userfaultfd: shmem: add tlbflush.h header for microblaze
[linux/fpc-iii.git] / mm / shmem.c
blob26c332c84e14b372f43f313e9d3bbe1f16579664
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39 static struct vfsmount *shm_mnt;
41 #ifdef CONFIG_SHMEM
43 * This virtual memory filesystem is heavily based on the ramfs. It
44 * extends ramfs by the ability to use swap and honor resource limits
45 * which makes it a completely usable filesystem.
48 #include <linux/xattr.h>
49 #include <linux/exportfs.h>
50 #include <linux/posix_acl.h>
51 #include <linux/posix_acl_xattr.h>
52 #include <linux/mman.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/backing-dev.h>
56 #include <linux/shmem_fs.h>
57 #include <linux/writeback.h>
58 #include <linux/blkdev.h>
59 #include <linux/pagevec.h>
60 #include <linux/percpu_counter.h>
61 #include <linux/falloc.h>
62 #include <linux/splice.h>
63 #include <linux/security.h>
64 #include <linux/swapops.h>
65 #include <linux/mempolicy.h>
66 #include <linux/namei.h>
67 #include <linux/ctype.h>
68 #include <linux/migrate.h>
69 #include <linux/highmem.h>
70 #include <linux/seq_file.h>
71 #include <linux/magic.h>
72 #include <linux/syscalls.h>
73 #include <linux/fcntl.h>
74 #include <uapi/linux/memfd.h>
75 #include <linux/rmap.h>
77 #include <linux/uaccess.h>
78 #include <asm/pgtable.h>
80 #include "internal.h"
82 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
83 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
85 /* Pretend that each entry is of this size in directory's i_size */
86 #define BOGO_DIRENT_SIZE 20
88 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
89 #define SHORT_SYMLINK_LEN 128
92 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
93 * inode->i_private (with i_mutex making sure that it has only one user at
94 * a time): we would prefer not to enlarge the shmem inode just for that.
96 struct shmem_falloc {
97 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
98 pgoff_t start; /* start of range currently being fallocated */
99 pgoff_t next; /* the next page offset to be fallocated */
100 pgoff_t nr_falloced; /* how many new pages have been fallocated */
101 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages / 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
114 #endif
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp,
121 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
123 int shmem_getpage(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp)
126 return shmem_getpage_gfp(inode, index, pagep, sgp,
127 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
130 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
132 return sb->s_fs_info;
136 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
137 * for shared memory and for shared anonymous (/dev/zero) mappings
138 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
139 * consistent with the pre-accounting of private mappings ...
141 static inline int shmem_acct_size(unsigned long flags, loff_t size)
143 return (flags & VM_NORESERVE) ?
144 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
149 if (!(flags & VM_NORESERVE))
150 vm_unacct_memory(VM_ACCT(size));
153 static inline int shmem_reacct_size(unsigned long flags,
154 loff_t oldsize, loff_t newsize)
156 if (!(flags & VM_NORESERVE)) {
157 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
158 return security_vm_enough_memory_mm(current->mm,
159 VM_ACCT(newsize) - VM_ACCT(oldsize));
160 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
161 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
163 return 0;
167 * ... whereas tmpfs objects are accounted incrementally as
168 * pages are allocated, in order to allow large sparse files.
169 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
170 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
172 static inline int shmem_acct_block(unsigned long flags, long pages)
174 if (!(flags & VM_NORESERVE))
175 return 0;
177 return security_vm_enough_memory_mm(current->mm,
178 pages * VM_ACCT(PAGE_SIZE));
181 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 if (flags & VM_NORESERVE)
184 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
187 static const struct super_operations shmem_ops;
188 static const struct address_space_operations shmem_aops;
189 static const struct file_operations shmem_file_operations;
190 static const struct inode_operations shmem_inode_operations;
191 static const struct inode_operations shmem_dir_inode_operations;
192 static const struct inode_operations shmem_special_inode_operations;
193 static const struct vm_operations_struct shmem_vm_ops;
194 static struct file_system_type shmem_fs_type;
196 bool vma_is_shmem(struct vm_area_struct *vma)
198 return vma->vm_ops == &shmem_vm_ops;
201 static LIST_HEAD(shmem_swaplist);
202 static DEFINE_MUTEX(shmem_swaplist_mutex);
204 static int shmem_reserve_inode(struct super_block *sb)
206 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
207 if (sbinfo->max_inodes) {
208 spin_lock(&sbinfo->stat_lock);
209 if (!sbinfo->free_inodes) {
210 spin_unlock(&sbinfo->stat_lock);
211 return -ENOSPC;
213 sbinfo->free_inodes--;
214 spin_unlock(&sbinfo->stat_lock);
216 return 0;
219 static void shmem_free_inode(struct super_block *sb)
221 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
222 if (sbinfo->max_inodes) {
223 spin_lock(&sbinfo->stat_lock);
224 sbinfo->free_inodes++;
225 spin_unlock(&sbinfo->stat_lock);
230 * shmem_recalc_inode - recalculate the block usage of an inode
231 * @inode: inode to recalc
233 * We have to calculate the free blocks since the mm can drop
234 * undirtied hole pages behind our back.
236 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
237 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
239 * It has to be called with the spinlock held.
241 static void shmem_recalc_inode(struct inode *inode)
243 struct shmem_inode_info *info = SHMEM_I(inode);
244 long freed;
246 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
247 if (freed > 0) {
248 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
249 if (sbinfo->max_blocks)
250 percpu_counter_add(&sbinfo->used_blocks, -freed);
251 info->alloced -= freed;
252 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
253 shmem_unacct_blocks(info->flags, freed);
257 bool shmem_charge(struct inode *inode, long pages)
259 struct shmem_inode_info *info = SHMEM_I(inode);
260 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
261 unsigned long flags;
263 if (shmem_acct_block(info->flags, pages))
264 return false;
265 spin_lock_irqsave(&info->lock, flags);
266 info->alloced += pages;
267 inode->i_blocks += pages * BLOCKS_PER_PAGE;
268 shmem_recalc_inode(inode);
269 spin_unlock_irqrestore(&info->lock, flags);
270 inode->i_mapping->nrpages += pages;
272 if (!sbinfo->max_blocks)
273 return true;
274 if (percpu_counter_compare(&sbinfo->used_blocks,
275 sbinfo->max_blocks - pages) > 0) {
276 inode->i_mapping->nrpages -= pages;
277 spin_lock_irqsave(&info->lock, flags);
278 info->alloced -= pages;
279 shmem_recalc_inode(inode);
280 spin_unlock_irqrestore(&info->lock, flags);
281 shmem_unacct_blocks(info->flags, pages);
282 return false;
284 percpu_counter_add(&sbinfo->used_blocks, pages);
285 return true;
288 void shmem_uncharge(struct inode *inode, long pages)
290 struct shmem_inode_info *info = SHMEM_I(inode);
291 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
292 unsigned long flags;
294 spin_lock_irqsave(&info->lock, flags);
295 info->alloced -= pages;
296 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
297 shmem_recalc_inode(inode);
298 spin_unlock_irqrestore(&info->lock, flags);
300 if (sbinfo->max_blocks)
301 percpu_counter_sub(&sbinfo->used_blocks, pages);
302 shmem_unacct_blocks(info->flags, pages);
306 * Replace item expected in radix tree by a new item, while holding tree lock.
308 static int shmem_radix_tree_replace(struct address_space *mapping,
309 pgoff_t index, void *expected, void *replacement)
311 struct radix_tree_node *node;
312 void **pslot;
313 void *item;
315 VM_BUG_ON(!expected);
316 VM_BUG_ON(!replacement);
317 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
318 if (!item)
319 return -ENOENT;
320 if (item != expected)
321 return -ENOENT;
322 __radix_tree_replace(&mapping->page_tree, node, pslot,
323 replacement, NULL, NULL);
324 return 0;
328 * Sometimes, before we decide whether to proceed or to fail, we must check
329 * that an entry was not already brought back from swap by a racing thread.
331 * Checking page is not enough: by the time a SwapCache page is locked, it
332 * might be reused, and again be SwapCache, using the same swap as before.
334 static bool shmem_confirm_swap(struct address_space *mapping,
335 pgoff_t index, swp_entry_t swap)
337 void *item;
339 rcu_read_lock();
340 item = radix_tree_lookup(&mapping->page_tree, index);
341 rcu_read_unlock();
342 return item == swp_to_radix_entry(swap);
346 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
348 * SHMEM_HUGE_NEVER:
349 * disables huge pages for the mount;
350 * SHMEM_HUGE_ALWAYS:
351 * enables huge pages for the mount;
352 * SHMEM_HUGE_WITHIN_SIZE:
353 * only allocate huge pages if the page will be fully within i_size,
354 * also respect fadvise()/madvise() hints;
355 * SHMEM_HUGE_ADVISE:
356 * only allocate huge pages if requested with fadvise()/madvise();
359 #define SHMEM_HUGE_NEVER 0
360 #define SHMEM_HUGE_ALWAYS 1
361 #define SHMEM_HUGE_WITHIN_SIZE 2
362 #define SHMEM_HUGE_ADVISE 3
365 * Special values.
366 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
368 * SHMEM_HUGE_DENY:
369 * disables huge on shm_mnt and all mounts, for emergency use;
370 * SHMEM_HUGE_FORCE:
371 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
374 #define SHMEM_HUGE_DENY (-1)
375 #define SHMEM_HUGE_FORCE (-2)
377 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
378 /* ifdef here to avoid bloating shmem.o when not necessary */
380 int shmem_huge __read_mostly;
382 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
383 static int shmem_parse_huge(const char *str)
385 if (!strcmp(str, "never"))
386 return SHMEM_HUGE_NEVER;
387 if (!strcmp(str, "always"))
388 return SHMEM_HUGE_ALWAYS;
389 if (!strcmp(str, "within_size"))
390 return SHMEM_HUGE_WITHIN_SIZE;
391 if (!strcmp(str, "advise"))
392 return SHMEM_HUGE_ADVISE;
393 if (!strcmp(str, "deny"))
394 return SHMEM_HUGE_DENY;
395 if (!strcmp(str, "force"))
396 return SHMEM_HUGE_FORCE;
397 return -EINVAL;
400 static const char *shmem_format_huge(int huge)
402 switch (huge) {
403 case SHMEM_HUGE_NEVER:
404 return "never";
405 case SHMEM_HUGE_ALWAYS:
406 return "always";
407 case SHMEM_HUGE_WITHIN_SIZE:
408 return "within_size";
409 case SHMEM_HUGE_ADVISE:
410 return "advise";
411 case SHMEM_HUGE_DENY:
412 return "deny";
413 case SHMEM_HUGE_FORCE:
414 return "force";
415 default:
416 VM_BUG_ON(1);
417 return "bad_val";
420 #endif
422 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
423 struct shrink_control *sc, unsigned long nr_to_split)
425 LIST_HEAD(list), *pos, *next;
426 LIST_HEAD(to_remove);
427 struct inode *inode;
428 struct shmem_inode_info *info;
429 struct page *page;
430 unsigned long batch = sc ? sc->nr_to_scan : 128;
431 int removed = 0, split = 0;
433 if (list_empty(&sbinfo->shrinklist))
434 return SHRINK_STOP;
436 spin_lock(&sbinfo->shrinklist_lock);
437 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
438 info = list_entry(pos, struct shmem_inode_info, shrinklist);
440 /* pin the inode */
441 inode = igrab(&info->vfs_inode);
443 /* inode is about to be evicted */
444 if (!inode) {
445 list_del_init(&info->shrinklist);
446 removed++;
447 goto next;
450 /* Check if there's anything to gain */
451 if (round_up(inode->i_size, PAGE_SIZE) ==
452 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
453 list_move(&info->shrinklist, &to_remove);
454 removed++;
455 goto next;
458 list_move(&info->shrinklist, &list);
459 next:
460 if (!--batch)
461 break;
463 spin_unlock(&sbinfo->shrinklist_lock);
465 list_for_each_safe(pos, next, &to_remove) {
466 info = list_entry(pos, struct shmem_inode_info, shrinklist);
467 inode = &info->vfs_inode;
468 list_del_init(&info->shrinklist);
469 iput(inode);
472 list_for_each_safe(pos, next, &list) {
473 int ret;
475 info = list_entry(pos, struct shmem_inode_info, shrinklist);
476 inode = &info->vfs_inode;
478 if (nr_to_split && split >= nr_to_split) {
479 iput(inode);
480 continue;
483 page = find_lock_page(inode->i_mapping,
484 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
485 if (!page)
486 goto drop;
488 if (!PageTransHuge(page)) {
489 unlock_page(page);
490 put_page(page);
491 goto drop;
494 ret = split_huge_page(page);
495 unlock_page(page);
496 put_page(page);
498 if (ret) {
499 /* split failed: leave it on the list */
500 iput(inode);
501 continue;
504 split++;
505 drop:
506 list_del_init(&info->shrinklist);
507 removed++;
508 iput(inode);
511 spin_lock(&sbinfo->shrinklist_lock);
512 list_splice_tail(&list, &sbinfo->shrinklist);
513 sbinfo->shrinklist_len -= removed;
514 spin_unlock(&sbinfo->shrinklist_lock);
516 return split;
519 static long shmem_unused_huge_scan(struct super_block *sb,
520 struct shrink_control *sc)
522 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
524 if (!READ_ONCE(sbinfo->shrinklist_len))
525 return SHRINK_STOP;
527 return shmem_unused_huge_shrink(sbinfo, sc, 0);
530 static long shmem_unused_huge_count(struct super_block *sb,
531 struct shrink_control *sc)
533 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
534 return READ_ONCE(sbinfo->shrinklist_len);
536 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
538 #define shmem_huge SHMEM_HUGE_DENY
540 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
541 struct shrink_control *sc, unsigned long nr_to_split)
543 return 0;
545 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548 * Like add_to_page_cache_locked, but error if expected item has gone.
550 static int shmem_add_to_page_cache(struct page *page,
551 struct address_space *mapping,
552 pgoff_t index, void *expected)
554 int error, nr = hpage_nr_pages(page);
556 VM_BUG_ON_PAGE(PageTail(page), page);
557 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
558 VM_BUG_ON_PAGE(!PageLocked(page), page);
559 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
560 VM_BUG_ON(expected && PageTransHuge(page));
562 page_ref_add(page, nr);
563 page->mapping = mapping;
564 page->index = index;
566 spin_lock_irq(&mapping->tree_lock);
567 if (PageTransHuge(page)) {
568 void __rcu **results;
569 pgoff_t idx;
570 int i;
572 error = 0;
573 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
574 &results, &idx, index, 1) &&
575 idx < index + HPAGE_PMD_NR) {
576 error = -EEXIST;
579 if (!error) {
580 for (i = 0; i < HPAGE_PMD_NR; i++) {
581 error = radix_tree_insert(&mapping->page_tree,
582 index + i, page + i);
583 VM_BUG_ON(error);
585 count_vm_event(THP_FILE_ALLOC);
587 } else if (!expected) {
588 error = radix_tree_insert(&mapping->page_tree, index, page);
589 } else {
590 error = shmem_radix_tree_replace(mapping, index, expected,
591 page);
594 if (!error) {
595 mapping->nrpages += nr;
596 if (PageTransHuge(page))
597 __inc_node_page_state(page, NR_SHMEM_THPS);
598 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
599 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
600 spin_unlock_irq(&mapping->tree_lock);
601 } else {
602 page->mapping = NULL;
603 spin_unlock_irq(&mapping->tree_lock);
604 page_ref_sub(page, nr);
606 return error;
610 * Like delete_from_page_cache, but substitutes swap for page.
