userfaultfd: shmem: add tlbflush.h header for microblaze
[linux/fpc-iii.git] / kernel / exit.c
blob580da79e38ee89992a93e6cb61f2c16232d580a6
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/cpu.h>
18 #include <linux/acct.h>
19 #include <linux/tsacct_kern.h>
20 #include <linux/file.h>
21 #include <linux/fdtable.h>
22 #include <linux/freezer.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 #include <linux/task_io_accounting_ops.h>
46 #include <linux/tracehook.h>
47 #include <linux/fs_struct.h>
48 #include <linux/init_task.h>
49 #include <linux/perf_event.h>
50 #include <trace/events/sched.h>
51 #include <linux/hw_breakpoint.h>
52 #include <linux/oom.h>
53 #include <linux/writeback.h>
54 #include <linux/shm.h>
55 #include <linux/kcov.h>
56 #include <linux/random.h>
57 #include <linux/rcuwait.h>
59 #include <linux/uaccess.h>
60 #include <asm/unistd.h>
61 #include <asm/pgtable.h>
62 #include <asm/mmu_context.h>
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 u64 utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 #ifdef CONFIG_POSIX_TIMERS
96 posix_cpu_timers_exit(tsk);
97 if (group_dead) {
98 posix_cpu_timers_exit_group(tsk);
99 } else {
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk)))
106 posix_cpu_timers_exit_group(tsk);
108 #endif
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
115 * If there is any task waiting for the group exit
116 * then notify it:
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
167 static void delayed_put_task_struct(struct rcu_head *rhp)
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
177 void release_task(struct task_struct *p)
179 struct task_struct *leader;
180 int zap_leader;
181 repeat:
182 /* don't need to get the RCU readlock here - the process is dead and
183 * can't be modifying its own credentials. But shut RCU-lockdep up */
184 rcu_read_lock();
185 atomic_dec(&__task_cred(p)->user->processes);
186 rcu_read_unlock();
188 proc_flush_task(p);
190 write_lock_irq(&tasklist_lock);
191 ptrace_release_task(p);
192 __exit_signal(p);
195 * If we are the last non-leader member of the thread
196 * group, and the leader is zombie, then notify the
197 * group leader's parent process. (if it wants notification.)
199 zap_leader = 0;
200 leader = p->group_leader;
201 if (leader != p && thread_group_empty(leader)
202 && leader->exit_state == EXIT_ZOMBIE) {
204 * If we were the last child thread and the leader has
205 * exited already, and the leader's parent ignores SIGCHLD,
206 * then we are the one who should release the leader.
208 zap_leader = do_notify_parent(leader, leader->exit_signal);
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
223 * Note that if this function returns a valid task_struct pointer (!NULL)
224 * task->usage must remain >0 for the duration of the RCU critical section.
226 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
228 struct sighand_struct *sighand;
229 struct task_struct *task;
232 * We need to verify that release_task() was not called and thus
233 * delayed_put_task_struct() can't run and drop the last reference
234 * before rcu_read_unlock(). We check task->sighand != NULL,
235 * but we can read the already freed and reused memory.
237 retry:
238 task = rcu_dereference(*ptask);
239 if (!task)
240 return NULL;
242 probe_kernel_address(&task->sighand, sighand);
245 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
246 * was already freed we can not miss the preceding update of this
247 * pointer.
249 smp_rmb();
250 if (unlikely(task != READ_ONCE(*ptask)))
251 goto retry;
254 * We've re-checked that "task == *ptask", now we have two different
255 * cases:
257 * 1. This is actually the same task/task_struct. In this case
258 * sighand != NULL tells us it is still alive.
260 * 2. This is another task which got the same memory for task_struct.
261 * We can't know this of course, and we can not trust
262 * sighand != NULL.
264 * In this case we actually return a random value, but this is
265 * correct.
267 * If we return NULL - we can pretend that we actually noticed that
268 * *ptask was updated when the previous task has exited. Or pretend
269 * that probe_slab_address(&sighand) reads NULL.
271 * If we return the new task (because sighand is not NULL for any
272 * reason) - this is fine too. This (new) task can't go away before
273 * another gp pass.
275 * And note: We could even eliminate the false positive if re-read
276 * task->sighand once again to avoid the falsely NULL. But this case
277 * is very unlikely so we don't care.
279 if (!sighand)
280 return NULL;
282 return task;
285 void rcuwait_wake_up(struct rcuwait *w)
287 struct task_struct *task;
289 rcu_read_lock();
292 * Order condition vs @task, such that everything prior to the load
293 * of @task is visible. This is the condition as to why the user called
294 * rcuwait_trywake() in the first place. Pairs with set_current_state()
295 * barrier (A) in rcuwait_wait_event().
297 * WAIT WAKE
298 * [S] tsk = current [S] cond = true
299 * MB (A) MB (B)
300 * [L] cond [L] tsk
302 smp_rmb(); /* (B) */
305 * Avoid using task_rcu_dereference() magic as long as we are careful,
306 * see comment in rcuwait_wait_event() regarding ->exit_state.
308 task = rcu_dereference(w->task);
309 if (task)
310 wake_up_process(task);
311 rcu_read_unlock();
314 struct task_struct *try_get_task_struct(struct task_struct **ptask)
316 struct task_struct *task;
318 rcu_read_lock();
319 task = task_rcu_dereference(ptask);
320 if (task)
321 get_task_struct(task);
322 rcu_read_unlock();
324 return task;
328 * Determine if a process group is "orphaned", according to the POSIX
329 * definition in 2.2.2.52. Orphaned process groups are not to be affected
330 * by terminal-generated stop signals. Newly orphaned process groups are
331 * to receive a SIGHUP and a SIGCONT.
