
2282 if (ext4_has_group_desc_csum(sb) &&
2283 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2284 return 0;
2286 return 1;
2289 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2290 struct ext4_group_desc *gdp)
2292 if (!ext4_has_group_desc_csum(sb))
2293 return;
2294 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2297 /* Called at mount-time, super-block is locked */
2298 static int ext4_check_descriptors(struct super_block *sb,
2299 ext4_fsblk_t sb_block,
2300 ext4_group_t *first_not_zeroed)
2302 struct ext4_sb_info *sbi = EXT4_SB(sb);
2303 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2304 ext4_fsblk_t last_block;
2305 ext4_fsblk_t block_bitmap;
2306 ext4_fsblk_t inode_bitmap;
2307 ext4_fsblk_t inode_table;
2308 int flexbg_flag = 0;
2309 ext4_group_t i, grp = sbi->s_groups_count;
2311 if (ext4_has_feature_flex_bg(sb))
2312 flexbg_flag = 1;
2314 ext4_debug("Checking group descriptors");
2316 for (i = 0; i < sbi->s_groups_count; i++) {
2317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2319 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2320 last_block = ext4_blocks_count(sbi->s_es) - 1;
2321 else
2322 last_block = first_block +
2323 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2325 if ((grp == sbi->s_groups_count) &&
2326 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2327 grp = i;
2329 block_bitmap = ext4_block_bitmap(sb, gdp);
2330 if (block_bitmap == sb_block) {
2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 "Block bitmap for group %u overlaps "
2333 "superblock", i);
2335 if (block_bitmap < first_block || block_bitmap > last_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u not in group "
2338 "(block %llu)!", i, block_bitmap);
2339 return 0;
2341 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2342 if (inode_bitmap == sb_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Inode bitmap for group %u overlaps "
2345 "superblock", i);
2347 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349 "Inode bitmap for group %u not in group "
2350 "(block %llu)!", i, inode_bitmap);
2351 return 0;
2353 inode_table = ext4_inode_table(sb, gdp);
2354 if (inode_table == sb_block) {
2355 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2356 "Inode table for group %u overlaps "
2357 "superblock", i);
2359 if (inode_table < first_block ||
2360 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2361 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2362 "Inode table for group %u not in group "
2363 "(block %llu)!", i, inode_table);
2364 return 0;
2366 ext4_lock_group(sb, i);
2367 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2368 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2369 "Checksum for group %u failed (%u!=%u)",
2370 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2371 gdp)), le16_to_cpu(gdp->bg_checksum));
2372 if (!sb_rdonly(sb)) {
2373 ext4_unlock_group(sb, i);
2374 return 0;
2377 ext4_unlock_group(sb, i);
2378 if (!flexbg_flag)
2379 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2381 if (NULL != first_not_zeroed)
2382 *first_not_zeroed = grp;
2383 return 1;
2386 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2387 * the superblock) which were deleted from all directories, but held open by
2388 * a process at the time of a crash. We walk the list and try to delete these
2389 * inodes at recovery time (only with a read-write filesystem).
2391 * In order to keep the orphan inode chain consistent during traversal (in
2392 * case of crash during recovery), we link each inode into the superblock
2393 * orphan list_head and handle it the same way as an inode deletion during
2394 * normal operation (which journals the operations for us).
2396 * We only do an iget() and an iput() on each inode, which is very safe if we
2397 * accidentally point at an in-use or already deleted inode. The worst that
2398 * can happen in this case is that we get a "bit already cleared" message from
2399 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2400 * e2fsck was run on this filesystem, and it must have already done the orphan
2401 * inode cleanup for us, so we can safely abort without any further action.
2403 static void ext4_orphan_cleanup(struct super_block *sb,
2404 struct ext4_super_block *es)
2406 unsigned int s_flags = sb->s_flags;
2407 int ret, nr_orphans = 0, nr_truncates = 0;
2408 #ifdef CONFIG_QUOTA
2409 int quota_update = 0;
2410 int i;
2411 #endif
2412 if (!es->s_last_orphan) {
2413 jbd_debug(4, "no orphan inodes to clean up\n");
2414 return;
2417 if (bdev_read_only(sb->s_bdev)) {
2418 ext4_msg(sb, KERN_ERR, "write access "
2419 "unavailable, skipping orphan cleanup");
2420 return;
2423 /* Check if feature set would not allow a r/w mount */
2424 if (!ext4_feature_set_ok(sb, 0)) {
2425 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2426 "unknown ROCOMPAT features");
2427 return;
2430 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2431 /* don't clear list on RO mount w/ errors */
2432 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2433 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2434 "clearing orphan list.\n");
2435 es->s_last_orphan = 0;
2437 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2438 return;
2441 if (s_flags & MS_RDONLY) {
2442 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2443 sb->s_flags &= ~MS_RDONLY;
2445 #ifdef CONFIG_QUOTA
2446 /* Needed for iput() to work correctly and not trash data */
2447 sb->s_flags |= MS_ACTIVE;
2450 * Turn on quotas which were not enabled for read-only mounts if
2451 * filesystem has quota feature, so that they are updated correctly.
2453 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2454 int ret = ext4_enable_quotas(sb);
2456 if (!ret)
2457 quota_update = 1;
2458 else
2459 ext4_msg(sb, KERN_ERR,
2460 "Cannot turn on quotas: error %d", ret);
2463 /* Turn on journaled quotas used for old sytle */
2464 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2465 if (EXT4_SB(sb)->s_qf_names[i]) {
2466 int ret = ext4_quota_on_mount(sb, i);
2468 if (!ret)
2469 quota_update = 1;
2470 else
2471 ext4_msg(sb, KERN_ERR,
2472 "Cannot turn on journaled "
2473 "quota: type %d: error %d", i, ret);
2476 #endif
2478 while (es->s_last_orphan) {
2479 struct inode *inode;
2482 * We may have encountered an error during cleanup; if
2483 * so, skip the rest.
2485 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2486 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2487 es->s_last_orphan = 0;
2488 break;
2491 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2492 if (IS_ERR(inode)) {
2493 es->s_last_orphan = 0;
2494 break;
2497 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2498 dquot_initialize(inode);
2499 if (inode->i_nlink) {
2500 if (test_opt(sb, DEBUG))
2501 ext4_msg(sb, KERN_DEBUG,
2502 "%s: truncating inode %lu to %lld bytes",
2503 __func__, inode->i_ino, inode->i_size);
2504 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2505 inode->i_ino, inode->i_size);
2506 inode_lock(inode);
2507 truncate_inode_pages(inode->i_mapping, inode->i_size);
2508 ret = ext4_truncate(inode);
2509 if (ret)
2510 ext4_std_error(inode->i_sb, ret);
2511 inode_unlock(inode);
2512 nr_truncates++;
2513 } else {
2514 if (test_opt(sb, DEBUG))
2515 ext4_msg(sb, KERN_DEBUG,
2516 "%s: deleting unreferenced inode %lu",
2517 __func__, inode->i_ino);
2518 jbd_debug(2, "deleting unreferenced inode %lu\n",
2519 inode->i_ino);
2520 nr_orphans++;
2522 iput(inode); /* The delete magic happens here! */
2525 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2527 if (nr_orphans)
2528 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2529 PLURAL(nr_orphans));
2530 if (nr_truncates)
2531 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2532 PLURAL(nr_truncates));
2533 #ifdef CONFIG_QUOTA
2534 /* Turn off quotas if they were enabled for orphan cleanup */
2535 if (quota_update) {
2536 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2537 if (sb_dqopt(sb)->files[i])
2538 dquot_quota_off(sb, i);
2541 #endif
2542 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2546 * Maximal extent format file size.
2547 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2548 * extent format containers, within a sector_t, and within i_blocks
2549 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2550 * so that won't be a limiting factor.
2552 * However there is other limiting factor. We do store extents in the form
2553 * of starting block and length, hence the resulting length of the extent
2554 * covering maximum file size must fit into on-disk format containers as
2555 * well. Given that length is always by 1 unit bigger than max unit (because
2556 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2558 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2560 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2562 loff_t res;
2563 loff_t upper_limit = MAX_LFS_FILESIZE;
2565 /* small i_blocks in vfs inode? */
2566 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2568 * CONFIG_LBDAF is not enabled implies the inode
2569 * i_block represent total blocks in 512 bytes
2570 * 32 == size of vfs inode i_blocks * 8
2572 upper_limit = (1LL << 32) - 1;
2574 /* total blocks in file system block size */
2575 upper_limit >>= (blkbits - 9);
2576 upper_limit <<= blkbits;
2580 * 32-bit extent-start container, ee_block. We lower the maxbytes
2581 * by one fs block, so ee_len can cover the extent of maximum file
2582 * size
2584 res = (1LL << 32) - 1;
2585 res <<= blkbits;
2587 /* Sanity check against vm- & vfs- imposed limits */
2588 if (res > upper_limit)
2589 res = upper_limit;
2591 return res;
2595 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2596 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2597 * We need to be 1 filesystem block less than the 2^48 sector limit.
2599 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2601 loff_t res = EXT4_NDIR_BLOCKS;
2602 int meta_blocks;
2603 loff_t upper_limit;
2604 /* This is calculated to be the largest file size for a dense, block
2605 * mapped file such that the file's total number of 512-byte sectors,
2606 * including data and all indirect blocks, does not exceed (2^48 - 1).
2608 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2609 * number of 512-byte sectors of the file.
2612 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2614 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2615 * the inode i_block field represents total file blocks in
2616 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2618 upper_limit = (1LL << 32) - 1;
2620 /* total blocks in file system block size */
2621 upper_limit >>= (bits - 9);
2623 } else {
2625 * We use 48 bit ext4_inode i_blocks
2626 * With EXT4_HUGE_FILE_FL set the i_blocks
2627 * represent total number of blocks in
2628 * file system block size
2630 upper_limit = (1LL << 48) - 1;
2634 /* indirect blocks */
2635 meta_blocks = 1;
2636 /* double indirect blocks */
2637 meta_blocks += 1 + (1LL << (bits-2));
2638 /* tripple indirect blocks */
2639 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2641 upper_limit -= meta_blocks;
2642 upper_limit <<= bits;
2644 res += 1LL << (bits-2);
2645 res += 1LL << (2*(bits-2));
2646 res += 1LL << (3*(bits-2));
2647 res <<= bits;
2648 if (res > upper_limit)
2649 res = upper_limit;
2651 if (res > MAX_LFS_FILESIZE)
2652 res = MAX_LFS_FILESIZE;
2654 return res;
2657 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2658 ext4_fsblk_t logical_sb_block, int nr)
2660 struct ext4_sb_info *sbi = EXT4_SB(sb);
2661 ext4_group_t bg, first_meta_bg;
2662 int has_super = 0;
2664 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2666 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2667 return logical_sb_block + nr + 1;
2668 bg = sbi->s_desc_per_block * nr;
2669 if (ext4_bg_has_super(sb, bg))
2670 has_super = 1;
2673 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2674 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2675 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2676 * compensate.
2678 if (sb->s_blocksize == 1024 && nr == 0 &&
2679 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2680 has_super++;
2682 return (has_super + ext4_group_first_block_no(sb, bg));
2686 * ext4_get_stripe_size: Get the stripe size.
2687 * @sbi: In memory super block info
2689 * If we have specified it via mount option, then
2690 * use the mount option value. If the value specified at mount time is
2691 * greater than the blocks per group use the super block value.
2692 * If the super block value is greater than blocks per group return 0.
2693 * Allocator needs it be less than blocks per group.
2696 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2698 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2699 unsigned long stripe_width =
2700 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2701 int ret;
2703 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2704 ret = sbi->s_stripe;
2705 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2706 ret = stripe_width;
2707 else if (stride && stride <= sbi->s_blocks_per_group)
2708 ret = stride;
2709 else
2710 ret = 0;
2713 * If the stripe width is 1, this makes no sense and
2714 * we set it to 0 to turn off stripe handling code.
2716 if (ret <= 1)
2717 ret = 0;
2719 return ret;
2723 * Check whether this filesystem can be mounted based on
2724 * the features present and the RDONLY/RDWR mount requested.
2725 * Returns 1 if this filesystem can be mounted as requested,
2726 * 0 if it cannot be.
