2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
85 u64 sm1
; /* scaled slope of the 1st segment */
86 u64 ism1
; /* scaled inverse-slope of the 1st segment */
87 u64 dx
; /* the x-projection of the 1st segment */
88 u64 dy
; /* the y-projection of the 1st segment */
89 u64 sm2
; /* scaled slope of the 2nd segment */
90 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
93 /* runtime service curve */
95 u64 x
; /* current starting position on x-axis */
96 u64 y
; /* current starting position on y-axis */
97 u64 sm1
; /* scaled slope of the 1st segment */
98 u64 ism1
; /* scaled inverse-slope of the 1st segment */
99 u64 dx
; /* the x-projection of the 1st segment */
100 u64 dy
; /* the y-projection of the 1st segment */
101 u64 sm2
; /* scaled slope of the 2nd segment */
102 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
105 enum hfsc_class_flags
{
112 struct Qdisc_class_common cl_common
;
114 struct gnet_stats_basic_packed bstats
;
115 struct gnet_stats_queue qstats
;
116 struct net_rate_estimator __rcu
*rate_est
;
117 struct tcf_proto __rcu
*filter_list
; /* filter list */
118 struct tcf_block
*block
;
119 unsigned int filter_cnt
; /* filter count */
120 unsigned int level
; /* class level in hierarchy */
122 struct hfsc_sched
*sched
; /* scheduler data */
123 struct hfsc_class
*cl_parent
; /* parent class */
124 struct list_head siblings
; /* sibling classes */
125 struct list_head children
; /* child classes */
126 struct Qdisc
*qdisc
; /* leaf qdisc */
128 struct rb_node el_node
; /* qdisc's eligible tree member */
129 struct rb_root vt_tree
; /* active children sorted by cl_vt */
130 struct rb_node vt_node
; /* parent's vt_tree member */
131 struct rb_root cf_tree
; /* active children sorted by cl_f */
132 struct rb_node cf_node
; /* parent's cf_heap member */
134 u64 cl_total
; /* total work in bytes */
135 u64 cl_cumul
; /* cumulative work in bytes done by
136 real-time criteria */
138 u64 cl_d
; /* deadline*/
139 u64 cl_e
; /* eligible time */
140 u64 cl_vt
; /* virtual time */
141 u64 cl_f
; /* time when this class will fit for
142 link-sharing, max(myf, cfmin) */
143 u64 cl_myf
; /* my fit-time (calculated from this
144 class's own upperlimit curve) */
145 u64 cl_cfmin
; /* earliest children's fit-time (used
146 with cl_myf to obtain cl_f) */
147 u64 cl_cvtmin
; /* minimal virtual time among the
148 children fit for link-sharing
149 (monotonic within a period) */
150 u64 cl_vtadj
; /* intra-period cumulative vt
152 u64 cl_cvtoff
; /* largest virtual time seen among
155 struct internal_sc cl_rsc
; /* internal real-time service curve */
156 struct internal_sc cl_fsc
; /* internal fair service curve */
157 struct internal_sc cl_usc
; /* internal upperlimit service curve */
158 struct runtime_sc cl_deadline
; /* deadline curve */
159 struct runtime_sc cl_eligible
; /* eligible curve */
160 struct runtime_sc cl_virtual
; /* virtual curve */
161 struct runtime_sc cl_ulimit
; /* upperlimit curve */
163 u8 cl_flags
; /* which curves are valid */
164 u32 cl_vtperiod
; /* vt period sequence number */
165 u32 cl_parentperiod
;/* parent's vt period sequence number*/
166 u32 cl_nactive
; /* number of active children */
170 u16 defcls
; /* default class id */
171 struct hfsc_class root
; /* root class */
172 struct Qdisc_class_hash clhash
; /* class hash */
173 struct rb_root eligible
; /* eligible tree */
174 struct qdisc_watchdog watchdog
; /* watchdog timer */
177 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
181 * eligible tree holds backlogged classes being sorted by their eligible times.
182 * there is one eligible tree per hfsc instance.
