2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39 static struct vfsmount
*shm_mnt
;
43 * This virtual memory filesystem is heavily based on the ramfs. It
44 * extends ramfs by the ability to use swap and honor resource limits
45 * which makes it a completely usable filesystem.
48 #include <linux/xattr.h>
49 #include <linux/exportfs.h>
50 #include <linux/posix_acl.h>
51 #include <linux/posix_acl_xattr.h>
52 #include <linux/mman.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/backing-dev.h>
56 #include <linux/shmem_fs.h>
57 #include <linux/writeback.h>
58 #include <linux/blkdev.h>
59 #include <linux/pagevec.h>
60 #include <linux/percpu_counter.h>
61 #include <linux/falloc.h>
62 #include <linux/splice.h>
63 #include <linux/security.h>
64 #include <linux/swapops.h>
65 #include <linux/mempolicy.h>
66 #include <linux/namei.h>
67 #include <linux/ctype.h>
68 #include <linux/migrate.h>
69 #include <linux/highmem.h>
70 #include <linux/seq_file.h>
71 #include <linux/magic.h>
72 #include <linux/syscalls.h>
73 #include <linux/fcntl.h>
74 #include <uapi/linux/memfd.h>
75 #include <linux/rmap.h>
77 #include <linux/uaccess.h>
78 #include <asm/pgtable.h>
82 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
83 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
85 /* Pretend that each entry is of this size in directory's i_size */
86 #define BOGO_DIRENT_SIZE 20
88 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
89 #define SHORT_SYMLINK_LEN 128
92 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
93 * inode->i_private (with i_mutex making sure that it has only one user at
94 * a time): we would prefer not to enlarge the shmem inode just for that.
97 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
98 pgoff_t start
; /* start of range currently being fallocated */
99 pgoff_t next
; /* the next page offset to be fallocated */
100 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
101 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages
/ 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
116 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
117 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
118 struct shmem_inode_info
*info
, pgoff_t index
);
119 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
,
121 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
123 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
)
126 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
127 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
130 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
132 return sb
->s_fs_info
;
136 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
137 * for shared memory and for shared anonymous (/dev/zero) mappings
138 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
139 * consistent with the pre-accounting of private mappings ...
141 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
143 return (flags
& VM_NORESERVE
) ?
144 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
147 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
149 if (!(flags
& VM_NORESERVE
))
150 vm_unacct_memory(VM_ACCT(size
));
153 static inline int shmem_reacct_size(unsigned long flags
,
154 loff_t oldsize
, loff_t newsize
)
156 if (!(flags
& VM_NORESERVE
)) {
157 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
158 return security_vm_enough_memory_mm(current
->mm
,
159 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
160 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
161 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
167 * ... whereas tmpfs objects are accounted incrementally as
168 * pages are allocated, in order to allow large sparse files.
169 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
170 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
172 static inline int shmem_acct_block(unsigned long flags
, long pages
)
174 if (!(flags
& VM_NORESERVE
))
177 return security_vm_enough_memory_mm(current
->mm
,
178 pages
* VM_ACCT(PAGE_SIZE
));
181 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
183 if (flags
& VM_NORESERVE
)
184 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
187 static const struct super_operations shmem_ops
;
188 static const struct address_space_operations shmem_aops
;
189 static const struct file_operations shmem_file_operations
;
190 static const struct inode_operations shmem_inode_operations
;
191 static const struct inode_operations shmem_dir_inode_operations
;
192 static const struct inode_operations shmem_special_inode_operations
;
193 static const struct vm_operations_struct shmem_vm_ops
;
194 static struct file_system_type shmem_fs_type
;
196 bool vma_is_shmem(struct vm_area_struct
*vma
)
198 return vma
->vm_ops
== &shmem_vm_ops
;
201 static LIST_HEAD(shmem_swaplist
);
202 static DEFINE_MUTEX(shmem_swaplist_mutex
);
204 static int shmem_reserve_inode(struct super_block
*sb
)
206 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
207 if (sbinfo
->max_inodes
) {
208 spin_lock(&sbinfo
->stat_lock
);
209 if (!sbinfo
->free_inodes
) {
210 spin_unlock(&sbinfo
->stat_lock
);
213 sbinfo
->free_inodes
--;
214 spin_unlock(&sbinfo
->stat_lock
);
219 static void shmem_free_inode(struct super_block
*sb
)
221 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
222 if (sbinfo
->max_inodes
) {
223 spin_lock(&sbinfo
->stat_lock
);
224 sbinfo
->free_inodes
++;
225 spin_unlock(&sbinfo
->stat_lock
);
230 * shmem_recalc_inode - recalculate the block usage of an inode
231 * @inode: inode to recalc
233 * We have to calculate the free blocks since the mm can drop
234 * undirtied hole pages behind our back.
236 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
237 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
239 * It has to be called with the spinlock held.
241 static void shmem_recalc_inode(struct inode
*inode
)
243 struct shmem_inode_info
*info
= SHMEM_I(inode
);
246 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
248 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
249 if (sbinfo
->max_blocks
)
250 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
251 info
->alloced
-= freed
;
252 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
253 shmem_unacct_blocks(info
->flags
, freed
);
257 bool shmem_charge(struct inode
*inode
, long pages
)
259 struct shmem_inode_info
*info
= SHMEM_I(inode
);
260 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
263 if (shmem_acct_block(info
->flags
, pages
))
265 spin_lock_irqsave(&info
->lock
, flags
);
266 info
->alloced
+= pages
;
267 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
268 shmem_recalc_inode(inode
);
269 spin_unlock_irqrestore(&info
->lock
, flags
);
270 inode
->i_mapping
->nrpages
+= pages
;
272 if (!sbinfo
->max_blocks
)
274 if (percpu_counter_compare(&sbinfo
->used_blocks
,
275 sbinfo
->max_blocks
- pages
) > 0) {
276 inode
->i_mapping
->nrpages
-= pages
;
277 spin_lock_irqsave(&info
->lock
, flags
);
278 info
->alloced
-= pages
;
279 shmem_recalc_inode(inode
);
280 spin_unlock_irqrestore(&info
->lock
, flags
);
281 shmem_unacct_blocks(info
->flags
, pages
);
284 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
288 void shmem_uncharge(struct inode
*inode
, long pages
)
290 struct shmem_inode_info
*info
= SHMEM_I(inode
);
291 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
294 spin_lock_irqsave(&info
->lock
, flags
);
295 info
->alloced
-= pages
;
296 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
297 shmem_recalc_inode(inode
);
298 spin_unlock_irqrestore(&info
->lock
, flags
);
300 if (sbinfo
->max_blocks
)
301 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
302 shmem_unacct_blocks(info
->flags
, pages
);
306 * Replace item expected in radix tree by a new item, while holding tree lock.
308 static int shmem_radix_tree_replace(struct address_space
*mapping
,
309 pgoff_t index
, void *expected
, void *replacement
)
311 struct radix_tree_node
*node
;
315 VM_BUG_ON(!expected
);
316 VM_BUG_ON(!replacement
);
317 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
320 if (item
!= expected
)
322 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
323 replacement
, NULL
, NULL
);
328 * Sometimes, before we decide whether to proceed or to fail, we must check
329 * that an entry was not already brought back from swap by a racing thread.
331 * Checking page is not enough: by the time a SwapCache page is locked, it
332 * might be reused, and again be SwapCache, using the same swap as before.
334 static bool shmem_confirm_swap(struct address_space
*mapping
,
335 pgoff_t index
, swp_entry_t swap
)
340 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
342 return item
== swp_to_radix_entry(swap
);
346 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
349 * disables huge pages for the mount;
351 * enables huge pages for the mount;
352 * SHMEM_HUGE_WITHIN_SIZE:
353 * only allocate huge pages if the page will be fully within i_size,
354 * also respect fadvise()/madvise() hints;
356 * only allocate huge pages if requested with fadvise()/madvise();
359 #define SHMEM_HUGE_NEVER 0
360 #define SHMEM_HUGE_ALWAYS 1
361 #define SHMEM_HUGE_WITHIN_SIZE 2
362 #define SHMEM_HUGE_ADVISE 3
366 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
369 * disables huge on shm_mnt and all mounts, for emergency use;
371 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
374 #define SHMEM_HUGE_DENY (-1)
375 #define SHMEM_HUGE_FORCE (-2)
377 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
378 /* ifdef here to avoid bloating shmem.o when not necessary */
380 int shmem_huge __read_mostly
;
382 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
383 static int shmem_parse_huge(const char *str
)
385 if (!strcmp(str
, "never"))
386 return SHMEM_HUGE_NEVER
;
387 if (!strcmp(str
, "always"))
388 return SHMEM_HUGE_ALWAYS
;
389 if (!strcmp(str
, "within_size"))
390 return SHMEM_HUGE_WITHIN_SIZE
;
391 if (!strcmp(str
, "advise"))
392 return SHMEM_HUGE_ADVISE
;
393 if (!strcmp(str
, "deny"))
394 return SHMEM_HUGE_DENY
;
395 if (!strcmp(str
, "force"))
396 return SHMEM_HUGE_FORCE
;
400 static const char *shmem_format_huge(int huge
)
403 case SHMEM_HUGE_NEVER
:
405 case SHMEM_HUGE_ALWAYS
:
407 case SHMEM_HUGE_WITHIN_SIZE
:
408 return "within_size";
409 case SHMEM_HUGE_ADVISE
:
411 case SHMEM_HUGE_DENY
:
413 case SHMEM_HUGE_FORCE
:
422 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
423 struct shrink_control
*sc
, unsigned long nr_to_split
)
425 LIST_HEAD(list
), *pos
, *next
;
426 LIST_HEAD(to_remove
);
428 struct shmem_inode_info
*info
;
430 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
431 int removed
= 0, split
= 0;
433 if (list_empty(&sbinfo
->shrinklist
))
436 spin_lock(&sbinfo
->shrinklist_lock
);
437 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
438 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
441 inode
= igrab(&info
->vfs_inode
);
443 /* inode is about to be evicted */
445 list_del_init(&info
->shrinklist
);
450 /* Check if there's anything to gain */
451 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
452 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
453 list_move(&info
->shrinklist
, &to_remove
);
458 list_move(&info
->shrinklist
, &list
);
463 spin_unlock(&sbinfo
->shrinklist_lock
);
465 list_for_each_safe(pos
, next
, &to_remove
) {
466 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
467 inode
= &info
->vfs_inode
;
468 list_del_init(&info
->shrinklist
);
472 list_for_each_safe(pos
, next
, &list
) {
475 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
476 inode
= &info
->vfs_inode
;
478 if (nr_to_split
&& split
>= nr_to_split
) {
483 page
= find_lock_page(inode
->i_mapping
,
484 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
488 if (!PageTransHuge(page
)) {
494 ret
= split_huge_page(page
);
499 /* split failed: leave it on the list */
506 list_del_init(&info
->shrinklist
);
511 spin_lock(&sbinfo
->shrinklist_lock
);
512 list_splice_tail(&list
, &sbinfo
->shrinklist
);
513 sbinfo
->shrinklist_len
-= removed
;
514 spin_unlock(&sbinfo
->shrinklist_lock
);
519 static long shmem_unused_huge_scan(struct super_block
*sb
,
520 struct shrink_control
*sc
)
522 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
524 if (!READ_ONCE(sbinfo
->shrinklist_len
))
527 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
530 static long shmem_unused_huge_count(struct super_block
*sb
,
531 struct shrink_control
*sc
)
533 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
534 return READ_ONCE(sbinfo
->shrinklist_len
);
536 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
538 #define shmem_huge SHMEM_HUGE_DENY
540 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
541 struct shrink_control
*sc
, unsigned long nr_to_split
)
545 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548 * Like add_to_page_cache_locked, but error if expected item has gone.
