2 * linux/net/sunrpc/gss_krb5_crypto.c
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
12 * Copyright (C) 1998 by the FundsXpress, INC.
14 * All rights reserved.
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
37 #include <crypto/algapi.h>
38 #include <crypto/hash.h>
39 #include <crypto/skcipher.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
50 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51 # define RPCDBG_FACILITY RPCDBG_AUTH
56 struct crypto_skcipher
*tfm
,
63 struct scatterlist sg
[1];
64 u8 local_iv
[GSS_KRB5_MAX_BLOCKSIZE
] = {0};
65 SKCIPHER_REQUEST_ON_STACK(req
, tfm
);
67 if (length
% crypto_skcipher_blocksize(tfm
) != 0)
70 if (crypto_skcipher_ivsize(tfm
) > GSS_KRB5_MAX_BLOCKSIZE
) {
71 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
72 crypto_skcipher_ivsize(tfm
));
77 memcpy(local_iv
, iv
, crypto_skcipher_ivsize(tfm
));
79 memcpy(out
, in
, length
);
80 sg_init_one(sg
, out
, length
);
82 skcipher_request_set_tfm(req
, tfm
);
83 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
84 skcipher_request_set_crypt(req
, sg
, sg
, length
, local_iv
);
86 ret
= crypto_skcipher_encrypt(req
);
87 skcipher_request_zero(req
);
89 dprintk("RPC: krb5_encrypt returns %d\n", ret
);
95 struct crypto_skcipher
*tfm
,
102 struct scatterlist sg
[1];
103 u8 local_iv
[GSS_KRB5_MAX_BLOCKSIZE
] = {0};
104 SKCIPHER_REQUEST_ON_STACK(req
, tfm
);
106 if (length
% crypto_skcipher_blocksize(tfm
) != 0)
109 if (crypto_skcipher_ivsize(tfm
) > GSS_KRB5_MAX_BLOCKSIZE
) {
110 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
111 crypto_skcipher_ivsize(tfm
));
115 memcpy(local_iv
,iv
, crypto_skcipher_ivsize(tfm
));
117 memcpy(out
, in
, length
);
118 sg_init_one(sg
, out
, length
);
120 skcipher_request_set_tfm(req
, tfm
);
121 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
122 skcipher_request_set_crypt(req
, sg
, sg
, length
, local_iv
);
124 ret
= crypto_skcipher_decrypt(req
);
125 skcipher_request_zero(req
);
127 dprintk("RPC: gss_k5decrypt returns %d\n",ret
);
132 checksummer(struct scatterlist
*sg
, void *data
)
134 struct ahash_request
*req
= data
;
136 ahash_request_set_crypt(req
, sg
, NULL
, sg
->length
);
138 return crypto_ahash_update(req
);
142 arcfour_hmac_md5_usage_to_salt(unsigned int usage
, u8 salt
[4])
144 unsigned int ms_usage
;
156 salt
[0] = (ms_usage
>> 0) & 0xff;
157 salt
[1] = (ms_usage
>> 8) & 0xff;
158 salt
[2] = (ms_usage
>> 16) & 0xff;
159 salt
[3] = (ms_usage
>> 24) & 0xff;
165 make_checksum_hmac_md5(struct krb5_ctx
*kctx
, char *header
, int hdrlen
,
166 struct xdr_buf
*body
, int body_offset
, u8
*cksumkey
,
167 unsigned int usage
, struct xdr_netobj
*cksumout
)
169 struct scatterlist sg
[1];
173 struct crypto_ahash
*md5
;
174 struct crypto_ahash
*hmac_md5
;
175 struct ahash_request
*req
;
177 if (cksumkey
== NULL
)
178 return GSS_S_FAILURE
;
180 if (cksumout
->len
< kctx
->gk5e