612 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
614 struct address_space *mapping = page->mapping;
615 int error;
617 VM_BUG_ON_PAGE(PageCompound(page), page);
619 spin_lock_irq(&mapping->tree_lock);
620 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
621 page->mapping = NULL;
622 mapping->nrpages--;
623 __dec_node_page_state(page, NR_FILE_PAGES);
624 __dec_node_page_state(page, NR_SHMEM);
625 spin_unlock_irq(&mapping->tree_lock);
626 put_page(page);
627 BUG_ON(error);
631 * Remove swap entry from radix tree, free the swap and its page cache.
633 static int shmem_free_swap(struct address_space *mapping,
634 pgoff_t index, void *radswap)
636 void *old;
638 spin_lock_irq(&mapping->tree_lock);
639 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
640 spin_unlock_irq(&mapping->tree_lock);
641 if (old != radswap)
642 return -ENOENT;
643 free_swap_and_cache(radix_to_swp_entry(radswap));
644 return 0;
648 * Determine (in bytes) how many of the shmem object's pages mapped by the
649 * given offsets are swapped out.
651 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
652 * as long as the inode doesn't go away and racy results are not a problem.
654 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
655 pgoff_t start, pgoff_t end)
657 struct radix_tree_iter iter;
658 void **slot;
659 struct page *page;
660 unsigned long swapped = 0;
662 rcu_read_lock();
664 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
665 if (iter.index >= end)
666 break;
668 page = radix_tree_deref_slot(slot);
670 if (radix_tree_deref_retry(page)) {
671 slot = radix_tree_iter_retry(&iter);
672 continue;
675 if (radix_tree_exceptional_entry(page))
676 swapped++;
678 if (need_resched()) {
679 slot = radix_tree_iter_resume(slot, &iter);
680 cond_resched_rcu();
684 rcu_read_unlock();
686 return swapped << PAGE_SHIFT;
690 * Determine (in bytes) how many of the shmem object's pages mapped by the
691 * given vma is swapped out.
693 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
694 * as long as the inode doesn't go away and racy results are not a problem.
696 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
698 struct inode *inode = file_inode(vma->vm_file);
699 struct shmem_inode_info *info = SHMEM_I(inode);
700 struct address_space *mapping = inode->i_mapping;
701 unsigned long swapped;
703 /* Be careful as we don't hold info->lock */
704 swapped = READ_ONCE(info->swapped);
707 * The easier cases are when the shmem object has nothing in swap, or
708 * the vma maps it whole. Then we can simply use the stats that we
709 * already track.
711 if (!swapped)
712 return 0;
714 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
715 return swapped << PAGE_SHIFT;
717 /* Here comes the more involved part */
718 return shmem_partial_swap_usage(mapping,
719 linear_page_index(vma, vma->vm_start),
720 linear_page_index(vma, vma->vm_end));
724 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
726 void shmem_unlock_mapping(struct address_space *mapping)
728 struct pagevec pvec;
729 pgoff_t indices[PAGEVEC_SIZE];
730 pgoff_t index = 0;
732 pagevec_init(&pvec, 0);
734 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
736 while (!mapping_unevictable(mapping)) {
738 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
739 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
741 pvec.nr = find_get_entries(mapping, index,
742 PAGEVEC_SIZE, pvec.pages, indices);
743 if (!pvec.nr)
744 break;
745 index = indices[pvec.nr - 1] + 1;
746 pagevec_remove_exceptionals(&pvec);
747 check_move_unevictable_pages(pvec.pages, pvec.nr);
748 pagevec_release(&pvec);
749 cond_resched();
754 * Remove range of pages and swap entries from radix tree, and free them.
755 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
757 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
758 bool unfalloc)
760 struct address_space *mapping = inode->i_mapping;
761 struct shmem_inode_info *info = SHMEM_I(inode);
762 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
763 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
764 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
765 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 long nr_swaps_freed = 0;
769 pgoff_t index;
770 int i;
772 if (lend == -1)
773 end = -1; /* unsigned, so actually very big */
775 pagevec_init(&pvec, 0);
776 index = start;
777 while (index < end) {
778 pvec.nr = find_get_entries(mapping, index,
779 min(end - index, (pgoff_t)PAGEVEC_SIZE),
780 pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 for (i = 0; i < pagevec_count(&pvec); i++) {
784 struct page *page = pvec.pages[i];
786 index = indices[i];
787 if (index >= end)
788 break;
790 if (radix_tree_exceptional_entry(page)) {
791 if (unfalloc)
792 continue;
793 nr_swaps_freed += !shmem_free_swap(mapping,
794 index, page);
795 continue;
798 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
800 if (!trylock_page(page))
801 continue;
803 if (PageTransTail(page)) {
804 /* Middle of THP: zero out the page */
805 clear_highpage(page);
806 unlock_page(page);
807 continue;
808 } else if (PageTransHuge(page)) {
809 if (index == round_down(end, HPAGE_PMD_NR)) {
811 * Range ends in the middle of THP:
812 * zero out the page
814 clear_highpage(page);
815 unlock_page(page);
816 continue;
818 index += HPAGE_PMD_NR - 1;
819 i += HPAGE_PMD_NR - 1;
822 if (!unfalloc || !PageUptodate(page)) {
823 VM_BUG_ON_PAGE(PageTail(page), page);
824 if (page_mapping(page) == mapping) {
825 VM_BUG_ON_PAGE(PageWriteback(page), page);
826 truncate_inode_page(mapping, page);
829 unlock_page(page);
831 pagevec_remove_exceptionals(&pvec);
832 pagevec_release(&pvec);
833 cond_resched();
834 index++;
837 if (partial_start) {
838 struct page *page = NULL;
839 shmem_getpage(inode, start - 1, &page, SGP_READ);
840 if (page) {
841 unsigned int top = PAGE_SIZE;
842 if (start > end) {
843 top = partial_end;
844 partial_end = 0;
846 zero_user_segment(page, partial_start, top);
847 set_page_dirty(page);
848 unlock_page(page);
849 put_page(page);
852 if (partial_end) {
853 struct page *page = NULL;
854 shmem_getpage(inode, end, &page, SGP_READ);
855 if (page) {
856 zero_user_segment(page, 0, partial_end);
857 set_page_dirty(page);
858 unlock_page(page);
859 put_page(page);
862 if (start >= end)
863 return;
865 index = start;
866 while (index < end) {
867 cond_resched();
869 pvec.nr = find_get_entries(mapping, index,
870 min(end - index, (pgoff_t)PAGEVEC_SIZE),
871 pvec.pages, indices);
872 if (!pvec.nr) {
873 /* If all gone or hole-punch or unfalloc, we're done */
874 if (index == start || end != -1)
875 break;
876 /* But if truncating, restart to make sure all gone */
877 index = start;
878 continue;
880 for (i = 0; i < pagevec_count(&pvec); i++) {
881 struct page *page = pvec.pages[i];
883 index = indices[i];
884 if (index >= end)
885 break;
887 if (radix_tree_exceptional_entry(page)) {
888 if (unfalloc)
889 continue;
890 if (shmem_free_swap(mapping, index, page)) {
891 /* Swap was replaced by page: retry */
892 index--;
893 break;
895 nr_swaps_freed++;
896 continue;
899 lock_page(page);
901 if (PageTransTail(page)) {
902 /* Middle of THP: zero out the page */
903 clear_highpage(page);
904 unlock_page(page);
906 * Partial thp truncate due 'start' in middle
907 * of THP: don't need to look on these pages
908 * again on !pvec.nr restart.
910 if (index != round_down(end, HPAGE_PMD_NR))
911 start++;
912 continue;
913 } else if (PageTransHuge(page)) {
914 if (index == round_down(end, HPAGE_PMD_NR)) {
916 * Range ends in the middle of THP:
917 * zero out the page
919 clear_highpage(page);
920 unlock_page(page);
921 continue;
923 index += HPAGE_PMD_NR - 1;
924 i += HPAGE_PMD_NR - 1;
927 if (!unfalloc || !PageUptodate(page)) {
928 VM_BUG_ON_PAGE(PageTail(page), page);
929 if (page_mapping(page) == mapping) {
930 VM_BUG_ON_PAGE(PageWriteback(page), page);
931 truncate_inode_page(mapping, page);
932 } else {
933 /* Page was replaced by swap: retry */
934 unlock_page(page);
935 index--;
936 break;
939 unlock_page(page);
941 pagevec_remove_exceptionals(&pvec);
942 pagevec_release(&pvec);
943 index++;
946 spin_lock_irq(&info->lock);
947 info->swapped -= nr_swaps_freed;
948 shmem_recalc_inode(inode);
949 spin_unlock_irq(&info->lock);
952 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
954 shmem_undo_range(inode, lstart, lend, false);
955 inode->i_ctime = inode->i_mtime = current_time(inode);
957 EXPORT_SYMBOL_GPL(shmem_truncate_range);
959 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
960 struct kstat *stat)
962 struct inode *inode = dentry->d_inode;
963 struct shmem_inode_info *info = SHMEM_I(inode);
965 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
966 spin_lock_irq(&info->lock);
967 shmem_recalc_inode(inode);
968 spin_unlock_irq(&info->lock);
970 generic_fillattr(inode, stat);
971 return 0;
974 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
976 struct inode *inode = d_inode(dentry);
977 struct shmem_inode_info *info = SHMEM_I(inode);
978 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
979 int error;
981 error = setattr_prepare(dentry, attr);
982 if (error)
983 return error;
985 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
986 loff_t oldsize = inode->i_size;
987 loff_t newsize = attr->ia_size;
989 /* protected by i_mutex */
990 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
991 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
992 return -EPERM;
994 if (newsize != oldsize) {
995 error = shmem_reacct_size(SHMEM_I(inode)->flags,
996 oldsize, newsize);
997 if (error)
998 return error;
999 i_size_write(inode, newsize);
1000 inode->i_ctime = inode->i_mtime = current_time(inode);
1002 if (newsize <= oldsize) {
1003 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1004 if (oldsize > holebegin)
1005 unmap_mapping_range(inode->i_mapping,
1006 holebegin, 0, 1);
1007 if (info->alloced)
1008 shmem_truncate_range(inode,
1009 newsize, (loff_t)-1);
1010 /* unmap again to remove racily COWed private pages */
1011 if (oldsize > holebegin)
1012 unmap_mapping_range(inode->i_mapping,
1013 holebegin, 0, 1);
1016 * Part of the huge page can be beyond i_size: subject
1017 * to shrink under memory pressure.
1019 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1020 spin_lock(&sbinfo->shrinklist_lock);
1021 if (list_empty(&info->shrinklist)) {
1022 list_add_tail(&info->shrinklist,
1023 &sbinfo->shrinklist);
1024 sbinfo->shrinklist_len++;
1026 spin_unlock(&sbinfo->shrinklist_lock);
1031 setattr_copy(inode, attr);
1032 if (attr->ia_valid & ATTR_MODE)
1033 error = posix_acl_chmod(inode, inode->i_mode);
1034 return error;
1037 static void shmem_evict_inode(struct inode *inode)
1039 struct shmem_inode_info *info = SHMEM_I(inode);
1040 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1042 if (inode->i_mapping->a_ops == &shmem_aops) {
1043 shmem_unacct_size(info->flags, inode->i_size);
1044 inode->i_size = 0;
1045 shmem_truncate_range(inode, 0, (loff_t)-1);
1046 if (!list_empty(&info->shrinklist)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
1048 if (!list_empty(&info->shrinklist)) {
1049 list_del_init(&info->shrinklist);
1050 sbinfo->shrinklist_len--;
1052 spin_unlock(&sbinfo->shrinklist_lock);
1054 if (!list_empty(&info->swaplist)) {
1055 mutex_lock(&shmem_swaplist_mutex);
1056 list_del_init(&info->swaplist);
1057 mutex_unlock(&shmem_swaplist_mutex);
1061 simple_xattrs_free(&info->xattrs);
1062 WARN_ON(inode->i_blocks);
1063 shmem_free_inode(inode->i_sb);
1064 clear_inode(inode);
1067 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1069 struct radix_tree_iter iter;
1070 void **slot;
1071 unsigned long found = -1;
1072 unsigned int checked = 0;
1074 rcu_read_lock();
1075 radix_tree_for_each_slot(slot, root, &iter, 0) {
1076 if (*slot == item) {
1077 found = iter.index;
1078 break;
1080 checked++;
1081 if ((checked % 4096) != 0)
1082 continue;
1083 slot = radix_tree_iter_resume(slot, &iter);
1084 cond_resched_rcu();
1087 rcu_read_unlock();
1088 return found;
1092 * If swap found in inode, free it and move page from swapcache to filecache.
1094 static int shmem_unuse_inode(struct shmem_inode_info *info,
1095 swp_entry_t swap, struct page **pagep)
1097 struct address_space *mapping = info->vfs_inode.i_mapping;
1098 void *radswap;
1099 pgoff_t index;
1100 gfp_t gfp;
1101 int error = 0;
1103 radswap = swp_to_radix_entry(swap);
1104 index = find_swap_entry(&mapping->page_tree, radswap);
1105 if (index == -1)
1106 return -EAGAIN; /* tell shmem_unuse we found nothing */
1109 * Move _head_ to start search for next from here.
1110 * But be careful: shmem_evict_inode checks list_empty without taking
1111 * mutex, and there's an instant in list_move_tail when info->swaplist
1112 * would appear empty, if it were the only one on shmem_swaplist.
1114 if (shmem_swaplist.next != &info->swaplist)
1115 list_move_tail(&shmem_swaplist, &info->swaplist);
1117 gfp = mapping_gfp_mask(mapping);
1118 if (shmem_should_replace_page(*pagep, gfp)) {
1119 mutex_unlock(&shmem_swaplist_mutex);
1120 error = shmem_replace_page(pagep, gfp, info, index);
1121 mutex_lock(&shmem_swaplist_mutex);
1123 * We needed to drop mutex to make that restrictive page
1124 * allocation, but the inode might have been freed while we
1125 * dropped it: although a racing shmem_evict_inode() cannot
1126 * complete without emptying the radix_tree, our page lock
1127 * on this swapcache page is not enough to prevent that -
1128 * free_swap_and_cache() of our swap entry will only
1129 * trylock_page(), removing swap from radix_tree whatever.
