docbook: fix fatal rapidio yet again (and more to come)
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob2d6d682c206a814e5b7c41d7e8ce851f68721b18
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
21 #include <asm/tlb.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
26 #include "mm.h"
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page *empty_zero_page;
38 EXPORT_SYMBOL(empty_zero_page);
41 * The pmd table for the upper-most set of pages.
43 pmd_t *top_pmd;
45 #define CPOLICY_UNCACHED 0
46 #define CPOLICY_BUFFERED 1
47 #define CPOLICY_WRITETHROUGH 2
48 #define CPOLICY_WRITEBACK 3
49 #define CPOLICY_WRITEALLOC 4
51 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
52 static unsigned int ecc_mask __initdata = 0;
53 pgprot_t pgprot_user;
54 pgprot_t pgprot_kernel;
56 EXPORT_SYMBOL(pgprot_user);
57 EXPORT_SYMBOL(pgprot_kernel);
59 struct cachepolicy {
60 const char policy[16];
61 unsigned int cr_mask;
62 unsigned int pmd;
63 unsigned int pte;
66 static struct cachepolicy cache_policies[] __initdata = {
68 .policy = "uncached",
69 .cr_mask = CR_W|CR_C,
70 .pmd = PMD_SECT_UNCACHED,
71 .pte = 0,
72 }, {
73 .policy = "buffered",
74 .cr_mask = CR_C,
75 .pmd = PMD_SECT_BUFFERED,
76 .pte = PTE_BUFFERABLE,
77 }, {
78 .policy = "writethrough",
79 .cr_mask = 0,
80 .pmd = PMD_SECT_WT,
81 .pte = PTE_CACHEABLE,
82 }, {
83 .policy = "writeback",
84 .cr_mask = 0,
85 .pmd = PMD_SECT_WB,
86 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
87 }, {
88 .policy = "writealloc",
89 .cr_mask = 0,
90 .pmd = PMD_SECT_WBWA,
91 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
96 * These are useful for identifying cache coherency
97 * problems by allowing the cache or the cache and
98 * writebuffer to be turned off. (Note: the write
99 * buffer should not be on and the cache off).
101 static void __init early_cachepolicy(char **p)
103 int i;
105 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
106 int len = strlen(cache_policies[i].policy);
108 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
109 cachepolicy = i;
110 cr_alignment &= ~cache_policies[i].cr_mask;
111 cr_no_alignment &= ~cache_policies[i].cr_mask;
112 *p += len;
113 break;
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
119 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
120 cachepolicy = CPOLICY_WRITEBACK;
122 flush_cache_all();
123 set_cr(cr_alignment);
125 __early_param("cachepolicy=", early_cachepolicy);
127 static void __init early_nocache(char **__unused)
129 char *p = "buffered";
130 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
131 early_cachepolicy(&p);
133 __early_param("nocache", early_nocache);
135 static void __init early_nowrite(char **__unused)
137 char *p = "uncached";
138 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
139 early_cachepolicy(&p);
141 __early_param("nowb", early_nowrite);
143 static void __init early_ecc(char **p)
145 if (memcmp(*p, "on", 2) == 0) {
146 ecc_mask = PMD_PROTECTION;
147 *p += 2;
148 } else if (memcmp(*p, "off", 3) == 0) {
149 ecc_mask = 0;
150 *p += 3;
153 __early_param("ecc=", early_ecc);
155 static int __init noalign_setup(char *__unused)
157 cr_alignment &= ~CR_A;
158 cr_no_alignment &= ~CR_A;
159 set_cr(cr_alignment);
160 return 1;
162 __setup("noalign", noalign_setup);
164 #ifndef CONFIG_SMP
165 void adjust_cr(unsigned long mask, unsigned long set)
167 unsigned long flags;
169 mask &= ~CR_A;
171 set &= mask;
173 local_irq_save(flags);
175 cr_no_alignment = (cr_no_alignment & ~mask) | set;
176 cr_alignment = (cr_alignment & ~mask) | set;
178 set_cr((get_cr() & ~mask) | set);
180 local_irq_restore(flags);
182 #endif
