2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
33 * 64K will take DMA, 9600 baud X.25 should be ok.
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
39 #include <linux/module.h>
40 #include <linux/kernel.h>
42 #include <linux/net.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/if_arp.h>
46 #include <linux/delay.h>
47 #include <linux/hdlc.h>
48 #include <linux/ioport.h>
49 #include <linux/init.h>
54 #include <linux/spinlock.h>
60 * z8530_read_port - Architecture specific interface function
63 * Provided port access methods. The Comtrol SV11 requires no delays
64 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
66 * In the longer term this should become an architecture specific
67 * section so that this can become a generic driver interface for all
68 * platforms. For now we only handle PC I/O ports with or without the
69 * dread 5uS sanity delay.
71 * The caller must hold sufficient locks to avoid violating the horrible
75 static inline int z8530_read_port(unsigned long p
)
77 u8 r
=inb(Z8530_PORT_OF(p
));
78 if(p
&Z8530_PORT_SLEEP
) /* gcc should figure this out efficiently ! */
84 * z8530_write_port - Architecture specific interface function
88 * Write a value to a port with delays if need be. Note that the
89 * caller must hold locks to avoid read/writes from other contexts
90 * violating the 5uS rule
92 * In the longer term this should become an architecture specific
93 * section so that this can become a generic driver interface for all
94 * platforms. For now we only handle PC I/O ports with or without the
95 * dread 5uS sanity delay.
99 static inline void z8530_write_port(unsigned long p
, u8 d
)
101 outb(d
,Z8530_PORT_OF(p
));
102 if(p
&Z8530_PORT_SLEEP
)
108 static void z8530_rx_done(struct z8530_channel
*c
);
109 static void z8530_tx_done(struct z8530_channel
*c
);
113 * read_zsreg - Read a register from a Z85230
114 * @c: Z8530 channel to read from (2 per chip)
115 * @reg: Register to read
116 * FIXME: Use a spinlock.
118 * Most of the Z8530 registers are indexed off the control registers.
119 * A read is done by writing to the control register and reading the
120 * register back. The caller must hold the lock
123 static inline u8
read_zsreg(struct z8530_channel
*c
, u8 reg
)
126 z8530_write_port(c
->ctrlio
, reg
);
127 return z8530_read_port(c
->ctrlio
);
131 * read_zsdata - Read the data port of a Z8530 channel
132 * @c: The Z8530 channel to read the data port from
134 * The data port provides fast access to some things. We still
135 * have all the 5uS delays to worry about.
138 static inline u8
read_zsdata(struct z8530_channel
*c
)
141 r
=z8530_read_port(c
->dataio
);
146 * write_zsreg - Write to a Z8530 channel register
147 * @c: The Z8530 channel
148 * @reg: Register number
149 * @val: Value to write
151 * Write a value to an indexed register. The caller must hold the lock
152 * to honour the irritating delay rules. We know about register 0
153 * being fast to access.
155 * Assumes c->lock is held.
157 static inline void write_zsreg(struct z8530_channel
*c
, u8 reg
, u8 val
)
160 z8530_write_port(c
->ctrlio
, reg
);
161 z8530_write_port(c
->ctrlio
, val
);
166 * write_zsctrl - Write to a Z8530 control register
167 * @c: The Z8530 channel
168 * @val: Value to write
170 * Write directly to the control register on the Z8530
173 static inline void write_zsctrl(struct z8530_channel
*c
, u8 val
)
175 z8530_write_port(c
->ctrlio
, val
);
179 * write_zsdata - Write to a Z8530 control register
180 * @c: The Z8530 channel
181 * @val: Value to write
183 * Write directly to the data register on the Z8530
187 static inline void write_zsdata(struct z8530_channel
*c
, u8 val
)
189 z8530_write_port(c
->dataio
, val
);
193 * Register loading parameters for a dead port
196 u8 z8530_dead_port
[]=
201 EXPORT_SYMBOL(z8530_dead_port
);
204 * Register loading parameters for currently supported circuit types
209 * Data clocked by telco end. This is the correct data for the UK
210 * "kilostream" service, and most other similar services.
213 u8 z8530_hdlc_kilostream
[]=
215 4, SYNC_ENAB
|SDLC
|X1CLK
,
216 2, 0, /* No vector */
218 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
219 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
220 9, 0, /* Disable interrupts */
223 10, ABUNDER
|NRZ
|CRCPS
,/*MARKIDLE ??*/
226 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
227 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
232 EXPORT_SYMBOL(z8530_hdlc_kilostream
);
235 * As above but for enhanced chips.
238 u8 z8530_hdlc_kilostream_85230
[]=
240 4, SYNC_ENAB
|SDLC
|X1CLK
,
241 2, 0, /* No vector */
243 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
244 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
245 9, 0, /* Disable interrupts */
248 10, ABUNDER
|NRZ
|CRCPS
, /* MARKIDLE?? */
251 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
252 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
254 23, 3, /* Extended mode AUTO TX and EOM*/
259 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230
);
262 * z8530_flush_fifo - Flush on chip RX FIFO
263 * @c: Channel to flush
265 * Flush the receive FIFO. There is no specific option for this, we
266 * blindly read bytes and discard them. Reading when there is no data
267 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
269 * All locking is handled for the caller. On return data may still be
270 * present if it arrived during the flush.