1131 * We must not proceed to shmem_add_to_page_cache() if the
1132 * inode has been freed, but of course we cannot rely on
1133 * inode or mapping or info to check that. However, we can
1134 * safely check if our swap entry is still in use (and here
1135 * it can't have got reused for another page): if it's still
1136 * in use, then the inode cannot have been freed yet, and we
1137 * can safely proceed (if it's no longer in use, that tells
1138 * nothing about the inode, but we don't need to unuse swap).
1140 if (!page_swapcount(*pagep))
1141 error = -ENOENT;
1145 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1146 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1147 * beneath us (pagelock doesn't help until the page is in pagecache).
1149 if (!error)
1150 error = shmem_add_to_page_cache(*pagep, mapping, index,
1151 radswap);
1152 if (error != -ENOMEM) {
1154 * Truncation and eviction use free_swap_and_cache(), which
1155 * only does trylock page: if we raced, best clean up here.
1157 delete_from_swap_cache(*pagep);
1158 set_page_dirty(*pagep);
1159 if (!error) {
1160 spin_lock_irq(&info->lock);
1161 info->swapped--;
1162 spin_unlock_irq(&info->lock);
1163 swap_free(swap);
1166 return error;
1170 * Search through swapped inodes to find and replace swap by page.
1172 int shmem_unuse(swp_entry_t swap, struct page *page)
1174 struct list_head *this, *next;
1175 struct shmem_inode_info *info;
1176 struct mem_cgroup *memcg;
1177 int error = 0;
1180 * There's a faint possibility that swap page was replaced before
1181 * caller locked it: caller will come back later with the right page.
1183 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1184 goto out;
1187 * Charge page using GFP_KERNEL while we can wait, before taking
1188 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1189 * Charged back to the user (not to caller) when swap account is used.
1191 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1192 false);
1193 if (error)
1194 goto out;
1195 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1196 error = -EAGAIN;
1198 mutex_lock(&shmem_swaplist_mutex);
1199 list_for_each_safe(this, next, &shmem_swaplist) {
1200 info = list_entry(this, struct shmem_inode_info, swaplist);
1201 if (info->swapped)
1202 error = shmem_unuse_inode(info, swap, &page);
1203 else
1204 list_del_init(&info->swaplist);
1205 cond_resched();
1206 if (error != -EAGAIN)
1207 break;
1208 /* found nothing in this: move on to search the next */
1210 mutex_unlock(&shmem_swaplist_mutex);
1212 if (error) {
1213 if (error != -ENOMEM)
1214 error = 0;
1215 mem_cgroup_cancel_charge(page, memcg, false);
1216 } else
1217 mem_cgroup_commit_charge(page, memcg, true, false);
1218 out:
1219 unlock_page(page);
1220 put_page(page);
1221 return error;
1225 * Move the page from the page cache to the swap cache.
1227 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1229 struct shmem_inode_info *info;
1230 struct address_space *mapping;
1231 struct inode *inode;
1232 swp_entry_t swap;
1233 pgoff_t index;
1235 VM_BUG_ON_PAGE(PageCompound(page), page);
1236 BUG_ON(!PageLocked(page));
1237 mapping = page->mapping;
1238 index = page->index;
1239 inode = mapping->host;
1240 info = SHMEM_I(inode);
1241 if (info->flags & VM_LOCKED)
1242 goto redirty;
1243 if (!total_swap_pages)
1244 goto redirty;
1247 * Our capabilities prevent regular writeback or sync from ever calling
1248 * shmem_writepage; but a stacking filesystem might use ->writepage of
1249 * its underlying filesystem, in which case tmpfs should write out to
1250 * swap only in response to memory pressure, and not for the writeback
1251 * threads or sync.
1253 if (!wbc->for_reclaim) {
1254 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1255 goto redirty;
1259 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1260 * value into swapfile.c, the only way we can correctly account for a
1261 * fallocated page arriving here is now to initialize it and write it.
1263 * That's okay for a page already fallocated earlier, but if we have
1264 * not yet completed the fallocation, then (a) we want to keep track
1265 * of this page in case we have to undo it, and (b) it may not be a
1266 * good idea to continue anyway, once we're pushing into swap. So
1267 * reactivate the page, and let shmem_fallocate() quit when too many.
1269 if (!PageUptodate(page)) {
1270 if (inode->i_private) {
1271 struct shmem_falloc *shmem_falloc;
1272 spin_lock(&inode->i_lock);
1273 shmem_falloc = inode->i_private;
1274 if (shmem_falloc &&
1275 !shmem_falloc->waitq &&
1276 index >= shmem_falloc->start &&
1277 index < shmem_falloc->next)
1278 shmem_falloc->nr_unswapped++;
1279 else
1280 shmem_falloc = NULL;
1281 spin_unlock(&inode->i_lock);
1282 if (shmem_falloc)
1283 goto redirty;
1285 clear_highpage(page);
1286 flush_dcache_page(page);
1287 SetPageUptodate(page);
1290 swap = get_swap_page();
1291 if (!swap.val)
1292 goto redirty;
1294 if (mem_cgroup_try_charge_swap(page, swap))
1295 goto free_swap;
1298 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1299 * if it's not already there. Do it now before the page is
1300 * moved to swap cache, when its pagelock no longer protects
1301 * the inode from eviction. But don't unlock the mutex until
1302 * we've incremented swapped, because shmem_unuse_inode() will
1303 * prune a !swapped inode from the swaplist under this mutex.
1305 mutex_lock(&shmem_swaplist_mutex);
1306 if (list_empty(&info->swaplist))
1307 list_add_tail(&info->swaplist, &shmem_swaplist);
1309 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1310 spin_lock_irq(&info->lock);
1311 shmem_recalc_inode(inode);
1312 info->swapped++;
1313 spin_unlock_irq(&info->lock);
1315 swap_shmem_alloc(swap);
1316 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1318 mutex_unlock(&shmem_swaplist_mutex);
1319 BUG_ON(page_mapped(page));
1320 swap_writepage(page, wbc);
1321 return 0;
1324 mutex_unlock(&shmem_swaplist_mutex);
1325 free_swap:
1326 swapcache_free(swap);
1327 redirty:
1328 set_page_dirty(page);
1329 if (wbc->for_reclaim)
1330 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1331 unlock_page(page);
1332 return 0;
1335 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1336 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1338 char buffer[64];
1340 if (!mpol || mpol->mode == MPOL_DEFAULT)
1341 return; /* show nothing */
1343 mpol_to_str(buffer, sizeof(buffer), mpol);
1345 seq_printf(seq, ",mpol=%s", buffer);
1348 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1350 struct mempolicy *mpol = NULL;
1351 if (sbinfo->mpol) {
1352 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1353 mpol = sbinfo->mpol;
1354 mpol_get(mpol);
1355 spin_unlock(&sbinfo->stat_lock);
1357 return mpol;
1359 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1360 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1363 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1365 return NULL;
1367 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1368 #ifndef CONFIG_NUMA
1369 #define vm_policy vm_private_data
1370 #endif
1372 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1373 struct shmem_inode_info *info, pgoff_t index)
1375 /* Create a pseudo vma that just contains the policy */
1376 vma->vm_start = 0;
1377 /* Bias interleave by inode number to distribute better across nodes */
1378 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1379 vma->vm_ops = NULL;
1380 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1383 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1385 /* Drop reference taken by mpol_shared_policy_lookup() */
1386 mpol_cond_put(vma->vm_policy);
1389 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1390 struct shmem_inode_info *info, pgoff_t index)
1392 struct vm_area_struct pvma;
1393 struct page *page;
1395 shmem_pseudo_vma_init(&pvma, info, index);
1396 page = swapin_readahead(swap, gfp, &pvma, 0);
1397 shmem_pseudo_vma_destroy(&pvma);
1399 return page;
1402 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1403 struct shmem_inode_info *info, pgoff_t index)
1405 struct vm_area_struct pvma;
1406 struct inode *inode = &info->vfs_inode;
1407 struct address_space *mapping = inode->i_mapping;
1408 pgoff_t idx, hindex;
1409 void __rcu **results;
1410 struct page *page;
1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1413 return NULL;
1415 hindex = round_down(index, HPAGE_PMD_NR);
1416 rcu_read_lock();
1417 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1418 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1419 rcu_read_unlock();
1420 return NULL;
1422 rcu_read_unlock();
1424 shmem_pseudo_vma_init(&pvma, info, hindex);
1425 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1426 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1427 shmem_pseudo_vma_destroy(&pvma);
1428 if (page)
1429 prep_transhuge_page(page);
1430 return page;
1433 static struct page *shmem_alloc_page(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1436 struct vm_area_struct pvma;
1437 struct page *page;
1439 shmem_pseudo_vma_init(&pvma, info, index);
1440 page = alloc_page_vma(gfp, &pvma, 0);
1441 shmem_pseudo_vma_destroy(&pvma);
1443 return page;
1446 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1447 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1448 pgoff_t index, bool huge)
1450 struct page *page;
1451 int nr;
1452 int err = -ENOSPC;
1454 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1455 huge = false;
1456 nr = huge ? HPAGE_PMD_NR : 1;
1458 if (shmem_acct_block(info->flags, nr))
1459 goto failed;
1460 if (sbinfo->max_blocks) {
1461 if (percpu_counter_compare(&sbinfo->used_blocks,
1462 sbinfo->max_blocks - nr) > 0)
1463 goto unacct;
1464 percpu_counter_add(&sbinfo->used_blocks, nr);
1467 if (huge)
1468 page = shmem_alloc_hugepage(gfp, info, index);
1469 else
1470 page = shmem_alloc_page(gfp, info, index);
1471 if (page) {
1472 __SetPageLocked(page);
1473 __SetPageSwapBacked(page);
1474 return page;
1477 err = -ENOMEM;
1478 if (sbinfo->max_blocks)
1479 percpu_counter_add(&sbinfo->used_blocks, -nr);
1480 unacct:
1481 shmem_unacct_blocks(info->flags, nr);
1482 failed:
1483 return ERR_PTR(err);
1487 * When a page is moved from swapcache to shmem filecache (either by the
1488 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1489 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1490 * ignorance of the mapping it belongs to. If that mapping has special
1491 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1492 * we may need to copy to a suitable page before moving to filecache.
1494 * In a future release, this may well be extended to respect cpuset and
1495 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1496 * but for now it is a simple matter of zone.
1498 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1500 return page_zonenum(page) > gfp_zone(gfp);
1503 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1504 struct shmem_inode_info *info, pgoff_t index)
1506 struct page *oldpage, *newpage;
1507 struct address_space *swap_mapping;
1508 pgoff_t swap_index;
1509 int error;
1511 oldpage = *pagep;
1512 swap_index = page_private(oldpage);
1513 swap_mapping = page_mapping(oldpage);
1516 * We have arrived here because our zones are constrained, so don't
1517 * limit chance of success by further cpuset and node constraints.
1519 gfp &= ~GFP_CONSTRAINT_MASK;
1520 newpage = shmem_alloc_page(gfp, info, index);
1521 if (!newpage)
1522 return -ENOMEM;
1524 get_page(newpage);
1525 copy_highpage(newpage, oldpage);
1526 flush_dcache_page(newpage);
1528 __SetPageLocked(newpage);
1529 __SetPageSwapBacked(newpage);
1530 SetPageUptodate(newpage);
1531 set_page_private(newpage, swap_index);
1532 SetPageSwapCache(newpage);
1535 * Our caller will very soon move newpage out of swapcache, but it's
1536 * a nice clean interface for us to replace oldpage by newpage there.
1538 spin_lock_irq(&swap_mapping->tree_lock);
1539 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1540 newpage);
1541 if (!error) {
1542 __inc_node_page_state(newpage, NR_FILE_PAGES);
1543 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1545 spin_unlock_irq(&swap_mapping->tree_lock);
1547 if (unlikely(error)) {
1549 * Is this possible? I think not, now that our callers check
1550 * both PageSwapCache and page_private after getting page lock;
1551 * but be defensive. Reverse old to newpage for clear and free.
1553 oldpage = newpage;
1554 } else {
1555 mem_cgroup_migrate(oldpage, newpage);
1556 lru_cache_add_anon(newpage);
1557 *pagep = newpage;
1560 ClearPageSwapCache(oldpage);
1561 set_page_private(oldpage, 0);
1563 unlock_page(oldpage);
1564 put_page(oldpage);
1565 put_page(oldpage);
1566 return error;
1570 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1572 * If we allocate a new one we do not mark it dirty. That's up to the
1573 * vm. If we swap it in we mark it dirty since we also free the swap
1574 * entry since a page cannot live in both the swap and page cache.
1576 * fault_mm and fault_type are only supplied by shmem_fault:
1577 * otherwise they are NULL.
1579 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1580 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1581 struct mm_struct *fault_mm, int *fault_type)
1583 struct address_space *mapping = inode->i_mapping;
1584 struct shmem_inode_info *info = SHMEM_I(inode);
1585 struct shmem_sb_info *sbinfo;
1586 struct mm_struct *charge_mm;
1587 struct mem_cgroup *memcg;
1588 struct page *page;
1589 swp_entry_t swap;
1590 enum sgp_type sgp_huge = sgp;
1591 pgoff_t hindex = index;
1592 int error;
1593 int once = 0;
1594 int alloced = 0;
1596 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1597 return -EFBIG;
1598 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1599 sgp = SGP_CACHE;
1600 repeat:
1601 swap.val = 0;
1602 page = find_lock_entry(mapping, index);
1603 if (radix_tree_exceptional_entry(page)) {
1604 swap = radix_to_swp_entry(page);
1605 page = NULL;
1608 if (sgp <= SGP_CACHE &&
1609 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1610 error = -EINVAL;
1611 goto unlock;
1614 if (page && sgp == SGP_WRITE)
1615 mark_page_accessed(page);
1617 /* fallocated page? */
1618 if (page && !PageUptodate(page)) {
1619 if (sgp != SGP_READ)
1620 goto clear;
1621 unlock_page(page);
1622 put_page(page);
1623 page = NULL;
1625 if (page || (sgp == SGP_READ && !swap.val)) {
1626 *pagep = page;
1627 return 0;
1631 * Fast cache lookup did not find it:
1632 * bring it back from swap or allocate.