550 static int shmem_add_to_page_cache(struct page
*page
,
551 struct address_space
*mapping
,
552 pgoff_t index
, void *expected
)
554 int error
, nr
= hpage_nr_pages(page
);
556 VM_BUG_ON_PAGE(PageTail(page
), page
);
557 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
558 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
559 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
560 VM_BUG_ON(expected
&& PageTransHuge(page
));
562 page_ref_add(page
, nr
);
563 page
->mapping
= mapping
;
566 spin_lock_irq(&mapping
->tree_lock
);
567 if (PageTransHuge(page
)) {
568 void __rcu
**results
;
573 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
574 &results
, &idx
, index
, 1) &&
575 idx
< index
+ HPAGE_PMD_NR
) {
580 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
581 error
= radix_tree_insert(&mapping
->page_tree
,
582 index
+ i
, page
+ i
);
585 count_vm_event(THP_FILE_ALLOC
);
587 } else if (!expected
) {
588 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
590 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
595 mapping
->nrpages
+= nr
;
596 if (PageTransHuge(page
))
597 __inc_node_page_state(page
, NR_SHMEM_THPS
);
598 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
599 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
600 spin_unlock_irq(&mapping
->tree_lock
);
602 page
->mapping
= NULL
;
603 spin_unlock_irq(&mapping
->tree_lock
);
604 page_ref_sub(page
, nr
);
610 * Like delete_from_page_cache, but substitutes swap for page.
612 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
614 struct address_space
*mapping
= page
->mapping
;
617 VM_BUG_ON_PAGE(PageCompound(page
), page
);
619 spin_lock_irq(&mapping
->tree_lock
);
620 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
621 page
->mapping
= NULL
;
623 __dec_node_page_state(page
, NR_FILE_PAGES
);
624 __dec_node_page_state(page
, NR_SHMEM
);
625 spin_unlock_irq(&mapping
->tree_lock
);
631 * Remove swap entry from radix tree, free the swap and its page cache.
633 static int shmem_free_swap(struct address_space
*mapping
,
634 pgoff_t index
, void *radswap
)
638 spin_lock_irq(&mapping
->tree_lock
);
639 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
640 spin_unlock_irq(&mapping
->tree_lock
);
643 free_swap_and_cache(radix_to_swp_entry(radswap
));
648 * Determine (in bytes) how many of the shmem object's pages mapped by the
649 * given offsets are swapped out.
651 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
652 * as long as the inode doesn't go away and racy results are not a problem.
654 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
655 pgoff_t start
, pgoff_t end
)
657 struct radix_tree_iter iter
;
660 unsigned long swapped
= 0;
664 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
665 if (iter
.index
>= end
)
668 page
= radix_tree_deref_slot(slot
);
670 if (radix_tree_deref_retry(page
)) {
671 slot
= radix_tree_iter_retry(&iter
);
675 if (radix_tree_exceptional_entry(page
))
678 if (need_resched()) {
679 slot
= radix_tree_iter_resume(slot
, &iter
);
686 return swapped
<< PAGE_SHIFT
;
690 * Determine (in bytes) how many of the shmem object's pages mapped by the
691 * given vma is swapped out.
693 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
694 * as long as the inode doesn't go away and racy results are not a problem.
696 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
698 struct inode
*inode
= file_inode(vma
->vm_file
);
699 struct shmem_inode_info
*info
= SHMEM_I(inode
);
700 struct address_space
*mapping
= inode
->i_mapping
;
701 unsigned long swapped
;
703 /* Be careful as we don't hold info->lock */
704 swapped
= READ_ONCE(info
->swapped
);
707 * The easier cases are when the shmem object has nothing in swap, or
708 * the vma maps it whole. Then we can simply use the stats that we
714 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
715 return swapped
<< PAGE_SHIFT
;
717 /* Here comes the more involved part */
718 return shmem_partial_swap_usage(mapping
,
719 linear_page_index(vma
, vma
->vm_start
),
720 linear_page_index(vma
, vma
->vm_end
));
724 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
726 void shmem_unlock_mapping(struct address_space
*mapping
)
729 pgoff_t indices
[PAGEVEC_SIZE
];
732 pagevec_init(&pvec
, 0);
734 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
736 while (!mapping_unevictable(mapping
)) {
738 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
739 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
741 pvec
.nr
= find_get_entries(mapping
, index
,
742 PAGEVEC_SIZE
, pvec
.pages
, indices
);
745 index
= indices
[pvec
.nr
- 1] + 1;
746 pagevec_remove_exceptionals(&pvec
);
747 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
748 pagevec_release(&pvec
);
754 * Remove range of pages and swap entries from radix tree, and free them.
755 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
757 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
760 struct address_space
*mapping
= inode
->i_mapping
;
761 struct shmem_inode_info
*info
= SHMEM_I(inode
);
762 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
763 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
764 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
765 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
767 pgoff_t indices
[PAGEVEC_SIZE
];
768 long nr_swaps_freed
= 0;
773 end
= -1; /* unsigned, so actually very big */
775 pagevec_init(&pvec
, 0);
777 while (index
< end
) {
778 pvec
.nr
= find_get_entries(mapping
, index
,
779 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
780 pvec
.pages
, indices
);
783 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
784 struct page
*page
= pvec
.pages
[i
];
790 if (radix_tree_exceptional_entry(page
)) {
793 nr_swaps_freed
+= !shmem_free_swap(mapping
,
798 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
800 if (!trylock_page(page
))
803 if (PageTransTail(page
)) {
804 /* Middle of THP: zero out the page */
805 clear_highpage(page
);
808 } else if (PageTransHuge(page
)) {
809 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
811 * Range ends in the middle of THP:
814 clear_highpage(page
);
818 index
+= HPAGE_PMD_NR
- 1;
819 i
+= HPAGE_PMD_NR
- 1;
822 if (!unfalloc
|| !PageUptodate(page
)) {
823 VM_BUG_ON_PAGE(PageTail(page
), page
);
824 if (page_mapping(page
) == mapping
) {
825 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
826 truncate_inode_page(mapping
, page
);
831 pagevec_remove_exceptionals(&pvec
);
832 pagevec_release(&pvec
);
838 struct page
*page
= NULL
;
839 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
841 unsigned int top
= PAGE_SIZE
;
846 zero_user_segment(page
, partial_start
, top
);
847 set_page_dirty(page
);
853 struct page
*page
= NULL
;
854 shmem_getpage(inode
, end
, &page
, SGP_READ
);
856 zero_user_segment(page
, 0, partial_end
);
857 set_page_dirty(page
);
866 while (index
< end
) {
869 pvec
.nr
= find_get_entries(mapping
, index
,
870 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
871 pvec
.pages
, indices
);
873 /* If all gone or hole-punch or unfalloc, we're done */
874 if (index
== start
|| end
!= -1)
876 /* But if truncating, restart to make sure all gone */
880 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
881 struct page
*page
= pvec
.pages
[i
];
887 if (radix_tree_exceptional_entry(page
)) {
890 if (shmem_free_swap(mapping
, index
, page
)) {
891 /* Swap was replaced by page: retry */
901 if (PageTransTail(page
)) {
902 /* Middle of THP: zero out the page */
903 clear_highpage(page
);
906 * Partial thp truncate due 'start' in middle
907 * of THP: don't need to look on these pages
908 * again on !pvec.nr restart.
910 if (index
!= round_down(end
, HPAGE_PMD_NR
))
913 } else if (PageTransHuge(page
)) {
914 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
916 * Range ends in the middle of THP:
919 clear_highpage(page
);
923 index
+= HPAGE_PMD_NR
- 1;
924 i
+= HPAGE_PMD_NR
- 1;
927 if (!unfalloc
|| !PageUptodate(page
)) {
928 VM_BUG_ON_PAGE(PageTail(page
), page
);
929 if (page_mapping(page
) == mapping
) {
930 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
931 truncate_inode_page(mapping
, page
);
933 /* Page was replaced by swap: retry */
941 pagevec_remove_exceptionals(&pvec
);
942 pagevec_release(&pvec
);
946 spin_lock_irq(&info
->lock
);
947 info
->swapped
-= nr_swaps_freed
;
948 shmem_recalc_inode(inode
);
949 spin_unlock_irq(&info
->lock
);
952 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
954 shmem_undo_range(inode
, lstart
, lend
, false);
955 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
957 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
959 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
962 struct inode
*inode
= dentry
->d_inode
;
963 struct shmem_inode_info
*info
= SHMEM_I(inode
);
965 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
966 spin_lock_irq(&info
->lock
);
967 shmem_recalc_inode(inode
);
968 spin_unlock_irq(&info
->lock
);
970 generic_fillattr(inode
, stat
);
974 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
976 struct inode
*inode
= d_inode(dentry
);
977 struct shmem_inode_info
*info
= SHMEM_I(inode
);
978 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
981 error
= setattr_prepare(dentry
, attr
);
985 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
986 loff_t oldsize
= inode
->i_size
;
987 loff_t newsize
= attr
->ia_size
;
989 /* protected by i_mutex */
990 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
991 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
994 if (newsize
!= oldsize
) {
995 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
999 i_size_write(inode
, newsize
);
1000 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1002 if (newsize
<= oldsize
) {
1003 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1004 if (oldsize
> holebegin
)
1005 unmap_mapping_range(inode
->i_mapping
,
1008 shmem_truncate_range(inode
,
1009 newsize
, (loff_t
)-1);
1010 /* unmap again to remove racily COWed private pages */
1011 if (oldsize
> holebegin
)
1012 unmap_mapping_range(inode
->i_mapping
,
1016 * Part of the huge page can be beyond i_size: subject
1017 * to shrink under memory pressure.
1019 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1020 spin_lock(&sbinfo
->shrinklist_lock
);
1021 if (list_empty(&info
->shrinklist
)) {
1022 list_add_tail(&info
->shrinklist
,
1023 &sbinfo
->shrinklist
);
1024 sbinfo
->shrinklist_len
++;
1026 spin_unlock(&sbinfo
->shrinklist_lock
);
1031 setattr_copy(inode
, attr
);
1032 if (attr
->ia_valid
& ATTR_MODE
)
1033 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1037 static void shmem_evict_inode(struct inode
*inode
)
1039 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1040 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1042 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1043 shmem_unacct_size(info
->flags
, inode
->i_size
);
1045 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1046 if (!list_empty(&info
->shrinklist
)) {
1047 spin_lock(&sbinfo
->shrinklist_lock
);
1048 if (!list_empty(&info
->shrinklist
)) {
1049 list_del_init(&info
->shrinklist
);
1050 sbinfo
->shrinklist_len
--;
1052 spin_unlock(&sbinfo
->shrinklist_lock
);
1054 if (!list_empty(&info
->swaplist
)) {
1055 mutex_lock(&shmem_swaplist_mutex
);
1056 list_del_init(&info
->swaplist
);
1057 mutex_unlock(&shmem_swaplist_mutex
);
1061 simple_xattrs_free(&info
->xattrs
);
1062 WARN_ON(inode
->i_blocks
);
1063 shmem_free_inode(inode
->i_sb
);
1067 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1069 struct radix_tree_iter iter
;
1071 unsigned long found
= -1;
1072 unsigned int checked
= 0;
1075 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1076 if (*slot
== item
) {
1081 if ((checked
% 4096) != 0)
1083 slot
= radix_tree_iter_resume(slot
, &iter
);
1092 * If swap found in inode, free it and move page from swapcache to filecache.