273 static void z8530_flush_fifo(struct z8530_channel
*c
)
279 if(c
->dev
->type
==Z85230
)
289 * z8530_rtsdtr - Control the outgoing DTS/RTS line
290 * @c: The Z8530 channel to control;
291 * @set: 1 to set, 0 to clear
293 * Sets or clears DTR/RTS on the requested line. All locking is handled
294 * by the caller. For now we assume all boards use the actual RTS/DTR
295 * on the chip. Apparently one or two don't. We'll scream about them
299 static void z8530_rtsdtr(struct z8530_channel
*c
, int set
)
302 c
->regs
[5] |= (RTS
| DTR
);
304 c
->regs
[5] &= ~(RTS
| DTR
);
305 write_zsreg(c
, R5
, c
->regs
[5]);
309 * z8530_rx - Handle a PIO receive event
310 * @c: Z8530 channel to process
312 * Receive handler for receiving in PIO mode. This is much like the
313 * async one but not quite the same or as complex
315 * Note: Its intended that this handler can easily be separated from
316 * the main code to run realtime. That'll be needed for some machines
317 * (eg to ever clock 64kbits on a sparc ;)).
319 * The RT_LOCK macros don't do anything now. Keep the code covered
320 * by them as short as possible in all circumstances - clocks cost
321 * baud. The interrupt handler is assumed to be atomic w.r.t. to
322 * other code - this is true in the RT case too.
324 * We only cover the sync cases for this. If you want 2Mbit async
325 * do it yourself but consider medical assistance first. This non DMA
326 * synchronous mode is portable code. The DMA mode assumes PCI like
329 * Called with the device lock held
332 static void z8530_rx(struct z8530_channel
*c
)
339 if(!(read_zsreg(c
, R0
)&1))
342 stat
=read_zsreg(c
, R1
);
347 if(c
->count
< c
->max
)
359 if(stat
&(Rx_OVR
|CRC_ERR
))
361 /* Rewind the buffer and return */
363 c
->dptr
=c
->skb
->data
;
367 printk(KERN_WARNING
"%s: overrun\n", c
->dev
->name
);
373 /* printk("crc error\n"); */
375 /* Shove the frame upstream */
380 * Drop the lock for RX processing, or
381 * there are deadlocks
384 write_zsctrl(c
, RES_Rx_CRC
);
391 write_zsctrl(c
, ERR_RES
);
392 write_zsctrl(c
, RES_H_IUS
);
397 * z8530_tx - Handle a PIO transmit event
398 * @c: Z8530 channel to process
400 * Z8530 transmit interrupt handler for the PIO mode. The basic
401 * idea is to attempt to keep the FIFO fed. We fill as many bytes
402 * in as possible, its quite possible that we won't keep up with the
403 * data rate otherwise.
406 static void z8530_tx(struct z8530_channel
*c
)
410 if(!(read_zsreg(c
, R0
)&4))
414 * Shovel out the byte
416 write_zsreg(c
, R8
, *c
->tx_ptr
++);
417 write_zsctrl(c
, RES_H_IUS
);
418 /* We are about to underflow */
421 write_zsctrl(c
, RES_EOM_L
);
422 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
428 * End of frame TX - fire another one
431 write_zsctrl(c
, RES_Tx_P
);
434 write_zsctrl(c
, RES_H_IUS
);
438 * z8530_status - Handle a PIO status exception
439 * @chan: Z8530 channel to process
441 * A status event occurred in PIO synchronous mode. There are several
442 * reasons the chip will bother us here. A transmit underrun means we
443 * failed to feed the chip fast enough and just broke a packet. A DCD
444 * change is a line up or down.
447 static void z8530_status(struct z8530_channel
*chan
)
451 status
= read_zsreg(chan
, R0
);
452 altered
= chan
->status
^ status
;
454 chan
->status
= status
;
456 if (status
& TxEOM
) {
457 /* printk("%s: Tx underrun.\n", chan->dev->name); */
458 chan
->netdevice
->stats
.tx_fifo_errors
++;
459 write_zsctrl(chan
, ERR_RES
);
463 if (altered
& chan
->dcdcheck
)
465 if (status
& chan
->dcdcheck
) {
466 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
467 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
469 netif_carrier_on(chan
->netdevice
);
471 printk(KERN_INFO
"%s: DCD lost\n", chan
->dev
->name
);
472 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
473 z8530_flush_fifo(chan
);
475 netif_carrier_off(chan
->netdevice
);
479 write_zsctrl(chan
, RES_EXT_INT
);
480 write_zsctrl(chan
, RES_H_IUS
);
483 struct z8530_irqhandler z8530_sync
=
490 EXPORT_SYMBOL(z8530_sync
);
493 * z8530_dma_rx - Handle a DMA RX event
494 * @chan: Channel to handle
496 * Non bus mastering DMA interfaces for the Z8x30 devices. This
497 * is really pretty PC specific. The DMA mode means that most receive
498 * events are handled by the DMA hardware. We get a kick here only if
502 static void z8530_dma_rx(struct z8530_channel
*chan
)
506 /* Special condition check only */
509 read_zsreg(chan
, R7
);
510 read_zsreg(chan
, R6
);
512 status
=read_zsreg(chan
, R1
);
516 z8530_rx_done(chan
); /* Fire up the next one */
518 write_zsctrl(chan
, ERR_RES
);
519 write_zsctrl(chan
, RES_H_IUS
);
523 /* DMA is off right now, drain the slow way */
529 * z8530_dma_tx - Handle a DMA TX event
530 * @chan: The Z8530 channel to handle
532 * We have received an interrupt while doing DMA transmissions. It
533 * shouldn't happen. Scream loudly if it does.