1634 sbinfo = SHMEM_SB(inode->i_sb);
1635 charge_mm = fault_mm ? : current->mm;
1637 if (swap.val) {
1638 /* Look it up and read it in.. */
1639 page = lookup_swap_cache(swap);
1640 if (!page) {
1641 /* Or update major stats only when swapin succeeds?? */
1642 if (fault_type) {
1643 *fault_type |= VM_FAULT_MAJOR;
1644 count_vm_event(PGMAJFAULT);
1645 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1647 /* Here we actually start the io */
1648 page = shmem_swapin(swap, gfp, info, index);
1649 if (!page) {
1650 error = -ENOMEM;
1651 goto failed;
1655 /* We have to do this with page locked to prevent races */
1656 lock_page(page);
1657 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1658 !shmem_confirm_swap(mapping, index, swap)) {
1659 error = -EEXIST; /* try again */
1660 goto unlock;
1662 if (!PageUptodate(page)) {
1663 error = -EIO;
1664 goto failed;
1666 wait_on_page_writeback(page);
1668 if (shmem_should_replace_page(page, gfp)) {
1669 error = shmem_replace_page(&page, gfp, info, index);
1670 if (error)
1671 goto failed;
1674 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1675 false);
1676 if (!error) {
1677 error = shmem_add_to_page_cache(page, mapping, index,
1678 swp_to_radix_entry(swap));
1680 * We already confirmed swap under page lock, and make
1681 * no memory allocation here, so usually no possibility
1682 * of error; but free_swap_and_cache() only trylocks a
1683 * page, so it is just possible that the entry has been
1684 * truncated or holepunched since swap was confirmed.
1685 * shmem_undo_range() will have done some of the
1686 * unaccounting, now delete_from_swap_cache() will do
1687 * the rest.
1688 * Reset swap.val? No, leave it so "failed" goes back to
1689 * "repeat": reading a hole and writing should succeed.
1691 if (error) {
1692 mem_cgroup_cancel_charge(page, memcg, false);
1693 delete_from_swap_cache(page);
1696 if (error)
1697 goto failed;
1699 mem_cgroup_commit_charge(page, memcg, true, false);
1701 spin_lock_irq(&info->lock);
1702 info->swapped--;
1703 shmem_recalc_inode(inode);
1704 spin_unlock_irq(&info->lock);
1706 if (sgp == SGP_WRITE)
1707 mark_page_accessed(page);
1709 delete_from_swap_cache(page);
1710 set_page_dirty(page);
1711 swap_free(swap);
1713 } else {
1714 /* shmem_symlink() */
1715 if (mapping->a_ops != &shmem_aops)
1716 goto alloc_nohuge;
1717 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1718 goto alloc_nohuge;
1719 if (shmem_huge == SHMEM_HUGE_FORCE)
1720 goto alloc_huge;
1721 switch (sbinfo->huge) {
1722 loff_t i_size;
1723 pgoff_t off;
1724 case SHMEM_HUGE_NEVER:
1725 goto alloc_nohuge;
1726 case SHMEM_HUGE_WITHIN_SIZE:
1727 off = round_up(index, HPAGE_PMD_NR);
1728 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1729 if (i_size >= HPAGE_PMD_SIZE &&
1730 i_size >> PAGE_SHIFT >= off)
1731 goto alloc_huge;
1732 /* fallthrough */
1733 case SHMEM_HUGE_ADVISE:
1734 if (sgp_huge == SGP_HUGE)
1735 goto alloc_huge;
1736 /* TODO: implement fadvise() hints */
1737 goto alloc_nohuge;
1740 alloc_huge:
1741 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1742 index, true);
1743 if (IS_ERR(page)) {
1744 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1745 index, false);
1747 if (IS_ERR(page)) {
1748 int retry = 5;
1749 error = PTR_ERR(page);
1750 page = NULL;
1751 if (error != -ENOSPC)
1752 goto failed;
1754 * Try to reclaim some spece by splitting a huge page
1755 * beyond i_size on the filesystem.
1757 while (retry--) {
1758 int ret;
1759 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1760 if (ret == SHRINK_STOP)
1761 break;
1762 if (ret)
1763 goto alloc_nohuge;
1765 goto failed;
1768 if (PageTransHuge(page))
1769 hindex = round_down(index, HPAGE_PMD_NR);
1770 else
1771 hindex = index;
1773 if (sgp == SGP_WRITE)
1774 __SetPageReferenced(page);
1776 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1777 PageTransHuge(page));
1778 if (error)
1779 goto unacct;
1780 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1781 compound_order(page));
1782 if (!error) {
1783 error = shmem_add_to_page_cache(page, mapping, hindex,
1784 NULL);
1785 radix_tree_preload_end();
1787 if (error) {
1788 mem_cgroup_cancel_charge(page, memcg,
1789 PageTransHuge(page));
1790 goto unacct;
1792 mem_cgroup_commit_charge(page, memcg, false,
1793 PageTransHuge(page));
1794 lru_cache_add_anon(page);
1796 spin_lock_irq(&info->lock);
1797 info->alloced += 1 << compound_order(page);
1798 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1799 shmem_recalc_inode(inode);
1800 spin_unlock_irq(&info->lock);
1801 alloced = true;
1803 if (PageTransHuge(page) &&
1804 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1805 hindex + HPAGE_PMD_NR - 1) {
1807 * Part of the huge page is beyond i_size: subject
1808 * to shrink under memory pressure.
1810 spin_lock(&sbinfo->shrinklist_lock);
1811 if (list_empty(&info->shrinklist)) {
1812 list_add_tail(&info->shrinklist,
1813 &sbinfo->shrinklist);
1814 sbinfo->shrinklist_len++;
1816 spin_unlock(&sbinfo->shrinklist_lock);
1820 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1822 if (sgp == SGP_FALLOC)
1823 sgp = SGP_WRITE;
1824 clear:
1826 * Let SGP_WRITE caller clear ends if write does not fill page;
1827 * but SGP_FALLOC on a page fallocated earlier must initialize
1828 * it now, lest undo on failure cancel our earlier guarantee.
1830 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1831 struct page *head = compound_head(page);
1832 int i;
1834 for (i = 0; i < (1 << compound_order(head)); i++) {
1835 clear_highpage(head + i);
1836 flush_dcache_page(head + i);
1838 SetPageUptodate(head);
1842 /* Perhaps the file has been truncated since we checked */
1843 if (sgp <= SGP_CACHE &&
1844 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1845 if (alloced) {
1846 ClearPageDirty(page);
1847 delete_from_page_cache(page);
1848 spin_lock_irq(&info->lock);
1849 shmem_recalc_inode(inode);
1850 spin_unlock_irq(&info->lock);
1852 error = -EINVAL;
1853 goto unlock;
1855 *pagep = page + index - hindex;
1856 return 0;
1859 * Error recovery.
1861 unacct:
1862 if (sbinfo->max_blocks)
1863 percpu_counter_sub(&sbinfo->used_blocks,
1864 1 << compound_order(page));
1865 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1867 if (PageTransHuge(page)) {
1868 unlock_page(page);
1869 put_page(page);
1870 goto alloc_nohuge;
1872 failed:
1873 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1874 error = -EEXIST;
1875 unlock:
1876 if (page) {
1877 unlock_page(page);
1878 put_page(page);
1880 if (error == -ENOSPC && !once++) {
1881 spin_lock_irq(&info->lock);
1882 shmem_recalc_inode(inode);
1883 spin_unlock_irq(&info->lock);
1884 goto repeat;
1886 if (error == -EEXIST) /* from above or from radix_tree_insert */
1887 goto repeat;
1888 return error;
1892 * This is like autoremove_wake_function, but it removes the wait queue
1893 * entry unconditionally - even if something else had already woken the
1894 * target.
1896 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1898 int ret = default_wake_function(wait, mode, sync, key);
1899 list_del_init(&wait->task_list);
1900 return ret;
1903 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1905 struct inode *inode = file_inode(vma->vm_file);
1906 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1907 enum sgp_type sgp;
1908 int error;
1909 int ret = VM_FAULT_LOCKED;
1912 * Trinity finds that probing a hole which tmpfs is punching can
1913 * prevent the hole-punch from ever completing: which in turn
1914 * locks writers out with its hold on i_mutex. So refrain from
1915 * faulting pages into the hole while it's being punched. Although
1916 * shmem_undo_range() does remove the additions, it may be unable to
1917 * keep up, as each new page needs its own unmap_mapping_range() call,
1918 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1920 * It does not matter if we sometimes reach this check just before the
1921 * hole-punch begins, so that one fault then races with the punch:
1922 * we just need to make racing faults a rare case.
1924 * The implementation below would be much simpler if we just used a
1925 * standard mutex or completion: but we cannot take i_mutex in fault,
1926 * and bloating every shmem inode for this unlikely case would be sad.
1928 if (unlikely(inode->i_private)) {
1929 struct shmem_falloc *shmem_falloc;
1931 spin_lock(&inode->i_lock);
1932 shmem_falloc = inode->i_private;
1933 if (shmem_falloc &&
1934 shmem_falloc->waitq &&
1935 vmf->pgoff >= shmem_falloc->start &&
1936 vmf->pgoff < shmem_falloc->next) {
1937 wait_queue_head_t *shmem_falloc_waitq;
1938 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1940 ret = VM_FAULT_NOPAGE;
1941 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1942 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1943 /* It's polite to up mmap_sem if we can */
1944 up_read(&vma->vm_mm->mmap_sem);
1945 ret = VM_FAULT_RETRY;
1948 shmem_falloc_waitq = shmem_falloc->waitq;
1949 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1950 TASK_UNINTERRUPTIBLE);
1951 spin_unlock(&inode->i_lock);
1952 schedule();
1955 * shmem_falloc_waitq points into the shmem_fallocate()
1956 * stack of the hole-punching task: shmem_falloc_waitq
1957 * is usually invalid by the time we reach here, but
1958 * finish_wait() does not dereference it in that case;
1959 * though i_lock needed lest racing with wake_up_all().
1961 spin_lock(&inode->i_lock);
1962 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1963 spin_unlock(&inode->i_lock);
1964 return ret;
1966 spin_unlock(&inode->i_lock);
1969 sgp = SGP_CACHE;
1970 if (vma->vm_flags & VM_HUGEPAGE)
1971 sgp = SGP_HUGE;
1972 else if (vma->vm_flags & VM_NOHUGEPAGE)
1973 sgp = SGP_NOHUGE;
1975 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1976 gfp, vma->vm_mm, &ret);
1977 if (error)
1978 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1979 return ret;
1982 unsigned long shmem_get_unmapped_area(struct file *file,
1983 unsigned long uaddr, unsigned long len,
1984 unsigned long pgoff, unsigned long flags)
1986 unsigned long (*get_area)(struct file *,
1987 unsigned long, unsigned long, unsigned long, unsigned long);
1988 unsigned long addr;
1989 unsigned long offset;
1990 unsigned long inflated_len;
1991 unsigned long inflated_addr;
1992 unsigned long inflated_offset;
1994 if (len > TASK_SIZE)
1995 return -ENOMEM;
1997 get_area = current->mm->get_unmapped_area;
1998 addr = get_area(file, uaddr, len, pgoff, flags);
2000 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2001 return addr;
2002 if (IS_ERR_VALUE(addr))
2003 return addr;
2004 if (addr & ~PAGE_MASK)
2005 return addr;
2006 if (addr > TASK_SIZE - len)
2007 return addr;
2009 if (shmem_huge == SHMEM_HUGE_DENY)
2010 return addr;
2011 if (len < HPAGE_PMD_SIZE)
2012 return addr;
2013 if (flags & MAP_FIXED)
2014 return addr;
2016 * Our priority is to support MAP_SHARED mapped hugely;
2017 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2018 * But if caller specified an address hint, respect that as before.
2020 if (uaddr)
2021 return addr;
2023 if (shmem_huge != SHMEM_HUGE_FORCE) {
2024 struct super_block *sb;
2026 if (file) {
2027 VM_BUG_ON(file->f_op != &shmem_file_operations);
2028 sb = file_inode(file)->i_sb;
2029 } else {
2031 * Called directly from mm/mmap.c, or drivers/char/mem.c
2032 * for "/dev/zero", to create a shared anonymous object.
2034 if (IS_ERR(shm_mnt))
2035 return addr;
2036 sb = shm_mnt->mnt_sb;
2038 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2039 return addr;
2042 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2043 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2044 return addr;
2045 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2046 return addr;
2048 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2049 if (inflated_len > TASK_SIZE)
2050 return addr;
2051 if (inflated_len < len)
2052 return addr;
2054 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2055 if (IS_ERR_VALUE(inflated_addr))
2056 return addr;
2057 if (inflated_addr & ~PAGE_MASK)
2058 return addr;
2060 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2061 inflated_addr += offset - inflated_offset;
2062 if (inflated_offset > offset)
2063 inflated_addr += HPAGE_PMD_SIZE;
2065 if (inflated_addr > TASK_SIZE - len)
2066 return addr;
2067 return inflated_addr;
2070 #ifdef CONFIG_NUMA
2071 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2073 struct inode *inode = file_inode(vma->vm_file);
2074 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2077 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2078 unsigned long addr)
2080 struct inode *inode = file_inode(vma->vm_file);
2081 pgoff_t index;
2083 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2084 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2086 #endif
2088 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2090 struct inode *inode = file_inode(file);
2091 struct shmem_inode_info *info = SHMEM_I(inode);
2092 int retval = -ENOMEM;
2094 spin_lock_irq(&info->lock);
2095 if (lock && !(info->flags & VM_LOCKED)) {
2096 if (!user_shm_lock(inode->i_size, user))
2097 goto out_nomem;
2098 info->flags |= VM_LOCKED;
2099 mapping_set_unevictable(file->f_mapping);
2101 if (!lock && (info->flags & VM_LOCKED) && user) {
2102 user_shm_unlock(inode->i_size, user);
2103 info->flags &= ~VM_LOCKED;
2104 mapping_clear_unevictable(file->f_mapping);
2106 retval = 0;
2108 out_nomem:
2109 spin_unlock_irq(&info->lock);
2110 return retval;
2113 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2115 file_accessed(file);
2116 vma->vm_ops = &shmem_vm_ops;
2117 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2118 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2119 (vma->vm_end & HPAGE_PMD_MASK)) {
2120 khugepaged_enter(vma, vma->vm_flags);
2122 return 0;
2125 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2126 umode_t mode, dev_t dev, unsigned long flags)
2128 struct inode *inode;
2129 struct shmem_inode_info *info;
2130 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2132 if (shmem_reserve_inode(sb))
2133 return NULL;
2135 inode = new_inode(sb);
2136 if (inode) {
2137 inode->i_ino = get_next_ino();
2138 inode_init_owner(inode, dir, mode);
2139 inode->i_blocks = 0;
2140 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2141 inode->i_generation = get_seconds();
2142 info = SHMEM_I(inode);
2143 memset(info, 0, (char *)inode - (char *)info);
2144 spin_lock_init(&info->lock);
2145 info->seals = F_SEAL_SEAL;
2146 info->flags = flags & VM_NORESERVE;
2147 INIT_LIST_HEAD(&info->shrinklist);
2148 INIT_LIST_HEAD(&info->swaplist);
2149 simple_xattrs_init(&info->xattrs);
2150 cache_no_acl(inode);
2152 switch (mode & S_IFMT) {
2153 default:
2154 inode->i_op = &shmem_special_inode_operations;
2155 init_special_inode(inode, mode, dev);
2156 break;
2157 case S_IFREG:
2158 inode->i_mapping->a_ops = &shmem_aops;
2159 inode->i_op = &shmem_inode_operations;
2160 inode->i_fop = &shmem_file_operations;
2161 mpol_shared_policy_init(&info->policy,
2162 shmem_get_sbmpol(sbinfo));
2163 break;
2164 case S_IFDIR:
2165 inc_nlink(inode);
2166 /* Some things misbehave if size == 0 on a directory */
2167 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2168 inode->i_op = &shmem_dir_inode_operations;
2169 inode->i_fop = &simple_dir_operations;
2170 break;
2171 case S_IFLNK:
2173 * Must not load anything in the rbtree,
2174 * mpol_free_shared_policy will not be called.