186 eltree_insert(struct hfsc_class
*cl
)
188 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
189 struct rb_node
*parent
= NULL
;
190 struct hfsc_class
*cl1
;
194 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
195 if (cl
->cl_e
>= cl1
->cl_e
)
196 p
= &parent
->rb_right
;
198 p
= &parent
->rb_left
;
200 rb_link_node(&cl
->el_node
, parent
, p
);
201 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
205 eltree_remove(struct hfsc_class
*cl
)
207 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
211 eltree_update(struct hfsc_class
*cl
)
217 /* find the class with the minimum deadline among the eligible classes */
218 static inline struct hfsc_class
*
219 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
221 struct hfsc_class
*p
, *cl
= NULL
;
224 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
225 p
= rb_entry(n
, struct hfsc_class
, el_node
);
226 if (p
->cl_e
> cur_time
)
228 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
234 /* find the class with minimum eligible time among the eligible classes */
235 static inline struct hfsc_class
*
236 eltree_get_minel(struct hfsc_sched
*q
)
240 n
= rb_first(&q
->eligible
);
243 return rb_entry(n
, struct hfsc_class
, el_node
);
247 * vttree holds holds backlogged child classes being sorted by their virtual
248 * time. each intermediate class has one vttree.
251 vttree_insert(struct hfsc_class
*cl
)
253 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
254 struct rb_node
*parent
= NULL
;
255 struct hfsc_class
*cl1
;
259 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
260 if (cl
->cl_vt
>= cl1
->cl_vt
)
261 p
= &parent
->rb_right
;
263 p
= &parent
->rb_left
;
265 rb_link_node(&cl
->vt_node
, parent
, p
);
266 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
270 vttree_remove(struct hfsc_class
*cl
)
272 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
276 vttree_update(struct hfsc_class
*cl
)
282 static inline struct hfsc_class
*
283 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
285 struct hfsc_class
*p
;
288 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
289 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
290 if (p
->cl_f
<= cur_time
)
297 * get the leaf class with the minimum vt in the hierarchy
299 static struct hfsc_class
*
300 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
302 /* if root-class's cfmin is bigger than cur_time nothing to do */
303 if (cl
->cl_cfmin
> cur_time
)
306 while (cl
->level
> 0) {
307 cl
= vttree_firstfit(cl
, cur_time
);
311 * update parent's cl_cvtmin.
313 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
314 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
320 cftree_insert(struct hfsc_class
*cl
)
322 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
323 struct rb_node
*parent
= NULL
;
324 struct hfsc_class
*cl1
;
328 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
329 if (cl
->cl_f
>= cl1
->cl_f
)
330 p
= &parent
->rb_right
;
332 p
= &parent
->rb_left
;
334 rb_link_node(&cl
->cf_node
, parent
, p
);
335 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
339 cftree_remove(struct hfsc_class
*cl
)
341 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
345 cftree_update(struct hfsc_class
*cl
)
352 * service curve support functions
354 * external service curve parameters
357 * internal service curve parameters
358 * sm: (bytes/psched_us) << SM_SHIFT
359 * ism: (psched_us/byte) << ISM_SHIFT
362 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
364 * sm and ism are scaled in order to keep effective digits.
365 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
366 * digits in decimal using the following table.
368 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
369 * ------------+-------------------------------------------------------
370 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
372 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
374 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
376 #define SM_SHIFT (30 - PSCHED_SHIFT)
377 #define ISM_SHIFT (8 + PSCHED_SHIFT)
379 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
380 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
383 seg_x2y(u64 x
, u64 sm
)
389 * y = x * sm >> SM_SHIFT
390 * but divide it for the upper and lower bits to avoid overflow
392 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
397 seg_y2x(u64 y
, u64 ism
)
403 else if (ism
== HT_INFINITY
)
406 x
= (y
>> ISM_SHIFT
) * ism
407 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
412 /* Convert m (bps) into sm (bytes/psched us) */
418 sm
= ((u64
)m
<< SM_SHIFT
);
419 sm
+= PSCHED_TICKS_PER_SEC
- 1;
420 do_div(sm
, PSCHED_TICKS_PER_SEC
);
424 /* convert m (bps) into ism (psched us/byte) */
433 ism
= ((u64
)PSCHED_TICKS_PER_SEC
<< ISM_SHIFT
);
440 /* convert d (us) into dx (psched us) */
446 dx
= ((u64
)d
* PSCHED_TICKS_PER_SEC
);
447 dx
+= USEC_PER_SEC
- 1;
448 do_div(dx
, USEC_PER_SEC
);
452 /* convert sm (bytes/psched us) into m (bps) */
458 m
= (sm
* PSCHED_TICKS_PER_SEC
) >> SM_SHIFT
;
462 /* convert dx (psched us) into d (us) */
468 d
= dx
* USEC_PER_SEC
;
469 do_div(d
, PSCHED_TICKS_PER_SEC
);
474 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
476 isc
->sm1
= m2sm(sc
->m1
);
477 isc
->ism1
= m2ism(sc
->m1
);
478 isc
->dx
= d2dx(sc
->d
);
479 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
480 isc
->sm2
= m2sm(sc
->m2
);
481 isc
->ism2
= m2ism(sc
->m2
);
485 * initialize the runtime service curve with the given internal
486 * service curve starting at (x, y).