2728 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2730 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2731 ext4_msg(sb, KERN_ERR,
2732 "Couldn't mount because of "
2733 "unsupported optional features (%x)",
2734 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2735 ~EXT4_FEATURE_INCOMPAT_SUPP));
2736 return 0;
2739 if (readonly)
2740 return 1;
2742 if (ext4_has_feature_readonly(sb)) {
2743 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2744 sb->s_flags |= MS_RDONLY;
2745 return 1;
2748 /* Check that feature set is OK for a read-write mount */
2749 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2750 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2751 "unsupported optional features (%x)",
2752 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2753 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2754 return 0;
2757 * Large file size enabled file system can only be mounted
2758 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2760 if (ext4_has_feature_huge_file(sb)) {
2761 if (sizeof(blkcnt_t) < sizeof(u64)) {
2762 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2763 "cannot be mounted RDWR without "
2764 "CONFIG_LBDAF");
2765 return 0;
2768 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2769 ext4_msg(sb, KERN_ERR,
2770 "Can't support bigalloc feature without "
2771 "extents feature\n");
2772 return 0;
2775 #ifndef CONFIG_QUOTA
2776 if (ext4_has_feature_quota(sb) && !readonly) {
2777 ext4_msg(sb, KERN_ERR,
2778 "Filesystem with quota feature cannot be mounted RDWR "
2779 "without CONFIG_QUOTA");
2780 return 0;
2782 if (ext4_has_feature_project(sb) && !readonly) {
2783 ext4_msg(sb, KERN_ERR,
2784 "Filesystem with project quota feature cannot be mounted RDWR "
2785 "without CONFIG_QUOTA");
2786 return 0;
2788 #endif /* CONFIG_QUOTA */
2789 return 1;
2793 * This function is called once a day if we have errors logged
2794 * on the file system
2796 static void print_daily_error_info(struct timer_list *t)
2798 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2799 struct super_block *sb = sbi->s_sb;
2800 struct ext4_super_block *es = sbi->s_es;
2802 if (es->s_error_count)
2803 /* fsck newer than v1.41.13 is needed to clean this condition. */
2804 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2805 le32_to_cpu(es->s_error_count));
2806 if (es->s_first_error_time) {
2807 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2808 sb->s_id, le32_to_cpu(es->s_first_error_time),
2809 (int) sizeof(es->s_first_error_func),
2810 es->s_first_error_func,
2811 le32_to_cpu(es->s_first_error_line));
2812 if (es->s_first_error_ino)
2813 printk(KERN_CONT ": inode %u",
2814 le32_to_cpu(es->s_first_error_ino));
2815 if (es->s_first_error_block)
2816 printk(KERN_CONT ": block %llu", (unsigned long long)
2817 le64_to_cpu(es->s_first_error_block));
2818 printk(KERN_CONT "\n");
2820 if (es->s_last_error_time) {
2821 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2822 sb->s_id, le32_to_cpu(es->s_last_error_time),
2823 (int) sizeof(es->s_last_error_func),
2824 es->s_last_error_func,
2825 le32_to_cpu(es->s_last_error_line));
2826 if (es->s_last_error_ino)
2827 printk(KERN_CONT ": inode %u",
2828 le32_to_cpu(es->s_last_error_ino));
2829 if (es->s_last_error_block)
2830 printk(KERN_CONT ": block %llu", (unsigned long long)
2831 le64_to_cpu(es->s_last_error_block));
2832 printk(KERN_CONT "\n");
2834 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2837 /* Find next suitable group and run ext4_init_inode_table */
2838 static int ext4_run_li_request(struct ext4_li_request *elr)
2840 struct ext4_group_desc *gdp = NULL;
2841 ext4_group_t group, ngroups;
2842 struct super_block *sb;
2843 unsigned long timeout = 0;
2844 int ret = 0;
2846 sb = elr->lr_super;
2847 ngroups = EXT4_SB(sb)->s_groups_count;
2849 for (group = elr->lr_next_group; group < ngroups; group++) {
2850 gdp = ext4_get_group_desc(sb, group, NULL);
2851 if (!gdp) {
2852 ret = 1;
2853 break;
2856 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2857 break;
2860 if (group >= ngroups)
2861 ret = 1;
2863 if (!ret) {
2864 timeout = jiffies;
2865 ret = ext4_init_inode_table(sb, group,
2866 elr->lr_timeout ? 0 : 1);
2867 if (elr->lr_timeout == 0) {
2868 timeout = (jiffies - timeout) *
2869 elr->lr_sbi->s_li_wait_mult;
2870 elr->lr_timeout = timeout;
2872 elr->lr_next_sched = jiffies + elr->lr_timeout;
2873 elr->lr_next_group = group + 1;
2875 return ret;
2879 * Remove lr_request from the list_request and free the
2880 * request structure. Should be called with li_list_mtx held
2882 static void ext4_remove_li_request(struct ext4_li_request *elr)
2884 struct ext4_sb_info *sbi;
2886 if (!elr)
2887 return;
2889 sbi = elr->lr_sbi;
2891 list_del(&elr->lr_request);
2892 sbi->s_li_request = NULL;
2893 kfree(elr);
2896 static void ext4_unregister_li_request(struct super_block *sb)
2898 mutex_lock(&ext4_li_mtx);
2899 if (!ext4_li_info) {
2900 mutex_unlock(&ext4_li_mtx);
2901 return;
2904 mutex_lock(&ext4_li_info->li_list_mtx);
2905 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2906 mutex_unlock(&ext4_li_info->li_list_mtx);
2907 mutex_unlock(&ext4_li_mtx);
2910 static struct task_struct *ext4_lazyinit_task;
2913 * This is the function where ext4lazyinit thread lives. It walks
2914 * through the request list searching for next scheduled filesystem.
2915 * When such a fs is found, run the lazy initialization request
2916 * (ext4_rn_li_request) and keep track of the time spend in this
2917 * function. Based on that time we compute next schedule time of
2918 * the request. When walking through the list is complete, compute
2919 * next waking time and put itself into sleep.
2921 static int ext4_lazyinit_thread(void *arg)
2923 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2924 struct list_head *pos, *n;
2925 struct ext4_li_request *elr;
2926 unsigned long next_wakeup, cur;
2928 BUG_ON(NULL == eli);
2930 cont_thread:
2931 while (true) {
2932 next_wakeup = MAX_JIFFY_OFFSET;
2934 mutex_lock(&eli->li_list_mtx);
2935 if (list_empty(&eli->li_request_list)) {
2936 mutex_unlock(&eli->li_list_mtx);
2937 goto exit_thread;
2939 list_for_each_safe(pos, n, &eli->li_request_list) {
2940 int err = 0;
2941 int progress = 0;
2942 elr = list_entry(pos, struct ext4_li_request,
2943 lr_request);
2945 if (time_before(jiffies, elr->lr_next_sched)) {
2946 if (time_before(elr->lr_next_sched, next_wakeup))
2947 next_wakeup = elr->lr_next_sched;
2948 continue;
2950 if (down_read_trylock(&elr->lr_super->s_umount)) {
2951 if (sb_start_write_trylock(elr->lr_super)) {
2952 progress = 1;
2954 * We hold sb->s_umount, sb can not
2955 * be removed from the list, it is
2956 * now safe to drop li_list_mtx
2958 mutex_unlock(&eli->li_list_mtx);
2959 err = ext4_run_li_request(elr);
2960 sb_end_write(elr->lr_super);
2961 mutex_lock(&eli->li_list_mtx);
2962 n = pos->next;
2964 up_read((&elr->lr_super->s_umount));
2966 /* error, remove the lazy_init job */
2967 if (err) {
2968 ext4_remove_li_request(elr);
2969 continue;
2971 if (!progress) {
2972 elr->lr_next_sched = jiffies +
2973 (prandom_u32()
2974 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2976 if (time_before(elr->lr_next_sched, next_wakeup))
2977 next_wakeup = elr->lr_next_sched;
2979 mutex_unlock(&eli->li_list_mtx);
2981 try_to_freeze();
2983 cur = jiffies;
2984 if ((time_after_eq(cur, next_wakeup)) ||
2985 (MAX_JIFFY_OFFSET == next_wakeup)) {
2986 cond_resched();
2987 continue;
2990 schedule_timeout_interruptible(next_wakeup - cur);
2992 if (kthread_should_stop()) {
2993 ext4_clear_request_list();
2994 goto exit_thread;
2998 exit_thread:
3000 * It looks like the request list is empty, but we need
3001 * to check it under the li_list_mtx lock, to prevent any
3002 * additions into it, and of course we should lock ext4_li_mtx
3003 * to atomically free the list and ext4_li_info, because at
3004 * this point another ext4 filesystem could be registering
3005 * new one.
3007 mutex_lock(&ext4_li_mtx);
3008 mutex_lock(&eli->li_list_mtx);
3009 if (!list_empty(&eli->li_request_list)) {
3010 mutex_unlock(&eli->li_list_mtx);
3011 mutex_unlock(&ext4_li_mtx);
3012 goto cont_thread;
3014 mutex_unlock(&eli->li_list_mtx);
3015 kfree(ext4_li_info);
3016 ext4_li_info = NULL;
3017 mutex_unlock(&ext4_li_mtx);
3019 return 0;
3022 static void ext4_clear_request_list(void)
3024 struct list_head *pos, *n;
3025 struct ext4_li_request *elr;
3027 mutex_lock(&ext4_li_info->li_list_mtx);
3028 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3029 elr = list_entry(pos, struct ext4_li_request,
3030 lr_request);
3031 ext4_remove_li_request(elr);
3033 mutex_unlock(&ext4_li_info->li_list_mtx);
3036 static int ext4_run_lazyinit_thread(void)
3038 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3039 ext4_li_info, "ext4lazyinit");
3040 if (IS_ERR(ext4_lazyinit_task)) {
3041 int err = PTR_ERR(ext4_lazyinit_task);
3042 ext4_clear_request_list();
3043 kfree(ext4_li_info);
3044 ext4_li_info = NULL;
3045 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3046 "initialization thread\n",
3047 err);
3048 return err;
3050 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3051 return 0;
3055 * Check whether it make sense to run itable init. thread or not.
3056 * If there is at least one uninitialized inode table, return
3057 * corresponding group number, else the loop goes through all
3058 * groups and return total number of groups.
3060 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3062 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3063 struct ext4_group_desc *gdp = NULL;
3065 for (group = 0; group < ngroups; group++) {
3066 gdp = ext4_get_group_desc(sb, group, NULL);
3067 if (!gdp)
3068 continue;
3070 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3071 break;
3074 return group;
3077 static int ext4_li_info_new(void)
3079 struct ext4_lazy_init *eli = NULL;
3081 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3082 if (!eli)
3083 return -ENOMEM;
3085 INIT_LIST_HEAD(&eli->li_request_list);
3086 mutex_init(&eli->li_list_mtx);
3088 eli->li_state |= EXT4_LAZYINIT_QUIT;
3090 ext4_li_info = eli;
3092 return 0;
3095 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3096 ext4_group_t start)
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 struct ext4_li_request *elr;
3101 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3102 if (!elr)
3103 return NULL;
3105 elr->lr_super = sb;
3106 elr->lr_sbi = sbi;
3107 elr->lr_next_group = start;
3110 * Randomize first schedule time of the request to
3111 * spread the inode table initialization requests
3112 * better.
3114 elr->lr_next_sched = jiffies + (prandom_u32() %
3115 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3116 return elr;
3119 int ext4_register_li_request(struct super_block *sb,
3120 ext4_group_t first_not_zeroed)
3122 struct ext4_sb_info *sbi = EXT4_SB(sb);
3123 struct ext4_li_request *elr = NULL;
3124 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3125 int ret = 0;
3127 mutex_lock(&ext4_li_mtx);
3128 if (sbi->s_li_request != NULL) {
3130 * Reset timeout so it can be computed again, because
3131 * s_li_wait_mult might have changed.
3133 sbi->s_li_request->lr_timeout = 0;
3134 goto out;
3137 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3138 !test_opt(sb, INIT_INODE_TABLE))
3139 goto out;
3141 elr = ext4_li_request_new(sb, first_not_zeroed);
3142 if (!elr) {
3143 ret = -ENOMEM;
3144 goto out;
3147 if (NULL == ext4_li_info) {
3148 ret = ext4_li_info_new();
3149 if (ret)
3150 goto out;
3153 mutex_lock(&ext4_li_info->li_list_mtx);
3154 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3155 mutex_unlock(&ext4_li_info->li_list_mtx);
3157 sbi->s_li_request = elr;
3159 * set elr to NULL here since it has been inserted to
3160 * the request_list and the removal and free of it is
3161 * handled by ext4_clear_request_list from now on.
3163 elr = NULL;
3165 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3166 ret = ext4_run_lazyinit_thread();
3167 if (ret)
3168 goto out;
3170 out:
3171 mutex_unlock(&ext4_li_mtx);
3172 if (ret)
3173 kfree(elr);
3174 return ret;
3178 * We do not need to lock anything since this is called on
3179 * module unload.
3181 static void ext4_destroy_lazyinit_thread(void)
3184 * If thread exited earlier
3185 * there's nothing to be done.