2176 mpol_shared_policy_init(&info->policy, NULL);
2177 break;
2179 } else
2180 shmem_free_inode(sb);
2181 return inode;
2184 bool shmem_mapping(struct address_space *mapping)
2186 return mapping->a_ops == &shmem_aops;
2189 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2190 pmd_t *dst_pmd,
2191 struct vm_area_struct *dst_vma,
2192 unsigned long dst_addr,
2193 unsigned long src_addr,
2194 struct page **pagep)
2196 struct inode *inode = file_inode(dst_vma->vm_file);
2197 struct shmem_inode_info *info = SHMEM_I(inode);
2198 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2199 struct address_space *mapping = inode->i_mapping;
2200 gfp_t gfp = mapping_gfp_mask(mapping);
2201 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2202 struct mem_cgroup *memcg;
2203 spinlock_t *ptl;
2204 void *page_kaddr;
2205 struct page *page;
2206 pte_t _dst_pte, *dst_pte;
2207 int ret;
2209 if (!*pagep) {
2210 ret = -ENOMEM;
2211 if (shmem_acct_block(info->flags, 1))
2212 goto out;
2213 if (sbinfo->max_blocks) {
2214 if (percpu_counter_compare(&sbinfo->used_blocks,
2215 sbinfo->max_blocks) >= 0)
2216 goto out_unacct_blocks;
2217 percpu_counter_inc(&sbinfo->used_blocks);
2220 page = shmem_alloc_page(gfp, info, pgoff);
2221 if (!page)
2222 goto out_dec_used_blocks;
2224 page_kaddr = kmap_atomic(page);
2225 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2226 PAGE_SIZE);
2227 kunmap_atomic(page_kaddr);
2229 /* fallback to copy_from_user outside mmap_sem */
2230 if (unlikely(ret)) {
2231 *pagep = page;
2232 /* don't free the page */
2233 return -EFAULT;
2235 } else {
2236 page = *pagep;
2237 *pagep = NULL;
2240 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2241 if (ret)
2242 goto out_release;
2244 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2245 if (!ret) {
2246 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2247 radix_tree_preload_end();
2249 if (ret)
2250 goto out_release_uncharge;
2252 mem_cgroup_commit_charge(page, memcg, false, false);
2254 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2255 if (dst_vma->vm_flags & VM_WRITE)
2256 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2258 ret = -EEXIST;
2259 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2260 if (!pte_none(*dst_pte))
2261 goto out_release_uncharge_unlock;
2263 __SetPageUptodate(page);
2265 lru_cache_add_anon(page);
2267 spin_lock(&info->lock);
2268 info->alloced++;
2269 inode->i_blocks += BLOCKS_PER_PAGE;
2270 shmem_recalc_inode(inode);
2271 spin_unlock(&info->lock);
2273 inc_mm_counter(dst_mm, mm_counter_file(page));
2274 page_add_file_rmap(page, false);
2275 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2277 /* No need to invalidate - it was non-present before */
2278 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2279 unlock_page(page);
2280 pte_unmap_unlock(dst_pte, ptl);
2281 ret = 0;
2282 out:
2283 return ret;
2284 out_release_uncharge_unlock:
2285 pte_unmap_unlock(dst_pte, ptl);
2286 out_release_uncharge:
2287 mem_cgroup_cancel_charge(page, memcg, false);
2288 out_release:
2289 put_page(page);
2290 out_dec_used_blocks:
2291 if (sbinfo->max_blocks)
2292 percpu_counter_add(&sbinfo->used_blocks, -1);
2293 out_unacct_blocks:
2294 shmem_unacct_blocks(info->flags, 1);
2295 goto out;
2298 #ifdef CONFIG_TMPFS
2299 static const struct inode_operations shmem_symlink_inode_operations;
2300 static const struct inode_operations shmem_short_symlink_operations;
2302 #ifdef CONFIG_TMPFS_XATTR
2303 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2304 #else
2305 #define shmem_initxattrs NULL
2306 #endif
2308 static int
2309 shmem_write_begin(struct file *file, struct address_space *mapping,
2310 loff_t pos, unsigned len, unsigned flags,
2311 struct page **pagep, void **fsdata)
2313 struct inode *inode = mapping->host;
2314 struct shmem_inode_info *info = SHMEM_I(inode);
2315 pgoff_t index = pos >> PAGE_SHIFT;
2317 /* i_mutex is held by caller */
2318 if (unlikely(info->seals)) {
2319 if (info->seals & F_SEAL_WRITE)
2320 return -EPERM;
2321 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2322 return -EPERM;
2325 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2328 static int
2329 shmem_write_end(struct file *file, struct address_space *mapping,
2330 loff_t pos, unsigned len, unsigned copied,
2331 struct page *page, void *fsdata)
2333 struct inode *inode = mapping->host;
2335 if (pos + copied > inode->i_size)
2336 i_size_write(inode, pos + copied);
2338 if (!PageUptodate(page)) {
2339 struct page *head = compound_head(page);
2340 if (PageTransCompound(page)) {
2341 int i;
2343 for (i = 0; i < HPAGE_PMD_NR; i++) {
2344 if (head + i == page)
2345 continue;
2346 clear_highpage(head + i);
2347 flush_dcache_page(head + i);
2350 if (copied < PAGE_SIZE) {
2351 unsigned from = pos & (PAGE_SIZE - 1);
2352 zero_user_segments(page, 0, from,
2353 from + copied, PAGE_SIZE);
2355 SetPageUptodate(head);
2357 set_page_dirty(page);
2358 unlock_page(page);
2359 put_page(page);
2361 return copied;
2364 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2366 struct file *file = iocb->ki_filp;
2367 struct inode *inode = file_inode(file);
2368 struct address_space *mapping = inode->i_mapping;
2369 pgoff_t index;
2370 unsigned long offset;
2371 enum sgp_type sgp = SGP_READ;
2372 int error = 0;
2373 ssize_t retval = 0;
2374 loff_t *ppos = &iocb->ki_pos;
2377 * Might this read be for a stacking filesystem? Then when reading
2378 * holes of a sparse file, we actually need to allocate those pages,
2379 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2381 if (!iter_is_iovec(to))
2382 sgp = SGP_CACHE;
2384 index = *ppos >> PAGE_SHIFT;
2385 offset = *ppos & ~PAGE_MASK;
2387 for (;;) {
2388 struct page *page = NULL;
2389 pgoff_t end_index;
2390 unsigned long nr, ret;
2391 loff_t i_size = i_size_read(inode);
2393 end_index = i_size >> PAGE_SHIFT;
2394 if (index > end_index)
2395 break;
2396 if (index == end_index) {
2397 nr = i_size & ~PAGE_MASK;
2398 if (nr <= offset)
2399 break;
2402 error = shmem_getpage(inode, index, &page, sgp);
2403 if (error) {
2404 if (error == -EINVAL)
2405 error = 0;
2406 break;
2408 if (page) {
2409 if (sgp == SGP_CACHE)
2410 set_page_dirty(page);
2411 unlock_page(page);
2415 * We must evaluate after, since reads (unlike writes)
2416 * are called without i_mutex protection against truncate
2418 nr = PAGE_SIZE;
2419 i_size = i_size_read(inode);
2420 end_index = i_size >> PAGE_SHIFT;
2421 if (index == end_index) {
2422 nr = i_size & ~PAGE_MASK;
2423 if (nr <= offset) {
2424 if (page)
2425 put_page(page);
2426 break;
2429 nr -= offset;
2431 if (page) {
2433 * If users can be writing to this page using arbitrary
2434 * virtual addresses, take care about potential aliasing
2435 * before reading the page on the kernel side.
2437 if (mapping_writably_mapped(mapping))
2438 flush_dcache_page(page);
2440 * Mark the page accessed if we read the beginning.
2442 if (!offset)
2443 mark_page_accessed(page);
2444 } else {
2445 page = ZERO_PAGE(0);
2446 get_page(page);
2450 * Ok, we have the page, and it's up-to-date, so
2451 * now we can copy it to user space...
2453 ret = copy_page_to_iter(page, offset, nr, to);
2454 retval += ret;
2455 offset += ret;
2456 index += offset >> PAGE_SHIFT;
2457 offset &= ~PAGE_MASK;
2459 put_page(page);
2460 if (!iov_iter_count(to))
2461 break;
2462 if (ret < nr) {
2463 error = -EFAULT;
2464 break;
2466 cond_resched();
2469 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2470 file_accessed(file);
2471 return retval ? retval : error;
2475 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2477 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2478 pgoff_t index, pgoff_t end, int whence)
2480 struct page *page;
2481 struct pagevec pvec;
2482 pgoff_t indices[PAGEVEC_SIZE];
2483 bool done = false;
2484 int i;
2486 pagevec_init(&pvec, 0);
2487 pvec.nr = 1; /* start small: we may be there already */
2488 while (!done) {
2489 pvec.nr = find_get_entries(mapping, index,
2490 pvec.nr, pvec.pages, indices);
2491 if (!pvec.nr) {
2492 if (whence == SEEK_DATA)
2493 index = end;
2494 break;
2496 for (i = 0; i < pvec.nr; i++, index++) {
2497 if (index < indices[i]) {
2498 if (whence == SEEK_HOLE) {
2499 done = true;
2500 break;
2502 index = indices[i];
2504 page = pvec.pages[i];
2505 if (page && !radix_tree_exceptional_entry(page)) {
2506 if (!PageUptodate(page))
2507 page = NULL;
2509 if (index >= end ||
2510 (page && whence == SEEK_DATA) ||
2511 (!page && whence == SEEK_HOLE)) {
2512 done = true;
2513 break;
2516 pagevec_remove_exceptionals(&pvec);
2517 pagevec_release(&pvec);
2518 pvec.nr = PAGEVEC_SIZE;
2519 cond_resched();
2521 return index;
2524 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2526 struct address_space *mapping = file->f_mapping;
2527 struct inode *inode = mapping->host;
2528 pgoff_t start, end;
2529 loff_t new_offset;
2531 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2532 return generic_file_llseek_size(file, offset, whence,
2533 MAX_LFS_FILESIZE, i_size_read(inode));
2534 inode_lock(inode);
2535 /* We're holding i_mutex so we can access i_size directly */
2537 if (offset < 0)
2538 offset = -EINVAL;
2539 else if (offset >= inode->i_size)
2540 offset = -ENXIO;
2541 else {
2542 start = offset >> PAGE_SHIFT;
2543 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2544 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2545 new_offset <<= PAGE_SHIFT;
2546 if (new_offset > offset) {
2547 if (new_offset < inode->i_size)
2548 offset = new_offset;
2549 else if (whence == SEEK_DATA)
2550 offset = -ENXIO;
2551 else
2552 offset = inode->i_size;
2556 if (offset >= 0)
2557 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2558 inode_unlock(inode);
2559 return offset;
2563 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2564 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2566 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2567 #define LAST_SCAN 4 /* about 150ms max */
2569 static void shmem_tag_pins(struct address_space *mapping)
2571 struct radix_tree_iter iter;
2572 void **slot;
2573 pgoff_t start;
2574 struct page *page;
2576 lru_add_drain();
2577 start = 0;
2578 rcu_read_lock();
2580 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2581 page = radix_tree_deref_slot(slot);
2582 if (!page || radix_tree_exception(page)) {
2583 if (radix_tree_deref_retry(page)) {
2584 slot = radix_tree_iter_retry(&iter);
2585 continue;
2587 } else if (page_count(page) - page_mapcount(page) > 1) {
2588 spin_lock_irq(&mapping->tree_lock);
2589 radix_tree_tag_set(&mapping->page_tree, iter.index,
2590 SHMEM_TAG_PINNED);
2591 spin_unlock_irq(&mapping->tree_lock);
2594 if (need_resched()) {
2595 slot = radix_tree_iter_resume(slot, &iter);
2596 cond_resched_rcu();
2599 rcu_read_unlock();
2603 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2604 * via get_user_pages(), drivers might have some pending I/O without any active
2605 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2606 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2607 * them to be dropped.
2608 * The caller must guarantee that no new user will acquire writable references
2609 * to those pages to avoid races.
2611 static int shmem_wait_for_pins(struct address_space *mapping)
2613 struct radix_tree_iter iter;
2614 void **slot;
2615 pgoff_t start;
2616 struct page *page;
2617 int error, scan;
2619 shmem_tag_pins(mapping);
2621 error = 0;
2622 for (scan = 0; scan <= LAST_SCAN; scan++) {
2623 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2624 break;
2626 if (!scan)
2627 lru_add_drain_all();
2628 else if (schedule_timeout_killable((HZ << scan) / 200))
2629 scan = LAST_SCAN;
2631 start = 0;
2632 rcu_read_lock();
2633 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2634 start, SHMEM_TAG_PINNED) {
2636 page = radix_tree_deref_slot(slot);
2637 if (radix_tree_exception(page)) {
2638 if (radix_tree_deref_retry(page)) {
2639 slot = radix_tree_iter_retry(&iter);
2640 continue;
2643 page = NULL;
2646 if (page &&
2647 page_count(page) - page_mapcount(page) != 1) {
2648 if (scan < LAST_SCAN)
2649 goto continue_resched;
2652 * On the last scan, we clean up all those tags
2653 * we inserted; but make a note that we still
2654 * found pages pinned.