333 * "I ask you, have you ever known what it is to be an orphan?"
335 static int will_become_orphaned_pgrp(struct pid *pgrp,
336 struct task_struct *ignored_task)
338 struct task_struct *p;
340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
341 if ((p == ignored_task) ||
342 (p->exit_state && thread_group_empty(p)) ||
343 is_global_init(p->real_parent))
344 continue;
346 if (task_pgrp(p->real_parent) != pgrp &&
347 task_session(p->real_parent) == task_session(p))
348 return 0;
349 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
351 return 1;
354 int is_current_pgrp_orphaned(void)
356 int retval;
358 read_lock(&tasklist_lock);
359 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
360 read_unlock(&tasklist_lock);
362 return retval;
365 static bool has_stopped_jobs(struct pid *pgrp)
367 struct task_struct *p;
369 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
370 if (p->signal->flags & SIGNAL_STOP_STOPPED)
371 return true;
372 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
374 return false;
378 * Check to see if any process groups have become orphaned as
379 * a result of our exiting, and if they have any stopped jobs,
380 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
382 static void
383 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
385 struct pid *pgrp = task_pgrp(tsk);
386 struct task_struct *ignored_task = tsk;
388 if (!parent)
389 /* exit: our father is in a different pgrp than
390 * we are and we were the only connection outside.
392 parent = tsk->real_parent;
393 else
394 /* reparent: our child is in a different pgrp than
395 * we are, and it was the only connection outside.
397 ignored_task = NULL;
399 if (task_pgrp(parent) != pgrp &&
400 task_session(parent) == task_session(tsk) &&
401 will_become_orphaned_pgrp(pgrp, ignored_task) &&
402 has_stopped_jobs(pgrp)) {
403 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
404 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
408 #ifdef CONFIG_MEMCG
410 * A task is exiting. If it owned this mm, find a new owner for the mm.
412 void mm_update_next_owner(struct mm_struct *mm)
414 struct task_struct *c, *g, *p = current;
416 retry:
418 * If the exiting or execing task is not the owner, it's
419 * someone else's problem.
421 if (mm->owner != p)
422 return;
424 * The current owner is exiting/execing and there are no other
425 * candidates. Do not leave the mm pointing to a possibly
426 * freed task structure.
428 if (atomic_read(&mm->mm_users) <= 1) {
429 mm->owner = NULL;
430 return;
433 read_lock(&tasklist_lock);
435 * Search in the children
437 list_for_each_entry(c, &p->children, sibling) {
438 if (c->mm == mm)
439 goto assign_new_owner;
443 * Search in the siblings
445 list_for_each_entry(c, &p->real_parent->children, sibling) {
446 if (c->mm == mm)
447 goto assign_new_owner;
451 * Search through everything else, we should not get here often.
453 for_each_process(g) {
454 if (g->flags & PF_KTHREAD)
455 continue;
456 for_each_thread(g, c) {
457 if (c->mm == mm)
458 goto assign_new_owner;
459 if (c->mm)
460 break;
463 read_unlock(&tasklist_lock);
465 * We found no owner yet mm_users > 1: this implies that we are
466 * most likely racing with swapoff (try_to_unuse()) or /proc or
467 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
469 mm->owner = NULL;
470 return;
472 assign_new_owner:
473 BUG_ON(c == p);
474 get_task_struct(c);
476 * The task_lock protects c->mm from changing.
477 * We always want mm->owner->mm == mm
479 task_lock(c);
481 * Delay read_unlock() till we have the task_lock()
482 * to ensure that c does not slip away underneath us
484 read_unlock(&tasklist_lock);
485 if (c->mm != mm) {
486 task_unlock(c);
487 put_task_struct(c);
488 goto retry;
490 mm->owner = c;
491 task_unlock(c);
492 put_task_struct(c);
494 #endif /* CONFIG_MEMCG */
497 * Turn us into a lazy TLB process if we
498 * aren't already..
500 static void exit_mm(void)
502 struct mm_struct *mm = current->mm;
503 struct core_state *core_state;
505 mm_release(current, mm);
506 if (!mm)
507 return;
508 sync_mm_rss(mm);
510 * Serialize with any possible pending coredump.
511 * We must hold mmap_sem around checking core_state
512 * and clearing tsk->mm. The core-inducing thread
513 * will increment ->nr_threads for each thread in the
514 * group with ->mm != NULL.
516 down_read(&mm->mmap_sem);
517 core_state = mm->core_state;
518 if (core_state) {
519 struct core_thread self;
521 up_read(&mm->mmap_sem);
523 self.task = current;
524 self.next = xchg(&core_state->dumper.next, &self);
526 * Implies mb(), the result of xchg() must be visible
527 * to core_state->dumper.