489 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
493 rtsc
->sm1
= isc
->sm1
;
494 rtsc
->ism1
= isc
->ism1
;
497 rtsc
->sm2
= isc
->sm2
;
498 rtsc
->ism2
= isc
->ism2
;
502 * calculate the y-projection of the runtime service curve by the
503 * given x-projection value
506 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
512 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
513 /* x belongs to the 1st segment */
515 x
= rtsc
->x
+ rtsc
->dx
;
517 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
519 /* x belongs to the 2nd segment */
520 x
= rtsc
->x
+ rtsc
->dx
521 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
527 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
533 else if (x
<= rtsc
->x
+ rtsc
->dx
)
534 /* y belongs to the 1st segment */
535 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
537 /* y belongs to the 2nd segment */
538 y
= rtsc
->y
+ rtsc
->dy
539 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
544 * update the runtime service curve by taking the minimum of the current
545 * runtime service curve and the service curve starting at (x, y).
548 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
553 if (isc
->sm1
<= isc
->sm2
) {
554 /* service curve is convex */
555 y1
= rtsc_x2y(rtsc
, x
);
557 /* the current rtsc is smaller */
565 * service curve is concave
566 * compute the two y values of the current rtsc
570 y1
= rtsc_x2y(rtsc
, x
);
572 /* rtsc is below isc, no change to rtsc */
576 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
577 if (y2
>= y
+ isc
->dy
) {
578 /* rtsc is above isc, replace rtsc by isc */
587 * the two curves intersect
588 * compute the offsets (dx, dy) using the reverse
589 * function of seg_x2y()
590 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
592 dx
= (y1
- y
) << SM_SHIFT
;
593 dsm
= isc
->sm1
- isc
->sm2
;
596 * check if (x, y1) belongs to the 1st segment of rtsc.
597 * if so, add the offset.
599 if (rtsc
->x
+ rtsc
->dx
> x
)
600 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
601 dy
= seg_x2y(dx
, isc
->sm1
);
610 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
612 u64 cur_time
= psched_get_time();
614 /* update the deadline curve */
615 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
618 * update the eligible curve.
619 * for concave, it is equal to the deadline curve.
620 * for convex, it is a linear curve with slope m2.
622 cl
->cl_eligible
= cl
->cl_deadline
;
623 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
624 cl
->cl_eligible
.dx
= 0;
625 cl
->cl_eligible
.dy
= 0;
628 /* compute e and d */
629 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
630 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
636 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
638 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
639 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
645 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
647 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
651 update_cfmin(struct hfsc_class
*cl
)
653 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
654 struct hfsc_class
*p
;
660 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
661 cl
->cl_cfmin
= p
->cl_f
;
665 init_vf(struct hfsc_class
*cl
, unsigned int len
)
667 struct hfsc_class
*max_cl
;
674 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
675 if (go_active
&& cl
->cl_nactive
++ == 0)
681 n
= rb_last(&cl
->cl_parent
->vt_tree
);
683 max_cl
= rb_entry(n
, struct hfsc_class
, vt_node
);
685 * set vt to the average of the min and max
686 * classes. if the parent's period didn't
687 * change, don't decrease vt of the class.
690 if (cl
->cl_parent
->cl_cvtmin
!= 0)
691 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
693 if (cl
->cl_parent
->cl_vtperiod
!=
694 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
698 * first child for a new parent backlog period.
699 * initialize cl_vt to the highest value seen
700 * among the siblings. this is analogous to
701 * what cur_time would provide in realtime case.