184 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
187 static struct mem_type mem_types[] = {
188 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
189 .prot_pte = PROT_PTE_DEVICE,
190 .prot_l1 = PMD_TYPE_TABLE,
191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
192 .domain = DOMAIN_IO,
194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 .prot_pte = PROT_PTE_DEVICE,
196 .prot_pte_ext = PTE_EXT_TEX(2),
197 .prot_l1 = PMD_TYPE_TABLE,
198 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
199 .domain = DOMAIN_IO,
201 [MT_DEVICE_CACHED] = { /* ioremap_cached */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
203 .prot_l1 = PMD_TYPE_TABLE,
204 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
205 .domain = DOMAIN_IO,
207 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
208 .prot_pte = PROT_PTE_DEVICE,
209 .prot_l1 = PMD_TYPE_TABLE,
210 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
211 PMD_SECT_TEX(1),
212 .domain = DOMAIN_IO,
214 [MT_CACHECLEAN] = {
215 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
216 .domain = DOMAIN_KERNEL,
218 [MT_MINICLEAN] = {
219 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
220 .domain = DOMAIN_KERNEL,
222 [MT_LOW_VECTORS] = {
223 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
224 L_PTE_EXEC,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .domain = DOMAIN_USER,
228 [MT_HIGH_VECTORS] = {
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 L_PTE_USER | L_PTE_EXEC,
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
234 [MT_MEMORY] = {
235 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
236 .domain = DOMAIN_KERNEL,
238 [MT_ROM] = {
239 .prot_sect = PMD_TYPE_SECT,
240 .domain = DOMAIN_KERNEL,
244 const struct mem_type *get_mem_type(unsigned int type)
246 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
250 * Adjust the PMD section entries according to the CPU in use.
252 static void __init build_mem_type_table(void)
254 struct cachepolicy *cp;
255 unsigned int cr = get_cr();
256 unsigned int user_pgprot, kern_pgprot;
257 int cpu_arch = cpu_architecture();
258 int i;
260 if (cpu_arch < CPU_ARCH_ARMv6) {
261 #if defined(CONFIG_CPU_DCACHE_DISABLE)
262 if (cachepolicy > CPOLICY_BUFFERED)
263 cachepolicy = CPOLICY_BUFFERED;
264 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
265 if (cachepolicy > CPOLICY_WRITETHROUGH)
266 cachepolicy = CPOLICY_WRITETHROUGH;
267 #endif
269 if (cpu_arch < CPU_ARCH_ARMv5) {
270 if (cachepolicy >= CPOLICY_WRITEALLOC)
271 cachepolicy = CPOLICY_WRITEBACK;
272 ecc_mask = 0;
276 * ARMv5 and lower, bit 4 must be set for page tables.
277 * (was: cache "update-able on write" bit on ARM610)
278 * However, Xscale cores require this bit to be cleared.
280 if (cpu_is_xscale()) {
281 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
282 mem_types[i].prot_sect &= ~PMD_BIT4;
283 mem_types[i].prot_l1 &= ~PMD_BIT4;
285 } else if (cpu_arch < CPU_ARCH_ARMv6) {
286 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
287 if (mem_types[i].prot_l1)
288 mem_types[i].prot_l1 |= PMD_BIT4;
289 if (mem_types[i].prot_sect)
290 mem_types[i].prot_sect |= PMD_BIT4;
294 cp = &cache_policies[cachepolicy];
295 kern_pgprot = user_pgprot = cp->pte;
298 * Enable CPU-specific coherency if supported.
299 * (Only available on XSC3 at the moment.)
301 if (arch_is_coherent()) {
302 if (cpu_is_xsc3()) {
303 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
304 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
309 * ARMv6 and above have extended page tables.
311 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
313 * Mark cache clean areas and XIP ROM read only
314 * from SVC mode and no access from userspace.
