docbook: fix fatal rapidio yet again (and more to come)
[linux/fpc-iii.git] / arch / powerpc / sysdev / cpm2.c
blob5a6c5dfc53ef1e0a3096aadc77a3d43958ae804b
1 /*
2 * General Purpose functions for the global management of the
3 * 8260 Communication Processor Module.
4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6 * 2.3.99 Updates
8 * 2006 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
12 * This file is licensed under the terms of the GNU General Public License
13 * version 2. This program is licensed "as is" without any warranty of any
14 * kind, whether express or implied.
19 * In addition to the individual control of the communication
20 * channels, there are a few functions that globally affect the
21 * communication processor.
23 * Buffer descriptors must be allocated from the dual ported memory
24 * space. The allocator for that is here. When the communication
25 * process is reset, we reclaim the memory available. There is
26 * currently no deallocator for this memory.
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/mpc8260.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/cpm2.h>
44 #include <asm/rheap.h>
45 #include <asm/fs_pd.h>
47 #include <sysdev/fsl_soc.h>
49 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
51 /* We allocate this here because it is used almost exclusively for
52 * the communication processor devices.
54 cpm2_map_t __iomem *cpm2_immr;
56 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
57 of space for CPM as it is larger
58 than on PQ2 */
60 void __init cpm2_reset(void)
62 #ifdef CONFIG_PPC_85xx
63 cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
64 #else
65 cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
66 #endif
68 /* Reclaim the DP memory for our use.
70 cpm_muram_init();
72 /* Tell everyone where the comm processor resides.
74 cpmp = &cpm2_immr->im_cpm;
76 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
77 /* Reset the CPM.
79 cpm_command(CPM_CR_RST, 0);
80 #endif
83 static DEFINE_SPINLOCK(cmd_lock);
85 #define MAX_CR_CMD_LOOPS 10000
87 int cpm_command(u32 command, u8 opcode)
89 int i, ret;
90 unsigned long flags;
92 spin_lock_irqsave(&cmd_lock, flags);
94 ret = 0;
95 out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
96 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
97 if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
98 goto out;
100 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
101 ret = -EIO;
102 out:
103 spin_unlock_irqrestore(&cmd_lock, flags);
104 return ret;
106 EXPORT_SYMBOL(cpm_command);
108 /* Set a baud rate generator. This needs lots of work. There are
109 * eight BRGs, which can be connected to the CPM channels or output
110 * as clocks. The BRGs are in two different block of internal
111 * memory mapped space.
112 * The baud rate clock is the system clock divided by something.
113 * It was set up long ago during the initial boot phase and is
114 * is given to us.
115 * Baud rate clocks are zero-based in the driver code (as that maps
116 * to port numbers). Documentation uses 1-based numbering.
118 #define BRG_INT_CLK (get_brgfreq())
119 #define BRG_UART_CLK (BRG_INT_CLK/16)
121 /* This function is used by UARTS, or anything else that uses a 16x
122 * oversampled clock.
124 void
125 cpm_setbrg(uint brg, uint rate)
127 u32 __iomem *bp;
129 /* This is good enough to get SMCs running.....
131 if (brg < 4) {
132 bp = cpm2_map_size(im_brgc1, 16);
133 } else {
134 bp = cpm2_map_size(im_brgc5, 16);
135 brg -= 4;
137 bp += brg;
138 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
140 cpm2_unmap(bp);
143 /* This function is used to set high speed synchronous baud rate
144 * clocks.
