4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
68 struct list_head vec
[TVN_SIZE
];
72 struct list_head vec
[TVR_SIZE
];
77 struct timer_list
*running_timer
;
78 unsigned long timer_jiffies
;
79 unsigned long next_timer
;
80 unsigned long active_timers
;
86 } ____cacheline_aligned
;
88 struct tvec_base boot_tvec_bases
;
89 EXPORT_SYMBOL(boot_tvec_bases
);
90 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
100 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
148 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j
, int cpu
)
175 return round_jiffies_common(j
, cpu
, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies
);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
201 unsigned long j0
= jiffies
;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j
)
225 return round_jiffies_common(j
, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies
);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j
)
246 return __round_jiffies_relative(j
, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
260 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
262 return round_jiffies_common(j
, cpu
, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
276 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
278 unsigned long j0
= jiffies
;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
294 unsigned long round_jiffies_up(unsigned long j
)
296 return round_jiffies_common(j
, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up
);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
309 unsigned long round_jiffies_up_relative(unsigned long j
)
311 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
316 * set_timer_slack - set the allowed slack for a timer
317 * @timer: the timer to be modified
318 * @slack_hz: the amount of time (in jiffies) allowed for rounding
320 * Set the amount of time, in jiffies, that a certain timer has
321 * in terms of slack. By setting this value, the timer subsystem
322 * will schedule the actual timer somewhere between
323 * the time mod_timer() asks for, and that time plus the slack.
325 * By setting the slack to -1, a percentage of the delay is used
328 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
330 timer
->slack
= slack_hz
;
332 EXPORT_SYMBOL_GPL(set_timer_slack
);
335 __internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
337 unsigned long expires
= timer
->expires
;
338 unsigned long idx
= expires
- base
->timer_jiffies
;
339 struct list_head
*vec
;
341 if (idx
< TVR_SIZE
) {
342 int i
= expires
& TVR_MASK
;
343 vec
= base
->tv1
.vec
+ i
;
344 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
345 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
346 vec
= base
->tv2
.vec
+ i
;
347 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
348 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
349 vec
= base
->tv3
.vec
+ i
;
350 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
351 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
352 vec
= base
->tv4
.vec
+ i
;
353 } else if ((signed long) idx
< 0) {
355 * Can happen if you add a timer with expires == jiffies,
356 * or you set a timer to go off in the past
358 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
361 /* If the timeout is larger than 0xffffffff on 64-bit
362 * architectures then we use the maximum timeout:
364 if (idx
> 0xffffffffUL
) {
366 expires
= idx
+ base
->timer_jiffies
;
368 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
369 vec
= base
->tv5
.vec
+ i
;
374 list_add_tail(&timer
->entry
, vec
);
377 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
379 __internal_add_timer(base
, timer
);
381 * Update base->active_timers and base->next_timer
383 if (!tbase_get_deferrable(timer
->base
)) {
384 if (time_before(timer
->expires
, base
->next_timer
))
385 base
->next_timer
= timer
->expires
;
386 base
->active_timers
++;
390 #ifdef CONFIG_TIMER_STATS
391 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
393 if (timer
->start_site
)
396 timer
->start_site
= addr
;
397 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
398 timer
->start_pid
= current
->pid
;
401 static void timer_stats_account_timer(struct timer_list
*timer
)
403 unsigned int flag
= 0;
405 if (likely(!timer
->start_site
))
407 if (unlikely(tbase_get_deferrable(timer
->base
)))
408 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
410 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
411 timer
->function
, timer
->start_comm
, flag
);
415 static void timer_stats_account_timer(struct timer_list
*timer
) {}
418 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420 static struct debug_obj_descr timer_debug_descr
;
422 static void *timer_debug_hint(void *addr
)
424 return ((struct timer_list
*) addr
)->function
;
428 * fixup_init is called when:
429 * - an active object is initialized
431 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
433 struct timer_list
*timer
= addr
;
436 case ODEBUG_STATE_ACTIVE
:
437 del_timer_sync(timer
);
438 debug_object_init(timer
, &timer_debug_descr
);
445 /* Stub timer callback for improperly used timers. */
446 static void stub_timer(unsigned long data
)
452 * fixup_activate is called when:
453 * - an active object is activated
454 * - an unknown object is activated (might be a statically initialized object)
456 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
458 struct timer_list
*timer
= addr
;
462 case ODEBUG_STATE_NOTAVAILABLE
:
464 * This is not really a fixup. The timer was
465 * statically initialized. We just make sure that it
466 * is tracked in the object tracker.