536 static void z8530_dma_tx(struct z8530_channel
*chan
)
540 printk(KERN_WARNING
"Hey who turned the DMA off?\n");
544 /* This shouldnt occur in DMA mode */
545 printk(KERN_ERR
"DMA tx - bogus event!\n");
550 * z8530_dma_status - Handle a DMA status exception
551 * @chan: Z8530 channel to process
553 * A status event occurred on the Z8530. We receive these for two reasons
554 * when in DMA mode. Firstly if we finished a packet transfer we get one
555 * and kick the next packet out. Secondly we may see a DCD change.
559 static void z8530_dma_status(struct z8530_channel
*chan
)
563 status
=read_zsreg(chan
, R0
);
564 altered
=chan
->status
^status
;
575 flags
=claim_dma_lock();
576 disable_dma(chan
->txdma
);
577 clear_dma_ff(chan
->txdma
);
579 release_dma_lock(flags
);
584 if (altered
& chan
->dcdcheck
)
586 if (status
& chan
->dcdcheck
) {
587 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
588 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
590 netif_carrier_on(chan
->netdevice
);
592 printk(KERN_INFO
"%s:DCD lost\n", chan
->dev
->name
);
593 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
594 z8530_flush_fifo(chan
);
596 netif_carrier_off(chan
->netdevice
);
600 write_zsctrl(chan
, RES_EXT_INT
);
601 write_zsctrl(chan
, RES_H_IUS
);
604 static struct z8530_irqhandler z8530_dma_sync
= {
610 static struct z8530_irqhandler z8530_txdma_sync
= {
617 * z8530_rx_clear - Handle RX events from a stopped chip
618 * @c: Z8530 channel to shut up
620 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
621 * For machines with PCI Z85x30 cards, or level triggered interrupts
622 * (eg the MacII) we must clear the interrupt cause or die.
626 static void z8530_rx_clear(struct z8530_channel
*c
)
629 * Data and status bytes
634 stat
=read_zsreg(c
, R1
);
637 write_zsctrl(c
, RES_Rx_CRC
);
641 write_zsctrl(c
, ERR_RES
);
642 write_zsctrl(c
, RES_H_IUS
);
646 * z8530_tx_clear - Handle TX events from a stopped chip
647 * @c: Z8530 channel to shut up
649 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
650 * For machines with PCI Z85x30 cards, or level triggered interrupts
651 * (eg the MacII) we must clear the interrupt cause or die.
654 static void z8530_tx_clear(struct z8530_channel
*c
)
656 write_zsctrl(c
, RES_Tx_P
);
657 write_zsctrl(c
, RES_H_IUS
);
661 * z8530_status_clear - Handle status events from a stopped chip
662 * @chan: Z8530 channel to shut up
664 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
665 * For machines with PCI Z85x30 cards, or level triggered interrupts
666 * (eg the MacII) we must clear the interrupt cause or die.
669 static void z8530_status_clear(struct z8530_channel
*chan
)
671 u8 status
=read_zsreg(chan
, R0
);
673 write_zsctrl(chan
, ERR_RES
);
674 write_zsctrl(chan
, RES_EXT_INT
);
675 write_zsctrl(chan
, RES_H_IUS
);
678 struct z8530_irqhandler z8530_nop
=
686 EXPORT_SYMBOL(z8530_nop
);
689 * z8530_interrupt - Handle an interrupt from a Z8530
690 * @irq: Interrupt number
691 * @dev_id: The Z8530 device that is interrupting.
693 * A Z85[2]30 device has stuck its hand in the air for attention.
694 * We scan both the channels on the chip for events and then call
695 * the channel specific call backs for each channel that has events.
696 * We have to use callback functions because the two channels can be
697 * in different modes.
