pinctrl: st: Include the right header
[linux/fpc-iii.git] / fs / iomap / direct-io.c
blob10517cea96828b68f1d1e4e8b58f857b1f57e841
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/backing-dev.h>
11 #include <linux/uio.h>
12 #include <linux/task_io_accounting_ops.h>
14 #include "../internal.h"
17 * Private flags for iomap_dio, must not overlap with the public ones in
18 * iomap.h:
20 #define IOMAP_DIO_WRITE_FUA (1 << 28)
21 #define IOMAP_DIO_NEED_SYNC (1 << 29)
22 #define IOMAP_DIO_WRITE (1 << 30)
23 #define IOMAP_DIO_DIRTY (1 << 31)
25 struct iomap_dio {
26 struct kiocb *iocb;
27 iomap_dio_end_io_t *end_io;
28 loff_t i_size;
29 loff_t size;
30 atomic_t ref;
31 unsigned flags;
32 int error;
33 bool wait_for_completion;
35 union {
36 /* used during submission and for synchronous completion: */
37 struct {
38 struct iov_iter *iter;
39 struct task_struct *waiter;
40 struct request_queue *last_queue;
41 blk_qc_t cookie;
42 } submit;
44 /* used for aio completion: */
45 struct {
46 struct work_struct work;
47 } aio;
51 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
53 struct request_queue *q = READ_ONCE(kiocb->private);
55 if (!q)
56 return 0;
57 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
59 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
61 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
62 struct bio *bio)
64 atomic_inc(&dio->ref);
66 if (dio->iocb->ki_flags & IOCB_HIPRI)
67 bio_set_polled(bio, dio->iocb);
69 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
70 dio->submit.cookie = submit_bio(bio);
73 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
75 struct kiocb *iocb = dio->iocb;
76 struct inode *inode = file_inode(iocb->ki_filp);
77 loff_t offset = iocb->ki_pos;
78 ssize_t ret;
80 if (dio->end_io) {
81 ret = dio->end_io(iocb,
82 dio->error ? dio->error : dio->size,
83 dio->flags);
84 } else {
85 ret = dio->error;
88 if (likely(!ret)) {
89 ret = dio->size;
90 /* check for short read */
91 if (offset + ret > dio->i_size &&
92 !(dio->flags & IOMAP_DIO_WRITE))
93 ret = dio->i_size - offset;
94 iocb->ki_pos += ret;
98 * Try again to invalidate clean pages which might have been cached by
99 * non-direct readahead, or faulted in by get_user_pages() if the source
100 * of the write was an mmap'ed region of the file we're writing. Either
101 * one is a pretty crazy thing to do, so we don't support it 100%. If
102 * this invalidation fails, tough, the write still worked...
104 * And this page cache invalidation has to be after dio->end_io(), as
105 * some filesystems convert unwritten extents to real allocations in
106 * end_io() when necessary, otherwise a racing buffer read would cache
107 * zeros from unwritten extents.
109 if (!dio->error &&
110 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
111 int err;
112 err = invalidate_inode_pages2_range(inode->i_mapping,
113 offset >> PAGE_SHIFT,
114 (offset + dio->size - 1) >> PAGE_SHIFT);
115 if (err)
116 dio_warn_stale_pagecache(iocb->ki_filp);
120 * If this is a DSYNC write, make sure we push it to stable storage now
121 * that we've written data.
123 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
124 ret = generic_write_sync(iocb, ret);
126 inode_dio_end(file_inode(iocb->ki_filp));
127 kfree(dio);
129 return ret;
132 static void iomap_dio_complete_work(struct work_struct *work)
134 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
135 struct kiocb *iocb = dio->iocb;
137 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
141 * Set an error in the dio if none is set yet. We have to use cmpxchg
142 * as the submission context and the completion context(s) can race to
143 * update the error.