468 if (timer
->entry
.next
== NULL
&&
469 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
470 debug_object_init(timer
, &timer_debug_descr
);
471 debug_object_activate(timer
, &timer_debug_descr
);
474 setup_timer(timer
, stub_timer
, 0);
479 case ODEBUG_STATE_ACTIVE
:
488 * fixup_free is called when:
489 * - an active object is freed
491 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
493 struct timer_list
*timer
= addr
;
496 case ODEBUG_STATE_ACTIVE
:
497 del_timer_sync(timer
);
498 debug_object_free(timer
, &timer_debug_descr
);
506 * fixup_assert_init is called when:
507 * - an untracked/uninit-ed object is found
509 static int timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
511 struct timer_list
*timer
= addr
;
514 case ODEBUG_STATE_NOTAVAILABLE
:
515 if (timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
517 * This is not really a fixup. The timer was
518 * statically initialized. We just make sure that it
519 * is tracked in the object tracker.
521 debug_object_init(timer
, &timer_debug_descr
);
524 setup_timer(timer
, stub_timer
, 0);
532 static struct debug_obj_descr timer_debug_descr
= {
533 .name
= "timer_list",
534 .debug_hint
= timer_debug_hint
,
535 .fixup_init
= timer_fixup_init
,
536 .fixup_activate
= timer_fixup_activate
,
537 .fixup_free
= timer_fixup_free
,
538 .fixup_assert_init
= timer_fixup_assert_init
,
541 static inline void debug_timer_init(struct timer_list
*timer
)
543 debug_object_init(timer
, &timer_debug_descr
);
546 static inline void debug_timer_activate(struct timer_list
*timer
)
548 debug_object_activate(timer
, &timer_debug_descr
);
551 static inline void debug_timer_deactivate(struct timer_list
*timer
)
553 debug_object_deactivate(timer
, &timer_debug_descr
);
556 static inline void debug_timer_free(struct timer_list
*timer
)
558 debug_object_free(timer
, &timer_debug_descr
);
561 static inline void debug_timer_assert_init(struct timer_list
*timer
)
563 debug_object_assert_init(timer
, &timer_debug_descr
);
566 static void __init_timer(struct timer_list
*timer
,
568 struct lock_class_key
*key
);
570 void init_timer_on_stack_key(struct timer_list
*timer
,
572 struct lock_class_key
*key
)
574 debug_object_init_on_stack(timer
, &timer_debug_descr
);
575 __init_timer(timer
, name
, key
);
577 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
579 void destroy_timer_on_stack(struct timer_list
*timer
)
581 debug_object_free(timer
, &timer_debug_descr
);
583 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
586 static inline void debug_timer_init(struct timer_list
*timer
) { }
587 static inline void debug_timer_activate(struct timer_list
*timer
) { }
588 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
589 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
592 static inline void debug_init(struct timer_list
*timer
)
594 debug_timer_init(timer
);
595 trace_timer_init(timer
);
599 debug_activate(struct timer_list
*timer
, unsigned long expires
)
601 debug_timer_activate(timer
);
602 trace_timer_start(timer
, expires
);
605 static inline void debug_deactivate(struct timer_list
*timer
)
607 debug_timer_deactivate(timer
);
608 trace_timer_cancel(timer
);
611 static inline void debug_assert_init(struct timer_list
*timer
)
613 debug_timer_assert_init(timer
);
616 static void __init_timer(struct timer_list
*timer
,
618 struct lock_class_key
*key
)
620 timer
->entry
.next
= NULL
;
621 timer
->base
= __raw_get_cpu_var(tvec_bases
);
623 #ifdef CONFIG_TIMER_STATS
624 timer
->start_site
= NULL
;
625 timer
->start_pid
= -1;
626 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
628 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
631 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
633 struct lock_class_key
*key
,
634 void (*function
)(unsigned long),
637 timer
->function
= function
;
639 init_timer_on_stack_key(timer
, name
, key
);
640 timer_set_deferrable(timer
);
642 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
645 * init_timer_key - initialize a timer
646 * @timer: the timer to be initialized
647 * @name: name of the timer
648 * @key: lockdep class key of the fake lock used for tracking timer
649 * sync lock dependencies
651 * init_timer_key() must be done to a timer prior calling *any* of the
652 * other timer functions.
654 void init_timer_key(struct timer_list
*timer
,
656 struct lock_class_key
*key
)
659 __init_timer(timer
, name
, key
);
661 EXPORT_SYMBOL(init_timer_key
);
663 void init_timer_deferrable_key(struct timer_list
*timer
,
665 struct lock_class_key
*key
)
667 init_timer_key(timer
, name
, key
);
668 timer_set_deferrable(timer
);
670 EXPORT_SYMBOL(init_timer_deferrable_key
);
672 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
674 struct list_head
*entry
= &timer
->entry
;
676 debug_deactivate(timer
);
678 __list_del(entry
->prev
, entry
->next
);
681 entry
->prev
= LIST_POISON2
;
685 detach_expired_timer(struct timer_list
*timer
, struct tvec_base
*base
)
687 detach_timer(timer
, true);
688 if (!tbase_get_deferrable(timer
->base
))
689 timer
->base
->active_timers
--;
692 static int detach_if_pending(struct timer_list
*timer
, struct tvec_base
*base
,
695 if (!timer_pending(timer
))
698 detach_timer(timer
, clear_pending
);
699 if (!tbase_get_deferrable(timer
->base
)) {
700 timer
->base
->active_timers
--;
701 if (timer
->expires
== base
->next_timer
)
702 base
->next_timer
= base
->timer_jiffies
;
708 * We are using hashed locking: holding per_cpu(tvec_bases).lock
709 * means that all timers which are tied to this base via timer->base are
710 * locked, and the base itself is locked too.