703 cl
->cl_vt
= cl
->cl_parent
->cl_cvtoff
;
704 cl
->cl_parent
->cl_cvtmin
= 0;
707 /* update the virtual curve */
708 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
711 cl
->cl_vtperiod
++; /* increment vt period */
712 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
713 if (cl
->cl_parent
->cl_nactive
== 0)
714 cl
->cl_parentperiod
++;
720 if (cl
->cl_flags
& HFSC_USC
) {
721 /* class has upper limit curve */
723 cur_time
= psched_get_time();
725 /* update the ulimit curve */
726 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
729 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
734 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
739 update_cfmin(cl
->cl_parent
);
744 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
746 u64 f
; /* , myf_bound, delta; */
749 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
752 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
755 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
758 if (go_passive
&& --cl
->cl_nactive
== 0)
764 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
) + cl
->cl_vtadj
;
767 * if vt of the class is smaller than cvtmin,
768 * the class was skipped in the past due to non-fit.
769 * if so, we need to adjust vtadj.
771 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
772 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
773 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
777 /* no more active child, going passive */
779 /* update cvtoff of the parent class */
780 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtoff
)
781 cl
->cl_parent
->cl_cvtoff
= cl
->cl_vt
;
783 /* remove this class from the vt tree */
787 update_cfmin(cl
->cl_parent
);
792 /* update the vt tree */
796 if (cl
->cl_flags
& HFSC_USC
) {
797 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
, cl
->cl_total
);
799 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
802 * This code causes classes to stay way under their
803 * limit when multiple classes are used at gigabit
804 * speed. needs investigation. -kaber
807 * if myf lags behind by more than one clock tick
808 * from the current time, adjust myfadj to prevent
809 * a rate-limited class from going greedy.
810 * in a steady state under rate-limiting, myf
811 * fluctuates within one clock tick.
813 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
814 if (cl
->cl_myf
< myf_bound
) {
815 delta
= cur_time
- cl
->cl_myf
;
816 cl
->cl_myfadj
+= delta
;
822 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
826 update_cfmin(cl
->cl_parent
);
832 qdisc_peek_len(struct Qdisc
*sch
)
837 skb
= sch
->ops
->peek(sch
);
838 if (unlikely(skb
== NULL
)) {
839 qdisc_warn_nonwc("qdisc_peek_len", sch
);
842 len
= qdisc_pkt_len(skb
);
848 hfsc_purge_queue(struct Qdisc
*sch
, struct hfsc_class
*cl
)
850 unsigned int len
= cl
->qdisc
->q
.qlen
;
851 unsigned int backlog
= cl
->qdisc
->qstats
.backlog
;
853 qdisc_reset(cl
->qdisc
);
854 qdisc_tree_reduce_backlog(cl
->qdisc
, len
, backlog
);
858 hfsc_adjust_levels(struct hfsc_class
*cl
)
860 struct hfsc_class
*p
;
865 list_for_each_entry(p
, &cl
->children
, siblings
) {
866 if (p
->level
>= level
)
867 level
= p
->level
+ 1;
870 } while ((cl
= cl
->cl_parent
) != NULL
);
873 static inline struct hfsc_class
*
874 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
876 struct hfsc_sched
*q
= qdisc_priv(sch
);
877 struct Qdisc_class_common
*clc
;
879 clc
= qdisc_class_find(&q
->clhash
, classid
);
882 return container_of(clc
, struct hfsc_class
, cl_common
);
886 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
889 sc2isc(rsc
, &cl
->cl_rsc
);
890 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
891 cl
->cl_eligible
= cl
->cl_deadline
;
892 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
893 cl
->cl_eligible
.dx
= 0;
894 cl
->cl_eligible
.dy
= 0;
896 cl
->cl_flags
|= HFSC_RSC
;
900 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
902 sc2isc(fsc
, &cl
->cl_fsc
);
903 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
904 cl
->cl_flags
|= HFSC_FSC
;
908 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
911 sc2isc(usc
, &cl
->cl_usc
);
912 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
913 cl
->cl_flags
|= HFSC_USC
;
916 static const struct nla_policy hfsc_policy