529 if (atomic_dec_and_test(&core_state->nr_threads))
530 complete(&core_state->startup);
532 for (;;) {
533 set_current_state(TASK_UNINTERRUPTIBLE);
534 if (!self.task) /* see coredump_finish() */
535 break;
536 freezable_schedule();
538 __set_current_state(TASK_RUNNING);
539 down_read(&mm->mmap_sem);
541 atomic_inc(&mm->mm_count);
542 BUG_ON(mm != current->active_mm);
543 /* more a memory barrier than a real lock */
544 task_lock(current);
545 current->mm = NULL;
546 up_read(&mm->mmap_sem);
547 enter_lazy_tlb(mm, current);
548 task_unlock(current);
549 mm_update_next_owner(mm);
550 mmput(mm);
551 if (test_thread_flag(TIF_MEMDIE))
552 exit_oom_victim();
555 static struct task_struct *find_alive_thread(struct task_struct *p)
557 struct task_struct *t;
559 for_each_thread(p, t) {
560 if (!(t->flags & PF_EXITING))
561 return t;
563 return NULL;
566 static struct task_struct *find_child_reaper(struct task_struct *father)
567 __releases(&tasklist_lock)
568 __acquires(&tasklist_lock)
570 struct pid_namespace *pid_ns = task_active_pid_ns(father);
571 struct task_struct *reaper = pid_ns->child_reaper;
573 if (likely(reaper != father))
574 return reaper;
576 reaper = find_alive_thread(father);
577 if (reaper) {
578 pid_ns->child_reaper = reaper;
579 return reaper;
582 write_unlock_irq(&tasklist_lock);
583 if (unlikely(pid_ns == &init_pid_ns)) {
584 panic("Attempted to kill init! exitcode=0x%08x\n",
585 father->signal->group_exit_code ?: father->exit_code);
587 zap_pid_ns_processes(pid_ns);
588 write_lock_irq(&tasklist_lock);
590 return father;
594 * When we die, we re-parent all our children, and try to:
595 * 1. give them to another thread in our thread group, if such a member exists
596 * 2. give it to the first ancestor process which prctl'd itself as a
597 * child_subreaper for its children (like a service manager)
598 * 3. give it to the init process (PID 1) in our pid namespace
600 static struct task_struct *find_new_reaper(struct task_struct *father,
601 struct task_struct *child_reaper)
603 struct task_struct *thread, *reaper;
605 thread = find_alive_thread(father);
606 if (thread)
607 return thread;
609 if (father->signal->has_child_subreaper) {
611 * Find the first ->is_child_subreaper ancestor in our pid_ns.
612 * We start from father to ensure we can not look into another
613 * namespace, this is safe because all its threads are dead.
615 for (reaper = father;
616 !same_thread_group(reaper, child_reaper);
617 reaper = reaper->real_parent) {
618 /* call_usermodehelper() descendants need this check */
619 if (reaper == &init_task)
620 break;
621 if (!reaper->signal->is_child_subreaper)
622 continue;
623 thread = find_alive_thread(reaper);
624 if (thread)
625 return thread;
629 return child_reaper;
633 * Any that need to be release_task'd are put on the @dead list.
635 static void reparent_leader(struct task_struct *father, struct task_struct *p,
636 struct list_head *dead)
638 if (unlikely(p->exit_state == EXIT_DEAD))
639 return;
641 /* We don't want people slaying init. */
642 p->exit_signal = SIGCHLD;
644 /* If it has exited notify the new parent about this child's death. */
645 if (!p->ptrace &&
646 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
647 if (do_notify_parent(p, p->exit_signal)) {
648 p->exit_state = EXIT_DEAD;
649 list_add(&p->ptrace_entry, dead);
653 kill_orphaned_pgrp(p, father);
657 * This does two things:
659 * A. Make init inherit all the child processes
660 * B. Check to see if any process groups have become orphaned
661 * as a result of our exiting, and if they have any stopped
662 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
664 static void forget_original_parent(struct task_struct *father,
665 struct list_head *dead)
667 struct task_struct *p, *t, *reaper;
669 if (unlikely(!list_empty(&father->ptraced)))
670 exit_ptrace(father, dead);
672 /* Can drop and reacquire tasklist_lock */
673 reaper = find_child_reaper(father);
674 if (list_empty(&father->children))
675 return;
677 reaper = find_new_reaper(father, reaper);
678 list_for_each_entry(p, &father->children, sibling) {
679 for_each_thread(p, t) {
680 t->real_parent = reaper;
681 BUG_ON((!t->ptrace) != (t->parent == father));
682 if (likely(!t->ptrace))
683 t->parent = t->real_parent;
684 if (t->pdeath_signal)
685 group_send_sig_info(t->pdeath_signal,
686 SEND_SIG_NOINFO, t);
689 * If this is a threaded reparent there is no need to
690 * notify anyone anything has happened.
692 if (!same_thread_group(reaper, father))
693 reparent_leader(father, p, dead);
695 list_splice_tail_init(&father->children, &reaper->children);
699 * Send signals to all our closest relatives so that they know
700 * to properly mourn us..
702 static void exit_notify(struct task_struct *tsk, int group_dead)
704 bool autoreap;
705 struct task_struct *p, *n;
706 LIST_HEAD(dead);
708 write_lock_irq(&tasklist_lock);
709 forget_original_parent(tsk, &dead);
711 if (group_dead)
712 kill_orphaned_pgrp(tsk->group_leader, NULL);
714 if (unlikely(tsk->ptrace)) {
715 int sig = thread_group_leader(tsk) &&
716 thread_group_empty(tsk) &&
717 !ptrace_reparented(tsk) ?