->cksumlength
) {
181 dprintk("%s: checksum buffer length, %u, too small for %s\n",
182 __func__
, cksumout
->len
, kctx
->gk5e
->name
);
183 return GSS_S_FAILURE
;
186 if (arcfour_hmac_md5_usage_to_salt(usage
, rc4salt
)) {
187 dprintk("%s: invalid usage value %u\n", __func__
, usage
);
188 return GSS_S_FAILURE
;
191 checksumdata
= kmalloc(GSS_KRB5_MAX_CKSUM_LEN
, GFP_NOFS
);
193 return GSS_S_FAILURE
;
195 md5
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
199 hmac_md5
= crypto_alloc_ahash(kctx
->gk5e
->cksum_name
, 0,
201 if (IS_ERR(hmac_md5
))
204 req
= ahash_request_alloc(md5
, GFP_NOFS
);
206 goto out_free_hmac_md5
;
208 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
210 err
= crypto_ahash_init(req
);
213 sg_init_one(sg
, rc4salt
, 4);
214 ahash_request_set_crypt(req
, sg
, NULL
, 4);
215 err
= crypto_ahash_update(req
);
219 sg_init_one(sg
, header
, hdrlen
);
220 ahash_request_set_crypt(req
, sg
, NULL
, hdrlen
);
221 err
= crypto_ahash_update(req
);
224 err
= xdr_process_buf(body
, body_offset
, body
->len
- body_offset
,
228 ahash_request_set_crypt(req
, NULL
, checksumdata
, 0);
229 err
= crypto_ahash_final(req
);
233 ahash_request_free(req
);
234 req
= ahash_request_alloc(hmac_md5
, GFP_NOFS
);
236 goto out_free_hmac_md5
;
238 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
240 err
= crypto_ahash_init(req
);
243 err
= crypto_ahash_setkey(hmac_md5
, cksumkey
, kctx
->gk5e
->keylength
);
247 sg_init_one(sg
, checksumdata
, crypto_ahash_digestsize(md5
));
248 ahash_request_set_crypt(req
, sg
, checksumdata
,
249 crypto_ahash_digestsize(md5
));
250 err
= crypto_ahash_digest(req
);
254 memcpy(cksumout
->data
, checksumdata
, kctx
->gk5e
->cksumlength
);
255 cksumout
->len
= kctx
->gk5e
->cksumlength
;
257 ahash_request_free(req
);
259 crypto_free_ahash(hmac_md5
);
261 crypto_free_ahash(md5
);
264 return err
? GSS_S_FAILURE
: 0;
268 * checksum the plaintext data and hdrlen bytes of the token header
269 * The checksum is performed over the first 8 bytes of the
270 * gss token header and then over the data body
273 make_checksum(struct krb5_ctx
*kctx
, char *header
, int hdrlen
,
274 struct xdr_buf
*body
, int body_offset
, u8
*cksumkey
,
275 unsigned int usage
, struct xdr_netobj
*cksumout
)
277 struct crypto_ahash
*tfm
;
278 struct ahash_request
*req
;
279 struct scatterlist sg
[1];
282 unsigned int checksumlen
;
284 if (kctx
->gk5e
->ctype
== CKSUMTYPE_HMAC_MD5_ARCFOUR
)
285 return make_checksum_hmac_md5(kctx
, header
, hdrlen
,
287 cksumkey
, usage
, cksumout
);
289 if (cksumout
->len
< kctx
->gk5e
->cksumlength
) {
290 dprintk("%s: checksum buffer length, %u, too small for %s\n",
291 __func__
, cksumout
->len
, kctx
->gk5e
->name
);
292 return GSS_S_FAILURE
;
295 checksumdata
= kmalloc(GSS_KRB5_MAX_CKSUM_LEN
, GFP_NOFS
);
296 if (checksumdata
== NULL
)
297 return GSS_S_FAILURE
;
299 tfm
= crypto_alloc_ahash(kctx
->gk5e