712 * So __run_timers/migrate_timers can safely modify all timers which could
713 * be found on ->tvX lists.
715 * When the timer's base is locked, and the timer removed from list, it is
716 * possible to set timer->base = NULL and drop the lock: the timer remains
719 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
720 unsigned long *flags
)
721 __acquires(timer
->base
->lock
)
723 struct tvec_base
*base
;
726 struct tvec_base
*prelock_base
= timer
->base
;
727 base
= tbase_get_base(prelock_base
);
728 if (likely(base
!= NULL
)) {
729 spin_lock_irqsave(&base
->lock
, *flags
);
730 if (likely(prelock_base
== timer
->base
))
732 /* The timer has migrated to another CPU */
733 spin_unlock_irqrestore(&base
->lock
, *flags
);
740 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
741 bool pending_only
, int pinned
)
743 struct tvec_base
*base
, *new_base
;
747 timer_stats_timer_set_start_info(timer
);
748 BUG_ON(!timer
->function
);
750 base
= lock_timer_base(timer
, &flags
);
752 ret
= detach_if_pending(timer
, base
, false);
753 if (!ret
&& pending_only
)
756 debug_activate(timer
, expires
);
758 cpu
= smp_processor_id();
760 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
761 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
762 cpu
= get_nohz_timer_target();
764 new_base
= per_cpu(tvec_bases
, cpu
);
766 if (base
!= new_base
) {
768 * We are trying to schedule the timer on the local CPU.
769 * However we can't change timer's base while it is running,
770 * otherwise del_timer_sync() can't detect that the timer's
771 * handler yet has not finished. This also guarantees that
772 * the timer is serialized wrt itself.
774 if (likely(base
->running_timer
!= timer
)) {
775 /* See the comment in lock_timer_base() */
776 timer_set_base(timer
, NULL
);
777 spin_unlock(&base
->lock
);
779 spin_lock(&base
->lock
);
780 timer_set_base(timer
, base
);
784 timer
->expires
= expires
;
785 internal_add_timer(base
, timer
);
788 spin_unlock_irqrestore(&base
->lock
, flags
);
794 * mod_timer_pending - modify a pending timer's timeout
795 * @timer: the pending timer to be modified
796 * @expires: new timeout in jiffies
798 * mod_timer_pending() is the same for pending timers as mod_timer(),
799 * but will not re-activate and modify already deleted timers.
801 * It is useful for unserialized use of timers.
803 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
805 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
807 EXPORT_SYMBOL(mod_timer_pending
);
810 * Decide where to put the timer while taking the slack into account
813 * 1) calculate the maximum (absolute) time
814 * 2) calculate the highest bit where the expires and new max are different
815 * 3) use this bit to make a mask
816 * 4) use the bitmask to round down the maximum time, so that all last
820 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
822 unsigned long expires_limit
, mask
;
825 if (timer
->slack
>= 0) {
826 expires_limit
= expires
+ timer
->slack
;
828 long delta
= expires
- jiffies
;
833 expires_limit
= expires
+ delta
/ 256;
835 mask
= expires
^ expires_limit
;
839 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
841 mask
= (1 << bit
) - 1;
843 expires_limit
= expires_limit
& ~(mask
);
845 return expires_limit
;
849 * mod_timer - modify a timer's timeout
850 * @timer: the timer to be modified
851 * @expires: new timeout in jiffies
853 * mod_timer() is a more efficient way to update the expire field of an
854 * active timer (if the timer is inactive it will be activated)
856 * mod_timer(timer, expires) is equivalent to:
858 * del_timer(timer); timer->expires = expires; add_timer(timer);
860 * Note that if there are multiple unserialized concurrent users of the
861 * same timer, then mod_timer() is the only safe way to modify the timeout,
862 * since add_timer() cannot modify an already running timer.
864 * The function returns whether it has modified a pending timer or not.
865 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
866 * active timer returns 1.)
868 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
870 expires
= apply_slack(timer
, expires
);
873 * This is a common optimization triggered by the
874 * networking code - if the timer is re-modified
875 * to be the same thing then just return:
877 if (timer_pending(timer
) && timer
->expires
== expires
)
880 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
882 EXPORT_SYMBOL(mod_timer
);
885 * mod_timer_pinned - modify a timer's timeout
886 * @timer: the timer to be modified
887 * @expires: new timeout in jiffies
889 * mod_timer_pinned() is a way to update the expire field of an
890 * active timer (if the timer is inactive it will be activated)
891 * and to ensure that the timer is scheduled on the current CPU.