[TCA_HFSC_MAX
+ 1] = {
917 [TCA_HFSC_RSC
] = { .len
= sizeof(struct tc_service_curve
) },
918 [TCA_HFSC_FSC
] = { .len
= sizeof(struct tc_service_curve
) },
919 [TCA_HFSC_USC
] = { .len
= sizeof(struct tc_service_curve
) },
923 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
924 struct nlattr
**tca
, unsigned long *arg
)
926 struct hfsc_sched
*q
= qdisc_priv(sch
);
927 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
928 struct hfsc_class
*parent
= NULL
;
929 struct nlattr
*opt
= tca
[TCA_OPTIONS
];
930 struct nlattr
*tb
[TCA_HFSC_MAX
+ 1];
931 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
938 err
= nla_parse_nested(tb
, TCA_HFSC_MAX
, opt
, hfsc_policy
, NULL
);
942 if (tb
[TCA_HFSC_RSC
]) {
943 rsc
= nla_data(tb
[TCA_HFSC_RSC
]);
944 if (rsc
->m1
== 0 && rsc
->m2
== 0)
948 if (tb
[TCA_HFSC_FSC
]) {
949 fsc
= nla_data(tb
[TCA_HFSC_FSC
]);
950 if (fsc
->m1
== 0 && fsc
->m2
== 0)
954 if (tb
[TCA_HFSC_USC
]) {
955 usc
= nla_data(tb
[TCA_HFSC_USC
]);
956 if (usc
->m1
== 0 && usc
->m2
== 0)
965 cl
->cl_parent
->cl_common
.classid
!= parentid
)
967 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
970 cur_time
= psched_get_time();
973 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
976 qdisc_root_sleeping_running(sch
),
983 old_flags
= cl
->cl_flags
;
986 hfsc_change_rsc(cl
, rsc
, cur_time
);
988 hfsc_change_fsc(cl
, fsc
);
990 hfsc_change_usc(cl
, usc
, cur_time
);
992 if (cl
->qdisc
->q
.qlen
!= 0) {
993 int len
= qdisc_peek_len(cl
->qdisc
);
995 if (cl
->cl_flags
& HFSC_RSC
) {
996 if (old_flags
& HFSC_RSC
)
1002 if (cl
->cl_flags
& HFSC_FSC
) {
1003 if (old_flags
& HFSC_FSC
)
1004 update_vf(cl
, 0, cur_time
);
1009 sch_tree_unlock(sch
);
1014 if (parentid
== TC_H_ROOT
)
1019 parent
= hfsc_find_class(parentid
, sch
);
1024 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1026 if (hfsc_find_class(classid
, sch
))
1029 if (rsc
== NULL
&& fsc
== NULL
)
1032 cl
= kzalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1036 err
= tcf_block_get(&cl
->block
, &cl
->filter_list
);
1042 if (tca
[TCA_RATE
]) {
1043 err
= gen_new_estimator(&cl
->bstats
, NULL
, &cl
->rate_est
,
1045 qdisc_root_sleeping_running(sch
),
1048 tcf_block_put(cl
->block
);
1055 hfsc_change_rsc(cl
, rsc
, 0);
1057 hfsc_change_fsc(cl
, fsc
);
1059 hfsc_change_usc(cl
, usc
, 0);
1061 cl
->cl_common
.classid
= classid
;
1063 cl
->cl_parent
= parent
;
1064 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
,
1065 &pfifo_qdisc_ops
, classid
);
1066 if (cl
->qdisc
== NULL
)
1067 cl
->qdisc
= &noop_qdisc
;
1069 qdisc_hash_add(cl
->qdisc
, true);
1070 INIT_LIST_HEAD(&cl
->children
);
1071 cl
->vt_tree
= RB_ROOT
;
1072 cl
->cf_tree
= RB_ROOT
;
1075 qdisc_class_hash_insert(&q
->clhash
, &cl
->cl_common
);
1076 list_add_tail(&cl
->siblings
, &parent
->children
);
1077 if (parent
->level
== 0)
1078 hfsc_purge_queue(sch
, parent
);
1079 hfsc_adjust_levels(parent
);
1080 sch_tree_unlock(sch
);
1082 qdisc_class_hash_grow(sch
, &q
->clhash
);
1084 *arg
= (unsigned long)cl
;
1089 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1091 struct hfsc_sched
*q
= qdisc_priv(sch
);
1093 tcf_block_put(cl
->block
);
1094 qdisc_destroy(cl
->qdisc
);
1095 gen_kill_estimator(&cl
->rate_est
);
1101 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
)
1103 struct hfsc_sched
*q
= qdisc_priv(sch
);
1104 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1106 if (cl
->level
> 0 || cl
->filter_cnt
> 0 || cl
== &q
->root
)
1111 list_del(&cl
->siblings
);
1112 hfsc_adjust_levels(cl
->cl_parent
);
1114 hfsc_purge_queue(sch
, cl
);
1115 qdisc_class_hash_remove(&q
->clhash
, &cl
->cl_common
);
1117 sch_tree_unlock(sch
);
1119 hfsc_destroy_class(sch
, cl
);
1123 static struct hfsc_class
*
1124 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1126 struct hfsc_sched
*q
= qdisc_priv(sch
);
1127 struct hfsc_class
*head
, *cl
;
1128 struct tcf_result res
;
1129 struct tcf_proto
*tcf
;
1132 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1133 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1137 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1139 tcf
= rcu_dereference_bh(q
->root
.filter_list
);
1140 while (tcf
&& (result
= tcf_classify(skb
, tcf
, &res
, false)) >= 0) {
