1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
65 #include <linux/nospec.h>
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
71 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
84 # define SET_FPEMU_CTL(a, b) (-EINVAL)
87 # define GET_FPEMU_CTL(a, b) (-EINVAL)
90 # define SET_FPEXC_CTL(a, b) (-EINVAL)
93 # define GET_FPEXC_CTL(a, b) (-EINVAL)
96 # define GET_ENDIAN(a, b) (-EINVAL)
99 # define SET_ENDIAN(a, b) (-EINVAL)
102 # define GET_TSC_CTL(a) (-EINVAL)
105 # define SET_TSC_CTL(a) (-EINVAL)
108 # define GET_FP_MODE(a) (-EINVAL)
111 # define SET_FP_MODE(a,b) (-EINVAL)
114 # define SVE_SET_VL(a) (-EINVAL)
117 # define SVE_GET_VL() (-EINVAL)
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b) (-EINVAL)
122 #ifndef SET_TAGGED_ADDR_CTRL
123 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
125 #ifndef GET_TAGGED_ADDR_CTRL
126 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
130 * this is where the system-wide overflow UID and GID are defined, for
131 * architectures that now have 32-bit UID/GID but didn't in the past
134 int overflowuid
= DEFAULT_OVERFLOWUID
;
135 int overflowgid
= DEFAULT_OVERFLOWGID
;
137 EXPORT_SYMBOL(overflowuid
);
138 EXPORT_SYMBOL(overflowgid
);
141 * the same as above, but for filesystems which can only store a 16-bit
142 * UID and GID. as such, this is needed on all architectures
145 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
146 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
148 EXPORT_SYMBOL(fs_overflowuid
);
149 EXPORT_SYMBOL(fs_overflowgid
);
152 * Returns true if current's euid is same as p's uid or euid,
153 * or has CAP_SYS_NICE to p's user_ns.
155 * Called with rcu_read_lock, creds are safe
157 static bool set_one_prio_perm(struct task_struct
*p
)
159 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
161 if (uid_eq(pcred
->uid
, cred
->euid
) ||
162 uid_eq(pcred
->euid
, cred
->euid
))
164 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
170 * set the priority of a task
171 * - the caller must hold the RCU read lock
173 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
177 if (!set_one_prio_perm(p
)) {
181 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
185 no_nice
= security_task_setnice(p
, niceval
);
192 set_user_nice(p
, niceval
);
197 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
199 struct task_struct
*g
, *p
;
200 struct user_struct
*user
;
201 const struct cred
*cred
= current_cred();
206 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
209 /* normalize: avoid signed division (rounding problems) */
211 if (niceval
< MIN_NICE
)
213 if (niceval
> MAX_NICE
)
217 read_lock(&tasklist_lock
);
221 p
= find_task_by_vpid(who
);
225 error
= set_one_prio(p
, niceval
, error
);
229 pgrp
= find_vpid(who
);
231 pgrp
= task_pgrp(current
);
232 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
233 error
= set_one_prio(p
, niceval
, error
);
234 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
237 uid
= make_kuid(cred
->user_ns
, who
);
241 else if (!uid_eq(uid
, cred
->uid
)) {
242 user
= find_user(uid
);
244 goto out_unlock
; /* No processes for this user */
246 do_each_thread(g
, p
) {
247 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
248 error
= set_one_prio(p
, niceval
, error
);
249 } while_each_thread(g
, p
);
250 if (!uid_eq(uid
, cred
->uid
))
251 free_uid(user
); /* For find_user() */
255 read_unlock(&tasklist_lock
);
262 * Ugh. To avoid negative return values, "getpriority()" will
263 * not return the normal nice-value, but a negated value that
264 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
265 * to stay compatible.
267 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
269 struct task_struct
*g
, *p
;
270 struct user_struct
*user
;
271 const struct cred
*cred
= current_cred();
272 long niceval
, retval
= -ESRCH
;
276 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
280 read_lock(&tasklist_lock
);
284 p
= find_task_by_vpid(who
);
288 niceval
= nice_to_rlimit(task_nice(p
));
289 if (niceval
> retval
)
295 pgrp
= find_vpid(who
);
297 pgrp
= task_pgrp(current
);
298 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
299 niceval
= nice_to_rlimit(task_nice(p
));
300 if (niceval
> retval
)
302 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
305 uid
= make_kuid(cred
->user_ns
, who
);
309 else if (!uid_eq(uid
, cred
->uid
)) {
310 user
= find_user(uid
);
312 goto out_unlock
; /* No processes for this user */
314 do_each_thread(g
, p
) {
315 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
316 niceval
= nice_to_rlimit(task_nice(p
));
317 if (niceval
> retval
)
320 } while_each_thread(g
, p
);
321 if (!uid_eq(uid
, cred
->uid
))
322 free_uid(user
); /* for find_user() */
326 read_unlock(&tasklist_lock
);
333 * Unprivileged users may change the real gid to the effective gid
334 * or vice versa. (BSD-style)
336 * If you set the real gid at all, or set the effective gid to a value not
337 * equal to the real gid, then the saved gid is set to the new effective gid.
339 * This makes it possible for a setgid program to completely drop its
340 * privileges, which is often a useful assertion to make when you are doing
341 * a security audit over a program.
343 * The general idea is that a program which uses just setregid() will be
344 * 100% compatible with BSD. A program which uses just setgid() will be
345 * 100% compatible with POSIX with saved IDs.
347 * SMP: There are not races, the GIDs are checked only by filesystem
348 * operations (as far as semantic preservation is concerned).
350 #ifdef CONFIG_MULTIUSER
351 long __sys_setregid(gid_t rgid
, gid_t egid
)
353 struct user_namespace
*ns
= current_user_ns();
354 const struct cred
*old
;
359 krgid
= make_kgid(ns
, rgid
);
360 kegid
= make_kgid(ns
, egid
);
362 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
364 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
367 new = prepare_creds();
370 old
= current_cred();
373 if (rgid
!= (gid_t
) -1) {
374 if (gid_eq(old
->gid
, krgid
) ||
375 gid_eq(old
->egid
, krgid
) ||
376 ns_capable(old
->user_ns
, CAP_SETGID
))
381 if (egid
!= (gid_t
) -1) {
382 if (gid_eq(old
->gid
, kegid
) ||
383 gid_eq(old
->egid
, kegid
) ||
384 gid_eq(old
->sgid
, kegid
) ||
385 ns_capable(old
->user_ns
, CAP_SETGID
))
391 if (rgid
!= (gid_t
) -1 ||
392 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
393 new->sgid
= new->egid
;
394 new->fsgid
= new->egid
;
396 return commit_creds(new);
403 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
405 return __sys_setregid(rgid
, egid
);
409 * setgid() is implemented like SysV w/ SAVED_IDS
411 * SMP: Same implicit races as above.