893 * Note that this does not prevent the timer from being migrated
894 * when the current CPU goes offline. If this is a problem for
895 * you, use CPU-hotplug notifiers to handle it correctly, for
896 * example, cancelling the timer when the corresponding CPU goes
899 * mod_timer_pinned(timer, expires) is equivalent to:
901 * del_timer(timer); timer->expires = expires; add_timer(timer);
903 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
905 if (timer
->expires
== expires
&& timer_pending(timer
))
908 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
910 EXPORT_SYMBOL(mod_timer_pinned
);
913 * add_timer - start a timer
914 * @timer: the timer to be added
916 * The kernel will do a ->function(->data) callback from the
917 * timer interrupt at the ->expires point in the future. The
918 * current time is 'jiffies'.
920 * The timer's ->expires, ->function (and if the handler uses it, ->data)
921 * fields must be set prior calling this function.
923 * Timers with an ->expires field in the past will be executed in the next
926 void add_timer(struct timer_list
*timer
)
928 BUG_ON(timer_pending(timer
));
929 mod_timer(timer
, timer
->expires
);
931 EXPORT_SYMBOL(add_timer
);
934 * add_timer_on - start a timer on a particular CPU
935 * @timer: the timer to be added
936 * @cpu: the CPU to start it on
938 * This is not very scalable on SMP. Double adds are not possible.
940 void add_timer_on(struct timer_list
*timer
, int cpu
)
942 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
945 timer_stats_timer_set_start_info(timer
);
946 BUG_ON(timer_pending(timer
) || !timer
->function
);
947 spin_lock_irqsave(&base
->lock
, flags
);
948 timer_set_base(timer
, base
);
949 debug_activate(timer
, timer
->expires
);
950 internal_add_timer(base
, timer
);
952 * Check whether the other CPU is idle and needs to be
953 * triggered to reevaluate the timer wheel when nohz is
954 * active. We are protected against the other CPU fiddling
955 * with the timer by holding the timer base lock. This also
956 * makes sure that a CPU on the way to idle can not evaluate
959 wake_up_idle_cpu(cpu
);
960 spin_unlock_irqrestore(&base
->lock
, flags
);
962 EXPORT_SYMBOL_GPL(add_timer_on
);
965 * del_timer - deactive a timer.
966 * @timer: the timer to be deactivated
968 * del_timer() deactivates a timer - this works on both active and inactive
971 * The function returns whether it has deactivated a pending timer or not.
972 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
973 * active timer returns 1.)
975 int del_timer(struct timer_list
*timer
)
977 struct tvec_base
*base
;
981 debug_assert_init(timer
);
983 timer_stats_timer_clear_start_info(timer
);
984 if (timer_pending(timer
)) {
985 base
= lock_timer_base(timer
, &flags
);
986 ret
= detach_if_pending(timer
, base
, true);
987 spin_unlock_irqrestore(&base
->lock
, flags
);
992 EXPORT_SYMBOL(del_timer
);
995 * try_to_del_timer_sync - Try to deactivate a timer
996 * @timer: timer do del
998 * This function tries to deactivate a timer. Upon successful (ret >= 0)
999 * exit the timer is not queued and the handler is not running on any CPU.
1001 int try_to_del_timer_sync(struct timer_list
*timer
)
1003 struct tvec_base
*base
;
1004 unsigned long flags
;
1007 debug_assert_init(timer
);
1009 base
= lock_timer_base(timer
, &flags
);
1011 if (base
->running_timer
!= timer
) {
1012 timer_stats_timer_clear_start_info(timer
);
1013 ret
= detach_if_pending(timer
, base
, true);
1015 spin_unlock_irqrestore(&base
->lock
, flags
);
1019 EXPORT_SYMBOL(try_to_del_timer_sync
);
1023 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1024 * @timer: the timer to be deactivated
1026 * This function only differs from del_timer() on SMP: besides deactivating
1027 * the timer it also makes sure the handler has finished executing on other
1030 * Synchronization rules: Callers must prevent restarting of the timer,
1031 * otherwise this function is meaningless. It must not be called from
1032 * interrupt contexts. The caller must not hold locks which would prevent
1033 * completion of the timer's handler. The timer's handler must not call
1034 * add_timer_on(). Upon exit the timer is not queued and the handler is
1035 * not running on any CPU.
1037 * Note: You must not hold locks that are held in interrupt context
1038 * while calling this function. Even if the lock has nothing to do
1039 * with the timer in question. Here's why:
1045 * base->running_timer = mytimer;
1046 * spin_lock_irq(somelock);
1048 * spin_lock(somelock);
1049 * del_timer_sync(mytimer);
1050 * while (base->running_timer == mytimer);
1052 * Now del_timer_sync() will never return and never release somelock.