718 tsk->exit_signal : SIGCHLD;
719 autoreap = do_notify_parent(tsk, sig);
720 } else if (thread_group_leader(tsk)) {
721 autoreap = thread_group_empty(tsk) &&
722 do_notify_parent(tsk, tsk->exit_signal);
723 } else {
724 autoreap = true;
727 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
728 if (tsk->exit_state == EXIT_DEAD)
729 list_add(&tsk->ptrace_entry, &dead);
731 /* mt-exec, de_thread() is waiting for group leader */
732 if (unlikely(tsk->signal->notify_count < 0))
733 wake_up_process(tsk->signal->group_exit_task);
734 write_unlock_irq(&tasklist_lock);
736 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
737 list_del_init(&p->ptrace_entry);
738 release_task(p);
742 #ifdef CONFIG_DEBUG_STACK_USAGE
743 static void check_stack_usage(void)
745 static DEFINE_SPINLOCK(low_water_lock);
746 static int lowest_to_date = THREAD_SIZE;
747 unsigned long free;
749 free = stack_not_used(current);
751 if (free >= lowest_to_date)
752 return;
754 spin_lock(&low_water_lock);
755 if (free < lowest_to_date) {
756 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
757 current->comm, task_pid_nr(current), free);
758 lowest_to_date = free;
760 spin_unlock(&low_water_lock);
762 #else
763 static inline void check_stack_usage(void) {}
764 #endif
766 void __noreturn do_exit(long code)
768 struct task_struct *tsk = current;
769 int group_dead;
770 TASKS_RCU(int tasks_rcu_i);
772 profile_task_exit(tsk);
773 kcov_task_exit(tsk);
775 WARN_ON(blk_needs_flush_plug(tsk));
777 if (unlikely(in_interrupt()))
778 panic("Aiee, killing interrupt handler!");
779 if (unlikely(!tsk->pid))
780 panic("Attempted to kill the idle task!");
783 * If do_exit is called because this processes oopsed, it's possible
784 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 * continuing. Amongst other possible reasons, this is to prevent
786 * mm_release()->clear_child_tid() from writing to a user-controlled
787 * kernel address.
789 set_fs(USER_DS);
791 ptrace_event(PTRACE_EVENT_EXIT, code);
793 validate_creds_for_do_exit(tsk);
796 * We're taking recursive faults here in do_exit. Safest is to just
797 * leave this task alone and wait for reboot.
799 if (unlikely(tsk->flags & PF_EXITING)) {
800 pr_alert("Fixing recursive fault but reboot is needed!\n");
802 * We can do this unlocked here. The futex code uses
803 * this flag just to verify whether the pi state
804 * cleanup has been done or not. In the worst case it
805 * loops once more. We pretend that the cleanup was
806 * done as there is no way to return. Either the
807 * OWNER_DIED bit is set by now or we push the blocked
808 * task into the wait for ever nirwana as well.
810 tsk->flags |= PF_EXITPIDONE;
811 set_current_state(TASK_UNINTERRUPTIBLE);
812 schedule();
815 exit_signals(tsk); /* sets PF_EXITING */
817 * Ensure that all new tsk->pi_lock acquisitions must observe
818 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
820 smp_mb();
822 * Ensure that we must observe the pi_state in exit_mm() ->
823 * mm_release() -> exit_pi_state_list().
825 raw_spin_unlock_wait(&tsk->pi_lock);
827 if (unlikely(in_atomic())) {
828 pr_info("note: %s[%d] exited with preempt_count %d\n",
829 current->comm, task_pid_nr(current),
830 preempt_count());
831 preempt_count_set(PREEMPT_ENABLED);
834 /* sync mm's RSS info before statistics gathering */
835 if (tsk->mm)
836 sync_mm_rss(tsk->mm);
837 acct_update_integrals(tsk);
838 group_dead = atomic_dec_and_test(&tsk->signal->live);
839 if (group_dead) {
840 #ifdef CONFIG_POSIX_TIMERS
841 hrtimer_cancel(&tsk->signal->real_timer);
842 exit_itimers(tsk->signal);
843 #endif
844 if (tsk->mm)
845 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 acct_collect(code, group_dead);
848 if (group_dead)
849 tty_audit_exit();
850 audit_free(tsk);
852 tsk->exit_code = code;
853 taskstats_exit(tsk, group_dead);
855 exit_mm();
857 if (group_dead)
858 acct_process();
859 trace_sched_process_exit(tsk);
861 exit_sem(tsk);
862 exit_shm(tsk);
863 exit_files(tsk);
864 exit_fs(tsk);
865 if (group_dead)
866 disassociate_ctty(1);
867 exit_task_namespaces(tsk);
868 exit_task_work(tsk);
869 exit_thread(tsk);
872 * Flush inherited counters to the parent - before the parent
873 * gets woken up by child-exit notifications.
875 * because of cgroup mode, must be called before cgroup_exit()
877 perf_event_exit_task(tsk);
879 sched_autogroup_exit_task(tsk);
880 cgroup_exit(tsk);
883 * FIXME: do that only when needed, using sched_exit tracepoint
885 flush_ptrace_hw_breakpoint(tsk);
887 TASKS_RCU(preempt_disable());
888 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
889 TASKS_RCU(preempt_enable());
890 exit_notify(tsk, group_dead);
891 proc_exit_connector(tsk);
892 mpol_put_task_policy(tsk);
893 #ifdef CONFIG_FUTEX
894 if (unlikely(current->pi_state_cache))
895 kfree(current->pi_state_cache);
896 #endif
898 * Make sure we are holding no locks:
900 debug_check_no_locks_held();
902 * We can do this unlocked here. The futex code uses this flag
903 * just to verify whether the pi state cleanup has been done
904 * or not. In the worst case it loops once more.