3187 if (!ext4_li_info || !ext4_lazyinit_task)
3188 return;
3190 kthread_stop(ext4_lazyinit_task);
3193 static int set_journal_csum_feature_set(struct super_block *sb)
3195 int ret = 1;
3196 int compat, incompat;
3197 struct ext4_sb_info *sbi = EXT4_SB(sb);
3199 if (ext4_has_metadata_csum(sb)) {
3200 /* journal checksum v3 */
3201 compat = 0;
3202 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3203 } else {
3204 /* journal checksum v1 */
3205 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3206 incompat = 0;
3209 jbd2_journal_clear_features(sbi->s_journal,
3210 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3211 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3212 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3213 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3214 ret = jbd2_journal_set_features(sbi->s_journal,
3215 compat, 0,
3216 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3217 incompat);
3218 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3219 ret = jbd2_journal_set_features(sbi->s_journal,
3220 compat, 0,
3221 incompat);
3222 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3223 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3224 } else {
3225 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3226 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3229 return ret;
3233 * Note: calculating the overhead so we can be compatible with
3234 * historical BSD practice is quite difficult in the face of
3235 * clusters/bigalloc. This is because multiple metadata blocks from
3236 * different block group can end up in the same allocation cluster.
3237 * Calculating the exact overhead in the face of clustered allocation
3238 * requires either O(all block bitmaps) in memory or O(number of block
3239 * groups**2) in time. We will still calculate the superblock for
3240 * older file systems --- and if we come across with a bigalloc file
3241 * system with zero in s_overhead_clusters the estimate will be close to
3242 * correct especially for very large cluster sizes --- but for newer
3243 * file systems, it's better to calculate this figure once at mkfs
3244 * time, and store it in the superblock. If the superblock value is
3245 * present (even for non-bigalloc file systems), we will use it.
3247 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3248 char *buf)
3250 struct ext4_sb_info *sbi = EXT4_SB(sb);
3251 struct ext4_group_desc *gdp;
3252 ext4_fsblk_t first_block, last_block, b;
3253 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3254 int s, j, count = 0;
3256 if (!ext4_has_feature_bigalloc(sb))
3257 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3258 sbi->s_itb_per_group + 2);
3260 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3261 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3262 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3263 for (i = 0; i < ngroups; i++) {
3264 gdp = ext4_get_group_desc(sb, i, NULL);
3265 b = ext4_block_bitmap(sb, gdp);
3266 if (b >= first_block && b <= last_block) {
3267 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3268 count++;
3270 b = ext4_inode_bitmap(sb, gdp);
3271 if (b >= first_block && b <= last_block) {
3272 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3273 count++;
3275 b = ext4_inode_table(sb, gdp);
3276 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3277 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3278 int c = EXT4_B2C(sbi, b - first_block);
3279 ext4_set_bit(c, buf);
3280 count++;
3282 if (i != grp)
3283 continue;
3284 s = 0;
3285 if (ext4_bg_has_super(sb, grp)) {
3286 ext4_set_bit(s++, buf);
3287 count++;
3289 j = ext4_bg_num_gdb(sb, grp);
3290 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3291 ext4_error(sb, "Invalid number of block group "
3292 "descriptor blocks: %d", j);
3293 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3295 count += j;
3296 for (; j > 0; j--)
3297 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3299 if (!count)
3300 return 0;
3301 return EXT4_CLUSTERS_PER_GROUP(sb) -
3302 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3306 * Compute the overhead and stash it in sbi->s_overhead
3308 int ext4_calculate_overhead(struct super_block *sb)
3310 struct ext4_sb_info *sbi = EXT4_SB(sb);
3311 struct ext4_super_block *es = sbi->s_es;
3312 struct inode *j_inode;
3313 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3314 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3315 ext4_fsblk_t overhead = 0;
3316 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3318 if (!buf)
3319 return -ENOMEM;
3322 * Compute the overhead (FS structures). This is constant
3323 * for a given filesystem unless the number of block groups
3324 * changes so we cache the previous value until it does.
3328 * All of the blocks before first_data_block are overhead
3330 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3333 * Add the overhead found in each block group
3335 for (i = 0; i < ngroups; i++) {
3336 int blks;
3338 blks = count_overhead(sb, i, buf);
3339 overhead += blks;
3340 if (blks)
3341 memset(buf, 0, PAGE_SIZE);
3342 cond_resched();
3346 * Add the internal journal blocks whether the journal has been
3347 * loaded or not
3349 if (sbi->s_journal && !sbi->journal_bdev)
3350 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3351 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3352 j_inode = ext4_get_journal_inode(sb, j_inum);
3353 if (j_inode) {
3354 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3355 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3356 iput(j_inode);
3357 } else {
3358 ext4_msg(sb, KERN_ERR, "can't get journal size");
3361 sbi->s_overhead = overhead;
3362 smp_wmb();
3363 free_page((unsigned long) buf);
3364 return 0;
3367 static void ext4_set_resv_clusters(struct super_block *sb)
3369 ext4_fsblk_t resv_clusters;
3370 struct ext4_sb_info *sbi = EXT4_SB(sb);
3373 * There's no need to reserve anything when we aren't using extents.
3374 * The space estimates are exact, there are no unwritten extents,
3375 * hole punching doesn't need new metadata... This is needed especially
3376 * to keep ext2/3 backward compatibility.
3378 if (!ext4_has_feature_extents(sb))
3379 return;
3381 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3382 * This should cover the situations where we can not afford to run
3383 * out of space like for example punch hole, or converting
3384 * unwritten extents in delalloc path. In most cases such
3385 * allocation would require 1, or 2 blocks, higher numbers are
3386 * very rare.
3388 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3389 sbi->s_cluster_bits);
3391 do_div(resv_clusters, 50);
3392 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3394 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3397 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3399 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3400 char *orig_data = kstrdup(data, GFP_KERNEL);
3401 struct buffer_head *bh;
3402 struct ext4_super_block *es = NULL;
3403 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3404 ext4_fsblk_t block;
3405 ext4_fsblk_t sb_block = get_sb_block(&data);
3406 ext4_fsblk_t logical_sb_block;
3407 unsigned long offset = 0;
3408 unsigned long journal_devnum = 0;
3409 unsigned long def_mount_opts;
3410 struct inode *root;
3411 const char *descr;
3412 int ret = -ENOMEM;
3413 int blocksize, clustersize;
3414 unsigned int db_count;
3415 unsigned int i;
3416 int needs_recovery, has_huge_files, has_bigalloc;
3417 __u64 blocks_count;
3418 int err = 0;
3419 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3420 ext4_group_t first_not_zeroed;
3422 if ((data && !orig_data) || !sbi)
3423 goto out_free_base;
3425 sbi->s_daxdev = dax_dev;
3426 sbi->s_blockgroup_lock =
3427 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3428 if (!sbi->s_blockgroup_lock)
3429 goto out_free_base;
3431 sb->s_fs_info = sbi;
3432 sbi->s_sb = sb;
3433 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3434 sbi->s_sb_block = sb_block;
3435 if (sb->s_bdev->bd_part)
3436 sbi->s_sectors_written_start =
3437 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3439 /* Cleanup superblock name */
3440 strreplace(sb->s_id, '/', '!');
3442 /* -EINVAL is default */
3443 ret = -EINVAL;
3444 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3445 if (!blocksize) {
3446 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3447 goto out_fail;
3451 * The ext4 superblock will not be buffer aligned for other than 1kB
3452 * block sizes. We need to calculate the offset from buffer start.
3454 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3455 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3456 offset = do_div(logical_sb_block, blocksize);
3457 } else {
3458 logical_sb_block = sb_block;
3461 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3462 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3463 goto out_fail;
3466 * Note: s_es must be initialized as soon as possible because
3467 * some ext4 macro-instructions depend on its value
3469 es = (struct ext4_super_block *) (bh->b_data + offset);
3470 sbi->s_es = es;
3471 sb->s_magic = le16_to_cpu(es->s_magic);
3472 if (sb->s_magic != EXT4_SUPER_MAGIC)
3473 goto cantfind_ext4;
3474 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3476 /* Warn if metadata_csum and gdt_csum are both set. */
3477 if (ext4_has_feature_metadata_csum(sb) &&
3478 ext4_has_feature_gdt_csum(sb))
3479 ext4_warning(sb, "metadata_csum and uninit_bg are "
3480 "redundant flags; please run fsck.");
3482 /* Check for a known checksum algorithm */
3483 if (!ext4_verify_csum_type(sb, es)) {
3484 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3485 "unknown checksum algorithm.");
3486 silent = 1;
3487 goto cantfind_ext4;
3490 /* Load the checksum driver */
3491 if (ext4_has_feature_metadata_csum(sb) ||
3492 ext4_has_feature_ea_inode(sb)) {
3493 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3494 if (IS_ERR(sbi->s_chksum_driver)) {
3495 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3496 ret = PTR_ERR(sbi->s_chksum_driver);
3497 sbi->s_chksum_driver = NULL;
3498 goto failed_mount;
3502 /* Check superblock checksum */
3503 if (!ext4_superblock_csum_verify(sb, es)) {
3504 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3505 "invalid superblock checksum. Run e2fsck?");
3506 silent = 1;
3507 ret = -EFSBADCRC;
3508 goto cantfind_ext4;
3511 /* Precompute checksum seed for all metadata */
3512 if (ext4_has_feature_csum_seed(sb))
3513 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3514 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3515 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3516 sizeof(es->s_uuid));
3518 /* Set defaults before we parse the mount options */
3519 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3520 set_opt(sb, INIT_INODE_TABLE);
3521 if (def_mount_opts & EXT4_DEFM_DEBUG)
3522 set_opt(sb, DEBUG);
3523 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3524 set_opt(sb, GRPID);
3525 if (def_mount_opts & EXT4_DEFM_UID16)
3526 set_opt(sb, NO_UID32);
3527 /* xattr user namespace & acls are now defaulted on */
3528 set_opt(sb, XATTR_USER);
3529 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3530 set_opt(sb, POSIX_ACL);
3531 #endif
3532 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3533 if (ext4_has_metadata_csum(sb))
3534 set_opt(sb, JOURNAL_CHECKSUM);
3536 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3537 set_opt(sb, JOURNAL_DATA);
3538 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3539 set_opt(sb, ORDERED_DATA);
3540 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3541 set_opt(sb, WRITEBACK_DATA);
3543 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3544 set_opt(sb, ERRORS_PANIC);
3545 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3546 set_opt(sb, ERRORS_CONT);
3547 else
3548 set_opt(sb, ERRORS_RO);
3549 /* block_validity enabled by default; disable with noblock_validity */
3550 set_opt(sb, BLOCK_VALIDITY);
3551 if (def_mount_opts & EXT4_DEFM_DISCARD)
3552 set_opt(sb, DISCARD);
3554 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3555 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3556 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3557 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3558 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3560 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3561 set_opt(sb, BARRIER);
3564 * enable delayed allocation by default
3565 * Use -o nodelalloc to turn it off
3567 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3568 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3569 set_opt(sb, DELALLOC);
3572 * set default s_li_wait_mult for lazyinit, for the case there is
3573 * no mount option specified.
3575 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3577 if (sbi->s_es->s_mount_opts[0]) {
3578 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3579 sizeof(sbi->s_es->s_mount_opts),
3580 GFP_KERNEL);
3581 if (!s_mount_opts)
3582 goto failed_mount;
3583 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3584 &journal_ioprio, 0)) {
3585 ext4_msg(sb, KERN_WARNING,
3586 "failed to parse options in superblock: %s",
3587 s_mount_opts);
3589 kfree(s_mount_opts);
3591 sbi->s_def_mount_opt = sbi->s_mount_opt;
3592 if (!parse_options((char *) data, sb, &journal_devnum,
3593 &journal_ioprio, 0))
3594 goto failed_mount;
3596 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3597 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3598 "with data=journal disables delayed "
3599 "allocation and O_DIRECT support!\n");
3600 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3601 ext4_msg(sb, KERN_ERR, "can't mount with "
3602 "both data=journal and delalloc");
3603 goto failed_mount;
3605 if (test_opt(sb, DIOREAD_NOLOCK)) {
3606 ext4_msg(sb, KERN_ERR, "can't mount with "
3607 "both data=journal and dioread_nolock");
3608 goto failed_mount;
3610 if (test_opt(sb, DAX)) {
3611 ext4_msg(sb, KERN_ERR, "can't mount with "
3612 "both data=journal and dax");
3613 goto failed_mount;
3615 if (ext4_has_feature_encrypt(sb)) {
3616 ext4_msg(sb, KERN_WARNING,
3617 "encrypted files will use data=ordered "
3618 "instead of data journaling mode");
3620 if (test_opt(sb, DELALLOC))
3621 clear_opt(sb, DELALLOC);
3622 } else {
3623 sb->s_iflags |= SB_I_CGROUPWB;
3626 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3627 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3629 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3630 (ext4_has_compat_features(sb) ||
3631 ext4_has_ro_compat_features(sb) ||
3632 ext4_has_incompat_features(sb)))
3633 ext4_msg(sb, KERN_WARNING,
3634 "feature flags set on rev 0 fs, "
3635 "running e2fsck is recommended");
3637 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3638 set_opt2(sb, HURD_COMPAT);
3639 if (ext4_has_feature_64bit(sb)) {
3640 ext4_msg(sb, KERN_ERR,
3641 "The Hurd can't support 64-bit file systems");
3642 goto failed_mount;
3646 * ea_inode feature uses l_i_version field which is not
3647 * available in HURD_COMPAT mode.