145 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
147 cmpxchg(&dio->error, 0, ret);
150 static void iomap_dio_bio_end_io(struct bio *bio)
152 struct iomap_dio *dio = bio->bi_private;
153 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
155 if (bio->bi_status)
156 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
158 if (atomic_dec_and_test(&dio->ref)) {
159 if (dio->wait_for_completion) {
160 struct task_struct *waiter = dio->submit.waiter;
161 WRITE_ONCE(dio->submit.waiter, NULL);
162 blk_wake_io_task(waiter);
163 } else if (dio->flags & IOMAP_DIO_WRITE) {
164 struct inode *inode = file_inode(dio->iocb->ki_filp);
166 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
167 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
168 } else {
169 iomap_dio_complete_work(&dio->aio.work);
173 if (should_dirty) {
174 bio_check_pages_dirty(bio);
175 } else {
176 bio_release_pages(bio, false);
177 bio_put(bio);
181 static void
182 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
183 unsigned len)
185 struct page *page = ZERO_PAGE(0);
186 int flags = REQ_SYNC | REQ_IDLE;
187 struct bio *bio;
189 bio = bio_alloc(GFP_KERNEL, 1);
190 bio_set_dev(bio, iomap->bdev);
191 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
192 bio->bi_private = dio;
193 bio->bi_end_io = iomap_dio_bio_end_io;
195 get_page(page);
196 __bio_add_page(bio, page, len, 0);
197 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
198 iomap_dio_submit_bio(dio, iomap, bio);
201 static loff_t
202 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
203 struct iomap_dio *dio, struct iomap *iomap)
205 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
206 unsigned int fs_block_size = i_blocksize(inode), pad;
207 unsigned int align = iov_iter_alignment(dio->submit.iter);
208 struct iov_iter iter;
209 struct bio *bio;
210 bool need_zeroout = false;
211 bool use_fua = false;
212 int nr_pages, ret = 0;
213 size_t copied = 0;
215 if ((pos | length | align) & ((1 << blkbits) - 1))
216 return -EINVAL;
218 if (iomap->type == IOMAP_UNWRITTEN) {
219 dio->flags |= IOMAP_DIO_UNWRITTEN;
220 need_zeroout = true;
223 if (iomap->flags & IOMAP_F_SHARED)
224 dio->flags |= IOMAP_DIO_COW;
226 if (iomap->flags & IOMAP_F_NEW) {
227 need_zeroout = true;
228 } else if (iomap->type == IOMAP_MAPPED) {
230 * Use a FUA write if we need datasync semantics, this is a pure
231 * data IO that doesn't require any metadata updates (including
232 * after IO completion such as unwritten extent conversion) and
233 * the underlying device supports FUA. This allows us to avoid
234 * cache flushes on IO completion.
236 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
237 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
238 blk_queue_fua(bdev_get_queue(iomap->bdev)))
239 use_fua = true;
243 * Operate on a partial iter trimmed to the extent we were called for.
244 * We'll update the iter in the dio once we're done with this extent.
246 iter = *dio->submit.iter;
247 iov_iter_truncate(&iter, length);
249 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
250 if (nr_pages <= 0)
251 return nr_pages;
253 if (need_zeroout) {
254 /* zero out from the start of the block to the write offset */
255 pad = pos & (fs_block_size - 1);
256 if (pad)
257 iomap_dio_zero(dio, iomap, pos - pad, pad);
260 do {
261 size_t n;
262 if (dio->error) {
263 iov_iter_revert(dio->submit.iter, copied);
264 return 0;
267 bio = bio_alloc(GFP_KERNEL, nr_pages);
268 bio_set_dev(bio, iomap->bdev);
269 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
270 bio->bi_write_hint = dio->iocb->ki_hint;
271 bio->bi_ioprio = dio->iocb->ki_ioprio;
272 bio->bi_private = dio;
273 bio->bi_end_io = iomap_dio_bio_end_io;
275 ret = bio_iov_iter_get_pages(bio, &iter);
276 if (unlikely(ret)) {
278 * We have to stop part way through an IO. We must fall
279 * through to the sub-block tail zeroing here, otherwise
280 * this short IO may expose stale data in the tail of
281 * the block we haven't written data to.