2656 error = -EBUSY;
2659 spin_lock_irq(&mapping->tree_lock);
2660 radix_tree_tag_clear(&mapping->page_tree,
2661 iter.index, SHMEM_TAG_PINNED);
2662 spin_unlock_irq(&mapping->tree_lock);
2663 continue_resched:
2664 if (need_resched()) {
2665 slot = radix_tree_iter_resume(slot, &iter);
2666 cond_resched_rcu();
2669 rcu_read_unlock();
2672 return error;
2675 #define F_ALL_SEALS (F_SEAL_SEAL | \
2676 F_SEAL_SHRINK | \
2677 F_SEAL_GROW | \
2678 F_SEAL_WRITE)
2680 int shmem_add_seals(struct file *file, unsigned int seals)
2682 struct inode *inode = file_inode(file);
2683 struct shmem_inode_info *info = SHMEM_I(inode);
2684 int error;
2687 * SEALING
2688 * Sealing allows multiple parties to share a shmem-file but restrict
2689 * access to a specific subset of file operations. Seals can only be
2690 * added, but never removed. This way, mutually untrusted parties can
2691 * share common memory regions with a well-defined policy. A malicious
2692 * peer can thus never perform unwanted operations on a shared object.
2694 * Seals are only supported on special shmem-files and always affect
2695 * the whole underlying inode. Once a seal is set, it may prevent some
2696 * kinds of access to the file. Currently, the following seals are
2697 * defined:
2698 * SEAL_SEAL: Prevent further seals from being set on this file
2699 * SEAL_SHRINK: Prevent the file from shrinking
2700 * SEAL_GROW: Prevent the file from growing
2701 * SEAL_WRITE: Prevent write access to the file
2703 * As we don't require any trust relationship between two parties, we
2704 * must prevent seals from being removed. Therefore, sealing a file
2705 * only adds a given set of seals to the file, it never touches
2706 * existing seals. Furthermore, the "setting seals"-operation can be
2707 * sealed itself, which basically prevents any further seal from being
2708 * added.
2710 * Semantics of sealing are only defined on volatile files. Only
2711 * anonymous shmem files support sealing. More importantly, seals are
2712 * never written to disk. Therefore, there's no plan to support it on
2713 * other file types.
2716 if (file->f_op != &shmem_file_operations)
2717 return -EINVAL;
2718 if (!(file->f_mode & FMODE_WRITE))
2719 return -EPERM;
2720 if (seals & ~(unsigned int)F_ALL_SEALS)
2721 return -EINVAL;
2723 inode_lock(inode);
2725 if (info->seals & F_SEAL_SEAL) {
2726 error = -EPERM;
2727 goto unlock;
2730 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2731 error = mapping_deny_writable(file->f_mapping);
2732 if (error)
2733 goto unlock;
2735 error = shmem_wait_for_pins(file->f_mapping);
2736 if (error) {
2737 mapping_allow_writable(file->f_mapping);
2738 goto unlock;
2742 info->seals |= seals;
2743 error = 0;
2745 unlock:
2746 inode_unlock(inode);
2747 return error;
2749 EXPORT_SYMBOL_GPL(shmem_add_seals);
2751 int shmem_get_seals(struct file *file)
2753 if (file->f_op != &shmem_file_operations)
2754 return -EINVAL;
2756 return SHMEM_I(file_inode(file))->seals;
2758 EXPORT_SYMBOL_GPL(shmem_get_seals);
2760 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2762 long error;
2764 switch (cmd) {
2765 case F_ADD_SEALS:
2766 /* disallow upper 32bit */
2767 if (arg > UINT_MAX)
2768 return -EINVAL;
2770 error = shmem_add_seals(file, arg);
2771 break;
2772 case F_GET_SEALS:
2773 error = shmem_get_seals(file);
2774 break;
2775 default:
2776 error = -EINVAL;
2777 break;
2780 return error;
2783 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2784 loff_t len)
2786 struct inode *inode = file_inode(file);
2787 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2788 struct shmem_inode_info *info = SHMEM_I(inode);
2789 struct shmem_falloc shmem_falloc;
2790 pgoff_t start, index, end;
2791 int error;
2793 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2794 return -EOPNOTSUPP;
2796 inode_lock(inode);
2798 if (mode & FALLOC_FL_PUNCH_HOLE) {
2799 struct address_space *mapping = file->f_mapping;
2800 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2801 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2802 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2804 /* protected by i_mutex */
2805 if (info->seals & F_SEAL_WRITE) {
2806 error = -EPERM;
2807 goto out;
2810 shmem_falloc.waitq = &shmem_falloc_waitq;
2811 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2812 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2813 spin_lock(&inode->i_lock);
2814 inode->i_private = &shmem_falloc;
2815 spin_unlock(&inode->i_lock);
2817 if ((u64)unmap_end > (u64)unmap_start)
2818 unmap_mapping_range(mapping, unmap_start,
2819 1 + unmap_end - unmap_start, 0);
2820 shmem_truncate_range(inode, offset, offset + len - 1);
2821 /* No need to unmap again: hole-punching leaves COWed pages */
2823 spin_lock(&inode->i_lock);
2824 inode->i_private = NULL;
2825 wake_up_all(&shmem_falloc_waitq);
2826 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2827 spin_unlock(&inode->i_lock);
2828 error = 0;
2829 goto out;
2832 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2833 error = inode_newsize_ok(inode, offset + len);
2834 if (error)
2835 goto out;
2837 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2838 error = -EPERM;
2839 goto out;
2842 start = offset >> PAGE_SHIFT;
2843 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2844 /* Try to avoid a swapstorm if len is impossible to satisfy */
2845 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2846 error = -ENOSPC;
2847 goto out;
2850 shmem_falloc.waitq = NULL;
2851 shmem_falloc.start = start;
2852 shmem_falloc.next = start;
2853 shmem_falloc.nr_falloced = 0;
2854 shmem_falloc.nr_unswapped = 0;
2855 spin_lock(&inode->i_lock);
2856 inode->i_private = &shmem_falloc;
2857 spin_unlock(&inode->i_lock);
2859 for (index = start; index < end; index++) {
2860 struct page *page;
2863 * Good, the fallocate(2) manpage permits EINTR: we may have
2864 * been interrupted because we are using up too much memory.
2866 if (signal_pending(current))
2867 error = -EINTR;
2868 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2869 error = -ENOMEM;
2870 else
2871 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2872 if (error) {
2873 /* Remove the !PageUptodate pages we added */
2874 if (index > start) {
2875 shmem_undo_range(inode,
2876 (loff_t)start << PAGE_SHIFT,
2877 ((loff_t)index << PAGE_SHIFT) - 1, true);
2879 goto undone;
2883 * Inform shmem_writepage() how far we have reached.
2884 * No need for lock or barrier: we have the page lock.
2886 shmem_falloc.next++;
2887 if (!PageUptodate(page))
2888 shmem_falloc.nr_falloced++;
2891 * If !PageUptodate, leave it that way so that freeable pages
2892 * can be recognized if we need to rollback on error later.
2893 * But set_page_dirty so that memory pressure will swap rather
2894 * than free the pages we are allocating (and SGP_CACHE pages
2895 * might still be clean: we now need to mark those dirty too).
2897 set_page_dirty(page);
2898 unlock_page(page);
2899 put_page(page);
2900 cond_resched();
2903 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2904 i_size_write(inode, offset + len);
2905 inode->i_ctime = current_time(inode);
2906 undone:
2907 spin_lock(&inode->i_lock);
2908 inode->i_private = NULL;
2909 spin_unlock(&inode->i_lock);
2910 out:
2911 inode_unlock(inode);
2912 return error;
2915 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2917 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2919 buf->f_type = TMPFS_MAGIC;
2920 buf->f_bsize = PAGE_SIZE;
2921 buf->f_namelen = NAME_MAX;
2922 if (sbinfo->max_blocks) {
2923 buf->f_blocks = sbinfo->max_blocks;
2924 buf->f_bavail =
2925 buf->f_bfree = sbinfo->max_blocks -
2926 percpu_counter_sum(&sbinfo->used_blocks);
2928 if (sbinfo->max_inodes) {
2929 buf->f_files = sbinfo->max_inodes;
2930 buf->f_ffree = sbinfo->free_inodes;
2932 /* else leave those fields 0 like simple_statfs */
2933 return 0;
2937 * File creation. Allocate an inode, and we're done..
2939 static int
2940 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2942 struct inode *inode;
2943 int error = -ENOSPC;
2945 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2946 if (inode) {
2947 error = simple_acl_create(dir, inode);
2948 if (error)
2949 goto out_iput;
2950 error = security_inode_init_security(inode, dir,
2951 &dentry->d_name,
2952 shmem_initxattrs, NULL);
2953 if (error && error != -EOPNOTSUPP)
2954 goto out_iput;
2956 error = 0;
2957 dir->i_size += BOGO_DIRENT_SIZE;
2958 dir->i_ctime = dir->i_mtime = current_time(dir);
2959 d_instantiate(dentry, inode);
2960 dget(dentry); /* Extra count - pin the dentry in core */
2962 return error;
2963 out_iput:
2964 iput(inode);
2965 return error;
2968 static int
2969 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2971 struct inode *inode;
2972 int error = -ENOSPC;
2974 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2975 if (inode) {
2976 error = security_inode_init_security(inode, dir,
2977 NULL,
2978 shmem_initxattrs, NULL);
2979 if (error && error != -EOPNOTSUPP)
2980 goto out_iput;
2981 error = simple_acl_create(dir, inode);
2982 if (error)
2983 goto out_iput;
2984 d_tmpfile(dentry, inode);
2986 return error;
2987 out_iput:
2988 iput(inode);
2989 return error;
2992 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2994 int error;
2996 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2997 return error;
2998 inc_nlink(dir);
2999 return 0;
3002 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3003 bool excl)
3005 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3009 * Link a file..
3011 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3013 struct inode *inode = d_inode(old_dentry);
3014 int ret;
3017 * No ordinary (disk based) filesystem counts links as inodes;
3018 * but each new link needs a new dentry, pinning lowmem, and
3019 * tmpfs dentries cannot be pruned until they are unlinked.
3021 ret = shmem_reserve_inode(inode->i_sb);
3022 if (ret)
3023 goto out;
3025 dir->i_size += BOGO_DIRENT_SIZE;
3026 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3027 inc_nlink(inode);
3028 ihold(inode); /* New dentry reference */
3029 dget(dentry); /* Extra pinning count for the created dentry */
3030 d_instantiate(dentry, inode);
3031 out:
3032 return ret;
3035 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3037 struct inode *inode = d_inode(dentry);
3039 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3040 shmem_free_inode(inode->i_sb);
3042 dir->i_size -= BOGO_DIRENT_SIZE;
3043 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3044 drop_nlink(inode);
3045 dput(dentry); /* Undo the count from "create" - this does all the work */
3046 return 0;
3049 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3051 if (!simple_empty(dentry))
3052 return -ENOTEMPTY;
3054 drop_nlink(d_inode(dentry));
3055 drop_nlink(dir);
3056 return shmem_unlink(dir, dentry);
3059 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3061 bool old_is_dir = d_is_dir(old_dentry);
3062 bool new_is_dir = d_is_dir(new_dentry);
3064 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3065 if (old_is_dir) {
3066 drop_nlink(old_dir);
3067 inc_nlink(new_dir);
3068 } else {
3069 drop_nlink(new_dir);
3070 inc_nlink(old_dir);
3073 old_dir->i_ctime = old_dir->i_mtime =
3074 new_dir->i_ctime = new_dir->i_mtime =
3075 d_inode(old_dentry)->i_ctime =
3076 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3078 return 0;
3081 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3083 struct dentry *whiteout;
3084 int error;
3086 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3087 if (!whiteout)
3088 return -ENOMEM;
3090 error = shmem_mknod(old_dir, whiteout,
3091 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3092 dput(whiteout);
3093 if (error)
3094 return error;
3097 * Cheat and hash the whiteout while the old dentry is still in
3098 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3100 * d_lookup() will consistently find one of them at this point,
3101 * not sure which one, but that isn't even important.
3103 d_rehash(whiteout);
3104 return 0;
3108 * The VFS layer already does all the dentry stuff for rename,
3109 * we just have to decrement the usage count for the target if
3110 * it exists so that the VFS layer correctly free's it when it
3111 * gets overwritten.
3113 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3115 struct inode *inode = d_inode(old_dentry);
3116 int they_are_dirs = S_ISDIR(inode->i_mode);
3118 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3119 return -EINVAL;
3121 if (flags & RENAME_EXCHANGE)
3122 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3124 if (!simple_empty(new_dentry))
3125 return -ENOTEMPTY;
3127 if (flags & RENAME_WHITEOUT) {
3128 int error;
3130 error = shmem_whiteout(old_dir, old_dentry);
3131 if (error)
3132 return error;
3135 if (d_really_is_positive(new_dentry)) {
3136 (void) shmem_unlink(new_dir, new_dentry);
3137 if (they_are_dirs) {
3138 drop_nlink(d_inode(new_dentry));
3139 drop_nlink(old_dir);
3141 } else if (they_are_dirs) {
3142 drop_nlink(old_dir);
3143 inc_nlink(new_dir);
3146 old_dir->i_size -= BOGO_DIRENT_SIZE;
3147 new_dir->i_size += BOGO_DIRENT_SIZE;
3148 old_dir->i_ctime = old_dir->i_mtime =
3149 new_dir->i_ctime = new_dir->i_mtime =
3150 inode->i_ctime = current_time(old_dir);
3151 return 0;
3154 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3156 int error;
3157 int len;
3158 struct inode *inode;
3159 struct page *page;
3160 struct shmem_inode_info *info;
3162 len = strlen(symname) + 1;
3163 if (len > PAGE_SIZE)
3164 return -ENAMETOOLONG;
3166 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3167 if (!inode)
3168 return -ENOSPC;
3170 error = security_inode_init_security(inode, dir, &dentry->d_name,
3171 shmem_initxattrs, NULL);
3172 if (error) {
3173 if (error != -EOPNOTSUPP) {
3174 iput(inode);
3175 return error;
3177 error = 0;
3180 info = SHMEM_I(inode);
3181 inode->i_size = len-1;
3182 if (len <= SHORT_SYMLINK_LEN) {
3183 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3184 if (!inode->i_link) {
3185 iput(inode);
3186 return -ENOMEM;
3188 inode->i_op = &shmem_short_symlink_operations;
3189 } else {
3190 inode_nohighmem(inode);
3191 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3192 if (error) {
3193 iput(inode);
3194 return error;
3196 inode->i_mapping->a_ops = &shmem_aops;
3197 inode->i_op = &shmem_symlink_inode_operations;
3198 memcpy(page_address(page), symname, len);
3199 SetPageUptodate(page);
3200 set_page_dirty(page);
3201 unlock_page(page);
3202 put_page(page);
3204 dir->i_size += BOGO_DIRENT_SIZE;
3205 dir->i_ctime = dir->i_mtime = current_time(dir);
3206 d_instantiate(dentry, inode);
3207 dget(dentry);
3208 return 0;
3211 static void shmem_put_link(void *arg)
3213 mark_page_accessed(arg);
3214 put_page(arg);
3217 static const char *shmem_get_link(struct dentry *dentry,
3218 struct inode *inode,
3219 struct delayed_call *done)
3221 struct page *page = NULL;
3222 int error;
3223 if (!dentry) {
3224 page = find_get_page(inode->i_mapping, 0);
3225 if (!page)
3226 return ERR_PTR(-ECHILD);
3227 if (!PageUptodate(page)) {
3228 put_page(page);
3229 return ERR_PTR(-ECHILD);
3231 } else {
3232 error = shmem_getpage(inode, 0, &page, SGP_READ);
3233 if (error)
3234 return ERR_PTR(error);
3235 unlock_page(page);
3237 set_delayed_call(done, shmem_put_link, page);
3238 return page_address(page);
3241 #ifdef CONFIG_TMPFS_XATTR
3243 * Superblocks without xattr inode operations may get some security.* xattr
3244 * support from the LSM "for free". As soon as we have any other xattrs
3245 * like ACLs, we also need to implement the security.* handlers at
3246 * filesystem level, though.