3649 if (ext4_has_feature_ea_inode(sb)) {
3650 ext4_msg(sb, KERN_ERR,
3651 "ea_inode feature is not supported for Hurd");
3652 goto failed_mount;
3656 if (IS_EXT2_SB(sb)) {
3657 if (ext2_feature_set_ok(sb))
3658 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3659 "using the ext4 subsystem");
3660 else {
3661 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3662 "to feature incompatibilities");
3663 goto failed_mount;
3667 if (IS_EXT3_SB(sb)) {
3668 if (ext3_feature_set_ok(sb))
3669 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3670 "using the ext4 subsystem");
3671 else {
3672 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3673 "to feature incompatibilities");
3674 goto failed_mount;
3679 * Check feature flags regardless of the revision level, since we
3680 * previously didn't change the revision level when setting the flags,
3681 * so there is a chance incompat flags are set on a rev 0 filesystem.
3683 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3684 goto failed_mount;
3686 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3687 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3688 blocksize > EXT4_MAX_BLOCK_SIZE) {
3689 ext4_msg(sb, KERN_ERR,
3690 "Unsupported filesystem blocksize %d (%d log_block_size)",
3691 blocksize, le32_to_cpu(es->s_log_block_size));
3692 goto failed_mount;
3694 if (le32_to_cpu(es->s_log_block_size) >
3695 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3696 ext4_msg(sb, KERN_ERR,
3697 "Invalid log block size: %u",
3698 le32_to_cpu(es->s_log_block_size));
3699 goto failed_mount;
3702 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3703 ext4_msg(sb, KERN_ERR,
3704 "Number of reserved GDT blocks insanely large: %d",
3705 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3706 goto failed_mount;
3709 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3710 if (ext4_has_feature_inline_data(sb)) {
3711 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3712 " that may contain inline data");
3713 goto failed_mount;
3715 err = bdev_dax_supported(sb, blocksize);
3716 if (err)
3717 goto failed_mount;
3720 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3721 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3722 es->s_encryption_level);
3723 goto failed_mount;
3726 if (sb->s_blocksize != blocksize) {
3727 /* Validate the filesystem blocksize */
3728 if (!sb_set_blocksize(sb, blocksize)) {
3729 ext4_msg(sb, KERN_ERR, "bad block size %d",
3730 blocksize);
3731 goto failed_mount;
3734 brelse(bh);
3735 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3736 offset = do_div(logical_sb_block, blocksize);
3737 bh = sb_bread_unmovable(sb, logical_sb_block);
3738 if (!bh) {
3739 ext4_msg(sb, KERN_ERR,
3740 "Can't read superblock on 2nd try");
3741 goto failed_mount;
3743 es = (struct ext4_super_block *)(bh->b_data + offset);
3744 sbi->s_es = es;
3745 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3746 ext4_msg(sb, KERN_ERR,
3747 "Magic mismatch, very weird!");
3748 goto failed_mount;
3752 has_huge_files = ext4_has_feature_huge_file(sb);
3753 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3754 has_huge_files);
3755 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3757 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3758 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3759 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3760 } else {
3761 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3762 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3763 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3764 (!is_power_of_2(sbi->s_inode_size)) ||
3765 (sbi->s_inode_size > blocksize)) {
3766 ext4_msg(sb, KERN_ERR,
3767 "unsupported inode size: %d",
3768 sbi->s_inode_size);
3769 goto failed_mount;
3771 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3772 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3775 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3776 if (ext4_has_feature_64bit(sb)) {
3777 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3778 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3779 !is_power_of_2(sbi->s_desc_size)) {
3780 ext4_msg(sb, KERN_ERR,
3781 "unsupported descriptor size %lu",
3782 sbi->s_desc_size);
3783 goto failed_mount;
3785 } else
3786 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3788 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3789 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3791 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3792 if (sbi->s_inodes_per_block == 0)
3793 goto cantfind_ext4;
3794 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3795 sbi->s_inodes_per_group > blocksize * 8) {
3796 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3797 sbi->s_blocks_per_group);
3798 goto failed_mount;
3800 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3801 sbi->s_inodes_per_block;
3802 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3803 sbi->s_sbh = bh;
3804 sbi->s_mount_state = le16_to_cpu(es->s_state);
3805 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3806 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3808 for (i = 0; i < 4; i++)
3809 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3810 sbi->s_def_hash_version = es->s_def_hash_version;
3811 if (ext4_has_feature_dir_index(sb)) {
3812 i = le32_to_cpu(es->s_flags);
3813 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3814 sbi->s_hash_unsigned = 3;
3815 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3816 #ifdef __CHAR_UNSIGNED__
3817 if (!sb_rdonly(sb))
3818 es->s_flags |=
3819 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3820 sbi->s_hash_unsigned = 3;
3821 #else
3822 if (!sb_rdonly(sb))
3823 es->s_flags |=
3824 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3825 #endif
3829 /* Handle clustersize */
3830 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3831 has_bigalloc = ext4_has_feature_bigalloc(sb);
3832 if (has_bigalloc) {
3833 if (clustersize < blocksize) {
3834 ext4_msg(sb, KERN_ERR,
3835 "cluster size (%d) smaller than "
3836 "block size (%d)", clustersize, blocksize);
3837 goto failed_mount;
3839 if (le32_to_cpu(es->s_log_cluster_size) >
3840 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3841 ext4_msg(sb, KERN_ERR,
3842 "Invalid log cluster size: %u",
3843 le32_to_cpu(es->s_log_cluster_size));
3844 goto failed_mount;
3846 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3847 le32_to_cpu(es->s_log_block_size);
3848 sbi->s_clusters_per_group =
3849 le32_to_cpu(es->s_clusters_per_group);
3850 if (sbi->s_clusters_per_group > blocksize * 8) {
3851 ext4_msg(sb, KERN_ERR,
3852 "#clusters per group too big: %lu",
3853 sbi->s_clusters_per_group);
3854 goto failed_mount;
3856 if (sbi->s_blocks_per_group !=
3857 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3858 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3859 "clusters per group (%lu) inconsistent",
3860 sbi->s_blocks_per_group,
3861 sbi->s_clusters_per_group);
3862 goto failed_mount;
3864 } else {
3865 if (clustersize != blocksize) {
3866 ext4_warning(sb, "fragment/cluster size (%d) != "
3867 "block size (%d)", clustersize,
3868 blocksize);
3869 clustersize = blocksize;
3871 if (sbi->s_blocks_per_group > blocksize * 8) {
3872 ext4_msg(sb, KERN_ERR,
3873 "#blocks per group too big: %lu",
3874 sbi->s_blocks_per_group);
3875 goto failed_mount;
3877 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3878 sbi->s_cluster_bits = 0;
3880 sbi->s_cluster_ratio = clustersize / blocksize;
3882 /* Do we have standard group size of clustersize * 8 blocks ? */
3883 if (sbi->s_blocks_per_group == clustersize << 3)
3884 set_opt2(sb, STD_GROUP_SIZE);
3887 * Test whether we have more sectors than will fit in sector_t,
3888 * and whether the max offset is addressable by the page cache.
3890 err = generic_check_addressable(sb->s_blocksize_bits,
3891 ext4_blocks_count(es));
3892 if (err) {
3893 ext4_msg(sb, KERN_ERR, "filesystem"
3894 " too large to mount safely on this system");
3895 if (sizeof(sector_t) < 8)
3896 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3897 goto failed_mount;
3900 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3901 goto cantfind_ext4;
3903 /* check blocks count against device size */
3904 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3905 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3906 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3907 "exceeds size of device (%llu blocks)",
3908 ext4_blocks_count(es), blocks_count);
3909 goto failed_mount;
3913 * It makes no sense for the first data block to be beyond the end
3914 * of the filesystem.
3916 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3917 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3918 "block %u is beyond end of filesystem (%llu)",
3919 le32_to_cpu(es->s_first_data_block),
3920 ext4_blocks_count(es));
3921 goto failed_mount;
3923 blocks_count = (ext4_blocks_count(es) -
3924 le32_to_cpu(es->s_first_data_block) +
3925 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3926 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3927 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3928 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3929 "(block count %llu, first data block %u, "
3930 "blocks per group %lu)", sbi->s_groups_count,
3931 ext4_blocks_count(es),
3932 le32_to_cpu(es->s_first_data_block),
3933 EXT4_BLOCKS_PER_GROUP(sb));
3934 goto failed_mount;
3936 sbi->s_groups_count = blocks_count;
3937 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3938 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3939 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3940 EXT4_DESC_PER_BLOCK(sb);
3941 if (ext4_has_feature_meta_bg(sb)) {
3942 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3943 ext4_msg(sb, KERN_WARNING,
3944 "first meta block group too large: %u "
3945 "(group descriptor block count %u)",
3946 le32_to_cpu(es->s_first_meta_bg), db_count);
3947 goto failed_mount;
3950 sbi->s_group_desc = kvmalloc(db_count *
3951 sizeof(struct buffer_head *),
3952 GFP_KERNEL);
3953 if (sbi->s_group_desc == NULL) {
3954 ext4_msg(sb, KERN_ERR, "not enough memory");
3955 ret = -ENOMEM;
3956 goto failed_mount;
3959 bgl_lock_init(sbi->s_blockgroup_lock);
3961 /* Pre-read the descriptors into the buffer cache */
3962 for (i = 0; i < db_count; i++) {
3963 block = descriptor_loc(sb, logical_sb_block, i);
3964 sb_breadahead(sb, block);
3967 for (i = 0; i < db_count; i++) {
3968 block = descriptor_loc(sb, logical_sb_block, i);
3969 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3970 if (!sbi->s_group_desc[i]) {
3971 ext4_msg(sb, KERN_ERR,
3972 "can't read group descriptor %d", i);
3973 db_count = i;
3974 goto failed_mount2;
3977 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3978 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3979 ret = -EFSCORRUPTED;
3980 goto failed_mount2;
3983 sbi->s_gdb_count = db_count;
3985 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
3987 /* Register extent status tree shrinker */
3988 if (ext4_es_register_shrinker(sbi))
3989 goto failed_mount3;
3991 sbi->s_stripe = ext4_get_stripe_size(sbi);
3992 sbi->s_extent_max_zeroout_kb = 32;
3995 * set up enough so that it can read an inode
3997 sb->s_op = &ext4_sops;
3998 sb->s_export_op = &ext4_export_ops;
3999 sb->s_xattr = ext4_xattr_handlers;
4000 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4001 sb->s_cop = &ext4_cryptops;
4002 #endif
4003 #ifdef CONFIG_QUOTA
4004 sb->dq_op = &ext4_quota_operations;
4005 if (ext4_has_feature_quota(sb))
4006 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4007 else
4008 sb->s_qcop = &ext4_qctl_operations;
4009 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4010 #endif
4011 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4013 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4014 mutex_init(&sbi->s_orphan_lock);
4016 sb->s_root = NULL;
4018 needs_recovery = (es->s_last_orphan != 0 ||
4019 ext4_has_feature_journal_needs_recovery(sb));
4021 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4022 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4023 goto failed_mount3a;
4026 * The first inode we look at is the journal inode. Don't try
4027 * root first: it may be modified in the journal!