906 tsk->flags |= PF_EXITPIDONE;
908 if (tsk->io_context)
909 exit_io_context(tsk);
911 if (tsk->splice_pipe)
912 free_pipe_info(tsk->splice_pipe);
914 if (tsk->task_frag.page)
915 put_page(tsk->task_frag.page);
917 validate_creds_for_do_exit(tsk);
919 check_stack_usage();
920 preempt_disable();
921 if (tsk->nr_dirtied)
922 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
923 exit_rcu();
924 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
926 do_task_dead();
928 EXPORT_SYMBOL_GPL(do_exit);
930 void complete_and_exit(struct completion *comp, long code)
932 if (comp)
933 complete(comp);
935 do_exit(code);
937 EXPORT_SYMBOL(complete_and_exit);
939 SYSCALL_DEFINE1(exit, int, error_code)
941 do_exit((error_code&0xff)<<8);
945 * Take down every thread in the group. This is called by fatal signals
946 * as well as by sys_exit_group (below).
948 void
949 do_group_exit(int exit_code)
951 struct signal_struct *sig = current->signal;
953 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
955 if (signal_group_exit(sig))
956 exit_code = sig->group_exit_code;
957 else if (!thread_group_empty(current)) {
958 struct sighand_struct *const sighand = current->sighand;
960 spin_lock_irq(&sighand->siglock);
961 if (signal_group_exit(sig))
962 /* Another thread got here before we took the lock. */
963 exit_code = sig->group_exit_code;
964 else {
965 sig->group_exit_code = exit_code;
966 sig->flags = SIGNAL_GROUP_EXIT;
967 zap_other_threads(current);
969 spin_unlock_irq(&sighand->siglock);
972 do_exit(exit_code);
973 /* NOTREACHED */
977 * this kills every thread in the thread group. Note that any externally
978 * wait4()-ing process will get the correct exit code - even if this
979 * thread is not the thread group leader.
981 SYSCALL_DEFINE1(exit_group, int, error_code)
983 do_group_exit((error_code & 0xff) << 8);
984 /* NOTREACHED */
985 return 0;
988 struct wait_opts {
989 enum pid_type wo_type;
990 int wo_flags;
991 struct pid *wo_pid;
993 struct siginfo __user *wo_info;
994 int __user *wo_stat;
995 struct rusage __user *wo_rusage;
997 wait_queue_t child_wait;
998 int notask_error;
1001 static inline
1002 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1004 if (type != PIDTYPE_PID)
1005 task = task->group_leader;
1006 return task->pids[type].pid;
1009 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1011 return wo->wo_type == PIDTYPE_MAX ||
1012 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1015 static int
1016 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1018 if (!eligible_pid(wo, p))
1019 return 0;
1022 * Wait for all children (clone and not) if __WALL is set or
1023 * if it is traced by us.
1025 if (ptrace || (wo->wo_flags & __WALL))
1026 return 1;
1029 * Otherwise, wait for clone children *only* if __WCLONE is set;
1030 * otherwise, wait for non-clone children *only*.
1032 * Note: a "clone" child here is one that reports to its parent
1033 * using a signal other than SIGCHLD, or a non-leader thread which
1034 * we can only see if it is traced by us.
1036 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1037 return 0;
1039 return 1;
1042 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1043 pid_t pid, uid_t uid, int why, int status)
1045 struct siginfo __user *infop;
1046 int retval = wo->wo_rusage
1047 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1049 put_task_struct(p);
1050 infop = wo->wo_info;
1051 if (infop) {
1052 if (!retval)
1053 retval = put_user(SIGCHLD, &infop->si_signo);
1054 if (!retval)
1055 retval = put_user(0, &infop->si_errno);
1056 if (!retval)
1057 retval = put_user((short)why, &infop->si_code);
1058 if (!retval)
1059 retval = put_user(pid, &infop->si_pid);
1060 if (!retval)
1061 retval = put_user(uid, &infop->si_uid);
1062 if (!retval)
1063 retval = put_user(status, &infop->si_status);
1065 if (!retval)
1066 retval = pid;
1067 return retval;
1071 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1072 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1073 * the lock and this task is uninteresting. If we return nonzero, we have
1074 * released the lock and the system call should return.
1076 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1078 int state, retval, status;
1079 pid_t pid = task_pid_vnr(p);
1080 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1081 struct siginfo __user *infop;
1083 if (!likely(wo->wo_flags & WEXITED))
1084 return 0;
1086 if (unlikely(wo->wo_flags & WNOWAIT)) {
1087 int exit_code = p->exit_code;
1088 int why;
1090 get_task_struct(p);
1091 read_unlock(&tasklist_lock);
1092 sched_annotate_sleep();
1094 if ((exit_code & 0x7f) == 0) {
1095 why = CLD_EXITED;
1096 status = exit_code >> 8;
1097 } else {
1098 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1099 status = exit_code & 0x7f;
1101 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1104 * Move the task's state to DEAD/TRACE, only one thread can do this.
1106 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1107 EXIT_TRACE : EXIT_DEAD;
1108 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1109 return 0;
1111 * We own this thread, nobody else can reap it.
1113 read_unlock(&tasklist_lock);
1114 sched_annotate_sleep();
1117 * Check thread_group_leader() to exclude the traced sub-threads.
1119 if (state == EXIT_DEAD && thread_group_leader(p)) {
1120 struct signal_struct *sig = p->signal;
1121 struct signal_struct *psig = current->signal;
1122 unsigned long maxrss;
1123 u64 tgutime, tgstime;
1126 * The resource counters for the group leader are in its
1127 * own task_struct. Those for dead threads in the group
1128 * are in its signal_struct, as are those for the child
1129 * processes it has previously reaped. All these
1130 * accumulate in the parent's signal_struct c* fields.
1132 * We don't bother to take a lock here to protect these
1133 * p->signal fields because the whole thread group is dead
1134 * and nobody can change them.
1136 * psig->stats_lock also protects us from our sub-theads
1137 * which can reap other children at the same time. Until
1138 * we change k_getrusage()-like users to rely on this lock
1139 * we have to take ->siglock as well.