413 long __sys_setgid(gid_t gid
)
415 struct user_namespace
*ns
= current_user_ns();
416 const struct cred
*old
;
421 kgid
= make_kgid(ns
, gid
);
422 if (!gid_valid(kgid
))
425 new = prepare_creds();
428 old
= current_cred();
431 if (ns_capable(old
->user_ns
, CAP_SETGID
))
432 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
433 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
434 new->egid
= new->fsgid
= kgid
;
438 return commit_creds(new);
445 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
447 return __sys_setgid(gid
);
451 * change the user struct in a credentials set to match the new UID
453 static int set_user(struct cred
*new)
455 struct user_struct
*new_user
;
457 new_user
= alloc_uid(new->uid
);
462 * We don't fail in case of NPROC limit excess here because too many
463 * poorly written programs don't check set*uid() return code, assuming
464 * it never fails if called by root. We may still enforce NPROC limit
465 * for programs doing set*uid()+execve() by harmlessly deferring the
466 * failure to the execve() stage.
468 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
469 new_user
!= INIT_USER
)
470 current
->flags
|= PF_NPROC_EXCEEDED
;
472 current
->flags
&= ~PF_NPROC_EXCEEDED
;
475 new->user
= new_user
;
480 * Unprivileged users may change the real uid to the effective uid
481 * or vice versa. (BSD-style)
483 * If you set the real uid at all, or set the effective uid to a value not
484 * equal to the real uid, then the saved uid is set to the new effective uid.
486 * This makes it possible for a setuid program to completely drop its
487 * privileges, which is often a useful assertion to make when you are doing
488 * a security audit over a program.
490 * The general idea is that a program which uses just setreuid() will be
491 * 100% compatible with BSD. A program which uses just setuid() will be
492 * 100% compatible with POSIX with saved IDs.
494 long __sys_setreuid(uid_t ruid
, uid_t euid
)
496 struct user_namespace
*ns
= current_user_ns();
497 const struct cred
*old
;
502 kruid
= make_kuid(ns
, ruid
);
503 keuid
= make_kuid(ns
, euid
);
505 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
507 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
510 new = prepare_creds();
513 old
= current_cred();
516 if (ruid
!= (uid_t
) -1) {
518 if (!uid_eq(old
->uid
, kruid
) &&
519 !uid_eq(old
->euid
, kruid
) &&
520 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
524 if (euid
!= (uid_t
) -1) {
526 if (!uid_eq(old
->uid
, keuid
) &&
527 !uid_eq(old
->euid
, keuid
) &&
528 !uid_eq(old
->suid
, keuid
) &&
529 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
533 if (!uid_eq(new->uid
, old
->uid
)) {
534 retval
= set_user(new);
538 if (ruid
!= (uid_t
) -1 ||
539 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
540 new->suid
= new->euid
;
541 new->fsuid
= new->euid
;
543 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
547 return commit_creds(new);
554 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
556 return __sys_setreuid(ruid
, euid
);
560 * setuid() is implemented like SysV with SAVED_IDS
562 * Note that SAVED_ID's is deficient in that a setuid root program
563 * like sendmail, for example, cannot set its uid to be a normal
564 * user and then switch back, because if you're root, setuid() sets
565 * the saved uid too. If you don't like this, blame the bright people
566 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
567 * will allow a root program to temporarily drop privileges and be able to
568 * regain them by swapping the real and effective uid.
570 long __sys_setuid(uid_t uid
)
572 struct user_namespace
*ns
= current_user_ns();
573 const struct cred
*old
;
578 kuid
= make_kuid(ns
, uid
);
579 if (!uid_valid(kuid
))
582 new = prepare_creds();
585 old
= current_cred();
588 if (ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
589 new->suid
= new->uid
= kuid
;
590 if (!uid_eq(kuid
, old
->uid
)) {
591 retval
= set_user(new);
595 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
599 new->fsuid
= new->euid
= kuid
;
601 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
605 return commit_creds(new);
612 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
614 return __sys_setuid(uid
);
619 * This function implements a generic ability to update ruid, euid,
620 * and suid. This allows you to implement the 4.4 compatible seteuid().
622 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
624 struct user_namespace
*ns
= current_user_ns();
625 const struct cred
*old
;
628 kuid_t kruid
, keuid
, ksuid
;
630 kruid
= make_kuid(ns
, ruid
);
631 keuid
= make_kuid(ns
, euid
);
632 ksuid
= make_kuid(ns
, suid
);
634 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
637 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
640 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
643 new = prepare_creds();
647 old
= current_cred();
650 if (!ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
651 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
652 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
654 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
655 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
657 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
658 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
662 if (ruid
!= (uid_t
) -1) {
664 if (!uid_eq(kruid
, old
->uid
)) {
665 retval
= set_user(new);
670 if (euid
!= (uid_t
) -1)
672 if (suid
!= (uid_t
) -1)
674 new->fsuid
= new->euid
;
676 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
680 return commit_creds(new);
687 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
689 return __sys_setresuid(ruid
, euid
, suid
);
692 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
694 const struct cred
*cred
= current_cred();
696 uid_t ruid
, euid
, suid
;
698 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
699 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
700 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
702 retval
= put_user(ruid
, ruidp
);
704 retval
= put_user(euid
, euidp
);
706 return put_user(suid
, suidp
);
712 * Same as above, but for rgid, egid, sgid.
714 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
716 struct user_namespace
*ns
= current_user_ns();
717 const struct cred
*old
;
720 kgid_t krgid
, kegid
, ksgid
;
722 krgid
= make_kgid(ns
, rgid
);
723 kegid
= make_kgid(ns
, egid
);
724 ksgid
= make_kgid(ns
, sgid
);
726 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
728 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
730 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
733 new = prepare_creds();
736 old
= current_cred();
739 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
740 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
741 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
743 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
744 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
746 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
747 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
751 if (rgid
!= (gid_t
) -1)
753 if (egid
!= (gid_t
) -1)
755 if (sgid
!= (gid_t
) -1)
757 new->fsgid
= new->egid
;
759 return commit_creds(new);
766 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
768 return __sys_setresgid(rgid
, egid
, sgid
);
771 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
773 const struct cred
*cred
= current_cred();
775 gid_t rgid
, egid
, sgid
;
777 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
778 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
779 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
781 retval
= put_user(rgid
, rgidp
);
783 retval
= put_user(egid
, egidp
);
785 retval
= put_user(sgid
, sgidp
);
793 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
794 * is used for "access()" and for the NFS daemon (letting nfsd stay at
795 * whatever uid it wants to). It normally shadows "euid", except when
796 * explicitly set by setfsuid() or for access..
