2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
28 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
30 extern void _stext
, _etext
, __data_start
, _end
;
31 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page
*empty_zero_page
;
38 EXPORT_SYMBOL(empty_zero_page
);
41 * The pmd table for the upper-most set of pages.
45 #define CPOLICY_UNCACHED 0
46 #define CPOLICY_BUFFERED 1
47 #define CPOLICY_WRITETHROUGH 2
48 #define CPOLICY_WRITEBACK 3
49 #define CPOLICY_WRITEALLOC 4
51 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
52 static unsigned int ecc_mask __initdata
= 0;
54 pgprot_t pgprot_kernel
;
56 EXPORT_SYMBOL(pgprot_user
);
57 EXPORT_SYMBOL(pgprot_kernel
);
60 const char policy
[16];
66 static struct cachepolicy cache_policies
[] __initdata
= {
70 .pmd
= PMD_SECT_UNCACHED
,
75 .pmd
= PMD_SECT_BUFFERED
,
76 .pte
= PTE_BUFFERABLE
,
78 .policy
= "writethrough",
83 .policy
= "writeback",
86 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
88 .policy
= "writealloc",
91 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
96 * These are useful for identifying cache coherency
97 * problems by allowing the cache or the cache and
98 * writebuffer to be turned off. (Note: the write
99 * buffer should not be on and the cache off).
101 static void __init
early_cachepolicy(char **p
)
105 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
106 int len
= strlen(cache_policies
[i
].policy
);
108 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
110 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
111 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
116 if (i
== ARRAY_SIZE(cache_policies
))
117 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
118 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
119 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
120 cachepolicy
= CPOLICY_WRITEBACK
;
123 set_cr(cr_alignment
);
125 __early_param("cachepolicy=", early_cachepolicy
);
127 static void __init
early_nocache(char **__unused
)
129 char *p
= "buffered";
130 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
131 early_cachepolicy(&p
);
133 __early_param("nocache", early_nocache
);
135 static void __init
early_nowrite(char **__unused
)
137 char *p
= "uncached";
138 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
139 early_cachepolicy(&p
);
141 __early_param("nowb", early_nowrite
);
143 static void __init
early_ecc(char **p
)
145 if (memcmp(*p
, "on", 2) == 0) {
146 ecc_mask
= PMD_PROTECTION
;
148 } else if (memcmp(*p
, "off", 3) == 0) {
153 __early_param("ecc=", early_ecc
);
155 static int __init
noalign_setup(char *__unused
)
157 cr_alignment
&= ~CR_A
;
158 cr_no_alignment
&= ~CR_A
;
159 set_cr(cr_alignment
);
162 __setup("noalign", noalign_setup
);
165 void adjust_cr(unsigned long mask
, unsigned long set
)
173 local_irq_save(flags
);
175 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
176 cr_alignment
= (cr_alignment
& ~mask
) | set
;
178 set_cr((get_cr() & ~mask
) | set
);
180 local_irq_restore(flags
);
184 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
187 static struct mem_type mem_types
[] = {
188 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
189 .prot_pte
= PROT_PTE_DEVICE
,
190 .prot_l1
= PMD_TYPE_TABLE
,
191 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_UNCACHED
,
194 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
195 .prot_pte
= PROT_PTE_DEVICE
,
196 .prot_pte_ext
= PTE_EXT_TEX(2),
197 .prot_l1
= PMD_TYPE_TABLE
,
198 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_TEX(2),
201 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
202 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_CACHEABLE
| L_PTE_BUFFERABLE
,
203 .prot_l1
= PMD_TYPE_TABLE
,
204 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
207 [MT_DEVICE_IXP2000
] = { /* IXP2400 requires XCB=101 for on-chip I/O */
208 .prot_pte
= PROT_PTE_DEVICE
,
209 .prot_l1
= PMD_TYPE_TABLE
,
210 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_BUFFERABLE
|
215 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
216 .domain
= DOMAIN_KERNEL
,
219 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
220 .domain
= DOMAIN_KERNEL
,
223 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
225 .prot_l1
= PMD_TYPE_TABLE
,
226 .domain
= DOMAIN_USER
,
228 [MT_HIGH_VECTORS
] = {
229 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
230 L_PTE_USER
| L_PTE_EXEC
,
231 .prot_l1
= PMD_TYPE_TABLE
,
232 .domain
= DOMAIN_USER
,
235 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
236 .domain
= DOMAIN_KERNEL
,
239 .prot_sect
= PMD_TYPE_SECT
,
240 .domain
= DOMAIN_KERNEL
,
244 const struct mem_type
*get_mem_type(unsigned int type
)
246 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
250 * Adjust the PMD section entries according to the CPU in use.