146 void
147 cpm2_fastbrg(uint brg, uint rate, int div16)
149 u32 __iomem *bp;
150 u32 val;
152 if (brg < 4) {
153 bp = cpm2_map_size(im_brgc1, 16);
154 } else {
155 bp = cpm2_map_size(im_brgc5, 16);
156 brg -= 4;
158 bp += brg;
159 val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
160 if (div16)
161 val |= CPM_BRG_DIV16;
163 out_be32(bp, val);
164 cpm2_unmap(bp);
167 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
169 int ret = 0;
170 int shift;
171 int i, bits = 0;
172 cpmux_t __iomem *im_cpmux;
173 u32 __iomem *reg;
174 u32 mask = 7;
176 u8 clk_map[][3] = {
177 {CPM_CLK_FCC1, CPM_BRG5, 0},
178 {CPM_CLK_FCC1, CPM_BRG6, 1},
179 {CPM_CLK_FCC1, CPM_BRG7, 2},
180 {CPM_CLK_FCC1, CPM_BRG8, 3},
181 {CPM_CLK_FCC1, CPM_CLK9, 4},
182 {CPM_CLK_FCC1, CPM_CLK10, 5},
183 {CPM_CLK_FCC1, CPM_CLK11, 6},
184 {CPM_CLK_FCC1, CPM_CLK12, 7},
185 {CPM_CLK_FCC2, CPM_BRG5, 0},
186 {CPM_CLK_FCC2, CPM_BRG6, 1},
187 {CPM_CLK_FCC2, CPM_BRG7, 2},
188 {CPM_CLK_FCC2, CPM_BRG8, 3},
189 {CPM_CLK_FCC2, CPM_CLK13, 4},
190 {CPM_CLK_FCC2, CPM_CLK14, 5},
191 {CPM_CLK_FCC2, CPM_CLK15, 6},
192 {CPM_CLK_FCC2, CPM_CLK16, 7},
193 {CPM_CLK_FCC3, CPM_BRG5, 0},
194 {CPM_CLK_FCC3, CPM_BRG6, 1},
195 {CPM_CLK_FCC3, CPM_BRG7, 2},
196 {CPM_CLK_FCC3, CPM_BRG8, 3},
197 {CPM_CLK_FCC3, CPM_CLK13, 4},
198 {CPM_CLK_FCC3, CPM_CLK14, 5},
199 {CPM_CLK_FCC3, CPM_CLK15, 6},
200 {CPM_CLK_FCC3, CPM_CLK16, 7},
201 {CPM_CLK_SCC1, CPM_BRG1, 0},
202 {CPM_CLK_SCC1, CPM_BRG2, 1},
203 {CPM_CLK_SCC1, CPM_BRG3, 2},
204 {CPM_CLK_SCC1, CPM_BRG4, 3},
205 {CPM_CLK_SCC1, CPM_CLK11, 4},
206 {CPM_CLK_SCC1, CPM_CLK12, 5},
207 {CPM_CLK_SCC1, CPM_CLK3, 6},
208 {CPM_CLK_SCC1, CPM_CLK4, 7},
209 {CPM_CLK_SCC2, CPM_BRG1, 0},
210 {CPM_CLK_SCC2, CPM_BRG2, 1},
211 {CPM_CLK_SCC2, CPM_BRG3, 2},
212 {CPM_CLK_SCC2, CPM_BRG4, 3},
213 {CPM_CLK_SCC2, CPM_CLK11, 4},
214 {CPM_CLK_SCC2, CPM_CLK12, 5},
215 {CPM_CLK_SCC2, CPM_CLK3, 6},
216 {CPM_CLK_SCC2, CPM_CLK4, 7},
217 {CPM_CLK_SCC3, CPM_BRG1, 0},
218 {CPM_CLK_SCC3, CPM_BRG2, 1},
219 {CPM_CLK_SCC3, CPM_BRG3, 2},
220 {CPM_CLK_SCC3, CPM_BRG4, 3},
221 {CPM_CLK_SCC3, CPM_CLK5, 4},
222 {CPM_CLK_SCC3, CPM_CLK6, 5},
223 {CPM_CLK_SCC3, CPM_CLK7, 6},
224 {CPM_CLK_SCC3, CPM_CLK8, 7},
225 {CPM_CLK_SCC4, CPM_BRG1, 0},
226 {CPM_CLK_SCC4, CPM_BRG2, 1},
227 {CPM_CLK_SCC4, CPM_BRG3, 2},
228 {CPM_CLK_SCC4, CPM_BRG4, 3},
229 {CPM_CLK_SCC4, CPM_CLK5, 4},
230 {CPM_CLK_SCC4, CPM_CLK6, 5},
231 {CPM_CLK_SCC4, CPM_CLK7, 6},
232 {CPM_CLK_SCC4, CPM_CLK8, 7},
235 im_cpmux = cpm2_map(im_cpmux);
237 switch (target) {
238 case CPM_CLK_SCC1:
239 reg = &im_cpmux->cmx_scr;
240 shift = 24;
241 break;
242 case CPM_CLK_SCC2:
243 reg = &im_cpmux->cmx_scr;
244 shift = 16;
245 break;
246 case CPM_CLK_SCC3:
247 reg = &im_cpmux->cmx_scr;
248 shift = 8;
249 break;
250 case CPM_CLK_SCC4:
251 reg = &im_cpmux->cmx_scr;
252 shift = 0;
253 break;
254 case CPM_CLK_FCC1:
255 reg = &im_cpmux->cmx_fcr;
256 shift = 24;
257 break;
258 case CPM_CLK_FCC2:
259 reg = &im_cpmux->cmx_fcr;
260 shift = 16;
261 break;
262 case CPM_CLK_FCC3:
263 reg = &im_cpmux->cmx_fcr;
264 shift = 8;
265 break;
266 default:
267 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
268 return -EINVAL;
271 if (mode == CPM_CLK_RX)
272 shift += 3;
274 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
275 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
276 bits = clk_map[i][2];
277 break;
280 if (i == ARRAY_SIZE(clk_map))
281 ret = -EINVAL;
283 bits <<= shift;
284 mask <<= shift;
286 out_be32(reg, (in_be32(reg) & ~mask) | bits);
288 cpm2_unmap(im_cpmux);
289 return ret;
292 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
294 int ret = 0;
295 int shift;
296 int i, bits = 0;
297 cpmux_t __iomem *im_cpmux;
298 u8 __iomem *reg;
299 u8 mask = 3;
301 u8 clk_map[][3] = {
302 {CPM_CLK_SMC1, CPM_BRG1, 0},
303 {CPM_CLK_SMC1, CPM_BRG7, 1},
304 {CPM_CLK_SMC1, CPM_CLK7, 2},
305 {CPM_CLK_SMC1, CPM_CLK9, 3},
306 {CPM_CLK_SMC2, CPM_BRG2, 0},
307 {CPM_CLK_SMC2, CPM_BRG8, 1},
308 {CPM_CLK_SMC2, CPM_CLK4, 2},
309 {CPM_CLK_SMC2, CPM_CLK15, 3},
312 im_cpmux = cpm2_map(im_cpmux);
314 switch (target) {
315 case CPM_CLK_SMC1:
316 reg = &im_cpmux->cmx_smr;
317 mask = 3;
318 shift = 4;
319 break;
320 case CPM_CLK_SMC2:
321 reg = &im_cpmux->cmx_smr;
322 mask = 3;
323 shift = 0;
324 break;
325 default:
326 printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
327 return -EINVAL;
330 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
331 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
332 bits = clk_map[i][2];
333 break;
336 if (i == ARRAY_SIZE(clk_map))
337 ret = -EINVAL;
339 bits <<= shift;
340 mask <<= shift;
342 out_8(reg, (in_8(reg) & ~mask) | bits);
344 cpm2_unmap(im_cpmux);
345 return ret;
348 struct cpm2_ioports {
349 u32 dir, par, sor, odr, dat;
350 u32 res[3];
353 void cpm2_set_pin(int port, int pin, int flags)
355 struct cpm2_ioports __iomem *iop =
356 (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
358 pin = 1 << (31 - pin);
360 if (flags & CPM_PIN_OUTPUT)
361 setbits32(&iop[port].dir, pin);
362 else
363 clrbits32(&iop[port].dir, pin);
365 if (!(flags & CPM_PIN_GPIO))
366 setbits32(&iop[port].par, pin);
367 else
368 clrbits32(&iop[port].par, pin);
370 if (flags & CPM_PIN_SECONDARY)
371 setbits32(&iop[port].sor, pin);
372 else
373 clrbits32(&iop[port].sor, pin);
375 if (flags & CPM_PIN_OPENDRAIN)
376 setbits32(&iop[port].odr, pin);
377 else
378 clrbits32(&iop[port].odr, pin);