->cksum_name
, 0, CRYPTO_ALG_ASYNC
);
303 req
= ahash_request_alloc(tfm
, GFP_NOFS
);
307 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
309 checksumlen
= crypto_ahash_digestsize(tfm
);
311 if (cksumkey
!= NULL
) {
312 err
= crypto_ahash_setkey(tfm
, cksumkey
,
313 kctx
->gk5e
->keylength
);
318 err
= crypto_ahash_init(req
);
321 sg_init_one(sg
, header
, hdrlen
);
322 ahash_request_set_crypt(req
, sg
, NULL
, hdrlen
);
323 err
= crypto_ahash_update(req
);
326 err
= xdr_process_buf(body
, body_offset
, body
->len
- body_offset
,
330 ahash_request_set_crypt(req
, NULL
, checksumdata
, 0);
331 err
= crypto_ahash_final(req
);
335 switch (kctx
->gk5e
->ctype
) {
336 case CKSUMTYPE_RSA_MD5
:
337 err
= kctx
->gk5e
->encrypt(kctx
->seq
, NULL
, checksumdata
,
338 checksumdata
, checksumlen
);
341 memcpy(cksumout
->data
,
342 checksumdata
+ checksumlen
- kctx
->gk5e
->cksumlength
,
343 kctx
->gk5e
->cksumlength
);
345 case CKSUMTYPE_HMAC_SHA1_DES3
:
346 memcpy(cksumout
->data
, checksumdata
, kctx
->gk5e
->cksumlength
);
352 cksumout
->len
= kctx
->gk5e
->cksumlength
;
354 ahash_request_free(req
);
356 crypto_free_ahash(tfm
);
359 return err
? GSS_S_FAILURE
: 0;
363 * checksum the plaintext data and hdrlen bytes of the token header
364 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
365 * body then over the first 16 octets of the MIC token
366 * Inclusion of the header data in the calculation of the
367 * checksum is optional.
370 make_checksum_v2(struct krb5_ctx
*kctx
, char *header
, int hdrlen
,
371 struct xdr_buf
*body
, int body_offset
, u8
*cksumkey
,
372 unsigned int usage
, struct xdr_netobj
*cksumout
)
374 struct crypto_ahash
*tfm
;
375 struct ahash_request
*req
;
376 struct scatterlist sg
[1];
379 unsigned int checksumlen
;
381 if (kctx
->gk5e
->keyed_cksum
== 0) {
382 dprintk("%s: expected keyed hash for %s\n",
383 __func__
, kctx
->gk5e
->name
);
384 return GSS_S_FAILURE
;
386 if (cksumkey
== NULL
) {
387 dprintk("%s: no key supplied for %s\n",
388 __func__
, kctx
->gk5e
->name
);
389 return GSS_S_FAILURE
;
392 checksumdata
= kmalloc(GSS_KRB5_MAX_CKSUM_LEN
, GFP_NOFS
);
394 return GSS_S_FAILURE
;
396 tfm
= crypto_alloc_ahash(kctx
->gk5e
->cksum_name
, 0, CRYPTO_ALG_ASYNC
);
399 checksumlen
= crypto_ahash_digestsize(tfm
);
401 req
= ahash_request_alloc(tfm
, GFP_NOFS
);
405 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
407 err
= crypto_ahash_setkey(tfm
, cksumkey
, kctx
->gk5e
->keylength
);
411 err
= crypto_ahash_init(req
);
414 err
= xdr_process_buf(body
, body_offset
, body
->len
- body_offset
,
418 if (header
!= NULL
) {
419 sg_init_one(sg
, header
, hdrlen
);
420 ahash_request_set_crypt(req
, sg
, NULL
, hdrlen
);
421 err
= crypto_ahash_update(req
);
425 ahash_request_set_crypt(req
, NULL
, checksumdata
, 0);
426 err
= crypto_ahash_final(req
);
430 cksumout
->len
= kctx
->gk5e
->cksumlength
;
432 switch (kctx