1094 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1095 swp_entry_t swap
, struct page
**pagep
)
1097 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1103 radswap
= swp_to_radix_entry(swap
);
1104 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1106 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1109 * Move _head_ to start search for next from here.
1110 * But be careful: shmem_evict_inode checks list_empty without taking
1111 * mutex, and there's an instant in list_move_tail when info->swaplist
1112 * would appear empty, if it were the only one on shmem_swaplist.
1114 if (shmem_swaplist
.next
!= &info
->swaplist
)
1115 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1117 gfp
= mapping_gfp_mask(mapping
);
1118 if (shmem_should_replace_page(*pagep
, gfp
)) {
1119 mutex_unlock(&shmem_swaplist_mutex
);
1120 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1121 mutex_lock(&shmem_swaplist_mutex
);
1123 * We needed to drop mutex to make that restrictive page
1124 * allocation, but the inode might have been freed while we
1125 * dropped it: although a racing shmem_evict_inode() cannot
1126 * complete without emptying the radix_tree, our page lock
1127 * on this swapcache page is not enough to prevent that -
1128 * free_swap_and_cache() of our swap entry will only
1129 * trylock_page(), removing swap from radix_tree whatever.
1131 * We must not proceed to shmem_add_to_page_cache() if the
1132 * inode has been freed, but of course we cannot rely on
1133 * inode or mapping or info to check that. However, we can
1134 * safely check if our swap entry is still in use (and here
1135 * it can't have got reused for another page): if it's still
1136 * in use, then the inode cannot have been freed yet, and we
1137 * can safely proceed (if it's no longer in use, that tells
1138 * nothing about the inode, but we don't need to unuse swap).
1140 if (!page_swapcount(*pagep
))
1145 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1146 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1147 * beneath us (pagelock doesn't help until the page is in pagecache).
1150 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1152 if (error
!= -ENOMEM
) {
1154 * Truncation and eviction use free_swap_and_cache(), which
1155 * only does trylock page: if we raced, best clean up here.
1157 delete_from_swap_cache(*pagep
);
1158 set_page_dirty(*pagep
);
1160 spin_lock_irq(&info
->lock
);
1162 spin_unlock_irq(&info
->lock
);
1170 * Search through swapped inodes to find and replace swap by page.
1172 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1174 struct list_head
*this, *next
;
1175 struct shmem_inode_info
*info
;
1176 struct mem_cgroup
*memcg
;
1180 * There's a faint possibility that swap page was replaced before
1181 * caller locked it: caller will come back later with the right page.
1183 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1187 * Charge page using GFP_KERNEL while we can wait, before taking
1188 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1189 * Charged back to the user (not to caller) when swap account is used.
1191 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1195 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1198 mutex_lock(&shmem_swaplist_mutex
);
1199 list_for_each_safe(this, next
, &shmem_swaplist
) {
1200 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1202 error
= shmem_unuse_inode(info
, swap
, &page
);
1204 list_del_init(&info
->swaplist
);
1206 if (error
!= -EAGAIN
)
1208 /* found nothing in this: move on to search the next */
1210 mutex_unlock(&shmem_swaplist_mutex
);
1213 if (error
!= -ENOMEM
)
1215 mem_cgroup_cancel_charge(page
, memcg
, false);
1217 mem_cgroup_commit_charge(page
, memcg
, true, false);
1225 * Move the page from the page cache to the swap cache.
1227 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1229 struct shmem_inode_info
*info
;
1230 struct address_space
*mapping
;
1231 struct inode
*inode
;
1235 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1236 BUG_ON(!PageLocked(page
));
1237 mapping
= page
->mapping
;
1238 index
= page
->index
;
1239 inode
= mapping
->host
;
1240 info
= SHMEM_I(inode
);
1241 if (info
->flags
& VM_LOCKED
)
1243 if (!total_swap_pages
)
1247 * Our capabilities prevent regular writeback or sync from ever calling
1248 * shmem_writepage; but a stacking filesystem might use ->writepage of
1249 * its underlying filesystem, in which case tmpfs should write out to
1250 * swap only in response to memory pressure, and not for the writeback
1253 if (!wbc
->for_reclaim
) {
1254 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1259 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1260 * value into swapfile.c, the only way we can correctly account for a
1261 * fallocated page arriving here is now to initialize it and write it.
1263 * That's okay for a page already fallocated earlier, but if we have
1264 * not yet completed the fallocation, then (a) we want to keep track
1265 * of this page in case we have to undo it, and (b) it may not be a
1266 * good idea to continue anyway, once we're pushing into swap. So
1267 * reactivate the page, and let shmem_fallocate() quit when too many.
1269 if (!PageUptodate(page
)) {
1270 if (inode
->i_private
) {
1271 struct shmem_falloc
*shmem_falloc
;
1272 spin_lock(&inode
->i_lock
);
1273 shmem_falloc
= inode
->i_private
;
1275 !shmem_falloc
->waitq
&&
1276 index
>= shmem_falloc
->start
&&
1277 index
< shmem_falloc
->next
)
1278 shmem_falloc
->nr_unswapped
++;
1280 shmem_falloc
= NULL
;
1281 spin_unlock(&inode
->i_lock
);
1285 clear_highpage(page
);
1286 flush_dcache_page(page
);
1287 SetPageUptodate(page
);
1290 swap
= get_swap_page();
1294 if (mem_cgroup_try_charge_swap(page
, swap
))
1298 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1299 * if it's not already there. Do it now before the page is
1300 * moved to swap cache, when its pagelock no longer protects
1301 * the inode from eviction. But don't unlock the mutex until
1302 * we've incremented swapped, because shmem_unuse_inode() will
1303 * prune a !swapped inode from the swaplist under this mutex.
1305 mutex_lock(&shmem_swaplist_mutex
);
1306 if (list_empty(&info
->swaplist
))
1307 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1309 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1310 spin_lock_irq(&info
->lock
);
1311 shmem_recalc_inode(inode
);
1313 spin_unlock_irq(&info
->lock
);
1315 swap_shmem_alloc(swap
);
1316 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1318 mutex_unlock(&shmem_swaplist_mutex
);
1319 BUG_ON(page_mapped(page
));
1320 swap_writepage(page
, wbc
);
1324 mutex_unlock(&shmem_swaplist_mutex
);
1326 swapcache_free(swap
);
1328 set_page_dirty(page
);
1329 if (wbc
->for_reclaim
)
1330 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1335 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1336 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1340 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1341 return; /* show nothing */
1343 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1345 seq_printf(seq
, ",mpol=%s", buffer
);
1348 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1350 struct mempolicy
*mpol
= NULL
;
1352 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1353 mpol
= sbinfo
->mpol
;
1355 spin_unlock(&sbinfo
->stat_lock
);
1359 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1360 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1363 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1367 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1369 #define vm_policy vm_private_data
1372 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1373 struct shmem_inode_info
*info
, pgoff_t index
)
1375 /* Create a pseudo vma that just contains the policy */
1377 /* Bias interleave by inode number to distribute better across nodes */
1378 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1380 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1383 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1385 /* Drop reference taken by mpol_shared_policy_lookup() */
1386 mpol_cond_put(vma
->vm_policy
);
1389 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1390 struct shmem_inode_info
*info
, pgoff_t index
)
1392 struct vm_area_struct pvma
;
1395 shmem_pseudo_vma_init(&pvma
, info
, index
);
1396 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1397 shmem_pseudo_vma_destroy(&pvma
);
1402 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1403 struct shmem_inode_info
*info
, pgoff_t index
)
1405 struct vm_area_struct pvma
;
1406 struct inode
*inode
= &info
->vfs_inode
;
1407 struct address_space
*mapping
= inode
->i_mapping
;
1408 pgoff_t idx
, hindex
;
1409 void __rcu
**results
;
1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1415 hindex
= round_down(index
, HPAGE_PMD_NR
);
1417 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1418 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1424 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1425 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1426 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1427 shmem_pseudo_vma_destroy(&pvma
);
1429 prep_transhuge_page(page
);
1433 static struct page
*shmem_alloc_page(gfp_t gfp
,
1434 struct shmem_inode_info
*info
, pgoff_t index
)
1436 struct vm_area_struct pvma
;
1439 shmem_pseudo_vma_init(&pvma
, info
, index
);
1440 page
= alloc_page_vma(gfp
, &pvma
, 0);
1441 shmem_pseudo_vma_destroy(&pvma
);
1446 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1447 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1448 pgoff_t index
, bool huge
)
1454 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1456 nr
= huge
? HPAGE_PMD_NR
: 1;
1458 if (shmem_acct_block(info
->flags
, nr
))
1460 if (sbinfo
->max_blocks
) {
1461 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1462 sbinfo
->max_blocks
- nr
) > 0)
1464 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1468 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1470 page
= shmem_alloc_page(gfp
, info
, index
);
1472 __SetPageLocked(page
);
1473 __SetPageSwapBacked(page
);
1478 if (sbinfo
->max_blocks
)
1479 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1481 shmem_unacct_blocks(info
->flags
, nr
);
1483 return ERR_PTR(err
);
1487 * When a page is moved from swapcache to shmem filecache (either by the
1488 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1489 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1490 * ignorance of the mapping it belongs to. If that mapping has special
1491 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1492 * we may need to copy to a suitable page before moving to filecache.
1494 * In a future release, this may well be extended to respect cpuset and
1495 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1496 * but for now it is a simple matter of zone.
1498 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1500 return page_zonenum(page
) > gfp_zone(gfp
);
1503 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1504 struct shmem_inode_info
*info
, pgoff_t index
)
1506 struct page
*oldpage
, *newpage
;
1507 struct address_space
*swap_mapping
;
1512 swap_index
= page_private(oldpage
);
1513 swap_mapping
= page_mapping(oldpage
);
1516 * We have arrived here because our zones are constrained, so don't
1517 * limit chance of success by further cpuset and node constraints.
1519 gfp
&= ~GFP_CONSTRAINT_MASK
;
1520 newpage
= shmem_alloc_page(gfp
, info
, index
);
1525 copy_highpage(newpage
, oldpage
);
1526 flush_dcache_page(newpage
);
1528 __SetPageLocked(newpage
);
1529 __SetPageSwapBacked(newpage
);
1530 SetPageUptodate(newpage
);
1531 set_page_private(newpage
, swap_index
);
1532 SetPageSwapCache(newpage
);
1535 * Our caller will very soon move newpage out of swapcache, but it's
1536 * a nice clean interface for us to replace oldpage by newpage there.
1538 spin_lock_irq(&swap_mapping
->tree_lock
);
1539 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1542 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1543 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1545 spin_unlock_irq(&swap_mapping
->tree_lock
);
1547 if (unlikely(error
)) {
1549 * Is this possible? I think not, now that our callers check
1550 * both PageSwapCache and page_private after getting page lock;
1551 * but be defensive. Reverse old to newpage for clear and free.
1555 mem_cgroup_migrate(oldpage
, newpage
);
1556 lru_cache_add_anon(newpage
);
1560 ClearPageSwapCache(oldpage
);
1561 set_page_private(oldpage
, 0);
1563 unlock_page(oldpage
);
1570 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1572 * If we allocate a new one we do not mark it dirty. That's up to the
1573 * vm. If we swap it in we mark it dirty since we also free the swap
1574 * entry since a page cannot live in both the swap and page cache.
1576 * fault_mm and fault_type are only supplied by shmem_fault:
1577 * otherwise they are NULL.