699 * Locking is done for the handlers. Note that locking is done
700 * at the chip level (the 5uS delay issue is per chip not per
701 * channel). c->lock for both channels points to dev->lock
704 irqreturn_t
z8530_interrupt(int irq
, void *dev_id
)
706 struct z8530_dev
*dev
=dev_id
;
707 u8
uninitialized_var(intr
);
708 static volatile int locker
=0;
710 struct z8530_irqhandler
*irqs
;
714 printk(KERN_ERR
"IRQ re-enter\n");
719 spin_lock(&dev
->lock
);
724 intr
= read_zsreg(&dev
->chanA
, R3
);
725 if(!(intr
& (CHARxIP
|CHATxIP
|CHAEXT
|CHBRxIP
|CHBTxIP
|CHBEXT
)))
728 /* This holds the IRQ status. On the 8530 you must read it from chan
729 A even though it applies to the whole chip */
731 /* Now walk the chip and see what it is wanting - it may be
732 an IRQ for someone else remember */
734 irqs
=dev
->chanA
.irqs
;
736 if(intr
& (CHARxIP
|CHATxIP
|CHAEXT
))
739 irqs
->rx(&dev
->chanA
);
741 irqs
->tx(&dev
->chanA
);
743 irqs
->status(&dev
->chanA
);
746 irqs
=dev
->chanB
.irqs
;
748 if(intr
& (CHBRxIP
|CHBTxIP
|CHBEXT
))
751 irqs
->rx(&dev
->chanB
);
753 irqs
->tx(&dev
->chanB
);
755 irqs
->status(&dev
->chanB
);
758 spin_unlock(&dev
->lock
);
760 printk(KERN_ERR
"%s: interrupt jammed - abort(0x%X)!\n", dev
->name
, intr
);
766 EXPORT_SYMBOL(z8530_interrupt
);
768 static char reg_init
[16]=
778 * z8530_sync_open - Open a Z8530 channel for PIO
779 * @dev: The network interface we are using
780 * @c: The Z8530 channel to open in synchronous PIO mode
782 * Switch a Z8530 into synchronous mode without DMA assist. We
783 * raise the RTS/DTR and commence network operation.
786 int z8530_sync_open(struct net_device
*dev
, struct z8530_channel
*c
)
790 spin_lock_irqsave(c
->lock
, flags
);
793 c
->mtu
= dev
->mtu
+64;
797 c
->irqs
= &z8530_sync
;
799 /* This loads the double buffer up */
800 z8530_rx_done(c
); /* Load the frame ring */
801 z8530_rx_done(c
); /* Load the backup frame */
804 c
->regs
[R1
]|=TxINT_ENAB
;
805 write_zsreg(c
, R1
, c
->regs
[R1
]);
806 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
808 spin_unlock_irqrestore(c
->lock
, flags
);
813 EXPORT_SYMBOL(z8530_sync_open
);
816 * z8530_sync_close - Close a PIO Z8530 channel
817 * @dev: Network device to close
818 * @c: Z8530 channel to disassociate and move to idle
820 * Close down a Z8530 interface and switch its interrupt handlers
821 * to discard future events.
824 int z8530_sync_close(struct net_device
*dev
, struct z8530_channel
*c
)
829 spin_lock_irqsave(c
->lock
, flags
);
830 c
->irqs
= &z8530_nop
;
834 chk
=read_zsreg(c
,R0
);
835 write_zsreg(c
, R3
, c
->regs
[R3
]);
838 spin_unlock_irqrestore(c
->lock
, flags
);
842 EXPORT_SYMBOL(z8530_sync_close
);
845 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
846 * @dev: The network device to attach
847 * @c: The Z8530 channel to configure in sync DMA mode.
849 * Set up a Z85x30 device for synchronous DMA in both directions. Two
850 * ISA DMA channels must be available for this to work. We assume ISA
851 * DMA driven I/O and PC limits on access.
854 int z8530_sync_dma_open(struct net_device
*dev
, struct z8530_channel
*c
)
856 unsigned long cflags
, dflags
;
859 c
->mtu
= dev
->mtu
+64;
864 * Load the DMA interfaces up
870 * Allocate the DMA flip buffers. Limit by page size.
871 * Everyone runs 1500 mtu or less on wan links so this
875 if(c
->mtu
> PAGE_SIZE
/2)
878 c
->rx_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
879 if(c
->rx_buf
[0]==NULL
)
881 c
->rx_buf
[1]=c
->rx_buf
[0]+PAGE_SIZE
/2;
883 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
884 if(c
->tx_dma_buf
[0]==NULL
)
886 free_page((unsigned long)c
->rx_buf
[0]);
890 c
->tx_dma_buf
[1]=c
->tx_dma_buf
[0]+PAGE_SIZE
/2;
898 * Enable DMA control mode
901 spin_lock_irqsave(c
->lock
, cflags
);
907 c
->regs
[R14
]|= DTRREQ
;
908 write_zsreg(c
, R14
, c
->regs
[R14
]);
910 c
->regs
[R1
]&= ~TxINT_ENAB
;
911 write_zsreg(c
, R1
, c
->regs
[R1
]);
917 c
->regs
[R1
]|= WT_FN_RDYFN
;
918 c
->regs
[R1
]|= WT_RDY_RT
;
919 c
->regs
[R1
]|= INT_ERR_Rx
;
920 c
->regs
[R1
]&= ~TxINT_ENAB
;
921 write_zsreg(c
, R1
, c
->regs
[R1
]);
922 c
->regs
[R1
]|= WT_RDY_ENAB
;
923 write_zsreg(c
, R1
, c
->regs
[R1
]);
930 * Set up the DMA configuration
933 dflags
=claim_dma_lock();
935 disable_dma(c
->rxdma
);
936 clear_dma_ff(c
->rxdma
);
937 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
938 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[0]));
939 set_dma_count(c
->rxdma
, c
->mtu
);
940 enable_dma(c
->rxdma
);
942 disable_dma(c
->txdma
);
943 clear_dma_ff(c
->txdma
);
944 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
945 disable_dma(c
->txdma
);
947 release_dma_lock(dflags
);
950 * Select the DMA interrupt handlers
957 c
->irqs
= &z8530_dma_sync
;