1141 * We use thread_group_cputime_adjusted() to get times for
1142 * the thread group, which consolidates times for all threads
1143 * in the group including the group leader.
1145 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1146 spin_lock_irq(&current->sighand->siglock);
1147 write_seqlock(&psig->stats_lock);
1148 psig->cutime += tgutime + sig->cutime;
1149 psig->cstime += tgstime + sig->cstime;
1150 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1151 psig->cmin_flt +=
1152 p->min_flt + sig->min_flt + sig->cmin_flt;
1153 psig->cmaj_flt +=
1154 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1155 psig->cnvcsw +=
1156 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1157 psig->cnivcsw +=
1158 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1159 psig->cinblock +=
1160 task_io_get_inblock(p) +
1161 sig->inblock + sig->cinblock;
1162 psig->coublock +=
1163 task_io_get_oublock(p) +
1164 sig->oublock + sig->coublock;
1165 maxrss = max(sig->maxrss, sig->cmaxrss);
1166 if (psig->cmaxrss < maxrss)
1167 psig->cmaxrss = maxrss;
1168 task_io_accounting_add(&psig->ioac, &p->ioac);
1169 task_io_accounting_add(&psig->ioac, &sig->ioac);
1170 write_sequnlock(&psig->stats_lock);
1171 spin_unlock_irq(&current->sighand->siglock);
1174 retval = wo->wo_rusage
1175 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1176 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1177 ? p->signal->group_exit_code : p->exit_code;
1178 if (!retval && wo->wo_stat)
1179 retval = put_user(status, wo->wo_stat);
1181 infop = wo->wo_info;
1182 if (!retval && infop)
1183 retval = put_user(SIGCHLD, &infop->si_signo);
1184 if (!retval && infop)
1185 retval = put_user(0, &infop->si_errno);
1186 if (!retval && infop) {
1187 int why;
1189 if ((status & 0x7f) == 0) {
1190 why = CLD_EXITED;
1191 status >>= 8;
1192 } else {
1193 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194 status &= 0x7f;
1196 retval = put_user((short)why, &infop->si_code);
1197 if (!retval)
1198 retval = put_user(status, &infop->si_status);
1200 if (!retval && infop)
1201 retval = put_user(pid, &infop->si_pid);
1202 if (!retval && infop)
1203 retval = put_user(uid, &infop->si_uid);
1204 if (!retval)
1205 retval = pid;
1207 if (state == EXIT_TRACE) {
1208 write_lock_irq(&tasklist_lock);
1209 /* We dropped tasklist, ptracer could die and untrace */
1210 ptrace_unlink(p);
1212 /* If parent wants a zombie, don't release it now */
1213 state = EXIT_ZOMBIE;
1214 if (do_notify_parent(p, p->exit_signal))
1215 state = EXIT_DEAD;
1216 p->exit_state = state;
1217 write_unlock_irq(&tasklist_lock);
1219 if (state == EXIT_DEAD)
1220 release_task(p);
1222 return retval;
1225 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1227 if (ptrace) {
1228 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1229 return &p->exit_code;
1230 } else {
1231 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1232 return &p->signal->group_exit_code;
1234 return NULL;
1238 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1239 * @wo: wait options
1240 * @ptrace: is the wait for ptrace
1241 * @p: task to wait for
1243 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1245 * CONTEXT:
1246 * read_lock(&tasklist_lock), which is released if return value is
1247 * non-zero. Also, grabs and releases @p->sighand->siglock.
1249 * RETURNS:
1250 * 0 if wait condition didn't exist and search for other wait conditions
1251 * should continue. Non-zero return, -errno on failure and @p's pid on
1252 * success, implies that tasklist_lock is released and wait condition
1253 * search should terminate.
1255 static int wait_task_stopped(struct wait_opts *wo,
1256 int ptrace, struct task_struct *p)
1258 struct siginfo __user *infop;
1259 int retval, exit_code, *p_code, why;
1260 uid_t uid = 0; /* unneeded, required by compiler */
1261 pid_t pid;
1264 * Traditionally we see ptrace'd stopped tasks regardless of options.
1266 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1267 return 0;
1269 if (!task_stopped_code(p, ptrace))
1270 return 0;
1272 exit_code = 0;
1273 spin_lock_irq(&p->sighand->siglock);
1275 p_code = task_stopped_code(p, ptrace);
1276 if (unlikely(!p_code))
1277 goto unlock_sig;
1279 exit_code = *p_code;
1280 if (!exit_code)
1281 goto unlock_sig;
1283 if (!unlikely(wo->wo_flags & WNOWAIT))
1284 *p_code = 0;
1286 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1287 unlock_sig:
1288 spin_unlock_irq(&p->sighand->siglock);
1289 if (!exit_code)
1290 return 0;
1293 * Now we are pretty sure this task is interesting.
1294 * Make sure it doesn't get reaped out from under us while we
1295 * give up the lock and then examine it below. We don't want to
1296 * keep holding onto the tasklist_lock while we call getrusage and
1297 * possibly take page faults for user memory.