1053 * The interrupt on the other CPU is waiting to grab somelock but
1054 * it has interrupted the softirq that CPU0 is waiting to finish.
1056 * The function returns whether it has deactivated a pending timer or not.
1058 int del_timer_sync(struct timer_list
*timer
)
1060 #ifdef CONFIG_LOCKDEP
1061 unsigned long flags
;
1064 * If lockdep gives a backtrace here, please reference
1065 * the synchronization rules above.
1067 local_irq_save(flags
);
1068 lock_map_acquire(&timer
->lockdep_map
);
1069 lock_map_release(&timer
->lockdep_map
);
1070 local_irq_restore(flags
);
1073 * don't use it in hardirq context, because it
1074 * could lead to deadlock.
1078 int ret
= try_to_del_timer_sync(timer
);
1084 EXPORT_SYMBOL(del_timer_sync
);
1087 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1089 /* cascade all the timers from tv up one level */
1090 struct timer_list
*timer
, *tmp
;
1091 struct list_head tv_list
;
1093 list_replace_init(tv
->vec
+ index
, &tv_list
);
1096 * We are removing _all_ timers from the list, so we
1097 * don't have to detach them individually.
1099 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1100 BUG_ON(tbase_get_base(timer
->base
) != base
);
1101 /* No accounting, while moving them */
1102 __internal_add_timer(base
, timer
);
1108 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1111 int preempt_count
= preempt_count();
1113 #ifdef CONFIG_LOCKDEP
1115 * It is permissible to free the timer from inside the
1116 * function that is called from it, this we need to take into
1117 * account for lockdep too. To avoid bogus "held lock freed"
1118 * warnings as well as problems when looking into
1119 * timer->lockdep_map, make a copy and use that here.
1121 struct lockdep_map lockdep_map
;
1123 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1126 * Couple the lock chain with the lock chain at
1127 * del_timer_sync() by acquiring the lock_map around the fn()
1128 * call here and in del_timer_sync().
1130 lock_map_acquire(&lockdep_map
);
1132 trace_timer_expire_entry(timer
);
1134 trace_timer_expire_exit(timer
);
1136 lock_map_release(&lockdep_map
);
1138 if (preempt_count
!= preempt_count()) {
1139 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1140 fn
, preempt_count
, preempt_count());
1142 * Restore the preempt count. That gives us a decent
1143 * chance to survive and extract information. If the
1144 * callback kept a lock held, bad luck, but not worse
1145 * than the BUG() we had.
1147 preempt_count() = preempt_count
;
1151 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1154 * __run_timers - run all expired timers (if any) on this CPU.
1155 * @base: the timer vector to be processed.
1157 * This function cascades all vectors and executes all expired timer
1160 static inline void __run_timers(struct tvec_base
*base
)
1162 struct timer_list
*timer
;
1164 spin_lock_irq(&base
->lock
);
1165 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1166 struct list_head work_list
;
1167 struct list_head
*head
= &work_list
;
1168 int index
= base
->timer_jiffies
& TVR_MASK
;
1174 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1175 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1176 !cascade(base
, &base
->tv4
, INDEX(2)))
1177 cascade(base
, &base
->tv5
, INDEX(3));
1178 ++base
->timer_jiffies
;
1179 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1180 while (!list_empty(head
)) {
1181 void (*fn
)(unsigned long);
1184 timer
= list_first_entry(head
, struct timer_list
,entry
);
1185 fn
= timer
->function
;
1188 timer_stats_account_timer(timer
);
1190 base
->running_timer
= timer
;
1191 detach_expired_timer(timer
, base
);
1193 spin_unlock_irq(&base
->lock
);
1194 call_timer_fn(timer
, fn
, data
);
1195 spin_lock_irq(&base
->lock
);
1198 base
->running_timer
= NULL
;
1199 spin_unlock_irq(&base
->lock
);
1204 * Find out when the next timer event is due to happen. This
1205 * is used on S/390 to stop all activity when a CPU is idle.
1206 * This function needs to be called with interrupts disabled.
1208 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1210 unsigned long timer_jiffies
= base
->timer_jiffies
;
1211 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1212 int index
, slot
, array
, found
= 0;
1213 struct timer_list
*nte
;
1214 struct tvec
*varray
[4];
1216 /* Look for timer events in tv1. */
1217 index
= slot
= timer_jiffies
& TVR_MASK
;
1219 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1220 if (tbase_get_deferrable(nte
->base
))
1224 expires
= nte
->expires
;
1225 /* Look at the cascade bucket(s)? */
1226 if (!index
|| slot
< index
)
1230 slot
= (slot
+ 1) & TVR_MASK
;
1231 } while (slot
!= index
);
1234 /* Calculate the next cascade event */
1236 timer_jiffies
+= TVR_SIZE
- index
;
1237 timer_jiffies
>>= TVR_BITS
;
1239 /* Check tv2-tv5. */
1240 varray
[0] = &base
->tv2
;
1241 varray
[1] = &base
->tv3
;
1242 varray
[2] = &base
->tv4
;
1243 varray
[3] = &base
->tv5
;
1245 for (array
= 0; array
< 4; array
++) {
1246 struct tvec
*varp
= varray
[array
];
1248 index
= slot
= timer_jiffies
& TVN_MASK
;
1250 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1251 if (tbase_get_deferrable(nte
->base
))
1255 if (time_before(nte
->expires
, expires
))
1256 expires
= nte
->expires
;
1259 * Do we still search for the first timer or are
1260 * we looking up the cascade buckets ?