798 long __sys_setfsuid(uid_t uid
)
800 const struct cred
*old
;
805 old
= current_cred();
806 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
808 kuid
= make_kuid(old
->user_ns
, uid
);
809 if (!uid_valid(kuid
))
812 new = prepare_creds();
816 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
817 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
818 ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
819 if (!uid_eq(kuid
, old
->fsuid
)) {
821 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
834 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
836 return __sys_setfsuid(uid
);
840 * Samma på svenska..
842 long __sys_setfsgid(gid_t gid
)
844 const struct cred
*old
;
849 old
= current_cred();
850 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
852 kgid
= make_kgid(old
->user_ns
, gid
);
853 if (!gid_valid(kgid
))
856 new = prepare_creds();
860 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
861 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
862 ns_capable(old
->user_ns
, CAP_SETGID
)) {
863 if (!gid_eq(kgid
, old
->fsgid
)) {
877 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
879 return __sys_setfsgid(gid
);
881 #endif /* CONFIG_MULTIUSER */
884 * sys_getpid - return the thread group id of the current process
886 * Note, despite the name, this returns the tgid not the pid. The tgid and
887 * the pid are identical unless CLONE_THREAD was specified on clone() in
888 * which case the tgid is the same in all threads of the same group.
890 * This is SMP safe as current->tgid does not change.
892 SYSCALL_DEFINE0(getpid
)
894 return task_tgid_vnr(current
);
897 /* Thread ID - the internal kernel "pid" */
898 SYSCALL_DEFINE0(gettid
)
900 return task_pid_vnr(current
);
904 * Accessing ->real_parent is not SMP-safe, it could
905 * change from under us. However, we can use a stale
906 * value of ->real_parent under rcu_read_lock(), see
907 * release_task()->call_rcu(delayed_put_task_struct).
909 SYSCALL_DEFINE0(getppid
)
914 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
920 SYSCALL_DEFINE0(getuid
)
922 /* Only we change this so SMP safe */
923 return from_kuid_munged(current_user_ns(), current_uid());
926 SYSCALL_DEFINE0(geteuid
)
928 /* Only we change this so SMP safe */
929 return from_kuid_munged(current_user_ns(), current_euid());
932 SYSCALL_DEFINE0(getgid
)
934 /* Only we change this so SMP safe */
935 return from_kgid_munged(current_user_ns(), current_gid());
938 SYSCALL_DEFINE0(getegid
)
940 /* Only we change this so SMP safe */
941 return from_kgid_munged(current_user_ns(), current_egid());
944 static void do_sys_times(struct tms
*tms
)
946 u64 tgutime
, tgstime
, cutime
, cstime
;
948 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
949 cutime
= current
->signal
->cutime
;
950 cstime
= current
->signal
->cstime
;
951 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
952 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
953 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
954 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
957 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
963 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
966 force_successful_syscall_return();
967 return (long) jiffies_64_to_clock_t(get_jiffies_64());
971 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
973 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
976 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
980 struct compat_tms tmp
;
983 /* Convert our struct tms to the compat version. */
984 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
985 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
986 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
987 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
988 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
991 force_successful_syscall_return();
992 return compat_jiffies_to_clock_t(jiffies
);
997 * This needs some heavy checking ...
998 * I just haven't the stomach for it. I also don't fully
999 * understand sessions/pgrp etc. Let somebody who does explain it.
1001 * OK, I think I have the protection semantics right.... this is really
1002 * only important on a multi-user system anyway, to make sure one user
1003 * can't send a signal to a process owned by another. -TYT, 12/12/91
1005 * !PF_FORKNOEXEC check to conform completely to POSIX.
1007 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1009 struct task_struct
*p
;
1010 struct task_struct
*group_leader
= current
->group_leader
;
1015 pid
= task_pid_vnr(group_leader
);
1022 /* From this point forward we keep holding onto the tasklist lock
1023 * so that our parent does not change from under us. -DaveM
1025 write_lock_irq(&tasklist_lock
);
1028 p
= find_task_by_vpid(pid
);
1033 if (!thread_group_leader(p
))
1036 if (same_thread_group(p
->real_parent
, group_leader
)) {
1038 if (task_session(p
) != task_session(group_leader
))
1041 if (!(p
->flags
& PF_FORKNOEXEC
))
1045 if (p
!= group_leader
)
1050 if (p
->signal
->leader
)
1055 struct task_struct
*g
;
1057 pgrp
= find_vpid(pgid
);
1058 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1059 if (!g
|| task_session(g
) != task_session(group_leader
))
1063 err
= security_task_setpgid(p
, pgid
);
1067 if (task_pgrp(p
) != pgrp
)
1068 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1072 /* All paths lead to here, thus we are safe. -DaveM */
1073 write_unlock_irq(&tasklist_lock
);
1078 static int do_getpgid(pid_t pid
)
1080 struct task_struct
*p
;
1086 grp
= task_pgrp(current
);
1089 p
= find_task_by_vpid(pid
);
1096 retval
= security_task_getpgid(p
);
1100 retval
= pid_vnr(grp
);
1106 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1108 return do_getpgid(pid
);
1111 #ifdef __ARCH_WANT_SYS_GETPGRP
1113 SYSCALL_DEFINE0(getpgrp
)
1115 return do_getpgid(0);
1120 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1122 struct task_struct
*p
;
1128 sid
= task_session(current
);
1131 p
= find_task_by_vpid(pid
);
1134 sid
= task_session(p
);
1138 retval
= security_task_getsid(p
);
1142 retval
= pid_vnr(sid
);
1148 static void set_special_pids(struct pid
*pid
)
1150 struct task_struct
*curr
= current
->group_leader
;
1152 if (task_session(curr
) != pid
)
1153 change_pid(curr
, PIDTYPE_SID
, pid
);
1155 if (task_pgrp(curr
) != pid
)
1156 change_pid(curr
, PIDTYPE_PGID
, pid
);
1159 int ksys_setsid(void)
1161 struct task_struct
*group_leader
= current
->group_leader
;
1162 struct pid
*sid
= task_pid(group_leader
);
1163 pid_t session
= pid_vnr(sid
);
1166 write_lock_irq(&tasklist_lock
);
1167 /* Fail if I am already a session leader */
1168 if (group_leader
->signal
->leader
)
1171 /* Fail if a process group id already exists that equals the
1172 * proposed session id.
1174 if (pid_task(sid
, PIDTYPE_PGID
))
1177 group_leader
->signal
->leader
= 1;
1178 set_special_pids(sid
);
1180 proc_clear_tty(group_leader
);
1184 write_unlock_irq(&tasklist_lock
);
1186 proc_sid_connector(group_leader
);
1187 sched_autogroup_create_attach(group_leader
);
1192 SYSCALL_DEFINE0(setsid
)
1194 return ksys_setsid();
1197 DECLARE_RWSEM(uts_sem
);
1199 #ifdef COMPAT_UTS_MACHINE
1200 #define override_architecture(name) \
1201 (personality(current->personality) == PER_LINUX32 && \
1202 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1203 sizeof(COMPAT_UTS_MACHINE)))
1205 #define override_architecture(name) 0
1209 * Work around broken programs that cannot handle "Linux 3.0".