1579 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1580 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1581 struct mm_struct
*fault_mm
, int *fault_type
)
1583 struct address_space
*mapping
= inode
->i_mapping
;
1584 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1585 struct shmem_sb_info
*sbinfo
;
1586 struct mm_struct
*charge_mm
;
1587 struct mem_cgroup
*memcg
;
1590 enum sgp_type sgp_huge
= sgp
;
1591 pgoff_t hindex
= index
;
1596 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1598 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1602 page
= find_lock_entry(mapping
, index
);
1603 if (radix_tree_exceptional_entry(page
)) {
1604 swap
= radix_to_swp_entry(page
);
1608 if (sgp
<= SGP_CACHE
&&
1609 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1614 if (page
&& sgp
== SGP_WRITE
)
1615 mark_page_accessed(page
);
1617 /* fallocated page? */
1618 if (page
&& !PageUptodate(page
)) {
1619 if (sgp
!= SGP_READ
)
1625 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1631 * Fast cache lookup did not find it:
1632 * bring it back from swap or allocate.
1634 sbinfo
= SHMEM_SB(inode
->i_sb
);
1635 charge_mm
= fault_mm
? : current
->mm
;
1638 /* Look it up and read it in.. */
1639 page
= lookup_swap_cache(swap
);
1641 /* Or update major stats only when swapin succeeds?? */
1643 *fault_type
|= VM_FAULT_MAJOR
;
1644 count_vm_event(PGMAJFAULT
);
1645 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1647 /* Here we actually start the io */
1648 page
= shmem_swapin(swap
, gfp
, info
, index
);
1655 /* We have to do this with page locked to prevent races */
1657 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1658 !shmem_confirm_swap(mapping
, index
, swap
)) {
1659 error
= -EEXIST
; /* try again */
1662 if (!PageUptodate(page
)) {
1666 wait_on_page_writeback(page
);
1668 if (shmem_should_replace_page(page
, gfp
)) {
1669 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1674 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1677 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1678 swp_to_radix_entry(swap
));
1680 * We already confirmed swap under page lock, and make
1681 * no memory allocation here, so usually no possibility
1682 * of error; but free_swap_and_cache() only trylocks a
1683 * page, so it is just possible that the entry has been
1684 * truncated or holepunched since swap was confirmed.
1685 * shmem_undo_range() will have done some of the
1686 * unaccounting, now delete_from_swap_cache() will do
1688 * Reset swap.val? No, leave it so "failed" goes back to
1689 * "repeat": reading a hole and writing should succeed.
1692 mem_cgroup_cancel_charge(page
, memcg
, false);
1693 delete_from_swap_cache(page
);
1699 mem_cgroup_commit_charge(page
, memcg
, true, false);
1701 spin_lock_irq(&info
->lock
);
1703 shmem_recalc_inode(inode
);
1704 spin_unlock_irq(&info
->lock
);
1706 if (sgp
== SGP_WRITE
)
1707 mark_page_accessed(page
);
1709 delete_from_swap_cache(page
);
1710 set_page_dirty(page
);
1714 /* shmem_symlink() */
1715 if (mapping
->a_ops
!= &shmem_aops
)
1717 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1719 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1721 switch (sbinfo
->huge
) {
1724 case SHMEM_HUGE_NEVER
:
1726 case SHMEM_HUGE_WITHIN_SIZE
:
1727 off
= round_up(index
, HPAGE_PMD_NR
);
1728 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1729 if (i_size
>= HPAGE_PMD_SIZE
&&
1730 i_size
>> PAGE_SHIFT
>= off
)
1733 case SHMEM_HUGE_ADVISE
:
1734 if (sgp_huge
== SGP_HUGE
)
1736 /* TODO: implement fadvise() hints */
1741 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1744 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1749 error
= PTR_ERR(page
);
1751 if (error
!= -ENOSPC
)
1754 * Try to reclaim some spece by splitting a huge page
1755 * beyond i_size on the filesystem.
1759 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1760 if (ret
== SHRINK_STOP
)
1768 if (PageTransHuge(page
))
1769 hindex
= round_down(index
, HPAGE_PMD_NR
);
1773 if (sgp
== SGP_WRITE
)
1774 __SetPageReferenced(page
);
1776 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1777 PageTransHuge(page
));
1780 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1781 compound_order(page
));
1783 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1785 radix_tree_preload_end();
1788 mem_cgroup_cancel_charge(page
, memcg
,
1789 PageTransHuge(page
));
1792 mem_cgroup_commit_charge(page
, memcg
, false,
1793 PageTransHuge(page
));
1794 lru_cache_add_anon(page
);
1796 spin_lock_irq(&info
->lock
);
1797 info
->alloced
+= 1 << compound_order(page
);
1798 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1799 shmem_recalc_inode(inode
);
1800 spin_unlock_irq(&info
->lock
);
1803 if (PageTransHuge(page
) &&
1804 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1805 hindex
+ HPAGE_PMD_NR
- 1) {
1807 * Part of the huge page is beyond i_size: subject
1808 * to shrink under memory pressure.
1810 spin_lock(&sbinfo
->shrinklist_lock
);
1811 if (list_empty(&info
->shrinklist
)) {
1812 list_add_tail(&info
->shrinklist
,
1813 &sbinfo
->shrinklist
);
1814 sbinfo
->shrinklist_len
++;
1816 spin_unlock(&sbinfo
->shrinklist_lock
);
1820 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1822 if (sgp
== SGP_FALLOC
)
1826 * Let SGP_WRITE caller clear ends if write does not fill page;
1827 * but SGP_FALLOC on a page fallocated earlier must initialize
1828 * it now, lest undo on failure cancel our earlier guarantee.
1830 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1831 struct page
*head
= compound_head(page
);
1834 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1835 clear_highpage(head
+ i
);
1836 flush_dcache_page(head
+ i
);
1838 SetPageUptodate(head
);
1842 /* Perhaps the file has been truncated since we checked */
1843 if (sgp
<= SGP_CACHE
&&
1844 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1846 ClearPageDirty(page
);
1847 delete_from_page_cache(page
);
1848 spin_lock_irq(&info
->lock
);
1849 shmem_recalc_inode(inode
);
1850 spin_unlock_irq(&info
->lock
);
1855 *pagep
= page
+ index
- hindex
;
1862 if (sbinfo
->max_blocks
)
1863 percpu_counter_sub(&sbinfo
->used_blocks
,
1864 1 << compound_order(page
));
1865 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1867 if (PageTransHuge(page
)) {
1873 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1880 if (error
== -ENOSPC
&& !once
++) {
1881 spin_lock_irq(&info
->lock
);
1882 shmem_recalc_inode(inode
);
1883 spin_unlock_irq(&info
->lock
);
1886 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1892 * This is like autoremove_wake_function, but it removes the wait queue
1893 * entry unconditionally - even if something else had already woken the
1896 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1898 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1899 list_del_init(&wait
->task_list
);
1903 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1905 struct inode
*inode
= file_inode(vma
->vm_file
);
1906 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1909 int ret
= VM_FAULT_LOCKED
;
1912 * Trinity finds that probing a hole which tmpfs is punching can
1913 * prevent the hole-punch from ever completing: which in turn
1914 * locks writers out with its hold on i_mutex. So refrain from
1915 * faulting pages into the hole while it's being punched. Although
1916 * shmem_undo_range() does remove the additions, it may be unable to
1917 * keep up, as each new page needs its own unmap_mapping_range() call,
1918 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1920 * It does not matter if we sometimes reach this check just before the
1921 * hole-punch begins, so that one fault then races with the punch:
1922 * we just need to make racing faults a rare case.
1924 * The implementation below would be much simpler if we just used a
1925 * standard mutex or completion: but we cannot take i_mutex in fault,
1926 * and bloating every shmem inode for this unlikely case would be sad.
1928 if (unlikely(inode
->i_private
)) {
1929 struct shmem_falloc
*shmem_falloc
;
1931 spin_lock(&inode
->i_lock
);
1932 shmem_falloc
= inode
->i_private
;
1934 shmem_falloc
->waitq
&&
1935 vmf
->pgoff
>= shmem_falloc
->start
&&
1936 vmf
->pgoff
< shmem_falloc
->next
) {
1937 wait_queue_head_t
*shmem_falloc_waitq
;
1938 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1940 ret
= VM_FAULT_NOPAGE
;
1941 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1942 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1943 /* It's polite to up mmap_sem if we can */
1944 up_read(&vma
->vm_mm
->mmap_sem
);
1945 ret
= VM_FAULT_RETRY
;
1948 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1949 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1950 TASK_UNINTERRUPTIBLE
);
1951 spin_unlock(&inode
->i_lock
);
1955 * shmem_falloc_waitq points into the shmem_fallocate()
1956 * stack of the hole-punching task: shmem_falloc_waitq
1957 * is usually invalid by the time we reach here, but
1958 * finish_wait() does not dereference it in that case;
1959 * though i_lock needed lest racing with wake_up_all().
1961 spin_lock(&inode
->i_lock
);
1962 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1963 spin_unlock(&inode
->i_lock
);
1966 spin_unlock(&inode
->i_lock
);
1970 if (vma
->vm_flags
& VM_HUGEPAGE
)
1972 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1975 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1976 gfp
, vma
->vm_mm
, &ret
);
1978 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1982 unsigned long shmem_get_unmapped_area(struct file
*file
,
1983 unsigned long uaddr
, unsigned long len
,
1984 unsigned long pgoff
, unsigned long flags
)
1986 unsigned long (*get_area
)(struct file
*,
1987 unsigned long, unsigned long, unsigned long, unsigned long);
1989 unsigned long offset
;
1990 unsigned long inflated_len
;
1991 unsigned long inflated_addr
;
1992 unsigned long inflated_offset
;
1994 if (len
> TASK_SIZE
)
1997 get_area
= current
->mm
->get_unmapped_area
;
1998 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2000 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2002 if (IS_ERR_VALUE(addr
))
2004 if (addr
& ~PAGE_MASK
)
2006 if (addr
> TASK_SIZE
- len
)
2009 if (shmem_huge
== SHMEM_HUGE_DENY
)
2011 if (len
< HPAGE_PMD_SIZE
)
2013 if (flags
& MAP_FIXED
)
2016 * Our priority is to support MAP_SHARED mapped hugely;
2017 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2018 * But if caller specified an address hint, respect that as before.
2023 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2024 struct super_block
*sb
;
2027 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2028 sb
= file_inode(file
)->i_sb
;
2031 * Called directly from mm/mmap.c, or drivers/char/mem.c
2032 * for "/dev/zero", to create a shared anonymous object.