->gk5e
->ctype
) {
433 case CKSUMTYPE_HMAC_SHA1_96_AES128
:
434 case CKSUMTYPE_HMAC_SHA1_96_AES256
:
435 /* note that this truncates the hash */
436 memcpy(cksumout
->data
, checksumdata
, kctx
->gk5e
->cksumlength
);
443 ahash_request_free(req
);
445 crypto_free_ahash(tfm
);
448 return err
? GSS_S_FAILURE
: 0;
451 struct encryptor_desc
{
452 u8 iv
[GSS_KRB5_MAX_BLOCKSIZE
];
453 struct skcipher_request
*req
;
455 struct xdr_buf
*outbuf
;
457 struct scatterlist infrags
[4];
458 struct scatterlist outfrags
[4];
464 encryptor(struct scatterlist
*sg
, void *data
)
466 struct encryptor_desc
*desc
= data
;
467 struct xdr_buf
*outbuf
= desc
->outbuf
;
468 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(desc
->req
);
469 struct page
*in_page
;
470 int thislen
= desc
->fraglen
+ sg
->length
;
474 /* Worst case is 4 fragments: head, end of page 1, start
475 * of page 2, tail. Anything more is a bug. */
476 BUG_ON(desc
->fragno
> 3);
478 page_pos
= desc
->pos
- outbuf
->head
[0].iov_len
;
479 if (page_pos
>= 0 && page_pos
< outbuf
->page_len
) {
480 /* pages are not in place: */
481 int i
= (page_pos
+ outbuf
->page_base
) >> PAGE_SHIFT
;
482 in_page
= desc
->pages
[i
];
484 in_page
= sg_page(sg
);
486 sg_set_page(&desc
->infrags
[desc
->fragno
], in_page
, sg
->length
,
488 sg_set_page(&desc
->outfrags
[desc
->fragno
], sg_page(sg
), sg
->length
,
491 desc
->fraglen
+= sg
->length
;
492 desc
->pos
+= sg
->length
;
494 fraglen
= thislen
& (crypto_skcipher_blocksize(tfm
) - 1);
500 sg_mark_end(&desc
->infrags
[desc
->fragno
- 1]);
501 sg_mark_end(&desc
->outfrags
[desc
->fragno
- 1]);
503 skcipher_request_set_crypt(desc
->req
, desc
->infrags
, desc
->outfrags
,
506 ret
= crypto_skcipher_encrypt(desc
->req
);
510 sg_init_table(desc
->infrags
, 4);
511 sg_init_table(desc
->outfrags
, 4);
514 sg_set_page(&desc
->outfrags
[0], sg_page(sg
), fraglen
,
515 sg
->offset
+ sg
->length
- fraglen
);
516 desc
->infrags
[0] = desc
->outfrags
[0];
517 sg_assign_page(&desc
->infrags
[0], in_page
);
519 desc
->fraglen
= fraglen
;
528 gss_encrypt_xdr_buf(struct crypto_skcipher
*tfm
, struct xdr_buf
*buf
,
529 int offset
, struct page
**pages
)
532 struct encryptor_desc desc
;
533 SKCIPHER_REQUEST_ON_STACK(req
, tfm
);
535 BUG_ON((buf
->len
- offset
) % crypto_skcipher_blocksize(tfm
) != 0);
537 skcipher_request_set_tfm(req
, tfm
);
538 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
540 memset(desc
.iv
, 0, sizeof(desc
.iv
));
548 sg_init_table(desc
.infrags
, 4);
549 sg_init_table(desc
.outfrags
, 4);
551 ret
= xdr_process_buf(buf
, offset
, buf
->len
- offset
, encryptor
, &desc
);
552 skcipher_request_zero(req
);
556 struct decryptor_desc
{
557 u8 iv
[GSS_KRB5_MAX_BLOCKSIZE
];
558 struct skcipher_request
*req
;
559 struct scatterlist frags
[4];
565 decryptor(struct scatterlist
*sg
, void *data
)
567 struct decryptor_desc
*desc
= data
;
568 int thislen