1299 get_task_struct(p);
1300 pid = task_pid_vnr(p);
1301 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1302 read_unlock(&tasklist_lock);
1303 sched_annotate_sleep();
1305 if (unlikely(wo->wo_flags & WNOWAIT))
1306 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1308 retval = wo->wo_rusage
1309 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1310 if (!retval && wo->wo_stat)
1311 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1313 infop = wo->wo_info;
1314 if (!retval && infop)
1315 retval = put_user(SIGCHLD, &infop->si_signo);
1316 if (!retval && infop)
1317 retval = put_user(0, &infop->si_errno);
1318 if (!retval && infop)
1319 retval = put_user((short)why, &infop->si_code);
1320 if (!retval && infop)
1321 retval = put_user(exit_code, &infop->si_status);
1322 if (!retval && infop)
1323 retval = put_user(pid, &infop->si_pid);
1324 if (!retval && infop)
1325 retval = put_user(uid, &infop->si_uid);
1326 if (!retval)
1327 retval = pid;
1328 put_task_struct(p);
1330 BUG_ON(!retval);
1331 return retval;
1335 * Handle do_wait work for one task in a live, non-stopped state.
1336 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1337 * the lock and this task is uninteresting. If we return nonzero, we have
1338 * released the lock and the system call should return.
1340 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1342 int retval;
1343 pid_t pid;
1344 uid_t uid;
1346 if (!unlikely(wo->wo_flags & WCONTINUED))
1347 return 0;
1349 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1350 return 0;
1352 spin_lock_irq(&p->sighand->siglock);
1353 /* Re-check with the lock held. */
1354 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1355 spin_unlock_irq(&p->sighand->siglock);
1356 return 0;
1358 if (!unlikely(wo->wo_flags & WNOWAIT))
1359 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1360 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1361 spin_unlock_irq(&p->sighand->siglock);
1363 pid = task_pid_vnr(p);
1364 get_task_struct(p);
1365 read_unlock(&tasklist_lock);
1366 sched_annotate_sleep();
1368 if (!wo->wo_info) {
1369 retval = wo->wo_rusage
1370 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1371 put_task_struct(p);
1372 if (!retval && wo->wo_stat)
1373 retval = put_user(0xffff, wo->wo_stat);
1374 if (!retval)
1375 retval = pid;
1376 } else {
1377 retval = wait_noreap_copyout(wo, p, pid, uid,
1378 CLD_CONTINUED, SIGCONT);
1379 BUG_ON(retval == 0);
1382 return retval;
1386 * Consider @p for a wait by @parent.
1388 * -ECHILD should be in ->notask_error before the first call.
1389 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1390 * Returns zero if the search for a child should continue;
1391 * then ->notask_error is 0 if @p is an eligible child,
1392 * or still -ECHILD.
1394 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1395 struct task_struct *p)
1398 * We can race with wait_task_zombie() from another thread.
1399 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1400 * can't confuse the checks below.
1402 int exit_state = ACCESS_ONCE(p->exit_state);
1403 int ret;
1405 if (unlikely(exit_state == EXIT_DEAD))
1406 return 0;
1408 ret = eligible_child(wo, ptrace, p);
1409 if (!ret)
1410 return ret;
1412 if (unlikely(exit_state == EXIT_TRACE)) {
1414 * ptrace == 0 means we are the natural parent. In this case
1415 * we should clear notask_error, debugger will notify us.
1417 if (likely(!ptrace))
1418 wo->notask_error = 0;
1419 return 0;
1422 if (likely(!ptrace) && unlikely(p->ptrace)) {
1424 * If it is traced by its real parent's group, just pretend
1425 * the caller is ptrace_do_wait() and reap this child if it
1426 * is zombie.
1428 * This also hides group stop state from real parent; otherwise
1429 * a single stop can be reported twice as group and ptrace stop.
1430 * If a ptracer wants to distinguish these two events for its
1431 * own children it should create a separate process which takes
1432 * the role of real parent.
1434 if (!ptrace_reparented(p))
1435 ptrace = 1;
1438 /* slay zombie? */
1439 if (exit_state == EXIT_ZOMBIE) {
1440 /* we don't reap group leaders with subthreads */
1441 if (!delay_group_leader(p)) {
1443 * A zombie ptracee is only visible to its ptracer.
1444 * Notification and reaping will be cascaded to the
1445 * real parent when the ptracer detaches.
1447 if (unlikely(ptrace) || likely(!p->ptrace))
1448 return wait_task_zombie(wo, p);
1452 * Allow access to stopped/continued state via zombie by
1453 * falling through. Clearing of notask_error is complex.
1455 * When !@ptrace:
1457 * If WEXITED is set, notask_error should naturally be
1458 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1459 * so, if there are live subthreads, there are events to
1460 * wait for. If all subthreads are dead, it's still safe
1461 * to clear - this function will be called again in finite
1462 * amount time once all the subthreads are released and
1463 * will then return without clearing.
1465 * When @ptrace:
1467 * Stopped state is per-task and thus can't change once the
1468 * target task dies. Only continued and exited can happen.
1469 * Clear notask_error if WCONTINUED | WEXITED.
1471 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1472 wo->notask_error = 0;
1473 } else {
1475 * @p is alive and it's gonna stop, continue or exit, so
1476 * there always is something to wait for.
1478 wo->notask_error = 0;
1482 * Wait for stopped. Depending on @ptrace, different stopped state
1483 * is used and the two don't interact with each other.
1485 ret = wait_task_stopped(wo, ptrace, p);
1486 if (ret)
1487 return ret;
1490 * Wait for continued. There's only one continued state and the
1491 * ptracer can consume it which can confuse the real parent. Don't
1492 * use WCONTINUED from ptracer. You don't need or want it.
1494 return wait_task_continued(wo, p);
1498 * Do the work of do_wait() for one thread in the group, @tsk.
1500 * -ECHILD should be in ->notask_error before the first call.
1501 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1502 * Returns zero if the search for a child should continue; then
1503 * ->notask_error is 0 if there were any eligible children,
1504 * or still -ECHILD.