959 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
961 spin_unlock_irqrestore(c
->lock
, cflags
);
966 EXPORT_SYMBOL(z8530_sync_dma_open
);
969 * z8530_sync_dma_close - Close down DMA I/O
970 * @dev: Network device to detach
971 * @c: Z8530 channel to move into discard mode
973 * Shut down a DMA mode synchronous interface. Halt the DMA, and
977 int z8530_sync_dma_close(struct net_device
*dev
, struct z8530_channel
*c
)
982 c
->irqs
= &z8530_nop
;
987 * Disable the PC DMA channels
990 flags
=claim_dma_lock();
991 disable_dma(c
->rxdma
);
992 clear_dma_ff(c
->rxdma
);
996 disable_dma(c
->txdma
);
997 clear_dma_ff(c
->txdma
);
998 release_dma_lock(flags
);
1003 spin_lock_irqsave(c
->lock
, flags
);
1006 * Disable DMA control mode
1009 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1010 write_zsreg(c
, R1
, c
->regs
[R1
]);
1011 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1012 c
->regs
[R1
]|= INT_ALL_Rx
;
1013 write_zsreg(c
, R1
, c
->regs
[R1
]);
1014 c
->regs
[R14
]&= ~DTRREQ
;
1015 write_zsreg(c
, R14
, c
->regs
[R14
]);
1019 free_page((unsigned long)c
->rx_buf
[0]);
1022 if(c
->tx_dma_buf
[0])
1024 free_page((unsigned long)c
->tx_dma_buf
[0]);
1025 c
->tx_dma_buf
[0]=NULL
;
1027 chk
=read_zsreg(c
,R0
);
1028 write_zsreg(c
, R3
, c
->regs
[R3
]);
1031 spin_unlock_irqrestore(c
->lock
, flags
);
1036 EXPORT_SYMBOL(z8530_sync_dma_close
);
1039 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1040 * @dev: The network device to attach
1041 * @c: The Z8530 channel to configure in sync DMA mode.
1043 * Set up a Z85x30 device for synchronous DMA tranmission. One
1044 * ISA DMA channel must be available for this to work. The receive
1045 * side is run in PIO mode, but then it has the bigger FIFO.
1048 int z8530_sync_txdma_open(struct net_device
*dev
, struct z8530_channel
*c
)
1050 unsigned long cflags
, dflags
;
1052 printk("Opening sync interface for TX-DMA\n");
1054 c
->mtu
= dev
->mtu
+64;
1060 * Allocate the DMA flip buffers. Limit by page size.
1061 * Everyone runs 1500 mtu or less on wan links so this
1065 if(c
->mtu
> PAGE_SIZE
/2)
1068 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
1069 if(c
->tx_dma_buf
[0]==NULL
)
1072 c
->tx_dma_buf
[1] = c
->tx_dma_buf
[0] + PAGE_SIZE
/2;
1075 spin_lock_irqsave(c
->lock
, cflags
);
1078 * Load the PIO receive ring
1085 * Load the DMA interfaces up
1097 * Enable DMA control mode
1101 * TX DMA via DIR/REQ
1103 c
->regs
[R14
]|= DTRREQ
;
1104 write_zsreg(c
, R14
, c
->regs
[R14
]);
1106 c
->regs
[R1
]&= ~TxINT_ENAB
;
1107 write_zsreg(c
, R1
, c
->regs
[R1
]);
1110 * Set up the DMA configuration
1113 dflags
= claim_dma_lock();
1115 disable_dma(c
->txdma
);
1116 clear_dma_ff(c
->txdma
);
1117 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
1118 disable_dma(c
->txdma
);
1120 release_dma_lock(dflags
);
1123 * Select the DMA interrupt handlers
1130 c
->irqs
= &z8530_txdma_sync
;
1132 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1133 spin_unlock_irqrestore(c
->lock
, cflags
);
1138 EXPORT_SYMBOL(z8530_sync_txdma_open
);
1141 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1142 * @dev: Network device to detach
1143 * @c: Z8530 channel to move into discard mode
1145 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1146 * and free the buffers.
1149 int z8530_sync_txdma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1151 unsigned long dflags
, cflags
;
1155 spin_lock_irqsave(c
->lock
, cflags
);
1157 c
->irqs
= &z8530_nop
;
1162 * Disable the PC DMA channels
1165 dflags
= claim_dma_lock();
1167 disable_dma(c
->txdma
);
1168 clear_dma_ff(c
->txdma
);
1172 release_dma_lock(dflags
);
1175 * Disable DMA control mode
1178 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1179 write_zsreg(c
, R1
, c
->regs
[R1
]);
1180 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1181 c
->regs
[R1
]|= INT_ALL_Rx
;
1182 write_zsreg(c
, R1
, c
->regs
[R1
]);
1183 c
->regs
[R14
]&= ~DTRREQ
;
1184 write_zsreg(c
, R14
, c
->regs
[R14
]);
1186 if(c
->tx_dma_buf
[0])
1188 free_page((unsigned long)c
->tx_dma_buf
[0]);
1189 c
->tx_dma_buf
[0]=NULL
;
1191 chk
=read_zsreg(c
,R0
);
1192 write_zsreg(c
, R3
, c
->regs
[R3
]);
1195 spin_unlock_irqrestore(c
->lock
, cflags
);
1200 EXPORT_SYMBOL(z8530_sync_txdma_close
);
1204 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1208 static char *z8530_type_name
[]={
1215 * z8530_describe - Uniformly describe a Z8530 port
1216 * @dev: Z8530 device to describe
1217 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1218 * @io: the port value in question
1220 * Describe a Z8530 in a standard format. We must pass the I/O as
1221 * the port offset isnt predictable. The main reason for this function
1222 * is to try and get a common format of report.