= desc
->fraglen
+ sg
->length
;
569 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(desc
->req
);
572 /* Worst case is 4 fragments: head, end of page 1, start
573 * of page 2, tail. Anything more is a bug. */
574 BUG_ON(desc
->fragno
> 3);
575 sg_set_page(&desc
->frags
[desc
->fragno
], sg_page(sg
), sg
->length
,
578 desc
->fraglen
+= sg
->length
;
580 fraglen
= thislen
& (crypto_skcipher_blocksize(tfm
) - 1);
586 sg_mark_end(&desc
->frags
[desc
->fragno
- 1]);
588 skcipher_request_set_crypt(desc
->req
, desc
->frags
, desc
->frags
,
591 ret
= crypto_skcipher_decrypt(desc
->req
);
595 sg_init_table(desc
->frags
, 4);
598 sg_set_page(&desc
->frags
[0], sg_page(sg
), fraglen
,
599 sg
->offset
+ sg
->length
- fraglen
);
601 desc
->fraglen
= fraglen
;
610 gss_decrypt_xdr_buf(struct crypto_skcipher
*tfm
, struct xdr_buf
*buf
,
614 struct decryptor_desc desc
;
615 SKCIPHER_REQUEST_ON_STACK(req
, tfm
);
618 BUG_ON((buf
->len
- offset
) % crypto_skcipher_blocksize(tfm
) != 0);
620 skcipher_request_set_tfm(req
, tfm
);
621 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
623 memset(desc
.iv
, 0, sizeof(desc
.iv
));
628 sg_init_table(desc
.frags
, 4);
630 ret
= xdr_process_buf(buf
, offset
, buf
->len
- offset
, decryptor
, &desc
);
631 skcipher_request_zero(req
);
636 * This function makes the assumption that it was ultimately called
639 * The client auth_gss code moves any existing tail data into a
640 * separate page before calling gss_wrap.
641 * The server svcauth_gss code ensures that both the head and the
642 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
644 * Even with that guarantee, this function may be called more than
645 * once in the processing of gss_wrap(). The best we can do is
646 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
647 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
648 * At run-time we can verify that a single invocation of this
649 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
653 xdr_extend_head(struct xdr_buf
*buf
, unsigned int base
, unsigned int shiftlen
)
660 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED
> RPC_MAX_AUTH_SIZE
);
661 BUG_ON(shiftlen
> RPC_MAX_AUTH_SIZE
);
663 p
= buf
->head
[0].iov_base
+ base
;
665 memmove(p
+ shiftlen
, p
, buf
->head
[0].iov_len
- base
);
667 buf
->head
[0].iov_len
+= shiftlen
;
668 buf
->len
+= shiftlen
;
674 gss_krb5_cts_crypt(struct crypto_skcipher
*cipher
, struct xdr_buf
*buf
,
675 u32 offset
, u8
*iv
, struct page
**pages
, int encrypt
)
678 struct scatterlist sg
[1];
679 SKCIPHER_REQUEST_ON_STACK(req
, cipher
);
681 struct page
**save_pages
;
682 u32 len
= buf
->len
- offset
;
684 if (len
> GSS_KRB5_MAX_BLOCKSIZE
* 2) {
688 data
= kmalloc(GSS_KRB5_MAX_BLOCKSIZE
* 2, GFP_NOFS
);
693 * For encryption, we want to read from the cleartext
694 * page cache pages, and write the encrypted data to
695 * the supplied xdr_buf pages.