4029 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4030 err = ext4_load_journal(sb, es, journal_devnum);
4031 if (err)
4032 goto failed_mount3a;
4033 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4034 ext4_has_feature_journal_needs_recovery(sb)) {
4035 ext4_msg(sb, KERN_ERR, "required journal recovery "
4036 "suppressed and not mounted read-only");
4037 goto failed_mount_wq;
4038 } else {
4039 /* Nojournal mode, all journal mount options are illegal */
4040 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4041 ext4_msg(sb, KERN_ERR, "can't mount with "
4042 "journal_checksum, fs mounted w/o journal");
4043 goto failed_mount_wq;
4045 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4046 ext4_msg(sb, KERN_ERR, "can't mount with "
4047 "journal_async_commit, fs mounted w/o journal");
4048 goto failed_mount_wq;
4050 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4051 ext4_msg(sb, KERN_ERR, "can't mount with "
4052 "commit=%lu, fs mounted w/o journal",
4053 sbi->s_commit_interval / HZ);
4054 goto failed_mount_wq;
4056 if (EXT4_MOUNT_DATA_FLAGS &
4057 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4058 ext4_msg(sb, KERN_ERR, "can't mount with "
4059 "data=, fs mounted w/o journal");
4060 goto failed_mount_wq;
4062 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4063 clear_opt(sb, JOURNAL_CHECKSUM);
4064 clear_opt(sb, DATA_FLAGS);
4065 sbi->s_journal = NULL;
4066 needs_recovery = 0;
4067 goto no_journal;
4070 if (ext4_has_feature_64bit(sb) &&
4071 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4072 JBD2_FEATURE_INCOMPAT_64BIT)) {
4073 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4074 goto failed_mount_wq;
4077 if (!set_journal_csum_feature_set(sb)) {
4078 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4079 "feature set");
4080 goto failed_mount_wq;
4083 /* We have now updated the journal if required, so we can
4084 * validate the data journaling mode. */
4085 switch (test_opt(sb, DATA_FLAGS)) {
4086 case 0:
4087 /* No mode set, assume a default based on the journal
4088 * capabilities: ORDERED_DATA if the journal can
4089 * cope, else JOURNAL_DATA
4091 if (jbd2_journal_check_available_features
4092 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4093 set_opt(sb, ORDERED_DATA);
4094 else
4095 set_opt(sb, JOURNAL_DATA);
4096 break;
4098 case EXT4_MOUNT_ORDERED_DATA:
4099 case EXT4_MOUNT_WRITEBACK_DATA:
4100 if (!jbd2_journal_check_available_features
4101 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4102 ext4_msg(sb, KERN_ERR, "Journal does not support "
4103 "requested data journaling mode");
4104 goto failed_mount_wq;
4106 default:
4107 break;
4110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4111 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4112 ext4_msg(sb, KERN_ERR, "can't mount with "
4113 "journal_async_commit in data=ordered mode");
4114 goto failed_mount_wq;
4117 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4119 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4121 no_journal:
4122 if (!test_opt(sb, NO_MBCACHE)) {
4123 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4124 if (!sbi->s_ea_block_cache) {
4125 ext4_msg(sb, KERN_ERR,
4126 "Failed to create ea_block_cache");
4127 goto failed_mount_wq;
4130 if (ext4_has_feature_ea_inode(sb)) {
4131 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4132 if (!sbi->s_ea_inode_cache) {
4133 ext4_msg(sb, KERN_ERR,
4134 "Failed to create ea_inode_cache");
4135 goto failed_mount_wq;
4140 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4141 (blocksize != PAGE_SIZE)) {
4142 ext4_msg(sb, KERN_ERR,
4143 "Unsupported blocksize for fs encryption");
4144 goto failed_mount_wq;
4147 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4148 !ext4_has_feature_encrypt(sb)) {
4149 ext4_set_feature_encrypt(sb);
4150 ext4_commit_super(sb, 1);
4154 * Get the # of file system overhead blocks from the
4155 * superblock if present.
4157 if (es->s_overhead_clusters)
4158 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4159 else {
4160 err = ext4_calculate_overhead(sb);
4161 if (err)
4162 goto failed_mount_wq;
4166 * The maximum number of concurrent works can be high and
4167 * concurrency isn't really necessary. Limit it to 1.
4169 EXT4_SB(sb)->rsv_conversion_wq =
4170 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4171 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4172 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4173 ret = -ENOMEM;
4174 goto failed_mount4;
4178 * The jbd2_journal_load will have done any necessary log recovery,
4179 * so we can safely mount the rest of the filesystem now.
4182 root = ext4_iget(sb, EXT4_ROOT_INO);
4183 if (IS_ERR(root)) {
4184 ext4_msg(sb, KERN_ERR, "get root inode failed");
4185 ret = PTR_ERR(root);
4186 root = NULL;
4187 goto failed_mount4;
4189 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4190 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4191 iput(root);
4192 goto failed_mount4;
4194 sb->s_root = d_make_root(root);
4195 if (!sb->s_root) {
4196 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4197 ret = -ENOMEM;
4198 goto failed_mount4;
4201 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4202 sb->s_flags |= MS_RDONLY;
4204 /* determine the minimum size of new large inodes, if present */
4205 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4206 sbi->s_want_extra_isize == 0) {
4207 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4208 EXT4_GOOD_OLD_INODE_SIZE;
4209 if (ext4_has_feature_extra_isize(sb)) {
4210 if (sbi->s_want_extra_isize <
4211 le16_to_cpu(es->s_want_extra_isize))
4212 sbi->s_want_extra_isize =
4213 le16_to_cpu(es->s_want_extra_isize);
4214 if (sbi->s_want_extra_isize <
4215 le16_to_cpu(es->s_min_extra_isize))
4216 sbi->s_want_extra_isize =
4217 le16_to_cpu(es->s_min_extra_isize);
4220 /* Check if enough inode space is available */
4221 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4222 sbi->s_inode_size) {
4223 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4224 EXT4_GOOD_OLD_INODE_SIZE;
4225 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4226 "available");
4229 ext4_set_resv_clusters(sb);
4231 err = ext4_setup_system_zone(sb);
4232 if (err) {
4233 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4234 "zone (%d)", err);
4235 goto failed_mount4a;
4238 ext4_ext_init(sb);
4239 err = ext4_mb_init(sb);
4240 if (err) {
4241 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4242 err);
4243 goto failed_mount5;
4246 block = ext4_count_free_clusters(sb);
4247 ext4_free_blocks_count_set(sbi->s_es,
4248 EXT4_C2B(sbi, block));
4249 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4250 GFP_KERNEL);
4251 if (!err) {
4252 unsigned long freei = ext4_count_free_inodes(sb);
4253 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4254 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4255 GFP_KERNEL);
4257 if (!err)
4258 err = percpu_counter_init(&sbi->s_dirs_counter,
4259 ext4_count_dirs(sb), GFP_KERNEL);
4260 if (!err)
4261 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4262 GFP_KERNEL);
4263 if (!err)
4264 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4266 if (err) {
4267 ext4_msg(sb, KERN_ERR, "insufficient memory");
4268 goto failed_mount6;
4271 if (ext4_has_feature_flex_bg(sb))
4272 if (!ext4_fill_flex_info(sb)) {
4273 ext4_msg(sb, KERN_ERR,
4274 "unable to initialize "
4275 "flex_bg meta info!");
4276 goto failed_mount6;
4279 err = ext4_register_li_request(sb, first_not_zeroed);
4280 if (err)
4281 goto failed_mount6;
4283 err = ext4_register_sysfs(sb);
4284 if (err)
4285 goto failed_mount7;
4287 #ifdef CONFIG_QUOTA
4288 /* Enable quota usage during mount. */
4289 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4290 err = ext4_enable_quotas(sb);
4291 if (err)
4292 goto failed_mount8;
4294 #endif /* CONFIG_QUOTA */
4296 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4297 ext4_orphan_cleanup(sb, es);
4298 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4299 if (needs_recovery) {
4300 ext4_msg(sb, KERN_INFO, "recovery complete");
4301 ext4_mark_recovery_complete(sb, es);
4303 if (EXT4_SB(sb)->s_journal) {
4304 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4305 descr = " journalled data mode";
4306 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4307 descr = " ordered data mode";
4308 else
4309 descr = " writeback data mode";
4310 } else
4311 descr = "out journal";
4313 if (test_opt(sb, DISCARD)) {
4314 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4315 if (!blk_queue_discard(q))
4316 ext4_msg(sb, KERN_WARNING,
4317 "mounting with \"discard\" option, but "
4318 "the device does not support discard");
4321 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4322 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4323 "Opts: %.*s%s%s", descr,
4324 (int) sizeof(sbi->s_es->s_mount_opts),
4325 sbi->s_es->s_mount_opts,
4326 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4328 if (es->s_error_count)
4329 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4331 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4332 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4333 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4334 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4336 kfree(orig_data);
4337 return 0;
4339 cantfind_ext4:
4340 if (!silent)
4341 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4342 goto failed_mount;
4344 #ifdef CONFIG_QUOTA
4345 failed_mount8:
4346 ext4_unregister_sysfs(sb);
4347 #endif
4348 failed_mount7:
4349 ext4_unregister_li_request(sb);
4350 failed_mount6:
4351 ext4_mb_release(sb);
4352 if (sbi->s_flex_groups)
4353 kvfree(sbi->s_flex_groups);
4354 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4355 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4356 percpu_counter_destroy(&sbi->s_dirs_counter);
4357 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4358 failed_mount5:
4359 ext4_ext_release(sb);
4360 ext4_release_system_zone(sb);
4361 failed_mount4a:
4362 dput(sb->s_root);
4363 sb->s_root = NULL;
4364 failed_mount4:
4365 ext4_msg(sb, KERN_ERR, "mount failed");
4366 if (EXT4_SB(sb)->rsv_conversion_wq)
4367 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4368 failed_mount_wq:
4369 if (sbi->s_ea_inode_cache) {
4370 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4371 sbi->s_ea_inode_cache = NULL;
4373 if (sbi->s_ea_block_cache) {
4374 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4375 sbi->s_ea_block_cache = NULL;
4377 if (sbi->s_journal) {
4378 jbd2_journal_destroy(sbi->s_journal);
4379 sbi->s_journal = NULL;
4381 failed_mount3a:
4382 ext4_es_unregister_shrinker(sbi);
4383 failed_mount3:
4384 del_timer_sync(&sbi->s_err_report);
4385 if (sbi->s_mmp_tsk)
4386 kthread_stop(sbi->s_mmp_tsk);
4387 failed_mount2:
4388 for (i = 0; i < db_count; i++)
4389 brelse(sbi->s_group_desc[i]);
4390 kvfree(sbi->s_group_desc);
4391 failed_mount:
4392 if (sbi->s_chksum_driver)
4393 crypto_free_shash(sbi->s_chksum_driver);
4394 #ifdef CONFIG_QUOTA
4395 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4396 kfree(sbi->s_qf_names[i]);
4397 #endif
4398 ext4_blkdev_remove(sbi);
4399 brelse(bh);
4400 out_fail:
4401 sb->s_fs_info = NULL;
4402 kfree(sbi->s_blockgroup_lock);
4403 out_free_base:
4404 kfree(sbi);
4405 kfree(orig_data);
4406 fs_put_dax(dax_dev);
4407 return err ? err : ret;
4411 * Setup any per-fs journal parameters now. We'll do this both on
4412 * initial mount, once the journal has been initialised but before we've
4413 * done any recovery; and again on any subsequent remount.
4415 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4417 struct ext4_sb_info *sbi = EXT4_SB(sb);
4419 journal->j_commit_interval = sbi->s_commit_interval;
4420 journal->j_min_batch_time = sbi->s_min_batch_time;
4421 journal->j_max_batch_time = sbi->s_max_batch_time;
4423 write_lock(&journal->j_state_lock);
4424 if (test_opt(sb, BARRIER))
4425 journal->j_flags |= JBD2_BARRIER;
4426 else
4427 journal->j_flags &= ~JBD2_BARRIER;
4428 if (test_opt(sb, DATA_ERR_ABORT))
4429 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4430 else
4431 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4432 write_unlock(&journal->j_state_lock);
4435 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4436 unsigned int journal_inum)
4438 struct inode *journal_inode;
4441 * Test for the existence of a valid inode on disk. Bad things
4442 * happen if we iget() an unused inode, as the subsequent iput()
4443 * will try to delete it.