1225 void z8530_describe(struct z8530_dev
*dev
, char *mapping
, unsigned long io
)
1227 printk(KERN_INFO
"%s: %s found at %s 0x%lX, IRQ %d.\n",
1229 z8530_type_name
[dev
->type
],
1235 EXPORT_SYMBOL(z8530_describe
);
1238 * Locked operation part of the z8530 init code
1241 static inline int do_z8530_init(struct z8530_dev
*dev
)
1243 /* NOP the interrupt handlers first - we might get a
1244 floating IRQ transition when we reset the chip */
1245 dev
->chanA
.irqs
=&z8530_nop
;
1246 dev
->chanB
.irqs
=&z8530_nop
;
1247 dev
->chanA
.dcdcheck
=DCD
;
1248 dev
->chanB
.dcdcheck
=DCD
;
1250 /* Reset the chip */
1251 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1253 /* Now check its valid */
1254 write_zsreg(&dev
->chanA
, R12
, 0xAA);
1255 if(read_zsreg(&dev
->chanA
, R12
)!=0xAA)
1257 write_zsreg(&dev
->chanA
, R12
, 0x55);
1258 if(read_zsreg(&dev
->chanA
, R12
)!=0x55)
1264 * See the application note.
1267 write_zsreg(&dev
->chanA
, R15
, 0x01);
1270 * If we can set the low bit of R15 then
1271 * the chip is enhanced.
1274 if(read_zsreg(&dev
->chanA
, R15
)==0x01)
1276 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1277 /* Put a char in the fifo */
1278 write_zsreg(&dev
->chanA
, R8
, 0);
1279 if(read_zsreg(&dev
->chanA
, R0
)&Tx_BUF_EMP
)
1280 dev
->type
= Z85230
; /* Has a FIFO */
1282 dev
->type
= Z85C30
; /* Z85C30, 1 byte FIFO */
1286 * The code assumes R7' and friends are
1287 * off. Use write_zsext() for these and keep
1291 write_zsreg(&dev
->chanA
, R15
, 0);
1294 * At this point it looks like the chip is behaving
1297 memcpy(dev
->chanA
.regs
, reg_init
, 16);
1298 memcpy(dev
->chanB
.regs
, reg_init
,16);
1304 * z8530_init - Initialise a Z8530 device
1305 * @dev: Z8530 device to initialise.
1307 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1308 * is present, identify the type and then program it to hopefully
1309 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1310 * state will sometimes get into stupid modes generating 10Khz
1311 * interrupt streams and the like.
1313 * We set the interrupt handler up to discard any events, in case
1314 * we get them during reset or setp.
1316 * Return 0 for success, or a negative value indicating the problem
1320 int z8530_init(struct z8530_dev
*dev
)
1322 unsigned long flags
;
1325 /* Set up the chip level lock */
1326 spin_lock_init(&dev
->lock
);
1327 dev
->chanA
.lock
= &dev
->lock
;
1328 dev
->chanB
.lock
= &dev
->lock
;
1330 spin_lock_irqsave(&dev
->lock
, flags
);
1331 ret
= do_z8530_init(dev
);
1332 spin_unlock_irqrestore(&dev
->lock
, flags
);
1338 EXPORT_SYMBOL(z8530_init
);
1341 * z8530_shutdown - Shutdown a Z8530 device
1342 * @dev: The Z8530 chip to shutdown
1344 * We set the interrupt handlers to silence any interrupts. We then
1345 * reset the chip and wait 100uS to be sure the reset completed. Just
1346 * in case the caller then tries to do stuff.
1348 * This is called without the lock held
1351 int z8530_shutdown(struct z8530_dev
*dev
)
1353 unsigned long flags
;
1354 /* Reset the chip */
1356 spin_lock_irqsave(&dev
->lock
, flags
);
1357 dev
->chanA
.irqs
=&z8530_nop
;
1358 dev
->chanB
.irqs
=&z8530_nop
;
1359 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1360 /* We must lock the udelay, the chip is offlimits here */
1362 spin_unlock_irqrestore(&dev
->lock
, flags
);
1366 EXPORT_SYMBOL(z8530_shutdown
);
1369 * z8530_channel_load - Load channel data
1370 * @c: Z8530 channel to configure
1371 * @rtable: table of register, value pairs
1372 * FIXME: ioctl to allow user uploaded tables
1374 * Load a Z8530 channel up from the system data. We use +16 to
1375 * indicate the "prime" registers. The value 255 terminates the
1379 int z8530_channel_load(struct z8530_channel
*c
, u8
*rtable
)
1381 unsigned long flags
;
1383 spin_lock_irqsave(c
->lock
, flags
);
1389 write_zsreg(c
, R15
, c
->regs
[15]|1);
1390 write_zsreg(c
, reg
&0x0F, *rtable
);
1392 write_zsreg(c
, R15
, c
->regs
[15]&~1);
1393 c
->regs
[reg
]=*rtable
++;
1395 c
->rx_function
=z8530_null_rx
;
1398 c
->tx_next_skb
=NULL
;
1402 c
->status
=read_zsreg(c
, R0
);
1404 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1406 spin_unlock_irqrestore(c
->lock
, flags
);
1410 EXPORT_SYMBOL(z8530_channel_load
);
1414 * z8530_tx_begin - Begin packet transmission
1415 * @c: The Z8530 channel to kick
1417 * This is the speed sensitive side of transmission. If we are called
1418 * and no buffer is being transmitted we commence the next buffer. If
1419 * nothing is queued we idle the sync.