2034 if (IS_ERR(shm_mnt
))
2036 sb
= shm_mnt
->mnt_sb
;
2038 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2042 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2043 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2045 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2048 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2049 if (inflated_len
> TASK_SIZE
)
2051 if (inflated_len
< len
)
2054 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2055 if (IS_ERR_VALUE(inflated_addr
))
2057 if (inflated_addr
& ~PAGE_MASK
)
2060 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2061 inflated_addr
+= offset
- inflated_offset
;
2062 if (inflated_offset
> offset
)
2063 inflated_addr
+= HPAGE_PMD_SIZE
;
2065 if (inflated_addr
> TASK_SIZE
- len
)
2067 return inflated_addr
;
2071 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2073 struct inode
*inode
= file_inode(vma
->vm_file
);
2074 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2077 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2080 struct inode
*inode
= file_inode(vma
->vm_file
);
2083 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2084 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2088 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2090 struct inode
*inode
= file_inode(file
);
2091 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2092 int retval
= -ENOMEM
;
2094 spin_lock_irq(&info
->lock
);
2095 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2096 if (!user_shm_lock(inode
->i_size
, user
))
2098 info
->flags
|= VM_LOCKED
;
2099 mapping_set_unevictable(file
->f_mapping
);
2101 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2102 user_shm_unlock(inode
->i_size
, user
);
2103 info
->flags
&= ~VM_LOCKED
;
2104 mapping_clear_unevictable(file
->f_mapping
);
2109 spin_unlock_irq(&info
->lock
);
2113 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2115 file_accessed(file
);
2116 vma
->vm_ops
= &shmem_vm_ops
;
2117 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2118 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2119 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2120 khugepaged_enter(vma
, vma
->vm_flags
);
2125 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2126 umode_t mode
, dev_t dev
, unsigned long flags
)
2128 struct inode
*inode
;
2129 struct shmem_inode_info
*info
;
2130 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2132 if (shmem_reserve_inode(sb
))
2135 inode
= new_inode(sb
);
2137 inode
->i_ino
= get_next_ino();
2138 inode_init_owner(inode
, dir
, mode
);
2139 inode
->i_blocks
= 0;
2140 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2141 inode
->i_generation
= get_seconds();
2142 info
= SHMEM_I(inode
);
2143 memset(info
, 0, (char *)inode
- (char *)info
);
2144 spin_lock_init(&info
->lock
);
2145 info
->seals
= F_SEAL_SEAL
;
2146 info
->flags
= flags
& VM_NORESERVE
;
2147 INIT_LIST_HEAD(&info
->shrinklist
);
2148 INIT_LIST_HEAD(&info
->swaplist
);
2149 simple_xattrs_init(&info
->xattrs
);
2150 cache_no_acl(inode
);
2152 switch (mode
& S_IFMT
) {
2154 inode
->i_op
= &shmem_special_inode_operations
;
2155 init_special_inode(inode
, mode
, dev
);
2158 inode
->i_mapping
->a_ops
= &shmem_aops
;
2159 inode
->i_op
= &shmem_inode_operations
;
2160 inode
->i_fop
= &shmem_file_operations
;
2161 mpol_shared_policy_init(&info
->policy
,
2162 shmem_get_sbmpol(sbinfo
));
2166 /* Some things misbehave if size == 0 on a directory */
2167 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2168 inode
->i_op
= &shmem_dir_inode_operations
;
2169 inode
->i_fop
= &simple_dir_operations
;
2173 * Must not load anything in the rbtree,
2174 * mpol_free_shared_policy will not be called.
2176 mpol_shared_policy_init(&info
->policy
, NULL
);
2180 shmem_free_inode(sb
);
2184 bool shmem_mapping(struct address_space
*mapping
)
2186 return mapping
->a_ops
== &shmem_aops
;
2189 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2191 struct vm_area_struct
*dst_vma
,
2192 unsigned long dst_addr
,
2193 unsigned long src_addr
,
2194 struct page
**pagep
)
2196 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2197 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2198 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2199 struct address_space
*mapping
= inode
->i_mapping
;
2200 gfp_t gfp
= mapping_gfp_mask(mapping
);
2201 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2202 struct mem_cgroup
*memcg
;
2206 pte_t _dst_pte
, *dst_pte
;
2211 if (shmem_acct_block(info
->flags
, 1))
2213 if (sbinfo
->max_blocks
) {
2214 if (percpu_counter_compare(&sbinfo
->used_blocks
,
2215 sbinfo
->max_blocks
) >= 0)
2216 goto out_unacct_blocks
;
2217 percpu_counter_inc(&sbinfo
->used_blocks
);
2220 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2222 goto out_dec_used_blocks
;
2224 page_kaddr
= kmap_atomic(page
);
2225 ret
= copy_from_user(page_kaddr
, (const void __user
*)src_addr
,
2227 kunmap_atomic(page_kaddr
);
2229 /* fallback to copy_from_user outside mmap_sem */
2230 if (unlikely(ret
)) {
2232 /* don't free the page */
2240 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2244 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2246 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2247 radix_tree_preload_end();
2250 goto out_release_uncharge
;
2252 mem_cgroup_commit_charge(page
, memcg
, false, false);
2254 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2255 if (dst_vma
->vm_flags
& VM_WRITE
)
2256 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2259 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2260 if (!pte_none(*dst_pte
))
2261 goto out_release_uncharge_unlock
;
2263 __SetPageUptodate(page
);
2265 lru_cache_add_anon(page
);
2267 spin_lock(&info
->lock
);
2269 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2270 shmem_recalc_inode(inode
);
2271 spin_unlock(&info
->lock
);
2273 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2274 page_add_file_rmap(page
, false);
2275 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2277 /* No need to invalidate - it was non-present before */
2278 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2280 pte_unmap_unlock(dst_pte
, ptl
);
2284 out_release_uncharge_unlock
:
2285 pte_unmap_unlock(dst_pte
, ptl
);
2286 out_release_uncharge
:
2287 mem_cgroup_cancel_charge(page
, memcg
, false);
2290 out_dec_used_blocks
:
2291 if (sbinfo
->max_blocks
)
2292 percpu_counter_add(&sbinfo
->used_blocks
, -1);
2294 shmem_unacct_blocks(info
->flags
, 1);
2299 static const struct inode_operations shmem_symlink_inode_operations
;
2300 static const struct inode_operations shmem_short_symlink_operations
;
2302 #ifdef CONFIG_TMPFS_XATTR
2303 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2305 #define shmem_initxattrs NULL
2309 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2310 loff_t pos
, unsigned len
, unsigned flags
,
2311 struct page
**pagep
, void **fsdata
)
2313 struct inode
*inode
= mapping
->host
;
2314 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2315 pgoff_t index
= pos
>> PAGE_SHIFT
;
2317 /* i_mutex is held by caller */
2318 if (unlikely(info
->seals
)) {
2319 if (info
->seals
& F_SEAL_WRITE
)
2321 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2325 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2329 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2330 loff_t pos
, unsigned len
, unsigned copied
,
2331 struct page
*page
, void *fsdata
)
2333 struct inode
*inode
= mapping
->host
;
2335 if (pos
+ copied
> inode
->i_size
)
2336 i_size_write(inode
, pos
+ copied
);
2338 if (!PageUptodate(page
)) {
2339 struct page
*head
= compound_head(page
);
2340 if (PageTransCompound(page
)) {
2343 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2344 if (head
+ i
== page
)
2346 clear_highpage(head
+ i
);
2347 flush_dcache_page(head
+ i
);
2350 if (copied
< PAGE_SIZE
) {
2351 unsigned from
= pos
& (PAGE_SIZE
- 1);
2352 zero_user_segments(page
, 0, from
,
2353 from
+ copied
, PAGE_SIZE
);
2355 SetPageUptodate(head
);
2357 set_page_dirty(page
);
2364 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2366 struct file
*file
= iocb
->ki_filp
;
2367 struct inode
*inode
= file_inode(file
);
2368 struct address_space
*mapping
= inode
->i_mapping
;
2370 unsigned long offset
;
2371 enum sgp_type sgp
= SGP_READ
;
2374 loff_t
*ppos
= &iocb
->ki_pos
;
2377 * Might this read be for a stacking filesystem? Then when reading
2378 * holes of a sparse file, we actually need to allocate those pages,
2379 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2381 if (!iter_is_iovec(to
))
2384 index
= *ppos
>> PAGE_SHIFT
;
2385 offset
= *ppos
& ~PAGE_MASK
;
2388 struct page
*page
= NULL
;
2390 unsigned long nr
, ret
;
2391 loff_t i_size
= i_size_read(inode
);
2393 end_index
= i_size
>> PAGE_SHIFT
;
2394 if (index
> end_index
)
2396 if (index
== end_index
) {
2397 nr
= i_size
& ~PAGE_MASK
;
2402 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2404 if (error
== -EINVAL
)
2409 if (sgp
== SGP_CACHE
)
2410 set_page_dirty(page
);
2415 * We must evaluate after, since reads (unlike writes)
2416 * are called without i_mutex protection against truncate
2419 i_size
= i_size_read(inode
);
2420 end_index
= i_size
>> PAGE_SHIFT
;
2421 if (index
== end_index
) {
2422 nr
= i_size
& ~PAGE_MASK
;
2433 * If users can be writing to this page using arbitrary
2434 * virtual addresses, take care about potential aliasing
2435 * before reading the page on the kernel side.
2437 if (mapping_writably_mapped(mapping
))
2438 flush_dcache_page(page
);
2440 * Mark the page accessed if we read the beginning.
2443 mark_page_accessed(page
);
2445 page
= ZERO_PAGE(0);
2450 * Ok, we have the page, and it's up-to-date, so
2451 * now we can copy it to user space...
2453 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2456 index
+= offset
>> PAGE_SHIFT
;
2457 offset
&= ~PAGE_MASK
;
2460 if (!iov_iter_count(to
))
2469 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2470 file_accessed(file
);
2471 return retval
? retval
: error
;
2475 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2477 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2478 pgoff_t index
, pgoff_t end
, int whence
)
2481 struct pagevec pvec
;
2482 pgoff_t indices
[PAGEVEC_SIZE
];
2486 pagevec_init(&pvec
, 0);
2487 pvec
.nr
= 1; /* start small: we may be there already */
2489 pvec
.nr
= find_get_entries(mapping
, index
,
2490 pvec
.nr
, pvec
.pages
, indices
);
2492 if (whence
== SEEK_DATA
)
2496 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2497 if (index
< indices
[i
]) {
2498 if (whence
== SEEK_HOLE
) {
2504 page
= pvec
.pages
[i
];
2505 if (page
&& !radix_tree_exceptional_entry(page
)) {
2506 if (!PageUptodate(page
))
2510 (page
&& whence
== SEEK_DATA
) ||
2511 (!page
&& whence
== SEEK_HOLE
)) {
2516 pagevec_remove_exceptionals(&pvec
);
2517 pagevec_release(&pvec
);
2518 pvec
.nr
= PAGEVEC_SIZE
;
2524 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2526 struct address_space
*mapping
= file
->f_mapping
;
2527 struct inode
*inode
= mapping
->host
;
2531 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2532 return generic_file_llseek_size(file
, offset
, whence
,
2533 MAX_LFS_FILESIZE
, i_size_read(inode
));
2535 /* We're holding i_mutex so we can access i_size directly */
2539 else if (offset
>= inode
->i_size
)
2542 start
= offset
>> PAGE_SHIFT
;
2543 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2544 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2545 new_offset
<<= PAGE_SHIFT
;
2546 if (new_offset
> offset
) {
2547 if (new_offset
< inode
->i_size
)
2548 offset
= new_offset
;
2549 else if (whence
== SEEK_DATA
)
2552 offset
= inode
->i_size
;
2557 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2558 inode_unlock(inode
);
2563 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2564 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2566 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2567 #define LAST_SCAN 4 /* about 150ms max */
2569 static void shmem_tag_pins(struct address_space
*mapping
)
2571 struct radix_tree_iter iter
;
2580 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2581 page
= radix_tree_deref_slot(slot
);
2582 if (!page
|| radix_tree_exception(page
)) {
2583 if (radix_tree_deref_retry(page
)) {
2584 slot
= radix_tree_iter_retry(&iter
);
2587 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2588 spin_lock_irq(&mapping
->tree_lock
);
2589 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2591 spin_unlock_irq(&mapping
->tree_lock
);
2594 if (need_resched()) {
2595 slot
= radix_tree_iter_resume(slot
, &iter
);
2603 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2604 * via get_user_pages(), drivers might have some pending I/O without any active
2605 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2606 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2607 * them to be dropped.