1141 #ifdef CONFIG_NET_CLS_ACT
1146 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1151 cl
= (struct hfsc_class
*)res
.class;
1153 cl
= hfsc_find_class(res
.classid
, sch
);
1155 break; /* filter selected invalid classid */
1156 if (cl
->level
>= head
->level
)
1157 break; /* filter may only point downwards */
1161 return cl
; /* hit leaf class */
1163 /* apply inner filter chain */
1164 tcf
= rcu_dereference_bh(cl
->filter_list
);
1168 /* classification failed, try default class */
1169 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
), q
->defcls
), sch
);
1170 if (cl
== NULL
|| cl
->level
> 0)
1177 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1180 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1185 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1186 cl
->cl_common
.classid
);
1191 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
1195 static struct Qdisc
*
1196 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1198 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1207 hfsc_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1209 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1211 /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
1212 * needs to be called explicitly to remove a class from vttree.
1214 update_vf(cl
, 0, 0);
1215 if (cl
->cl_flags
& HFSC_RSC
)
1219 static unsigned long
1220 hfsc_search_class(struct Qdisc
*sch
, u32 classid
)
1222 return (unsigned long)hfsc_find_class(classid
, sch
);
1225 static unsigned long
1226 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1228 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1229 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1232 if (p
!= NULL
&& p
->level
<= cl
->level
)
1237 return (unsigned long)cl
;
1241 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1243 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1248 static struct tcf_block
*hfsc_tcf_block(struct Qdisc
*sch
, unsigned long arg
)
1250 struct hfsc_sched
*q
= qdisc_priv(sch
);
1251 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1260 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1262 struct tc_service_curve tsc
;
1264 tsc
.m1
= sm2m(sc
->sm1
);
1265 tsc
.d
= dx2d(sc
->dx
);
1266 tsc
.m2
= sm2m(sc
->sm2
);
1267 if (nla_put(skb
, attr
, sizeof(tsc
), &tsc
))
1268 goto nla_put_failure
;
1277 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1279 if ((cl
->cl_flags
& HFSC_RSC
) &&
1280 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1281 goto nla_put_failure
;
1283 if ((cl
->cl_flags
& HFSC_FSC
) &&
1284 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1285 goto nla_put_failure
;
1287 if ((cl
->cl_flags
& HFSC_USC
) &&
1288 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1289 goto nla_put_failure
;
1298 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1301 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1302 struct nlattr
*nest
;
1304 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->cl_common
.classid
:
1306 tcm
->tcm_handle
= cl
->cl_common
.classid
;
1308 tcm
->tcm_info
= cl
->qdisc
->handle
;
1310 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
1312 goto nla_put_failure
;
1313 if (hfsc_dump_curves(skb
, cl
) < 0)
1314 goto nla_put_failure
;
1315 return nla_nest_end(skb
, nest
);
1318 nla_nest_cancel(skb
, nest
);
1323 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1324 struct gnet_dump
*d
)
1326 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1327 struct tc_hfsc_stats xstats
;
1329 cl
->qstats
.backlog
= cl
->qdisc
->qstats
.backlog
;
1330 xstats
.level
= cl
->level
;
1331 xstats
.period
= cl
->cl_vtperiod
;
1332 xstats
.work
= cl
->cl_total
;
1333 xstats
.rtwork
= cl
->cl_cumul
;
1335 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch
), d
, NULL
, &cl
->bstats
) < 0 ||
1336 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
1337 gnet_stats_copy_queue(d
, NULL
, &cl
->qstats
, cl
->qdisc
->q
.qlen
) < 0)
1340 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1346 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1348 struct hfsc_sched
*q
= qdisc_priv(sch
);
1349 struct hfsc_class
*cl
;
1355 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1356 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