1421 * Note: We are handling this code path in the interrupt path, keep it
1422 * fast or bad things will happen.
1424 * Called with the lock held.
1427 static void z8530_tx_begin(struct z8530_channel
*c
)
1429 unsigned long flags
;
1433 c
->tx_skb
=c
->tx_next_skb
;
1434 c
->tx_next_skb
=NULL
;
1435 c
->tx_ptr
=c
->tx_next_ptr
;
1442 flags
=claim_dma_lock();
1443 disable_dma(c
->txdma
);
1445 * Check if we crapped out.
1447 if (get_dma_residue(c
->txdma
))
1449 c
->netdevice
->stats
.tx_dropped
++;
1450 c
->netdevice
->stats
.tx_fifo_errors
++;
1452 release_dma_lock(flags
);
1458 c
->txcount
=c
->tx_skb
->len
;
1464 * FIXME. DMA is broken for the original 8530,
1465 * on the older parts we need to set a flag and
1466 * wait for a further TX interrupt to fire this
1470 flags
=claim_dma_lock();
1471 disable_dma(c
->txdma
);
1474 * These two are needed by the 8530/85C30
1475 * and must be issued when idling.
1478 if(c
->dev
->type
!=Z85230
)
1480 write_zsctrl(c
, RES_Tx_CRC
);
1481 write_zsctrl(c
, RES_EOM_L
);
1483 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
1484 clear_dma_ff(c
->txdma
);
1485 set_dma_addr(c
->txdma
, virt_to_bus(c
->tx_ptr
));
1486 set_dma_count(c
->txdma
, c
->txcount
);
1487 enable_dma(c
->txdma
);
1488 release_dma_lock(flags
);
1489 write_zsctrl(c
, RES_EOM_L
);
1490 write_zsreg(c
, R5
, c
->regs
[R5
]|TxENAB
);
1496 write_zsreg(c
, R10
, c
->regs
[10]);
1497 write_zsctrl(c
, RES_Tx_CRC
);
1499 while(c
->txcount
&& (read_zsreg(c
,R0
)&Tx_BUF_EMP
))
1501 write_zsreg(c
, R8
, *c
->tx_ptr
++);
1508 * Since we emptied tx_skb we can ask for more
1510 netif_wake_queue(c
->netdevice
);
1514 * z8530_tx_done - TX complete callback
1515 * @c: The channel that completed a transmit.
1517 * This is called when we complete a packet send. We wake the queue,
1518 * start the next packet going and then free the buffer of the existing
1519 * packet. This code is fairly timing sensitive.
1521 * Called with the register lock held.
1524 static void z8530_tx_done(struct z8530_channel
*c
)
1526 struct sk_buff
*skb
;
1528 /* Actually this can happen.*/
1529 if (c
->tx_skb
== NULL
)
1535 c
->netdevice
->stats
.tx_packets
++;
1536 c
->netdevice
->stats
.tx_bytes
+= skb
->len
;
1537 dev_kfree_skb_irq(skb
);
1541 * z8530_null_rx - Discard a packet
1542 * @c: The channel the packet arrived on
1545 * We point the receive handler at this function when idle. Instead
1546 * of processing the frames we get to throw them away.
1549 void z8530_null_rx(struct z8530_channel
*c
, struct sk_buff
*skb
)
1551 dev_kfree_skb_any(skb
);
1554 EXPORT_SYMBOL(z8530_null_rx
);
1557 * z8530_rx_done - Receive completion callback
1558 * @c: The channel that completed a receive
1560 * A new packet is complete. Our goal here is to get back into receive
1561 * mode as fast as possible. On the Z85230 we could change to using
1562 * ESCC mode, but on the older chips we have no choice. We flip to the
1563 * new buffer immediately in DMA mode so that the DMA of the next
1564 * frame can occur while we are copying the previous buffer to an sk_buff
1566 * Called with the lock held
1569 static void z8530_rx_done(struct z8530_channel
*c
)
1571 struct sk_buff
*skb
;
1575 * Is our receive engine in DMA mode
1581 * Save the ready state and the buffer currently
1582 * being used as the DMA target
1585 int ready
=c
->dma_ready
;
1586 unsigned char *rxb
=c
->rx_buf
[c
->dma_num
];
1587 unsigned long flags
;
1590 * Complete this DMA. Neccessary to find the length
1593 flags
=claim_dma_lock();
1595 disable_dma(c
->rxdma
);
1596 clear_dma_ff(c
->rxdma
);
1598 ct
=c
->mtu
-get_dma_residue(c
->rxdma
);
1600 ct
=2; /* Shit happens.. */
1604 * Normal case: the other slot is free, start the next DMA
1605 * into it immediately.