283 bio_put(bio);
284 goto zero_tail;
287 n = bio->bi_iter.bi_size;
288 if (dio->flags & IOMAP_DIO_WRITE) {
289 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
290 if (use_fua)
291 bio->bi_opf |= REQ_FUA;
292 else
293 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
294 task_io_account_write(n);
295 } else {
296 bio->bi_opf = REQ_OP_READ;
297 if (dio->flags & IOMAP_DIO_DIRTY)
298 bio_set_pages_dirty(bio);
301 iov_iter_advance(dio->submit.iter, n);
303 dio->size += n;
304 pos += n;
305 copied += n;
307 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
308 iomap_dio_submit_bio(dio, iomap, bio);
309 } while (nr_pages);
312 * We need to zeroout the tail of a sub-block write if the extent type
313 * requires zeroing or the write extends beyond EOF. If we don't zero
314 * the block tail in the latter case, we can expose stale data via mmap
315 * reads of the EOF block.
317 zero_tail:
318 if (need_zeroout ||
319 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
320 /* zero out from the end of the write to the end of the block */
321 pad = pos & (fs_block_size - 1);
322 if (pad)
323 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
325 return copied ? copied : ret;
328 static loff_t
329 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
331 length = iov_iter_zero(length, dio->submit.iter);
332 dio->size += length;
333 return length;
336 static loff_t
337 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
338 struct iomap_dio *dio, struct iomap *iomap)
340 struct iov_iter *iter = dio->submit.iter;
341 size_t copied;
343 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
345 if (dio->flags & IOMAP_DIO_WRITE) {
346 loff_t size = inode->i_size;
348 if (pos > size)
349 memset(iomap->inline_data + size, 0, pos - size);
350 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
351 if (copied) {
352 if (pos + copied > size)
353 i_size_write(inode, pos + copied);
354 mark_inode_dirty(inode);
356 } else {
357 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
359 dio->size += copied;
360 return copied;
363 static loff_t
364 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
365 void *data, struct iomap *iomap)
367 struct iomap_dio *dio = data;
369 switch (iomap->type) {
370 case IOMAP_HOLE:
371 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
372 return -EIO;
373 return iomap_dio_hole_actor(length, dio);
374 case IOMAP_UNWRITTEN:
375 if (!(dio->flags & IOMAP_DIO_WRITE))
376 return iomap_dio_hole_actor(length, dio);
377 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
378 case IOMAP_MAPPED:
379 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
380 case IOMAP_INLINE:
381 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
382 default:
383 WARN_ON_ONCE(1);
384 return -EIO;
389 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
390 * is being issued as AIO or not. This allows us to optimise pure data writes
391 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
392 * REQ_FLUSH post write. This is slightly tricky because a single request here
393 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
394 * may be pure data writes. In that case, we still need to do a full data sync
395 * completion.
397 ssize_t
398 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
399 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
401 struct address_space *mapping = iocb->ki_filp->f_mapping;
402 struct inode *inode = file_inode(iocb->ki_filp);
403 size_t count = iov_iter_count(iter);
404 loff_t pos = iocb->ki_pos, start = pos;
405 loff_t end = iocb->ki_pos + count - 1, ret = 0;
406 unsigned int flags = IOMAP_DIRECT;
407 bool wait_for_completion = is_sync_kiocb(iocb);
408 struct blk_plug plug;
409 struct iomap_dio *dio;
411 lockdep_assert_held(&inode->i_rwsem);
413 if (!count)
414 return 0;
416 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
417 if (!dio)
418 return -ENOMEM;
420 dio->iocb = iocb;
421 atomic_set(&dio->ref, 1);
422 dio->size = 0;
423 dio->i_size = i_size_read(inode);
424 dio->end_io = end_io;
425 dio->error = 0;
426 dio->flags = 0;
428 dio->submit.iter = iter;
429 dio->submit.waiter = current;
430 dio->submit.cookie = BLK_QC_T_NONE;
431 dio->submit.last_queue = NULL;
433 if (iov_iter_rw(iter) == READ) {
434 if (pos >= dio->i_size)
435 goto out_free_dio;
437 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
438 dio->flags |= IOMAP_DIO_DIRTY;
439 } else {
440 flags |= IOMAP_WRITE;
441 dio->flags |= IOMAP_DIO_WRITE;
443 /* for data sync or sync, we need sync completion processing */
444 if (iocb->ki_flags & IOCB_DSYNC)
445 dio->flags |= IOMAP_DIO_NEED_SYNC;
448 * For datasync only writes, we optimistically try using FUA for
449 * this IO. Any non-FUA write that occurs will clear this flag,
450 * hence we know before completion whether a cache flush is
451 * necessary.