4445 journal_inode = ext4_iget(sb, journal_inum);
4446 if (IS_ERR(journal_inode)) {
4447 ext4_msg(sb, KERN_ERR, "no journal found");
4448 return NULL;
4450 if (!journal_inode->i_nlink) {
4451 make_bad_inode(journal_inode);
4452 iput(journal_inode);
4453 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4454 return NULL;
4457 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4458 journal_inode, journal_inode->i_size);
4459 if (!S_ISREG(journal_inode->i_mode)) {
4460 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4461 iput(journal_inode);
4462 return NULL;
4464 return journal_inode;
4467 static journal_t *ext4_get_journal(struct super_block *sb,
4468 unsigned int journal_inum)
4470 struct inode *journal_inode;
4471 journal_t *journal;
4473 BUG_ON(!ext4_has_feature_journal(sb));
4475 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4476 if (!journal_inode)
4477 return NULL;
4479 journal = jbd2_journal_init_inode(journal_inode);
4480 if (!journal) {
4481 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4482 iput(journal_inode);
4483 return NULL;
4485 journal->j_private = sb;
4486 ext4_init_journal_params(sb, journal);
4487 return journal;
4490 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4491 dev_t j_dev)
4493 struct buffer_head *bh;
4494 journal_t *journal;
4495 ext4_fsblk_t start;
4496 ext4_fsblk_t len;
4497 int hblock, blocksize;
4498 ext4_fsblk_t sb_block;
4499 unsigned long offset;
4500 struct ext4_super_block *es;
4501 struct block_device *bdev;
4503 BUG_ON(!ext4_has_feature_journal(sb));
4505 bdev = ext4_blkdev_get(j_dev, sb);
4506 if (bdev == NULL)
4507 return NULL;
4509 blocksize = sb->s_blocksize;
4510 hblock = bdev_logical_block_size(bdev);
4511 if (blocksize < hblock) {
4512 ext4_msg(sb, KERN_ERR,
4513 "blocksize too small for journal device");
4514 goto out_bdev;
4517 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4518 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4519 set_blocksize(bdev, blocksize);
4520 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4521 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4522 "external journal");
4523 goto out_bdev;
4526 es = (struct ext4_super_block *) (bh->b_data + offset);
4527 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4528 !(le32_to_cpu(es->s_feature_incompat) &
4529 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4530 ext4_msg(sb, KERN_ERR, "external journal has "
4531 "bad superblock");
4532 brelse(bh);
4533 goto out_bdev;
4536 if ((le32_to_cpu(es->s_feature_ro_compat) &
4537 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4538 es->s_checksum != ext4_superblock_csum(sb, es)) {
4539 ext4_msg(sb, KERN_ERR, "external journal has "
4540 "corrupt superblock");
4541 brelse(bh);
4542 goto out_bdev;
4545 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4546 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4547 brelse(bh);
4548 goto out_bdev;
4551 len = ext4_blocks_count(es);
4552 start = sb_block + 1;
4553 brelse(bh); /* we're done with the superblock */
4555 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4556 start, len, blocksize);
4557 if (!journal) {
4558 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4559 goto out_bdev;
4561 journal->j_private = sb;
4562 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4563 wait_on_buffer(journal->j_sb_buffer);
4564 if (!buffer_uptodate(journal->j_sb_buffer)) {
4565 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4566 goto out_journal;
4568 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4569 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4570 "user (unsupported) - %d",
4571 be32_to_cpu(journal->j_superblock->s_nr_users));
4572 goto out_journal;
4574 EXT4_SB(sb)->journal_bdev = bdev;
4575 ext4_init_journal_params(sb, journal);
4576 return journal;
4578 out_journal:
4579 jbd2_journal_destroy(journal);
4580 out_bdev:
4581 ext4_blkdev_put(bdev);
4582 return NULL;
4585 static int ext4_load_journal(struct super_block *sb,
4586 struct ext4_super_block *es,
4587 unsigned long journal_devnum)
4589 journal_t *journal;
4590 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4591 dev_t journal_dev;
4592 int err = 0;
4593 int really_read_only;
4595 BUG_ON(!ext4_has_feature_journal(sb));
4597 if (journal_devnum &&
4598 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4599 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4600 "numbers have changed");
4601 journal_dev = new_decode_dev(journal_devnum);
4602 } else
4603 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4605 really_read_only = bdev_read_only(sb->s_bdev);
4608 * Are we loading a blank journal or performing recovery after a
4609 * crash? For recovery, we need to check in advance whether we
4610 * can get read-write access to the device.
4612 if (ext4_has_feature_journal_needs_recovery(sb)) {
4613 if (sb_rdonly(sb)) {
4614 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4615 "required on readonly filesystem");
4616 if (really_read_only) {
4617 ext4_msg(sb, KERN_ERR, "write access "
4618 "unavailable, cannot proceed "
4619 "(try mounting with noload)");
4620 return -EROFS;
4622 ext4_msg(sb, KERN_INFO, "write access will "
4623 "be enabled during recovery");
4627 if (journal_inum && journal_dev) {
4628 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4629 "and inode journals!");
4630 return -EINVAL;
4633 if (journal_inum) {
4634 if (!(journal = ext4_get_journal(sb, journal_inum)))
4635 return -EINVAL;
4636 } else {
4637 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4638 return -EINVAL;
4641 if (!(journal->j_flags & JBD2_BARRIER))
4642 ext4_msg(sb, KERN_INFO, "barriers disabled");
4644 if (!ext4_has_feature_journal_needs_recovery(sb))
4645 err = jbd2_journal_wipe(journal, !really_read_only);
4646 if (!err) {
4647 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4648 if (save)
4649 memcpy(save, ((char *) es) +
4650 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4651 err = jbd2_journal_load(journal);
4652 if (save)
4653 memcpy(((char *) es) + EXT4_S_ERR_START,
4654 save, EXT4_S_ERR_LEN);
4655 kfree(save);
4658 if (err) {
4659 ext4_msg(sb, KERN_ERR, "error loading journal");
4660 jbd2_journal_destroy(journal);
4661 return err;
4664 EXT4_SB(sb)->s_journal = journal;
4665 ext4_clear_journal_err(sb, es);
4667 if (!really_read_only && journal_devnum &&
4668 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4669 es->s_journal_dev = cpu_to_le32(journal_devnum);
4671 /* Make sure we flush the recovery flag to disk. */
4672 ext4_commit_super(sb, 1);
4675 return 0;
4678 static int ext4_commit_super(struct super_block *sb, int sync)
4680 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4681 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4682 int error = 0;
4684 if (!sbh || block_device_ejected(sb))
4685 return error;
4687 * If the file system is mounted read-only, don't update the
4688 * superblock write time. This avoids updating the superblock
4689 * write time when we are mounting the root file system
4690 * read/only but we need to replay the journal; at that point,
4691 * for people who are east of GMT and who make their clock
4692 * tick in localtime for Windows bug-for-bug compatibility,
4693 * the clock is set in the future, and this will cause e2fsck
4694 * to complain and force a full file system check.
4696 if (!(sb->s_flags & MS_RDONLY))
4697 es->s_wtime = cpu_to_le32(get_seconds());
4698 if (sb->s_bdev->bd_part)
4699 es->s_kbytes_written =
4700 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4701 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4702 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4703 else
4704 es->s_kbytes_written =
4705 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4706 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4707 ext4_free_blocks_count_set(es,
4708 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4709 &EXT4_SB(sb)->s_freeclusters_counter)));
4710 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4711 es->s_free_inodes_count =
4712 cpu_to_le32(percpu_counter_sum_positive(
4713 &EXT4_SB(sb)->s_freeinodes_counter));
4714 BUFFER_TRACE(sbh, "marking dirty");
4715 ext4_superblock_csum_set(sb);
4716 if (sync)
4717 lock_buffer(sbh);
4718 if (buffer_write_io_error(sbh)) {
4720 * Oh, dear. A previous attempt to write the
4721 * superblock failed. This could happen because the
4722 * USB device was yanked out. Or it could happen to
4723 * be a transient write error and maybe the block will
4724 * be remapped. Nothing we can do but to retry the
4725 * write and hope for the best.
4727 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4728 "superblock detected");
4729 clear_buffer_write_io_error(sbh);
4730 set_buffer_uptodate(sbh);
4732 mark_buffer_dirty(sbh);
4733 if (sync) {
4734 unlock_buffer(sbh);
4735 error = __sync_dirty_buffer(sbh,
4736 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4737 if (error)
4738 return error;
4740 error = buffer_write_io_error(sbh);
4741 if (error) {
4742 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4743 "superblock");
4744 clear_buffer_write_io_error(sbh);
4745 set_buffer_uptodate(sbh);
4748 return error;
4752 * Have we just finished recovery? If so, and if we are mounting (or
4753 * remounting) the filesystem readonly, then we will end up with a
4754 * consistent fs on disk. Record that fact.
4756 static void ext4_mark_recovery_complete(struct super_block *sb,
4757 struct ext4_super_block *es)
4759 journal_t *journal = EXT4_SB(sb)->s_journal;
4761 if (!ext4_has_feature_journal(sb)) {
4762 BUG_ON(journal != NULL);
4763 return;
4765 jbd2_journal_lock_updates(journal);
4766 if (jbd2_journal_flush(journal) < 0)
4767 goto out;
4769 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4770 ext4_clear_feature_journal_needs_recovery(sb);
4771 ext4_commit_super(sb, 1);
4774 out:
4775 jbd2_journal_unlock_updates(journal);
4779 * If we are mounting (or read-write remounting) a filesystem whose journal
4780 * has recorded an error from a previous lifetime, move that error to the
4781 * main filesystem now.
4783 static void ext4_clear_journal_err(struct super_block *sb,
4784 struct ext4_super_block *es)
4786 journal_t *journal;
4787 int j_errno;
4788 const char *errstr;
4790 BUG_ON(!ext4_has_feature_journal(sb));
4792 journal = EXT4_SB(sb)->s_journal;
4795 * Now check for any error status which may have been recorded in the
4796 * journal by a prior ext4_error() or ext4_abort()
4799 j_errno = jbd2_journal_errno(journal);
4800 if (j_errno) {
4801 char nbuf[16];
4803 errstr = ext4_decode_error(sb, j_errno, nbuf);
4804 ext4_warning(sb, "Filesystem error recorded "
4805 "from previous mount: %s", errstr);
4806 ext4_warning(sb, "Marking fs in need of filesystem check.");
4808 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4809 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4810 ext4_commit_super(sb, 1);
4812 jbd2_journal_clear_err(journal);
4813 jbd2_journal_update_sb_errno(journal);
4818 * Force the running and committing transactions to commit,
4819 * and wait on the commit.
4821 int ext4_force_commit(struct super_block *sb)
4823 journal_t *journal;
4825 if (sb_rdonly(sb))
4826 return 0;
4828 journal = EXT4_SB(sb)->s_journal;
4829 return ext4_journal_force_commit(journal);
4832 static int ext4_sync_fs(struct super_block *sb, int wait)
4834 int ret = 0;
4835 tid_t target;
4836 bool needs_barrier = false;
4837 struct ext4_sb_info *sbi = EXT4_SB(sb);
4839 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4840 return 0;
4842 trace_ext4_sync_fs(sb, wait);
4843 flush_workqueue(sbi->rsv_conversion_wq);
4845 * Writeback quota in non-journalled quota case - journalled quota has
4846 * no dirty dquots
4848 dquot_writeback_dquots(sb, -1);
4850 * Data writeback is possible w/o journal transaction, so barrier must
4851 * being sent at the end of the function. But we can skip it if
4852 * transaction_commit will do it for us.
4854 if (sbi->s_journal) {
4855 target = jbd2_get_latest_transaction(sbi->s_journal);
4856 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4857 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4858 needs_barrier = true;
4860 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4861 if (wait)
4862 ret = jbd2_log_wait_commit(sbi->s_journal,
4863 target);
4865 } else if (wait && test_opt(sb, BARRIER))
4866 needs_barrier = true;
4867 if (needs_barrier) {
4868 int err;
4869 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4870 if (!ret)
4871 ret = err;
4874 return ret;
4878 * LVM calls this function before a (read-only) snapshot is created. This
4879 * gives us a chance to flush the journal completely and mark the fs clean.
4881 * Note that only this function cannot bring a filesystem to be in a clean
4882 * state independently. It relies on upper layer to stop all data & metadata
4883 * modifications.
4885 static int ext4_freeze(struct super_block *sb)
4887 int error = 0;
4888 journal_t *journal;
4890 if (sb_rdonly(sb))
4891 return 0;
4893 journal = EXT4_SB(sb)->s_journal;
4895 if (journal) {
4896 /* Now we set up the journal barrier. */
4897 jbd2_journal_lock_updates(journal);
4900 * Don't clear the needs_recovery flag if we failed to
4901 * flush the journal.
4903 error = jbd2_journal_flush(journal);
4904 if (error < 0)
4905 goto out;
4907 /* Journal blocked and flushed, clear needs_recovery flag. */
4908 ext4_clear_feature_journal_needs_recovery(sb);
4911 error = ext4_commit_super(sb, 1);
4912 out:
4913 if (journal)
4914 /* we rely on upper layer to stop further updates */
4915 jbd2_journal_unlock_updates(journal);
4916 return error;
4920 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4921 * flag here, even though the filesystem is not technically dirty yet.