1210 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1211 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1214 static int override_release(char __user
*release
, size_t len
)
1218 if (current
->personality
& UNAME26
) {
1219 const char *rest
= UTS_RELEASE
;
1220 char buf
[65] = { 0 };
1226 if (*rest
== '.' && ++ndots
>= 3)
1228 if (!isdigit(*rest
) && *rest
!= '.')
1232 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1233 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1234 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1235 ret
= copy_to_user(release
, buf
, copy
+ 1);
1240 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1242 struct new_utsname tmp
;
1244 down_read(&uts_sem
);
1245 memcpy(&tmp
, utsname(), sizeof(tmp
));
1247 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1250 if (override_release(name
->release
, sizeof(name
->release
)))
1252 if (override_architecture(name
))
1257 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1261 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1263 struct old_utsname tmp
;
1268 down_read(&uts_sem
);
1269 memcpy(&tmp
, utsname(), sizeof(tmp
));
1271 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1274 if (override_release(name
->release
, sizeof(name
->release
)))
1276 if (override_architecture(name
))
1281 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1283 struct oldold_utsname tmp
;
1288 memset(&tmp
, 0, sizeof(tmp
));
1290 down_read(&uts_sem
);
1291 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1292 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1293 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1294 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1295 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1297 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1300 if (override_architecture(name
))
1302 if (override_release(name
->release
, sizeof(name
->release
)))
1308 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1311 char tmp
[__NEW_UTS_LEN
];
1313 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1316 if (len
< 0 || len
> __NEW_UTS_LEN
)
1319 if (!copy_from_user(tmp
, name
, len
)) {
1320 struct new_utsname
*u
;
1322 down_write(&uts_sem
);
1324 memcpy(u
->nodename
, tmp
, len
);
1325 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1327 uts_proc_notify(UTS_PROC_HOSTNAME
);
1333 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1335 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1338 struct new_utsname
*u
;
1339 char tmp
[__NEW_UTS_LEN
+ 1];
1343 down_read(&uts_sem
);
1345 i
= 1 + strlen(u
->nodename
);
1348 memcpy(tmp
, u
->nodename
, i
);
1350 if (copy_to_user(name
, tmp
, i
))
1358 * Only setdomainname; getdomainname can be implemented by calling
1361 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1364 char tmp
[__NEW_UTS_LEN
];
1366 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1368 if (len
< 0 || len
> __NEW_UTS_LEN
)
1372 if (!copy_from_user(tmp
, name
, len
)) {
1373 struct new_utsname
*u
;
1375 down_write(&uts_sem
);
1377 memcpy(u
->domainname
, tmp
, len
);
1378 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1380 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1386 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1388 struct rlimit value
;
1391 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1393 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1398 #ifdef CONFIG_COMPAT
1400 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1401 struct compat_rlimit __user
*, rlim
)
1404 struct compat_rlimit r32
;
1406 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1409 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1410 r
.rlim_cur
= RLIM_INFINITY
;
1412 r
.rlim_cur
= r32
.rlim_cur
;
1413 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1414 r
.rlim_max
= RLIM_INFINITY
;
1416 r
.rlim_max
= r32
.rlim_max
;
1417 return do_prlimit(current
, resource
, &r
, NULL
);
1420 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1421 struct compat_rlimit __user
*, rlim
)
1426 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1428 struct compat_rlimit r32
;
1429 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1430 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1432 r32
.rlim_cur
= r
.rlim_cur
;
1433 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1434 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1436 r32
.rlim_max
= r
.rlim_max
;
1438 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1446 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1449 * Back compatibility for getrlimit. Needed for some apps.
1451 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1452 struct rlimit __user
*, rlim
)
1455 if (resource
>= RLIM_NLIMITS
)
1458 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1459 task_lock(current
->group_leader
);
1460 x
= current
->signal
->rlim
[resource
];
1461 task_unlock(current
->group_leader
);
1462 if (x
.rlim_cur
> 0x7FFFFFFF)
1463 x
.rlim_cur
= 0x7FFFFFFF;
1464 if (x
.rlim_max
> 0x7FFFFFFF)
1465 x
.rlim_max
= 0x7FFFFFFF;
1466 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1469 #ifdef CONFIG_COMPAT
1470 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1471 struct compat_rlimit __user
*, rlim
)
1475 if (resource
>= RLIM_NLIMITS
)
1478 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1479 task_lock(current
->group_leader
);
1480 r
= current
->signal
->rlim
[resource
];
1481 task_unlock(current
->group_leader
);
1482 if (r
.rlim_cur
> 0x7FFFFFFF)
1483 r
.rlim_cur
= 0x7FFFFFFF;
1484 if (r
.rlim_max
> 0x7FFFFFFF)
1485 r
.rlim_max
= 0x7FFFFFFF;
1487 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1488 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1496 static inline bool rlim64_is_infinity(__u64 rlim64
)
1498 #if BITS_PER_LONG < 64
1499 return rlim64
>= ULONG_MAX
;
1501 return rlim64
== RLIM64_INFINITY
;
1505 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1507 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1508 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1510 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1511 if (rlim
->rlim_max
== RLIM_INFINITY
)
1512 rlim64
->rlim_max
= RLIM64_INFINITY
;
1514 rlim64
->rlim_max
= rlim
->rlim_max
;
1517 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1519 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1520 rlim
->rlim_cur
= RLIM_INFINITY
;
1522 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1523 if (rlim64_is_infinity(rlim64
->rlim_max
))
1524 rlim
->rlim_max
= RLIM_INFINITY
;
1526 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1529 /* make sure you are allowed to change @tsk limits before calling this */
1530 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1531 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1533 struct rlimit
*rlim
;
1536 if (resource
>= RLIM_NLIMITS
)
1539 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1541 if (resource
== RLIMIT_NOFILE
&&
1542 new_rlim
->rlim_max
> sysctl_nr_open
)
1546 /* protect tsk->signal and tsk->sighand from disappearing */
1547 read_lock(&tasklist_lock
);
1548 if (!tsk
->sighand
) {
1553 rlim
= tsk
->signal
->rlim
+ resource
;
1554 task_lock(tsk
->group_leader
);
1556 /* Keep the capable check against init_user_ns until
1557 cgroups can contain all limits */
1558 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1559 !capable(CAP_SYS_RESOURCE
))
1562 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1570 task_unlock(tsk
->group_leader
);
1573 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1574 * infite. In case of RLIM_INFINITY the posix CPU timer code
1575 * ignores the rlimit.