2608 * The caller must guarantee that no new user will acquire writable references
2609 * to those pages to avoid races.
2611 static int shmem_wait_for_pins(struct address_space
*mapping
)
2613 struct radix_tree_iter iter
;
2619 shmem_tag_pins(mapping
);
2622 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2623 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2627 lru_add_drain_all();
2628 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2633 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2634 start
, SHMEM_TAG_PINNED
) {
2636 page
= radix_tree_deref_slot(slot
);
2637 if (radix_tree_exception(page
)) {
2638 if (radix_tree_deref_retry(page
)) {
2639 slot
= radix_tree_iter_retry(&iter
);
2647 page_count(page
) - page_mapcount(page
) != 1) {
2648 if (scan
< LAST_SCAN
)
2649 goto continue_resched
;
2652 * On the last scan, we clean up all those tags
2653 * we inserted; but make a note that we still
2654 * found pages pinned.
2659 spin_lock_irq(&mapping
->tree_lock
);
2660 radix_tree_tag_clear(&mapping
->page_tree
,
2661 iter
.index
, SHMEM_TAG_PINNED
);
2662 spin_unlock_irq(&mapping
->tree_lock
);
2664 if (need_resched()) {
2665 slot
= radix_tree_iter_resume(slot
, &iter
);
2675 #define F_ALL_SEALS (F_SEAL_SEAL | \
2680 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2682 struct inode
*inode
= file_inode(file
);
2683 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2688 * Sealing allows multiple parties to share a shmem-file but restrict
2689 * access to a specific subset of file operations. Seals can only be
2690 * added, but never removed. This way, mutually untrusted parties can
2691 * share common memory regions with a well-defined policy. A malicious
2692 * peer can thus never perform unwanted operations on a shared object.
2694 * Seals are only supported on special shmem-files and always affect
2695 * the whole underlying inode. Once a seal is set, it may prevent some
2696 * kinds of access to the file. Currently, the following seals are
2698 * SEAL_SEAL: Prevent further seals from being set on this file
2699 * SEAL_SHRINK: Prevent the file from shrinking
2700 * SEAL_GROW: Prevent the file from growing
2701 * SEAL_WRITE: Prevent write access to the file
2703 * As we don't require any trust relationship between two parties, we
2704 * must prevent seals from being removed. Therefore, sealing a file
2705 * only adds a given set of seals to the file, it never touches
2706 * existing seals. Furthermore, the "setting seals"-operation can be
2707 * sealed itself, which basically prevents any further seal from being
2710 * Semantics of sealing are only defined on volatile files. Only
2711 * anonymous shmem files support sealing. More importantly, seals are
2712 * never written to disk. Therefore, there's no plan to support it on
2716 if (file
->f_op
!= &shmem_file_operations
)
2718 if (!(file
->f_mode
& FMODE_WRITE
))
2720 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2725 if (info
->seals
& F_SEAL_SEAL
) {
2730 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2731 error
= mapping_deny_writable(file
->f_mapping
);
2735 error
= shmem_wait_for_pins(file
->f_mapping
);
2737 mapping_allow_writable(file
->f_mapping
);
2742 info
->seals
|= seals
;
2746 inode_unlock(inode
);
2749 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2751 int shmem_get_seals(struct file
*file
)
2753 if (file
->f_op
!= &shmem_file_operations
)
2756 return SHMEM_I(file_inode(file
))->seals
;
2758 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2760 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2766 /* disallow upper 32bit */
2770 error
= shmem_add_seals(file
, arg
);
2773 error
= shmem_get_seals(file
);
2783 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2786 struct inode
*inode
= file_inode(file
);
2787 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2788 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2789 struct shmem_falloc shmem_falloc
;
2790 pgoff_t start
, index
, end
;
2793 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2798 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2799 struct address_space
*mapping
= file
->f_mapping
;
2800 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2801 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2802 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2804 /* protected by i_mutex */
2805 if (info
->seals
& F_SEAL_WRITE
) {
2810 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2811 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2812 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2813 spin_lock(&inode
->i_lock
);
2814 inode
->i_private
= &shmem_falloc
;
2815 spin_unlock(&inode
->i_lock
);
2817 if ((u64
)unmap_end
> (u64
)unmap_start
)
2818 unmap_mapping_range(mapping
, unmap_start
,
2819 1 + unmap_end
- unmap_start
, 0);
2820 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2821 /* No need to unmap again: hole-punching leaves COWed pages */
2823 spin_lock(&inode
->i_lock
);
2824 inode
->i_private
= NULL
;
2825 wake_up_all(&shmem_falloc_waitq
);
2826 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2827 spin_unlock(&inode
->i_lock
);
2832 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2833 error
= inode_newsize_ok(inode
, offset
+ len
);
2837 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2842 start
= offset
>> PAGE_SHIFT
;
2843 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2844 /* Try to avoid a swapstorm if len is impossible to satisfy */
2845 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2850 shmem_falloc
.waitq
= NULL
;
2851 shmem_falloc
.start
= start
;
2852 shmem_falloc
.next
= start
;
2853 shmem_falloc
.nr_falloced
= 0;
2854 shmem_falloc
.nr_unswapped
= 0;
2855 spin_lock(&inode
->i_lock
);
2856 inode
->i_private
= &shmem_falloc
;
2857 spin_unlock(&inode
->i_lock
);
2859 for (index
= start
; index
< end
; index
++) {
2863 * Good, the fallocate(2) manpage permits EINTR: we may have
2864 * been interrupted because we are using up too much memory.
2866 if (signal_pending(current
))
2868 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2871 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2873 /* Remove the !PageUptodate pages we added */
2874 if (index
> start
) {
2875 shmem_undo_range(inode
,
2876 (loff_t
)start
<< PAGE_SHIFT
,
2877 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2883 * Inform shmem_writepage() how far we have reached.
2884 * No need for lock or barrier: we have the page lock.
2886 shmem_falloc
.next
++;
2887 if (!PageUptodate(page
))
2888 shmem_falloc
.nr_falloced
++;
2891 * If !PageUptodate, leave it that way so that freeable pages
2892 * can be recognized if we need to rollback on error later.
2893 * But set_page_dirty so that memory pressure will swap rather
2894 * than free the pages we are allocating (and SGP_CACHE pages
2895 * might still be clean: we now need to mark those dirty too).
2897 set_page_dirty(page
);
2903 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2904 i_size_write(inode
, offset
+ len
);
2905 inode
->i_ctime
= current_time(inode
);
2907 spin_lock(&inode
->i_lock
);
2908 inode
->i_private
= NULL
;
2909 spin_unlock(&inode
->i_lock
);
2911 inode_unlock(inode
);
2915 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2917 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2919 buf
->f_type
= TMPFS_MAGIC
;
2920 buf
->f_bsize
= PAGE_SIZE
;
2921 buf
->f_namelen
= NAME_MAX
;
2922 if (sbinfo
->max_blocks
) {
2923 buf
->f_blocks
= sbinfo
->max_blocks
;
2925 buf
->f_bfree
= sbinfo
->max_blocks
-
2926 percpu_counter_sum(&sbinfo
->used_blocks
);
2928 if (sbinfo
->max_inodes
) {
2929 buf
->f_files
= sbinfo
->max_inodes
;
2930 buf
->f_ffree
= sbinfo
->free_inodes
;
2932 /* else leave those fields 0 like simple_statfs */
2937 * File creation. Allocate an inode, and we're done..
2940 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2942 struct inode
*inode
;
2943 int error
= -ENOSPC
;
2945 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2947 error
= simple_acl_create(dir
, inode
);
2950 error
= security_inode_init_security(inode
, dir
,
2952 shmem_initxattrs
, NULL
);
2953 if (error
&& error
!= -EOPNOTSUPP
)
2957 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2958 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2959 d_instantiate(dentry
, inode
);
2960 dget(dentry
); /* Extra count - pin the dentry in core */
2969 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2971 struct inode
*inode
;
2972 int error
= -ENOSPC
;
2974 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2976 error
= security_inode_init_security(inode
, dir
,
2978 shmem_initxattrs
, NULL
);
2979 if (error
&& error
!= -EOPNOTSUPP
)
2981 error
= simple_acl_create(dir
, inode
);
2984 d_tmpfile(dentry
, inode
);
2992 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2996 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3002 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3005 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3011 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3013 struct inode
*inode
= d_inode(old_dentry
);
3017 * No ordinary (disk based) filesystem counts links as inodes;
3018 * but each new link needs a new dentry, pinning lowmem, and
3019 * tmpfs dentries cannot be pruned until they are unlinked.
3021 ret
= shmem_reserve_inode(inode
->i_sb
);
3025 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3026 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3028 ihold(inode
); /* New dentry reference */
3029 dget(dentry
); /* Extra pinning count for the created dentry */
3030 d_instantiate(dentry
, inode
);
3035 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3037 struct inode
*inode
= d_inode(dentry
);
3039 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3040 shmem_free_inode(inode
->i_sb
);
3042 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3043 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3045 dput(dentry
); /* Undo the count from "create" - this does all the work */
3049 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3051 if (!simple_empty(dentry
))
3054 drop_nlink(d_inode(dentry
));
3056 return shmem_unlink(dir
, dentry
);
3059 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3061 bool old_is_dir
= d_is_dir(old_dentry
);
3062 bool new_is_dir
= d_is_dir(new_dentry
);
3064 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3066 drop_nlink(old_dir
);
3069 drop_nlink(new_dir
);
3073 old_dir
->i_ctime
= old_dir
->i_mtime
=
3074 new_dir
->i_ctime
= new_dir
->i_mtime
=
3075 d_inode(old_dentry
)->i_ctime
=
3076 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3081 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3083 struct dentry
*whiteout
;
3086 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3090 error
= shmem_mknod(old_dir
, whiteout
,
3091 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3097 * Cheat and hash the whiteout while the old dentry is still in
3098 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3100 * d_lookup() will consistently find one of them at this point,
3101 * not sure which one, but that isn't even important.
3108 * The VFS layer already does all the dentry stuff for rename,
3109 * we just have to decrement the usage count for the target if
3110 * it exists so that the VFS layer correctly free's it when it
3113 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3115 struct inode
*inode
= d_inode(old_dentry
);
3116 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3118 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3121 if (flags
& RENAME_EXCHANGE
)
3122 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3124 if (!simple_empty(new_dentry
))
3127 if (flags
& RENAME_WHITEOUT
) {
3130 error
= shmem_whiteout(old_dir
, old_dentry
);
3135 if (d_really_is_positive(new_dentry
)) {
3136 (void) shmem_unlink(new_dir
, new_dentry
);
3137 if (they_are_dirs
) {
3138 drop_nlink(d_inode(new_dentry
));
3139 drop_nlink(old_dir
);
3141 } else if (they_are_dirs
) {
3142 drop_nlink(old_dir
);
3146 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3147 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3148 old_dir
->i_ctime
= old_dir
->i_mtime
=
3149 new_dir
->i_ctime
= new_dir
->i_mtime
=
3150 inode
->i_ctime
= current_time(old_dir
);
3154 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3158 struct inode
*inode
;
3160 struct shmem_inode_info
*info
;
3162 len
= strlen(symname
) + 1;
3163 if (len
> PAGE_SIZE
)
3164 return -ENAMETOOLONG
;
3166 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3170 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3171 shmem_initxattrs
, NULL
);
3173 if (error
!= -EOPNOTSUPP
) {
3180 info
= SHMEM_I(inode
);
3181 inode
->i_size
= len
-1;
3182 if (len
<= SHORT_SYMLINK_LEN
) {
3183 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3184 if (!inode
->i_link
) {
3188 inode
->i_op
= &shmem_short_symlink_operations
;
3190 inode_nohighmem(inode
);
3191 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3196 inode
->i_mapping
->a_ops
= &shmem_aops
;
3197 inode
->i_op
= &shmem_symlink_inode_operations
;
3198 memcpy(page_address(page
), symname
, len
);
3199 SetPageUptodate(page
);
3200 set_page_dirty(page
);
3204 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3205 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3206 d_instantiate(dentry
, inode
);
3211 static void shmem_put_link(void *arg
)
3213 mark_page_accessed(arg
);
3217 static const char *shmem_get_link(struct dentry
*dentry
,
3218 struct inode
*inode
,
3219 struct delayed_call
*done
)
3221 struct page
*page
= NULL
;
3224 page
= find_get_page(inode
->i_mapping
, 0);
3226 return ERR_PTR(-ECHILD
);
3227 if (!PageUptodate(page
)) {
3229 return ERR_PTR(-ECHILD
);
3232 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3234 return ERR_PTR(error
);
3237 set_delayed_call(done
, shmem_put_link
, page
);
3238 return page_address(page
);
3241 #ifdef CONFIG_TMPFS_XATTR
3243 * Superblocks without xattr inode operations may get some security.* xattr
3244 * support from the LSM "for free". As soon as we have any other xattrs
3245 * like ACLs, we also need to implement the security.* handlers at
3246 * filesystem level, though.