252 static void __init
build_mem_type_table(void)
254 struct cachepolicy
*cp
;
255 unsigned int cr
= get_cr();
256 unsigned int user_pgprot
, kern_pgprot
;
257 int cpu_arch
= cpu_architecture();
260 if (cpu_arch
< CPU_ARCH_ARMv6
) {
261 #if defined(CONFIG_CPU_DCACHE_DISABLE)
262 if (cachepolicy
> CPOLICY_BUFFERED
)
263 cachepolicy
= CPOLICY_BUFFERED
;
264 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
265 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
266 cachepolicy
= CPOLICY_WRITETHROUGH
;
269 if (cpu_arch
< CPU_ARCH_ARMv5
) {
270 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
271 cachepolicy
= CPOLICY_WRITEBACK
;
276 * ARMv5 and lower, bit 4 must be set for page tables.
277 * (was: cache "update-able on write" bit on ARM610)
278 * However, Xscale cores require this bit to be cleared.
280 if (cpu_is_xscale()) {
281 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
282 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
283 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
285 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
286 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
287 if (mem_types
[i
].prot_l1
)
288 mem_types
[i
].prot_l1
|= PMD_BIT4
;
289 if (mem_types
[i
].prot_sect
)
290 mem_types
[i
].prot_sect
|= PMD_BIT4
;
294 cp
= &cache_policies
[cachepolicy
];
295 kern_pgprot
= user_pgprot
= cp
->pte
;
298 * Enable CPU-specific coherency if supported.
299 * (Only available on XSC3 at the moment.)
301 if (arch_is_coherent()) {
303 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
304 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
309 * ARMv6 and above have extended page tables.
311 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
313 * Mark cache clean areas and XIP ROM read only
314 * from SVC mode and no access from userspace.
316 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
317 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
318 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
321 * Mark the device area as "shared device"
323 mem_types
[MT_DEVICE
].prot_pte
|= L_PTE_BUFFERABLE
;
324 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
328 * Mark memory with the "shared" attribute for SMP systems
330 user_pgprot
|= L_PTE_SHARED
;
331 kern_pgprot
|= L_PTE_SHARED
;
332 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
336 for (i
= 0; i
< 16; i
++) {
337 unsigned long v
= pgprot_val(protection_map
[i
]);
338 v
= (v
& ~(L_PTE_BUFFERABLE
|L_PTE_CACHEABLE
)) | user_pgprot
;
339 protection_map
[i
] = __pgprot(v
);
342 mem_types
[MT_LOW_VECTORS
].prot_pte
|= kern_pgprot
;
343 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= kern_pgprot
;
345 if (cpu_arch
>= CPU_ARCH_ARMv5
) {
348 * Only use write-through for non-SMP systems
350 mem_types
[MT_LOW_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
351 mem_types
[MT_HIGH_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
354 mem_types
[MT_MINICLEAN
].prot_sect
&= ~PMD_SECT_TEX(1);
357 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
358 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
359 L_PTE_DIRTY
| L_PTE_WRITE
|
360 L_PTE_EXEC
| kern_pgprot
);
362 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
363 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
364 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
365 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
369 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
373 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
376 printk("Memory policy: ECC %sabled, Data cache %s\n",
377 ecc_mask
? "en" : "dis", cp
->policy
);
379 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
380 struct mem_type
*t
= &mem_types
[i
];
382 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
384 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
388 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
390 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
391 unsigned long end
, unsigned long pfn
,
392 const struct mem_type
*type
)
396 if (pmd_none(*pmd
)) {
397 pte
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
* sizeof(pte_t
));
398 __pmd_populate(pmd
, __pa(pte
) | type
->prot_l1
);
401 pte
= pte_offset_kernel(pmd
, addr
);
403 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
406 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
409 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
410 unsigned long end
, unsigned long phys
,
411 const struct mem_type
*type
)
413 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
416 * Try a section mapping - end, addr and phys must all be aligned
417 * to a section boundary. Note that PMDs refer to the individual
418 * L1 entries, whereas PGDs refer to a group of L1 entries making
419 * up one logical pointer to an L2 table.