1611 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
1612 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[c
->dma_num
]));
1613 set_dma_count(c
->rxdma
, c
->mtu
);
1615 enable_dma(c
->rxdma
);
1616 /* Stop any frames that we missed the head of
1618 write_zsreg(c
, R0
, RES_Rx_CRC
);
1621 /* Can't occur as we dont reenable the DMA irq until
1622 after the flip is done */
1623 printk(KERN_WARNING
"%s: DMA flip overrun!\n",
1624 c
->netdevice
->name
);
1626 release_dma_lock(flags
);
1629 * Shove the old buffer into an sk_buff. We can't DMA
1630 * directly into one on a PC - it might be above the 16Mb
1631 * boundary. Optimisation - we could check to see if we
1632 * can avoid the copy. Optimisation 2 - make the memcpy
1636 skb
= dev_alloc_skb(ct
);
1638 c
->netdevice
->stats
.rx_dropped
++;
1639 printk(KERN_WARNING
"%s: Memory squeeze.\n",
1640 c
->netdevice
->name
);
1643 skb_copy_to_linear_data(skb
, rxb
, ct
);
1644 c
->netdevice
->stats
.rx_packets
++;
1645 c
->netdevice
->stats
.rx_bytes
+= ct
;
1653 * The game we play for non DMA is similar. We want to
1654 * get the controller set up for the next packet as fast
1655 * as possible. We potentially only have one byte + the
1656 * fifo length for this. Thus we want to flip to the new
1657 * buffer and then mess around copying and allocating
1658 * things. For the current case it doesn't matter but
1659 * if you build a system where the sync irq isnt blocked
1660 * by the kernel IRQ disable then you need only block the
1661 * sync IRQ for the RT_LOCK area.
1670 c
->dptr
= c
->skb
->data
;
1678 c
->skb2
= dev_alloc_skb(c
->mtu
);
1679 if (c
->skb2
== NULL
)
1680 printk(KERN_WARNING
"%s: memory squeeze.\n",
1681 c
->netdevice
->name
);
1683 skb_put(c
->skb2
, c
->mtu
);
1684 c
->netdevice
->stats
.rx_packets
++;
1685 c
->netdevice
->stats
.rx_bytes
+= ct
;
1688 * If we received a frame we must now process it.
1692 c
->rx_function(c
, skb
);
1694 c
->netdevice
->stats
.rx_dropped
++;
1695 printk(KERN_ERR
"%s: Lost a frame\n", c
->netdevice
->name
);
1700 * spans_boundary - Check a packet can be ISA DMA'd
1701 * @skb: The buffer to check
1703 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1704 * thing can only DMA within a 64K block not across the edges of it.
1707 static inline int spans_boundary(struct sk_buff
*skb
)
1709 unsigned long a
=(unsigned long)skb
->data
;
1711 if(a
&0x00010000) /* If the 64K bit is different.. */
1717 * z8530_queue_xmit - Queue a packet
1718 * @c: The channel to use
1719 * @skb: The packet to kick down the channel
1721 * Queue a packet for transmission. Because we have rather
1722 * hard to hit interrupt latencies for the Z85230 per packet
1723 * even in DMA mode we do the flip to DMA buffer if needed here
1726 * Called from the network code. The lock is not held at this
1730 netdev_tx_t
z8530_queue_xmit(struct z8530_channel
*c
, struct sk_buff
*skb
)
1732 unsigned long flags
;
1734 netif_stop_queue(c
->netdevice
);
1736 return NETDEV_TX_BUSY
;
1739 /* PC SPECIFIC - DMA limits */
1742 * If we will DMA the transmit and its gone over the ISA bus
1743 * limit, then copy to the flip buffer
1746 if(c
->dma_tx
&& ((unsigned long)(virt_to_bus(skb
->data
+skb
->len
))>=16*1024*1024 || spans_boundary(skb
)))
1749 * Send the flip buffer, and flip the flippy bit.
1750 * We don't care which is used when just so long as
1751 * we never use the same buffer twice in a row. Since
1752 * only one buffer can be going out at a time the other
1755 c
->tx_next_ptr
=c
->tx_dma_buf
[c
->tx_dma_used
];
1756 c
->tx_dma_used
^=1; /* Flip temp buffer */
1757 skb_copy_from_linear_data(skb
, c
->tx_next_ptr
, skb
->len
);
1760 c
->tx_next_ptr
=skb
->data
;
1765 spin_lock_irqsave(c
->lock
, flags
);
1767 spin_unlock_irqrestore(c
->lock
, flags
);
1769 return NETDEV_TX_OK
;
1772 EXPORT_SYMBOL(z8530_queue_xmit
);
1777 static const char banner
[] __initdata
=
1778 KERN_INFO
"Generic Z85C30/Z85230 interface driver v0.02\n";
1780 static int __init
z85230_init_driver(void)
1785 module_init(z85230_init_driver
);
1787 static void __exit
z85230_cleanup_driver(void)
1790 module_exit(z85230_cleanup_driver
);
1792 MODULE_AUTHOR("Red Hat Inc.");
1793 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1794 MODULE_LICENSE("GPL");