3250 * Callback for security_inode_init_security() for acquiring xattrs.
3252 static int shmem_initxattrs(struct inode
*inode
,
3253 const struct xattr
*xattr_array
,
3256 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3257 const struct xattr
*xattr
;
3258 struct simple_xattr
*new_xattr
;
3261 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3262 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3266 len
= strlen(xattr
->name
) + 1;
3267 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3269 if (!new_xattr
->name
) {
3274 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3275 XATTR_SECURITY_PREFIX_LEN
);
3276 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3279 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3285 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3286 struct dentry
*unused
, struct inode
*inode
,
3287 const char *name
, void *buffer
, size_t size
)
3289 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3291 name
= xattr_full_name(handler
, name
);
3292 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3295 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3296 struct dentry
*unused
, struct inode
*inode
,
3297 const char *name
, const void *value
,
3298 size_t size
, int flags
)
3300 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3302 name
= xattr_full_name(handler
, name
);
3303 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3306 static const struct xattr_handler shmem_security_xattr_handler
= {
3307 .prefix
= XATTR_SECURITY_PREFIX
,
3308 .get
= shmem_xattr_handler_get
,
3309 .set
= shmem_xattr_handler_set
,
3312 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3313 .prefix
= XATTR_TRUSTED_PREFIX
,
3314 .get
= shmem_xattr_handler_get
,
3315 .set
= shmem_xattr_handler_set
,
3318 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3319 #ifdef CONFIG_TMPFS_POSIX_ACL
3320 &posix_acl_access_xattr_handler
,
3321 &posix_acl_default_xattr_handler
,
3323 &shmem_security_xattr_handler
,
3324 &shmem_trusted_xattr_handler
,
3328 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3330 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3331 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3333 #endif /* CONFIG_TMPFS_XATTR */
3335 static const struct inode_operations shmem_short_symlink_operations
= {
3336 .get_link
= simple_get_link
,
3337 #ifdef CONFIG_TMPFS_XATTR
3338 .listxattr
= shmem_listxattr
,
3342 static const struct inode_operations shmem_symlink_inode_operations
= {
3343 .get_link
= shmem_get_link
,
3344 #ifdef CONFIG_TMPFS_XATTR
3345 .listxattr
= shmem_listxattr
,
3349 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3351 return ERR_PTR(-ESTALE
);
3354 static int shmem_match(struct inode
*ino
, void *vfh
)
3358 inum
= (inum
<< 32) | fh
[1];
3359 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3362 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3363 struct fid
*fid
, int fh_len
, int fh_type
)
3365 struct inode
*inode
;
3366 struct dentry
*dentry
= NULL
;
3373 inum
= (inum
<< 32) | fid
->raw
[1];
3375 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3376 shmem_match
, fid
->raw
);
3378 dentry
= d_find_alias(inode
);
3385 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3386 struct inode
*parent
)
3390 return FILEID_INVALID
;
3393 if (inode_unhashed(inode
)) {
3394 /* Unfortunately insert_inode_hash is not idempotent,
3395 * so as we hash inodes here rather than at creation
3396 * time, we need a lock to ensure we only try
3399 static DEFINE_SPINLOCK(lock
);
3401 if (inode_unhashed(inode
))
3402 __insert_inode_hash(inode
,
3403 inode
->i_ino
+ inode
->i_generation
);
3407 fh
[0] = inode
->i_generation
;
3408 fh
[1] = inode
->i_ino
;
3409 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3415 static const struct export_operations shmem_export_ops
= {
3416 .get_parent
= shmem_get_parent
,
3417 .encode_fh
= shmem_encode_fh
,
3418 .fh_to_dentry
= shmem_fh_to_dentry
,
3421 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3424 char *this_char
, *value
, *rest
;
3425 struct mempolicy
*mpol
= NULL
;
3429 while (options
!= NULL
) {
3430 this_char
= options
;
3433 * NUL-terminate this option: unfortunately,
3434 * mount options form a comma-separated list,
3435 * but mpol's nodelist may also contain commas.
3437 options
= strchr(options
, ',');
3438 if (options
== NULL
)
3441 if (!isdigit(*options
)) {
3448 if ((value
= strchr(this_char
,'=')) != NULL
) {
3451 pr_err("tmpfs: No value for mount option '%s'\n",
3456 if (!strcmp(this_char
,"size")) {
3457 unsigned long long size
;
3458 size
= memparse(value
,&rest
);
3460 size
<<= PAGE_SHIFT
;
3461 size
*= totalram_pages
;
3467 sbinfo
->max_blocks
=
3468 DIV_ROUND_UP(size
, PAGE_SIZE
);
3469 } else if (!strcmp(this_char
,"nr_blocks")) {
3470 sbinfo
->max_blocks
= memparse(value
, &rest
);
3473 } else if (!strcmp(this_char
,"nr_inodes")) {
3474 sbinfo
->max_inodes
= memparse(value
, &rest
);
3477 } else if (!strcmp(this_char
,"mode")) {
3480 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3483 } else if (!strcmp(this_char
,"uid")) {
3486 uid
= simple_strtoul(value
, &rest
, 0);
3489 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3490 if (!uid_valid(sbinfo
->uid
))
3492 } else if (!strcmp(this_char
,"gid")) {
3495 gid
= simple_strtoul(value
, &rest
, 0);
3498 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3499 if (!gid_valid(sbinfo
->gid
))
3501 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3502 } else if (!strcmp(this_char
, "huge")) {
3504 huge
= shmem_parse_huge(value
);
3507 if (!has_transparent_hugepage() &&
3508 huge
!= SHMEM_HUGE_NEVER
)
3510 sbinfo
->huge
= huge
;
3513 } else if (!strcmp(this_char
,"mpol")) {
3516 if (mpol_parse_str(value
, &mpol
))
3520 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3524 sbinfo
->mpol
= mpol
;
3528 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3536 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3538 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3539 struct shmem_sb_info config
= *sbinfo
;
3540 unsigned long inodes
;
3541 int error
= -EINVAL
;
3544 if (shmem_parse_options(data
, &config
, true))
3547 spin_lock(&sbinfo
->stat_lock
);
3548 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3549 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3551 if (config
.max_inodes
< inodes
)
3554 * Those tests disallow limited->unlimited while any are in use;
3555 * but we must separately disallow unlimited->limited, because
3556 * in that case we have no record of how much is already in use.
3558 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3560 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3564 sbinfo
->huge
= config
.huge
;
3565 sbinfo
->max_blocks
= config
.max_blocks
;
3566 sbinfo
->max_inodes
= config
.max_inodes
;
3567 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3570 * Preserve previous mempolicy unless mpol remount option was specified.
3573 mpol_put(sbinfo
->mpol
);
3574 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3577 spin_unlock(&sbinfo
->stat_lock
);
3581 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3583 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3585 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3586 seq_printf(seq
, ",size=%luk",
3587 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3588 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3589 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3590 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3591 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3592 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3593 seq_printf(seq
, ",uid=%u",
3594 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3595 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3596 seq_printf(seq
, ",gid=%u",
3597 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3598 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3599 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3601 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3603 shmem_show_mpol(seq
, sbinfo
->mpol
);
3607 #define MFD_NAME_PREFIX "memfd:"
3608 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3609 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3611 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3613 SYSCALL_DEFINE2(memfd_create
,
3614 const char __user
*, uname
,
3615 unsigned int, flags
)
3617 struct shmem_inode_info
*info
;
3623 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3626 /* length includes terminating zero */
3627 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3630 if (len
> MFD_NAME_MAX_LEN
+ 1)
3633 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3637 strcpy(name
, MFD_NAME_PREFIX
);
3638 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3643 /* terminating-zero may have changed after strnlen_user() returned */
3644 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3649 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3655 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3657 error
= PTR_ERR(file
);
3660 info
= SHMEM_I(file_inode(file
));
3661 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3662 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3663 if (flags
& MFD_ALLOW_SEALING
)
3664 info
->seals
&= ~F_SEAL_SEAL
;
3666 fd_install(fd
, file
);
3677 #endif /* CONFIG_TMPFS */
3679 static void shmem_put_super(struct super_block
*sb
)
3681 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3683 percpu_counter_destroy(&sbinfo
->used_blocks
);
3684 mpol_put(sbinfo
->mpol
);
3686 sb
->s_fs_info
= NULL
;
3689 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3691 struct inode
*inode
;
3692 struct shmem_sb_info
*sbinfo
;
3695 /* Round up to L1_CACHE_BYTES to resist false sharing */
3696 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3697 L1_CACHE_BYTES
), GFP_KERNEL
);
3701 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3702 sbinfo
->uid
= current_fsuid();
3703 sbinfo
->gid
= current_fsgid();
3704 sb
->s_fs_info
= sbinfo
;
3708 * Per default we only allow half of the physical ram per
3709 * tmpfs instance, limiting inodes to one per page of lowmem;
3710 * but the internal instance is left unlimited.