697 save_pages
= buf
->pages
;
701 ret
= read_bytes_from_xdr_buf(buf
, offset
, data
, len
);
702 buf
->pages
= save_pages
;
706 sg_init_one(sg
, data
, len
);
708 skcipher_request_set_tfm(req
, cipher
);
709 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
710 skcipher_request_set_crypt(req
, sg
, sg
, len
, iv
);
713 ret
= crypto_skcipher_encrypt(req
);
715 ret
= crypto_skcipher_decrypt(req
);
717 skcipher_request_zero(req
);
722 ret
= write_bytes_to_xdr_buf(buf
, offset
, data
, len
);
730 gss_krb5_aes_encrypt(struct krb5_ctx
*kctx
, u32 offset
,
731 struct xdr_buf
*buf
, struct page
**pages
)
734 struct xdr_netobj hmac
;
737 struct crypto_skcipher
*cipher
, *aux_cipher
;
739 struct page
**save_pages
;
741 struct encryptor_desc desc
;
745 if (kctx
->initiate
) {
746 cipher
= kctx
->initiator_enc
;
747 aux_cipher
= kctx
->initiator_enc_aux
;
748 cksumkey
= kctx
->initiator_integ
;
749 usage
= KG_USAGE_INITIATOR_SEAL
;
751 cipher
= kctx
->acceptor_enc
;
752 aux_cipher
= kctx
->acceptor_enc_aux
;
753 cksumkey
= kctx
->acceptor_integ
;
754 usage
= KG_USAGE_ACCEPTOR_SEAL
;
756 blocksize
= crypto_skcipher_blocksize(cipher
);
758 /* hide the gss token header and insert the confounder */
759 offset
+= GSS_KRB5_TOK_HDR_LEN
;
760 if (xdr_extend_head(buf
, offset
, kctx
->gk5e
->conflen
))
761 return GSS_S_FAILURE
;
762 gss_krb5_make_confounder(buf
->head
[0].iov_base
+ offset
, kctx
->gk5e
->conflen
);
763 offset
-= GSS_KRB5_TOK_HDR_LEN
;
765 if (buf
->tail
[0].iov_base
!= NULL
) {
766 ecptr
= buf
->tail
[0].iov_base
+ buf
->tail
[0].iov_len
;
768 buf
->tail
[0].iov_base
= buf
->head
[0].iov_base
769 + buf
->head
[0].iov_len
;
770 buf
->tail
[0].iov_len
= 0;
771 ecptr
= buf
->tail
[0].iov_base
;
774 /* copy plaintext gss token header after filler (if any) */
775 memcpy(ecptr
, buf
->head
[0].iov_base
+ offset
, GSS_KRB5_TOK_HDR_LEN
);
776 buf
->tail
[0].iov_len
+= GSS_KRB5_TOK_HDR_LEN
;
777 buf
->len
+= GSS_KRB5_TOK_HDR_LEN
;
780 hmac
.len
= GSS_KRB5_MAX_CKSUM_LEN
;
781 hmac
.data
= buf
->tail
[0].iov_base
+ buf
->tail
[0].iov_len
;
784 * When we are called, pages points to the real page cache
785 * data -- which we can't go and encrypt! buf->pages points
786 * to scratch pages which we are going to send off to the
787 * client/server. Swap in the plaintext pages to calculate
790 save_pages
= buf
->pages
;
793 err
= make_checksum_v2(kctx
, NULL
, 0, buf
,
794 offset
+ GSS_KRB5_TOK_HDR_LEN
,
795 cksumkey
, usage
, &hmac
);
796 buf
->pages
= save_pages
;
798 return GSS_S_FAILURE
;
800 nbytes
= buf
->len
- offset
- GSS_KRB5_TOK_HDR_LEN
;
801 nblocks
= (nbytes
+ blocksize
- 1) / blocksize
;
804 cbcbytes
= (nblocks
- 2) * blocksize
;
806 memset(desc
.iv
, 0, sizeof(desc
.iv
));
809 SKCIPHER_REQUEST_ON_STACK(req
, aux_cipher
);
811 desc
.pos
= offset
+ GSS_KRB5_TOK_HDR_LEN
;
818 skcipher_request_set_tfm(req
, aux_cipher
);