3250 * Callback for security_inode_init_security() for acquiring xattrs.
3252 static int shmem_initxattrs(struct inode *inode,
3253 const struct xattr *xattr_array,
3254 void *fs_info)
3256 struct shmem_inode_info *info = SHMEM_I(inode);
3257 const struct xattr *xattr;
3258 struct simple_xattr *new_xattr;
3259 size_t len;
3261 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3262 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3263 if (!new_xattr)
3264 return -ENOMEM;
3266 len = strlen(xattr->name) + 1;
3267 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3268 GFP_KERNEL);
3269 if (!new_xattr->name) {
3270 kfree(new_xattr);
3271 return -ENOMEM;
3274 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3275 XATTR_SECURITY_PREFIX_LEN);
3276 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3277 xattr->name, len);
3279 simple_xattr_list_add(&info->xattrs, new_xattr);
3282 return 0;
3285 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3286 struct dentry *unused, struct inode *inode,
3287 const char *name, void *buffer, size_t size)
3289 struct shmem_inode_info *info = SHMEM_I(inode);
3291 name = xattr_full_name(handler, name);
3292 return simple_xattr_get(&info->xattrs, name, buffer, size);
3295 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3296 struct dentry *unused, struct inode *inode,
3297 const char *name, const void *value,
3298 size_t size, int flags)
3300 struct shmem_inode_info *info = SHMEM_I(inode);
3302 name = xattr_full_name(handler, name);
3303 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3306 static const struct xattr_handler shmem_security_xattr_handler = {
3307 .prefix = XATTR_SECURITY_PREFIX,
3308 .get = shmem_xattr_handler_get,
3309 .set = shmem_xattr_handler_set,
3312 static const struct xattr_handler shmem_trusted_xattr_handler = {
3313 .prefix = XATTR_TRUSTED_PREFIX,
3314 .get = shmem_xattr_handler_get,
3315 .set = shmem_xattr_handler_set,
3318 static const struct xattr_handler *shmem_xattr_handlers[] = {
3319 #ifdef CONFIG_TMPFS_POSIX_ACL
3320 &posix_acl_access_xattr_handler,
3321 &posix_acl_default_xattr_handler,
3322 #endif
3323 &shmem_security_xattr_handler,
3324 &shmem_trusted_xattr_handler,
3325 NULL
3328 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3330 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3331 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3333 #endif /* CONFIG_TMPFS_XATTR */
3335 static const struct inode_operations shmem_short_symlink_operations = {
3336 .get_link = simple_get_link,
3337 #ifdef CONFIG_TMPFS_XATTR
3338 .listxattr = shmem_listxattr,
3339 #endif
3342 static const struct inode_operations shmem_symlink_inode_operations = {
3343 .get_link = shmem_get_link,
3344 #ifdef CONFIG_TMPFS_XATTR
3345 .listxattr = shmem_listxattr,
3346 #endif
3349 static struct dentry *shmem_get_parent(struct dentry *child)
3351 return ERR_PTR(-ESTALE);
3354 static int shmem_match(struct inode *ino, void *vfh)
3356 __u32 *fh = vfh;
3357 __u64 inum = fh[2];
3358 inum = (inum << 32) | fh[1];
3359 return ino->i_ino == inum && fh[0] == ino->i_generation;
3362 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3363 struct fid *fid, int fh_len, int fh_type)
3365 struct inode *inode;
3366 struct dentry *dentry = NULL;
3367 u64 inum;
3369 if (fh_len < 3)
3370 return NULL;
3372 inum = fid->raw[2];
3373 inum = (inum << 32) | fid->raw[1];
3375 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3376 shmem_match, fid->raw);
3377 if (inode) {
3378 dentry = d_find_alias(inode);
3379 iput(inode);
3382 return dentry;
3385 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3386 struct inode *parent)
3388 if (*len < 3) {
3389 *len = 3;
3390 return FILEID_INVALID;
3393 if (inode_unhashed(inode)) {
3394 /* Unfortunately insert_inode_hash is not idempotent,
3395 * so as we hash inodes here rather than at creation
3396 * time, we need a lock to ensure we only try
3397 * to do it once
3399 static DEFINE_SPINLOCK(lock);
3400 spin_lock(&lock);
3401 if (inode_unhashed(inode))
3402 __insert_inode_hash(inode,
3403 inode->i_ino + inode->i_generation);
3404 spin_unlock(&lock);
3407 fh[0] = inode->i_generation;
3408 fh[1] = inode->i_ino;
3409 fh[2] = ((__u64)inode->i_ino) >> 32;
3411 *len = 3;
3412 return 1;
3415 static const struct export_operations shmem_export_ops = {
3416 .get_parent = shmem_get_parent,
3417 .encode_fh = shmem_encode_fh,
3418 .fh_to_dentry = shmem_fh_to_dentry,
3421 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3422 bool remount)
3424 char *this_char, *value, *rest;
3425 struct mempolicy *mpol = NULL;
3426 uid_t uid;
3427 gid_t gid;
3429 while (options != NULL) {
3430 this_char = options;
3431 for (;;) {
3433 * NUL-terminate this option: unfortunately,
3434 * mount options form a comma-separated list,
3435 * but mpol's nodelist may also contain commas.
3437 options = strchr(options, ',');
3438 if (options == NULL)
3439 break;
3440 options++;
3441 if (!isdigit(*options)) {
3442 options[-1] = '\0';
3443 break;
3446 if (!*this_char)
3447 continue;
3448 if ((value = strchr(this_char,'=')) != NULL) {
3449 *value++ = 0;
3450 } else {
3451 pr_err("tmpfs: No value for mount option '%s'\n",
3452 this_char);
3453 goto error;
3456 if (!strcmp(this_char,"size")) {
3457 unsigned long long size;
3458 size = memparse(value,&rest);
3459 if (*rest == '%') {
3460 size <<= PAGE_SHIFT;
3461 size *= totalram_pages;
3462 do_div(size, 100);
3463 rest++;
3465 if (*rest)
3466 goto bad_val;
3467 sbinfo->max_blocks =
3468 DIV_ROUND_UP(size, PAGE_SIZE);
3469 } else if (!strcmp(this_char,"nr_blocks")) {
3470 sbinfo->max_blocks = memparse(value, &rest);
3471 if (*rest)
3472 goto bad_val;
3473 } else if (!strcmp(this_char,"nr_inodes")) {
3474 sbinfo->max_inodes = memparse(value, &rest);
3475 if (*rest)
3476 goto bad_val;
3477 } else if (!strcmp(this_char,"mode")) {
3478 if (remount)
3479 continue;
3480 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3481 if (*rest)
3482 goto bad_val;
3483 } else if (!strcmp(this_char,"uid")) {
3484 if (remount)
3485 continue;
3486 uid = simple_strtoul(value, &rest, 0);
3487 if (*rest)
3488 goto bad_val;
3489 sbinfo->uid = make_kuid(current_user_ns(), uid);
3490 if (!uid_valid(sbinfo->uid))
3491 goto bad_val;
3492 } else if (!strcmp(this_char,"gid")) {
3493 if (remount)
3494 continue;
3495 gid = simple_strtoul(value, &rest, 0);
3496 if (*rest)
3497 goto bad_val;
3498 sbinfo->gid = make_kgid(current_user_ns(), gid);
3499 if (!gid_valid(sbinfo->gid))
3500 goto bad_val;
3501 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3502 } else if (!strcmp(this_char, "huge")) {
3503 int huge;
3504 huge = shmem_parse_huge(value);
3505 if (huge < 0)
3506 goto bad_val;
3507 if (!has_transparent_hugepage() &&
3508 huge != SHMEM_HUGE_NEVER)
3509 goto bad_val;
3510 sbinfo->huge = huge;
3511 #endif
3512 #ifdef CONFIG_NUMA
3513 } else if (!strcmp(this_char,"mpol")) {
3514 mpol_put(mpol);
3515 mpol = NULL;
3516 if (mpol_parse_str(value, &mpol))
3517 goto bad_val;
3518 #endif
3519 } else {
3520 pr_err("tmpfs: Bad mount option %s\n", this_char);
3521 goto error;
3524 sbinfo->mpol = mpol;
3525 return 0;
3527 bad_val:
3528 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3529 value, this_char);
3530 error:
3531 mpol_put(mpol);
3532 return 1;
3536 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3538 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3539 struct shmem_sb_info config = *sbinfo;
3540 unsigned long inodes;
3541 int error = -EINVAL;
3543 config.mpol = NULL;
3544 if (shmem_parse_options(data, &config, true))
3545 return error;
3547 spin_lock(&sbinfo->stat_lock);
3548 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3549 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3550 goto out;
3551 if (config.max_inodes < inodes)
3552 goto out;
3554 * Those tests disallow limited->unlimited while any are in use;
3555 * but we must separately disallow unlimited->limited, because
3556 * in that case we have no record of how much is already in use.
3558 if (config.max_blocks && !sbinfo->max_blocks)
3559 goto out;
3560 if (config.max_inodes && !sbinfo->max_inodes)
3561 goto out;
3563 error = 0;
3564 sbinfo->huge = config.huge;
3565 sbinfo->max_blocks = config.max_blocks;
3566 sbinfo->max_inodes = config.max_inodes;
3567 sbinfo->free_inodes = config.max_inodes - inodes;
3570 * Preserve previous mempolicy unless mpol remount option was specified.
3572 if (config.mpol) {
3573 mpol_put(sbinfo->mpol);
3574 sbinfo->mpol = config.mpol; /* transfers initial ref */
3576 out:
3577 spin_unlock(&sbinfo->stat_lock);
3578 return error;
3581 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3583 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3585 if (sbinfo->max_blocks != shmem_default_max_blocks())
3586 seq_printf(seq, ",size=%luk",
3587 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3588 if (sbinfo->max_inodes != shmem_default_max_inodes())
3589 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3590 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3591 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3592 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3593 seq_printf(seq, ",uid=%u",
3594 from_kuid_munged(&init_user_ns, sbinfo->uid));
3595 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3596 seq_printf(seq, ",gid=%u",
3597 from_kgid_munged(&init_user_ns, sbinfo->gid));
3598 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3599 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3600 if (sbinfo->huge)
3601 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3602 #endif
3603 shmem_show_mpol(seq, sbinfo->mpol);
3604 return 0;
3607 #define MFD_NAME_PREFIX "memfd:"
3608 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3609 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3611 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3613 SYSCALL_DEFINE2(memfd_create,
3614 const char __user *, uname,
3615 unsigned int, flags)
3617 struct shmem_inode_info *info;
3618 struct file *file;
3619 int fd, error;
3620 char *name;
3621 long len;
3623 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3624 return -EINVAL;
3626 /* length includes terminating zero */
3627 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3628 if (len <= 0)
3629 return -EFAULT;
3630 if (len > MFD_NAME_MAX_LEN + 1)
3631 return -EINVAL;
3633 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3634 if (!name)
3635 return -ENOMEM;
3637 strcpy(name, MFD_NAME_PREFIX);
3638 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3639 error = -EFAULT;
3640 goto err_name;
3643 /* terminating-zero may have changed after strnlen_user() returned */
3644 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3645 error = -EFAULT;
3646 goto err_name;
3649 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3650 if (fd < 0) {
3651 error = fd;
3652 goto err_name;
3655 file = shmem_file_setup(name, 0, VM_NORESERVE);
3656 if (IS_ERR(file)) {
3657 error = PTR_ERR(file);
3658 goto err_fd;
3660 info = SHMEM_I(file_inode(file));
3661 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3662 file->f_flags |= O_RDWR | O_LARGEFILE;
3663 if (flags & MFD_ALLOW_SEALING)
3664 info->seals &= ~F_SEAL_SEAL;
3666 fd_install(fd, file);
3667 kfree(name);
3668 return fd;
3670 err_fd:
3671 put_unused_fd(fd);
3672 err_name:
3673 kfree(name);
3674 return error;
3677 #endif /* CONFIG_TMPFS */
3679 static void shmem_put_super(struct super_block *sb)
3681 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3683 percpu_counter_destroy(&sbinfo->used_blocks);
3684 mpol_put(sbinfo->mpol);
3685 kfree(sbinfo);
3686 sb->s_fs_info = NULL;
3689 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3691 struct inode *inode;
3692 struct shmem_sb_info *sbinfo;
3693 int err = -ENOMEM;
3695 /* Round up to L1_CACHE_BYTES to resist false sharing */
3696 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3697 L1_CACHE_BYTES), GFP_KERNEL);
3698 if (!sbinfo)
3699 return -ENOMEM;
3701 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3702 sbinfo->uid = current_fsuid();
3703 sbinfo->gid = current_fsgid();
3704 sb->s_fs_info = sbinfo;
3706 #ifdef CONFIG_TMPFS
3708 * Per default we only allow half of the physical ram per
3709 * tmpfs instance, limiting inodes to one per page of lowmem;
3710 * but the internal instance is left unlimited.