3712 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3713 sbinfo
->max_blocks
= shmem_default_max_blocks();
3714 sbinfo
->max_inodes
= shmem_default_max_inodes();
3715 if (shmem_parse_options(data
, sbinfo
, false)) {
3720 sb
->s_flags
|= MS_NOUSER
;
3722 sb
->s_export_op
= &shmem_export_ops
;
3723 sb
->s_flags
|= MS_NOSEC
;
3725 sb
->s_flags
|= MS_NOUSER
;
3728 spin_lock_init(&sbinfo
->stat_lock
);
3729 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3731 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3732 spin_lock_init(&sbinfo
->shrinklist_lock
);
3733 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3735 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3736 sb
->s_blocksize
= PAGE_SIZE
;
3737 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3738 sb
->s_magic
= TMPFS_MAGIC
;
3739 sb
->s_op
= &shmem_ops
;
3740 sb
->s_time_gran
= 1;
3741 #ifdef CONFIG_TMPFS_XATTR
3742 sb
->s_xattr
= shmem_xattr_handlers
;
3744 #ifdef CONFIG_TMPFS_POSIX_ACL
3745 sb
->s_flags
|= MS_POSIXACL
;
3748 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3751 inode
->i_uid
= sbinfo
->uid
;
3752 inode
->i_gid
= sbinfo
->gid
;
3753 sb
->s_root
= d_make_root(inode
);
3759 shmem_put_super(sb
);
3763 static struct kmem_cache
*shmem_inode_cachep
;
3765 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3767 struct shmem_inode_info
*info
;
3768 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3771 return &info
->vfs_inode
;
3774 static void shmem_destroy_callback(struct rcu_head
*head
)
3776 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3777 if (S_ISLNK(inode
->i_mode
))
3778 kfree(inode
->i_link
);
3779 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3782 static void shmem_destroy_inode(struct inode
*inode
)
3784 if (S_ISREG(inode
->i_mode
))
3785 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3786 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3789 static void shmem_init_inode(void *foo
)
3791 struct shmem_inode_info
*info
= foo
;
3792 inode_init_once(&info
->vfs_inode
);
3795 static int shmem_init_inodecache(void)
3797 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3798 sizeof(struct shmem_inode_info
),
3799 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3803 static void shmem_destroy_inodecache(void)
3805 kmem_cache_destroy(shmem_inode_cachep
);
3808 static const struct address_space_operations shmem_aops
= {
3809 .writepage
= shmem_writepage
,
3810 .set_page_dirty
= __set_page_dirty_no_writeback
,
3812 .write_begin
= shmem_write_begin
,
3813 .write_end
= shmem_write_end
,
3815 #ifdef CONFIG_MIGRATION
3816 .migratepage
= migrate_page
,
3818 .error_remove_page
= generic_error_remove_page
,
3821 static const struct file_operations shmem_file_operations
= {
3823 .get_unmapped_area
= shmem_get_unmapped_area
,
3825 .llseek
= shmem_file_llseek
,
3826 .read_iter
= shmem_file_read_iter
,
3827 .write_iter
= generic_file_write_iter
,
3828 .fsync
= noop_fsync
,
3829 .splice_read
= generic_file_splice_read
,
3830 .splice_write
= iter_file_splice_write
,
3831 .fallocate
= shmem_fallocate
,
3835 static const struct inode_operations shmem_inode_operations
= {
3836 .getattr
= shmem_getattr
,
3837 .setattr
= shmem_setattr
,
3838 #ifdef CONFIG_TMPFS_XATTR
3839 .listxattr
= shmem_listxattr
,
3840 .set_acl
= simple_set_acl
,
3844 static const struct inode_operations shmem_dir_inode_operations
= {
3846 .create
= shmem_create
,
3847 .lookup
= simple_lookup
,
3849 .unlink
= shmem_unlink
,
3850 .symlink
= shmem_symlink
,
3851 .mkdir
= shmem_mkdir
,
3852 .rmdir
= shmem_rmdir
,
3853 .mknod
= shmem_mknod
,
3854 .rename
= shmem_rename2
,
3855 .tmpfile
= shmem_tmpfile
,
3857 #ifdef CONFIG_TMPFS_XATTR
3858 .listxattr
= shmem_listxattr
,
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861 .setattr
= shmem_setattr
,
3862 .set_acl
= simple_set_acl
,
3866 static const struct inode_operations shmem_special_inode_operations
= {
3867 #ifdef CONFIG_TMPFS_XATTR
3868 .listxattr
= shmem_listxattr
,
3870 #ifdef CONFIG_TMPFS_POSIX_ACL
3871 .setattr
= shmem_setattr
,
3872 .set_acl
= simple_set_acl
,
3876 static const struct super_operations shmem_ops
= {
3877 .alloc_inode
= shmem_alloc_inode
,
3878 .destroy_inode
= shmem_destroy_inode
,
3880 .statfs
= shmem_statfs
,
3881 .remount_fs
= shmem_remount_fs
,
3882 .show_options
= shmem_show_options
,
3884 .evict_inode
= shmem_evict_inode
,
3885 .drop_inode
= generic_delete_inode
,
3886 .put_super
= shmem_put_super
,
3887 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3888 .nr_cached_objects
= shmem_unused_huge_count
,
3889 .free_cached_objects
= shmem_unused_huge_scan
,
3893 static const struct vm_operations_struct shmem_vm_ops
= {
3894 .fault
= shmem_fault
,
3895 .map_pages
= filemap_map_pages
,
3897 .set_policy
= shmem_set_policy
,
3898 .get_policy
= shmem_get_policy
,
3902 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3903 int flags
, const char *dev_name
, void *data
)
3905 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3908 static struct file_system_type shmem_fs_type
= {
3909 .owner
= THIS_MODULE
,
3911 .mount
= shmem_mount
,
3912 .kill_sb
= kill_litter_super
,
3913 .fs_flags
= FS_USERNS_MOUNT
,
3916 int __init
shmem_init(void)
3920 /* If rootfs called this, don't re-init */
3921 if (shmem_inode_cachep
)
3924 error
= shmem_init_inodecache();
3928 error
= register_filesystem(&shmem_fs_type
);
3930 pr_err("Could not register tmpfs\n");
3934 shm_mnt
= kern_mount(&shmem_fs_type
);
3935 if (IS_ERR(shm_mnt
)) {
3936 error
= PTR_ERR(shm_mnt
);
3937 pr_err("Could not kern_mount tmpfs\n");
3941 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3942 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3943 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3945 shmem_huge
= 0; /* just in case it was patched */
3950 unregister_filesystem(&shmem_fs_type
);
3952 shmem_destroy_inodecache();
3954 shm_mnt
= ERR_PTR(error
);
3958 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3959 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3960 struct kobj_attribute
*attr
, char *buf
)
3964 SHMEM_HUGE_WITHIN_SIZE
,
3972 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3973 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3975 count
+= sprintf(buf
+ count
, fmt
,
3976 shmem_format_huge(values
[i
]));
3978 buf
[count
- 1] = '\n';
3982 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3983 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3988 if (count
+ 1 > sizeof(tmp
))
3990 memcpy(tmp
, buf
, count
);
3992 if (count
&& tmp
[count
- 1] == '\n')
3993 tmp
[count
- 1] = '\0';
3995 huge
= shmem_parse_huge(tmp
);
3996 if (huge
== -EINVAL
)
3998 if (!has_transparent_hugepage() &&
3999 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4003 if (shmem_huge
< SHMEM_HUGE_DENY
)
4004 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4008 struct kobj_attribute shmem_enabled_attr
=
4009 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4010 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4012 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4013 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4015 struct inode
*inode
= file_inode(vma
->vm_file
);
4016 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4020 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4022 if (shmem_huge
== SHMEM_HUGE_DENY
)
4024 switch (sbinfo
->huge
) {
4025 case SHMEM_HUGE_NEVER
:
4027 case SHMEM_HUGE_ALWAYS
:
4029 case SHMEM_HUGE_WITHIN_SIZE
:
4030 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4031 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4032 if (i_size
>= HPAGE_PMD_SIZE
&&
4033 i_size
>> PAGE_SHIFT
>= off
)
4035 case SHMEM_HUGE_ADVISE
:
4036 /* TODO: implement fadvise() hints */
4037 return (vma
->vm_flags
& VM_HUGEPAGE
);
4043 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4045 #else /* !CONFIG_SHMEM */
4048 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4050 * This is intended for small system where the benefits of the full
4051 * shmem code (swap-backed and resource-limited) are outweighed by
4052 * their complexity. On systems without swap this code should be
4053 * effectively equivalent, but much lighter weight.
4056 static struct file_system_type shmem_fs_type
= {
4058 .mount
= ramfs_mount
,
4059 .kill_sb
= kill_litter_super
,
4060 .fs_flags
= FS_USERNS_MOUNT
,
4063 int __init
shmem_init(void)
4065 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4067 shm_mnt
= kern_mount(&shmem_fs_type
);
4068 BUG_ON(IS_ERR(shm_mnt
));
4073 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4078 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4083 void shmem_unlock_mapping(struct address_space
*mapping
)
4088 unsigned long shmem_get_unmapped_area(struct file
*file
,
4089 unsigned long addr
, unsigned long len
,
4090 unsigned long pgoff
, unsigned long flags
)
4092 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4096 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4098 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4100 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4102 #define shmem_vm_ops generic_file_vm_ops
4103 #define shmem_file_operations ramfs_file_operations
4104 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4105 #define shmem_acct_size(flags, size) 0
4106 #define shmem_unacct_size(flags, size) do {} while (0)
4108 #endif /* CONFIG_SHMEM */
4112 static const struct dentry_operations anon_ops
= {
4113 .d_dname
= simple_dname
4116 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4117 unsigned long flags
, unsigned int i_flags
)
4120 struct inode
*inode
;
4122 struct super_block
*sb
;
4125 if (IS_ERR(shm_mnt
))
4126 return ERR_CAST(shm_mnt
);
4128 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4129 return ERR_PTR(-EINVAL
);
4131 if (shmem_acct_size(flags
, size
))
4132 return ERR_PTR(-ENOMEM
);
4134 res
= ERR_PTR(-ENOMEM
);
4136 this.len
= strlen(name
);
4137 this.hash
= 0; /* will go */
4138 sb
= shm_mnt
->mnt_sb
;
4139 path
.mnt
= mntget(shm_mnt
);
4140 path
.dentry
= d_alloc_pseudo(sb
, &this);
4143 d_set_d_op(path
.dentry
, &anon_ops
);
4145 res
= ERR_PTR(-ENOSPC
);
4146 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4150 inode
->i_flags
|= i_flags
;
4151 d_instantiate(path
.dentry
, inode
);
4152 inode
->i_size
= size
;
4153 clear_nlink(inode
); /* It is unlinked */
4154 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4158 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4159 &shmem_file_operations
);
4166 shmem_unacct_size(flags
, size
);
4173 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4174 * kernel internal. There will be NO LSM permission checks against the
4175 * underlying inode. So users of this interface must do LSM checks at a
4176 * higher layer. The users are the big_key and shm implementations. LSM
4177 * checks are provided at the key or shm level rather than the inode.
4178 * @name: name for dentry (to be seen in /proc/<pid>/maps
4179 * @size: size to be set for the file
4180 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4182 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4184 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4188 * shmem_file_setup - get an unlinked file living in tmpfs
4189 * @name: name for dentry (to be seen in /proc/<pid>/maps
4190 * @size: size to be set for the file
4191 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4193 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4195 return __shmem_file_setup(name
, size
, flags
, 0);
4197 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4200 * shmem_zero_setup - setup a shared anonymous mapping
4201 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4203 int shmem_zero_setup(struct vm_area_struct
*vma
)
4206 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4209 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4210 * between XFS directory reading and selinux: since this file is only
4211 * accessible to the user through its mapping, use S_PRIVATE flag to
4212 * bypass file security, in the same way as shmem_kernel_file_setup().
4214 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4216 return PTR_ERR(file
);
4220 vma
->vm_file
= file
;
4221 vma
->vm_ops
= &shmem_vm_ops
;
4223 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4224 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4225 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4226 khugepaged_enter(vma
, vma
->vm_flags
);
4233 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4234 * @mapping: the page's address_space
4235 * @index: the page index
4236 * @gfp: the page allocator flags to use if allocating
4238 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4239 * with any new page allocations done using the specified allocation flags.
4240 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4241 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4242 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4244 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4245 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4247 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4248 pgoff_t index
, gfp_t gfp
)
4251 struct inode
*inode
= mapping
->host
;
4255 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4256 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4259 page
= ERR_PTR(error
);
4265 * The tiny !SHMEM case uses ramfs without swap
4267 return read_cache_page_gfp(mapping
, index
, gfp
);
4270 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);