316 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
317 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
318 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
321 * Mark the device area as "shared device"
323 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
324 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
326 #ifdef CONFIG_SMP
328 * Mark memory with the "shared" attribute for SMP systems
330 user_pgprot |= L_PTE_SHARED;
331 kern_pgprot |= L_PTE_SHARED;
332 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
333 #endif
336 for (i = 0; i < 16; i++) {
337 unsigned long v = pgprot_val(protection_map[i]);
338 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
339 protection_map[i] = __pgprot(v);
342 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
343 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
345 if (cpu_arch >= CPU_ARCH_ARMv5) {
346 #ifndef CONFIG_SMP
348 * Only use write-through for non-SMP systems
350 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
351 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
352 #endif
353 } else {
354 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
357 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
358 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
359 L_PTE_DIRTY | L_PTE_WRITE |
360 L_PTE_EXEC | kern_pgprot);
362 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
363 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
364 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
365 mem_types[MT_ROM].prot_sect |= cp->pmd;
367 switch (cp->pmd) {
368 case PMD_SECT_WT:
369 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
370 break;
371 case PMD_SECT_WB:
372 case PMD_SECT_WBWA:
373 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
374 break;
376 printk("Memory policy: ECC %sabled, Data cache %s\n",
377 ecc_mask ? "en" : "dis", cp->policy);
379 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
380 struct mem_type *t = &mem_types[i];
381 if (t->prot_l1)
382 t->prot_l1 |= PMD_DOMAIN(t->domain);
383 if (t->prot_sect)
384 t->prot_sect |= PMD_DOMAIN(t->domain);
388 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
390 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
391 unsigned long end, unsigned long pfn,
392 const struct mem_type *type)
394 pte_t *pte;
396 if (pmd_none(*pmd)) {
397 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
398 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
401 pte = pte_offset_kernel(pmd, addr);
402 do {
403 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
404 type->prot_pte_ext);
405 pfn++;
406 } while (pte++, addr += PAGE_SIZE, addr != end);
409 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
410 unsigned long end, unsigned long phys,
411 const struct mem_type *type)
413 pmd_t *pmd = pmd_offset(pgd, addr);
416 * Try a section mapping - end, addr and phys must all be aligned
417 * to a section boundary. Note that PMDs refer to the individual
418 * L1 entries, whereas PGDs refer to a group of L1 entries making
419 * up one logical pointer to an L2 table.
421 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
422 pmd_t *p = pmd;
424 if (addr & SECTION_SIZE)
425 pmd++;
427 do {
428 *pmd = __pmd(phys | type->prot_sect);
429 phys += SECTION_SIZE;
430 } while (pmd++, addr += SECTION_SIZE, addr != end);
432 flush_pmd_entry(p);
433 } else {
435 * No need to loop; pte's aren't interested in the
436 * individual L1 entries.
438 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
442 static void __init create_36bit_mapping(struct map_desc *md,
443 const struct mem_type *type)
445 unsigned long phys, addr, length, end;
446 pgd_t *pgd;
448 addr = md->virtual;
449 phys = (unsigned long)__pfn_to_phys(md->pfn);
450 length = PAGE_ALIGN(md->length);
452 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
453 printk(KERN_ERR "MM: CPU does not support supersection "
454 "mapping for 0x%08llx at 0x%08lx\n",
455 __pfn_to_phys((u64)md->pfn), addr);
456 return;
459 /* N.B. ARMv6 supersections are only defined to work with domain 0.
460 * Since domain assignments can in fact be arbitrary, the
461 * 'domain == 0' check below is required to insure that ARMv6
462 * supersections are only allocated for domain 0 regardless
463 * of the actual domain assignments in use.
465 if (type->domain) {
466 printk(KERN_ERR "MM: invalid domain in supersection "
467 "mapping for 0x%08llx at 0x%08lx\n",
468 __pfn_to_phys((u64)md->pfn), addr);
469 return;
472 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
473 printk(KERN_ERR "MM: cannot create mapping for "
474 "0x%08llx at 0x%08lx invalid alignment\n",
475 __pfn_to_phys((u64)md->pfn), addr);
476 return;
480 * Shift bits [35:32] of address into bits [23:20] of PMD
481 * (See ARMv6 spec).