4923 static int ext4_unfreeze(struct super_block *sb)
4925 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4926 return 0;
4928 if (EXT4_SB(sb)->s_journal) {
4929 /* Reset the needs_recovery flag before the fs is unlocked. */
4930 ext4_set_feature_journal_needs_recovery(sb);
4933 ext4_commit_super(sb, 1);
4934 return 0;
4938 * Structure to save mount options for ext4_remount's benefit
4940 struct ext4_mount_options {
4941 unsigned long s_mount_opt;
4942 unsigned long s_mount_opt2;
4943 kuid_t s_resuid;
4944 kgid_t s_resgid;
4945 unsigned long s_commit_interval;
4946 u32 s_min_batch_time, s_max_batch_time;
4947 #ifdef CONFIG_QUOTA
4948 int s_jquota_fmt;
4949 char *s_qf_names[EXT4_MAXQUOTAS];
4950 #endif
4953 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4955 struct ext4_super_block *es;
4956 struct ext4_sb_info *sbi = EXT4_SB(sb);
4957 unsigned long old_sb_flags;
4958 struct ext4_mount_options old_opts;
4959 int enable_quota = 0;
4960 ext4_group_t g;
4961 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4962 int err = 0;
4963 #ifdef CONFIG_QUOTA
4964 int i, j;
4965 #endif
4966 char *orig_data = kstrdup(data, GFP_KERNEL);
4968 /* Store the original options */
4969 old_sb_flags = sb->s_flags;
4970 old_opts.s_mount_opt = sbi->s_mount_opt;
4971 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4972 old_opts.s_resuid = sbi->s_resuid;
4973 old_opts.s_resgid = sbi->s_resgid;
4974 old_opts.s_commit_interval = sbi->s_commit_interval;
4975 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4976 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4977 #ifdef CONFIG_QUOTA
4978 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4979 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4980 if (sbi->s_qf_names[i]) {
4981 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4982 GFP_KERNEL);
4983 if (!old_opts.s_qf_names[i]) {
4984 for (j = 0; j < i; j++)
4985 kfree(old_opts.s_qf_names[j]);
4986 kfree(orig_data);
4987 return -ENOMEM;
4989 } else
4990 old_opts.s_qf_names[i] = NULL;
4991 #endif
4992 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4993 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4995 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4996 err = -EINVAL;
4997 goto restore_opts;
5000 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5001 test_opt(sb, JOURNAL_CHECKSUM)) {
5002 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5003 "during remount not supported; ignoring");
5004 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5007 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5008 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5009 ext4_msg(sb, KERN_ERR, "can't mount with "
5010 "both data=journal and delalloc");
5011 err = -EINVAL;
5012 goto restore_opts;
5014 if (test_opt(sb, DIOREAD_NOLOCK)) {
5015 ext4_msg(sb, KERN_ERR, "can't mount with "
5016 "both data=journal and dioread_nolock");
5017 err = -EINVAL;
5018 goto restore_opts;
5020 if (test_opt(sb, DAX)) {
5021 ext4_msg(sb, KERN_ERR, "can't mount with "
5022 "both data=journal and dax");
5023 err = -EINVAL;
5024 goto restore_opts;
5026 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5027 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5028 ext4_msg(sb, KERN_ERR, "can't mount with "
5029 "journal_async_commit in data=ordered mode");
5030 err = -EINVAL;
5031 goto restore_opts;
5035 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5036 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5037 err = -EINVAL;
5038 goto restore_opts;
5041 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5042 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5043 "dax flag with busy inodes while remounting");
5044 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5047 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5048 ext4_abort(sb, "Abort forced by user");
5050 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5051 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5053 es = sbi->s_es;
5055 if (sbi->s_journal) {
5056 ext4_init_journal_params(sb, sbi->s_journal);
5057 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5060 if (*flags & MS_LAZYTIME)
5061 sb->s_flags |= MS_LAZYTIME;
5063 if ((bool)(*flags & MS_RDONLY) != sb_rdonly(sb)) {
5064 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5065 err = -EROFS;
5066 goto restore_opts;
5069 if (*flags & MS_RDONLY) {
5070 err = sync_filesystem(sb);
5071 if (err < 0)
5072 goto restore_opts;
5073 err = dquot_suspend(sb, -1);
5074 if (err < 0)
5075 goto restore_opts;
5078 * First of all, the unconditional stuff we have to do
5079 * to disable replay of the journal when we next remount
5081 sb->s_flags |= MS_RDONLY;
5084 * OK, test if we are remounting a valid rw partition
5085 * readonly, and if so set the rdonly flag and then
5086 * mark the partition as valid again.
5088 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5089 (sbi->s_mount_state & EXT4_VALID_FS))
5090 es->s_state = cpu_to_le16(sbi->s_mount_state);
5092 if (sbi->s_journal)
5093 ext4_mark_recovery_complete(sb, es);
5094 } else {
5095 /* Make sure we can mount this feature set readwrite */
5096 if (ext4_has_feature_readonly(sb) ||
5097 !ext4_feature_set_ok(sb, 0)) {
5098 err = -EROFS;
5099 goto restore_opts;
5102 * Make sure the group descriptor checksums
5103 * are sane. If they aren't, refuse to remount r/w.
5105 for (g = 0; g < sbi->s_groups_count; g++) {
5106 struct ext4_group_desc *gdp =
5107 ext4_get_group_desc(sb, g, NULL);
5109 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5110 ext4_msg(sb, KERN_ERR,
5111 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5112 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5113 le16_to_cpu(gdp->bg_checksum));
5114 err = -EFSBADCRC;
5115 goto restore_opts;
5120 * If we have an unprocessed orphan list hanging
5121 * around from a previously readonly bdev mount,
5122 * require a full umount/remount for now.
5124 if (es->s_last_orphan) {
5125 ext4_msg(sb, KERN_WARNING, "Couldn't "
5126 "remount RDWR because of unprocessed "
5127 "orphan inode list. Please "
5128 "umount/remount instead");
5129 err = -EINVAL;
5130 goto restore_opts;
5134 * Mounting a RDONLY partition read-write, so reread
5135 * and store the current valid flag. (It may have
5136 * been changed by e2fsck since we originally mounted
5137 * the partition.)
5139 if (sbi->s_journal)
5140 ext4_clear_journal_err(sb, es);
5141 sbi->s_mount_state = le16_to_cpu(es->s_state);
5142 if (!ext4_setup_super(sb, es, 0))
5143 sb->s_flags &= ~MS_RDONLY;
5144 if (ext4_has_feature_mmp(sb))
5145 if (ext4_multi_mount_protect(sb,
5146 le64_to_cpu(es->s_mmp_block))) {
5147 err = -EROFS;
5148 goto restore_opts;
5150 enable_quota = 1;
5155 * Reinitialize lazy itable initialization thread based on
5156 * current settings
5158 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5159 ext4_unregister_li_request(sb);
5160 else {
5161 ext4_group_t first_not_zeroed;
5162 first_not_zeroed = ext4_has_uninit_itable(sb);
5163 ext4_register_li_request(sb, first_not_zeroed);
5166 ext4_setup_system_zone(sb);
5167 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5168 ext4_commit_super(sb, 1);
5170 #ifdef CONFIG_QUOTA
5171 /* Release old quota file names */
5172 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5173 kfree(old_opts.s_qf_names[i]);
5174 if (enable_quota) {
5175 if (sb_any_quota_suspended(sb))
5176 dquot_resume(sb, -1);
5177 else if (ext4_has_feature_quota(sb)) {
5178 err = ext4_enable_quotas(sb);
5179 if (err)
5180 goto restore_opts;
5183 #endif
5185 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5186 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5187 kfree(orig_data);
5188 return 0;
5190 restore_opts:
5191 sb->s_flags = old_sb_flags;
5192 sbi->s_mount_opt = old_opts.s_mount_opt;
5193 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5194 sbi->s_resuid = old_opts.s_resuid;
5195 sbi->s_resgid = old_opts.s_resgid;
5196 sbi->s_commit_interval = old_opts.s_commit_interval;
5197 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5198 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5199 #ifdef CONFIG_QUOTA
5200 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5201 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5202 kfree(sbi->s_qf_names[i]);
5203 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5205 #endif
5206 kfree(orig_data);
5207 return err;
5210 #ifdef CONFIG_QUOTA
5211 static int ext4_statfs_project(struct super_block *sb,
5212 kprojid_t projid, struct kstatfs *buf)
5214 struct kqid qid;
5215 struct dquot *dquot;
5216 u64 limit;
5217 u64 curblock;
5219 qid = make_kqid_projid(projid);
5220 dquot = dqget(sb, qid);
5221 if (IS_ERR(dquot))
5222 return PTR_ERR(dquot);
5223 spin_lock(&dquot->dq_dqb_lock);
5225 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5226 dquot->dq_dqb.dqb_bsoftlimit :
5227 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5228 if (limit && buf->f_blocks > limit) {
5229 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5230 buf->f_blocks = limit;
5231 buf->f_bfree = buf->f_bavail =
5232 (buf->f_blocks > curblock) ?
5233 (buf->f_blocks - curblock) : 0;
5236 limit = dquot->dq_dqb.dqb_isoftlimit ?
5237 dquot->dq_dqb.dqb_isoftlimit :
5238 dquot->dq_dqb.dqb_ihardlimit;
5239 if (limit && buf->f_files > limit) {
5240 buf->f_files = limit;
5241 buf->f_ffree =
5242 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5243 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5246 spin_unlock(&dquot->dq_dqb_lock);
5247 dqput(dquot);
5248 return 0;
5250 #endif
5252 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5254 struct super_block *sb = dentry->d_sb;
5255 struct ext4_sb_info *sbi = EXT4_SB(sb);
5256 struct ext4_super_block *es = sbi->s_es;
5257 ext4_fsblk_t overhead = 0, resv_blocks;
5258 u64 fsid;
5259 s64 bfree;
5260 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5262 if (!test_opt(sb, MINIX_DF))
5263 overhead = sbi->s_overhead;
5265 buf->f_type = EXT4_SUPER_MAGIC;
5266 buf->f_bsize = sb->s_blocksize;
5267 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5268 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5269 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5270 /* prevent underflow in case that few free space is available */
5271 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5272 buf->f_bavail = buf->f_bfree -
5273 (ext4_r_blocks_count(es) + resv_blocks);
5274 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5275 buf->f_bavail = 0;
5276 buf->f_files = le32_to_cpu(es->s_inodes_count);
5277 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5278 buf->f_namelen = EXT4_NAME_LEN;
5279 fsid = le64_to_cpup((void *)es->s_uuid) ^
5280 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5281 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5282 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5284 #ifdef CONFIG_QUOTA
5285 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5286 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5287 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5288 #endif
5289 return 0;
5293 #ifdef CONFIG_QUOTA
5296 * Helper functions so that transaction is started before we acquire dqio_sem
5297 * to keep correct lock ordering of transaction > dqio_sem
5299 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5301 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5304 static int ext4_write_dquot(struct dquot *dquot)
5306 int ret, err;
5307 handle_t *handle;
5308 struct inode *inode;
5310 inode = dquot_to_inode(dquot);
5311 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5312 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5313 if (IS_ERR(handle))
5314 return PTR_ERR(handle);
5315 ret = dquot_commit(dquot);
5316 err = ext4_journal_stop(handle);
5317 if (!ret)
5318 ret = err;
5319 return ret;
5322 static int ext4_acquire_dquot(struct dquot *dquot)
5324 int ret, err;
5325 handle_t *handle;
5327 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5328 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5329 if (IS_ERR(handle))
5330 return PTR_ERR(handle);
5331 ret = dquot_acquire(dquot);
5332 err = ext4_journal_stop(handle);
5333 if (!ret)
5334 ret = err;
5335 return ret;
5338 static int ext4_release_dquot(struct dquot *dquot)
5340 int ret, err;
5341 handle_t *handle;
5343 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5344 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5345 if (IS_ERR(handle)) {
5346 /* Release dquot anyway to avoid endless cycle in dqput() */
5347 dquot_release(dquot);
5348 return PTR_ERR(handle);
5350 ret = dquot_release(dquot);
5351 err = ext4_journal_stop(handle);
5352 if (!ret)
5353 ret = err;
5354 return ret;
5357 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5359 struct super_block *sb = dquot->dq_sb;
5360 struct ext4_sb_info *sbi = EXT4_SB(sb);
5362 /* Are we journaling quotas? */
5363 if (ext4_has_feature_quota(sb) ||
5364 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5365 dquot_mark_dquot_dirty(dquot);
5366 return ext4_write_dquot(dquot);
5367 } else {
5368 return dquot_mark_dquot_dirty(dquot);
5372 static int ext4_write_info(struct super_block *sb, int type)
5374 int ret, err;
5375 handle_t *handle;
5377 /* Data block + inode block */
5378 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5379 if (IS_ERR(handle))
5380 return PTR_ERR(handle);
5381 ret = dquot_commit_info(sb, type);
5382 err = ext4_journal_stop(handle);
5383 if (!ret)
5384 ret = err;
5385 return ret;
5389 * Turn on quotas during mount time - we need to find
5390 * the quota file and such...