421 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
424 if (addr
& SECTION_SIZE
)
428 *pmd
= __pmd(phys
| type
->prot_sect
);
429 phys
+= SECTION_SIZE
;
430 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
435 * No need to loop; pte's aren't interested in the
436 * individual L1 entries.
438 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
442 static void __init
create_36bit_mapping(struct map_desc
*md
,
443 const struct mem_type
*type
)
445 unsigned long phys
, addr
, length
, end
;
449 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
450 length
= PAGE_ALIGN(md
->length
);
452 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
453 printk(KERN_ERR
"MM: CPU does not support supersection "
454 "mapping for 0x%08llx at 0x%08lx\n",
455 __pfn_to_phys((u64
)md
->pfn
), addr
);
459 /* N.B. ARMv6 supersections are only defined to work with domain 0.
460 * Since domain assignments can in fact be arbitrary, the
461 * 'domain == 0' check below is required to insure that ARMv6
462 * supersections are only allocated for domain 0 regardless
463 * of the actual domain assignments in use.
466 printk(KERN_ERR
"MM: invalid domain in supersection "
467 "mapping for 0x%08llx at 0x%08lx\n",
468 __pfn_to_phys((u64
)md
->pfn
), addr
);
472 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
473 printk(KERN_ERR
"MM: cannot create mapping for "
474 "0x%08llx at 0x%08lx invalid alignment\n",
475 __pfn_to_phys((u64
)md
->pfn
), addr
);
480 * Shift bits [35:32] of address into bits [23:20] of PMD
483 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
485 pgd
= pgd_offset_k(addr
);
488 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
491 for (i
= 0; i
< 16; i
++)
492 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
494 addr
+= SUPERSECTION_SIZE
;
495 phys
+= SUPERSECTION_SIZE
;
496 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
497 } while (addr
!= end
);
501 * Create the page directory entries and any necessary
502 * page tables for the mapping specified by `md'. We
503 * are able to cope here with varying sizes and address
504 * offsets, and we take full advantage of sections and
507 void __init
create_mapping(struct map_desc
*md
)
509 unsigned long phys
, addr
, length
, end
;
510 const struct mem_type
*type
;
513 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
514 printk(KERN_WARNING
"BUG: not creating mapping for "
515 "0x%08llx at 0x%08lx in user region\n",
516 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
520 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
521 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
522 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
523 "overlaps vmalloc space\n",
524 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
527 type
= &mem_types
[md
->type
];
530 * Catch 36-bit addresses
532 if (md
->pfn
>= 0x100000) {
533 create_36bit_mapping(md
, type
);
537 addr
= md
->virtual & PAGE_MASK
;
538 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
539 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
541 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
542 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
543 "be mapped using pages, ignoring.\n",
544 __pfn_to_phys(md
->pfn
), addr
);
548 pgd
= pgd_offset_k(addr
);
551 unsigned long next
= pgd_addr_end(addr
, end
);
553 alloc_init_section(pgd
, addr
, next
, phys
, type
);
557 } while (pgd
++, addr
!= end
);
561 * Create the architecture specific mappings
563 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
567 for (i
= 0; i
< nr
; i
++)
568 create_mapping(io_desc
+ i
);
571 static inline void prepare_page_table(struct meminfo
*mi
)
576 * Clear out all the mappings below the kernel image.
578 for (addr
= 0; addr
< MODULE_START
; addr
+= PGDIR_SIZE
)
579 pmd_clear(pmd_off_k(addr
));
581 #ifdef CONFIG_XIP_KERNEL
582 /* The XIP kernel is mapped in the module area -- skip over it */
583 addr
= ((unsigned long)&_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
585 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
586 pmd_clear(pmd_off_k(addr
));
589 * Clear out all the kernel space mappings, except for the first
590 * memory bank, up to the end of the vmalloc region.
592 for (addr
= __phys_to_virt(mi
->bank
[0].start
+ mi
->bank
[0].size
);
593 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
594 pmd_clear(pmd_off_k(addr
));
598 * Reserve the various regions of node 0
600 void __init
reserve_node_zero(pg_data_t
*pgdat
)
602 unsigned long res_size
= 0;
605 * Register the kernel text and data with bootmem.
606 * Note that this can only be in node 0.