483 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
485 pgd = pgd_offset_k(addr);
486 end = addr + length;
487 do {
488 pmd_t *pmd = pmd_offset(pgd, addr);
489 int i;
491 for (i = 0; i < 16; i++)
492 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
494 addr += SUPERSECTION_SIZE;
495 phys += SUPERSECTION_SIZE;
496 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
497 } while (addr != end);
501 * Create the page directory entries and any necessary
502 * page tables for the mapping specified by `md'. We
503 * are able to cope here with varying sizes and address
504 * offsets, and we take full advantage of sections and
505 * supersections.
507 void __init create_mapping(struct map_desc *md)
509 unsigned long phys, addr, length, end;
510 const struct mem_type *type;
511 pgd_t *pgd;
513 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
514 printk(KERN_WARNING "BUG: not creating mapping for "
515 "0x%08llx at 0x%08lx in user region\n",
516 __pfn_to_phys((u64)md->pfn), md->virtual);
517 return;
520 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
521 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
522 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
523 "overlaps vmalloc space\n",
524 __pfn_to_phys((u64)md->pfn), md->virtual);
527 type = &mem_types[md->type];
530 * Catch 36-bit addresses
532 if (md->pfn >= 0x100000) {
533 create_36bit_mapping(md, type);
534 return;
537 addr = md->virtual & PAGE_MASK;
538 phys = (unsigned long)__pfn_to_phys(md->pfn);
539 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
541 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
542 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
543 "be mapped using pages, ignoring.\n",
544 __pfn_to_phys(md->pfn), addr);
545 return;
548 pgd = pgd_offset_k(addr);
549 end = addr + length;
550 do {
551 unsigned long next = pgd_addr_end(addr, end);
553 alloc_init_section(pgd, addr, next, phys, type);
555 phys += next - addr;
556 addr = next;
557 } while (pgd++, addr != end);
561 * Create the architecture specific mappings
563 void __init iotable_init(struct map_desc *io_desc, int nr)
565 int i;
567 for (i = 0; i < nr; i++)
568 create_mapping(io_desc + i);
571 static inline void prepare_page_table(struct meminfo *mi)
573 unsigned long addr;
576 * Clear out all the mappings below the kernel image.
578 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
579 pmd_clear(pmd_off_k(addr));
581 #ifdef CONFIG_XIP_KERNEL
582 /* The XIP kernel is mapped in the module area -- skip over it */
583 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
584 #endif
585 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
586 pmd_clear(pmd_off_k(addr));
589 * Clear out all the kernel space mappings, except for the first
590 * memory bank, up to the end of the vmalloc region.
592 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
593 addr < VMALLOC_END; addr += PGDIR_SIZE)
594 pmd_clear(pmd_off_k(addr));
598 * Reserve the various regions of node 0
600 void __init reserve_node_zero(pg_data_t *pgdat)
602 unsigned long res_size = 0;
605 * Register the kernel text and data with bootmem.
606 * Note that this can only be in node 0.
608 #ifdef CONFIG_XIP_KERNEL
609 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
610 BOOTMEM_DEFAULT);
611 #else
612 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
613 BOOTMEM_DEFAULT);
614 #endif
617 * Reserve the page tables. These are already in use,
618 * and can only be in node 0.
620 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
621 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
624 * Hmm... This should go elsewhere, but we really really need to
625 * stop things allocating the low memory; ideally we need a better
626 * implementation of GFP_DMA which does not assume that DMA-able
627 * memory starts at zero.
629 if (machine_is_integrator() || machine_is_cintegrator())
630 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
633 * These should likewise go elsewhere. They pre-reserve the
634 * screen memory region at the start of main system memory.