1263 /* Look at the cascade bucket(s)? */
1264 if (!index
|| slot
< index
)
1268 slot
= (slot
+ 1) & TVN_MASK
;
1269 } while (slot
!= index
);
1272 timer_jiffies
+= TVN_SIZE
- index
;
1273 timer_jiffies
>>= TVN_BITS
;
1279 * Check, if the next hrtimer event is before the next timer wheel
1282 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1283 unsigned long expires
)
1285 ktime_t hr_delta
= hrtimer_get_next_event();
1286 struct timespec tsdelta
;
1287 unsigned long delta
;
1289 if (hr_delta
.tv64
== KTIME_MAX
)
1293 * Expired timer available, let it expire in the next tick
1295 if (hr_delta
.tv64
<= 0)
1298 tsdelta
= ktime_to_timespec(hr_delta
);
1299 delta
= timespec_to_jiffies(&tsdelta
);
1302 * Limit the delta to the max value, which is checked in
1303 * tick_nohz_stop_sched_tick():
1305 if (delta
> NEXT_TIMER_MAX_DELTA
)
1306 delta
= NEXT_TIMER_MAX_DELTA
;
1309 * Take rounding errors in to account and make sure, that it
1310 * expires in the next tick. Otherwise we go into an endless
1311 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1317 if (time_before(now
, expires
))
1323 * get_next_timer_interrupt - return the jiffy of the next pending timer
1324 * @now: current time (in jiffies)
1326 unsigned long get_next_timer_interrupt(unsigned long now
)
1328 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1329 unsigned long expires
= now
+ NEXT_TIMER_MAX_DELTA
;
1332 * Pretend that there is no timer pending if the cpu is offline.
1333 * Possible pending timers will be migrated later to an active cpu.
1335 if (cpu_is_offline(smp_processor_id()))
1338 spin_lock(&base
->lock
);
1339 if (base
->active_timers
) {
1340 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1341 base
->next_timer
= __next_timer_interrupt(base
);
1342 expires
= base
->next_timer
;
1344 spin_unlock(&base
->lock
);
1346 if (time_before_eq(expires
, now
))
1349 return cmp_next_hrtimer_event(now
, expires
);
1354 * Called from the timer interrupt handler to charge one tick to the current
1355 * process. user_tick is 1 if the tick is user time, 0 for system.
1357 void update_process_times(int user_tick
)
1359 struct task_struct
*p
= current
;
1360 int cpu
= smp_processor_id();
1362 /* Note: this timer irq context must be accounted for as well. */
1363 account_process_tick(p
, user_tick
);
1365 rcu_check_callbacks(cpu
, user_tick
);
1367 #ifdef CONFIG_IRQ_WORK
1372 run_posix_cpu_timers(p
);
1376 * This function runs timers and the timer-tq in bottom half context.
1378 static void run_timer_softirq(struct softirq_action
*h
)
1380 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1382 hrtimer_run_pending();
1384 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1389 * Called by the local, per-CPU timer interrupt on SMP.
1391 void run_local_timers(void)
1393 hrtimer_run_queues();
1394 raise_softirq(TIMER_SOFTIRQ
);
1397 #ifdef __ARCH_WANT_SYS_ALARM
1400 * For backwards compatibility? This can be done in libc so Alpha
1401 * and all newer ports shouldn't need it.
1403 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1405 return alarm_setitimer(seconds
);
1411 * sys_getpid - return the thread group id of the current process
1413 * Note, despite the name, this returns the tgid not the pid. The tgid and
1414 * the pid are identical unless CLONE_THREAD was specified on clone() in
1415 * which case the tgid is the same in all threads of the same group.
1417 * This is SMP safe as current->tgid does not change.
1419 SYSCALL_DEFINE0(getpid
)
1421 return task_tgid_vnr(current
);
1425 * Accessing ->real_parent is not SMP-safe, it could
1426 * change from under us. However, we can use a stale
1427 * value of ->real_parent under rcu_read_lock(), see
1428 * release_task()->call_rcu(delayed_put_task_struct).