608 #ifdef CONFIG_XIP_KERNEL
609 reserve_bootmem_node(pgdat
, __pa(&__data_start
), &_end
- &__data_start
,
612 reserve_bootmem_node(pgdat
, __pa(&_stext
), &_end
- &_stext
,
617 * Reserve the page tables. These are already in use,
618 * and can only be in node 0.
620 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
621 PTRS_PER_PGD
* sizeof(pgd_t
), BOOTMEM_DEFAULT
);
624 * Hmm... This should go elsewhere, but we really really need to
625 * stop things allocating the low memory; ideally we need a better
626 * implementation of GFP_DMA which does not assume that DMA-able
627 * memory starts at zero.
629 if (machine_is_integrator() || machine_is_cintegrator())
630 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
633 * These should likewise go elsewhere. They pre-reserve the
634 * screen memory region at the start of main system memory.
636 if (machine_is_edb7211())
637 res_size
= 0x00020000;
638 if (machine_is_p720t())
639 res_size
= 0x00014000;
641 /* H1940 and RX3715 need to reserve this for suspend */
643 if (machine_is_h1940() || machine_is_rx3715()) {
644 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000,
646 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000,
652 * Because of the SA1111 DMA bug, we want to preserve our
653 * precious DMA-able memory...
655 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
658 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
,
663 * Set up device the mappings. Since we clear out the page tables for all
664 * mappings above VMALLOC_END, we will remove any debug device mappings.
665 * This means you have to be careful how you debug this function, or any
666 * called function. This means you can't use any function or debugging
667 * method which may touch any device, otherwise the kernel _will_ crash.
669 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
676 * Allocate the vector page early.
678 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
681 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
682 pmd_clear(pmd_off_k(addr
));
685 * Map the kernel if it is XIP.
686 * It is always first in the modulearea.
688 #ifdef CONFIG_XIP_KERNEL
689 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
690 map
.virtual = MODULE_START
;
691 map
.length
= ((unsigned long)&_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
693 create_mapping(&map
);
697 * Map the cache flushing regions.
700 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
701 map
.virtual = FLUSH_BASE
;
703 map
.type
= MT_CACHECLEAN
;
704 create_mapping(&map
);
706 #ifdef FLUSH_BASE_MINICACHE
707 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
708 map
.virtual = FLUSH_BASE_MINICACHE
;
710 map
.type
= MT_MINICLEAN
;
711 create_mapping(&map
);
715 * Create a mapping for the machine vectors at the high-vectors
716 * location (0xffff0000). If we aren't using high-vectors, also
717 * create a mapping at the low-vectors virtual address.
719 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
720 map
.virtual = 0xffff0000;
721 map
.length
= PAGE_SIZE
;
722 map
.type
= MT_HIGH_VECTORS
;
723 create_mapping(&map
);
725 if (!vectors_high()) {
727 map
.type
= MT_LOW_VECTORS
;
728 create_mapping(&map
);
732 * Ask the machine support to map in the statically mapped devices.
738 * Finally flush the caches and tlb to ensure that we're in a
739 * consistent state wrt the writebuffer. This also ensures that
740 * any write-allocated cache lines in the vector page are written
741 * back. After this point, we can start to touch devices again.
743 local_flush_tlb_all();
748 * paging_init() sets up the page tables, initialises the zone memory
749 * maps, and sets up the zero page, bad page and bad page tables.
751 void __init
paging_init(struct meminfo
*mi
, struct machine_desc
*mdesc
)
755 build_mem_type_table();
756 prepare_page_table(mi
);
758 devicemaps_init(mdesc
);
760 top_pmd
= pmd_off_k(0xffff0000);
763 * allocate the zero page. Note that we count on this going ok.
765 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
766 memzero(zero_page
, PAGE_SIZE
);
767 empty_zero_page
= virt_to_page(zero_page
);
768 flush_dcache_page(empty_zero_page
);
772 * In order to soft-boot, we need to insert a 1:1 mapping in place of
773 * the user-mode pages. This will then ensure that we have predictable
774 * results when turning the mmu off
776 void setup_mm_for_reboot(char mode
)
778 unsigned long base_pmdval
;
782 if (current
->mm
&& current
->mm
->pgd
)
783 pgd
= current
->mm
->pgd
;
787 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
788 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
789 base_pmdval
|= PMD_BIT4
;
791 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
792 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
795 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
796 pmd
[0] = __pmd(pmdval
);
797 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
798 flush_pmd_entry(pmd
);