636 if (machine_is_edb7211())
637 res_size = 0x00020000;
638 if (machine_is_p720t())
639 res_size = 0x00014000;
641 /* H1940 and RX3715 need to reserve this for suspend */
643 if (machine_is_h1940() || machine_is_rx3715()) {
644 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
645 BOOTMEM_DEFAULT);
646 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
647 BOOTMEM_DEFAULT);
650 #ifdef CONFIG_SA1111
652 * Because of the SA1111 DMA bug, we want to preserve our
653 * precious DMA-able memory...
655 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
656 #endif
657 if (res_size)
658 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
659 BOOTMEM_DEFAULT);
663 * Set up device the mappings. Since we clear out the page tables for all
664 * mappings above VMALLOC_END, we will remove any debug device mappings.
665 * This means you have to be careful how you debug this function, or any
666 * called function. This means you can't use any function or debugging
667 * method which may touch any device, otherwise the kernel _will_ crash.
669 static void __init devicemaps_init(struct machine_desc *mdesc)
671 struct map_desc map;
672 unsigned long addr;
673 void *vectors;
676 * Allocate the vector page early.
678 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
679 BUG_ON(!vectors);
681 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
682 pmd_clear(pmd_off_k(addr));
685 * Map the kernel if it is XIP.
686 * It is always first in the modulearea.
688 #ifdef CONFIG_XIP_KERNEL
689 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
690 map.virtual = MODULE_START;
691 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
692 map.type = MT_ROM;
693 create_mapping(&map);
694 #endif
697 * Map the cache flushing regions.
699 #ifdef FLUSH_BASE
700 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
701 map.virtual = FLUSH_BASE;
702 map.length = SZ_1M;
703 map.type = MT_CACHECLEAN;
704 create_mapping(&map);
705 #endif
706 #ifdef FLUSH_BASE_MINICACHE
707 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
708 map.virtual = FLUSH_BASE_MINICACHE;
709 map.length = SZ_1M;
710 map.type = MT_MINICLEAN;
711 create_mapping(&map);
712 #endif
715 * Create a mapping for the machine vectors at the high-vectors
716 * location (0xffff0000). If we aren't using high-vectors, also
717 * create a mapping at the low-vectors virtual address.
719 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
720 map.virtual = 0xffff0000;
721 map.length = PAGE_SIZE;
722 map.type = MT_HIGH_VECTORS;
723 create_mapping(&map);
725 if (!vectors_high()) {
726 map.virtual = 0;
727 map.type = MT_LOW_VECTORS;
728 create_mapping(&map);
732 * Ask the machine support to map in the statically mapped devices.
734 if (mdesc->map_io)
735 mdesc->map_io();
738 * Finally flush the caches and tlb to ensure that we're in a
739 * consistent state wrt the writebuffer. This also ensures that
740 * any write-allocated cache lines in the vector page are written
741 * back. After this point, we can start to touch devices again.
743 local_flush_tlb_all();
744 flush_cache_all();
748 * paging_init() sets up the page tables, initialises the zone memory
749 * maps, and sets up the zero page, bad page and bad page tables.
751 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
753 void *zero_page;
755 build_mem_type_table();
756 prepare_page_table(mi);
757 bootmem_init(mi);
758 devicemaps_init(mdesc);
760 top_pmd = pmd_off_k(0xffff0000);
763 * allocate the zero page. Note that we count on this going ok.
765 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
766 memzero(zero_page, PAGE_SIZE);
767 empty_zero_page = virt_to_page(zero_page);
768 flush_dcache_page(empty_zero_page);
772 * In order to soft-boot, we need to insert a 1:1 mapping in place of
773 * the user-mode pages. This will then ensure that we have predictable
774 * results when turning the mmu off
776 void setup_mm_for_reboot(char mode)
778 unsigned long base_pmdval;
779 pgd_t *pgd;
780 int i;
782 if (current->mm && current->mm->pgd)
783 pgd = current->mm->pgd;
784 else
785 pgd = init_mm.pgd;
787 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
788 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
789 base_pmdval |= PMD_BIT4;
791 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
792 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
793 pmd_t *pmd;
795 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
796 pmd[0] = __pmd(pmdval);
797 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
798 flush_pmd_entry(pmd);