1506 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1508 struct task_struct *p;
1510 list_for_each_entry(p, &tsk->children, sibling) {
1511 int ret = wait_consider_task(wo, 0, p);
1513 if (ret)
1514 return ret;
1517 return 0;
1520 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1522 struct task_struct *p;
1524 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1525 int ret = wait_consider_task(wo, 1, p);
1527 if (ret)
1528 return ret;
1531 return 0;
1534 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1535 int sync, void *key)
1537 struct wait_opts *wo = container_of(wait, struct wait_opts,
1538 child_wait);
1539 struct task_struct *p = key;
1541 if (!eligible_pid(wo, p))
1542 return 0;
1544 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1545 return 0;
1547 return default_wake_function(wait, mode, sync, key);
1550 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1552 __wake_up_sync_key(&parent->signal->wait_chldexit,
1553 TASK_INTERRUPTIBLE, 1, p);
1556 static long do_wait(struct wait_opts *wo)
1558 struct task_struct *tsk;
1559 int retval;
1561 trace_sched_process_wait(wo->wo_pid);
1563 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1564 wo->child_wait.private = current;
1565 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1566 repeat:
1568 * If there is nothing that can match our criteria, just get out.
1569 * We will clear ->notask_error to zero if we see any child that
1570 * might later match our criteria, even if we are not able to reap
1571 * it yet.
1573 wo->notask_error = -ECHILD;
1574 if ((wo->wo_type < PIDTYPE_MAX) &&
1575 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1576 goto notask;
1578 set_current_state(TASK_INTERRUPTIBLE);
1579 read_lock(&tasklist_lock);
1580 tsk = current;
1581 do {
1582 retval = do_wait_thread(wo, tsk);
1583 if (retval)
1584 goto end;
1586 retval = ptrace_do_wait(wo, tsk);
1587 if (retval)
1588 goto end;
1590 if (wo->wo_flags & __WNOTHREAD)
1591 break;
1592 } while_each_thread(current, tsk);
1593 read_unlock(&tasklist_lock);
1595 notask:
1596 retval = wo->notask_error;
1597 if (!retval && !(wo->wo_flags & WNOHANG)) {
1598 retval = -ERESTARTSYS;
1599 if (!signal_pending(current)) {
1600 schedule();
1601 goto repeat;
1604 end:
1605 __set_current_state(TASK_RUNNING);
1606 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1607 return retval;
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 infop, int, options, struct rusage __user *, ru)
1613 struct wait_opts wo;
1614 struct pid *pid = NULL;
1615 enum pid_type type;
1616 long ret;
1618 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1619 __WNOTHREAD|__WCLONE|__WALL))
1620 return -EINVAL;
1621 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1622 return -EINVAL;
1624 switch (which) {
1625 case P_ALL:
1626 type = PIDTYPE_MAX;
1627 break;
1628 case P_PID:
1629 type = PIDTYPE_PID;
1630 if (upid <= 0)
1631 return -EINVAL;
1632 break;
1633 case P_PGID:
1634 type = PIDTYPE_PGID;
1635 if (upid <= 0)
1636 return -EINVAL;
1637 break;
1638 default:
1639 return -EINVAL;
1642 if (type < PIDTYPE_MAX)
1643 pid = find_get_pid(upid);
1645 wo.wo_type = type;
1646 wo.wo_pid = pid;
1647 wo.wo_flags = options;
1648 wo.wo_info = infop;
1649 wo.wo_stat = NULL;
1650 wo.wo_rusage = ru;
1651 ret = do_wait(&wo);
1653 if (ret > 0) {
1654 ret = 0;
1655 } else if (infop) {
1657 * For a WNOHANG return, clear out all the fields
1658 * we would set so the user can easily tell the
1659 * difference.
1661 if (!ret)
1662 ret = put_user(0, &infop->si_signo);
1663 if (!ret)
1664 ret = put_user(0, &infop->si_errno);
1665 if (!ret)
1666 ret = put_user(0, &infop->si_code);
1667 if (!ret)
1668 ret = put_user(0, &infop->si_pid);
1669 if (!ret)
1670 ret = put_user(0, &infop->si_uid);
1671 if (!ret)
1672 ret = put_user(0, &infop->si_status);
1675 put_pid(pid);
1676 return ret;
1679 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1680 int, options, struct rusage __user *, ru)
1682 struct wait_opts wo;
1683 struct pid *pid = NULL;
1684 enum pid_type type;
1685 long ret;
1687 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1688 __WNOTHREAD|__WCLONE|__WALL))
1689 return -EINVAL;
1691 if (upid == -1)
1692 type = PIDTYPE_MAX;
1693 else if (upid < 0) {
1694 type = PIDTYPE_PGID;
1695 pid = find_get_pid(-upid);
1696 } else if (upid == 0) {
1697 type = PIDTYPE_PGID;
1698 pid = get_task_pid(current, PIDTYPE_PGID);
1699 } else /* upid > 0 */ {
1700 type = PIDTYPE_PID;
1701 pid = find_get_pid(upid);
1704 wo.wo_type = type;
1705 wo.wo_pid = pid;
1706 wo.wo_flags = options | WEXITED;
1707 wo.wo_info = NULL;
1708 wo.wo_stat = stat_addr;
1709 wo.wo_rusage = ru;
1710 ret = do_wait(&wo);
1711 put_pid(pid);
1713 return ret;
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1719 * sys_waitpid() remains for compatibility. waitpid() should be
1720 * implemented by calling sys_wait4() from libc.a.
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1724 return sys_wait4(pid, stat_addr, options, NULL);
1727 #endif