1577 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1578 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1579 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1580 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1582 read_unlock(&tasklist_lock
);
1586 /* rcu lock must be held */
1587 static int check_prlimit_permission(struct task_struct
*task
,
1590 const struct cred
*cred
= current_cred(), *tcred
;
1593 if (current
== task
)
1596 tcred
= __task_cred(task
);
1597 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1598 uid_eq(cred
->uid
, tcred
->suid
) &&
1599 uid_eq(cred
->uid
, tcred
->uid
) &&
1600 gid_eq(cred
->gid
, tcred
->egid
) &&
1601 gid_eq(cred
->gid
, tcred
->sgid
) &&
1602 gid_eq(cred
->gid
, tcred
->gid
));
1603 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1606 return security_task_prlimit(cred
, tcred
, flags
);
1609 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1610 const struct rlimit64 __user
*, new_rlim
,
1611 struct rlimit64 __user
*, old_rlim
)
1613 struct rlimit64 old64
, new64
;
1614 struct rlimit old
, new;
1615 struct task_struct
*tsk
;
1616 unsigned int checkflags
= 0;
1620 checkflags
|= LSM_PRLIMIT_READ
;
1623 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1625 rlim64_to_rlim(&new64
, &new);
1626 checkflags
|= LSM_PRLIMIT_WRITE
;
1630 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1635 ret
= check_prlimit_permission(tsk
, checkflags
);
1640 get_task_struct(tsk
);
1643 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1644 old_rlim
? &old
: NULL
);
1646 if (!ret
&& old_rlim
) {
1647 rlim_to_rlim64(&old
, &old64
);
1648 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1652 put_task_struct(tsk
);
1656 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1658 struct rlimit new_rlim
;
1660 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1662 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1666 * It would make sense to put struct rusage in the task_struct,
1667 * except that would make the task_struct be *really big*. After
1668 * task_struct gets moved into malloc'ed memory, it would
1669 * make sense to do this. It will make moving the rest of the information
1670 * a lot simpler! (Which we're not doing right now because we're not
1671 * measuring them yet).
1673 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1674 * races with threads incrementing their own counters. But since word
1675 * reads are atomic, we either get new values or old values and we don't
1676 * care which for the sums. We always take the siglock to protect reading
1677 * the c* fields from p->signal from races with exit.c updating those
1678 * fields when reaping, so a sample either gets all the additions of a
1679 * given child after it's reaped, or none so this sample is before reaping.
1682 * We need to take the siglock for CHILDEREN, SELF and BOTH
1683 * for the cases current multithreaded, non-current single threaded
1684 * non-current multithreaded. Thread traversal is now safe with
1686 * Strictly speaking, we donot need to take the siglock if we are current and
1687 * single threaded, as no one else can take our signal_struct away, no one
1688 * else can reap the children to update signal->c* counters, and no one else
1689 * can race with the signal-> fields. If we do not take any lock, the
1690 * signal-> fields could be read out of order while another thread was just
1691 * exiting. So we should place a read memory barrier when we avoid the lock.
1692 * On the writer side, write memory barrier is implied in __exit_signal
1693 * as __exit_signal releases the siglock spinlock after updating the signal->
1694 * fields. But we don't do this yet to keep things simple.
1698 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1700 r
->ru_nvcsw
+= t
->nvcsw
;
1701 r
->ru_nivcsw
+= t
->nivcsw
;
1702 r
->ru_minflt
+= t
->min_flt
;
1703 r
->ru_majflt
+= t
->maj_flt
;
1704 r
->ru_inblock
+= task_io_get_inblock(t
);
1705 r
->ru_oublock
+= task_io_get_oublock(t
);
1708 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1710 struct task_struct
*t
;
1711 unsigned long flags
;
1712 u64 tgutime
, tgstime
, utime
, stime
;
1713 unsigned long maxrss
= 0;
1715 memset((char *)r
, 0, sizeof (*r
));
1718 if (who
== RUSAGE_THREAD
) {
1719 task_cputime_adjusted(current
, &utime
, &stime
);
1720 accumulate_thread_rusage(p
, r
);
1721 maxrss
= p
->signal
->maxrss
;
1725 if (!lock_task_sighand(p
, &flags
))
1730 case RUSAGE_CHILDREN
:
1731 utime
= p
->signal
->cutime
;
1732 stime
= p
->signal
->cstime
;
1733 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1734 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1735 r
->ru_minflt
= p
->signal
->cmin_flt
;
1736 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1737 r
->ru_inblock
= p
->signal
->cinblock
;
1738 r
->ru_oublock
= p
->signal
->coublock
;
1739 maxrss
= p
->signal
->cmaxrss
;
1741 if (who
== RUSAGE_CHILDREN
)
1746 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1749 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1750 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1751 r
->ru_minflt
+= p
->signal
->min_flt
;
1752 r
->ru_majflt
+= p
->signal
->maj_flt
;
1753 r
->ru_inblock
+= p
->signal
->inblock
;
1754 r
->ru_oublock
+= p
->signal
->oublock
;
1755 if (maxrss
< p
->signal
->maxrss
)
1756 maxrss
= p
->signal
->maxrss
;
1759 accumulate_thread_rusage(t
, r
);
1760 } while_each_thread(p
, t
);
1766 unlock_task_sighand(p
, &flags
);
1769 r
->ru_utime
= ns_to_kernel_old_timeval(utime
);
1770 r
->ru_stime
= ns_to_kernel_old_timeval(stime
);
1772 if (who
!= RUSAGE_CHILDREN
) {
1773 struct mm_struct
*mm
= get_task_mm(p
);
1776 setmax_mm_hiwater_rss(&maxrss
, mm
);
1780 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1783 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1787 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1788 who
!= RUSAGE_THREAD
)
1791 getrusage(current
, who
, &r
);
1792 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1795 #ifdef CONFIG_COMPAT
1796 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1800 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1801 who
!= RUSAGE_THREAD
)
1804 getrusage(current
, who
, &r
);
1805 return put_compat_rusage(&r
, ru
);
1809 SYSCALL_DEFINE1(umask
, int, mask
)
1811 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1815 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1818 struct file
*old_exe
, *exe_file
;
1819 struct inode
*inode
;
1826 inode
= file_inode(exe
.file
);
1829 * Because the original mm->exe_file points to executable file, make
1830 * sure that this one is executable as well, to avoid breaking an
1834 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1837 err
= inode_permission(inode
, MAY_EXEC
);
1842 * Forbid mm->exe_file change if old file still mapped.
1844 exe_file
= get_mm_exe_file(mm
);
1847 struct vm_area_struct
*vma
;
1849 down_read(&mm
->mmap_sem
);
1850 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1853 if (path_equal(&vma
->vm_file
->f_path
,
1858 up_read(&mm
->mmap_sem
);
1863 /* set the new file, lockless */
1865 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1872 up_read(&mm
->mmap_sem
);
1878 * Check arithmetic relations of passed addresses.