5392 static int ext4_quota_on_mount(struct super_block *sb, int type)
5394 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5395 EXT4_SB(sb)->s_jquota_fmt, type);
5398 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5400 struct ext4_inode_info *ei = EXT4_I(inode);
5402 /* The first argument of lockdep_set_subclass has to be
5403 * *exactly* the same as the argument to init_rwsem() --- in
5404 * this case, in init_once() --- or lockdep gets unhappy
5405 * because the name of the lock is set using the
5406 * stringification of the argument to init_rwsem().
5408 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5409 lockdep_set_subclass(&ei->i_data_sem, subclass);
5413 * Standard function to be called on quota_on
5415 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5416 const struct path *path)
5418 int err;
5420 if (!test_opt(sb, QUOTA))
5421 return -EINVAL;
5423 /* Quotafile not on the same filesystem? */
5424 if (path->dentry->d_sb != sb)
5425 return -EXDEV;
5426 /* Journaling quota? */
5427 if (EXT4_SB(sb)->s_qf_names[type]) {
5428 /* Quotafile not in fs root? */
5429 if (path->dentry->d_parent != sb->s_root)
5430 ext4_msg(sb, KERN_WARNING,
5431 "Quota file not on filesystem root. "
5432 "Journaled quota will not work");
5433 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5434 } else {
5436 * Clear the flag just in case mount options changed since
5437 * last time.
5439 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5443 * When we journal data on quota file, we have to flush journal to see
5444 * all updates to the file when we bypass pagecache...
5446 if (EXT4_SB(sb)->s_journal &&
5447 ext4_should_journal_data(d_inode(path->dentry))) {
5449 * We don't need to lock updates but journal_flush() could
5450 * otherwise be livelocked...
5452 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5453 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5454 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5455 if (err)
5456 return err;
5459 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5460 err = dquot_quota_on(sb, type, format_id, path);
5461 if (err) {
5462 lockdep_set_quota_inode(path->dentry->d_inode,
5463 I_DATA_SEM_NORMAL);
5464 } else {
5465 struct inode *inode = d_inode(path->dentry);
5466 handle_t *handle;
5469 * Set inode flags to prevent userspace from messing with quota
5470 * files. If this fails, we return success anyway since quotas
5471 * are already enabled and this is not a hard failure.
5473 inode_lock(inode);
5474 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5475 if (IS_ERR(handle))
5476 goto unlock_inode;
5477 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5478 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5479 S_NOATIME | S_IMMUTABLE);
5480 ext4_mark_inode_dirty(handle, inode);
5481 ext4_journal_stop(handle);
5482 unlock_inode:
5483 inode_unlock(inode);
5485 return err;
5488 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5489 unsigned int flags)
5491 int err;
5492 struct inode *qf_inode;
5493 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5494 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5495 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5496 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5499 BUG_ON(!ext4_has_feature_quota(sb));
5501 if (!qf_inums[type])
5502 return -EPERM;
5504 qf_inode = ext4_iget(sb, qf_inums[type]);
5505 if (IS_ERR(qf_inode)) {
5506 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5507 return PTR_ERR(qf_inode);
5510 /* Don't account quota for quota files to avoid recursion */
5511 qf_inode->i_flags |= S_NOQUOTA;
5512 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5513 err = dquot_enable(qf_inode, type, format_id, flags);
5514 iput(qf_inode);
5515 if (err)
5516 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5518 return err;
5521 /* Enable usage tracking for all quota types. */
5522 static int ext4_enable_quotas(struct super_block *sb)
5524 int type, err = 0;
5525 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5526 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5527 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5528 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5530 bool quota_mopt[EXT4_MAXQUOTAS] = {
5531 test_opt(sb, USRQUOTA),
5532 test_opt(sb, GRPQUOTA),
5533 test_opt(sb, PRJQUOTA),
5536 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5537 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5538 if (qf_inums[type]) {
5539 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5540 DQUOT_USAGE_ENABLED |
5541 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5542 if (err) {
5543 for (type--; type >= 0; type--)
5544 dquot_quota_off(sb, type);
5546 ext4_warning(sb,
5547 "Failed to enable quota tracking "
5548 "(type=%d, err=%d). Please run "
5549 "e2fsck to fix.", type, err);
5550 return err;
5554 return 0;
5557 static int ext4_quota_off(struct super_block *sb, int type)
5559 struct inode *inode = sb_dqopt(sb)->files[type];
5560 handle_t *handle;
5561 int err;
5563 /* Force all delayed allocation blocks to be allocated.
5564 * Caller already holds s_umount sem */
5565 if (test_opt(sb, DELALLOC))
5566 sync_filesystem(sb);
5568 if (!inode || !igrab(inode))
5569 goto out;
5571 err = dquot_quota_off(sb, type);
5572 if (err || ext4_has_feature_quota(sb))
5573 goto out_put;
5575 inode_lock(inode);
5577 * Update modification times of quota files when userspace can
5578 * start looking at them. If we fail, we return success anyway since
5579 * this is not a hard failure and quotas are already disabled.
5581 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5582 if (IS_ERR(handle))
5583 goto out_unlock;
5584 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5585 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5586 inode->i_mtime = inode->i_ctime = current_time(inode);
5587 ext4_mark_inode_dirty(handle, inode);
5588 ext4_journal_stop(handle);
5589 out_unlock:
5590 inode_unlock(inode);
5591 out_put:
5592 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5593 iput(inode);
5594 return err;
5595 out:
5596 return dquot_quota_off(sb, type);
5599 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5600 * acquiring the locks... As quota files are never truncated and quota code
5601 * itself serializes the operations (and no one else should touch the files)
5602 * we don't have to be afraid of races */
5603 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5604 size_t len, loff_t off)
5606 struct inode *inode = sb_dqopt(sb)->files[type];
5607 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5608 int offset = off & (sb->s_blocksize - 1);
5609 int tocopy;
5610 size_t toread;
5611 struct buffer_head *bh;
5612 loff_t i_size = i_size_read(inode);
5614 if (off > i_size)
5615 return 0;
5616 if (off+len > i_size)
5617 len = i_size-off;
5618 toread = len;
5619 while (toread > 0) {
5620 tocopy = sb->s_blocksize - offset < toread ?
5621 sb->s_blocksize - offset : toread;
5622 bh = ext4_bread(NULL, inode, blk, 0);
5623 if (IS_ERR(bh))
5624 return PTR_ERR(bh);
5625 if (!bh) /* A hole? */
5626 memset(data, 0, tocopy);
5627 else
5628 memcpy(data, bh->b_data+offset, tocopy);
5629 brelse(bh);
5630 offset = 0;
5631 toread -= tocopy;
5632 data += tocopy;
5633 blk++;
5635 return len;
5638 /* Write to quotafile (we know the transaction is already started and has
5639 * enough credits) */
5640 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5641 const char *data, size_t len, loff_t off)
5643 struct inode *inode = sb_dqopt(sb)->files[type];
5644 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5645 int err, offset = off & (sb->s_blocksize - 1);
5646 int retries = 0;
5647 struct buffer_head *bh;
5648 handle_t *handle = journal_current_handle();
5650 if (EXT4_SB(sb)->s_journal && !handle) {
5651 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5652 " cancelled because transaction is not started",
5653 (unsigned long long)off, (unsigned long long)len);
5654 return -EIO;
5657 * Since we account only one data block in transaction credits,
5658 * then it is impossible to cross a block boundary.
5660 if (sb->s_blocksize - offset < len) {
5661 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5662 " cancelled because not block aligned",
5663 (unsigned long long)off, (unsigned long long)len);
5664 return -EIO;
5667 do {
5668 bh = ext4_bread(handle, inode, blk,
5669 EXT4_GET_BLOCKS_CREATE |
5670 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5671 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5672 ext4_should_retry_alloc(inode->i_sb, &retries));
5673 if (IS_ERR(bh))
5674 return PTR_ERR(bh);
5675 if (!bh)
5676 goto out;
5677 BUFFER_TRACE(bh, "get write access");
5678 err = ext4_journal_get_write_access(handle, bh);
5679 if (err) {
5680 brelse(bh);
5681 return err;
5683 lock_buffer(bh);
5684 memcpy(bh->b_data+offset, data, len);
5685 flush_dcache_page(bh->b_page);
5686 unlock_buffer(bh);
5687 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5688 brelse(bh);
5689 out:
5690 if (inode->i_size < off + len) {
5691 i_size_write(inode, off + len);
5692 EXT4_I(inode)->i_disksize = inode->i_size;
5693 ext4_mark_inode_dirty(handle, inode);
5695 return len;
5698 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5700 const struct quota_format_ops *ops;
5702 if (!sb_has_quota_loaded(sb, qid->type))
5703 return -ESRCH;
5704 ops = sb_dqopt(sb)->ops[qid->type];
5705 if (!ops || !ops->get_next_id)
5706 return -ENOSYS;
5707 return dquot_get_next_id(sb, qid);
5709 #endif
5711 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5712 const char *dev_name, void *data)
5714 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5717 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5718 static inline void register_as_ext2(void)
5720 int err = register_filesystem(&ext2_fs_type);
5721 if (err)
5722 printk(KERN_WARNING
5723 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5726 static inline void unregister_as_ext2(void)
5728 unregister_filesystem(&ext2_fs_type);
5731 static inline int ext2_feature_set_ok(struct super_block *sb)
5733 if (ext4_has_unknown_ext2_incompat_features(sb))
5734 return 0;
5735 if (sb_rdonly(sb))
5736 return 1;
5737 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5738 return 0;
5739 return 1;
5741 #else
5742 static inline void register_as_ext2(void) { }
5743 static inline void unregister_as_ext2(void) { }
5744 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5745 #endif
5747 static inline void register_as_ext3(void)
5749 int err = register_filesystem(&ext3_fs_type);
5750 if (err)
5751 printk(KERN_WARNING
5752 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5755 static inline void unregister_as_ext3(void)
5757 unregister_filesystem(&ext3_fs_type);
5760 static inline int ext3_feature_set_ok(struct super_block *sb)
5762 if (ext4_has_unknown_ext3_incompat_features(sb))
5763 return 0;
5764 if (!ext4_has_feature_journal(sb))
5765 return 0;
5766 if (sb_rdonly(sb))
5767 return 1;
5768 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5769 return 0;
5770 return 1;
5773 static struct file_system_type ext4_fs_type = {
5774 .owner = THIS_MODULE,
5775 .name = "ext4",
5776 .mount = ext4_mount,
5777 .kill_sb = kill_block_super,
5778 .fs_flags = FS_REQUIRES_DEV,
5780 MODULE_ALIAS_FS("ext4");
5782 /* Shared across all ext4 file systems */
5783 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5785 static int __init ext4_init_fs(void)
5787 int i, err;
5789 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5790 ext4_li_info = NULL;
5791 mutex_init(&ext4_li_mtx);
5793 /* Build-time check for flags consistency */
5794 ext4_check_flag_values();
5796 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5797 init_waitqueue_head(&ext4__ioend_wq[i]);
5799 err = ext4_init_es();
5800 if (err)
5801 return err;
5803 err = ext4_init_pageio();
5804 if (err)
5805 goto out5;
5807 err = ext4_init_system_zone();
5808 if (err)
5809 goto out4;
5811 err = ext4_init_sysfs();
5812 if (err)
5813 goto out3;
5815 err = ext4_init_mballoc();
5816 if (err)
5817 goto out2;
5818 err = init_inodecache();
5819 if (err)
5820 goto out1;
5821 register_as_ext3();
5822 register_as_ext2();
5823 err = register_filesystem(&ext4_fs_type);
5824 if (err)
5825 goto out;
5827 return 0;
5828 out:
5829 unregister_as_ext2();
5830 unregister_as_ext3();
5831 destroy_inodecache();
5832 out1:
5833 ext4_exit_mballoc();
5834 out2:
5835 ext4_exit_sysfs();
5836 out3:
5837 ext4_exit_system_zone();
5838 out4:
5839 ext4_exit_pageio();
5840 out5:
5841 ext4_exit_es();
5843 return err;
5846 static void __exit ext4_exit_fs(void)
5848 ext4_destroy_lazyinit_thread();
5849 unregister_as_ext2();
5850 unregister_as_ext3();
5851 unregister_filesystem(&ext4_fs_type);
5852 destroy_inodecache();
5853 ext4_exit_mballoc();
5854 ext4_exit_sysfs();
5855 ext4_exit_system_zone();
5856 ext4_exit_pageio();
5857 ext4_exit_es();
5860 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5861 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5862 MODULE_LICENSE("GPL");
5863 module_init(ext4_init_fs)
5864 module_exit(ext4_exit_fs)