1430 SYSCALL_DEFINE0(getppid
)
1435 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1441 SYSCALL_DEFINE0(getuid
)
1443 /* Only we change this so SMP safe */
1444 return from_kuid_munged(current_user_ns(), current_uid());
1447 SYSCALL_DEFINE0(geteuid
)
1449 /* Only we change this so SMP safe */
1450 return from_kuid_munged(current_user_ns(), current_euid());
1453 SYSCALL_DEFINE0(getgid
)
1455 /* Only we change this so SMP safe */
1456 return from_kgid_munged(current_user_ns(), current_gid());
1459 SYSCALL_DEFINE0(getegid
)
1461 /* Only we change this so SMP safe */
1462 return from_kgid_munged(current_user_ns(), current_egid());
1465 static void process_timeout(unsigned long __data
)
1467 wake_up_process((struct task_struct
*)__data
);
1471 * schedule_timeout - sleep until timeout
1472 * @timeout: timeout value in jiffies
1474 * Make the current task sleep until @timeout jiffies have
1475 * elapsed. The routine will return immediately unless
1476 * the current task state has been set (see set_current_state()).
1478 * You can set the task state as follows -
1480 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1481 * pass before the routine returns. The routine will return 0
1483 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1484 * delivered to the current task. In this case the remaining time
1485 * in jiffies will be returned, or 0 if the timer expired in time
1487 * The current task state is guaranteed to be TASK_RUNNING when this
1490 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1491 * the CPU away without a bound on the timeout. In this case the return
1492 * value will be %MAX_SCHEDULE_TIMEOUT.
1494 * In all cases the return value is guaranteed to be non-negative.
1496 signed long __sched
schedule_timeout(signed long timeout
)
1498 struct timer_list timer
;
1499 unsigned long expire
;
1503 case MAX_SCHEDULE_TIMEOUT
:
1505 * These two special cases are useful to be comfortable
1506 * in the caller. Nothing more. We could take
1507 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1508 * but I' d like to return a valid offset (>=0) to allow
1509 * the caller to do everything it want with the retval.
1515 * Another bit of PARANOID. Note that the retval will be
1516 * 0 since no piece of kernel is supposed to do a check
1517 * for a negative retval of schedule_timeout() (since it
1518 * should never happens anyway). You just have the printk()
1519 * that will tell you if something is gone wrong and where.
1522 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1523 "value %lx\n", timeout
);
1525 current
->state
= TASK_RUNNING
;
1530 expire
= timeout
+ jiffies
;
1532 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1533 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1535 del_singleshot_timer_sync(&timer
);
1537 /* Remove the timer from the object tracker */
1538 destroy_timer_on_stack(&timer
);
1540 timeout
= expire
- jiffies
;
1543 return timeout
< 0 ? 0 : timeout
;
1545 EXPORT_SYMBOL(schedule_timeout
);
1548 * We can use __set_current_state() here because schedule_timeout() calls
1549 * schedule() unconditionally.
1551 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1553 __set_current_state(TASK_INTERRUPTIBLE
);
1554 return schedule_timeout(timeout
);
1556 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1558 signed long __sched
schedule_timeout_killable(signed long timeout
)
1560 __set_current_state(TASK_KILLABLE
);
1561 return schedule_timeout(timeout
);
1563 EXPORT_SYMBOL(schedule_timeout_killable
);
1565 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1567 __set_current_state(TASK_UNINTERRUPTIBLE
);
1568 return schedule_timeout(timeout
);
1570 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1572 /* Thread ID - the internal kernel "pid" */
1573 SYSCALL_DEFINE0(gettid
)
1575 return task_pid_vnr(current
);
1579 * do_sysinfo - fill in sysinfo struct
1580 * @info: pointer to buffer to fill
1582 int do_sysinfo(struct sysinfo
*info
)
1584 unsigned long mem_total
, sav_total
;
1585 unsigned int mem_unit
, bitcount
;
1588 memset(info
, 0, sizeof(struct sysinfo
));
1591 monotonic_to_bootbased(&tp
);
1592 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1594 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1596 info
->procs
= nr_threads
;
1602 * If the sum of all the available memory (i.e. ram + swap)
1603 * is less than can be stored in a 32 bit unsigned long then
1604 * we can be binary compatible with 2.2.x kernels. If not,
1605 * well, in that case 2.2.x was broken anyways...