],
1358 if (arg
->count
< arg
->skip
) {
1362 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
1372 hfsc_schedule_watchdog(struct Qdisc
*sch
)
1374 struct hfsc_sched
*q
= qdisc_priv(sch
);
1375 struct hfsc_class
*cl
;
1378 cl
= eltree_get_minel(q
);
1380 next_time
= cl
->cl_e
;
1381 if (q
->root
.cl_cfmin
!= 0) {
1382 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1383 next_time
= q
->root
.cl_cfmin
;
1385 WARN_ON(next_time
== 0);
1386 qdisc_watchdog_schedule(&q
->watchdog
, next_time
);
1390 hfsc_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1392 struct hfsc_sched
*q
= qdisc_priv(sch
);
1393 struct tc_hfsc_qopt
*qopt
;
1396 qdisc_watchdog_init(&q
->watchdog
, sch
);
1398 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1400 qopt
= nla_data(opt
);
1402 q
->defcls
= qopt
->defcls
;
1403 err
= qdisc_class_hash_init(&q
->clhash
);
1406 q
->eligible
= RB_ROOT
;
1408 err
= tcf_block_get(&q
->root
.block
, &q
->root
.filter_list
);
1412 q
->root
.cl_common
.classid
= sch
->handle
;
1414 q
->root
.qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1416 if (q
->root
.qdisc
== NULL
)
1417 q
->root
.qdisc
= &noop_qdisc
;
1419 qdisc_hash_add(q
->root
.qdisc
, true);
1420 INIT_LIST_HEAD(&q
->root
.children
);
1421 q
->root
.vt_tree
= RB_ROOT
;
1422 q
->root
.cf_tree
= RB_ROOT
;
1424 qdisc_class_hash_insert(&q
->clhash
, &q
->root
.cl_common
);
1425 qdisc_class_hash_grow(sch
, &q
->clhash
);
1431 hfsc_change_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1433 struct hfsc_sched
*q
= qdisc_priv(sch
);
1434 struct tc_hfsc_qopt
*qopt
;
1436 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1438 qopt
= nla_data(opt
);
1441 q
->defcls
= qopt
->defcls
;
1442 sch_tree_unlock(sch
);
1448 hfsc_reset_class(struct hfsc_class
*cl
)
1458 cl
->cl_vtperiod
= 0;
1459 cl
->cl_parentperiod
= 0;
1465 cl
->vt_tree
= RB_ROOT
;
1466 cl
->cf_tree
= RB_ROOT
;
1467 qdisc_reset(cl
->qdisc
);
1469 if (cl
->cl_flags
& HFSC_RSC
)
1470 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1471 if (cl
->cl_flags
& HFSC_FSC
)
1472 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1473 if (cl
->cl_flags
& HFSC_USC
)
1474 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1478 hfsc_reset_qdisc(struct Qdisc
*sch
)
1480 struct hfsc_sched
*q
= qdisc_priv(sch
);
1481 struct hfsc_class
*cl
;
1484 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1485 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1486 hfsc_reset_class(cl
);
1488 q
->eligible
= RB_ROOT
;
1489 qdisc_watchdog_cancel(&q
->watchdog
);
1490 sch
->qstats
.backlog
= 0;
1495 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1497 struct hfsc_sched
*q
= qdisc_priv(sch
);
1498 struct hlist_node
*next
;
1499 struct hfsc_class
*cl
;
1502 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1503 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
) {
1504 tcf_block_put(cl
->block
);
1508 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1509 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1511 hfsc_destroy_class(sch
, cl
);
1513 qdisc_class_hash_destroy(&q
->clhash
);
1514 qdisc_watchdog_cancel(&q
->watchdog
);
1518 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1520 struct hfsc_sched
*q
= qdisc_priv(sch
);
1521 unsigned char *b
= skb_tail_pointer(skb
);
1522 struct tc_hfsc_qopt qopt
;
1524 qopt
.defcls
= q
->defcls
;
1525 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1526 goto nla_put_failure
;
1535 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
, struct sk_buff
**to_free
)
1537 struct hfsc_class
*cl
;
1538 int uninitialized_var(err
);
1540 cl
= hfsc_classify(skb
, sch
, &err
);
1542 if (err
& __NET_XMIT_BYPASS
)
1543 qdisc_qstats_drop(sch
);
1544 __qdisc_drop(skb
, to_free
);
1548 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1549 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1550 if (net_xmit_drop_count(err
)) {
1552 qdisc_qstats_drop(sch
);
1557 if (cl
->qdisc
->q
.qlen
== 1) {
1558 unsigned int len
= qdisc_pkt_len(skb
);
1560 if (cl
->cl_flags
& HFSC_RSC
)
1562 if (cl
->cl_flags
& HFSC_FSC
)
1565 * If this is the first packet, isolate the head so an eventual
1566 * head drop before the first dequeue operation has no chance
1567 * to invalidate the deadline.