819 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
821 sg_init_table(desc
.infrags
, 4);
822 sg_init_table(desc
.outfrags
, 4);
824 err
= xdr_process_buf(buf
, offset
+ GSS_KRB5_TOK_HDR_LEN
,
825 cbcbytes
, encryptor
, &desc
);
826 skcipher_request_zero(req
);
831 /* Make sure IV carries forward from any CBC results. */
832 err
= gss_krb5_cts_crypt(cipher
, buf
,
833 offset
+ GSS_KRB5_TOK_HDR_LEN
+ cbcbytes
,
840 /* Now update buf to account for HMAC */
841 buf
->tail
[0].iov_len
+= kctx
->gk5e
->cksumlength
;
842 buf
->len
+= kctx
->gk5e
->cksumlength
;
851 gss_krb5_aes_decrypt(struct krb5_ctx
*kctx
, u32 offset
, struct xdr_buf
*buf
,
852 u32
*headskip
, u32
*tailskip
)
854 struct xdr_buf subbuf
;
857 struct crypto_skcipher
*cipher
, *aux_cipher
;
858 struct xdr_netobj our_hmac_obj
;
859 u8 our_hmac
[GSS_KRB5_MAX_CKSUM_LEN
];
860 u8 pkt_hmac
[GSS_KRB5_MAX_CKSUM_LEN
];
861 int nblocks
, blocksize
, cbcbytes
;
862 struct decryptor_desc desc
;
865 if (kctx
->initiate
) {
866 cipher
= kctx
->acceptor_enc
;
867 aux_cipher
= kctx
->acceptor_enc_aux
;
868 cksum_key
= kctx
->acceptor_integ
;
869 usage
= KG_USAGE_ACCEPTOR_SEAL
;
871 cipher
= kctx
->initiator_enc
;
872 aux_cipher
= kctx
->initiator_enc_aux
;
873 cksum_key
= kctx
->initiator_integ
;
874 usage
= KG_USAGE_INITIATOR_SEAL
;
876 blocksize
= crypto_skcipher_blocksize(cipher
);
879 /* create a segment skipping the header and leaving out the checksum */
880 xdr_buf_subsegment(buf
, &subbuf
, offset
+ GSS_KRB5_TOK_HDR_LEN
,
881 (buf
->len
- offset
- GSS_KRB5_TOK_HDR_LEN
-
882 kctx
->gk5e
->cksumlength
));
884 nblocks
= (subbuf
.len
+ blocksize
- 1) / blocksize
;
888 cbcbytes
= (nblocks
- 2) * blocksize
;
890 memset(desc
.iv
, 0, sizeof(desc
.iv
));
893 SKCIPHER_REQUEST_ON_STACK(req
, aux_cipher
);
899 skcipher_request_set_tfm(req
, aux_cipher
);
900 skcipher_request_set_callback(req
, 0, NULL
, NULL
);
902 sg_init_table(desc
.frags
, 4);
904 ret
= xdr_process_buf(&subbuf
, 0, cbcbytes
, decryptor
, &desc
);
905 skcipher_request_zero(req
);
910 /* Make sure IV carries forward from any CBC results. */
911 ret
= gss_krb5_cts_crypt(cipher
, &subbuf
, cbcbytes
, desc
.iv
, NULL
, 0);
916 /* Calculate our hmac over the plaintext data */
917 our_hmac_obj
.len
= sizeof(our_hmac
);
918 our_hmac_obj
.data
= our_hmac
;
920 ret
= make_checksum_v2(kctx
, NULL
, 0, &subbuf
, 0,
921 cksum_key
, usage
, &our_hmac_obj
);
925 /* Get the packet's hmac value */
926 ret
= read_bytes_from_xdr_buf(buf
, buf
->len
- kctx
->gk5e
->cksumlength
,
927 pkt_hmac
, kctx
->gk5e
->cksumlength
);
931 if (crypto_memneq(pkt_hmac
, our_hmac
, kctx
->gk5e
->cksumlength
) != 0) {
935 *headskip
= kctx
->gk5e
->conflen
;
936 *tailskip
= kctx
->gk5e
->cksumlength
;
938 if (ret
&& ret
!= GSS_S_BAD_SIG
)
944 * Compute Kseq given the initial session key and the checksum.
945 * Set the key of the given cipher.