1880 * WARNING: we don't require any capability here so be very careful
1881 * in what is allowed for modification from userspace.
1883 static int validate_prctl_map_addr(struct prctl_mm_map
*prctl_map
)
1885 unsigned long mmap_max_addr
= TASK_SIZE
;
1886 int error
= -EINVAL
, i
;
1888 static const unsigned char offsets
[] = {
1889 offsetof(struct prctl_mm_map
, start_code
),
1890 offsetof(struct prctl_mm_map
, end_code
),
1891 offsetof(struct prctl_mm_map
, start_data
),
1892 offsetof(struct prctl_mm_map
, end_data
),
1893 offsetof(struct prctl_mm_map
, start_brk
),
1894 offsetof(struct prctl_mm_map
, brk
),
1895 offsetof(struct prctl_mm_map
, start_stack
),
1896 offsetof(struct prctl_mm_map
, arg_start
),
1897 offsetof(struct prctl_mm_map
, arg_end
),
1898 offsetof(struct prctl_mm_map
, env_start
),
1899 offsetof(struct prctl_mm_map
, env_end
),
1903 * Make sure the members are not somewhere outside
1904 * of allowed address space.
1906 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1907 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1909 if ((unsigned long)val
>= mmap_max_addr
||
1910 (unsigned long)val
< mmap_min_addr
)
1915 * Make sure the pairs are ordered.
1917 #define __prctl_check_order(__m1, __op, __m2) \
1918 ((unsigned long)prctl_map->__m1 __op \
1919 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1920 error
= __prctl_check_order(start_code
, <, end_code
);
1921 error
|= __prctl_check_order(start_data
,<=, end_data
);
1922 error
|= __prctl_check_order(start_brk
, <=, brk
);
1923 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1924 error
|= __prctl_check_order(env_start
, <=, env_end
);
1927 #undef __prctl_check_order
1932 * @brk should be after @end_data in traditional maps.
1934 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1935 prctl_map
->brk
<= prctl_map
->end_data
)
1939 * Neither we should allow to override limits if they set.
1941 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1942 prctl_map
->start_brk
, prctl_map
->end_data
,
1943 prctl_map
->start_data
))
1951 #ifdef CONFIG_CHECKPOINT_RESTORE
1952 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1954 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1955 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1956 struct mm_struct
*mm
= current
->mm
;
1959 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1960 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1962 if (opt
== PR_SET_MM_MAP_SIZE
)
1963 return put_user((unsigned int)sizeof(prctl_map
),
1964 (unsigned int __user
*)addr
);
1966 if (data_size
!= sizeof(prctl_map
))
1969 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1972 error
= validate_prctl_map_addr(&prctl_map
);
1976 if (prctl_map
.auxv_size
) {
1978 * Someone is trying to cheat the auxv vector.
1980 if (!prctl_map
.auxv
||
1981 prctl_map
.auxv_size
> sizeof(mm
->saved_auxv
))
1984 memset(user_auxv
, 0, sizeof(user_auxv
));
1985 if (copy_from_user(user_auxv
,
1986 (const void __user
*)prctl_map
.auxv
,
1987 prctl_map
.auxv_size
))
1990 /* Last entry must be AT_NULL as specification requires */
1991 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1992 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1995 if (prctl_map
.exe_fd
!= (u32
)-1) {
1997 * Make sure the caller has the rights to
1998 * change /proc/pid/exe link: only local sys admin should
2001 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
2004 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2010 * arg_lock protects concurent updates but we still need mmap_sem for
2011 * read to exclude races with sys_brk.
2013 down_read(&mm
->mmap_sem
);
2016 * We don't validate if these members are pointing to
2017 * real present VMAs because application may have correspond
2018 * VMAs already unmapped and kernel uses these members for statistics
2019 * output in procfs mostly, except
2021 * - @start_brk/@brk which are used in do_brk but kernel lookups
2022 * for VMAs when updating these memvers so anything wrong written
2023 * here cause kernel to swear at userspace program but won't lead
2024 * to any problem in kernel itself
2027 spin_lock(&mm
->arg_lock
);
2028 mm
->start_code
= prctl_map
.start_code
;
2029 mm
->end_code
= prctl_map
.end_code
;
2030 mm
->start_data
= prctl_map
.start_data
;
2031 mm
->end_data
= prctl_map
.end_data
;
2032 mm
->start_brk
= prctl_map
.start_brk
;
2033 mm
->brk
= prctl_map
.brk
;
2034 mm
->start_stack
= prctl_map
.start_stack
;
2035 mm
->arg_start
= prctl_map
.arg_start
;
2036 mm
->arg_end
= prctl_map
.arg_end
;
2037 mm
->env_start
= prctl_map
.env_start
;
2038 mm
->env_end
= prctl_map
.env_end
;
2039 spin_unlock(&mm
->arg_lock
);
2042 * Note this update of @saved_auxv is lockless thus
2043 * if someone reads this member in procfs while we're
2044 * updating -- it may get partly updated results. It's
2045 * known and acceptable trade off: we leave it as is to
2046 * not introduce additional locks here making the kernel
2049 if (prctl_map
.auxv_size
)
2050 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2052 up_read(&mm
->mmap_sem
);
2055 #endif /* CONFIG_CHECKPOINT_RESTORE */
2057 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2061 * This doesn't move the auxiliary vector itself since it's pinned to
2062 * mm_struct, but it permits filling the vector with new values. It's
2063 * up to the caller to provide sane values here, otherwise userspace
2064 * tools which use this vector might be unhappy.