3712 if (!(sb->s_flags & MS_KERNMOUNT)) {
3713 sbinfo->max_blocks = shmem_default_max_blocks();
3714 sbinfo->max_inodes = shmem_default_max_inodes();
3715 if (shmem_parse_options(data, sbinfo, false)) {
3716 err = -EINVAL;
3717 goto failed;
3719 } else {
3720 sb->s_flags |= MS_NOUSER;
3722 sb->s_export_op = &shmem_export_ops;
3723 sb->s_flags |= MS_NOSEC;
3724 #else
3725 sb->s_flags |= MS_NOUSER;
3726 #endif
3728 spin_lock_init(&sbinfo->stat_lock);
3729 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3730 goto failed;
3731 sbinfo->free_inodes = sbinfo->max_inodes;
3732 spin_lock_init(&sbinfo->shrinklist_lock);
3733 INIT_LIST_HEAD(&sbinfo->shrinklist);
3735 sb->s_maxbytes = MAX_LFS_FILESIZE;
3736 sb->s_blocksize = PAGE_SIZE;
3737 sb->s_blocksize_bits = PAGE_SHIFT;
3738 sb->s_magic = TMPFS_MAGIC;
3739 sb->s_op = &shmem_ops;
3740 sb->s_time_gran = 1;
3741 #ifdef CONFIG_TMPFS_XATTR
3742 sb->s_xattr = shmem_xattr_handlers;
3743 #endif
3744 #ifdef CONFIG_TMPFS_POSIX_ACL
3745 sb->s_flags |= MS_POSIXACL;
3746 #endif
3748 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3749 if (!inode)
3750 goto failed;
3751 inode->i_uid = sbinfo->uid;
3752 inode->i_gid = sbinfo->gid;
3753 sb->s_root = d_make_root(inode);
3754 if (!sb->s_root)
3755 goto failed;
3756 return 0;
3758 failed:
3759 shmem_put_super(sb);
3760 return err;
3763 static struct kmem_cache *shmem_inode_cachep;
3765 static struct inode *shmem_alloc_inode(struct super_block *sb)
3767 struct shmem_inode_info *info;
3768 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3769 if (!info)
3770 return NULL;
3771 return &info->vfs_inode;
3774 static void shmem_destroy_callback(struct rcu_head *head)
3776 struct inode *inode = container_of(head, struct inode, i_rcu);
3777 if (S_ISLNK(inode->i_mode))
3778 kfree(inode->i_link);
3779 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3782 static void shmem_destroy_inode(struct inode *inode)
3784 if (S_ISREG(inode->i_mode))
3785 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3786 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3789 static void shmem_init_inode(void *foo)
3791 struct shmem_inode_info *info = foo;
3792 inode_init_once(&info->vfs_inode);
3795 static int shmem_init_inodecache(void)
3797 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3798 sizeof(struct shmem_inode_info),
3799 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3800 return 0;
3803 static void shmem_destroy_inodecache(void)
3805 kmem_cache_destroy(shmem_inode_cachep);
3808 static const struct address_space_operations shmem_aops = {
3809 .writepage = shmem_writepage,
3810 .set_page_dirty = __set_page_dirty_no_writeback,
3811 #ifdef CONFIG_TMPFS
3812 .write_begin = shmem_write_begin,
3813 .write_end = shmem_write_end,
3814 #endif
3815 #ifdef CONFIG_MIGRATION
3816 .migratepage = migrate_page,
3817 #endif
3818 .error_remove_page = generic_error_remove_page,
3821 static const struct file_operations shmem_file_operations = {
3822 .mmap = shmem_mmap,
3823 .get_unmapped_area = shmem_get_unmapped_area,
3824 #ifdef CONFIG_TMPFS
3825 .llseek = shmem_file_llseek,
3826 .read_iter = shmem_file_read_iter,
3827 .write_iter = generic_file_write_iter,
3828 .fsync = noop_fsync,
3829 .splice_read = generic_file_splice_read,
3830 .splice_write = iter_file_splice_write,
3831 .fallocate = shmem_fallocate,
3832 #endif
3835 static const struct inode_operations shmem_inode_operations = {
3836 .getattr = shmem_getattr,
3837 .setattr = shmem_setattr,
3838 #ifdef CONFIG_TMPFS_XATTR
3839 .listxattr = shmem_listxattr,
3840 .set_acl = simple_set_acl,
3841 #endif
3844 static const struct inode_operations shmem_dir_inode_operations = {
3845 #ifdef CONFIG_TMPFS
3846 .create = shmem_create,
3847 .lookup = simple_lookup,
3848 .link = shmem_link,
3849 .unlink = shmem_unlink,
3850 .symlink = shmem_symlink,
3851 .mkdir = shmem_mkdir,
3852 .rmdir = shmem_rmdir,
3853 .mknod = shmem_mknod,
3854 .rename = shmem_rename2,
3855 .tmpfile = shmem_tmpfile,
3856 #endif
3857 #ifdef CONFIG_TMPFS_XATTR
3858 .listxattr = shmem_listxattr,
3859 #endif
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861 .setattr = shmem_setattr,
3862 .set_acl = simple_set_acl,
3863 #endif
3866 static const struct inode_operations shmem_special_inode_operations = {
3867 #ifdef CONFIG_TMPFS_XATTR
3868 .listxattr = shmem_listxattr,
3869 #endif
3870 #ifdef CONFIG_TMPFS_POSIX_ACL
3871 .setattr = shmem_setattr,
3872 .set_acl = simple_set_acl,
3873 #endif
3876 static const struct super_operations shmem_ops = {
3877 .alloc_inode = shmem_alloc_inode,
3878 .destroy_inode = shmem_destroy_inode,
3879 #ifdef CONFIG_TMPFS
3880 .statfs = shmem_statfs,
3881 .remount_fs = shmem_remount_fs,
3882 .show_options = shmem_show_options,
3883 #endif
3884 .evict_inode = shmem_evict_inode,
3885 .drop_inode = generic_delete_inode,
3886 .put_super = shmem_put_super,
3887 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3888 .nr_cached_objects = shmem_unused_huge_count,
3889 .free_cached_objects = shmem_unused_huge_scan,
3890 #endif
3893 static const struct vm_operations_struct shmem_vm_ops = {
3894 .fault = shmem_fault,
3895 .map_pages = filemap_map_pages,
3896 #ifdef CONFIG_NUMA
3897 .set_policy = shmem_set_policy,
3898 .get_policy = shmem_get_policy,
3899 #endif
3902 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3903 int flags, const char *dev_name, void *data)
3905 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3908 static struct file_system_type shmem_fs_type = {
3909 .owner = THIS_MODULE,
3910 .name = "tmpfs",
3911 .mount = shmem_mount,
3912 .kill_sb = kill_litter_super,
3913 .fs_flags = FS_USERNS_MOUNT,
3916 int __init shmem_init(void)
3918 int error;
3920 /* If rootfs called this, don't re-init */
3921 if (shmem_inode_cachep)
3922 return 0;
3924 error = shmem_init_inodecache();
3925 if (error)
3926 goto out3;
3928 error = register_filesystem(&shmem_fs_type);
3929 if (error) {
3930 pr_err("Could not register tmpfs\n");
3931 goto out2;
3934 shm_mnt = kern_mount(&shmem_fs_type);
3935 if (IS_ERR(shm_mnt)) {
3936 error = PTR_ERR(shm_mnt);
3937 pr_err("Could not kern_mount tmpfs\n");
3938 goto out1;
3941 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3942 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3943 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944 else
3945 shmem_huge = 0; /* just in case it was patched */
3946 #endif
3947 return 0;
3949 out1:
3950 unregister_filesystem(&shmem_fs_type);
3951 out2:
3952 shmem_destroy_inodecache();
3953 out3:
3954 shm_mnt = ERR_PTR(error);
3955 return error;
3958 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3959 static ssize_t shmem_enabled_show(struct kobject *kobj,
3960 struct kobj_attribute *attr, char *buf)
3962 int values[] = {
3963 SHMEM_HUGE_ALWAYS,
3964 SHMEM_HUGE_WITHIN_SIZE,
3965 SHMEM_HUGE_ADVISE,
3966 SHMEM_HUGE_NEVER,
3967 SHMEM_HUGE_DENY,
3968 SHMEM_HUGE_FORCE,
3970 int i, count;
3972 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3973 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3975 count += sprintf(buf + count, fmt,
3976 shmem_format_huge(values[i]));
3978 buf[count - 1] = '\n';
3979 return count;
3982 static ssize_t shmem_enabled_store(struct kobject *kobj,
3983 struct kobj_attribute *attr, const char *buf, size_t count)
3985 char tmp[16];
3986 int huge;
3988 if (count + 1 > sizeof(tmp))
3989 return -EINVAL;
3990 memcpy(tmp, buf, count);
3991 tmp[count] = '\0';
3992 if (count && tmp[count - 1] == '\n')
3993 tmp[count - 1] = '\0';
3995 huge = shmem_parse_huge(tmp);
3996 if (huge == -EINVAL)
3997 return -EINVAL;
3998 if (!has_transparent_hugepage() &&
3999 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4000 return -EINVAL;
4002 shmem_huge = huge;
4003 if (shmem_huge < SHMEM_HUGE_DENY)
4004 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4005 return count;
4008 struct kobj_attribute shmem_enabled_attr =
4009 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4010 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4012 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4013 bool shmem_huge_enabled(struct vm_area_struct *vma)
4015 struct inode *inode = file_inode(vma->vm_file);
4016 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4017 loff_t i_size;
4018 pgoff_t off;
4020 if (shmem_huge == SHMEM_HUGE_FORCE)
4021 return true;
4022 if (shmem_huge == SHMEM_HUGE_DENY)
4023 return false;
4024 switch (sbinfo->huge) {
4025 case SHMEM_HUGE_NEVER:
4026 return false;
4027 case SHMEM_HUGE_ALWAYS:
4028 return true;
4029 case SHMEM_HUGE_WITHIN_SIZE:
4030 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4031 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4032 if (i_size >= HPAGE_PMD_SIZE &&
4033 i_size >> PAGE_SHIFT >= off)
4034 return true;
4035 case SHMEM_HUGE_ADVISE:
4036 /* TODO: implement fadvise() hints */
4037 return (vma->vm_flags & VM_HUGEPAGE);
4038 default:
4039 VM_BUG_ON(1);
4040 return false;
4043 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4045 #else /* !CONFIG_SHMEM */
4048 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4050 * This is intended for small system where the benefits of the full
4051 * shmem code (swap-backed and resource-limited) are outweighed by
4052 * their complexity. On systems without swap this code should be
4053 * effectively equivalent, but much lighter weight.
4056 static struct file_system_type shmem_fs_type = {
4057 .name = "tmpfs",
4058 .mount = ramfs_mount,
4059 .kill_sb = kill_litter_super,
4060 .fs_flags = FS_USERNS_MOUNT,
4063 int __init shmem_init(void)
4065 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4067 shm_mnt = kern_mount(&shmem_fs_type);
4068 BUG_ON(IS_ERR(shm_mnt));
4070 return 0;
4073 int shmem_unuse(swp_entry_t swap, struct page *page)
4075 return 0;
4078 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4080 return 0;
4083 void shmem_unlock_mapping(struct address_space *mapping)
4087 #ifdef CONFIG_MMU
4088 unsigned long shmem_get_unmapped_area(struct file *file,
4089 unsigned long addr, unsigned long len,
4090 unsigned long pgoff, unsigned long flags)
4092 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4094 #endif
4096 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4098 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4100 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4102 #define shmem_vm_ops generic_file_vm_ops
4103 #define shmem_file_operations ramfs_file_operations
4104 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4105 #define shmem_acct_size(flags, size) 0
4106 #define shmem_unacct_size(flags, size) do {} while (0)
4108 #endif /* CONFIG_SHMEM */
4110 /* common code */
4112 static const struct dentry_operations anon_ops = {
4113 .d_dname = simple_dname
4116 static struct file *__shmem_file_setup(const char *name, loff_t size,
4117 unsigned long flags, unsigned int i_flags)
4119 struct file *res;
4120 struct inode *inode;
4121 struct path path;
4122 struct super_block *sb;
4123 struct qstr this;
4125 if (IS_ERR(shm_mnt))
4126 return ERR_CAST(shm_mnt);
4128 if (size < 0 || size > MAX_LFS_FILESIZE)
4129 return ERR_PTR(-EINVAL);
4131 if (shmem_acct_size(flags, size))
4132 return ERR_PTR(-ENOMEM);
4134 res = ERR_PTR(-ENOMEM);
4135 this.name = name;
4136 this.len = strlen(name);
4137 this.hash = 0; /* will go */
4138 sb = shm_mnt->mnt_sb;
4139 path.mnt = mntget(shm_mnt);
4140 path.dentry = d_alloc_pseudo(sb, &this);
4141 if (!path.dentry)
4142 goto put_memory;
4143 d_set_d_op(path.dentry, &anon_ops);
4145 res = ERR_PTR(-ENOSPC);
4146 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4147 if (!inode)
4148 goto put_memory;
4150 inode->i_flags |= i_flags;
4151 d_instantiate(path.dentry, inode);
4152 inode->i_size = size;
4153 clear_nlink(inode); /* It is unlinked */
4154 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4155 if (IS_ERR(res))
4156 goto put_path;
4158 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4159 &shmem_file_operations);
4160 if (IS_ERR(res))
4161 goto put_path;
4163 return res;
4165 put_memory:
4166 shmem_unacct_size(flags, size);
4167 put_path:
4168 path_put(&path);
4169 return res;
4173 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4174 * kernel internal. There will be NO LSM permission checks against the
4175 * underlying inode. So users of this interface must do LSM checks at a
4176 * higher layer. The users are the big_key and shm implementations. LSM
4177 * checks are provided at the key or shm level rather than the inode.
4178 * @name: name for dentry (to be seen in /proc/<pid>/maps
4179 * @size: size to be set for the file
4180 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4182 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4184 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4188 * shmem_file_setup - get an unlinked file living in tmpfs
4189 * @name: name for dentry (to be seen in /proc/<pid>/maps
4190 * @size: size to be set for the file
4191 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4193 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4195 return __shmem_file_setup(name, size, flags, 0);
4197 EXPORT_SYMBOL_GPL(shmem_file_setup);
4200 * shmem_zero_setup - setup a shared anonymous mapping
4201 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4203 int shmem_zero_setup(struct vm_area_struct *vma)
4205 struct file *file;
4206 loff_t size = vma->vm_end - vma->vm_start;
4209 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4210 * between XFS directory reading and selinux: since this file is only
4211 * accessible to the user through its mapping, use S_PRIVATE flag to
4212 * bypass file security, in the same way as shmem_kernel_file_setup().
4214 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4215 if (IS_ERR(file))
4216 return PTR_ERR(file);
4218 if (vma->vm_file)
4219 fput(vma->vm_file);
4220 vma->vm_file = file;
4221 vma->vm_ops = &shmem_vm_ops;
4223 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4224 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4225 (vma->vm_end & HPAGE_PMD_MASK)) {
4226 khugepaged_enter(vma, vma->vm_flags);
4229 return 0;
4233 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4234 * @mapping: the page's address_space
4235 * @index: the page index
4236 * @gfp: the page allocator flags to use if allocating
4238 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4239 * with any new page allocations done using the specified allocation flags.
4240 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4241 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4242 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4244 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4245 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4247 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4248 pgoff_t index, gfp_t gfp)
4250 #ifdef CONFIG_SHMEM
4251 struct inode *inode = mapping->host;
4252 struct page *page;
4253 int error;
4255 BUG_ON(mapping->a_ops != &shmem_aops);
4256 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4257 gfp, NULL, NULL);
4258 if (error)
4259 page = ERR_PTR(error);
4260 else
4261 unlock_page(page);
4262 return page;
4263 #else
4265 * The tiny !SHMEM case uses ramfs without swap
4267 return read_cache_page_gfp(mapping, index, gfp);
4268 #endif
4270 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);