948 krb5_rc4_setup_seq_key(struct krb5_ctx
*kctx
, struct crypto_skcipher
*cipher
,
949 unsigned char *cksum
)
951 struct crypto_shash
*hmac
;
952 struct shash_desc
*desc
;
953 u8 Kseq
[GSS_KRB5_MAX_KEYLEN
];
954 u32 zeroconstant
= 0;
957 dprintk("%s: entered\n", __func__
);
959 hmac
= crypto_alloc_shash(kctx
->gk5e
->cksum_name
, 0, 0);
961 dprintk("%s: error %ld, allocating hash '%s'\n",
962 __func__
, PTR_ERR(hmac
), kctx
->gk5e
->cksum_name
);
963 return PTR_ERR(hmac
);
966 desc
= kmalloc(sizeof(*desc
) + crypto_shash_descsize(hmac
),
969 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
970 __func__
, kctx
->gk5e
->cksum_name
);
971 crypto_free_shash(hmac
);
978 /* Compute intermediate Kseq from session key */
979 err
= crypto_shash_setkey(hmac
, kctx
->Ksess
, kctx
->gk5e
->keylength
);
983 err
= crypto_shash_digest(desc
, (u8
*)&zeroconstant
, 4, Kseq
);
987 /* Compute final Kseq from the checksum and intermediate Kseq */
988 err
= crypto_shash_setkey(hmac
, Kseq
, kctx
->gk5e
->keylength
);
992 err
= crypto_shash_digest(desc
, cksum
, 8, Kseq
);
996 err
= crypto_skcipher_setkey(cipher
, Kseq
, kctx
->gk5e
->keylength
);
1004 crypto_free_shash(hmac
);
1005 dprintk("%s: returning %d\n", __func__
, err
);
1010 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1011 * Set the key of cipher kctx->enc.
1014 krb5_rc4_setup_enc_key(struct krb5_ctx
*kctx
, struct crypto_skcipher
*cipher
,
1017 struct crypto_shash
*hmac
;
1018 struct shash_desc
*desc
;
1019 u8 Kcrypt
[GSS_KRB5_MAX_KEYLEN
];
1020 u8 zeroconstant
[4] = {0};
1024 dprintk("%s: entered, seqnum %u\n", __func__
, seqnum
);
1026 hmac
= crypto_alloc_shash(kctx
->gk5e
->cksum_name
, 0, 0);
1028 dprintk("%s: error %ld, allocating hash '%s'\n",
1029 __func__
, PTR_ERR(hmac
), kctx
->gk5e
->cksum_name
);
1030 return PTR_ERR(hmac
);
1033 desc
= kmalloc(sizeof(*desc
) + crypto_shash_descsize(hmac
),
1036 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1037 __func__
, kctx
->gk5e
->cksum_name
);
1038 crypto_free_shash(hmac
);
1045 /* Compute intermediate Kcrypt from session key */
1046 for (i
= 0; i
< kctx
->gk5e
->keylength
; i
++)
1047 Kcrypt
[i
] = kctx
->Ksess
[i
] ^ 0xf0;
1049 err
= crypto_shash_setkey(hmac
, Kcrypt
, kctx
->gk5e
->keylength
);
1053 err
= crypto_shash_digest(desc
, zeroconstant
, 4, Kcrypt
);
1057 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1058 err
= crypto_shash_setkey(hmac
, Kcrypt
, kctx
->gk5e
->keylength
);
1062 seqnumarray
[0] = (unsigned char) ((seqnum
>> 24) & 0xff);
1063 seqnumarray
[1] = (unsigned char) ((seqnum
>> 16) & 0xff);
1064 seqnumarray
[2] = (unsigned char) ((seqnum
>> 8) & 0xff);
1065 seqnumarray
[3] = (unsigned char) ((seqnum
>> 0) & 0xff);
1067 err
= crypto_shash_digest(desc
, seqnumarray
, 4, Kcrypt
);
1071 err
= crypto_skcipher_setkey(cipher
, Kcrypt
, kctx
->gk5e
->keylength
);
1079 crypto_free_shash(hmac
);
1080 dprintk("%s: returning %d\n", __func__
, err
);