2066 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2068 if (len
> sizeof(user_auxv
))
2071 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2074 /* Make sure the last entry is always AT_NULL */
2075 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2076 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2078 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2081 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2082 task_unlock(current
);
2087 static int prctl_set_mm(int opt
, unsigned long addr
,
2088 unsigned long arg4
, unsigned long arg5
)
2090 struct mm_struct
*mm
= current
->mm
;
2091 struct prctl_mm_map prctl_map
= {
2096 struct vm_area_struct
*vma
;
2099 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2100 opt
!= PR_SET_MM_MAP
&&
2101 opt
!= PR_SET_MM_MAP_SIZE
)))
2104 #ifdef CONFIG_CHECKPOINT_RESTORE
2105 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2106 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2109 if (!capable(CAP_SYS_RESOURCE
))
2112 if (opt
== PR_SET_MM_EXE_FILE
)
2113 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2115 if (opt
== PR_SET_MM_AUXV
)
2116 return prctl_set_auxv(mm
, addr
, arg4
);
2118 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2124 * arg_lock protects concurent updates of arg boundaries, we need
2125 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2128 down_read(&mm
->mmap_sem
);
2129 vma
= find_vma(mm
, addr
);
2131 spin_lock(&mm
->arg_lock
);
2132 prctl_map
.start_code
= mm
->start_code
;
2133 prctl_map
.end_code
= mm
->end_code
;
2134 prctl_map
.start_data
= mm
->start_data
;
2135 prctl_map
.end_data
= mm
->end_data
;
2136 prctl_map
.start_brk
= mm
->start_brk
;
2137 prctl_map
.brk
= mm
->brk
;
2138 prctl_map
.start_stack
= mm
->start_stack
;
2139 prctl_map
.arg_start
= mm
->arg_start
;
2140 prctl_map
.arg_end
= mm
->arg_end
;
2141 prctl_map
.env_start
= mm
->env_start
;
2142 prctl_map
.env_end
= mm
->env_end
;
2145 case PR_SET_MM_START_CODE
:
2146 prctl_map
.start_code
= addr
;
2148 case PR_SET_MM_END_CODE
:
2149 prctl_map
.end_code
= addr
;
2151 case PR_SET_MM_START_DATA
:
2152 prctl_map
.start_data
= addr
;
2154 case PR_SET_MM_END_DATA
:
2155 prctl_map
.end_data
= addr
;
2157 case PR_SET_MM_START_STACK
:
2158 prctl_map
.start_stack
= addr
;
2160 case PR_SET_MM_START_BRK
:
2161 prctl_map
.start_brk
= addr
;
2164 prctl_map
.brk
= addr
;
2166 case PR_SET_MM_ARG_START
:
2167 prctl_map
.arg_start
= addr
;
2169 case PR_SET_MM_ARG_END
:
2170 prctl_map
.arg_end
= addr
;
2172 case PR_SET_MM_ENV_START
:
2173 prctl_map
.env_start
= addr
;
2175 case PR_SET_MM_ENV_END
:
2176 prctl_map
.env_end
= addr
;
2182 error
= validate_prctl_map_addr(&prctl_map
);
2188 * If command line arguments and environment
2189 * are placed somewhere else on stack, we can
2190 * set them up here, ARG_START/END to setup
2191 * command line argumets and ENV_START/END
2194 case PR_SET_MM_START_STACK
:
2195 case PR_SET_MM_ARG_START
:
2196 case PR_SET_MM_ARG_END
:
2197 case PR_SET_MM_ENV_START
:
2198 case PR_SET_MM_ENV_END
:
2205 mm
->start_code
= prctl_map
.start_code
;
2206 mm
->end_code
= prctl_map
.end_code
;
2207 mm
->start_data
= prctl_map
.start_data
;
2208 mm
->end_data
= prctl_map
.end_data
;
2209 mm
->start_brk
= prctl_map
.start_brk
;
2210 mm
->brk
= prctl_map
.brk
;
2211 mm
->start_stack
= prctl_map
.start_stack
;
2212 mm
->arg_start
= prctl_map
.arg_start
;
2213 mm
->arg_end
= prctl_map
.arg_end
;
2214 mm
->env_start
= prctl_map
.env_start
;
2215 mm
->env_end
= prctl_map
.env_end
;
2219 spin_unlock(&mm
->arg_lock
);
2220 up_read(&mm
->mmap_sem
);
2224 #ifdef CONFIG_CHECKPOINT_RESTORE
2225 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2227 return put_user(me
->clear_child_tid
, tid_addr
);
2230 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2236 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2239 * If task has has_child_subreaper - all its decendants
2240 * already have these flag too and new decendants will
2241 * inherit it on fork, skip them.
2243 * If we've found child_reaper - skip descendants in
2244 * it's subtree as they will never get out pidns.
2246 if (p
->signal
->has_child_subreaper
||
2247 is_child_reaper(task_pid(p
)))
2250 p
->signal
->has_child_subreaper
= 1;
2254 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2259 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2265 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LESS_THROTTLE)
2267 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2268 unsigned long, arg4
, unsigned long, arg5
)
2270 struct task_struct
*me
= current
;
2271 unsigned char comm
[sizeof(me
->comm
)];
2274 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2275 if (error
!= -ENOSYS
)
2280 case PR_SET_PDEATHSIG
:
2281 if (!valid_signal(arg2
)) {
2285 me
->pdeath_signal
= arg2
;
2287 case PR_GET_PDEATHSIG
:
2288 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2290 case PR_GET_DUMPABLE
:
2291 error
= get_dumpable(me
->mm
);
2293 case PR_SET_DUMPABLE
:
2294 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2298 set_dumpable(me
->mm
, arg2
);
2301 case PR_SET_UNALIGN
:
2302 error
= SET_UNALIGN_CTL(me
, arg2
);
2304 case PR_GET_UNALIGN
:
2305 error
= GET_UNALIGN_CTL(me
, arg2
);
2308 error
= SET_FPEMU_CTL(me
, arg2
);
2311 error
= GET_FPEMU_CTL(me
, arg2
);
2314 error
= SET_FPEXC_CTL(me
, arg2
);
2317 error
= GET_FPEXC_CTL(me
, arg2
);
2320 error
= PR_TIMING_STATISTICAL
;
2323 if (arg2
!= PR_TIMING_STATISTICAL
)
2327 comm
[sizeof(me
->comm
) - 1] = 0;
2328 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2329 sizeof(me
->comm
) - 1) < 0)
2331 set_task_comm(me
, comm
);
2332 proc_comm_connector(me
);
2335 get_task_comm(comm
, me
);
2336 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2340 error
= GET_ENDIAN(me
, arg2
);
2343 error
= SET_ENDIAN(me
, arg2
);
2345 case PR_GET_SECCOMP
:
2346 error
= prctl_get_seccomp();
2348 case PR_SET_SECCOMP
:
2349 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2352 error
= GET_TSC_CTL(arg2
);
2355 error
= SET_TSC_CTL(arg2
);
2357 case PR_TASK_PERF_EVENTS_DISABLE
:
2358 error
= perf_event_task_disable();
2360 case PR_TASK_PERF_EVENTS_ENABLE
:
2361 error
= perf_event_task_enable();
2363 case PR_GET_TIMERSLACK
:
2364 if (current
->timer_slack_ns
> ULONG_MAX
)
2367 error
= current
->timer_slack_ns
;
2369 case PR_SET_TIMERSLACK
:
2371 current
->timer_slack_ns
=
2372 current
->default_timer_slack_ns
;
2374 current
->timer_slack_ns
= arg2
;
2380 case PR_MCE_KILL_CLEAR
:
2383 current
->flags
&= ~PF_MCE_PROCESS
;
2385 case PR_MCE_KILL_SET
:
2386 current
->flags
|= PF_MCE_PROCESS
;
2387 if (arg3
== PR_MCE_KILL_EARLY
)
2388 current
->flags
|= PF_MCE_EARLY
;
2389 else if (arg3
== PR_MCE_KILL_LATE
)
2390 current
->flags
&= ~PF_MCE_EARLY
;
2391 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2393 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2401 case PR_MCE_KILL_GET
:
2402 if (arg2
| arg3
| arg4
| arg5
)
2404 if (current
->flags
& PF_MCE_PROCESS
)
2405 error
= (current
->flags
& PF_MCE_EARLY
) ?