1607 * -Erik Andersen <andersee@debian.org>
1610 mem_total
= info
->totalram
+ info
->totalswap
;
1611 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1614 mem_unit
= info
->mem_unit
;
1615 while (mem_unit
> 1) {
1618 sav_total
= mem_total
;
1620 if (mem_total
< sav_total
)
1625 * If mem_total did not overflow, multiply all memory values by
1626 * info->mem_unit and set it to 1. This leaves things compatible
1627 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1632 info
->totalram
<<= bitcount
;
1633 info
->freeram
<<= bitcount
;
1634 info
->sharedram
<<= bitcount
;
1635 info
->bufferram
<<= bitcount
;
1636 info
->totalswap
<<= bitcount
;
1637 info
->freeswap
<<= bitcount
;
1638 info
->totalhigh
<<= bitcount
;
1639 info
->freehigh
<<= bitcount
;
1645 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1651 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1657 static int __cpuinit
init_timers_cpu(int cpu
)
1660 struct tvec_base
*base
;
1661 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1663 if (!tvec_base_done
[cpu
]) {
1664 static char boot_done
;
1668 * The APs use this path later in boot
1670 base
= kmalloc_node(sizeof(*base
),
1671 GFP_KERNEL
| __GFP_ZERO
,
1676 /* Make sure that tvec_base is 2 byte aligned */
1677 if (tbase_get_deferrable(base
)) {
1682 per_cpu(tvec_bases
, cpu
) = base
;
1685 * This is for the boot CPU - we use compile-time
1686 * static initialisation because per-cpu memory isn't
1687 * ready yet and because the memory allocators are not
1688 * initialised either.
1691 base
= &boot_tvec_bases
;
1693 tvec_base_done
[cpu
] = 1;
1695 base
= per_cpu(tvec_bases
, cpu
);
1698 spin_lock_init(&base
->lock
);
1700 for (j
= 0; j
< TVN_SIZE
; j
++) {
1701 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1702 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1703 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1704 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1706 for (j
= 0; j
< TVR_SIZE
; j
++)
1707 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1709 base
->timer_jiffies
= jiffies
;
1710 base
->next_timer
= base
->timer_jiffies
;
1711 base
->active_timers
= 0;
1715 #ifdef CONFIG_HOTPLUG_CPU
1716 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1718 struct timer_list
*timer
;
1720 while (!list_empty(head
)) {
1721 timer
= list_first_entry(head
, struct timer_list
, entry
);
1722 /* We ignore the accounting on the dying cpu */
1723 detach_timer(timer
, false);
1724 timer_set_base(timer
, new_base
);
1725 internal_add_timer(new_base
, timer
);
1729 static void __cpuinit
migrate_timers(int cpu
)
1731 struct tvec_base
*old_base
;
1732 struct tvec_base
*new_base
;
1735 BUG_ON(cpu_online(cpu
));
1736 old_base
= per_cpu(tvec_bases
, cpu
);
1737 new_base
= get_cpu_var(tvec_bases
);
1739 * The caller is globally serialized and nobody else
1740 * takes two locks at once, deadlock is not possible.
1742 spin_lock_irq(&new_base
->lock
);
1743 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1745 BUG_ON(old_base
->running_timer
);
1747 for (i
= 0; i
< TVR_SIZE
; i
++)
1748 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1749 for (i
= 0; i
< TVN_SIZE
; i
++) {
1750 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1751 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1752 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1753 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1756 spin_unlock(&old_base
->lock
);
1757 spin_unlock_irq(&new_base
->lock
);
1758 put_cpu_var(tvec_bases
);
1760 #endif /* CONFIG_HOTPLUG_CPU */
1762 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1763 unsigned long action
, void *hcpu
)
1765 long cpu
= (long)hcpu
;
1769 case CPU_UP_PREPARE
:
1770 case CPU_UP_PREPARE_FROZEN
:
1771 err
= init_timers_cpu(cpu
);
1773 return notifier_from_errno(err
);
1775 #ifdef CONFIG_HOTPLUG_CPU
1777 case CPU_DEAD_FROZEN
:
1778 migrate_timers(cpu
);
1787 static struct notifier_block __cpuinitdata timers_nb
= {
1788 .notifier_call
= timer_cpu_notify
,
1792 void __init
init_timers(void)
1794 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1795 (void *)(long)smp_processor_id());
1799 BUG_ON(err
!= NOTIFY_OK
);
1800 register_cpu_notifier(&timers_nb
);
1801 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1805 * msleep - sleep safely even with waitqueue interruptions
1806 * @msecs: Time in milliseconds to sleep for
1808 void msleep(unsigned int msecs
)
1810 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1813 timeout
= schedule_timeout_uninterruptible(timeout
);
1816 EXPORT_SYMBOL(msleep
);
1819 * msleep_interruptible - sleep waiting for signals
1820 * @msecs: Time in milliseconds to sleep for
1822 unsigned long msleep_interruptible(unsigned int msecs
)
1824 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1826 while (timeout
&& !signal_pending(current
))
1827 timeout
= schedule_timeout_interruptible(timeout
);
1828 return jiffies_to_msecs(timeout
);
1831 EXPORT_SYMBOL(msleep_interruptible
);
1833 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1836 unsigned long delta
;
1838 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1839 delta
= (max
- min
) * NSEC_PER_USEC
;
1840 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1844 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1845 * @min: Minimum time in usecs to sleep
1846 * @max: Maximum time in usecs to sleep
1848 void usleep_range(unsigned long min
, unsigned long max
)
1850 __set_current_state(TASK_UNINTERRUPTIBLE
);
1851 do_usleep_range(min
, max
);
1853 EXPORT_SYMBOL(usleep_range
);