453 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
454 dio->flags |= IOMAP_DIO_WRITE_FUA;
457 if (iocb->ki_flags & IOCB_NOWAIT) {
458 if (filemap_range_has_page(mapping, start, end)) {
459 ret = -EAGAIN;
460 goto out_free_dio;
462 flags |= IOMAP_NOWAIT;
465 ret = filemap_write_and_wait_range(mapping, start, end);
466 if (ret)
467 goto out_free_dio;
470 * Try to invalidate cache pages for the range we're direct
471 * writing. If this invalidation fails, tough, the write will
472 * still work, but racing two incompatible write paths is a
473 * pretty crazy thing to do, so we don't support it 100%.
475 ret = invalidate_inode_pages2_range(mapping,
476 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
477 if (ret)
478 dio_warn_stale_pagecache(iocb->ki_filp);
479 ret = 0;
481 if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
482 !inode->i_sb->s_dio_done_wq) {
483 ret = sb_init_dio_done_wq(inode->i_sb);
484 if (ret < 0)
485 goto out_free_dio;
488 inode_dio_begin(inode);
490 blk_start_plug(&plug);
491 do {
492 ret = iomap_apply(inode, pos, count, flags, ops, dio,
493 iomap_dio_actor);
494 if (ret <= 0) {
495 /* magic error code to fall back to buffered I/O */
496 if (ret == -ENOTBLK) {
497 wait_for_completion = true;
498 ret = 0;
500 break;
502 pos += ret;
504 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
505 break;
506 } while ((count = iov_iter_count(iter)) > 0);
507 blk_finish_plug(&plug);
509 if (ret < 0)
510 iomap_dio_set_error(dio, ret);
513 * If all the writes we issued were FUA, we don't need to flush the
514 * cache on IO completion. Clear the sync flag for this case.
516 if (dio->flags & IOMAP_DIO_WRITE_FUA)
517 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
519 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
520 WRITE_ONCE(iocb->private, dio->submit.last_queue);
523 * We are about to drop our additional submission reference, which
524 * might be the last reference to the dio. There are three three
525 * different ways we can progress here:
527 * (a) If this is the last reference we will always complete and free
528 * the dio ourselves.
529 * (b) If this is not the last reference, and we serve an asynchronous
530 * iocb, we must never touch the dio after the decrement, the
531 * I/O completion handler will complete and free it.
532 * (c) If this is not the last reference, but we serve a synchronous
533 * iocb, the I/O completion handler will wake us up on the drop
534 * of the final reference, and we will complete and free it here
535 * after we got woken by the I/O completion handler.
537 dio->wait_for_completion = wait_for_completion;
538 if (!atomic_dec_and_test(&dio->ref)) {
539 if (!wait_for_completion)
540 return -EIOCBQUEUED;
542 for (;;) {
543 set_current_state(TASK_UNINTERRUPTIBLE);
544 if (!READ_ONCE(dio->submit.waiter))
545 break;
547 if (!(iocb->ki_flags & IOCB_HIPRI) ||
548 !dio->submit.last_queue ||
549 !blk_poll(dio->submit.last_queue,
550 dio->submit.cookie, true))
551 io_schedule();
553 __set_current_state(TASK_RUNNING);
556 return iomap_dio_complete(dio);
558 out_free_dio:
559 kfree(dio);
560 return ret;
562 EXPORT_SYMBOL_GPL(iomap_dio_rw);