1569 if (cl
->cl_flags
& HFSC_RSC
)
1570 cl
->qdisc
->ops
->peek(cl
->qdisc
);
1574 qdisc_qstats_backlog_inc(sch
, skb
);
1577 return NET_XMIT_SUCCESS
;
1580 static struct sk_buff
*
1581 hfsc_dequeue(struct Qdisc
*sch
)
1583 struct hfsc_sched
*q
= qdisc_priv(sch
);
1584 struct hfsc_class
*cl
;
1585 struct sk_buff
*skb
;
1587 unsigned int next_len
;
1590 if (sch
->q
.qlen
== 0)
1593 cur_time
= psched_get_time();
1596 * if there are eligible classes, use real-time criteria.
1597 * find the class with the minimum deadline among
1598 * the eligible classes.
1600 cl
= eltree_get_mindl(q
, cur_time
);
1605 * use link-sharing criteria
1606 * get the class with the minimum vt in the hierarchy
1608 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1610 qdisc_qstats_overlimit(sch
);
1611 hfsc_schedule_watchdog(sch
);
1616 skb
= qdisc_dequeue_peeked(cl
->qdisc
);
1618 qdisc_warn_nonwc("HFSC", cl
->qdisc
);
1622 bstats_update(&cl
->bstats
, skb
);
1623 update_vf(cl
, qdisc_pkt_len(skb
), cur_time
);
1625 cl
->cl_cumul
+= qdisc_pkt_len(skb
);
1627 if (cl
->cl_flags
& HFSC_RSC
) {
1628 if (cl
->qdisc
->q
.qlen
!= 0) {
1630 next_len
= qdisc_peek_len(cl
->qdisc
);
1632 update_ed(cl
, next_len
);
1634 update_d(cl
, next_len
);
1636 /* the class becomes passive */
1641 qdisc_bstats_update(sch
, skb
);
1642 qdisc_qstats_backlog_dec(sch
, skb
);
1648 static const struct Qdisc_class_ops hfsc_class_ops
= {
1649 .change
= hfsc_change_class
,
1650 .delete = hfsc_delete_class
,
1651 .graft
= hfsc_graft_class
,
1652 .leaf
= hfsc_class_leaf
,
1653 .qlen_notify
= hfsc_qlen_notify
,
1654 .find
= hfsc_search_class
,
1655 .bind_tcf
= hfsc_bind_tcf
,
1656 .unbind_tcf
= hfsc_unbind_tcf
,
1657 .tcf_block
= hfsc_tcf_block
,
1658 .dump
= hfsc_dump_class
,
1659 .dump_stats
= hfsc_dump_class_stats
,
1663 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly
= {
1665 .init
= hfsc_init_qdisc
,
1666 .change
= hfsc_change_qdisc
,
1667 .reset
= hfsc_reset_qdisc
,
1668 .destroy
= hfsc_destroy_qdisc
,
1669 .dump
= hfsc_dump_qdisc
,
1670 .enqueue
= hfsc_enqueue
,
1671 .dequeue
= hfsc_dequeue
,
1672 .peek
= qdisc_peek_dequeued
,
1673 .cl_ops
= &hfsc_class_ops
,
1674 .priv_size
= sizeof(struct hfsc_sched
),
1675 .owner
= THIS_MODULE
1681 return register_qdisc(&hfsc_qdisc_ops
);
1687 unregister_qdisc(&hfsc_qdisc_ops
);
1690 MODULE_LICENSE("GPL");
1691 module_init(hfsc_init
);
1692 module_exit(hfsc_cleanup
);