2406 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2408 error
= PR_MCE_KILL_DEFAULT
;
2411 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2413 case PR_GET_TID_ADDRESS
:
2414 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2416 case PR_SET_CHILD_SUBREAPER
:
2417 me
->signal
->is_child_subreaper
= !!arg2
;
2421 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2423 case PR_GET_CHILD_SUBREAPER
:
2424 error
= put_user(me
->signal
->is_child_subreaper
,
2425 (int __user
*)arg2
);
2427 case PR_SET_NO_NEW_PRIVS
:
2428 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2431 task_set_no_new_privs(current
);
2433 case PR_GET_NO_NEW_PRIVS
:
2434 if (arg2
|| arg3
|| arg4
|| arg5
)
2436 return task_no_new_privs(current
) ? 1 : 0;
2437 case PR_GET_THP_DISABLE
:
2438 if (arg2
|| arg3
|| arg4
|| arg5
)
2440 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2442 case PR_SET_THP_DISABLE
:
2443 if (arg3
|| arg4
|| arg5
)
2445 if (down_write_killable(&me
->mm
->mmap_sem
))
2448 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2450 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2451 up_write(&me
->mm
->mmap_sem
);
2453 case PR_MPX_ENABLE_MANAGEMENT
:
2454 case PR_MPX_DISABLE_MANAGEMENT
:
2455 /* No longer implemented: */
2457 case PR_SET_FP_MODE
:
2458 error
= SET_FP_MODE(me
, arg2
);
2460 case PR_GET_FP_MODE
:
2461 error
= GET_FP_MODE(me
);
2464 error
= SVE_SET_VL(arg2
);
2467 error
= SVE_GET_VL();
2469 case PR_GET_SPECULATION_CTRL
:
2470 if (arg3
|| arg4
|| arg5
)
2472 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2474 case PR_SET_SPECULATION_CTRL
:
2477 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2479 case PR_PAC_RESET_KEYS
:
2480 if (arg3
|| arg4
|| arg5
)
2482 error
= PAC_RESET_KEYS(me
, arg2
);
2484 case PR_SET_TAGGED_ADDR_CTRL
:
2485 if (arg3
|| arg4
|| arg5
)
2487 error
= SET_TAGGED_ADDR_CTRL(arg2
);
2489 case PR_GET_TAGGED_ADDR_CTRL
:
2490 if (arg2
|| arg3
|| arg4
|| arg5
)
2492 error
= GET_TAGGED_ADDR_CTRL();
2494 case PR_SET_IO_FLUSHER
:
2495 if (!capable(CAP_SYS_RESOURCE
))
2498 if (arg3
|| arg4
|| arg5
)
2502 current
->flags
|= PR_IO_FLUSHER
;
2504 current
->flags
&= ~PR_IO_FLUSHER
;
2508 case PR_GET_IO_FLUSHER
:
2509 if (!capable(CAP_SYS_RESOURCE
))
2512 if (arg2
|| arg3
|| arg4
|| arg5
)
2515 error
= (current
->flags
& PR_IO_FLUSHER
) == PR_IO_FLUSHER
;
2524 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2525 struct getcpu_cache __user
*, unused
)
2528 int cpu
= raw_smp_processor_id();
2531 err
|= put_user(cpu
, cpup
);
2533 err
|= put_user(cpu_to_node(cpu
), nodep
);
2534 return err
? -EFAULT
: 0;
2538 * do_sysinfo - fill in sysinfo struct
2539 * @info: pointer to buffer to fill
2541 static int do_sysinfo(struct sysinfo
*info
)
2543 unsigned long mem_total
, sav_total
;
2544 unsigned int mem_unit
, bitcount
;
2545 struct timespec64 tp
;
2547 memset(info
, 0, sizeof(struct sysinfo
));
2549 ktime_get_boottime_ts64(&tp
);
2550 timens_add_boottime(&tp
);
2551 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2553 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2555 info
->procs
= nr_threads
;
2561 * If the sum of all the available memory (i.e. ram + swap)
2562 * is less than can be stored in a 32 bit unsigned long then
2563 * we can be binary compatible with 2.2.x kernels. If not,
2564 * well, in that case 2.2.x was broken anyways...
2566 * -Erik Andersen <andersee@debian.org>
2569 mem_total
= info
->totalram
+ info
->totalswap
;
2570 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2573 mem_unit
= info
->mem_unit
;
2574 while (mem_unit
> 1) {
2577 sav_total
= mem_total
;
2579 if (mem_total
< sav_total
)
2584 * If mem_total did not overflow, multiply all memory values by
2585 * info->mem_unit and set it to 1. This leaves things compatible
2586 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2591 info
->totalram
<<= bitcount
;
2592 info
->freeram
<<= bitcount
;
2593 info
->sharedram
<<= bitcount
;
2594 info
->bufferram
<<= bitcount
;
2595 info
->totalswap
<<= bitcount
;
2596 info
->freeswap
<<= bitcount
;
2597 info
->totalhigh
<<= bitcount
;
2598 info
->freehigh
<<= bitcount
;
2604 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2610 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2616 #ifdef CONFIG_COMPAT
2617 struct compat_sysinfo
{
2631 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2634 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2640 /* Check to see if any memory value is too large for 32-bit and scale
2643 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2646 while (s
.mem_unit
< PAGE_SIZE
) {
2651 s
.totalram
>>= bitcount
;
2652 s
.freeram
>>= bitcount
;
2653 s
.sharedram
>>= bitcount
;
2654 s
.bufferram
>>= bitcount
;
2655 s
.totalswap
>>= bitcount
;
2656 s
.freeswap
>>= bitcount
;
2657 s
.totalhigh
>>= bitcount
;
2658 s
.freehigh
>>= bitcount
;
2661 if (!access_ok(info
, sizeof(struct compat_sysinfo
)) ||
2662 __put_user(s
.uptime
, &info
->uptime
) ||
2663 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2664 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2665 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2666 __put_user(s
.totalram
, &info
->totalram
) ||
2667 __put_user(s
.freeram
, &info
->freeram
) ||
2668 __put_user(s
.sharedram
, &info
->sharedram
) ||
2669 __put_user(s
.bufferram
, &info
->bufferram
) ||
2670 __put_user(s
.totalswap
, &info
->totalswap
) ||
2671 __put_user(s
.freeswap
, &info
->freeswap
) ||
2672 __put_user(s
.procs
, &info
->procs
) ||
2673 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2674 __put_user(s
.freehigh
, &info
->freehigh
) ||
2675 __put_user(s
.mem_unit
, &info
->mem_unit
))
2680 #endif /* CONFIG_COMPAT */